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ABSTRACT

A snark is an extremally disconnected, rigid space in which every nowhere dense set is closed. We
give many snarks, inluding (under CH) a boojum - - a hereditarily Lindelf, hereditarily extremally
disconnected, nonseparable snark.

INTRODUCTION

In this paper we describe a machine which constructs rigid extremally discon-
nected nodec spaces (a space is called nodec (cf. [vD;]) provided each nowhere
dense subset is closed). As an application we find a topology on the reals which
is larger than the usual topology and which is extremally disconnected, rigid,
and nodec. This space, unfortunately, is not normal. Starting, however, from a
Luzin space, our machine produces a hereditarily Lindel6f, hereditarily
extremally disconnected, nonseparable, rigid, nodec space Y. From these one
can derive many other bad properties of Y'; for example, every perfect closed
set in Y is open.

1. DEFINITIONS
1.1. A perfect space is one with no isolated points; a perfect set likewise.
That is, our perfect sets are not, as sometimes happens, required to be closed.
1.2. A nodec space is one in which every nowhere dense set is closed (and
hence discrete).
1.3. A retractifiable space is one in which every closed set is a retract.
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1.4. A rigid space is one with only one autohomeomorphism (to wit, the iden-

tity).

An incompressible space is not homeomorphic to any proper subspace.

A map f from X onto Y is irreducible if f maps no closed proper subset of

X onto Y.

1.7. If X is a space then eX is the (essentially unique) extremally disconnected

space which admits a perfect irreducible map onto X. This map is called
7 x. For further details see [Wo] or [CN, p. 57].

1.8. A Lugzin space is an uncountable perfect space in which every nowhere set

is countable.

1.9. An L-space is hereditarily Lindelof but not separable.

1.10. If X is a space and A C X then p e X is remote from A if for every CCA,
if C is nowhere dense relative to A then p & c/xC.

.11. pX is the Cech-Stone compactification of X; X *=4X\ X.

.12. pis a remote point of X if pe X * and p is remote from X.

.13. X is w-bounded if every countable set in X has compact closure.

.14, A set ACX is C*embedded in X every f: A—[0,1] extends over X.

.15. w(X) is the weight of X, the least cardinality of a basis for X.

.16. n(X) is the n-weight of X, the least cardinality of a n-basis for X, where a
n-basis for X is a collection # of nonempty open sets such that every
nonempty open subset of X contains a member of #.

1.17. A snark is an extremally disconnected, rigid nodec space.

1.18. A boojum is a hereditarily Lindelof, hereditarily extremally discon-

nected, nonseparable snark.
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2. SOME SNARKS
All spaces are completely regular.
Our first result is an example-generating one;

2.1. THEOREM: Let X be a perfect space such that w(feX)=<c and for each
PeX, n)}l (p) is infinite. Then there is a perfect, extremally disconnected, rigid
space Y and a one-to-one map f from Y onto X, with the property that DC Y is
nowhere dense iff f[D] is nowhere dense. If, moreover, for each pe X, there is
an infinite, w-bounded set of points in ny'(p) which are remote from
eX-nx'(p), then Y may be taken to be nodec.

We shall see later that the hypothesis of the second clause of the theorem is
very often satisfied.

PROOF: Fix X satisfying the hypotheses. For p e X, fix a countable discrete
set DP Cny'(p) and set EP = DP— DP; if my'(p) has an w-bounded infinite set
B of points remote from eX — nx'(p), take D?C B?; then E?C B”. Note that
EP=w*,

For pe X, set

T(p)={uew* | H discrete sequence {p, | ne w} CfeX such that

{p}=Naeuclpex {pn | n€A}}.
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Since w(BeX) < c one sees easily that | T(p) | =c. Since | X | =2¢we can list X
as {p« | @<k} where k <2¢. Pick, by induction on ¢, a point Yo € EP?s0 that

T(yﬂ)a Uﬁ(rx T(yﬁ)

This is possible since for each u € w* we have that there is some y € E* such
that u e T(¥) and

| Up<a TOp) | <2°=] w*|.

Set Y={yo | a<k} and f=nxY; that is, f(Ve) =Xe« (€<k). Clearly, f is
one-to-one and onto; also, Y is dense in eX since 7y is irreducible, and DC Y'is
nowhere dense iff f[D] is nowhere dense. Suppose that ¢ : Y— Y is an autohom-
eomorphism. Then ¢ extends to an autohomeomorphism f¢:Y—BY = feX.
But if a<u<k, Bo(Va)#y. and conversely since 7(ya)# T(¥x) and for each
TCw*

Ip»=T

is a topological property of p. We conclude that ¢ is the identity.
Now suppose that for each a <k, y, is remote from eX — n;(l(xa). Then y, is
remote from Y — {y.}; that is, since this holds for each y € ¥, Y'is nodec. O

3. LOTS OF SPACES HAVE ENOUGH REMOTE POINTS
In the following lemma we find some spaces which satisfy the hypothesis of
the second clause of Theorem 2.1.

3.1. LEMMA: Let X be a first countable perfect space of countable n-weight,
or assume CH, and let X be a first countable space with at most c regular open
sets. Then w(feX)<c and for each peX, ny'(p) contains an infinite w-
bounded set of points which are remote from eX —ny' (p).

PROOF: Assume first that X has countable m-weight. Then eX is separable
and hence w(feX)=c. Fix pe X. Then

Z=peX—nx'(p)

is locally compact and o-compact, and Z*=nx'(p). Clearly n[Z]=X- {p},
and hence the conclusion follows from [vD2, 4.2] and the following

FACT: Let X be locally compact and g-compact. Then the set of remote
points of X is w-bounded.

For take EC X* to be a countable set of remote points. Fix pe E—E and
assume that p is not remote; i.e. p is in the closure of some nowhere dense
Dc X. By [vMM, 4.1]

F=clgxDNX*

is a P-set of X'*; i.e. the intersection of countably many neighborhoods of F'is
again a neighborhood of F. Then FNE =@, a contradiction (this result is due to
van Douwen; see [vDa, 11.2]).
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Now assume CH and let X be a first countable space which has at most ¢ re-
gular open sets. Since feX is (homeomorphic to) the Stone space of the boolean
algebra of regular open sets of X it follows that w(feX) < c (see [CN, p. 57]). By
[KvMM, 1.3] for each p e X the set of remote points of

Z=peX-nx'(p)

is infinite and the Fact implies that it is co-bounded. O

3.2. COROLLARY: There is a topology on the reals which is finer than the
usual topology and which is extremally disconnected, rigid, and nodec and
which moreover has countable n-weight; each nowhere dense set of the usual
topology is nowhere dense and hence closed and discrete in the new topology. []

3.3. REMARK: The condition that X is first countable in Lemma 3.1 can be
weakened considerably. In fact, one only needs that each point of X is in the
closure of countably many pairwise disjoint open sets and that eX — 7y '(p) is
nonpseudocompact for each pe X,

4. A BOOJUM

Henceforth we assume CH.

It has been pointed out to us that a space with the properties (1) and (3) of our
boojum and which in addition is an L-space has been discovered by Tall ([T],
p. 282).

4.1. LEMMA: There is a first countable Luzin space X of cardinality and
weight wwhich has no separable open sets. =

For a proof we refer the reader to [vDTW].
Note that, since X is hereditarily Lindelf, X has only ¢ regular open sets and
hence satisfies the hypotheses of Lemma 3.1.
Accordingly, fix ¥ and f: Y— X as in section 2. Then Y is a very bad space. In
particular,
(1) If ACY, following are equivalent:
(a) A is discrete;
(b) A is at most countable;
(c) A is nowhere dense;
(d) A is closed and discrete.
(2) Y is hereditarily retractifiable.
(3) Y is hereditarily extremally disconnected.
(4) Every subspace of Y is the free union of its isolated points and its perfect
kernel (= largest perfect subspace).
(5) Every perfect subspace of Y is rigid, incompressible and retractifiable.
By (1),
(6) Y is a nonseparable Luzin space and hence an L-space (i.e. a hereditarily
Lindeldf nonseparable space).
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(7) Every perfect closed subspace of Y is open.
(8) Every subspace of Y is C*-embedded.

The reader can easily cook up many more improbable properties of Y in the
same spirit.

PROOFS: Note that every perfect set of Y is dense in an open set of eX, since
Y is nodec. Hence once we prove (1) and (2), the other properties follow easily.
However, (1) is easy; for recall that A is nowhere dense iff f[4] is, and note that
A is countable iff f[4] is. By hypothesis, (b) and (c) are equivalent for sub-
spaces of X; hence also for Y. Moreover (c) ¢ (d) © (a) follows since Y is nodec.

(2) is also easy. We give the proof that Y is retractifiable; the proof for sub-
spaces is the same. If ACX is closed then A =BUC where B is clopen and
C={cn| new} is closed and discrete. Since Y is Lindelof we may fix a discrete
collection {D, | ne w} of clopen sets with c,€e D,CY —B.

Then put
Cﬂ if XE D.ﬂ';
rx)= x if xe B;
co otherwise.
Then rretracts Y onto B. O
5. NOTES

In fact, the assumption of CH in section 4 is not necessary; one only needs to
assume that there is a first countable nonseparable Luzin space. For then one
shows easily that there is one of small enough weight and that such a space has
enough remote points. '

The trick used in the proof of theorem 2.1 ensure the rigidity of ¥ is similar to
one used by Comfort & Negrepontis ([CN, 16.18]); both tricks trace their
ancestry back to Frolik [F].

We have seen that, under CH, there is an extremally disconnected L-space; in
fact, a nodec one. This suggests the question of whether there is an extremally
disconnected nodec S-space (an S-space is hereditarily separable and not
Lindel6f) since extremally disconnected S-spaces can exist ([W]). The answer
however is no.

5.1. PROPOSITION: Each hereditarily separable nodec space is Lindel6f.

PROOF: Let X be a hereditarily separable nodec space and let % be an open
cover of X. Since X is separable, there is a countable £C # such that U ¢ is
dense. Then X-U ¢ is nowhere dense, hence discrete, hence countable. We con-
clude that #has a countable subcover. O

Finally, note that our boojum is Luzin and that Luzin spaces do not exist

under MA + 1CH (see [K]).
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