WALLMAN COMPACTIFICATIONS AND THE CONTINUUM HYPOTHESIS

J. van Mill, J. Vermeer

0. INTRODUCTION

All spaces are completely regular. In [10] UL'JANOV constructed a variety of compactifications which are not Wallman compactifications. In addition, combining these results with those of BANDT [1] he showed the following interesting theorem:

- (*) CH is equivalent to the statement that every compactification of a separable space is a Wallman compactification.
- Consequently, by applying constructions of SAPIRO [7] or STEINER & STEINER [9] it follows that under \neg CH there is a compactification γ IN of IN which is not a Wallman compactification. Since under CH every compactification of IN is a Wallman compactification (by (*)) we even have that:
- (**) CH is equivalent to the statement that every compactification of IN is a Wallman compactification.
- Also, there is a theorem of HAGER [4] which states:
- (***) Every compactification of a pseudo-compact space is a Wallman compactification.
- At first glance, (**) and (***) do not give us any information concerning non pseudo-compact spaces.
- In this note we will show that (**) and (***) imply the following two theorems.
- THEOREM 1. CH is equivalent to the statement that there is a non pseudocompact space all compactifications of which are Wallman compactifications.

(ii) All compactifications of X are Wallman compactifications.

These two theorems imply that there is no honest (= not requiring additional set theoretic axioms) example of a non pseudo-compact space every compactification of which is a Wallman compactification.

1. THE THEOREMS

Recall that a Wallman compactification of a space X is a compactification γX which has a closed base B satisfying the following two conditions:

- (a) B is closed under finite intersections and finite unions.
- (b) for all B \in B we have that B = c $\ell_{_{\mathbf{Y}\,\mathbf{X}}}(\mathbf{B}\,\cap\,\mathbf{X})$.

(this can easily be derived from a theorem in STEINER [8]).

All our results follow from the following proposition, which is of independent interest.

PROPOSITION 1.1. Let X be any space every compactification of which is a Wallman compactification. Let B be a closed subspace of X. If one of the following conditions is satisfied,

- (i) X is normal
- (ii) B is a C-embedded copy of IN in X,

then every compactification of B is a Wallman-compactification.

PROOF. Let γB be any compactification of B.

Note that the closure operator in βX has the following two properties:

- (a) In both cases B is C^* -embedded in X, so $c\ell_{\beta X}B$ = βB ,
- (b) If T is a closed subset of X such that T \cap B = Φ , then $c\ell_{\beta X}$ B \cap $c\ell_{\beta X}$ T = Φ .
 - When X is normal, this is clear;
 - When B is a C-embedded copy of IN, it follows from [3] (GILLMAN & JERISON, page 51 3L).

Let f: $\beta B \rightarrow \gamma B$ be the unique map which extends the idenity on B. Define

$$Z := \gamma B \cup (\beta X - \beta B)$$

Let $\xi: \beta X \to Z$ be defined by

$$\begin{cases} \xi(x) = x & (x \in \beta X \setminus \beta B) \\ \xi(x) = f(x) & (x \in \beta B) \end{cases}$$

It is clear that Z supplied with the quotient-topology is a (Hausdorff)-compactification of X, say $Z = \gamma_0 X$, such that $c\ell_Z B = \gamma B$. By assumption, Z is a Wallman compactification of X. Let T be a closed base for Z such that T is closed under finite unions and finite intersections, while in addition $c\ell_Z(T \cap X) = T$ for all $T \in T$. Define

$$F = \{T \cap \gamma B \mid T \in T\}.$$

It is clear that F is a closed base for γB which is closed under finite unions and finite intersections. We claim that:

$$c\ell_{\gamma B}(F \cap B) = F$$

for all $F \in F$, which suffices to prove the proposition.

Indeed, take F ϵ F, say F = T \cap γ B and assume there is a point x such that x ϵ F - $c\ell_{\gamma B}$ (F \cap B). Since T is a closed base for γ_0 X we may take $T_0 \in T$ such that x ϵ T_0 and $T_0 \cap c\ell_{\gamma B}$ (F \cap B) = Φ . Define $T_1 = T \cap T_0$.

$$T_1 \cap B = T \cap T_0 \cap B = T_0 \cap F \cap B = \Phi$$
.

So, (b) implies that $c\ell_{\beta X}(T_1 \cap X) \cap c\ell_{\beta X}B = c\ell_{\beta X}(T_1 \cap X) \cap \beta B = \Phi$. Therefore, $c\ell_Z(T_1 \cap X) \cap \gamma B \subset \xi[c\ell_{\beta X}(T_1 \cap X)] \cap \xi[\beta B] = \Phi$. But this is a contradiction, since

$$\mathbf{x} \, \in \, \mathbf{F} \, \cap \, \mathbf{T}_0 \, \cap \, \gamma \mathbf{B} \, = \, \mathbf{T} \, \cap \, \mathbf{T}_0 \, \cap \, \gamma \mathbf{B} \, = \, \mathbf{T}_1 \, \cap \, \gamma \mathbf{B} \, = \, \mathbf{c} \ell_{\mathbf{Z}} \, (\mathbf{T}_1 \, \cap \, \mathbf{X}) \, \cap \, \gamma \mathbf{B}.$$

We conclude that γB is a Wallman compactification. \square

From this proposition the two theorems are immediately clear.

2. REMARKS

Recall that a compactification γX of X is called a GA compactification provided that there is a closed subbase $\mathcal T$ for γX such that:

(a) for each $x \in \gamma X$ and $T \in T$ such that $x \notin T$ there is a $T_0 \in T$ with $x \in T_0$ and $T_0 \cap T = \Phi$.

- (β) for all disjoint $T_0, T_1 \in T$ there is a finite cover M of γX by elements of T such that each M \in M meets at most one of T_0 and T_1 .
- (γ) for all $T_0, T_1 \in T$ with $T_0 \cap T_1 \neq \Phi$ we have that $T_0 \cap T \cap X \neq \Phi$.

(cf. van MILL [5]). In [5] and [6] it has been shown that if γX is a compactification of X of weight at most 2^ω then γX is a GA compactification. As remarked in the introduction, $\neg CH$ implies that there is a compactification of IN which is not a Wallman compactification. Hence there is a consistent example of a GA compactification which is not a Wallman compactification. Whether there is a real example of such a compactification is unknown. In addition, it is unknown whether every compactification is a GA compactification.

REFERENCES

- [1] BANDT, C., On Wallmann-Shanin compactifications, Math. Nachr. 77 (1977) 333-351.
- [2] FRINK, O., Compactification and semi-normal spaces, Amer. J. Math. 86 (1964), 602-607.
- [3] GILLMAN, L. & M. JERISON, Rings of continuous functions, Princeton, N.J. (1960).
- [4] HAGER, A.W., On inverse-closed subalgebra's of C(X), Proc. London Math. Soc. (3) 19 (1969), 233-257.
- [5] MILL, J. van, Every Hausdorff compactification of a locally compact separable space is a GA compactification, Canad. J. Math. 29 (1977), 125-131.
- [6] MILL, J. van, Supercompactness and Wallman spaces, M.C. Tract 85, Amsterdam (1977).
- [7] SAPIRO, L.B., A reduction of the fundamental problem of bicompact extensions of Wallman type, Soviet Math. Dokl. 15 (1974), 1020-1023.
- [8] STEINER, E.F., Wallman spaces and compactifications, Fund. Math. 61

- [9] STEINER, A.K. & E.F. STEINER, On the reduction of the Wallman compactification problem to discrete spaces, Gen. Top. Appl. 7 (1977), 35-37.
- [10] UL'JANOV, V.M., Solution of a basic problem on compactifications of Wallman type, Soviet Math. Dokl. 18 (1977), 567-571.

Department of Mathematics Free University

De Boelelaan 1081

Amsterdam

The Netherlands