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ON SUPEREXTENSIONS AND HYPERSPACES

J. van Mill¥, M. van de Vel

0. INTRODUCTION

The superextension A(X) (or MX) of a topological space X has been intro-
duced by DE GROOT in [2]. Although its construction parallels the construc-
tion of Wallman compactifications, its properties are firmly distinct, and,
in general, A(X) is a much nicer space. For instance, A(X) is a metric AR
if (and only if) X is a metric continuum (cf. van MILL [4] or van de VEL
[12]); A(X) is a ¢’ and Lc” space if X satisfies certain weak assumptions,
such as separability + path connectedness, or, o-compactness + finite (homo-
topy) category (cf. van MILL & van de VEL [9]). Also A(X) has the fixed
point property if X is a connected normal Tl-space (cf. van de VEL [12]).

In all of these results, the hyperspace H(X) of a space X has been of
invaluable help. The present paper is concerned with the relationship be-
tween the two kinds of topological extensions: X, H. We shall first prove
that A(X) is a subspace of H(H(X)) for compact X (cf. Section 2). The proof
of this nontrivial fact depends on the use of "compact" subbases, which were
studied in van MILL & van de VEL [8]. With these techniques, we are able to
derive more results at the time, e.g. that a certain "transversality" map
in H(H(X)) is continuous and that its fixed point set is exactly A(X). Also,
we prove that a certain "convex closure operator" in H(H(X)) is continuous.
Finally, we use subbase convexity theory again to derive a retraction pro-
perty of A(X) in H(H(X)).

In view of the above facts, superextension theory can be looked upon
as a kind of hyperspace theory. Both theories have also met with a same

conjecture: H(X), or A(X), is a Hilbert cube for suitable X. Concerning
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H(X), this conjecture has been settled in the affirmative by the work of
CURTIS, SCHORI and WEST (cf. [1] and [11]). Concerning A(X), it has been
proved by van MILL (cf. [4]) that A[0,1] is a Hilbert cube, and (recently)
that AX is a Hilbert cube iff X is a nondegenerate metric continuum (cf. [7]).
The proof of this result uses the above mentioned retraction property of

AMX) in H(HEX)).

1. COMPACT SUBBASES IN HYPERSPACES

The hyperspace of a T, space X will be denoted by H(X). If A ,...,An

1
are nonempty subsets of X, then we write

1

<A and D n Ai # @ for each

:

n
.A>=1{De H(X) | D c igl A,

i=1,...,n}.
With this notation, the family
H=Hx ={<c>|cev®} u{<cx>|Ce BX]

constitutes a closed subbase for H(X).

If S is a closed subbase of X, then a nonempty subset C of X is called
S-convex if ¢ = NC for some C c S. We let H(X,S) denote the subspace of H(X),
consisting of all S-convex sets of X. We say that the closed subbase S is
compact if; (i) H(X,S) is a normal T1 family, and; (ii) the space H(X ,S) is
compact.

Recall that a closed subbase S is normal if any two disjoint members
of S can be separated by disjoint complements of members of S, and that S
is T, if for each S € § and x € X-S there is an S' € § with x € S' ¢ X~ S5S.

1
See van MILL & van de VEL [8].

THEOREM 1.1. Let X be compact T,, and let S be a closed normal T, subbase

of X which is closed under formation of Iintersections. Then the following

assertions are equivalent:

(a) $ is a compact subbase;

(b) the S-convex closure operator Is: H(X) - H(X,S) which sends C € H(X)
onto IS(C)=I1{S| Cc c S e S}, is continuous;

(c) the space H(X,S) admits a closed normal T, subbase, consisting of all

1
sets of type <C> n H(X,S) or <C,X> n H(X,S), where C € H(X,S).
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See [15], Theorem 2.6.

We now present a characterization of convexity in H(X), relative to its
canonical subbase H = H(X). This result will be used to prove our basical
result that H is actually a compact subbase for compact X.

Let A © H(X) be closed and nonempty, and let B ¢ H(X). If B meets all
members of A, then we call B a transversal set of A. We let L(A) denote the
collection of all transversal sets of A. With this notation, one can easily
check the following formula on the convex closure operator IH, related to

the subbase H of H(X):
Iy(A) = n{<B,x>|B e L(A)} n <UA>

THEOREM 1.2. Let X be compact Hausdorff, and let A c H(X) be closed and
nonempty. Then the following assertions are equivalent:
(i) A is H-convex;

(ii) if B € H(X) and if A ¢ B € UA for some A ¢ A, then B ¢ A.

PROOF. Let A be H-convex, let B € H(X), and assume that A € B ¢ UA for some
A e A. For each C ¢ L(A), we have that ¢ n A # @, and hence that C n B # @.
Also, B € <UA>, whence B ¢ IH(A) = A by the above formula.

Assume next that A satisfies condition (ii) , and that there is a
B € IH(A)——A. Then B ¢ UA, and by (ii), <B> n A = f. A being closed and <B>
being compact, there is an open set 0 > <B> of H(X) of type
k k

O 5 - 0. open in X,
D P

m k
L 1

k=1 1'7°

which does not meet A. For each b € B we put
k
0, = N0} [be O, k=1,...,m 1=1,...,p}.

In this way, we obtain but a finite number of different open sets of X, say

0 ..,On. Writing I = {1,...,n}, we show that

S
<B> © U{<0j| j e J> [ﬁ AJec1tecl (%)

In fact,
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for some bl""'br € B. Hence there is a k € {1,...,m} such that

k
{bl,...,br} € <0

k
v mem gl
1’ 0p

Therefore, each Oj is contained in some O?, and each Ot contains some Oj’

whence

<0j] i e J>c <Ok

k
1,...,0P>.

The other half of (*) is obviuous, using B < U2=1 Oi'
X-0,, then A c U? 0., and hence
1 i i=1 i

A€ <0j lj € J>, where J = {i|a n 0i # @}, contradicting that A n 0 = @.

Let & ¢ A. If A does not meet n§=

Hence nieI K-—Oi is a transversal set of A which does not meet B. This con-

tradicts the fact that B is in IH(A). O

As a direct consequence of this theorem, it follows that L(A) is H-

convex for each nonempty closed A © H(X).

THEOREM 1.3. Let X be compact Hausdorff. Then H = H(X) is a compact subbase
of H(X).

PROOF. Let A ¢ HH(X) be nonconvex. Then by the previous theorem, there

exists a B € H(X) and an AD € A such that

AO c B c UA; B ¢ A.

Let 0, P be disjoint open sets of H(X) such that B ¢ P, A ¢ 0. Then

B e <0 sl Bag P
n

1"

for some open sets 0 .,On of ¥. We assume that, among the latter,

17"

01,...,OP (p £ n) are all sets meeting AO.

AO € {01,...,0 >. For each k with p < k £ n, we choose bk € Bn Ok. As

B < UA, there is an B e A with bk € A, and hence A_n Ok # @#. Therefore,

Notice that p < n, and that

V =<0>n<<0,,...,0 >, <0
P

p+1,x>,...,<0n,x>,ﬁ(x)>

1!’

is a neighbourhood of A in HH(X), no member of which is H-convex. In fact,

if A' € V, then there exist AL/

0% yre-esBl € A' such that
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Aé € <01,...,Op>; Aﬂ € €0k,X? for p < k € n.

Choose a' € A' n 0, for each p <k £ n, and let B' = a' y {a'
% X
Then

1 ] A|_ ' < .
AO < B' c UA'; B' € 01;

whence B' ¢ A', and A' is not H-convex.

173

This shows that the space H(H(X) ,H) is compact, being a closed subspace of

the compact space HH(X) (cf. MICHAEL [31), and it remains to he verified
that the family H(H(X),H) is normal and T,
Let A, B ¢ H(X) be disjoint H-convex sets, say

A

n{<c,x>|ce LA} n <a> (a = UA),

o
[

N{<p,x>|D e L(B)} n <B> (B = UB).
Then A n B cannot meet all members of L(A) u L(B), for otherwise A n B ¢
AnB. Soe.g. AnBnC=0, where C ¢ L(A). X being normal, there exist
closed sets K, L in X with

AnCcK-L; BcL-K; KulL =X.
Hence,

A c <a> n <C,X> € <AnC,X> c <K,X>

B c¢ <B> c <L>,

whereas A n <L> = @, B n <K,X> = @, and <L> U <K,X> = H(X). The T, -property

is obvious. 0

Combining Theorems 1.1 and 1.3 yields:

COROLLARY 1.4. Let X be compact Hausdorff. Then the convex closure operator

I;: HH(X) - H(H(X),H)

is continuous. 0
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A linked system on a space X is a collection M € H(X) such that any two
members of M have a nonempty intersection. Equivalently, M < L(M). A linked
system M on X is maximal (or, M is an mls) if it is not properly contained
in another linked system on X. The reader can verify that M is an mls iff
M= L(M).

COROLLARY 1.5. Let X be compact Hausdorff. Then the transversality map
L: H(H(X)) - H(H(X)) is continuous, and its fixed point set is exactly the

collection A(X) of all mls's on X.

PROOF. As we noted before, L(A) is H-convex for each A e HH(X). Hence, the
map L factors through the subspace H(H(X),H) of HH(X). To prove continuity
of L, it now suffices to use the closed subbase of H(H(X),H), consisting of
all sets of type <8> or <S,H(X)>, where 8 < H(X) is H-convex (cf. Theorem

1.1(e)). For convenience, we write £ = L, and we let
S=n{<B,x>|Be L(8)} n <C> (S #8).

(i). Computation of f_1<S,H(X}>. Let A € HH(X). Then A ¢ f*ICS,H(X)? iff
1(A) n 8 # @, iff for some A € L(A), A © C and A meets all members of L(S),
iff c ¢ L(A), iff A c <C,X>. Hence:

f'lcs,H(x)> = <<C,X>>.

1

(ii) Computation of £ ~<S>. Assume first that C # X. Then f'1<S) = f, since

=1
for each A ¢ £ <8>, X € L(A) ¢ S c <C>, which is impossible. Assume now
that C¢ = X, and let 1(A) ¢ S. Then

VE € L(S)3a e A: A c B (*)

In fact, assume to the contrary that for some B e L(S), An (X-B) # @ for

all A € A. Fix a, ¢ A -B for each A € A. X being regular, there exist dis-

joint open sets OB, PA of ¥ with a, € 0A and B © PA. By the compactness of

A c H(X), there exist A ’An € A such that each A ¢ A meets one of

freee
OAI,...,OAn. Let P = ﬂz=1 Pp,- Then each A ¢ A meets the closed set X -P,
whence X -P ¢ L(A). However, B n (X -P) = f, contradicting that L(A) ¢ S ¢
<B,X>.

Conversely, if A € HH(X) satisfies (%), then L(A) ¢ S. In fact, to

each B ¢ L(S) we can assign an A € A with A © B. Hence, if D € L(A), then D
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meets each A ¢ A, and hence it meets B, proving that
L(A) € N{<B,x> | B e L(8)} = 8.
Using the formula (*), it now follows that
£ hegs = N{<<B>,H(X)> | B ¢ L(8)}.

In both cases (i) and (ii), we find that the inverse image is a closed

set of HH(X). O
2. SUPEREXTENSIONS

For a T -space X, the collection A(X) of all maximal linked systems

on X is given a topology, generated by the closed subbase
+ +
H(X) ={c |ce HX)},

whsge & @ {M € A(x) | c € M}. with this topology, A(X) is called the super-
extension of X. See VERBEEK [13] or van MILL [6] for details. Notice that
A(X) is compact.

The present section is mainly concerned with embedding and retraction

properties of A(X) in HH(X).

THEOREM 2.1. Let X be a compact Hausdorff space. Then )A(X) is a subspace
of HH(X).

PROOF. As each M e A(X) is obviously a closed subfamily of H(X), and satis-
fies M = 1(M), we find that M is H(X)-convex and hence that A(X) is a sub-
set of H(H(X) ,H). We are again in a position to use the closed subbase of
H(H(X) ,H) méntioned before, to prove that the inclusion mapping A(X) < HH(X)

is continuous. Let S be H-convex, say

S =n{<B,Xx>| B e L(S)} n <C>.
: -
(i) <S,H(X)> n XA(X) =C :
In fact, as S # @, we have that ¢ n B # @ for each B € 1(S). Therefore, an
mls M is in A(X) n <S,H(X)> iff M n S # P, iff c e M, iff M ¢ ct.



176 VAN MILL & VAN DE VEL

(1i) <S> n A(X) = P if C #X and <S> n A(X) = N{B' | B € 1(S)} otherwise:

If C # X, then no mls M can satisfy M € § c <¢> since X € M. Assuming C = X
we have M ¢ S iff for each B ¢ L(S) and for each M e M, B n M # P, iff

1(S) c M, iff M e n{B* | B e 1(}. O

Notice that the above computed traces on A(X) are convex (or empty)
relative to the canonical subbase of X(X).

A remarkable fact is that for metric compacta there is a direct proof
of the above theorem without intervenience of compact subbases. Instead, we
use the following metrizability result of VERBEEK [13]: if 4 is a metric on

a compact space X, then the formula
dM,N) = inf{r W e M: B () € N}

(where Br(M} = {x |d(x,M) < r}l) defines a metric on A(X), compatible with
its original topology. We notice that if X is compact metric, say with me-
tric 4, then H(X) is metrized by the well-known Hausdorff metric, denoted
by dH.

We now prove the following result, adding some information to Theorem

213

THEQOREM 2.2. Let (X,d) be a compact metric space. Then the inclusion mapping
(A (X),d) - (HH(X),(dH)H)

is an isometry.

PROOF. Let M,N ¢ A(X) and let d(M,N) = r. Hence, if N ¢ N, then Br[N] e M

and consequently, dH(N,M) < r. Similarly, dH(M,N) £ r for each M € M, show-
<

ing that (dH)H(M,N) <r. _

Let s = (dH)H(M,N). For each M € M we can then find an N ¢ N such that

dH(M,N) < s, whence N c BS(M) and BS(M) ¢ N. Therefore, a(M,N) < s. |

More information on the above (metric) embedding is presented in the
next result.

Let L(X) c HH(X) denote the subspace of all closed linked systems on X.
Then A(X) is a subspace of L(X). We now describe how to extend linked systems

to maximal linked systems in a continuous way.
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THEOREM 2.3. Let X be a compact Hausdorff space. Then there is a continuous

retraction
h: Lix) + A(x)

extending each linked system to a maximal linked system. If X is metrizable

moreover, then h can be chosen such as to be a metric contraction.

PROOF. Fix an x € X. For each L ¢ L(X) we put
h'(l) =L uiM|xeMeHEX) and L u {M} is linked} (*)

It has been proved in van MILL [5] that h' (L) is a linked system which is
contained in a unique maximal linked system, which we denote by h(L). This
gives a mapping h: L(X) - 2(X), and we show that h has all the desired pro-
perties:

If T is a closed subbase of a space Y, then we let L(Y,T) denote the
subspace of H(H(Y,T)), consisting of all closed linked systems L < H(Y,T).

With this notation, we have the following composition maps:

+
L) Y5 tomeeh Trowaet 2o (%%)
The first map, ( )+, sends L ¢ L(X) (= (L(X,H(X))) onto

+ +

L = {7 [me LY,

+
where ( ) refers to the construction described at the beginning of this
section. The second map is the intersection operator, sending
+
Me L(A(X),H(X) ) onto MM. It is easy to verify that MM # @. The third map
is a restriction of the so-called nearest point mapping of \(X),
+

pr A(X) x H(A(X),H{EX) ) + A(X)

sending a pair (M,A) onto the unique point N € A(X) with the property that

I{M,N} n a = {N}.

(cf. van MILL & van de VEL [8]). In (%x), p, denotes the map p(x,-) (re-

garding x € X as a point of A(X)), and it has been proved in van de VEL [12]
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that both constructions (*) and (*%*) coincide.

All mappings appearing in (**) are continuous, see van MILL & van de VEL
[8]. Hence h is continuous

Assume now that X is metrizable, say with a metric d. Using the induced
metrics on the superextension A(X) and on the various hyperspaces, we shall
prove below that both N and p, are metric contractions. It remains to be
verified that the first map, ( )+, is an isometry. But this is a straight-
forward consequence of the following elementary facts about A(X):

(1) B_(0)" =B (C") for each C ¢ HX) and r 2 0;
(1i) A < B iff A" c B' for each 3,B € H(X).

We now prove the contraction property of N and P cited above. In order
to simplify the argument, we give a proof which is valid for all spaces with
a normal binary subbase, i.e. a closed normal subbase S such that for each
linked system S' ¢ S we have that NS' # @.

As was shown in [8], there is also a nearest point map
p: X x H(X,S) + X

for such a subbase, satisfying a similar property as in the A(X)-case,
namely: for each x € X and C ¢ HKX,S), Is(x,p(x,c)) nc={p(x,c)}, and
p(x,C) is the unique point with this property.

In [10], a metric d on X (with a closed subbase S) has been called S-
convex provided that for each C € H(X,S) and each r 2 0, Br(C) esBIX:8) .
Tt is shown in [10] that the above mentioned metric d on A(X) is HEK) -
convex, and that each metrizable space with a normal binary subbase S admits

an S-convex metric.

LEMMA. Let S be a normal binary subbase for X and let 4 be an S-convex met-
ric on X. Then the intersection operator N: L(x,8) + H(X,8) is a metric con-
traction with respect to the metrics on L(x,S) and H(X,S) which are induced

by d.

PROOF. We first show that for each (nonempty) linked system A e H(X,S) and

for each r =z 0 the equality
B_(NA) = n{B_ () | A € A} (%)

holds. The inclusion "c" being obvious, take a point x in the right hand

side of (%). Then Br(x) meets each A& € A, and since Br(x) is S-convex, we
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find that
B_(x) n NA # ¢

by the binarity of S. Hence x ¢ Br(ﬂA).
Now take LI'L2 e L(X,8) such that (dH)H(LI,LZJ < r. Then

VL1 € L13L2 € L2; dH(Ll'LZ} <r

A

VLz € LZHL1 € Ll: dH(LZ,Ll) <r
and hence it easily follows that Br(ﬂll) = ﬂ{Br(Ll) |L1 € Ll} > ﬂL2 by the
formula (*). Similarly Br(nLZ) > ﬂLl, which proves that dH[nLi’nLZ) <¥r. O

The formula (%) is also applied in the proof of the next result:

LEMMA. Let S be a normal binary subbase for X and let d be an S-convex metric

on X. Then for each x ¢ ¥ the nearest point map
plx,-): HX,8) +X

is a metric contraction.

PROOF. Let A,B € H(X,S) and assume that dH(A,B) < r. Writing x, = p(x,A) and

A

Xg = p(x,B), we show that d(XA’xB) < r. Indeed, since A c Br(B),

P # Br(xa} nBc Br(IS(x’XA))_n B;

whence by the construction of p (cf. the above remarks), x_ ¢ Br(IS(x'xA))'

B
On the other hand B < Br(A), and conseguently

Xg € Br(A) n Br(IS(x,xA)) = Br(A n IS(x,xA}) = Br(xA):

using formula (*) and the construction of p. 0

It has been proved in [10] that the nearest point map p is a metric
contraction in the first variable too, and that p(x,A) is also metrically a

nearest point of A with regard to x.
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