## COMMENTATIONES MATHEMATICAE UNIVERSITA: CAROLINAE 22,4 (1981)

## COUNTABLY COMPACT SPACES ALL COUNTABLE SUBSETS OF WHICH ARE SCATTERED I. JUHÁSZ, J. van MILL

Abstract: We give several examples of countably compact dense in itself spaces in which all countable subsets are scattered, thus answering a problem raised by M. G. Tkačenko in [5].

Key words: countably compact, scattered, F-space.

AMS subject classification: 54D35.

-----

0. Introduction. It is well-known, and easy to prove, that every compact dense in itself space X contains a countable dense in itself subset. Simply construct a closed subset of X which admits an irreducible map, say f, onto the Cantor set and then proceed as follows. Choose a countable dense set  $\{d_n\colon n<\omega\} \text{ of the Cantor set and pick, for each } n<\omega, \text{ a point } x_n\in f^{-1}(d_n).$  Then  $\{x_n\colon n<\omega\}$  is a countable dense in itself subset of X.

In view of this result the following question, due to M.G. Tkačenko [5] is quite natural. Does every countably compact space which is dense in itself and regular contain a countable dense in itself subspace? In this note we will answer this question in the negative. In fact, we will give several counterexamples, one of which is of  $\pi$ -weight  $\omega_1$  and one of which satisfies the countable chain condition.

All topological spaces under discussion are Tychonoff.

1. A Theorem. An F-space is a space in which cozero-sets are  $C^*$ -embedded. It is easy to show that a normal space X is an F-space iff for any two  $F_{\sigma}^-$  subsets A,B  $\subset$  X such that  $\bar{A}$   $\cap$  B =  $\emptyset$  =  $\bar{B}$   $\cap$  A we have that  $\bar{A}$   $\cap$   $\bar{B}$  =  $\emptyset$ . This reresult will be used frequently without explicit reference throughout the remaining part of this note. Observe that among familiar examples of F-spaces are the extremally disconnected spaces and all spaces of the form  $\beta X-X$ , where X is any locally compact and  $\sigma$ -compact space, [3,14.27].

A point x of a space X is said to be a weak P-point provided that x  $\ell$   $\bar{F}$  for any countable  $F \subset X-\{x\}$ .

1.1. THEOREM: Let X be a compact F-space with the property that it contains a dense set of weak P-points. Then X contains a dense countably compact subset C such that all countable subsets of C are scattered.

PROOF: For each  $\alpha < \omega_1$  we will construct a subset  $P_{\alpha} \subset X$  and for each  $x \in P_{\alpha} - U_{\beta < \alpha} P_{\beta}$  a countable set  $H(x,\alpha) \subset U_{\beta < \alpha} P_{\beta}$  such that

- (1) if E c U  $_{\beta<\alpha}$  P  $_{\beta}$  is countably infinite, then E has a limit point in P  $_{\alpha},$
- (2) if  $x \in P_{\alpha} = U_{\beta \le \alpha} P_{\beta}$  and if  $x \in \overline{F}$ , where  $F \subset X \{x\}$  is countable, then  $F \cap H(x,\alpha) \ne \emptyset$ .

Put  $P_0$  = 0 and  $P_1$  = {x \in X: x is a weak P-point} and let H(x,1) = 0 for all  $x \in P_1$ . Now suppose that we have constructed for each  $\beta < \alpha < \omega_1$  the sets  $P_{\beta}$  and for each  $x \in P_{\beta}$   $U_{\gamma < \beta}$   $P_{\gamma}$  the set  $H(x,\beta)$ . Define

E = {E c  ${\rm U_{S<\alpha}}$   ${\rm P_{S}} \colon$  E is countably infinite and discrete}.

Take E  $\in$  E arbitrarily. Since X is a compact F-space and E is discrete,  $\tilde{E} \approx \kappa \beta E \approx \beta \omega$ , [3,14N]. Consequently, by a result of Kunen [4], we can find a point  $x_{\tilde{E}} \in \tilde{E}$ -E which is a weak P-point of  $\tilde{E}$ -E. Define

$$P_{\alpha} = U_{\beta < \alpha} P_{\beta} \cup \{x_{E} : E \in E\}.$$

Take  $x \in P_{\alpha} = U_{\beta < \alpha} P_{\beta}$  arbitrarily. Choose an  $E(x) \in E$  such that x = x E(x) and, for each  $y \in E(x)$ , let  $\gamma(y) = \min\{\beta < \alpha \colon y \in P_{\beta}\}$ . Define

$$H(x,\alpha) = E(x) \cup U_{y \in E(x)} H(y,\gamma(y)).$$

We claim that our inductive hypotheses are satisfied. For this we only need to check (2).

So let  $x \in P_{\alpha} = U_{\beta < \alpha} P_{\beta}$  and take a countable  $F \in X - \{x\}$  with  $x \in \overline{F}$ . We obviously may assume that  $F \cap E(x) = \emptyset$  and also, since x is a weak P-point of  $\overline{E(x)} - E(x)$ , that  $F \cap (\overline{E(x)} - E(x)) = \emptyset$ . Now if  $\overline{F} \cap E(x) = \emptyset$  then, since X is an F-space,  $\overline{F} \cap \overline{E(x)} = \emptyset$ , which is a contradiction since  $x \in \overline{F} \cap \overline{E(x)}$ . Therefore,  $\overline{F} \cap E(x) \neq \emptyset$  and we get what we want because of the definition of  $H(x,\alpha)$  and our inductive assumptions. This completes the induction.

Put D =  $\bigcup_{\alpha < \omega_1} P_{\alpha}$ . Then D is clearly countably compact and dense in X. It remains to be shown that all countable subsets of D are scattered which will follow if we show that every countable subset of D has an isolated point. Let F < D be countable and define

$$\alpha = \min\{\beta < \omega_1 : F \cap P_{\beta} \neq \emptyset\}.$$

Take  $x \in P_{\alpha}$  n F. If  $x \in \overline{F-\{x\}}$  then  $(F-\{x\})$  n  $H(x,\alpha) \neq \emptyset$  and since

 $H(x,\alpha)\subset U_{\beta<\alpha}$   $P_{\beta}$ , this contradicts the minimality of  $\alpha$ . Therefore, x is an isolated point of F.[]

2. Examples: As was remarked in the proof of Theorem 1.1, Kunen [4] has shown that  $\beta\omega-\omega$  contains a dense set of weak P-points. Since  $\beta\omega-\omega$  has no isolated points, in view of Theorem 1.1 this gives us our first example.

It is natural to ask whether under MA one could actually find a dense in itself countably compact subspace of  $\beta\omega$ - $\omega$  with the property that all subsets of cardinality less than  $2^{\omega}$  are scattered. This we do not know, however the next example shows that this will not be satisfied automatically. Let X = =  $(\omega_1 + 1)^{\omega}$ . It is easily seen that X is a compact nowhere ccc dense in itself space of weight  $\omega_1$ . Hence the projective cover EX of X is a compact nowhere ccc F-space (in fact, extremally disconnected) without isolated points. Clearly, EX has  $\pi$ -weight  $\omega_1$ . By [2,3.1], every nowhere ccc compact F-space contains a dense set of weak P-points. Therefore, EX contains a dense set D which is countably compact and which has the property that all of its countable subsets are scattered (Theorem 1.1). Since D has also  $\pi$ -weight  $\omega_1$ , D has a dense in itself subspace of size  $\omega_1$ .

We can obtain other interesting examples in the following way. Dow [1] proved that the projective cover E of the Cantor cube of weight  $(2^{\omega})^+$  contains a dense set of weak P-points. Applying Theorem 1.1 again gives us a countably compact, dense in itself ccc space all countable subsets of which are scattered.

The following interesting problem remains open: does there exist a cardinal  $\kappa$  such that every dense in itself regular countably compact space has a dense in itself subspace of size  $\kappa$ ? C.F. Mills claims to have constructed a consistent exemple of a sequentially compact 0-dimensional space which is dense in

itself and which has the additional property that every subspace of size  ${\rm s2}^\omega$  is scattered. Thus such a K must be greater that  $2^\omega$ .

## References:

- [1] A. DOW, Weak P-points in compact ccc F-spaces, to appear in Trans. Amer.
- [2] A. DOW and J. van MILL, On nowhere dense ccc P-sets, Proc. Amer. Math. Soc. 80(1980), 697-700.
- [3] L. GILLMAN and M. JERISON, Rings of continuous functions, Princeton, N.J: van Nostrand (1960).
- [4] K. KUNEN, Weak P-points in N\*, Coll. Math. Soc. János Bolyai 23.
  Topology, Budapest (Hungary) (1978), 741-749.
- [5] M.G. TKAČENKO, On compacta representable as countable unions of left separated subspaces, I, CMUC 20(1979), 361-379.

Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest V., Realtanoda u. 13-15, Hungary. Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam,

The Netherlands.

(Oblatum 26.5.1981)