COMMENTATIONES MATHEMATICAE UNIVERSITA: CAROLINAE 22,4 (1981) ## COUNTABLY COMPACT SPACES ALL COUNTABLE SUBSETS OF WHICH ARE SCATTERED I. JUHÁSZ, J. van MILL Abstract: We give several examples of countably compact dense in itself spaces in which all countable subsets are scattered, thus answering a problem raised by M. G. Tkačenko in [5]. Key words: countably compact, scattered, F-space. AMS subject classification: 54D35. ----- 0. Introduction. It is well-known, and easy to prove, that every compact dense in itself space X contains a countable dense in itself subset. Simply construct a closed subset of X which admits an irreducible map, say f, onto the Cantor set and then proceed as follows. Choose a countable dense set $\{d_n\colon n<\omega\} \text{ of the Cantor set and pick, for each } n<\omega, \text{ a point } x_n\in f^{-1}(d_n).$ Then $\{x_n\colon n<\omega\}$ is a countable dense in itself subset of X. In view of this result the following question, due to M.G. Tkačenko [5] is quite natural. Does every countably compact space which is dense in itself and regular contain a countable dense in itself subspace? In this note we will answer this question in the negative. In fact, we will give several counterexamples, one of which is of π -weight ω_1 and one of which satisfies the countable chain condition. All topological spaces under discussion are Tychonoff. 1. A Theorem. An F-space is a space in which cozero-sets are C^* -embedded. It is easy to show that a normal space X is an F-space iff for any two F_{σ}^- subsets A,B \subset X such that \bar{A} \cap B = \emptyset = \bar{B} \cap A we have that \bar{A} \cap \bar{B} = \emptyset . This reresult will be used frequently without explicit reference throughout the remaining part of this note. Observe that among familiar examples of F-spaces are the extremally disconnected spaces and all spaces of the form $\beta X-X$, where X is any locally compact and σ -compact space, [3,14.27]. A point x of a space X is said to be a weak P-point provided that x ℓ \bar{F} for any countable $F \subset X-\{x\}$. 1.1. THEOREM: Let X be a compact F-space with the property that it contains a dense set of weak P-points. Then X contains a dense countably compact subset C such that all countable subsets of C are scattered. PROOF: For each $\alpha < \omega_1$ we will construct a subset $P_{\alpha} \subset X$ and for each $x \in P_{\alpha} - U_{\beta < \alpha} P_{\beta}$ a countable set $H(x,\alpha) \subset U_{\beta < \alpha} P_{\beta}$ such that - (1) if E c U $_{\beta<\alpha}$ P $_{\beta}$ is countably infinite, then E has a limit point in P $_{\alpha},$ - (2) if $x \in P_{\alpha} = U_{\beta \le \alpha} P_{\beta}$ and if $x \in \overline{F}$, where $F \subset X \{x\}$ is countable, then $F \cap H(x,\alpha) \ne \emptyset$. Put P_0 = 0 and P_1 = {x \in X: x is a weak P-point} and let H(x,1) = 0 for all $x \in P_1$. Now suppose that we have constructed for each $\beta < \alpha < \omega_1$ the sets P_{β} and for each $x \in P_{\beta}$ $U_{\gamma < \beta}$ P_{γ} the set $H(x,\beta)$. Define E = {E c ${\rm U_{S<\alpha}}$ ${\rm P_{S}} \colon$ E is countably infinite and discrete}. Take E \in E arbitrarily. Since X is a compact F-space and E is discrete, $\tilde{E} \approx \kappa \beta E \approx \beta \omega$, [3,14N]. Consequently, by a result of Kunen [4], we can find a point $x_{\tilde{E}} \in \tilde{E}$ -E which is a weak P-point of \tilde{E} -E. Define $$P_{\alpha} = U_{\beta < \alpha} P_{\beta} \cup \{x_{E} : E \in E\}.$$ Take $x \in P_{\alpha} = U_{\beta < \alpha} P_{\beta}$ arbitrarily. Choose an $E(x) \in E$ such that x = x E(x) and, for each $y \in E(x)$, let $\gamma(y) = \min\{\beta < \alpha \colon y \in P_{\beta}\}$. Define $$H(x,\alpha) = E(x) \cup U_{y \in E(x)} H(y,\gamma(y)).$$ We claim that our inductive hypotheses are satisfied. For this we only need to check (2). So let $x \in P_{\alpha} = U_{\beta < \alpha} P_{\beta}$ and take a countable $F \in X - \{x\}$ with $x \in \overline{F}$. We obviously may assume that $F \cap E(x) = \emptyset$ and also, since x is a weak P-point of $\overline{E(x)} - E(x)$, that $F \cap (\overline{E(x)} - E(x)) = \emptyset$. Now if $\overline{F} \cap E(x) = \emptyset$ then, since X is an F-space, $\overline{F} \cap \overline{E(x)} = \emptyset$, which is a contradiction since $x \in \overline{F} \cap \overline{E(x)}$. Therefore, $\overline{F} \cap E(x) \neq \emptyset$ and we get what we want because of the definition of $H(x,\alpha)$ and our inductive assumptions. This completes the induction. Put D = $\bigcup_{\alpha < \omega_1} P_{\alpha}$. Then D is clearly countably compact and dense in X. It remains to be shown that all countable subsets of D are scattered which will follow if we show that every countable subset of D has an isolated point. Let F < D be countable and define $$\alpha = \min\{\beta < \omega_1 : F \cap P_{\beta} \neq \emptyset\}.$$ Take $x \in P_{\alpha}$ n F. If $x \in \overline{F-\{x\}}$ then $(F-\{x\})$ n $H(x,\alpha) \neq \emptyset$ and since $H(x,\alpha)\subset U_{\beta<\alpha}$ P_{β} , this contradicts the minimality of α . Therefore, x is an isolated point of F.[] 2. Examples: As was remarked in the proof of Theorem 1.1, Kunen [4] has shown that $\beta\omega-\omega$ contains a dense set of weak P-points. Since $\beta\omega-\omega$ has no isolated points, in view of Theorem 1.1 this gives us our first example. It is natural to ask whether under MA one could actually find a dense in itself countably compact subspace of $\beta\omega$ - ω with the property that all subsets of cardinality less than 2^{ω} are scattered. This we do not know, however the next example shows that this will not be satisfied automatically. Let X = = $(\omega_1 + 1)^{\omega}$. It is easily seen that X is a compact nowhere ccc dense in itself space of weight ω_1 . Hence the projective cover EX of X is a compact nowhere ccc F-space (in fact, extremally disconnected) without isolated points. Clearly, EX has π -weight ω_1 . By [2,3.1], every nowhere ccc compact F-space contains a dense set of weak P-points. Therefore, EX contains a dense set D which is countably compact and which has the property that all of its countable subsets are scattered (Theorem 1.1). Since D has also π -weight ω_1 , D has a dense in itself subspace of size ω_1 . We can obtain other interesting examples in the following way. Dow [1] proved that the projective cover E of the Cantor cube of weight $(2^{\omega})^+$ contains a dense set of weak P-points. Applying Theorem 1.1 again gives us a countably compact, dense in itself ccc space all countable subsets of which are scattered. The following interesting problem remains open: does there exist a cardinal κ such that every dense in itself regular countably compact space has a dense in itself subspace of size κ ? C.F. Mills claims to have constructed a consistent exemple of a sequentially compact 0-dimensional space which is dense in itself and which has the additional property that every subspace of size ${\rm s2}^\omega$ is scattered. Thus such a K must be greater that 2^ω . ## References: - [1] A. DOW, Weak P-points in compact ccc F-spaces, to appear in Trans. Amer. - [2] A. DOW and J. van MILL, On nowhere dense ccc P-sets, Proc. Amer. Math. Soc. 80(1980), 697-700. - [3] L. GILLMAN and M. JERISON, Rings of continuous functions, Princeton, N.J: van Nostrand (1960). - [4] K. KUNEN, Weak P-points in N*, Coll. Math. Soc. János Bolyai 23. Topology, Budapest (Hungary) (1978), 741-749. - [5] M.G. TKAČENKO, On compacta representable as countable unions of left separated subspaces, I, CMUC 20(1979), 361-379. Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest V., Realtanoda u. 13-15, Hungary. Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands. (Oblatum 26.5.1981)