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AR-MAPS OBTAINED FROM CELL-LIKE MAPS
GEORGE KOZLOWSKI, JAN VAN MILL AND JOHN J. WALSH

ABSTRACT. The recent solution by J. van Mill of a problem of Borsuk involves
using a convexification procedure in order to produce a map f from the Hilbert
cube Q to a non-AR X so that each point-inverse f~!(x) is a Hilbert cube. A
different method of obtaining AR-maps from cell-like maps is described and is
used to show that if there is a dimension raising cell-like map, then there is an
integer n and a map f from Q to a non-AR X so that each point-inverse f~!(x) is an
n-cell or a point.

Introduction. As is well known, Taylor’s Example [5] can be used to construct a
cell-like map f: Q@ — X which is not a shape equivalence (Keesling [2]). This map
has the remarkable property that sup{dim f~'(x): x € X} < 0. Taylor’s Example
was recently used by van Mill [4] to construct a map g: Q — Y onto a non-AR Y
so that each point-inverse g7'(y) is an AR. A map which has AR’s for point-
inverses is called, for convenience, an AR-map.

There is a convexification procedure in [4] which is used to replace a cell-like
map with an AR-map but this procedure does not yield control on the dimension
of the point-inverses of the AR-map. We present a method for obtaining an
AR-map from a cell-like map which, for maps with finite dimensional domains,
produces an AR-map with finite dimensional point-inverses. As an application, we
prove that if there is a cell-like dimension raising map, then there is an AR-map f
from Q onto a non-AR X so that sup{dim f'(x): x € X} < 0. Since it is
unknown whether there is a cell-like dimension raising map we have not con-
structed an AR-map as above. However, we identify a type of “convexification”
procedure which would suffice to construct such an example from the Taylor
Example (see §3).

1. Preliminaries. Our terminology is standard. A cell-like map is a proper map
with each point-inverse having trivial shape. The Hilbert cube is denoted by both Q
and I*. If f: X — Y is onto, then the mapping cylinder M(f) of f is the space which
is obtained from X X [-1, 1] by identifying the set f™(y) X {1} to a point for
Y € Y and the double mapping cylinder DM(f) of f is the space which is obtained
from X X [-1, 1] by identifying each of the sets f~'(y) X {-1} and f~!(y) X {1} to
points for y € Y. The natural collapse to the base from M(f) to Y (resp., DM(f) to
Y) is denoted r(f) (resp., Dr(f)). A proper map f: X — Y is called a hereditary
shape equivalence (Kozlowski [3)) if f| 1yt f(4) > A4 is a shape equivalence for

Received by the editors April 15, 1980.
1980 Mathematics Subject Classification. Primary 54C55; Secondary 54B15, 54F45.
Key words and phrases. Cell-like, absolute retract, hereditary shape, equivalence, dimension.

© 1981 American Mathematical Society
0002-9939/81/0000-0278/$02.00

299



300 GEORGE KOZLOWSKI, J. VAN MILL AND J. J. WALSH

each closed subset 4 C Y. Absolute retracts and absolute neighborhood retracts
are compact.

Our construction heavily relies on the following results due to Kozlowski [3].
Parts (b) and (c) are proved in [3] and part (a) follows from techniques of proof
therein; we have included a proof of (a) in the Appendix.

1.1. THEOREM. Let X be compact and let f- X — Y be a cell-like map. Then

(@) f is a hereditary shape equivalence if and only if Dr(f): DM(f)—> Y is a
hereditary shape equivalence;

(b) if X is an AR (ANR), then Y is an AR (ANR) if and only if f is a hereditary
shape equivalence;

(©)if Z C X is a closed subset and contains all the nondegenerate point-inverses of
f, then f is a hereditary shape equivalence if and only if f|; is a hereditary shape
equivalence.

2. The construction. We now present our main result.

2.1. THEOREM. Let X be compact and let f: X — Y be cell-like. Then there is a
compact space Z containing Y and an open retraction s: Z — Y so that

(1) s is an AR-map;

(2) s is a hereditary shape equivalence if and only if f is a hereditary shape
equivalence;

(3) sup{dims(y):y € Y} <2-dim X + 1.

ProOF. We choose an embedding X c I” where n > 2 - dim X + 1 (n can be
infinite) and let I'(f) C I" X Y be the graph of f. The space Z is the quotient space
obtained from I” X Y identifying each set f~'(y) X {y} to a point for y € Y and
the retraction s: Z — Y is the mapping induced by the projection of I" X Y to Y.
Since each s~!() is an n-cell or Hilbert cube with a single cell-like set (f'(y) X
{»}) identified to a point, s is an AR-map. The map s satisfies condition (3) and is
easily seen to be open.

In order to establish the theorem it suffices to consider the commutative diagram

7o

T —> Z
T )
DM(f) oh Y

where T is the quotient space obtained from the disjoint union (I X Y) U M(f)
by identifying (x, f(x)) and (x, 1) for each (x, f(x)) € T'(f), where @ y|I" X Y —
T'(f) is the identity and 7o M(f) is the collapse to the base, and where | M(f) — X
X {1} is the identity and o,|I" X Y is the projection to Y. Part (c) of Theorem 1.1
can be used to verify that both wy, and «, are hereditary shape equivalences. An
easy diagram “chase” establishes that s is a hereditary shape equivalence iff Dr(f)
is a hereditary shape equivalence and an appeal to part (a) of Theorem 1.1
completes the proof.
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2.2. REMARK. It is an easy matter to choose the embedding X C I" (n > 5) so
that each point-inverse s~'(y) is an n-cell (or a Hilbert cube for X infinite
dimensional); specifically, for n finite choose a 1-LCC embedding of X into the
interior of I" and for n infinite choose a Z-embedding of X. In fact, with these
choices the map s is completely regular in the sense of Dyer-Hamstrom [1]. A
consequence of this is that the AR-map F in the next corollary can be chosen so
that each point-inverse F~'(s) is a point or an n-cell.

2.3. COROLLARY. If there is a cell-like dimension raising map, then there is an
AR-map F: Q — S onto a non-AR S so that sup{dim F'(s):s € S} < .

Proor. It is known (cf. Kozlowski [3]) that if there is a cell-like dimension raising
map, say f: X - Y, then f is not a hereditary shape equivalence. By Theorem 2.1,
there is a compact space Z containing Y and an AR retraction s: Z — Y so that s
is not a hereditary shape equivalence and so that sup{dim sy E Y)Y < .
Let Z c Q and let S = Q U,Y be the adjunction space. The induced quotient
map F: Q — S is not a hereditary shape equivalence since s is not. Consequently,
by part (b) of Theorem 1.1, S is not an AR.

2.4. REMARK. Starting with a cell-like mapping f: Q — Y which is not a
hereditary shape equivalence, the argument in the proof of Corollary 2.3 yields an
AR-map F: Q — Y onto a non-AR Y. This map and the space Y are similar to
those in van Mill [4].

3. A question. The Taylor Example yields a cell-like map f: X — Y between
infinite dimensional compacta which is not a hereditary shape equivalence with
sup{dim f~'(y): y € Y} < oo. If the following question has an affirmative answer,
then Corollary 2.3 holds without the assumption that there exists a cell-like
dimension raising map. We have answered the question for finite dimensional X.

3.1. QUESTION. Let f: X — Y be a cell-like map between compacta. Does there
exist a compact space W containing X and an extension F: W — Y of f such that

(1) F is an AR-map;

(2) F is a hereditary shape equivalence;

() if sup{dim f(y): y € Y} < oo, then sup{dim F'(y): y € Y} < c0.
Starting with such a map F: W — 7, if Z is the quotient space obtained from W by
identifying each set f~!(y) to a point fory € Y and if s: Z — Y is the map induced
by F, then the proof of Theorem 2.1 applies with W taking the place of I X Y and
shows that the AR-map s is a hereditary shape equivalence if and only if fis a
hereditary shape equivalence.

Appendix. Let f: X’ — X be a map. For a subset 4 C X, the inverse set f(4) is
denoted 4’ and the mapping cylinder of the restriction of f to A’ is considered to be
a subset of the mapping cylinder M(f) and is denoted M(f, A). Let Z C X be a
closed subset and let a: Z — Y be a surjective map. The adjunction space of a,
denoted X U,Y is the quotient space obtained from X by identifying each
point-inverse a'(y) to a point; the induced quotient map is denoted 7,: X - X
U, Y. The space Y is “naturally” identified with a subspace of X U,Y.



302 GEORGE KOZLOWSKI, J. VAN MILL AND J. J. WALSH

PROPOSITION. Let f: X' — X be a cell-like map between compact spaces. Then f is
a hereditary shape equivalence if and only if Dr(f): DM(f) — X is a hereditary shape
equivalence.

PRrOOF. Suppose that f is a hereditary shape equivalence and consider X’ to be a
subset of an ANR W. Let a: X’ X {0, 1} > X X {0, 1} be defined by a(x, i) =
(f(x), i) for i = 0, 1. The map « is a hereditary shape equivalence and, therefore,
parts (b) and (c) of Theorem 1.1 combine to imply that (W X I) U, (X X {0,1})
is an ANR. For the same reasons, W U ;X is an ANR. The composition of the
projection of W X I to W and the quotient map 7 W— W U, X induces a map
g: (W XI)U, (X X{0,1}) > W U, X. Since g is a cell-like map between
ANR’s, part (b) of Theorem 1.1 implies that g is a hereditary shape equivalence.
The restriction of g to ¢”'(X) is the map Dr(f): DM(f) — X and, hence, the latter
map is a hereditary shape equivalence.

Using basic results from [3], in order to show that f is a hereditary shape
equivalence, it suffices to show that, for any pair of closed subsets 4 C B of X, any
map h: M(f,A)U B’ — P into an ANR P extends to a map H: M(f, B)— P.
Since f is a cell-like map, there is a closed cover 4D 4, 4,,...,A4, of B and
maps h;: M(f, 4;) — P with hy = h on M(f, A) and, fori > 1,h, = hon 4.

Let H, = hy and inductively assume that H;: M(f, Ao U - - - UA,) — P agrees
with h on M(f, ) U (47U - - - UA)).LetD = (4oU - - - UA) N A4,,,and letg
be the restriction of f to D’. Define a map 8: DM(g) — P by using the restriction
of H; on one copy of the mapping cylinder and the restriction of h; ., on the other
copy. By assumption the map Dr(g): DM(g) — D is a shape equivalence and,
therefore, B extends over the mapping cylinder of Dr(g). This extension yields a
homotopy rel. D’ between the restrictions of H, and h,,, to M(f, D). Since h,,,
extends over M(f, 4;,,), the map H, also extends producing the map H, ,. A more
detailed argument can be found in [3].
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