SUPEREXTENSIONS WHICH ARE HILBERT CUBES

by

J. VAN MILL (Amsterdam) and A. SCHRIJVER (Amsterdam)

Abstract

It is shown that each separable metric, not totally disconnected, topological space admits a superextension homeomorphic to the Hilbert cube. Moreover, for simple spaces, such as the closed unit interval or the n-spheres S_n , we give easily described subbases for which the corresponding superextension is homeomorphic to the Hilbert cube.

1. Introduction

In [6], de Groot defined a space X to be supercompact provided that it possesses a binary closed subbase, i.e., a closed subbase \$ with the property that if $\$' \subset \$$ and $\cap \$' = \emptyset$ then there exist S_0 , $S_1 \in \$'$ such that $S_0 \cap S_1 = \emptyset$. Clearly, according to the lemma of Alexander, every supercompact space is compact. The class of supercompact spaces contains the compact orderable spaces, compact tree-like spaces (Brouwer & Schrijver [4], van Mill [10]) and compact metric spaces (Strok & Szymański [14]). Moreover, there are compact Hausdorff spaces which are not supercompact (Bell [2], Van Mill [12]). There is a connection between supercompact spaces and graphs (see e.g., de Groot [7], Bruijning [5], Schrijver [13]); moreover, supercompact spaces can be characterized by means of so-called interval structures (Brouwer & Schrijver [4]).

Let X be a T_1 -space and $\mathbb S$ a closed T_1 -subbase for X (a closed subbase $\mathbb S$ for X is called T_1 if for all $S \in \mathbb S$ and $x \in X$ with $x \notin S$, there exists an $S_0 \in \mathbb S$ with $x \in S_0$ and $S_0 \cap S = \emptyset$). The superextension $\lambda_{\mathbb S}(X)$ of X relative the subbase $\mathbb S$ is the set of all maximal linked systems $\mathbb M \subset \mathbb S$ (a subsystem of $\mathbb S$ is called linked if every two of its members meet; a maximal linked system or mls is a linked system not properly contained in another linked system) topologized by taking $\{\{\mathbb M \in \lambda_{\mathbb S}(X) \mid S \in \mathbb M\} \mid S \in \mathbb S\}$ as a closed subbase. Clearly, this subbase is binary, hence $\lambda_{\mathbb S}(X)$ is supercompact, while moreover X can be embedded in $\lambda_{\mathbb S}(X)$ by the natural embedding $i: X \to \lambda_{\mathbb S}(X)$ defined by $i(X) := \{S \in \mathbb S \mid x \in S\}$. Verbeen's monograph [15] is a good place to find the basic theorems about superextensions. In this paper we will show that for many spaces there are superextensions homeomorphic to the Hilbert cube Q; moreover for simple spaces such as the unit interval or the n-spheres S_n we will present easily described subbases for which the corresponding super-

AMS (MOS) subject classifications (1970). Primary 54D 35; Secondary 57A 20. Key words and phrases. Superextension, Hilbert cube, Z-set, convex.

extension is homeomorphic to Q. Here, a classical theorem of Keller [8], which says that each infinite-dimensional compact convex subset of the separable Hilbert space is homeomorphic to Q (for a more up-to-date proof of this fact, see also Bessaga & Pełczyński [3]), is of great help.

2. Some examples

In this section we will give some examples. If X is an ordered space, then the Dedekind completion of X will be denoted by \overline{X} . Roughly speaking, \overline{X} can be obtained from X by filling up every gap. We define \overline{X} to be that ordered space wich can be obtained from X by filling up every gap with two points, except for possible endgaps, which we supply with one point. The compact space \overline{X} thus obtained, clearly contains X as a dense subspace. Define

$$\mathcal{G}_1 = \{A \subset X \mid \exists x \in X : A = (\leftarrow, x] \text{ or } A = [x, \rightarrow)\}$$

and

$$\mathfrak{T}_1 = \{A \subset X \, | \, A \text{ is a closed half-interval} \}$$

(as usual, a half-interval is a subset $A \subset X$ such that either for all $a, b \in X$: if $b \le a \in A$ then $b \in A$, or for all $a, b \in X$: if $b \ge a \in A$ then $b \in A$) and

$$\mathfrak{F}_2 = \{A \subset X \mid \exists A_0, A_1 \in \mathfrak{F}_1 \colon A = A_0 \cup A_1 \text{ or } A = A_0 \cap A_1\},$$

respectively.

Notice that \mathcal{G}_1 equals $\overline{\mathcal{S}}_1$ in case X is compact or connected. It is easy to see that $\lambda_{\mathcal{E}_1}(X) \simeq \overline{X}$ and that $\lambda_{\mathcal{E}_1}(X) \simeq \overline{\overline{X}}$.

What about $\lambda_{\mathcal{S}_{\alpha}}(X)$?

Example (i). If X = I, then $\lambda_{\mathcal{G}_1}(X) = \lambda_{\mathcal{S}_1}(X) \simeq I$. On the other hand $\lambda_{\mathcal{S}_2}(X)$ is homeomorphic to the Hilbert cube Q (see Section 4).

Example (ii). If $X=\mathbf{Q}$, then $\lambda_{\mathcal{G}_1}(X) \cong I$ and $\lambda_{\mathcal{S}_1}(X)$ is a non-metrizable separable compact ordered space, which has much in common with the well-known Alexandroff double of the closed unit interval. In this case, $\lambda_{\mathcal{S}_2}(X)$ is a compact totally disconnected perfect space of weight $2^{\mathbf{N}_0}$. (The total disconnectedness of $\lambda_{\mathcal{S}_2}(X)$ follows from the following observation: for every T_0 , $T_1 \in \mathcal{S}_2$ with $T_0 \cap T_1 = \emptyset$ there exists a $T_0' \in \mathcal{S}_2$ such that $T_0 \subset T_0'$ and $T_0' \cap T_1 = \emptyset$ and $X \setminus T_0' \in \mathcal{S}_2$. For every finite linked system $\{X \setminus T_1 | T_1 \in \mathcal{S}_2, i \in \{1, 2, \ldots, n\}\}$ it is easy to construct two distinct mls's \mathfrak{L}_0 and \mathfrak{L}_1 belonging to $\bigcap_{i=1}^n \{\mathfrak{M} \in \lambda_{\mathcal{S}_2}(X) | T_i \notin \mathfrak{M}\}$ showing that $\lambda_{\mathcal{S}_2}(X)$ is perfect. Finally $\lambda_{\mathcal{S}_1}$ can be embedded in $\lambda_{\mathcal{S}_2}(X)$; hence weight $(\lambda_{\mathcal{S}_2}(X)) = 2^{\mathbf{N}_2}$.

Example (iii). If $X = \mathbf{R} \setminus \mathbf{Q}$, then $\lambda_{g_1}(X) \cong I$, while $\lambda_{g_1}(X) \cong \lambda_{g_2}(X) \cong C$, the Cantor discontinuum, for it is easy to see that $\lambda_{g_1}(X)$ and $\lambda_{g_2}(X)$ both are totally disconnected compact metric perfect spaces.

Finally define

$$\mathcal{C}_{\!\scriptscriptstyle 12} = \{A \subset X \,|\, \exists A_{\scriptscriptstyle 0}, \ A_{\scriptscriptstyle 1} \in \mathcal{C}_{\!\scriptscriptstyle 1} \colon A = A_{\scriptscriptstyle 0} \cup A_{\scriptscriptstyle 1} \text{ or } A = A_{\scriptscriptstyle 0} \cap A_{\scriptscriptstyle 1}\}.$$

Notice that \mathcal{C}_{2} equals T_{2} in case X is compact or connected.

Example (i). If X = I, then $\lambda_{g_2}(X) \cong Q$ (Section 4).

Example (ii). If $X = \mathbf{Q}$, then $\lambda_{\mathcal{C}_{\mathbf{A}}}(X) \simeq Q$.

Example (iii). If $X = \mathbf{R} \setminus \mathbf{Q}$, then $\lambda_{\mathcal{C}_{\bullet}}(X) \simeq Q$.

The fact that $\lambda_{\mathcal{Q}_2}(\mathbf{Q}) \simeq \lambda_{\mathcal{Q}_2}(\mathbf{R} \setminus \mathbf{Q}) \simeq Q$ can be derived from the result $\lambda_{\mathcal{Q}_2}(I) \simeq Q$. To see this, define

 $\mathcal{C}_2' = \{ A \subset I \mid A \in \mathcal{C}_2 \text{ and } A \text{ has rational endpoints} \}$

and

$$\mathcal{G}_2'' = \{A \subset I \, | \, A \in \mathcal{G}_2 \text{ and } A \text{ has irrational endpoints} \}.$$

By Theorem 5 and Theorem 7 of [11] (cf. Theorem 3.1 below), it follows that

$$\lambda_{\mathcal{G}_2}(I) \cong \lambda_{\mathcal{G}_2'}(I) \cong \lambda_{\mathcal{G}_2}(\mathbf{Q})$$

and

$$\lambda_{\mathcal{G}_{\mathfrak{g}}}(I) \simeq \lambda_{\mathcal{G}_{\mathfrak{g}}^{r}}(I) \simeq \lambda_{\mathcal{G}_{\mathfrak{g}}}(\mathbf{R} \setminus \mathbf{Q}).$$

3. Superextensions which are Hilbert cubes

In this section we will show that for each separable metric, not totally disconnected topological space X, there exists a normal closed T_1 -subbase S-such that $\lambda_S(X)$ is homeomorphic to the Hilbert cube Q. First we will give some preliminary definitions and recapitulate some well-known results from the literature, which are needed in the remainder of this section. A closed subset B of Q is called a Z-set ([1]) if for any non-empty homotopically trivial open subset O of Q, the set $O \setminus B$ is again non-empty and homotopically trivial. Examples of Z-sets are compact subsets of $(0,1)^{\infty}$ and closed subsets of Q which project onto a point in infinitely many coordinates. In fact, Z-sets can be characterized by the property that for every Z-set B there exists an autohomeomorphism Φ of Q which maps B onto a set which projects onto a point in infinitely many coordinates ([1]). Obviously the property of being a Z-set is a topological invariant. Moreover, it is easy to show that a closed countable union of Z-sets is again a Z-set (cf. Kroonenberg [9]). The importance of Z-sets is illustrated by the following theorem due to Anderson [1].

Theorem. Any homeomorphism between two Z-sets in Q can be extended to an autohomeomorphism of Q.

We will apply this theorem to show that every separable metric, not totally disconnected topological space X can be embedded in Q in such a way that Q has the structure of a superextension of X, i.e., every point of Q represents an mls in a suitable closed subbase for X. The canonical binary subbase for Q is

$$\mathfrak{T} = \{ A \subset Q | A = \Pi_n^{-1}[0, x] \text{ or } A = \Pi_n^{-1}[x, 1], \text{ with } n \in \mathbb{N} \text{ and } x \in I \}$$

and consequently, if we embed X in Q in such a way that for every two elements $T_0, T_1 \in \mathcal{I}$ with $T_0 \cap T_1 \neq \emptyset$ we have that $T_0 \cap T_1 \cap X \neq \emptyset$, then Q is a superextension of X; this is a consequence of the following theorem ([11], Theorem 5).

Theorem 3.1. Let X be a subspace of the topological T_1 -space Y. Then Y is homeomorphic to a superextension of X if and only if Y possesses a binary closed subbase $\mathbb S$ such that for all T_0 , $T_1 \in \mathbb S$ with $T_0 \cap T_1 \neq \emptyset$ we have that $T_0 \cap T_1 \cap X \neq \emptyset$.

In particular, in Theorem 3.1 $Y \simeq \lambda_{\mathcal{S} \cap X}(X)$, where $\mathcal{S} \cap X = \{T \cap X \mid T \in \mathcal{S}\}$.

Theorem 3.2. For every separable metric, not totally disconnected topological space X there exists a normal closed T_1 -subbase S such that $\lambda_S(X)$ is homeomorphic to the Hilbert cube Q.

PROOF. Assume that X is embedded in $Q = I^{\mathbb{N}}$ and let C be a non-trivial component of X. Choose a convergent sequence B in C. Furthermore, define a sequence $\{y_n\}_{n=0}^{\infty}$ in Q by

$$(y_n)_i = \begin{cases} 1 & \text{if } i \neq n \\ 0 & \text{if } i = n, \end{cases}$$

for i = 1, 2, ...,

It is clear that

$$\lim y_n = y_0.$$

Moreover define $z \in Q$ by $z_i = 0$ (i = 1, 2, ...,). Then

$$E = \{y_n | n \in \mathbb{N}\} \cup \{z\} \cup \{y_0\}$$

is a convergent sequence and therefore is homeomorphic to B. Since B and E both are closed countable unions of Z-sets in Q, they themselves are Z-sets. Choose a homeomorphism $\Phi: B \to E$ and extend this homeomorphism to an autohomeomorphism of Q. This procedure shows that we may assume that

X is embedded in Q in such a way that $E \subset C$. Let T_0 , $T_1 \in \mathbb{S}$ such that $T_0 \cap T_1 \neq \emptyset$, where \mathbb{S} is the canonical binary closed subbase for Q. We need only consider the following 4 cases:

Case 1: $T_0 = H_{n_0}^{-1}$ [0, x]; $T_1 = H_{n_0}^{-1}$ [y, 1] $(x \ge y)$. Since $z \in T_0$ and $y_0 \in T_1$ and C is connected, it follows that $\emptyset \ne T_0 \cap T_1 \cap C \subset T_0 \cap T_1 \cap X$.

Case 2: $T_0 = \Pi_{n_0}^{-1}[0, x]; T_1 = \Pi_{n_1}^{-1}[y, 1] \ (n_0 \neq n_1).$ Then $y_{n_0} \in T_0 \cap T_1 \cap X$.

Case 3:
$$T_0 = \Pi_{n_0}^{-1}[0, x]$$
; $T_1 = \Pi_{n_1}^{-1}[0, y]$. Then $z \in T_0 \cap T_1 \cap X$.

Case 4:
$$T_0 = \Pi_{n_0}^{-1}[x, 1]$$
; $T_1 = \Pi_{n_1}^{-n}[y, 1]$. Then $y_0 \in T_0 \cap T_1 \cap X$.

This completes the proof of the theorem.

4. A superextension of the closed unit interval

In the present section we will prove that $\lambda_{\mathcal{G}_2}(I)$ is homeomorphic to the Hilbert cube, where $\mathcal{G}_2 = \{[x,y] \mid x,y \in I\} \cup \{[0,x] \cup [y,1] \mid x,y \in I\}$. For this purpose we introduce

Hence each $f \in \mathcal{F}$ is continuous and monotone non-decreasing. On \mathcal{F} we define a topology by considering \mathcal{F} as a subspace of C[I,I] with the point-open topology. We obtain the same topology on \mathcal{F} by ordering \mathcal{F} partially as follows:

$$f \leq g$$
 iff for each $x \in I : f(x) \leq g(x)$, $(f, g \in \mathcal{F})$,

and then taking as a closed subbase for \mathcal{F} the collection of all subsets of the form $\{f \in \mathcal{F} | f \leq f_0\}$ or $\{f \in \mathcal{F} | f \geq f_0\}$, where f_{θ} runs through \mathcal{F} . We first prove that $\mathcal{F} \simeq Q$ and next that $\lambda_{\mathcal{E}_{\bullet}}(I) \simeq \mathcal{F}$; we conclude that $\lambda_{\mathcal{E}_{\bullet}}(I) \simeq Q$.

Notice that by Keller's theorem each compact metrizable convex infinite-dimensional subspace X of I^{I} is homeomorphic to the Hilbert cube Q, since, by the fact that X is metrizable, X can be embedded as a convex subspace of I^{∞} ; finally I^{∞} can be affinely embedded in l_{2} . This observation will be used in the proof of Theorem 4.1 and Theorem 5.1.

Theorem 4.1. $\mathcal{F} \simeq Q$.

PROOF. We show that \mathcal{F} is a compact, infinite-dimensional, convex subspace of I^{I} , with countable base; hence, by Keller's theorem, \mathcal{F} is homeomorphic to the Hilbert cube Q.

 \mathcal{F} is clearly a convex subspace of $I^{\mathbf{I}}$; it is also clear that (\mathcal{F}, \leq) , as defined above, is a complete lattice, whence \mathcal{F} is compact. \mathcal{F} has a countable subbase, since the collection of all subsets of the forms $\{f \in \mathcal{F} \mid f(x) \leq y\}$ and $\{f \in \mathcal{F} \mid f(x) \leq y\}$ where $x, y \in \mathbf{Q} \cap I$, forms a countable closed subbase for \mathcal{F} .

Finally, \mathscr{F} is infinite-dimensional, because Q can be embedded in \mathscr{F} . For, let $\mathbf{a}=(a_1,a_2,a_3,\ldots)\in I^{\mathbb{N}}$. Let $G(\mathbf{a})$ be the smallest function f in \mathscr{F} (in the ordering \leq of \mathscr{F}) such that for each $i=1,2,3,\ldots$ the following holds:

$$f\left(\frac{3}{2^{i+1}}\right) \ge \frac{1}{2^{i+1}} + \frac{1}{2^{i+1}} a_i$$
.

It can be seen easily that G defines a topological embedding of Q in \mathcal{F} .

Theorem 4.2. $\lambda_{\mathcal{C}_a}(I) \simeq \mathcal{F}$.

PROOF. Define a function $K: \lambda_{\mathcal{G}_{\bullet}}(I) \to I$ by :

$$K(\mathfrak{M}) = \inf \{ x \in I | [0, x] \in \mathfrak{M} \}, (\mathfrak{M} \in \lambda_{\mathfrak{G}}(I)),$$

and a function $H: \lambda_{\mathcal{G}_{\mathfrak{a}}}(I) \to \mathcal{F}$ by:

$$H(\mathfrak{M})$$
 $(i)=\inf \{x\in I\,|\, [0,x]\cup [y,1]\in \mathfrak{M},\ x+y=K(\mathfrak{M})+i\},$ $(i\in I,\ \mathfrak{M}\in \lambda_{\mathcal{G}_{s}}(I))$.

We prove that H is an homeomorphism between $\lambda_{\mathcal{G}_2}(I)$ and \mathcal{F} .

First we observe that:

$$K(\mathfrak{II}) < x \text{ iff } [0, x] \in \mathfrak{M};$$

$$K(\mathfrak{M}) \geq x \text{ iff } [x, 1] \in \mathfrak{M};$$

$$K(\mathfrak{M}) = x \text{ iff } [0, x] \in \mathfrak{M} \text{ and } [x, 1] \in \mathfrak{M};$$

$$H(\mathfrak{M})(i) < x \text{ iff } [0, x] \cup [K(\mathfrak{M}) + i - x, 1] \in \mathfrak{M};$$

$$H(\mathfrak{II})(i) \geq x \text{ iff } [x, K(\mathfrak{II}) + i - x] \in \mathfrak{II};$$

$$H(\mathfrak{M})$$
 $(i) = x$ iff $[0, x] \cup [K(\mathfrak{M}) + i - x, 1] \in \mathfrak{M}$ and

$$[x, K(\mathfrak{II}) + i - x] \in \mathfrak{II};$$

these facts follows easily from the fact that \mathfrak{M} is a maximal linked system in \mathfrak{C}_{2} . Also we have $K(\mathfrak{M}) = H(\mathfrak{M})(1)$.

Next we show that $H(\mathfrak{M}) \in \mathcal{F}$, for each maximal linked system \mathfrak{M} . In fact (i) $H(\mathfrak{M})(0) = 0$, for $[0, 0] \cup [K(\mathfrak{M}), 1] \in \mathfrak{M}$ and $[0, K(\mathfrak{M})] \in \mathfrak{M}$; (ii) if $i \leq j$, $H(\mathfrak{M})(i) = x$, $H(\mathfrak{M})(j) = y$, then $x \leq y$, for $[x, K(\mathfrak{M}) + j - x] \supset \subset [x, K(\mathfrak{M}) + i - x] \in \mathfrak{M}$, hence $[x, K(\mathfrak{M}) + j - x] \in \mathfrak{M}$ and $y = H(\mathfrak{M})(j) \geq x$;

also $y-x \leq j-i$, for $[y-j+i, K(\mathfrak{M})+i-(y-j+i)\supset [y, K(\mathfrak{M})+i-y]\in \mathfrak{M}$, hence $x=H(\mathfrak{M})(i)\geq y-j+i$.

H is a one-to-one function, for suppose \mathfrak{M}_1 , $\mathfrak{M}_2 \in \lambda_{\mathfrak{F}_2}(I)$, $\mathfrak{M}_1 \neq \mathfrak{M}_2$ and $H(\mathfrak{M}_1) = H(\mathfrak{M}_2)$. Let $a = K(\mathfrak{M}_1) = H(\mathfrak{M}_1)(1) = H(\mathfrak{M}_2)(1) = K(\mathfrak{M}_2)$, i.e., $[0,a] \in \mathfrak{M}_1 \cap \mathfrak{M}_2$ and $[a,1] \in \mathfrak{M}_1 \cap \mathfrak{M}_2$. Since $\mathfrak{M}_1 \neq \mathfrak{M}_2$ we may suppose that there are x' and y' such that $[0,x]' \cup [y',1] \in \mathfrak{M}_1 \setminus \mathfrak{M}_2$. Since $[0,a] \in \mathfrak{M}_2$ and $[a,1] \in \mathfrak{M}_2$, we have x' < a < y'. Let $i = x' + y' - a \in [x',y'] \subset I$. Then since $[0,x'] \cup [a+i-x',1] = [0,x'] \cup [y',1] \in \mathfrak{M}_1 \setminus \mathfrak{M}_2$, we find that $H(\mathfrak{M}_1)(i) \leq x' < H(\mathfrak{M}_2)(i)$ and this is a contradiction. H is also a surjection. Take $f \in \mathcal{F}$ and let:

$$\mathfrak{L} = \{ [f(i), f(1) + i - f(i)] | i \in I \} \cup \{ [0, f(i)] \cup [f(1) + i - f(i), 1] | i \in I \}.$$

Then by definition of \mathcal{F} , it is easy to see that \mathfrak{L} is a linked system in \mathcal{G}_2 . \mathfrak{L} is contained in some maximal linked system \mathfrak{M} of \mathcal{G}_2 , and for this \mathfrak{M} it holds that $K(\mathfrak{M}) = f(1)$ while for each $i \in I: H(\mathfrak{M})(i) = f(i)$; i.e., $H(\mathfrak{M}) = f$. Finally we prove that H is continuous. Let $i, x \in I$. Then

$$\begin{split} \{\mathfrak{M} \in \lambda_{\mathfrak{F}_{\!z}}(I) \, | \, H(\mathfrak{M}) \, (i) \leq x\} &= \bigcap_{\mathcal{Y} \in I} \{\mathfrak{M} \in \lambda_{\mathfrak{F}_{\!z}}(I) \, | \, [0,x] \, \cup \, [y,1] \in \mathfrak{M} \ \, \text{or} \\ & [0,x+y-i] \in \mathfrak{M} \}, \end{split}$$

and hence this set is closed. For, let $\mathfrak{M} \in \lambda_{\mathbb{G}_{2}}(I)$ such that $H(\mathfrak{M})(i) \leq x$; this last inequality means that $[0,x] \cup [K(\mathfrak{M})+i-x,1] \in \mathfrak{M}$. If $y \geq K(\mathfrak{M})+i-x$, then $[0,y+x-i] \supset [0,K(\mathfrak{M})] \in \mathfrak{M}$; if $y \leq K(\mathfrak{M})+i-x$ then $[0,x] \cup [y,1] \supset [0,x] \cup [K(\mathfrak{M})+i-x,1] \in \mathfrak{M}$.

Conversely, suppose that

$$[0, x]$$
 \cup $[y, 1] \in \mathfrak{M}$ or $[0, x + y - i] \in \mathfrak{M}$.

for each $y \in I$, then also $[0, x+y-i] \notin \Re$ for each $y < K(\Re) + i - x$; hence $[0, x] \cup [y, 1] \in \Re$; we conclude that $[0, x] \cup [K(\Re) + i - x, 1] \in \Re$, i.e., $H(\Re)(i) \le x$.

In the same way one proves:

$$\{\mathfrak{M} \in \lambda_{\mathcal{G}_{\mathbf{z}}}(I) \, | \, H(\mathfrak{M})(i) \geq x\} = \bigcap_{y \in I} \{\mathfrak{M} \in \lambda_{\mathcal{G}_{\mathbf{z}}}(I) \, | \, [x,y] \in \mathfrak{M} \text{ or } [x+y-i,1] \in \mathfrak{M}\},$$

and hence is closed.

As a consequence of these two theorems we have, as announced,

Theorem 4.3. $\lambda_{\mathcal{C}_n}(I) \simeq Q$.

5. A superextension of the n-sphere

In this final section we show that the superextension of the n-sphere S^n with respect to the collection of all closed massive n-balls in S^n is homeomorphic with the Hilbert-cube. As usual, the n-sphere S^n is the space

$$\left\{ (x_0, x_1, \ldots, x_n) \in \mathbf{R}^{n+1} \, \middle| \, \sum_{i=0}^n \, x_i^2 = 1 \right\}$$

and the closed massive n-ball with centre $\mathbf{x} \in S^n$ and radius $\varepsilon \geq 0$ is the set

$$B(\mathbf{x}, \, \varepsilon) = \{ \mathbf{y} \in S^n \, | \, d(\mathbf{x}, \, \mathbf{y}) \le \varepsilon \}.$$

Writing $\mathfrak B$ for the collection of all closed massive n-balls in S^n , we will prove that, if $n \geq 1$, $\lambda_{\mathfrak B}(S^n) \cong Q$. Obviously $\lambda_{\mathfrak B}(S^n)$ is the superextension of the circle with respect to the set of closed intervals. For the definition of $\mathfrak B$ it does not matter whether the euclidian metric of $\mathbf R^{n+1}$ or the sphere metric of S^n (in this case the distance between $\mathbf x$ and $\mathbf y$ in S^n is $\arccos \sum_{i=0}^n x_i y_i$, i.e., the minimum length of a curve between $\mathbf x$ and $\mathbf y$ on S^n) is used. However, in the proof of the theorem we need the latter metric and we call this metric d. Furthermore we define, for each point $\mathbf x = (x_0, x_1, \ldots, x_n) \in S^n$, the antipode $\overline{\mathbf x}$ of $\mathbf x$ by $\overline{\mathbf x} = (-x_0, -x_1, \ldots, -x_n)$.

Theorem 5.1. If $n \geq 1$, $\lambda_{\mathfrak{B}}(S^n)$ is homeomorphic to the Hilbert-cube Q.

PROOF. In fact we show that $\lambda_{\mathfrak{B}}(S^n)$ is compact and infinite-dimensional and has a countable base and that $\lambda_{\mathfrak{B}}(S^n)$ can be embedded as a convex subspace in \mathbb{R}^{S^n} ; hence, by Keller's theorem, $\lambda_{\mathfrak{B}}(S^n)$ is homeomorphic to Q. Clearly, $\lambda_{\mathfrak{B}}(S^n)$ is compact.

To prove that $\lambda_{\mathfrak{B}}(S^n)$ has a countable base, let X be a countable dense subset of S^n . Define $\mathfrak{B}_0 = \{B(\mathbf{x}, \varepsilon) \mid \mathbf{x} \in X, \ \varepsilon \in \mathbf{Q}, \ \varepsilon \geq 0\}$. It is not difficult to see that $P: \lambda_{\mathfrak{B}}(S^n) \to \lambda_{\mathfrak{B}_0}(S^n)$, such that $P(\mathfrak{M}) = \mathfrak{M} \cap \mathfrak{B}_0$ ($\mathfrak{M} \in \lambda_{\mathfrak{B}}(S^n)$) is a homeomorphism; hence, since $\lambda_{\mathfrak{B}_0}(S^n)$ has a countable base, $\lambda_{\mathfrak{B}}(S^n)$ also has a countable base. Next, $\lambda_{\mathfrak{B}}(S^n)$ is infinite-dimensional, since $\lambda_{\mathfrak{G}_2}(I) (\cong Q)$ can be embedded in $\lambda_{\mathfrak{B}}(S^n)$. For, let

$$Y = \{ \mathbf{x} \in S^n \mid \mathbf{x} = (x_0, x_1, \dots, x_n), \ x_1 \ge 0, \ x_2 = \dots = x_n = 0 \};$$

this subspace is homeomorphic to I. Let \mathcal{C}_2 be as defined in Section 3, i.e., \mathcal{C}_2 is the collection of all closed subsets Y' if Y such that Y' is connected or $Y \setminus Y'$ is connected. Define $T: \lambda_{\mathcal{C}_2}(Y) \to \lambda_{\mathfrak{B}}(S^n)$ by $T(\mathfrak{M}) = \{B \in \mathfrak{B} \mid B \cap Y \in \mathfrak{M}\}$ ($\mathfrak{M} \in \lambda_{\mathcal{C}_2}(I)$). Again it is not difficult to prove that T is a topological embedding. Hence $\lambda_{\mathcal{C}_2}(I) \cong Q$ can be embedded in $\lambda_{\mathfrak{B}}(S^n)$, i.e., $\lambda_{\mathfrak{B}}(S^n)$ is infinite-dimensional.

Finally we embed $\lambda_{\mathfrak{B}}(S^n)$ as a convex subspace in \mathbf{R}^{S^n} , by means of the function $U:\lambda_{\mathfrak{B}}(S^n)\to\mathbf{R}^{S^n}$, determined by:

$$U(\mathfrak{M})(\mathbf{x}) = \inf \{ \varepsilon \geq 0 | B(\mathbf{x}, \varepsilon) \in \mathfrak{M} \}, \ (\mathfrak{M} \in \lambda_{\mathfrak{G}_2}(S^n), \mathbf{x} \in S^n).$$

The mapping U is continuous and one-to-one since $U(\mathfrak{M})(\mathbf{x}) \leq \varepsilon$ iff $B(\mathbf{x}, \varepsilon) \in \mathfrak{M}$, and $U(\mathfrak{M})(\mathbf{x}) \geq \varepsilon$ iff $B(\overline{\mathbf{x}}, \pi - \varepsilon) \in \mathfrak{M}$. And indeed, $U[\lambda_{\mathfrak{B}}(S^n)]$ is a convex subspace of \mathbf{R}^{S^n} . In order to show this, we need only prove: if \mathfrak{M}_1 , $\mathfrak{M}_2 \in \lambda_{\mathfrak{B}}(S^n)$, then there exists an $\mathfrak{M} \in \lambda_{\mathfrak{B}}(S^n)$ such that $U(\mathfrak{M}) = \frac{1}{2} U(\mathfrak{M}_1) + \frac{1}{2} U(\mathfrak{M}_2)$ ($U[\lambda_{\mathfrak{B}}(S^n)]$ being compact and hence closed in \mathbf{R}^{S^n}). So take \mathfrak{M}_1 , $\mathfrak{M}_2 \in \lambda_{\mathfrak{B}}(S^n)$ and let $\mathfrak{M}_3 = \{B(\mathbf{x}, \varepsilon) \mid \mathbf{x} \in S^n, \ \varepsilon \geq \frac{1}{2} U(\mathfrak{M}_1)(\mathbf{x}) + \frac{1}{2} U(\mathfrak{M}_2)(\mathbf{x})\}$. Then \mathfrak{M}_3 is a linked system, because if $B(\mathbf{x}, \varepsilon)$ and $B(\mathbf{y}, \delta) \in \mathfrak{M}_3$ ($\mathbf{x}, \mathbf{y} \in S^n, \varepsilon \geq \frac{1}{2} U(\mathfrak{M}_1)(\mathbf{x}) + \frac{1}{2} (U(\mathfrak{M}_2)(\mathbf{y}))$, then:

$$d(\mathbf{x}, \mathbf{y}) \leq U(\mathfrak{M}_1)(\mathbf{x}) + U(\mathfrak{M}_1)(\mathbf{y}),$$

and

$$d(\mathbf{x}, \mathbf{y}) \leq U(\mathfrak{M}_2)(\mathbf{x}) + U(\mathfrak{M}_2)(\mathbf{y});$$

hence

$$d(\mathbf{x}, \mathbf{y}) \leq \delta + \varepsilon$$
,

i.e.,

$$B(\mathbf{x}, \, \varepsilon) \cap B(\mathbf{y}, \, \delta) \neq \emptyset.$$

Let $\overline{\mathfrak{M}}_3$ be a maximal linked system containing \mathfrak{M}_3 (in fact \mathfrak{M}_3 is itself a maximal linked system). Then, clearly,

$$U(\overline{\mathfrak{M}}_3)\left(\mathbf{x}\right) \leq \frac{1}{2} \, U(\mathfrak{M}_1)\left(\mathbf{x}\right) + \frac{1}{2} \, U(\mathfrak{M}_2)\left(\mathbf{x}\right)$$
 ,

and

$$U(\overline{\mathfrak{IR}}_3)\left(\mathbf{x}\right) \leq \frac{1}{2} \, U(\mathfrak{IR}_1)\left(\mathbf{x}\right) + \frac{1}{2} \, U(\mathfrak{IR}_2)\left(\mathbf{x}\right) \text{ for each } \mathbf{x} \in S^n.$$

But, since for each maximal linked system $\mathfrak{M}: U(\mathfrak{M})(\mathbf{x}) + U(\mathfrak{M})(\bar{\mathbf{x}}) = \pi$, we have

$$U(\mathfrak{M}_3)\left(\mathbf{x}\right) = \frac{1}{2} \, U(\mathfrak{M}_1)\left(\mathbf{x}\right) + \frac{1}{2} \, U(\mathfrak{M}_2)\left(\mathbf{x}\right) \, \text{ for each } \mathbf{x} \in S^n.$$

Thus

$$U(\overline{\mathfrak{M}}_3) = \frac{1}{2}\,U(\mathfrak{M}_1) + \frac{1}{2}\,U(\mathfrak{M}_2)\,.$$

REFERENCES

- [1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383. MR 35 # 4893
- [2] M. Bell, Not all compact Hausdorff spaces are supercompact, General Topology and Appl. 8 (1978), 151-155.
- [3] Cz. Bessaga, and A. Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne 58, PWN, Warszawa, 1975. Zbl. 304, 57001
- [4] A. E. BROUWER and A. SCHRIJVER, A characterzitaion of supercompactness with an application to treelike spaces, Report Mathematical Centre ZW 34/74, Amsterdam, 1974. Zbl. 292. 54020
- [5] J. Bruijning, Characterizations of Iⁿ and I[∞] using the graph theoretical representation of J. De Groot, Topological Structures (Proc. Sympos., Amsterdam, 1973), Mathematical Centre Tracts 52, Amsterdam, 1974, 38−47.
- [6] J. DE GROOT, Superextensions and supercompactness, Proc. I. Intern. Symp. on Extension Theory of Topological Structures and its Applications, VEB Deutscher Verlag Wiss., Berlin, 1967, 89-90.
- [7] J. DE GROOT, Graph representations of topological spaces, Topological Structures (Proc. Sympos., Amsterdam, 1973), Mathematical Centre Tracts 52, Amsterdam, 1974, 29-37. MR 51 # 9012
- [8] O. H. Keller, Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum, Math. Ann. 105 (1931), 748-758. Zbl 3, 224
- [9] N. S. Kroonenberg, Pseudo-interiors of hyperspaces, Dissertation, Louisana State University (1974).
- [10] J. VAN MILL, A topological characterization of products of compact tree-like spaces, Rapport 36, Wiskundig Seminarium Vrije Universiteit, Amsterdam, 1975.
- [11] J. van Mill, On supercompactness and superextensions, Rapport 37, Wiskundig Seminarium Vrije Universiteit, Amsterdam, 1975.
- [12] J. VAN MILL, A topological property of supdrcompact Hausdorff spaces, Report Mathematical Centre ZW 66/76, Amsterdam, 1976.
- [13] A. Schrijver, Graphs and supercompact spaces, Report Mathematical Centre ZW 37/74, Amsterdam, 1974.
- [14] M. Štrok and A. Szymański, Compact metric spaces have binary bases, Fund. Math. 89 (1975), 81-91. MR 52 # 4232
- [15] A. VERBEEK, Superextensions of topological spaces, Mathematical Centre Tracts 41, Amsterdam, 1972. MR 50 # 11157

(Received July 5, 1976)

DEPARTMENT OF MATHEMATICS FREE UNIVERSITY DE BOELELAAN 1081 AMSTERDAM THE NETHERLANDS

MATHEMATISCH CENTRUM 2-E BOERHAAVESTRAAT 49 AMSTERDAM THE NETHERLANDS