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WHEN U(x) CAN BE MAPPED ONTO U(w)
JAN vaN MILL

ABSTRACT. U(k) can be mapped onto U(w) iff cf(k) = w or k > 2°.

0. Introduction. In this note we show that U(x) can be mapped onto U(w) if and
only if cf(k) = w or k > 2°. As a consequence it follows that CH is equivalent to
the statement that U(w,;) can be mapped onto U(w). That U(w) is not always a
continuous image of U(w,) is known, [B], however, as far as I know, it was
unknown that U(w) is not a continuous image of U(w,) under - CH.

1. Conventions. Cardinals carry the discrete topology. If « is a cardinal then Bk
denotes the Cech-Stone compactification of k. The subspace

{p € Bx:if P € p then |P| = «}

of Br is denoted by U(k). It is easy to see that U(x) is compact. For more
information on Bk and U(k) see [CN].

2. The construction.
2.1. LeMMA. If cf(k) = w then U(k) can be mapped onto U(w).

PrOOF. Let k = 3, &, where, for each n, k, < k. Define f: k > w by f(a) = n
iff a € k, and let Bf: Bx — Bw be the Stone extension of f. It is routine to verify
that Bf(U(x)) = U(w). [

2.2. REMARK. This lemma is known of course, see for example [vD].
2.3. LeMMA. If k > 2% then U(k) can be mapped onto U(w).

PrOOF. Let {4,: a < 2°} be a (faithfully indexed) partition of k into 2 subsets
of cardinality x. Define f: k — 2 by f(a) = p iff « € 4, and let Bf: Bx — B(2°) be
the Stone extension of f. It is routine to verify that Bf(U(x)) = B(2°). Since U(w)
has clearly weight 2 and since $(2“) maps onto each compact space of weight at
most 2“, we conclude that U(k) can be mapped onto U(w). [J

2.4. LeMMA. If w < cf(k) < k < 2° then U(w) is not a continuous image of U(k).

PrOOF. Suppose, to the contrary, that f maps U(k) onto U(w). Since there is
clearly a compactification of w with I = [0, 1] as remainder, there is a map g from
U(w) onto I. Let h: U(k) — I be the composition of f and g. In addition, let A:
Bx — I extend A.
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Take s € [ arbitrarily. Then g~!({s}) is a nonempty G, in U(w) and consequently
has nonempty interior, [CN, 14.17]. Therefore, f ~'g~'({s}) has nonempty interior
(in U(x)) and consequently we can find a subset E C « so that

&+ E nU®K) c fg7'({s)).

CLaM. If n < w then |{a € E: h(a) & (s — 1/n,s + 1/n)}| < k. Suppose, to
the contrary, that F = {a € E: h(a) & (s — 1/n,s + 1/n)} has cardinality «.
Take a point x € F 0 U(x). By continuity of A, the point h(x) & (s — 1/n,s +
1/n). This implies that x € (E N U(x)) — f'g~'({s}), which is impossible.

Since cf(k) > w the claim implies that we can find k, € E so that };(x,) =g

This is a contradiction since ¥k < 2° = |I|. [J

2.5. CorOLLARY. CH is equivalent to the statement that U(w,) can be mapped onto
U(w).

PrOOF. Since w; has uncountable cofinality this immediately follows from
Lemmas 2.3 and 24. [
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