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Let H denote the halfline [0, o). A point p € BH— H s called a near point if p is in the closure of
some countable discrete closed subspace of H. In addition, a point p € SH — H is called a large point
if p is not in the closure of a closed subset of H of finite Lebesgue measure. We will show that for
every autohomeomorphism ¢ of SH —H and for each near point p we have that ¢(p) is not large. In
addition, we establish, under CH, the existence of a point x € BH—H such that for each
autohomeomorphism ¢ of BH—H the point ¢(x) is neither large nor near.

AMS (MOS) Subj. Class. (1970): 54D35
near point remote point P-set CH
far point large point BX [0, )

0. Definitions and conventions

All spaces are completely regular and X* is the Cech-Stone remainder of the
Cech-Stone compactification X of X. A point p € X* is called a

(a) remote point if p& clgxE for any nowhere dense subset E < X;

(b) near point if p € clgxD for some closed discrete subset D < X,

Let H denote the halfline [0, c0). A point p € H* is called a

(c) large point if p# clguF for any closed set F < H of finite Lebesgue measure.
Let & denote the set of all remote points, . denote the set of all large points and A
denote the set of all near points of H,

A set Bc X is called a P-set provided that BN F =0 for every F, subset
FcX—-B.

A point of a space is called a sub cutpoint if it is a cutpoint of some closed connected
subspace.

A point p of a space X is called a super sub cutpoint if there is a closed connected
K < X with pe K and a neighborhood U of K such that whenever K' is a closed
connected set with K = K'< U then p is a cutpoint of K.

As usual, 4 denotes Lebesgue measure of H.
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200 J. van Mill, C.F. Mills | Near points and large points

Points in BX are sometimes identified with z-ultrafilters on X. If U < X, then
Ex(U)=BX —clgx (X - U).

1. Introduction

It is a classical result in Fine and Gillman [7] (due to Eberlein) that there is a large
pointin H*. Indeed, If $ ={G < H: u(H— G) <0}, then each point of [ \gcy clgu G
is a large point. Large points obviously have the property that they are not near, i.e.
LN =0. It is clear that for each autohomeomorphism ¢ of SH we have that
¢[N]=N. However, it is not clear that the same result holds for autohomeomor-
phisms of H*. This suggests an obvious question and trying to solve this question we
found the following partial answer.

1.1. Theorem. Any near point of H* is a super sub cutpoint while no large point is a
super sub cutpoint.

This result does not solve the above question but it shows that for any auto-
homeomorphism ¢ of H* and for any near point x € H* the image ¢(x) of x is
“small” in the sense that it is in the closure of some closed subset of H of finite
Lebesgue measure (as a consequence, inf{e =0: 3 closed A < H with  (A)=<¢ and
o (x)e clgaA}=0).

Let us notice that our result implies that H* is not homogeneous and that we found
a topological property enjoyed by some but not all points of H* and that the points
involved are easily described. For earlier results implying that H* is not homo-
geneous see [9, 2, 5].

By a result of van Douwen [4] each nonpseudocompact space of countable
m-weight has a remote point; as a consequence # ##. He has asked whether
@ (R) = R for each autohomeomorphism ¢ of H* [4]. We were unable to answer this
question but we found the following partial answer.

1.2. Theorem (CH). There is a point x € R such that ¢(x)e R for each auto-
homeomorphism ¢ of H*.

We are indebted to Eric van Douwen for some helpful comments.

2. Standard subcontinua of H¥

Let I denote the closed unit interval [0, 1] and let 7 : @ X I - w be the projection.
Since = is perfect the Stone extension @7 maps (w X I)* onto w™*. Also, 7 is
monotone which implies that 8+ is monotone. This is well known (see for example
[11])). For convenience we will include a sketch of the proof. Take x € ™ and assume
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that B7 '[{x}] is not connected. Take nonempty disjoint clopen sets A, B<
B '[{x}] whose union is B7 '[{x}]. By compactness we can find open sets U(A),
U(B)< w xIsothat A< Ex(U(A)), B<Ex(U(B))and Ex(U(A))nEx(U(B))=0.
Since x e clg, w[U(A)]nclg, w[U(B)] the set

E={nh<w:UA)n({nlxI)#9 and U(B)n ({n}xI)=#0}

is infinite since it is an element of x (x is an ultrafilter!). Since Ex(U(A))n
Ex(U(B)) =0 the intersection U(A)~ U(B) has compact closure in @ X I. Hence,
without loss of generality U(A)nU(B)=#0. Now, for each neE take x,€
({n}xI)—(U(A)u U(B))and let p € (w x I)* be a cluster point of {x,,: n <w}. Then

p e Bn '[{x}]- (Ex(U(A)) VEx(U(B))),

which is a contradiction.

Since Bw is totally disconnected it follows that for each subcontinuum C of
(w xI)* there is a point x € @™ so that C < Bn '[{x}]. Hence sets of the form
B '[{x}] are maximal subcontinua of (w X I')*. Since these subcontinua of (w X I)*
play a fundamental role in the remaining part of this paper this section is devoted to
study them.

The proof of the following fact is trivial and hence is omitted.

2.1. Fact. 87 '[{p}]=Mrep lpwxn(Unep{n} xI) for each p € Bo.

The following fact is due to Mioduszewski [11]. For completeness we will include
the proof.

2.2. Fact. Let (n, x,)e{n}x(0,1) (n <w) and let p € w*. Then B= '[{p}] intersects
{{n, x,): n <w}* in precisely one point and this point is a cutpoint of Bz '[{p}].

Proof. By Fact 2.1 it is clear that {(n, x,): n <w} N B '[{p}]#0 so assume it
contains at least two distinct points, say a and b. There are disjoint sets A,
B<{{n,x,): n <w} so that a€ A* and b € B*, Then p €clg, w(A) " clg, 7(B) and
since 7(A) N 7(B) = this is a contradiction.
Let x(p) be the unique point in {(n, x,): n <w}* "B '[{p}] and define U, =

Un<w {n}x[0, x,,) and U, =, <., {n}x (x,, 1] respectively. Put

Ui =Ex(U)nBr '[ip}] (i€2).
Then U} #0 (i€2)and Uy u U} uix(p)}=Bm '[{p}] since

Ex(Up) VEx(U ) u{ln, x,): n <ol = (o xXI)*.

Hence x(p) cuts = '[{p}]. O

Since w X I can be embedded as a closed subspace of H the remainder (w X I')* can
be embedded as a closed subspace of H*. A subcontinuum B of H* for which there is
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a closed embedding ¢ :w X I - H and a point p € * so that B =8¢ (B '[{p}]) is
called a standard subcontinuum.
The proof of the following fact is trivial.

2.3. Fact. A subcontinuum B < H* is standard iff there is a discrete sequence
{I,: n <w} of pairwise disjoint nontrivial (faithfully indexed) closed intervals of H
and a point p € w* so that

B=0 clgﬂ(u L,). o

Pep neP

We can now prove an important Lemma.

2.4.Lemma. Let K < H* be a proper subcontinuum and let U be a neighborhood of K.
Then there is a standard subcontinuum B of H* so that K < B< U.

Proof. By compactness of 8H we may assume that U = Ex(V) where V is a discrete
union of pairwise disjoint nonempty open intervals in H. Let us assume that
V =|Un<e Vi For each n <w take some closed interval D, < V, so that

K cclgu(U D,).

n<w

Observe that |_J, <., D, is homeomorphic to w X I and hence that the connectedness
of K implies that there is a p € w* so that

KcB= m CI_BH{U Dn)
Pep neP

Since B is a standard subcontinuum and B < U the desired result follows. O

3. Proof of Theorem 1.1
The proof of Theorem 1.1 is in two steps.
3.1. Fact. If p € ¥, then p is a super sub cutpoint.

Proof. Without loss of generality p € N*. Define A, =[n —%, n +1] (n >0) and put

B=) clﬁﬂ( U A,,).

Pep neP

Then B is a standard subcontinuum and pe B. Let U=H—{n +3n € N}. Then
Ex(U) is a neighborhood of B. Let K be a subcontinuum of H* so that Bc K <
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Ex(U). Let x* be the unique point in the intersection

M clguf{t+35: te P}

Pep

Similarly, let x ~ be the unique point in the intersection

ﬂ Clﬁ}{{f—%: te P}.

Pep

Then {x*, x }= B = K which implies that X intersects both Ex(\_J,en (n —3,n))and
Ex((_nen (1, 1 +3%)). By similar arguments as in the proof of Fact 2.2 it follows that p
cuts K. O

3.2. Fact. If p € %, then p is not a super sub cutpoint.

Proof. By Lemma 2.4 we need only to show that p is not a cutpoint of any standard
subcontinuum of H*. So let D, =[a., b.] (n <w) be a discrete sequence of closed
intervals of H so that a,, < b, <a,.1 (n <w). Assume that for some free ultrafilter g
on w

pEK= m Clﬁ}[( U D")
Qegq neQ
Define
A =U{ M cl,m( J E,.): E.=[a., t.] forsome a, <t, <b,and |_J E,,Ep}
Qeq neQ n<w
and
B= U{ M clﬁﬂ( J F,.): F, =[t., b,] for some a, <t, <b, and U Fnzp}
Qegqg ne@ <o

respectively.
Claim 1. Both A and B are nonempty and connected.

We will only show that A is nonempty and connected. Take &, € (an, b.) so that
w([@n t:])<27" and define E,, =[ay, t,.]. Then U, <., E, is closed and u (Un <o En) <
0. Hence |, <., E.£ p. Consequently

D=0 cxﬁ.,( U E,,) cA
Qeg neQ
and since trivially D is nonempty we find that A is nonempty.
Since A is the union of standard subcontinua we need only show that the standard
subcontinua described in the definition of A pairwise intersect. In fact the inter-
section of all these subcontinua is nonempty since they all contain the unique pointin
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the intersection

M clgufa.: n € Q}.

Qegq
Claim 2. AU B is dense in K.

Let U < H be open so that Ex(U) n K # . We may assume that there is an infinite
E cw so that U =|J,.g U,, where U, <[a,, b,] is nonempty and open. For each
n < w pick points s,, #, € (a,, b,) so that

(a) s, <t, and u([sn, 1.]) <27";

(b) if n € E, then {s,, t.} = U,.
Then w(Un<o [Sntn]) <0 so that |Uy<, [$n 112 p. Consequently, either
Un<w [@m sn]ep  or | Un<w [t bulep. So, without loss of generality
(Un<w [@n, 5.12 p. Then A nEx(U) contains the unique point in the intersection

(M) clguis.: n e Q}.
Qegq

So, to complete the proof that p is not a cutpoint of K we have only to show that
thereisaze A nB —{p}.

For each n < w, pick a finite set G,, < (a,, b,) such that if U < (a,, b,) is an interval
disjoint from G,, then u(U)<2". Let

5?7:{ U [t tn): an<ta<u,<b, and M clﬁn( U [an r,,]) cA

n<w Qegq neQ@

and () CIBH( J [tn, b...]) c B}.

OEq neQ

It is easily seen that & has the finite intersection property, since p € clgu F for each
F € %. Now take | U,<, [t 4n]€ F and Q € q. Then

Y plltn un]) =00
neQ

since |Uneo [t tn]l=F NnUneo [an br]€ p, whence for infinitely many n € Q we
have that w ([f,, 4,])>2"". We conclude that

G [ty un]#9

for infinitely many n € Q. This implies that there is a point

zZE m CIB“ FﬁCiBH( U Gn) N K.

Fe¥ n<w

Notice that z # p since u((Up<. G.)=0.

Claim 3. ze A nB .
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We will only show that ze A™. Let V<H be open so that z€Ex(V). Since
Un<w Gn = Un<w (@, by) we may assume without loss of generality that V™ <
Un<w (@n by). Put E={n<w: Vnia,b,)#0). For each neE let s,=
inf(V n(an, b,)). In addition, for n& E take s, € (a,, b,) so that u([a,, s,.]) <2 ".
Case 1. Un<w [Gn, Sn]€P.

Then Un<w [Sn bn] € p since w({s,: n <w})=0. For each n <w take s, € (a,, s,) s0O
that w([@n sn)<27". Then |U,<w [@n Si]€p since it has finite measure. We
conclude that

F=UJ[s,s.]eZ
n<lw
Since FNn V=8, peclgy F and p € Ex(V) we have derived a contradiction.
Case 2. \Un<w [n, Sn]€p.
For each n <w let s, € (an, b,) so that s, < s, < b, while moreover wu([s., s1])<27".
Since w(Un<w [Sn 51]) <0 it follows that

U [an sn]12p.

n<"uw

For each n € E take a point v, €[a,, s»]n V. Let v, =s,, if n¢ E. Then

N clau( U [an 51D <A

Qegq neQ@

and it contains the unique point x in the intersection

M clguf{v.: n e Q).

Qesgq

By construction x € Ex(V) which shows that VA A#0. O

4. The structure of %

A space X is called a Paroviéenko space provided that

(a) X is a compact zero-dimensional space of weight 2* without isolated points;

(b) each nonempty G; in X has nonempty interior;

(c) every two disjoint open F,’s of X have disjoint closures.
Parovitenko [13] proved that CH implies that every Parovicenko space is
homeomorphic to w*. In van Douwen and van Mill [6] it was shown that the
statement “‘each Parovi¢enko space is homeomorphic to w*” is equivalent to CH.

In this section we will show that .# is a Parovi¢enko space and that .# is a P-set in
H*.

4.1. Theorem. (a) £ is a Parovi¢enko space;
(b) Zis a nowhere dense (closed) P-set of H*.
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Proof. That ¥ # 9 follows, as remarked in the introduction, from [7]. Since each
countable closed subspace of H is of measure zero it follows that whenever F is a
discrete union of closed intervals the intersection

leguFNZ

is clopen in #. We conclude that ¥ is zero-dimensional. We further claim that £ is
closed in H*, whence % is compact. Indeed, suppose that x & L. Then there is a closed
set E < H of finite Lebesgue measure which has x in its closure. There is an open set
U = H which contains E and which is also of finite Lebesgue measure. Then Ex(U) is
a neighborhood of x which misses . Since % is clearly infinite it follows that £ is a
compact zero-dimensional space of weight 2“. It is straightforward to verify that &
has no isolated points. We leave this to the reader. We conclude that & satisfies (a).

L satisfies (c) since H* satisfies (¢), [8, 2.7].

We will now show that & satisfies (b). Indeed, let G be any nonempty G; in ¥ We
may assume that

G= ) Ex(U,)n%

n<w

where Uns1 € Uns1 €U, €H, pu(U,—Uysr)= and p(Uns —U,) <o for all
n <w. Itiseasy to constructan openset V< Hsuchthat u (V- U, )<oforalln <w
while in addition w (V) =00, hence 8 # Ex(V) % In addition, it is trivial to verify
that

Ex(V)n%< () Ex(U,)n¥ =G,

=

which proves that & satisfies (b).

(b) That.¥ is nowhere dense is trivial. Hence we need only prove that ¥ is a P-set
of H*. Indeed, let F be an F,, disjoint from #. Assume that F =|_J,.-,, F,,, where each
F, is closed in H* (n <w). For each n <w take an open set U, < H such that

(i) Uns1 < U
(il) w(H-U,)<oo;
(iii) Ex(U,)n F, =9.
It is trivial to find an open set V < H such that
(i)’ w(H-V)<oo;

(ii)’ V — U, is bounded for each n < w.

Then Ex(V) is a neighborhood of # which misses F. [J

3.2. Corollary (CH). ¥ is homeomorphic to w®.

We do not know whether ¥ is homeomorphic to w* in ZFC.
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5. Proof of Theorem 0.2
We start with a simple Lemma.

5.1. Lemma. Let X be a locally compact a-compact space and let A be a closed
subspace of X. Then clsgx A " X™* is a P-set of X*.

Proof. Let F be an F, of X* disjoint from A* =clgx A " X*. Assume that F=
|Un<w F, where each F, is closed in H. For each n < w take a neighborhood U, of A
such that

(1) Ussr = Uy;

(i) Ex(U,)nF,=9.
Since X is o-compact, so is A. So assume that A =(_J,<, A,, Where the A,’s are
compact, For each n < w let V, be an open subset of X such that A, = V,,, = U, while
in addition V,, is compact. Let V =|_J,-,, V... Then Ex(V) is a neighborhood of A*
which misses F. [

We can now prove Theorem 1.2.

5.2. Proof of Theorem 1.2. By a result of Kunen, van Mill and Mills [10], CH is
equivalent to the statement that no compact space of weight 2“ can be covered by
nowhere dense closed P-sets. Since H* has weight 2“, and since we assume CH, we
find that there is a point x € H* such that x& K for each nowhere dense closed P-set
K < H*. If ¢ is any autohomeomorphism of H the point ¢ (x) is also not contained in
any nowhere dense closed P-set of H*. So it suffices to prove that x is a remote point.
By Woods, [14, 2.11], the family

o ={clgu D nH*: D is nowhere dense in H}

consists of nowhere dense subsets of H*. Also, by Lemma 5.1, &/ consists of P-sets.
Therefore x| o/. We conclude that x is a remote point. [J

5.3. Question. Is Theorem 1.2 true in ZFC?

6. The structure of

One might easily conjecture that ./ is connected. This is not true however as the
results in this section show. In fact, we will prove that 4 is zero-dimensional under
CH. The proof presented here is due to Eric van Douwen and is much simpler than
our original proof.

An F-space is a space in which every cozero-set is C*-embedded. It is known, [8,
2.7], that X is an F-space if X is noncompact, Lindeldf and locally compact (for an
easier proof of this fact see [12, 3.1]).

If U< X, let Bd U denote the boundary of U.
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6.1. Proposition. Ler X be a normal F-space. For each a <w; let K, be a closed
zero-dimensional subspace of X and let K =|_Jn <., K.. Then for each pair of disjoint
closed subsets F, G < X there exists an open set U X with F< U, U nG =0 and
BdUnK =p.

Proof. By induction we construct open F.'s U, and V, (@ <w;) so that
(i) FcU,, GcV,and U, NV, =8;
(i) Kec Usu Vi3
(iii) If a <B, then U, =« Ug and V, = V.
Since X is an F-space any two disjoint open F,’s have disjoint closures. This easily
implies that the above inductive construction can be carried out. Now define
U=Uscwn Uaoo O

6.2. Corollary (CH). {p € H*: 3 closed zero-dimensional F = H such that p € clgn F}
is zero-dimensional.

6.2. Corollary to Corollary (CH). W is zero-dimensional.

6.3. Question. Is N zero-dimensional in ZFC?

7. Discussion and questions

We have shown that for each near point x € H* and for each autohomeomorphism
¢ of H* we have that ¢ (x) is not large. This suggests the following question:

7.1. Question. Is ¢ (/) =4 for each autohomeomorphism ¢ of H*?

Notice that there is an autohomeomorphism ¢ of H* such that ¢ (£) n ¥ = 0. For
completeness let us also add (see the introduction) that van Douwen has asked
whether ¢ (%)= 2R for each autohomeomorphism ¢ of H*. As a consequence of
Theorem 1.2, there is no autohomeomorphism ¢ of H* for which ¢(R)NR =0, a
fact which is far from answering van Douwen’s question, but it is an indication that
his question might have a positive answer.

Let us also add that interest in H* was motivated by Bellamy’s [1] and Woods’s
[14] result that H* is an indecomposable continuum (i.e. H* is not the union of two
nonempty proper subcontinua). Mioduszewski [11] has given an easier proof that H*
is indecomposable. Van Douwen [5] has investigated the structure of the sub-
continua of H* and has proved that there are at least five mutually nonhomeomor-
phic nondegenerate proper subcontinua of H*.
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