A SIMPLE OBSERVATION CONCERNING THE EXISTENCE OF NON-LIMIT POINTS IN SMALL COMPACT F—SPACES

Jan van Mill

All spaces are completely regular and for all undefined terms we refer to [CN].

FRANKIEWICZ [F] has shown that under MA (a consequence of CH) in each compact extremally disconnected space X of weight 2^ω there is a point $x \in X$ which is not a limit point of any countable discrete subset of X. For related results see [K₁], [K₂], [vM].

The aim of this note is to point out that under the stronger hypothesis CH a stronger result can quite easily be derived; apparently, this proof has been overlooked.

THEOREM (CH): Let X be a compact F-space of weight 2^{ω} . Then there is an $x \in X$ such that $x \notin \overline{D}$ for each countable discrete $D \subset X - \{x\}$.

<u>PROOF.</u> Striving for a contradiction, we assume that each point of X is a limit point of some countable discrete set. Let $\{U_n:n\in\omega\}$ be a family of nonempty pairwise disjoint open F_σ 's of X. Define $Y=\bigcap_{n<\omega} \overline{Y}_n$ and let B be the collection of all nonempty open F_σ 's of Y. The family

$$E = \{\partial B \colon B \in B\}$$

has clearly cardinality 2^{ω} . List E as $\{E_{\alpha}: \alpha < \omega_1\}$ (by CH) and let $\{F_{\alpha}: \alpha < \omega_1\}$ list the boundaries of the nonempty closed G_{δ} 's of \overline{Y} - Y. Since each nonempty G_{δ} in $Y^* = \overline{Y}$ - Y has nonempty interior ([FG, 3.1]) by a straightforward induction ([R]) we can construct for each $\alpha < \omega_1$ a nonempty open set V_{α} of Y^* such that

- if
$$\alpha < \kappa$$
 then $\overline{V}_{\kappa} \subseteq V_{\alpha}$;
- $V_{\alpha} \cap (\overline{E}_{\alpha} \cup F_{\alpha}) = \emptyset$

168 VAN MILL

(observe that $\overline{E}_{\alpha} \cap Y^*$ is nowhere dense in Y^* , cf. [WO, 2.11]). Take $x \in \bigcap_{\alpha < \omega_1} \overline{V}_{\alpha}$. By assumption $x \in \overline{D}$ for some countable discrete $D \subset X - \{x\}$. Since x is a P-point of Y^* , we may assume that $D \cap Y^* = \emptyset$. Moreover, since X is an F-space and D is countable, we may assume that $D \cap (X - \overline{Y}) = \emptyset$. List D as $\{d_n \colon n < \omega\}$. By assumption, each point of D is a limit point of some countable discrete set in X. Since $D \subset Y$ and since Y contains a dense open F_{σ} of X, each point of D is a limit point of some countable discrete set in Y. Hence, there exists a family $U = \{U_n^m \colon n,m < \omega\}$ of nonempty open F_{σ} 's of Y such that

$$\begin{array}{l} - \ d_n \ \in \ (\mbox{U}\{\mbox{U}_n^m \colon \mbox{m} < \mbox{ω}\})^- - \mbox{U}\{\mbox{U}_n^m \colon \mbox{m} < \mbox{ω}\} \,; \\ \\ - \ \mbox{if} \ \mbox{$k \ne n$ then} \ \mbox{U}\{\mbox{U}_k^m \colon \mbox{m} < \mbox{ω}\} \ \cap \ \mbox{U}\{\mbox{U}_n^m \colon \mbox{m} < \mbox{ω}\} \ = \ \emptyset \,. \end{array}$$

Put B = $U_{n<\omega}$ $U_{m<\omega}$ U_n^m . Then D $\subset \partial B$, and hence, by construction, $x \notin \overline{D}$; a contradiction.

REFERENCES

- [CN] COMFORT, W.W. & S. NEGREPONTIS, The theory of ultrafilters, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band 211, Springer (1974).
- [FG] FINE, N.J. & L. GILLMAN, Extension of continuous functions in $\beta \, \mathbb{N}$, Bull. Amer. Math. Soc. 66 (1960) 376-381.
- [F] FRANKIEWICZ, R., Non-accessible points in extremally disconnected compact spaces, (to appear in Fund. Math.).
- [K₁] KUNEN, K., Some points in βN, Math. Proc. Cambridge Philosophical Society, 80 (1976) 385-398.
- [K₂] KUNEN, K., Weak P-points in N*, (to appear).
- [vM] MILL, J. van, Weak P-points in compact F-spaces, (to appear).
- [R] RUDIN, W., Homogeneity problems in the theory of Cech compactifications, Duke Math. J. 23 (1956) 409-419.
- [WO] WOODS, R.G., Co-absolutes of remainders of Stone-Cech compactifications,
 Pacific J. Math. (1971) 545-560.