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ABSTRACT

We give examples of compact Hausdorff spaces which are not embeddable as
closed G4 subsets in a supercompact Hausdorff space.
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INTRODUCTION

A supercompact space is a space which has a binary subbase for its closed
subsets, where a collection of subsets & of a set X is called binary provided
that for all # C.% with N # =0 there are My, M, e A with Myn M,=0.
By Alexander’s subbase lemma, every supercompact space is compact.
The class of supercompact spaces was introduced by de Groot [9]. Many
spaces are supercompact, for example all compact metric spaces, cf. Strok
& Szymanski [14] (elementary proofs of this fact were recently found by
van Douwen [6] and Mills [12]). The first examples of nonsupercompact
compact Hausdorff spaces were found by Bell [1]. At the moment there
is a variety of nonsupercompact compact Hausdorff spaces (cf. Bell [1],
[2], van Douwen & van Mill [7], van Mill [11], Bell & van Mill [4]).

* The first author is supported ty the Netherlands Organization for the Advancement
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Recently, Bell [3] showed that the one point compactification of the
Cantor tree 2 U “2 (cf. Rudin [13]) can be embedded as a closed Gs
subset of a supercompact Hausdorff space. Since the one point compactifi-
cation of the Cantor tree is not supercompact (cf. van Douwen & van Mill
[7]) this yields an example of a nonsupercompact closed G5 in a super-
compact Hausdorff space. This suggests the question whether every
compact Hausdorff space can be embedded as a (s subset in a super-
compact Hausdorff space. The answer to this question is in the negative.

0.1. THEOREM: Let X be a Hausdorf continuous image of a closed Gs
subset of a supercompact Hausdorff space, and let K be a closed subset of
X such that | K|>2". Then at least one point of K is the limil of a nontrivial
convergent sequence in X (not necessarily in K).

This theorem is a consequence of a result in van Douwen & van Mill
[7]. As a corollary, if fX is a continuous image of a closed Gs subset of
a supercompact Hausdorff space then X is pseudocompact. Also, under
Martins axiom (MA), every infinite Hausdorff continuous image of a
closed G5 subset of a supercompact Hausdorff space contains a nontrivial
convergent sequence.

Since the one point compactification of the Cantor tree is a compactifi-
cation of @ with the one point compactification of a discrete space as
remainder, Bell’s [3] result suggests the question whether every com-
pactification of @ with the one point compactification of a discrete space
as remainder can be embedded as a G's subset of a supercompact Hausdorff
space. The answer to this question is in the negative. For every (faithfully
indexed) almost disjoint family # ={M. x € x} of infinite subsets of
define X_# to be the space with underlying set the disjoint union of
and o and with topology generated by the collection

{o} U (Ma—n)|x € %, n € 0} U {{n}|n € w}.

Notice that X 4 is separable and that every subspace of X g is locally
compact and first countable. Also, the Cantor tree ©2 U “2 is homeo-
morphic to some X g. We will prove the following theorem:

0.2. THEOREM: Let .# be a maximal uncountable almost disjoini
collection of infinite subsets of w. Then any compactification of X g is not
the continuous image of a closed G5 subset of a supercompact Hausdorff space.

1. THEOREM 0.1; PROOF AND CONSEQUENCES

1.1. ProoF oF THEOREM 0.1: Indeed, let ¥ be a supercompact Haus-
dorff space, let X and K be as in Theorem 0.1 and let Z be a closed Gs
in ¥ which is mapped by f onto X. Write Z= (Nnew Un, where the Ux’s
are open subsets of ¥. It is easily verified that a space has a binary

156



subbase if and only if it has a binary subbase closed under arbitrary
intersections. Let & be a binary subbase for Y which is closed under
arbitrary intersections. For each new let Z, be a finite subcollection
of & such that ZC U #, CU,. ForeachzeZandfnemtakan 2)e Fn
containing z. In addition, for each z € Z define F(z):= (\new Frn(z). Then

F(z) e & for each 2z € Z, hence F(z) is supercompact Uzez (2 ) Z and
the collection {F(z)|z € Z} has cardinality at most 2“. Since |K|> 2 there
is a ze Z and a countably infinite subset B C K such that E C f[F(z)].
By a theorem in van Douwen & van Mill [7] it follows that at least one
cluster point of E is the limit of a nontrivial convergent sequence in
{[F(z)]. This completes the proof. "l

1.2. COROLLARY: Suppose that fX is a continuous image of a closed
Gs subset of a supercompact Hausdorf] space. Then X is pseudocempact.

PROOF: Assume that X is not pseudocompact. Then we may assume
that @ C X and that w is C-embedded in X (cf. Gillman & Jerison [8]).
Then fo—ow C X — X and since [fo —w|=22% (cf. Gillman & Jerison [8])
by Theorem 0.1 there is an « € fw —w which is the limit of a nontrivial
convergent sequence in fX. It is easily seen that this is impossible. []

Recall that Martin’s axiom (M A4) states that no compact cce Hausdorff
space is the union of less than 2° nowhere dense sets (c¢f. Martin & Solovay
[10]). It is known (cf. Booth [5]) that M 4 implies P(2%), i.e. the statement
that for every collection %7 of fewer than 2° subsets of @ such that each
finite subcollection of &/ has infinite intersection there is an infinite
I C o such that F'— 4 is finite for all 4 € &7. Tt is easily seen that P(2°)
implies that fw — o is not the union of 2° nowhere dense sets. This implies
that, under P(2"), every compactification yw of w with the property that
no sequence in ® converges has cardinality greater than 2“. For let ypw
be such a compactification of w and let f: fw — yw be the unique continuous
surjection which extends the identity on w. Now the fact that no sequence
in @ converges implies that f-1(x) is nowhere dense in fw—o for all
2 € yw—w. Hence P(2%) implies that |yw—w|> 27

1.3. COROLLARY (P(2°)): Let X be a Hausdorff continuous image of

a closed Gs subset of a supercompact Hausdorf] space. If X is infinite then
X contains a nontrivial convergent sequence.

PROOF: If |X|>2 then this follows from Theorem 0.1. On the other
hand, if |X|<2* then this follows from P(2%). O

1.4. questioN: Is Corollary 1.8 true in ZFC?
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2. PROOF OF THEOREM 0.2

Recall that a family of subsets o7 of w is called almost disjoint provided
that A N B is finite for all distinct 4, B € &7. It is known that there is
an almost disjoint family & C Z(w) of cardinality 2° (cf. Gillman &
Jerison [8]). We need the following lemma.

2.1. rEMMA: Let {duaex} be an uncountable (faithfully indexed)
mazimal almost disjoint family of infinite subsets of w. If {Pn: ® — mn}
is @ sequence of partitions of w inlo finitely many sets, then there is an
feow such that

| MNneo {x] [Aa O Nien P FHf(E)) = o) > o1

PROOF: We choose f(n) € my by induction so that

(1) for every ﬁn.ite F Cx we have that
| Nien P(fE) — User 4fl =

Indeed, suppose that {f()|¢ € n} have been defined such that (1) is satisfied.
If #=0, then define f(0) to be an arbitrary element of my such that for
every finite F C % we have that [Py (f(0))— Ujer 4| =c. It is clear that
this is possible since mg is finite and x is infinite. If #5£ 0 then define

Mﬂ-—l:= m{eﬂ.—l P:I(f(@))
and notice that
={Aa N Mpyg| | Aa My =w}

is an uncountable maximal almost disjoint family of infinite subsets of
Mpy_1. Since Py ' My is a partition of M,_; and since M, is infinite
by induction hypothesis there is an m € m, such that

[(Pa P Mp—1)(m)— U F|=

for every finite subcollection # C./’. Now define f(n):=m; then it is
clear that (1) is satisfied.

Suppose that there are only countably many «, say {xm|m € w}, such
that for all », m € ® we have that |ds, N MNien Pi '(f(2))|=w. Then we
may pick, by (1), distinet pn € @ such that

Pn€ (ien PU(E) = Usen 4oy (nE w).

Define 4:={pu|n € w}.

There are two cases: suppose first that 4 € {da|lx € x}. Then, since
|4 N Nien Pi'(f(2))| = for all n € ® we have that 4 =4, for some m,
which is 1mp0$51ble by definition of the p,’s. Therefore A ¢ {dox € x}.
By maximality we can find a f €x such that |43 N A|=w. Since

|4 — Nien PiYf(@))| <o for all new
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we conclude that
|4p N MNien PTYHf(E) = for all new,

80 f=am for some m. But since |4 N 4, < for all new we have a
contradiction. |

We now can prove the main result in this section.

2.2. PROOF OF THEOREM 0.2: List .# as {Ma|x € x}. Assume that ¥
is a supercompact Hausdorff space, that ZC Y is a closed G5 and that
g: Z — »X g is a continuous surjection from Z onto the compactification
vX g of X . Let & be a binary subbase for ¥ which is closed under
arbitrary intersections. Let {Ujn|n € w} be a sequence of open subsets of
Y whose intersection is Z. Since U, —g~1(n) is a neighborhood of Z —g—1(n)
and since Z—g1(n) is closed in ¥, we can find Si, ..., Sh,—2 € & such
that Up—g(n) D85V ... U8y -22Z—g(n). For each new pick
dn € Z such that g(d,)=n. Define D:={dy|n € w}. Take Py: @ — my to
be a partition refining {8f N D|jemy—1} U {d(:)]¢ € n}, in such a way
that Py '(j) C S} N D for each jemy—1 and Py ({mp—1})={d(i)i e n}.
For each x € x let do:={d(n)|n € M}. Now pick f as in Lemma 2.1. We
then have, by the compactness of Z, that

9( NaecaSin D Naen {&| [Aa N Nien PT(f(E))| =0}

Let 8:= MnewSin. Notice that § CZ ~¢g-(w) and in addition that S
is uncountable by Lemma 2.1.

For each « € the set g-1(M« U {«x}) is open and closed in Z. Hence
we may take an open set V.C Y(x €%) such that

(311" (Va) NZ= sz n Z=971(Ma U {0(}).

Notice that for distinet «, § € » we have that V.U ¥V C g-1(w) U (¥ —Z).
Set H= (Mneo {&| [Ax O Nien Pi(f(2))| = }. For each « € H let £ be a
finite subcollection of & such that g 1(M« U {x}) CU #.C Vs Since fa
is finite we may take Sxe £ such that |Aa N Niea Pi ' (f(2)) N Sa| =0
for all n € w. Since D is countable and H is uncountable there exist distinet
x, f e H such that S. N Sg0. It is clear that

SN S,g NS=8,nN S_an mne(;usgm CV.n Vﬁﬂ (Z_qu(w)):@'

Therefore, since & is binary and since S, N S3#£@, we may assume,

without loss of generality, that there is an ng € w such that S. N S;‘(Q‘O): @,

However, since Py '(f(no)) C Sﬁgo) and since [4aN Nieny Pi (f(2)) N Sl =

this is a contradiction. |

3. DENSITY OF CLOSED (s IN SUPERCOMPACT HAUSDORFF SPACES

In this section we show that if Z is a closed @ in a supercompact
Hausdorff space X then d(Z)<2%d(X).
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Recall that the density d(X) of a topological space X is the least
cardinal » for which there is a dense subset of cardinality x.
If % is a binary subbase for X then for all 4 C X we define 1(4)C X
by
I(A):= N {Se LA CS8}.

Notice that clx (4) CI(4), since each element of & is closed, that
I(I(A))=1(4) and that I(4) CI(B) if 4 C B C X. The following lemma
was proved in van Douwen & van Mill [7]. For the sake of completeness
we will give its proof here also.

3.1. LEMMA: Let & be a binary subbase for the supercompact Hausdorff
space X. Let pe X. If U is a neighborhood of p and if A is a subset of X
with p € clx (4), then there is a subset B C A with p € clx (B) and I(B)CU.

PROOF: Since X is regular, p has a neighborhood ¥V such that
pecly (V)CU. Let J denote the collection of finite intersections of
elements from . Choose a finite ,# C .# such that clx (V)CuU #ZCU.
Now ¢ is finite, and A N VCU #Z, and peclyr (4 N V); hence there
isanSe Zwithpeclg(ANVNSE).Let B:=4A NV NS.Thenpeclx (B),
and BCA4, and I(B)CSCuU #CU. OJ

We now prove the main result in this section.

3.2. THEOREM: Let & be a binary subbase for the Hausdorff space X.
Then d(S)<d(X) for all Se &.

PrROOF: Let D be a dense subset of X and choose 8 € &. For each
de D choose a point e(d) € (Nses 1({d, s}) N S. Notice that this is possible
since & is binary. We claim that E:= {e(d)|d € D} is dense in §. Indeed,
take z € § and let U be any neighborhood cf 2. By Lemma 3.1 there is
a subset B C D such that z is in the closure of B and I(B) C U. Choose
do € D arbitrarily. Then
e(do) € Nses I({do, s}) NS CI({do, 2})) NS CIBYNSCUNS.

This completes the proof. O

3.3. COROLLARY: Let Z be a closed Gs subset in a supercompact Haus-
dorff space X. Then d(Z)<2%(X).

PROOF: Let & be a binary subbase for X which is closed under arbitrary
intersections. As in the proof of Theorem 0.1, Z is the union of a family
of at most 2° subsets of &. Hence Theorem 3.2 implies that d(Z) < 2°d(X).

#

160



4. OPEN QUESTIONS

The results derived in this note suggest many questions. As noted in
the introduction Bell [3] has shown that a closed Gs subset of a super-
compact Hausdorff space need not be supercompact. This suggests the
following question.

4.1. QuEsTION: QSuppose that Z is a closed Gs in a supercompact
Hausdorff space X. Is cmpn(Z) finite?

(Recall that for compact Hausdorff spaces X, ecmpn(X) is the least
integer k for which there is a closed subbase & for X such that if MCSF
with N .# =0 then there is a subset of .# of cardinality 4 which has an
empty intersection; empn(X)=co if such an integer does not exist (cf.
Bell & van Mill [4]). It is known, cf. [4], that for every k> 1 there is a
compact Hausdorff space Xj for which cmpn(Xi)=£; in addition
empn(fw)—=oo). Related to this question is the following one:

4.2. QuestioN: Suppose that X is a conlinuous image of o closed G's
of a compact Hausdorff space ¥ with empn(Y)<oo. Is X pseudocompact?

4.3. qQumstioN: Let X be an infinite compact Hausdorfj space for which
empn(X)<oo. Does X contain a copy of w which is not C*-embedded in
Xt a nontrivial convergent sequence?

In section 2 we gave an example of a compact Hausdorff space X
which is the union of three metrizable subspaces and which is not em-
beddable as a Gs subset in a supercompact Hausdorff space. This suggests
the following question.

4.4, qQuUEsTION: Let X be a compact Hausdorff space which is the union
of two metrizable subspaces. Can X be embedded as a G5 subset in a super-
compact Housdorff space?

REFERENCES

1. Bell, M. G. — Not all compact Hausdorff spaces are supercompact, Gen. Top.
Appl. 8, 151-155 (1978).

2. Bell, M. G. — A cellular constraint in supercompact Hausdorff spaces, Canadian
J. Math. 30, 1144-1151 (1978).

3. Bell, M. G. — A first countable supercompact Hausdorff space with a closed G
non-supercompact subspace (to appear in Collog. Math.).

4. Bell, M. G. & J. van Mill — The compactness number of a compact topological
space (to appear in Fund, Math.).

5. Booth, D. — Ultrafilters on a countable set, Ann. Math. Logie 2, 1-24 (1970).

6. Douwen, E. K. van — Special bases for compact metrizable spaces, (to appear
in Fund. Math.).

161



10.

11.

12,

13.

14.

162

Douwen E. K. van & J. van Mill — Supercompact spaces, (to appear in Gen.
Top. Appl.).

Gillman, L. & M. Jerison —Rings of continuous functions, Princetion, N. J. (1960),

Groot, J. de — Supercompactness and superextensions, in: Contributions to
extension theory of topological structures, Symp. Berlin 1967, Deutscher
Verlag Wiss., Berlin 89-90 (1969).

Martin, D. A. & R. M. Solovay — Internal Cohen extensions, Ann. Math. Logic
2, 143-178 (1970).

Mill, J. van — A countable space no compactification of which is supercompact,
Bull. I'acad. Pol. Sei., 25 (1977) 1129-1132.

Mills, C. F. — A simpler proof that compact metric spaces are supercompact, (to
appear in Proc. Amer. Math. Soc.).

Rudin, M. E. — Lectures on set theoretic topology, Regional Conf. Ser. in Math.,
no. 23, Am. Math. Soc., Providence, RI (1975).

Strok, M. & A. Szymanski — Compact metric spaces have binary bases, Fund.
Math. 89, 81-91 (1975).



