GENERAL TOPOLOGY

Extenders from βX —X to βX

by

Jan van MILL*)

Presented by C. RYLL-NARDZEWSKI on February 15, 1978

Summary. For any space X let $\tau(X)$ denote the topology of X. If $X \subset Y$ then a function $\kappa \colon \tau(X) \to \tau(Y)$ is called an extender provided that $\kappa(U) \cap X = U$ for all $U \in \tau(X)$. We prove that for each locally compact nonpseudocompact space X and for each extender $\kappa \colon \tau(\beta X - X) \to \tau(\beta X)$ there is a collection \mathscr{B} of 2^{ω} pairwise disjoint nonvoid open subsets of $\beta X - X$ such that $\bigcap_{B \in \mathscr{B}} \kappa(B) \neq \emptyset$. In particular, there is no retraction from βX onto $\beta X - X$.

0. Introduction. All topological spaces under discussion are assumed to be Tychonoff.

For any topological space X let $\tau(X)$ denote the topology of X. If $X \subset Y$ then a function $\kappa \colon \tau(X) \to \tau(Y)$ is called an *extender* provided that $\kappa(U) \cap X = U$ for all $U \in \tau(X)$. In addition, X is said to be K_n -embedded in Y (cf. van Douwen [2]) provided there is an extender $\kappa \colon \tau(X) \to \tau(Y)$ such that

(*) if n=0 then $\kappa(\emptyset)=\emptyset$ and $\kappa(V)\cap\kappa(W)=\kappa(V\cap W)$ for all $V,W\in\tau(X)$; if n>0 then $\kappa(V_0)\cap\ldots\cap\kappa(V_n)=\emptyset$ whenever $V_i\cap V_j=\emptyset$ for $0\leq i< j\leq n$ and $V_0,\ldots,V_n\in\tau(X)$.

The extender κ is called a K_n -function (cf. van Douwen [2]). We call an extender $\kappa: \tau(X) \to \tau(Y)$ a K_0^* -function if it is a K_0 -function and has the additional property that $\kappa(V) \cup \kappa(W) = Y$ whenever $V \cup W = X(V, W \in \tau(X))$. If $r: Y \to X$ is a retraction then the function $\kappa: \tau(X) \to \tau(Y)$ defined by $\kappa(U) = r^{-1}(U)$ is easily seen to be a K_0^* -function.

Our interest in K_n -functions was motivated by the recent result of van Douwen [3] that if there is a retraction from βX onto $\beta X - X$, then X is locally compact and pseudocompact (under CH this was proved earlier by Comfort [1]). This theorem suggests the question whether for locally compact nonpseudocompact X there can be a K_n -function from $\tau(\beta X - X)$ to $\tau(\beta X)$ for some $n \ge 0$. The answer to this question is in the negative.

0.1. THEOREM. Let X be a locally compact and nonpseudocompact space and let $\kappa: \tau(\beta X - X) \to \tau(\beta X)$ be an extender. Then there is a collection \mathscr{B} of 2^{ω} pairwise disjoint nonvoid open subsets of $\beta X - X$ such that $\bigcap_{B \in \mathscr{B}} \kappa(B) \neq \emptyset$.

^{*)} Research supported by the Netherlands Organization for the Advancement of Pure Research (Z. W. O.); Juliana van Stolberglaan 148, 's-Gravenhage, The Netherlands.

This theorem shows that for locally compact nonpseudocompact spaces X the open sets of $\beta X - X$ cannot be extended to open sets of βX in a decent way; in particular it follows that there is no retraction from βX onto $\beta X - X$. The local compactness of X is the above result is essential since there is a noncompact Lindelöf space Z such that there is a K_0^* -function $\kappa: \tau(\beta Z - Z) \to \tau(\beta Z)$.

In section 1 of this note we prove some theorems about extenders which have interest in their own rights. Section 2 contains the proof of theorem 0.1.

1. Extenders. For any topological space X let CZ(X) denote the collection of cozero sets of X. Recall that CZ(X) is a base for X and that it is closed under countable unions (cf. Gillman and Jerison [4]).

Suppose that $X \subset Y$. Let $\mathscr{B} \subset \tau(X)$ be such that it contains \emptyset and X and in addition is closed under finite intersections and finite unions. A function $\kappa \colon \mathscr{B} \to \tau(Y)$ is called

an extender provided that $\kappa(B) \cap X = B$ for all $B \in \mathcal{B}$;

- a K_0 -function if it is an extender and moreover satisfies the following conditions:
- (i) $\kappa(\emptyset) = \emptyset$,
- (ii) $\kappa(B_0 \cap B_1) = \kappa(B_0) \cap \kappa(B_1)$ for all $B_0, B_1 \in \mathcal{B}$.
- a K_0^* -function if it is a K_0 -function which satisfies:

$$\kappa(B_0) \cup \kappa(B_1) = Y$$
 if $B_0 \cup B_1 = X(B_0, B_1 \in \mathcal{B})$

a Boolean extender if it is a K_0^* -function such that

$$\kappa(B_0) \cup \kappa(B_1) = \kappa(B_0 \cup B_1)$$
 for all $B_0, B_1 \in \mathcal{B}$.

- 1.1. Theorem. Let X be a subspace of Y. The following statements are equivalent:
 - (i) there is a K_0^* -function $\kappa: CZ(X) \rightarrow \tau(Y)$;
- (ii) there is a Boolean extender $\kappa: CZ(X) \rightarrow \tau(Y)$;
- (iii) for every compact space Z and for every continuous mapping $f: X \rightarrow Z$ there is a continuous mapping $f: Y \rightarrow Z$ such that $f \upharpoonright X = f$.

Proof. (ii) \Rightarrow (i) is obvious; hence it suffices to establish (i) \Rightarrow (iii) and (iii) \Rightarrow (ii). Indeed, assume that there is a K_0^* -function $\kappa: CZ(X) \rightarrow \tau(Y)$ and that $f: X \rightarrow Z$ is continuous. Fix $y \in Y$ and define

$$\mathcal{U}_{y} = \left\{ T \in CZ(Z) | y \in \kappa f^{-1}(T) \right\}.$$

Then $\mathcal{U}_y \neq \emptyset$ since $Z \in \mathcal{U}_y$. Also, notice that $f^{-1}(T) \in CZ(X)$ for all $T \in CZ(Z)$. Now the fact that κ is a K_0 -function implies that \mathcal{U}_y is closed under finite intersections. Also $\emptyset \notin \mathcal{U}_y$. Consequently, by the fact that Z is compact, we have that

$$\bigcap_{T \in \mathcal{U}_{y}} \operatorname{cl}_{Z}(T) \neq \emptyset.$$

We claim that this intersection contains precisely one point. Indeed, to the contrary, assume that it contains two distinct points, say p and q. Take T_0 , $T_1 \in CZ(Z)$ such that $p \in T_0$ — $\operatorname{cl}_Z(T_1)$, $q \in T_1 - \operatorname{cl}_Z(T_0)$ and $T_0 \cup T_1 = Z$. Then $\kappa f^{-1}(T_0) \cup \kappa f^{-1}(T_1) = Y$ and consequently, without loss of generality, we may assume that $y \in \kappa f^{-1}(T_0)$. Then $T_0 \in \mathcal{U}_y$ and hence $q \in \operatorname{cl}_Z(T_0)$, which is a contradiction.

Now define $\tilde{f}: Y \rightarrow Z$ by

$$\{\bar{f}(y)\} = \bigcap_{T \in \mathcal{U}_y} \operatorname{cl}_Z(T).$$

It is clear that $\bar{f} \upharpoonright X = f$ and hence we need only check the continuity of \bar{f} . Indeed, take $T \in CZ(Z)$ and let $y \in \bar{f}^{-1}(T)$. Then since \mathcal{U}_y is closed under finite intersections and since Z is compact there is a $T_0 \in \mathcal{U}_y$ such that

$$\operatorname{cl}_{Z}(T_{0})\subset T$$
.

Then $\kappa f^{-1}(T_0)$ is a neighborhood of y which is entirely contained in $\bar{f}^{-1}(T)$.

To prove that (iii) implies (ii) assume that $f: Y \to \beta X$ is such that f restricted to X is the identity. Then the function $\kappa: CZ(X) \to \tau(Y)$ defined by

$$\kappa(B) = f^{-1} \left(\beta X - \operatorname{cl}_{\beta X} (X - B) \right)$$

is easily seen to be a Boolean extender.

- 1.2. COROLLARY. Let X be a compact subspace of Y. Then the following statements are equivalent:
 - (i) X is a retract of Y;
 - (ii) there is a K_0^* -function $\kappa: CZ(X) \to \tau(Y)$.
- 1.3. Corollary. Up to equivalence βX is the unique compactification of X for which there is a K_0^* -function from the cozero sets of X to the topology of βX .

The following theorem gives another surprising property of K_0^* -functions.

- 1.4. Theorem. Let X be such that there is a K_0^* -function κ : $CZ(\beta X X) \rightarrow \tau(\beta X)$. Then for every compactification γX of X there is a K_0^* -function μ : $CZ(\gamma X X) \rightarrow \tau(\gamma X)$
- Proof. Let $f: \beta X \to \gamma X$ be the unique continuous mapping which extends the identity on X. Now define $\mu: CZ(\gamma X X) \to \tau(\gamma X)$ by

$$\mu(T) = T \cup (\kappa f^{-1}(T) \cap X)$$
.

First observe that $\mu(T)$ is open since

$$f^{-1}(\mu(T)) = f^{-1}(T) \cup (\kappa(f^{-1}(T)) \cap X)$$
$$= \kappa(f^{-1}(T)).$$

Hence μ is well-defined. The easy check that μ indeed is a K_0^* -function is left to the reader.

1.5. COROLLARY. Let X be such that there is a retraction from βX onto $\beta X - X$. Then for every compactification γX of X there is a retraction from γX onto $\gamma X - X$.

Proof. Apply theorem 1.1 and Theorem 1.4.

1.6. Remark. If there is a retraction $r: \beta X \to \beta X - X$ then the retraction $s: \gamma X \to \gamma X - X$ obtained from Theorem 1.1 and Theorem 1.4 can in fact be described as follows

$$\begin{cases} s(x) = x & \text{if } x \in \gamma X - X \\ s(x = fr(x)) & \text{if } x \in X \end{cases}$$

(here $f: \beta X \to \gamma X$ and extends id_X). Of course it can also be checked directly that s defined in this way is continuous.

2.

- 2.1. Proof of Theorem 0.1. Since x is not pseudocompact, by a theorem in Gillman and Jerison [4] we may assume that the set of natural numbers $N \subset X$ and N is C-embedded in X. For each $n \in N$ let C_n be a cozero set of X such that
 - (i) $n \in C_n$ and $cl_X(C_n)$ is compact;
 - (ii) n < m implies that $\operatorname{cl}_X(C_n) \cap \operatorname{cl}_X(C_m) = \emptyset$;
 - (iii) $\bigcup_{n \in \mathcal{N}} \operatorname{cl}_X(C_n)$ is closed in X.

Let $\{A_{\alpha} | \alpha < 2^{\omega}\}$ be a collection of infinite subsets of N such that $\alpha < \gamma$ implies that $A_{\alpha} \cap A_{\gamma}$ is finite (there is such a collection, see Gillman and Jerison [4]). For each $\alpha < 2^{\omega}$ define $B_{\alpha} \subset \beta X - X$ by

$$B_{\alpha} = (\beta X - \operatorname{cl}_{\beta X} (X - \bigcup_{n \in A_{\alpha}} C_n)) \cap (\beta X - X).$$

Then B_{α} is a nonvoid open subset of $\beta X - X$.

CLAIM. $\bigcup_{n \in A_{\alpha}} C_n - \kappa(B_{\alpha})$ has compact closure in X. Assume, to the contrary, that $\bigcup_{n \in A_{\alpha}} C_n - \kappa(B_{\alpha})$ has no compact closure in X.

Then there is an infinite $E \subset A_{\alpha}$ and for each $n \in E$ a point $x_n \in C_n - \kappa(B_{\alpha})$. For each $n \in E$ choose a compact zero set Z_n such that $x_n \in Z_n \subset C_n$ and an Urysohn mapping $f_n: X \to I$ such that $f_n^{-1}(1) = Z_n$ and $f_n(X - C_n) = 0$. Then the mapping $f: X \to I$ defined by $f = \sum_{n \in F} f_n$ is easily seen to be continuous. In addition $f^{-1}(1) = \bigcup Z_n$ which

implies that $\bigcup_{n \in E} Z_n$ is a zero set of X. This shown that the sets $\bigcap_{n \in A_n} (X - C_n)$ and

 $\bigcup_{n \in \mathbb{Z}} Z_n$ have disjoint closures in βX . We conclude that all cluster points of $\{x_n | n \in E\}$ in βX are elements of B_n . Since $\{x_n | n \in E\}$ is not compact there is such a point, say p. Then $\kappa(B_{\alpha})$ is a neighborhood of p which misses $\{x_n | n \in E\}$. This is a contradiction.

Now for every $\alpha < 2^{\omega}$ we can choose an infinite $D_{\alpha} \subset A_{\alpha}$ such that

$$\bigcup_{n\in D_{\alpha}} C_n \subset \kappa(B_{\alpha}).$$

For each $n \in N$ let $L_n = \{\alpha < 2^{\omega} | n \in D_{\alpha} \}$. Since $|N| = \omega$ and cf $(2^{\omega}) \geqslant \omega_1$ (this is well known, see for instance Juhász [6]) we conclude that one of the L_n 's must have cardinality 2^{ω} . This completes the proof, since the B_{α} 's are clearly pairwise disjoint.

2.2. Example. A noncompact Lindelöf space Z such that there is a K_0^* -function $\kappa: \tau(\beta Z - Z) \rightarrow \tau(\beta Z).$

Let X be the absolute of the closed unit segment I=[0, 1] (in the sense of Iliadis [5]). Let $\pi: X \to I$ be the natural projection of X onto I (this mapping sends each open ultrafilter onto its limit). Let

$$Z = \{x \in X | \pi(x) \text{ is rational}\},\$$

and

$$T = \{x \in X | \pi(x) \text{ is irrational}\}.$$

Since π is irreducible (cf. Iliadis [5]) both Z and T are dense in X. In addition, it is clear that both Z and T are Lindelöf and hence normal. Also $\beta Z = X = \beta T$ since both Z and T are dense in the extremally disconnected compact space X. Hence $\beta Z - Z = T$ and since T is normal and since $\beta T = X$ we see that the function $\kappa: \tau(T) \to \tau(X)$ defined by

$$\kappa(U) = X - \operatorname{cl}_X(T - U)$$

is a K_0^* -function.

It must be noticed that theorem 1.1 implies that there is no K_0^* -function $\kappa: \tau \times (\beta Q - Q) \to \tau$ (βQ), where Q denotes the space of the rationals. The space Z of example 2.2 can be mapped by an irreducible perfect mapping onto Q. This observation leads to the following corollary.

2.3. COROLLARY. For a space X the property of having a K_0^* -function κ : $\tau(\beta X - X) \rightarrow \tau(\beta X)$ is not preserved under perfect irreducible surjections.

I am indebted to Evert Wattel for some helpful comments during the preparation of this note.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 (USA)

REFERENCES

- [1] W. W. Comfort, Retractions and other continuous maps from βX onto $\beta X X$, Trans Amer. Math. Soc., 114 (1965), 1-9.
- [2] E. K. van Douwen, Simultaneous linear extension of continuous functions, Gen. Top. Appl., 5 (1975), 297-319.
 - [3] , Retractions from βX onto $\beta X X$ [to appear].
 - [4] L. Gillman, M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960.
 - [5] S. Iliadis, Absolutes of Hausdorff spaces, Soviet Math. Dokl., 4 (1963), 295-298.
- [6] I. Juhász, Cardinal functions in topology, Mathematical Centre Tract 34, Amsterdam, 1971.

Ян Фан Милл, Продолжители из $\beta X-X$ в βX

Содержание. Пусть $\tau(X)$ обозначает топологию пространства X. Для $X \subseteq Y$ функция κ : $\tau(X) \to \tau(Y)$ называется продолжителем, если $\kappa(U) \cap X = U$ для всех $U \in \tau(X)$. Доказывается, что для каждого локально бикомпактного не псевдокомпактного пространства X и для каждого продолжителя κ : $\tau(\beta X - X) \to \tau(\beta X)$ существует система \mathcal{B} , состоящая из 2^{ω} непересекающихся непустых открытых множеств в $\beta X - X$ таких, что $\bigcap_{B \in \mathcal{B}} \kappa(B) \neq \emptyset$. В частности, не существует ретракции из βX на $\beta X - X$.