WHEN $U(\kappa)$ CAN BE MAPPED ONTO $U(\omega)$

JAN VAN MILL

ABSTRACT. $U(\kappa)$ can be mapped onto $U(\omega)$ iff $cf(\kappa) = \omega$ or $\kappa > 2^{\omega}$.

- **0.** Introduction. In this note we show that $U(\kappa)$ can be mapped onto $U(\omega)$ if and only if $cf(\kappa) = \omega$ or $\kappa \ge 2^{\omega}$. As a consequence it follows that CH is equivalent to the statement that $U(\omega_1)$ can be mapped onto $U(\omega)$. That $U(\omega)$ is not always a continuous image of $U(\omega_1)$ is known, [B], however, as far as I know, it was unknown that $U(\omega)$ is not a continuous image of $U(\omega_1)$ under \neg CH.
- 1. Conventions. Cardinals carry the discrete topology. If κ is a cardinal then $\beta \kappa$ denotes the Čech-Stone compactification of κ . The subspace

$$\{p \in \beta \kappa : \text{if } P \in p \text{ then } |P| = \kappa\}$$

of $\beta \kappa$ is denoted by $U(\kappa)$. It is easy to see that $U(\kappa)$ is compact. For more information on $\beta \kappa$ and $U(\kappa)$ see [CN].

- 2. The construction.
- 2.1. LEMMA. If $cf(\kappa) = \omega$ then $U(\kappa)$ can be mapped onto $U(\omega)$.

PROOF. Let $\kappa = \sum_{n < \omega} \kappa_n$ where, for each n, $\kappa_n < \kappa$. Define $f: \kappa \to \omega$ by $f(\alpha) = n$ iff $\alpha \in \kappa_n$ and let $\beta f: \beta \kappa \to \beta \omega$ be the Stone extension of f. It is routine to verify that $\beta f(U(\kappa)) = U(\omega)$.

- 2.2. REMARK. This lemma is known of course, see for example [vD].
- 2.3. Lemma. If $\kappa \geq 2^{\omega}$ then $U(\kappa)$ can be mapped onto $U(\omega)$.

PROOF. Let $\{A_{\alpha}: \alpha < 2^{\omega}\}$ be a (faithfully indexed) partition of κ into 2^{ω} subsets of cardinality κ . Define $f: \kappa \to 2^{\omega}$ by $f(\alpha) = \mu$ iff $\alpha \in A_{\mu}$ and let $\beta f: \beta \kappa \to \beta(2^{\omega})$ be the Stone extension of f. It is routine to verify that $\beta f(U(\kappa)) = \beta(2^{\omega})$. Since $U(\omega)$ has clearly weight 2^{ω} and since $\beta(2^{\omega})$ maps onto each compact space of weight at most 2^{ω} , we conclude that $U(\kappa)$ can be mapped onto $U(\omega)$. \square

2.4. Lemma. If $\omega < cf(\kappa) \le \kappa < 2^{\omega}$ then $U(\omega)$ is not a continuous image of $U(\kappa)$.

PROOF. Suppose, to the contrary, that f maps $U(\kappa)$ onto $U(\omega)$. Since there is clearly a compactification of ω with I = [0, 1] as remainder, there is a map g from $U(\omega)$ onto I. Let $h: U(\kappa) \to I$ be the composition of f and g. In addition, let \bar{h} : $\beta \kappa \to I$ extend h.

Received by the editors February 12, 1980.

AMS (MOS) subject classifications (1970). Primary 54D35.

702 JAN VAN MILL

Take $s \in I$ arbitrarily. Then $g^{-1}(\{s\})$ is a nonempty G_{δ} in $U(\omega)$ and consequently has nonempty interior, [CN, 14.17]. Therefore, $f^{-1}g^{-1}(\{s\})$ has nonempty interior (in $U(\kappa)$) and consequently we can find a subset $E \subset \kappa$ so that

$$\emptyset \neq \overline{E} \cap U(\kappa) \subset f^{-1}g^{-1}(\{s\}).$$

CLAIM. If $n < \omega$ then $|\{\alpha \in E : \bar{h}(\alpha) \notin (s - 1/n, s + 1/n)\}| < \kappa$. Suppose, to the contrary, that $F = \{\alpha \in E : \bar{h}(\alpha) \notin (s - 1/n, s + 1/n)\}$ has cardinality κ . Take a point $x \in \bar{F} \cap U(\kappa)$. By continuity of \bar{h} , the point $\bar{h}(x) \notin (s - 1/n, s + 1/n)$. This implies that $x \in (\bar{E} \cap U(\kappa)) - f^{-1}g^{-1}(\{s\})$, which is impossible.

Since $cf(\kappa) > \omega$ the claim implies that we can find $\kappa_s \in E$ so that $\bar{h}(\kappa_s) = s$. This is a contradiction since $\kappa < 2^{\omega} = |I|$. \square

2.5. COROLLARY. CH is equivalent to the statement that $U(\omega_1)$ can be mapped onto $U(\omega)$.

PROOF. Since ω_1 has uncountable cofinality this immediately follows from Lemmas 2.3 and 2.4. \square

REFERENCES

[B] J. E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 10 (1976), 401-439.

[CN] W. W. Comfort and S. Negrepontis, *The theory of ultrafilters*, Die Grundlehren der Math. Wissenschaften in Einzerdarstellungen, Band 211, Springer-Verlag, Berlin and New York, 1974.

[vD] E. K. van Douwen, Transfer of information about $\beta N - N$ via open remainder maps (to appear).

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803

Current address: Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands