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ABSTRACT. Under MA + 2° = w, there is a (compact) strongly zero-dimensional
F-space of weight 2° which cannot be embedded in any basically disconnected
space.

Dually, under MA + 2“ = w, there is a weakly countably complete (or almost
o-complete, or countable separation property) Boolean algebra of cardinality 2¢
which is not a homomorphic image of any countably complete Boolean algebra.

The key to our construction is the observation that if X is a subspace of a
basically disconnected space and Sw C X then Bw is a retract of X.

Dually, if B is a homomorphic image of a countably complete Boolean algebra,
and if A is a homomorphism from B onto 9 (), the field of subsets of w, then there
is an embedding e: 9 (w) » B such that h o e = idg,)-

1. Introduction. In order not to double the length of this paper we will not dualize
each statement; the basic translations can be found in the abstract and in §2. The
Boolean algebraic reader may assume that all spaces mentioned in this introduc-
tion are compact (see §2) and read “zero-dimensional” for “strongly zero-dimen-
sional”.

It is well known that Bw is extremally disconnected, but that its closed subspace
Bw — w is not even basically disconnected [GJ, 6W.3]. However, Bw — w is a
zero-dimensional F-space. Since, more generally, the property of being a normal
F-space is closed hereditary, this suggests consideration of the following statement.

FE: Every strongly zero-dimensional F-space can be embedded in an Extremally

disconnected space.

It is convenient to factor FE as FB + BE, where

FB: Every strongly zero-dimensional F-space can be embedded in a Basically

disconnected space.

BE: Every Basically disconnected space can be embedded in an Extremally

disconnected space.

The earliest reference we are aware of where one of these statements is consid-
ered is [L]. Here Louveau attributes the question (or conjecture, Louveau is not
clear) of whether FE holds to Choquet, and proves that under CH the restriction of
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FE to compact spaces of weight < ¢ holds, i.e. CH implies

(*): every compact zero-dimensional F-space of weight < ¢ can be embedded in

an extremally disconnected space.

The question of whether BE holds was raised by Koppelberg, [K] (in Boolean
algebraic language), who was apparently unaware of Louveau’s paper. She proved
that the restriction of BE to compact spaces of weight < ¢ holds under CH.

The question of whether FB holds was raised by van Douwen, Monk and Rubin,
[VDMR], who also repeated the question of whether BE holds.

In this paper we prove that FB is not a theorem of ZFC, hence neither is FE. We
have no information about BE.

EXAMPLE (MA + ¢ = w,). There is a strongly zero-dimensional F-space V which
cannot be embedded in a basically disconnected space, such that BV has weight c.

This example also shows that (*) is not a theorem of ZFC. In view of the fact
that several results about F-spaces which had been proved under CH actually are
equivalent to CH, cf. [vD,], [vDvM], we conjecture that (*) is equivalent to CH.
However, we need more than —CH for our construction since BV “really” has
weight 2“1,

Our example is based on the following.

LEMMA. If X can be embedded in a basically disconnected space, then X has the
property that every subspace of X which is homeomorphic to Bw is a retract of X.

We build ¥ with Bw C V. In order to ensure that Bw is not a retract of V' we
badly need —CH, and we do not know how to avoid it. We use MA + ¢ = w, to
make V a strongly zero-dimensional F-space. We could have used less, but we do
not bother because it does not help to get a real example, and one needs more than
—CH to make BV a counterexample to (*).

REMARK (ADDED IN PROOF). Because there seems to be a misunderstanding about
the role of the hypothesis ¢ = w, we mention the ¥ can be constructed under
MA + ¢ = «* with k any regular uncountable cardinal.

2. Preliminaries. As usual, an ordinal is the set of smaller ordinals and a cardinal
is an initial ordinal.

Some of the definitions below are equivalent to the original definitions only in
case of normal spaces but we will not bother. (This explains why in certain
statements we have to hypothesize normality.) All our spaces are T;. Clopen means
closed and open. A space is called zero-dimensional if its clopen sets are a base,
strongly zero-dimensional if any two disjoint closed sets are included in disjoint
clopen sets. Recall that if X is normal then X is strongly zero-dimensional iff BX is
(strongly) zero-dimensional.

A space is called

extremally disconnected / basically disconnected/an F-space
if any two disjoint open sets

without further condition /one of which is an F, /both of which are F,
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have disjoint closures. Note that a normal space X has one of these three properties
iff BX has it. (Normality is not needed for extremal disconnectedness.) Also note
that the method of proof that a Lindelof space is normal can be used to show that
a normal space is an F-space (if and) only if any two F,-subsets F and G with
FNG=Fn G=® have disjoint closures, (see e.g. [vD,] for the easy proof).
This implies that the property of being a normal F-space is closed hereditary. We
also point out to the Boolean algebraic reader that although a normal basically
disconnected space is strongly zero-dimensional, the analogous statement for
F-spaces is false: Gillman and Henriksen give an example of a compact connected
F-space in [GH, 2.8].
A BA (= Boolean algebra) will be identified with its universe. A BA B is called
complete / countably complete / weakly countably complete
if for any two subsets P and Q such thatp A\ ¢ = Oforp € P,q € Q
without further condition /with |P| = wor |Q| = w/with |P| = |Q| = w
there is an s € B which separates P and Q, i.e. p <s for p € P and ¢q < s’ for
q € Q. (Obviously this is equivalent to the usual definition of complete and
countably complete.) It is well known and easy to prove that if X is a zero-dimen-
sional compact space, then X is
extremally disconnected /basically disconnected /an F-space
if and only if the clopen algebra of X is
complete /countably complete /weakly countably complete.
It is important to realize that in fact this is true if X is strongly zero-dimensional,
whether compact or not. This explains why we do not have to make our example ¥
compact, once we have ¥ we also have a compact example: just replace ¥ by BV.

3. Proof of the Lemma.

TOPOLOGICAL PROOF. We may assume X itself is basically disconnected, hence
that X is compact (for BX is basically disconnected since X is). Choose pairwise
disjoint clopen B,’s with n € B, for n € w. Then r = U , B, X {n} is a retraction
U,B,>w Let4 = (U, B,)". Then 4 is open and 4 = B(U ,B,) since U ,B, is
an open F,. Hence Br U (X — A) X {0} is a retraction X — Bw.

BOOLEAN ALGEBRAIC PROOF. Let B be a countably complete BA, let C be a BA,
let & (w) be the field of subsets of w, and let

g:B—>C and f:C— P(w)
be homomorphisms onto. Choose disjoint b,’s in B with f(g(n)) = n for n € w, and
let a = \/,b,. Then we can define an embedding e: % (w) — C such that fo e =
idg,,, by
8(V ner bn) if0e 7,
g((V,erb) va) ifoey.

4. The example. We want to use the Lemma to guarantee that our example
cannot be embedded into a basically disconnected space. So we aim at adding a set
I to Bw and at topologizing V' = Bw U I (with I N Bw = ) in such a way that

e(Y) =
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(1) Bw is not a retract of V.

We achieve (1) by a brute force application of —CH, as the next fact makes clear.
(Note that (2), (3) and (4) imply —~CH since (4) forces |I| > w,.)

FACT 1. Assume Bw — w has a subset C such that

(2) there is an open family U = {U,: x € C} in Bw — w such that x € U, for
x € Cand U, N U, = @ for distinct x,y € C,

B3)|I <|C|and

@) if G is a Gg-set in V with C C G, then C CG N 1.

Then Bw is not a retract of V.

[0 Suppose there is a retraction r: ¥ — Bw. Then G = r(Bw — w) is a Gj-set
in ¥ with C C G. Soif J = G N I then C C J, therefore C (= r~C) C (rJ)".
But r~J C r”G = Bw — w, hence (rJ) N U, # & for x € C. This is impossible
since U, N U, = S for distinct x,y € Cand [rJ| < |I| <|C|. O

Let I be a set of cardinality w,, and let C be a subset of fw — w of cardinality w,,
to be specified later. We plan to choose, for each x € C, an uncountable subset F,
of I such that

(5) |F, N E)| < w for distinct x,y € C.

Again we specify our choice later. Let T= I U C and topologize T as follows:
points of I are isolated, a basic neighborhood of x € C has the form
{x} U (F, — K) with |K| < w.

This is a valid neighborhood assignment because of (5). Evidently T is a (regular)
P-space. Topologize V by pasting T and Bw together, or, formally, U C V is open
in Vif U N Bw is open in Bw and U N T is open in T. It is clear that (3) and (4)
hold. The natural way to make (2) hold is to start with a disjoint open family @ in
Bw — w with || = w,, choose c(U) € U for U € U and let C = {c(U): U €
QL}. Unfortunately it is not clear that ¥ is going to be normal, or even Hausdorff,
unless we could assert that T is normal. However, we have the following fact.

FAcT 2. [-CH]: No P-space which has a dense subset of cardinality w, and a
closed discrete subset of cardinality w, is normal.

We prove this fact, which we obviously do not need for the construction of ¥, in
the Appendix.

Note that both Facts 1 and 2 depend on the way we added I to Bw, and that
apparently one cannot get Fact 1 without also getting Fact 2. We overcome this
difficulty by assuming MA.

Under MA + ¢ = w, there is a point p € Bw — w which has a clopen neighbor-
hood base (P;: { < w,) in Bw such that

6)if ¢ <n<wythen P, —w C P; — .

(C denotes proper inclusion.) Choose ¢; € (P, — Py, ) — w for § < w, and let
C = {¢;: £ < w,}. Then clearly (2) holds. Also

(7) if U is a neighborhood of p then |C — U| < w,.

It is precisely this fact which makes our construction work. For even though T is
not normal we do have

FACT 3. We can construct T in such a way that for each A C C with |A| < w, there
isaclopenS C TwithS N C = A.
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[0 We modify a construction of [vD,]. Let
I=w Xw, @={fCw Xw:fisafunction from w, to w,}.
Define a partial order < * on ® by

f<*g if|{§ <wpfl) > 29} < o
With an easy induction, pick f, € ® for ¢ < w, such that
(8) if £ <n then f, < *for
For x = ¢, € C we let F, = f;- Clearly (5) holds. To see that Fact 3 holds, let
A C w, have cardinality < w,. Let a = sup(4). Then a < w,. Put

W={{¢&nelin< £(§))u {f£:§<a}.

If y <a then |f — W| < w, and if y > a then |f, N W| < w, because of (8),
hence W is clopen. Since { f;: £ € A} C W and |a| < w,, and since T is a P-space,
we can easily find, using (5) (or, equivalently, (7)), disjoint open W’, W” C W such
thatforall¢ < a,if £ € 4 thenf, € W’ andif £ & 4 then f, € W”. Then S = W’
is as required. (This way to use < *, in a slightly different form, is due to Proctor
(P1) O

We now are ready to complete the proof that V is as required.

FAcT 4. V is strongly zero-dimensional.

O Let Fand G be disjoint closed subsets of V. Since Bw is strongly zero-dimen-
sional there is a clopen H C Bw with F N Bw C H and G N Bw C Bw — H.
Assume for a moment

(9) there is a clopen K C V with K € Bw = H.

Then L = (K U F) — G is a clopen set in ¥ which includes F and is disjoint from
G. L is open since K U F= K U(F N I)and L is closed since L = (K U F) —
(G N I) (recall that I consists of isolated points).

It remains to prove (9). Without loss of generality p & H. Then |H N C| < w,
hence by Fact 3 thereis a clopen Sin Twith S N C=H N C.ThenK=H U S
is clopen in ¥ sinée K N Bw = His clopenin Bwand K N T = S is clopen in T.
Also, as just observed, K N Bw = H. This proves (9). []

FAcT 5. Vis an F-space.

O Let F and G be disjoint open F,’s. Let x € Bw be arbitrary. Since Bw is an
F-space, we have

(FNBw) N(GNPw) =

so we may assume without loss of generality that x & (F N Bw)~. Let U be a
clopen neighborhood in ¥ which does not intersect F N Bw (use Fact 4). Then
FnNUis an F,-subset of ¥ with FN U C I (CT). Since T is a P-space, it
follows that F N U is closed in T, consequently F N U is closed in ¥ since
F N UnN Bw=Dis closed in Bw. Hence x & F.

Since x was arbitrary in Buw, it follows that F N G N Bw = &. As the points of 1
are isolated this implies F N G = &. []

Facrt 6. BV has weight 2°.

[0 Since V is strongly zero-dimensional and 2“' = 2¢ under MA + —~CH it
suffices to show that ¥ has 2“! clopen sets.
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Since Bw has 2¢ clopen sets and |V — Bw| = w,, ¥ has no more than 2! clopen
sets.

Recall that 7 = w, X w,, and note that the way we topologize V' means that
{0} X , is a closed discrete subset of ¥ consisting of isolated points. It follows
that ¥ has at least 2! clopen sets. []

REMARK. Perhaps the reader feels that with a more careful construction of 7" we
can ensure that ¥ has 2 clopen sets without using 2° = 2“1, but this is not the case.
Let A C C have cardinality w,. There is a clopen set Uin ¥ with U N C = 4 (and
this property we really need). Since T is a P-space (this property we used in an
essential way in the proof of Fact 5) we can find a clopen W, in T with x € W, for
x € A such that W, C U for x € 4 and W, n W, =< for distinct x,y € 4.
Choose D C U ,c4(W, — {x}) such that D intersects each W, in one point. Then
D is a closed subset of V consisting of isolated points, and |D| = w,.

Appendix. On normal P-spaces with big closed discrete sets. Fact 2 of §4 stated
that the statement

(P) there is a normal P-space with density w, and a closed discrete subset of

cardinality w,
is false under - CH. (P) is similar to the statement

(Q) there is a separable normal space with an uncountable closed discrete subset.
It is a well-known result of Jones [J], (only if), and Heath [H], (if), that

(Q) if and only if 2¢ = 2“1,

We use similar tools to prove our next result.

LeEMMA. (P) if and only if 2° = w, and 2°' = 2*2,

[0 Only if Let X be a P-space with a dense subset D with |D| = «, and a
closed discrete subset C with |C| = w,.

There are 2“2 continuous real-valued functions on C but only 2“' continuous
real-valued functions on D, hence on X, so if X is normal then 2“' = 2“2 by the
Tietze-Urysohn Extension Theorem.

Now suppose X is normal but 2 > w,. Then there is an injection f: C — R.
Since f is continuous and X is normal, f can be extended to a continuous fe
X —> R. For each x € C the set f<{f(x)} is a nonempty G;, hence is a nonempty
open set, so { f{ f(x)}: x € C} is a disjoint open family of cardinality w,. Hence
D is not dense. This contradiction shows that 2* = w,.

If. Let II be the product of 2¢' discrete two-point spaces. Let D be a discrete
space of cardinality w,. Then the weight of BD equals 2“2 = 2“!, hence we may
assume 8D C II.

IT has a dense subset 4 of cardinality w,. Since w{ = w,, there is a subset C of I1
with |C| = w, such that every sequence in 4 has a limit point in C.

Let II, be II, retopologized by making the Gs-subsets of II a base. It is easy to
see that C is dense in Il,.

Retopologize the subspace C U D of II; by making the points of C — D
isolated, call the resulting space X. Clearly X is a P-space in which C is dense and
in which D is a closed discrete set. So in order to prove that X is normal it suffices
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to show that disjoint subsets of D have disjoint neighborhoods in X. Indeed,
disjoint subsets of D have disjoint closures in 8D, hence have disjoint neighbor-
hoods in II, hence in II;, hence in C U D as subspace of IT,, hence in X. O
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