AN EXTREMALLY DISCONNECTED DOWKER SPACE

ALAN DOW AND JAN VAN MILL

ABSTRACT. We give an example of an extremally disconnected Dowker space. Our basic tool is that every P-space can be C^* -embedded in an extremally disconnected compactum.

0. Introduction. A *Dowker space* is a normal space X for which $X \times I$ is not normal, where I denotes the closed unit interval [0, 1]. Dowker spaces are hard to get. Under various set theoretic hypotheses, Dowker spaces with many additional properties have been constructed. In ZFC only one construction of a Dowker space is known, see Rudin [R].

Hardy and Juhász [HJ] asked whether extremally disconnected Dowker spaces exist, where a space X is called extremally disconnected if the closure of each open subspace of X is given again open. They also announced that Wage had constructed such a space; however that turned out to be incorrect. The aim of this note is to construct an extremally disconnected Dowker space in ZFC. The reader who hopes that we found a new way of constructing Dowker spaces in ZFC will be quite disappointed. What we do is simply modify Mary Ellen Rudin's [R] Dowker space so that it becomes extremally disconnected. Our technique is to show that every P-space can be C^* -embedded in some compact extremally disconnected space, thus generalizing results in [BSV and vD].

1. Preliminaries. Let X be a compact space and let RO(X) be the Boolean algebra of regular open subsets of X. The Stone space of RO(X) is denoted by EX and is called the *projective cover* of X. The function $\pi: EX \to X$ defined by

$$\{\pi(u)\}=\bigcap_{U\in u}\overline{U},$$

is easily seen to be continuous, onto and irreducible, i.e. if $A \subseteq EX$ is a proper closed subpsace, then $\pi(A) \neq X$. Since RO(X) is complete, EX is extremally disconnected. If $h: X \to X$ is a homeomorphism, then the function $eh: EX \to EX$ defined by $eh(u) = \{h(U): U \in u\}$ is easily seen to be a homeomorphism such that $\pi \circ eh = h \circ \pi$. The reader is encouraged to check this, since we use this later. For a recent survey on projective covers, see Woods [W]. By a result of Efimov [E], every extremally disconnected compactum embeds in the Čech-Stone compactification $\beta \kappa$

Received by the editors December 10, 1981 and, in revised form, April 13, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54D35.

Key words and phrases. Dowker space, P-space, C^* -embedding, βX .

¹Actually it appears that this question was first asked by R. G. Woods.

of some cardinal κ , where κ is given the discrete topology. As usual, we call a space X a P-space if every G_{δ} in X is open. If X is a Tychonoff space, then βX denotes the Čech-Stone compactification of X. A subspace $Y \subseteq X$ is said to be C^* -embedded in X provided that every map $f: Y \to I$ extends to a map $\bar{f}: X \to I$. Our terminology is standard. w(X) denotes the weight of a space X.

2. Embedding *P*-spaces in $\beta \kappa$. In this section we show that if *X* is a *P*-space, then βX can be embedded in the Čech-Stone compactification of some discrete space. Obviously, this is equivalent to the statement that every *P*-space can be C^* -embedded in some extremally disconnected compact space.

To this end, let X be a P-space. Since X is strongly zero-dimensional, we may assume that $\beta X \subseteq 2^{\kappa}$ for certain κ . Take $p \in 2^{\kappa}$. The map $g_p \colon 2^{\kappa} \to 2^{\kappa}$ defined by $g_p(x) = x + p$ lifts to a map $eg_p \colon E(2^{\kappa}) \to E(2^{\kappa})$, see §1. The homeomorphism eg_p will be called h_p for short.

2.1. Lemma. If $U \in RO(2^{\kappa})$ then there exist a countable collection $\{F_n: n \in \omega\}$ of finite subsets of κ and elements δ_n of 2^{F_n} , for $n \in \omega$, such that $\bigcup_{n \in \omega} (\bigcap_{i \in F_n} \pi_i^{\leftarrow}(\delta(i)))$ is a dense subset of U (where π_i is the ith projection map).

PROOF. As is well known, 2^{κ} is ccc (families of pairwise disjoint open sets are countable) and the collection $\mathfrak{B} = \{ \bigcap_{i \in F} \pi_i^{\leftarrow}(\delta(i)) : F \subseteq \kappa \text{ is finite and } \delta \in 2^F \}$ is a base for the topology of 2^{κ} . Choose a maximal cellular collection, $\mathcal{C} \subseteq \mathfrak{B}$, of subsets of U. Clearly \mathcal{C} is countable and U is dense in U. Take $\{F_n : n \in \omega\}$, finite subsets of κ , and $\delta_n \in 2^{F_n}$, for $n \in \omega$, so that $\mathcal{C} = \{ \bigcap_{i \in F_n} \pi_i^{\leftarrow}(\delta_n(i)) : n \in \omega \}$. \square

If $U \in RO(2^{\kappa})$ and $\{F_n: n \in \omega\}$ is chosen as in 2.1, then we say that U is determined by $D = \bigcup F_n$. The following lemma follows trivially from the definition of g_p for $p \in 2^{\kappa}$.

- 2.2. Lemma. If $i \in \kappa$ and $\pi_i(p) = \pi_i(q)$ for $p, q \in 2^{\kappa}$ then $g_p(\pi^{\leftarrow}(\delta)) = g_q(\pi^{\leftarrow}(\delta))$ for $\delta \in \{0, 1\}$.
- 2.3. LEMMA. If $U \in RO(2^{\kappa})$, U is determined by D and $p, q \in 2^{\kappa}$ are such that $p \upharpoonright D = q \upharpoonright D$, then $g_n(U) = g_a(U)$.

PROOF. Let $\{F_n: n \in \pm \omega\}$ and $\{\delta_n: n \in \omega\}$ with $D = \bigcup_{n \in \omega} F_n$ be as in 2.1. From 2.2, it follows that $g_p(\bigcap_{i \in F_n} \pi_i^{\leftarrow}(\delta_n(i))) = g_q(\bigcap_{i \in F_n} \pi_i^{\leftarrow}(\delta_n(i)))$ for each $n \in \omega$, and therefore

$$g_p\bigg(\bigcup_{n\in\omega}\bigg(\bigcap_{i\in F_n}\pi_i^{\leftarrow}\big(\delta_n(i)\big)\bigg)\bigg)=g_q\bigg(\bigcup_{n\in\omega}\bigg(\bigcap_{i\in F_n}\pi_i^{\leftarrow}\big(\delta_n(i)\big)\bigg)\bigg).$$

Since the image under g_p and g_q of a dense subset of U is the same, $g_p(U) = g_q(U)$.

Take a point $u_0 \in \pi^-(0)$, where **0** denotes the identity of 2^{κ} . If $p \in X$, let $u_p = h_p(u_0)$. Observe that

$$\pi(u_p) = \pi(h_p(u_0)) = g_p(\pi(u_0)) = g_p(\mathbf{0}) = p,$$

whence $u_p \in \pi^{\leftarrow}(p)$. If $U \in RO(2^{\kappa})$ then $\overline{h_p(\pi^{\leftarrow}(u))} = \overline{\pi^{\leftarrow}(g_p(U))}$ and from this it follows that $u_p = \{g_p(U): U \in u_0\}$. Note also that since $g_p \circ g_p = \operatorname{id}, u_p = \{U: g_p(U) \in u_0\}$. Let $P = \{u_p: p \in X\}$.

2.4. LEMMA. The function $\pi \upharpoonright P: P \to X$ is a homeomorphism.

PROOF. For convenience, put $f = \pi \upharpoonright P$. Then f is clearly one-to-one, onto and continuous. It therefore suffices to show that f is open. Basic open sets of P are of the form \tilde{U} , where $U \in RO(2^{\kappa})$ and $\tilde{U} = \{u_p \in P: U \in u_p\}$. Choose $p \in f(\tilde{U})$ and let U be determined by D. Let $Z = \{q \in X: p \upharpoonright D = q \upharpoonright D\}$. By 2.3, $g_p(U) = g_q(U)$ and, therefore, $u_q \in \tilde{U}$ by the above remarks, for each $q \in Z$. Now $Z = X \cap \bigcap_{i \in D} \pi_i^{\leftarrow}(\pi_i(p))$ is a G_{δ} -set of X and therefore open in X. Since $p \in Z$ and $Z \subseteq f(\tilde{U})$, we conclude that $f(\tilde{U})$ is a neighborhood of p. \square

The closure of P in $E(2^{\kappa})$ is a compactification of P which is clearly homeomorphic to βX since βX is the largest compactification of X. This completes the proof, since by Efimov's result (§1), $E(2^{\kappa})$ can be embedded in the Čech-Stone compactification of a discrete space.

The reader can easily verify that in fact we have shown that if X is a P-space of weight κ then βX can be embedded in $\beta(2^{\kappa})$ (here 2^{κ} has the discrete topology of course).

3. The example. The Dowker space R constructed in Rudin [R] is a P-space. By the results in §2, βR embeds in $\beta \kappa$ for certain κ . Since $\beta \kappa$ embeds in $\beta \kappa - \kappa$, we may assume that $\beta R \subseteq \beta \kappa - \kappa$. Put $X = \kappa \cup R$. Since each dense subspace of an extremally disconnected space is extremally disconnected, X is extremally disconnected. Also, R is closed in X which implies that $X \times I$ is not normal since $R \times I$ is not normal. Since κ is discrete, a moment's reflection shows that X is normal iff disjoint closed subsets of R have disjoint neighborhoods in X. Let A, $B \subseteq R$ be closed and disjoint. Since the closure of R in $\beta \kappa$ is βR , A and B have disjoint closures in βR , hence they have disjoint neighborhoods in $\beta \kappa$. We conclude that X is normal and consequently that X is an extremally disconnected Dowker space.

Observe that our example, in particular, is an example of a normal extremally disconnected space which is not paracompact. Such a space was earlier constructed by Kunen [K].

- **4. Remarks.** (1) The technique used in §2 is a modification of a technique due to Balcar, Simon and Vojtáš [BSV] and, independently, Kunen, and Shelah. They observe that if p_{α} is the point of 2^{κ} with value 1 only in the point $\{\alpha\}$ then the set $\{u_{p_{\alpha}}: \alpha < \kappa\} \subseteq E(2^{\kappa})$ is discrete and each neighborhood of u_0 contains all but countably many points of $\{u_{p_{\alpha}}: \alpha < \kappa\}$ (the notation is as in §2).
- (2) van Douwen [vD] used the technique described in (1) to prove the important result that every P-space embeds in $\beta \kappa$ for certain κ . His proof goes as follows. Let $X = \{u_p : p \in 2^{\kappa}\}$. Then X considered to be a subspace of $E(2^{\kappa})$ with the G_{δ} topology, is homeomorphic to 2^{κ} with the G_{δ} topology. Moreover, $E(2^{\kappa})$ with the G_{δ} topology embeds in $E(2^{\kappa})$. Consequently, 2^{κ} with the G_{δ} topology embeds in $E(2^{\kappa})$ and hence in $\beta(2^{\kappa})$. If $P \subseteq 2^{\kappa}$ is a P-space, then P is homeomorphic to P considered

to be a subspace of 2^{κ} with the G_{δ} topology. Consequently, P embeds in $\beta(2^{\kappa})$. Our results in §2 were motivated by these ideas but our construction is much simpler and proves more since our embeddings of P-spaces are embeddings of C^* -embedded subspaces of $E(2^{\kappa})$ and this made our construction work.

REFERENCES

- [BSV] B. Balcar, P. Simon and P. Vojtáš, Refinement properties and extensions of filters in Boolean algebras, Trans. Amer. Math. Soc. 267 (1981), 265-283.
 - [vD] E. K. van Douwen (in preparation).
- [E] B. A. Efimov, Extremally disconnected compact spaces and absolutes, Trans. Moscow Math. Soc. 23 (1970), 243-285.
 - [HJ] K. Hardy and I. Juhász, Normality and the weak cb property, Pacific J. Math. 64 (1976), 167-172.
 - [K] K. Kunen, An extremally disconnected space, Notices Amer. Math. Soc. 24 (1977), A-263.
 - [R] M. E. Rudin, A normal space X for which X × I is not normal, Fund. Math. 73 (1971), 179-186.
- [W] R. G. Woods, A survey of absolutes of topological spaces, Top. Structures II, Math. Centre Tracts 116 (1979), 323-362.

Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands