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SUPEREXTENSIONS WHICH ARE HILBERT CUBES

by
J. VAN MILL (Amsterdam) and A. SCHRIJVER (Amsterdam)

Abstract

Tt is shown that each separable metric, not totally disconnected, topological
space admits a superextension homeomorphic to the Hilbert cube. Moreover, for simple
spaces, such as the closed unit interval or the n-spheres S,, we give easily described sub-
bases for which the corresponding superextension is homeomorphic to the Hilbert cube.

1. Introduction

In [6], DE GrooOT defined a space X to be supercompact provided that it
possesses a binary closed subbase, i.e., a closed subbase & with the property
that if 8 — 8 and N$’ = @ then there exist S,, S, € 8 such that §,N S, = M.
Clearly, according to the lemma of ALEXANDER, every supercompact
space is compact. The class of supercompact spaces contains the compact
orderable spaces, compact tree-like spaces (BROUWER & SCHRIIVER [4],
vaN Mrin [10]) and compact metric spaces (STROK & SzyMANSKI [14]). More-
over, there are compact Hausdorff spaces which are not supercompact (BELL
[2], Vaxy MirL [12]). There is a connection between supercompact spaces and
graphs (see e.g., DE GrooT [7], BRUIINING [5], SCHRWIVER [13]); moreover,
supercompact spaces can be characterized by means of so-called interval struec-
tures (BROUWER & SCHRIJVER [4]).

Let X be a T';-space and § a closed 7';-subbase for X (a closed subbase
& for X is called T, if for all §¢€ & and x€ X with x4 8, there exists an
Sp€ 8 with ¢ §; and §, N S = §). The superextension AfX) of X relative
the subbase § is the set of all maximal linked systems Il < § (a subsystem of
8 is called linked if every two of its members meet; a maximal linked system
or mls is a linked system not properly contained in another linked system)
topologized by taking {{I€ A4(X)[S €M} € 8} as a closed subbase.
Clearly, this subbase is binary, hence ig(X) is supercompact, while moreover
X can be embedded in A,(X) by the natural embedding ¢ : X — A,(X) defined
by #X): = {S€ §|x€S}. VERBEEK's monograph [15] is a gocd place to
find the basic theorems about superextensions. In this paper we will show
that for many spaces there are superextensions homeomorphic to the Hilbert
cube ¢; moreover for simple spaces such as the unit interval or the n-spheres
S, we will present easily described subbases for which the corresponding super-
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extension is homeomorphic to €. Here, a classical theorem of KeLLer [8],
which says that each infinile-dimensional compact convex subset of the separable
Hilbert space is homeomorphic lo @ (for a more up-to-date proof of this fact,
see also BEssaca & Prrozy¥skr [3]), is of great help.

2. Some examples

In this section we will give some examples. If X is an ordered space,
then the Dedekind completion of X will be denoted by X. Roughly speaking,
X can be obtained from X by filling up every gap. We define X to be that
ordered space wich can be obtained from X by filling up every gap with two
points, except for possible endgaps, which we supply with one point. The
compact space X thus obtained, clearly contains X as a dense subspace.
Define

G={4dcX|dz €X: 4 = (+,z]or A ="[a,—)}
and
g, = {4 c X! 4 is a closed half-interval}

(as usual, a half-interval is a subset A — X such that either for all ¢, b€ X :
ifb<<acAdthenbcd,orforall g b€X:if b >acAd then b 4) and

S, =ldcX|Jdd, 4. e8 A=A, A or A=A, [ 4.},
respectively.

Notice that §, equals &, in case X is compact or connected. It is easy to
see that Ay (X) o« X and that ig (X) == X.

What about ig (X)?

Exawrere (i). If X = I, then A, (X) = 45,(X) =< [. On the other hand
Ag,(X) is homeomorphic to the Hilbert cube @ (see Section 4).

Exawrere (ii). If X = Q, then A5 (X) o< I and 25 (X) is a non-metrizable
separable compact ordered space, which has much in common with the well-
known Alexandroff double of the closed unit interval. In this case, 15 (X) is
a compact totally disconnected perfect space of weight 2%. (The total discon-
nectedness of Ag (X) follows from the following observation: for every T,,
T,€8, with T, N T, =4 there exists a T7€§, such that 7, T and
ToNT, =0 and X\T;€8,. For every finite linked system {X\T,|T€§,,
i€{1,2,...,n}}itis easy to construct two distinct mls’s £, and €, belonging

n

to [} {IME A (X)[T:¢ M} showing that A; (X) is perfect. Finally Ay can
i=1

be embedded in Ag (X); hence weight (g (X)) = 2%.
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ExampLE (iil). If X = R\ Q, then /g (X) == I, while A5 (X) < 15 (X) < C,
the Cantor discontinuum, for it is easy to see that g (X) and 2A;(X) both
are totally disconnected compact metric perfect spaces.

Finally define
€ ={4d c X34y, 4,6G: Ad=4;1) 4 01 A =440 4;}:
Notice that @, equals T, in case X is compact or connected.
Examerr (i). If X = I, then 7y (X) =< @ (Section 4).
Exampie (ii). If X = Q, then Ay (X) == ¢.
Examerr (iii). If X = R\ Q, then 1, (X) =< @.

The fact that 1, (Q) =< A5 (R\ Q) =< @ can be derived from the result
Ag,(I) 22 Q. To see this, define

Gs = {4 c I| A €§, and 4 has rational endpoints}
and
Gs = {4 < 1] A€, and 4 has irrational endpoints}.

By Theorem 5 and Theorem 7 of [11] (ef. Theorem 3.1 below), it follows that
ig (1) a2 dg(I) 22 74 (Q)

42
and

2 I) 22 2gI) 2 g (RN Q).

3. Superextensions which are Hilbert cubes

In this section we will show that for each separable metric, not totally
disconnected topological space X, there exists a normal closed T,-subbase §-such
that A4(X) is homeomorphic to the Hilbert cube @. First we will give some
preliminary definitions and recapitulate some well-known results from the
literature, which are needed in the remainder of this section. A closed subset
B of @ is called a Z-sef ([1]) if for any non-empty homotopically trivial open
subset O of @, the set O\ B is again non-empty and homotopically trivial.
Examples of Z-sets are compact subsets of (0, 1)™ and closed subsets of @
which project onto a point in infinitely many coordinates. In fact, Z-sets can
be characterized by the property that for every Z-set B there exists an auto-
homeomorphism @ of ¢ which maps B onto a set which projects onto a point
in infinitely many coordinates ([1]). Obviously the property of being a Z-set
is a topological invariant. Moreover, it is easy to show that a closed countable
union of Z-sets is again a Z-set (cf. KrooxExBERG [9]). The importance
of Z-sets is illustrated by the following theorem due to AxpErsox [1].

2 Periodica Math. 10 1)
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THEOREM. Any homeomorphism between two Z-sets in @ can be extended
to an autohomeomorphism of Q.

We will apply this theorem to show that every separable metric, not
totally disconnected topological space X can be embedded in @ in such a
way that ¢ has the structure of a superextension of X, i.e., every point of @
represents an mls in a suitable closed subbase for X. The canonical binary
subbasge for ¢ is

§={Ac@d4=1I"10,2] or A =II;"[x, 1], with n€N and x¢ I}

and consequently, if we embed X in @ in such a way that for every two ele-
ments Ty, T, €§ with T, N T, >~ @ we have that T N7, N X >« @, then Q
is a superextension of X; this is a consequence of the following theorem ([11],
Theorem 5).

TaEOREM 3.1. Let X be a subspace of the topological Ty -space Y. Then ¥
s homeomorphic to a superextension of X if and only if Y possesses a binary
closed subbase § such that for all T, T, €§ with Ty, N T, ¢ @ we have that
T, T, 0 X8

In particular, in Theorem 3.1 ¥ o« Ay (X)), where SN X ={TNX|T € §}.

TrEOREM 3.2. For every separable metric, not totally disconnected topological
space X there exists a normal closed T -subbase & such that Ag(X) is homeomorphic
to the Hilbert cube ().

Proor. Assume that X is embedded in @(= I) and let ' be a non-trivial
component of X. Choose a convergent sequence B in (. Furthermore, define
a sequence {y, i in ¢ by

s 1 if 1=n
Yi=10 if i=n,
fori=1,2,...,.
It is clear that
lim ¥, = ¥,.
Moreover definez€ @ by z =0 (i =1, 2,...,). Then

E = {yalneN} U {z} U {yo}

is a convergent sequence and therefore is homeomorphic to B. Since B and K
both are closed countable unions of Z-sets in (J. they themselves are Z-sets.
Choose a homeomorphism @ : B — F and extend this homeomorphism to an
autohomeomorphism of . This procedure shows that we may assume that
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X is embedded in @ in such a way that B — C. Let T, T, € § such that
T,NT, = @, where § is the canonical binary closed subbase for ¢. We need
only consider the following 4 cases:

Case 1: T, = Hn_ol [0, 2 Fy= H,Tnl [y, 1] (x> y). Since z€ T, and
1y, € T, and C is connected, it follows that § =T, NT, NC T, NT, N X.

Case 2: Tozﬂal [0, 2]; leﬂnil [4,1] (ny==mn,). Then y, €Ty N
ne, nx.

Case 3: Ty = II,* [0,2]; Ty, = 11, [0,y]. Then 2 T, N T, N X.
Case 4: Ty = IT;* [x,1]; Ty = II," [y, 1]. Then 4, ¢ T, N T, N X.

This completes the proof of the theorem.

4. A superextension of the closed unit interval

In the present section we will prove that i, (/) is homeomorphic to the
Hilbert cube, where G, = {[x,y] |®,y €I} U {[0,«] U [y, 1]| =,y € I}. For
this purpose we introduce

F=1{/:I->1[f(0)=0 and if #,y€] and <y then 0 < f(y) — f(x) <
<y — x}.

Hence each f€ & is continuous and monotone non-decreasing. On & we
define a topology by considering & as a subspace of C[I, I'l with the point-
open topology. We obtain the same topology on & by ordering & partially
as follows:

< g iff for each 2 € I : f(z) < g(), (f, g€ &),

and then taking as a closed subbase for & the collection of all subsets of the
form {fe &F|f < f,} or {f€ &F|f >f,}, where fq runs through & We first
prove that & = @ and next that ), (I) =« &; we conclude that Zg(J) =< @.

Notice that by KELLER's theorem each compact metrizable convex
infinite-dimensional subspace X of I' is homeomorphic to the Hilbert cube @,
since, by the fact that X is metrizable, X can be embedded as a convex sub-
space of I=; finally I~ can be affinely embedded in /,. This observation will be
used. in the proof of Theorem 4.1 and Theorem 5.1.

TeEOREM 4.1. &F == .

Proor. We show that & is a compact, infinite-dimensional, convex
subspace of 1 ! with countable base; hence, by KELLER's theorem, & is homeo-
morphic to the Hilbert cube €.

9%
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& is clearly a convex subspace of I'; it is also clear that (&, <), as
defined above, is a complete lattice, whence & is compact. & has a countable
subbase, since the collection of all subsets of the forms {f ¢ &|f(x) <y} and
{f€ &|f(x) <y} where z,y€ Q N I, forms a countable closed subbase for &.

Finally, & is infinite-dimensional, because @ can be embedded in &.
For, let a = (a,, @y, a;, . . .) € I". Let G(a) be the smallest function f in &
(in the ordering < of &) such that for each i =1, 2,3, ... the following
holds:

2l+1 2I+1

f (2[ +1} 2 fornien L
It can be seen easily that ( defines a topological embedding of @ in &

TapOREM 4.2. Ao (I) o2 &.

Proor. Define a function K: 2, (I) —~ I by :
K () = inf {z € ][0, 2] € M}, (M€ A (1)),
and a function H: A, (I) — & by:
H@M) (i) = inf {x € I|[0, 2] U [y, L]€M, « + y = K(SN) + i},
(€1, IME g (1)) -
We prove that Il is an homeomorphism between 14 (1) and &.
First we observe that:
KON < xiff [0, 2] € I;
K@) > = iff [=, 1] € I;
(O) = « iff [0, 21€ O and [, 1] € IN;
)
)

K
H(EW) (3) << a iff [0, 2] U[K(IN) 4 & — 2, 1]€ N ;
H(9) (3) > = iff [z, K(ON) + i — «]€ N ;

s

(AN (1) = x iff [0, 2] U [KEN) +4 — =, 1]1€ I and
[z, K(ON) + 1 — x] €O,

these facts follows easily from the fact that I is a maximal linked system in
G, Also we have K(9N) = H(SMN)(1).

Next we show that H(IN) € &, for each maximal linked system . In
fact (i) H(IM)(0) = 0, for [0,0] U [K(@®N), 11€ M and [0, K(IN)] € IM; (i1) if
i<, HEUG) = 2, HEU(G) = v, oy z <y, for [ K@) +j—a]D
C [z, K(ON) + ¢ — x] € N, hence [z, K(ON) + § — 2] € M and y = H(ON) () > x;
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alsoy —x <j— i, for [y —j+4, KE)+ ¢ —(y -7+ 49D [y, KON) +
+ 7~ y1€ N, hence » = H(IM)(I) >y — 7 + i

H is a one-to-one function, for suppose M, I, € Ag (), M, = M,
and H(IM,) = H(IN,). Let a = K(@N,) = H{EN,)(1) = H(SI,)(1 ) = K(8l,), ie.,
[0,a]€d, NI, and [a, 17€ I, N M,. Since I, == I, we may suppose
that there are " and y’ such that [0, 2] U [y’, 1] € M N\IN,. Since [0, a] € M,
and [a, 11€3dM,, we have 2" <a <<y’ Let ¢ =2 + ¢y —ac[z’,y']cCl.
Then since [0,z']U[a+ i — 2’,1]=[0,2"1U [y’, 1]1€ M \M,, we find
that H(IN,)(1) << a’ <7 H(IM,)(¢) and this is & contradiction. I is also a surjec-
tion. Take f€ & and let:

€ = {6, f0) + ¢ — f@1ie I} U {[0. f)] U [A(1) + & — f(@), 1][ e € I}.

Then by definition of &, it is easy to see that € is a linked system in §,. € is
contained in some maximal linked system ST(, of @q, and for this &I it holds that
K@) = f(1) while for each i€ I'H(IN)(¢) = f(i); i.e., H(ON) = f. Finally we
prove that H is continuous. Let i, x € [I. Then

1IN E€ Ao (1) | H@M) () < 2} = ﬂ (M€ 2 (N[0, 2] U [y, 11€ M or

(0,2 4y — i] €I},

and hence this set is closed. For, let ¢ Ag,(I) such that H(IMN) (1) < x; this
last inequality means that [0, 2] U [K(N) + ¢ — =, 1]€ M. If y > K(IM) +
+ i — 2, then [0,y + 2 — ¢] D [0, K(IM)]€d; if y < K(O) + i — = then
[0,2] U [y, 11> [0, 2] U [K@EN) + ¢ — 2, 1]7€ 9N

Conversely, suppose that

[0, 2] Uy, 1]€Mor [0, 2 + y — i] € M.

for each y€ I, then also [0,2 + y — i]¢ IM for each y << K(M) + i — a;
hence [0, ] U [y, 1] € I ; we conclude that [0, 2] U [K(IN) + ¢ — a, 1] € 9N,
Le., HIN)(i) < =.

In the same way one proves:
(€ A1) | HEMD) 2 2} = N {ILE gD [z, 91 € Mox [o 4y — i, 1] €8,
and hence is closed.

As a consequence of these two theorems we have, as announced,

TueoreEM 4.3, Ag (1) 22 Q.
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5. A superextension of the n-sphere

In this final section we show that the superextension of the n-sphere
8" with respect to the collection of all closed massive n-balls in S" is homeo-
morphic with the Hilbert-cube. As usual, the n-sphere 8" is the space

{(xm xl: &SI )6Rn+1

Il 9
2=
and the closed massive n-ball with centre x € 8" and radius & >> 0 is the set
B(x, &) = {y€ 8"|d(x,y) < ¢}.

Writing & for the collection of all closed massive n-balls in 8", we will prove
that, if n > 1, 24(8") =< Q. Obviously 214(S") is the superextension of the
circle with respect to the set of closed intervals. For the definition of & it

does not matter whether the euclidian metric of R™ ! or the sphere metric

n
of 8" (in this case the distance between x and y in 8" is arccos > a3, ie.,
i=0
the minimum length of a curve between x and y on S") is used. Howevet,
in the proof of the theorem we need the latter metric and we call this metricd.
Furthermore we define, for each point x = (2, 2, . . . , #,) € 8", the antipode

x of x by ¥ ety Wi s el — Bl

TaworeM 5.1. If n > 1, A4(8") is homeomorphic to the Hilbert-cube Q.

Proor. In fact we show that 24(S™) is compact and infinite-dimensional
and has a countable bage and that 14(S") can be embedded as a convex sub-
space in RS"; hence, by KELLER’s theorem, 14(S™) is homeomorphic to Q.
Clearly, 14(S™) is compact.

To prove that 14(S") has a countable base, let X be a countable dense
subset of §". Define B, = {B(x, ¢)|x¢ X, e€Q, ¢ > 0}. It is not difficult
to see that P:Ag(S") — Ag (S"), such that P(IL) = M N B, (M€ 14(S™)) is
a homeomorphism; hence, since A4 (8") has a countable base, 14(S") also has
a countable base. Next, A4(S™) is infinite-dimensional, since Ag (I){ =< @) can
be embedded in A4(S"). For, let

Y ={x€8"|x = (2g, @1, » - < s Tn)s i >0, By, 5 e o o R =D

this subspace is homeomorphic to I. Let G, be as defined in Section 3, ie.,
@, is the collection of all closed subsets ¥* if ¥ such that Y’ is connected or
Y\ Y is connected. Define T':4¢ (¥) — Aa(8M by T(ON) = {Be &| BN Y €M}
(M € 2g,(I)). Again it is not dlffmult to prove that T is a topological embedding.
Hence JL (I) =< Q can be embedded in 5(5"), 1.e., A5 (8™ is infinite-dimensional.
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Finally we embed 4(S") as a convex subspace in R5", by means of the
funetion U:4g(S™) — R¥", determined by:

U (SM)(x) = inf {& > 0| B(x, &) € M}, (M€ Ag,(8"), x€87).

The mapping U is continuous and one-to-one since U (S)(x) < e iff B(x, &) € M,
and U@ (x) > ¢ iff BXE, @ — &) € M. And indeed, Ul24(8M] is a convex
subspace of R, In order to show this, we need only prove if M, My € 4 2(8™,

then there exists an SN € Ag(S"™) such that U/(SN) :E oon )+—U(3Ro)
(U[A4(S™)] being compact and hence closed in RS") So take 8, J“Lg Edals™)
il 1etm4{3xg\xe,s”,ez 0N () + L 17(91,) (x)}. Then 9, is
a hnked system, because if B( , &) and B(y, )ESKS x,yeS8" e >
> Lot (0 + 5 0O (0, 825 VL) () + 5 (VO (7), then:

dix, y) < UEN,)(x) + UEL)(Y),

and
d(x, y) < U(EM,)(x) + U(EN,)(y);
hence
d(x» Y) < d+4 &
ie.,

B(x, &) N Bly, 8) = 6.

Let 3ll, be a maximal linked system containing &ll; (in fact &l is itself a maxi-
mal linked system). Then, clearly,

U(dl) (x) <

N.:Lr-d

(om+%wmmm

and

U(9,) (x) <

2o | -

U, (x) + —;— U(9,) (x) for each x € 8"

But, since for each maximal linked system 9T : U(IN)(x) + T (M) (x) = =.
we have

U(9,) (x) = — U@EN,) (x) + % U(9,) (x) for each x¢€ 8"
Thus

U@T) = UEN) + 5 UEL).
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