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1. Introduction, conventions and some definitions 

All topological spaces, under discussion, are assumed to be Tl, and “subbase ” will 
always mean a subbase for the closed sets. 

Often, an important: class of topological spaces can be character ized by the fact 
that each element of the class possesses a subbase of a special End. For example 
compact spaces (Alexander’s subbase lemma), completely regutsr spaces (De Groot 
and Aarts [ 13]), second countable spaces (by definikion), metrizable spaces (Ring, cf. 
[S]), (products of) orderable spaces (Van Dalen and Wattel[6]; Van Dalen [S]; De 
Groot and Schnare [14]). Such characterizations we shall call subbase charac- 
teriza tions. 

A class of spaces defined by the existence of a subbase of a special type is the chss 
of supercompact spaces ( e Groot [lo]); this class consists of all spaces possessing a 
so-called binary subbase, that is a subbase 9 such that if 5% c 9 with nyb =:= 0 then 
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there exist SO, S1 E YO such that SO fl S1 = 0. It is clear that by the lemma of 
Alexander every supercompact space is compact. There are many inter =sting 
subclasses of the class of supercompact spaces, such as all compact metric apaces 
(Strok and Szymaiiski [16]; cf. Theorem 2.6 of the present paper), compact or 
spaces (De Groot and Schnare [14]; cf. Theorem S-2), compact tree-like spaces 
(Theorem 4 1 .3), compact lattice spaces (Theorem 3.2) and products of these 
Not ax compact Hausdorff spaces are supercompact as was shown by Bell 
also Van Douwen and Van Mill [7]). 

In this paper we will give subbase characterizations of the above classes of 
topological spaces. The characterization of compact metric spaces and compact 
orderable spaces are due to De Groot [ 1 l] and De Groot and Schnare [ 14 !. 

An idea of De Groot was to represent a supercompact space with binary su 
by the graph with verte:c set 9’ and an edge between So and Si in 9 if and only if 
SO f-J S1# 0. De Groat [ 121 proved that the space is completely determine1 by this 
graph. In our approach we will represent a supercompact space with binary subbase 
9’ by the graph with vertex set 9 and an edge between So and Si in 9 if awd only if 
So fl S1 = 0. This not essentially different approach seems to have some advantages 
(e.g. connectedness and bipartiteness of this latter graph imply interesting Froperties 
of the space). This graph representation is often helpful to determine 3 subbase 
characterization. 

This paper is organized as follows. In Section 2 we give a characterization of 
supercompactness by means of “interval structures” and show the relatiol i between 
supercompact spaces and graphs. Sections 3, 4 and 5 deal with latti ..e spaces, 
tree-like spaces and orderable spaces, respectively. As an application of Se .:tion 2 we 
show that some of the results can be extended to products of these space i. 

2. Supercsmpact spaces and graphs 

We shall first define the notion of interval structure and we character ize super- 
compactness by means of this concept. Second, a correspondence between graphs 
and supercompact spaces is demonstrated. 

mition. Let X be a set and let .F :X XX -+ B(X). Write 1(x, y) = I((x, 1’1)). Then I 
is called an interval structure on X if: 

(i) x, y E 1(x9 Y 1 (x, y E X), 
6) W, Y) = OY, 4 (x9 Y Em? 

(iii) if U, v E 1(x, y ), then d(u, v) c 1(x, y ) (u, vu, x9 Y E Xl, 
(iv) 1(x, yHV(x, z)fU(y, z&O 6% y, 2 Em* 

Axioms (i), (ii) and (iii) together can “ae replaced by the followmg axion: 

u, v E 1(x, y) iff f(u, v) = 1(x, y) (u, VI, x9 Y E XL 
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is called I-convex if for all x, y E B we have 1(x, :!I) c B. If (X, s:) i:; a 
lattice, then 1(x, y) = {z E X 1 x A y G z G x v y} defines an interval structure on X (see 

Section 3). 

Let X be a topological space. Then : X is supercompact if and only if Xis 
compact and possesses a (closed) subbase 9 and an interval structure I such that each 
S E 9 is I-convex. 

Proof. Let X be a supercompact space and let 9 be a binary subbase for X. Define 
1:XxX-,9’(X) by 

Then it is easy to show that I is an interval structure on X and that each S E 9 is 
I-convex. 

Conversely, 1e:t X be a compact space with a closed subbase 9’ consisting of 
I-convex sets, wlhere I is an interval structure on X. We will show that 9’ is binary. 

Let 9’ c Sp such that n Y”= p). Then, since X is compact, there exists a finite subset 
9; c 9” such that n.Yh = Q). Hence it is enough to prove the following: if 

Sl, &, l l l 9 &EYandSJl .*. fl Sk = p) then there exist i, j (1~ i, j s k) such that 

Si fl Sj = 0. 
We proceed by induction with respect to k. If k = 1 or 2 it is trivial. Suppose that 

k a 3 and that for each k’ < k the statement is true. Define: 

If one of the Ti’S is empty, then the induction hypothesis applies. Suppose therefore 
r # 0 (i = 1,2,3), anti take x E Tl, y E Tz and z E T3. Then 

x, yEs3ns,n l l l ns,, 

and thus 
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But 
@#I(& $nl(x, z)fII(y, 2) 

=s,ns,n -- aske 
This contradicts our hypothesis. D 

For some related ideas see Gilmore [9]. 
Now we turn our attention to the announced correspondence between graphs and 

supercompact spaces. 
A graph G is a pair ( V, E), in which V is a set, called the set of vertices, and E is a 

collection of unordered pairs of elements of V, that is E e {{v, w}\ u, w E V, v # w}. 
Pairs in E are called edges. Usually a graph is represented by a set of points in a space 
with lines between two points if these two points form an edge. A subset V’ of V is 
called independent if for all t,, w E V’ we have {v, W)E E. A maximal independent 
subset of V is an independent subset not contained in any other independent subset. 
Zorn’s lemma tells us that every independent subset of V is contained in some 
maximal independent subset. We write 

9(G) := {V’ c V ) V’ is maximal independent}; 

and for each v E V: 

B, :={Vk9(G)lv~ V’} 

and 

B(G) := {B, 1 v E V}. 

The graph space T(G) of G is the topological space with s(G) as underlying point set 
and with 3(G) as a (closed) subbase. 

If 9 is a collection of sets then the non-intersection graph G(Y) of 3’ is the graph 
with vertex-set 14p and with edges the collection of all pairs {Sr, Sz} such that 
S1 (1 S2 = P). The following observation was made by De Groot [12]: 

2.2. A space X is supercompact # X is the graph space of a graph, in 

particular: 
(i) if X has a binary subbase 9 then Xis homeomorphic to the graph space of G(2); 

(ii) for a graI!h G, the graph space T(G) is supercompact, with 9(G) as a binary 
subbase. 

Let Gi be a graph (i E J); the sum CiE, Gj of these graphs is the graph with vertex set 
a disjoint unoin of the vertex sets of the Gj (i E J) and edge set the corresponding 
union of the edge sets. These sums of graphs and products of topological spaces are 
related in the following theorem. 

. Let J be a set and for each j e J let Gi be a graph. Then T(r: o J Gi) is 
homeomorphic to nieJ T(Gj). 
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of. Straightforward. 0 

We shall now give subbase characte-rizations of some obvious classes of topological 
spaces; in Sections 3,4 and 5 subbase characterizations of special classes o.f spaces 
are given. With each subbase characterization we also give a characterization in 
terms of graphs. 

The following asserticms are equivalent: 
(i) X is a second countable supercompact space ; 
(ii) Y possesses a countable binary subbase ;. 

(iii) X is h~ee.~.er#ric to the graph space of a countable graph. 
(A graph is called countable if its vertex set is countable.) 

Proof. Note that each subbase of a second countable space contains a countable 
subcollection which also is a subbase. 0 

A subbase 9’ for X is called weakly normal if for each So, S1 E .!I’ wit17 So I-~ S1 = 0 
there exists a finite covering J& of X by elements of 9’ such that each &n-rent of M 
meets at most one of So and S1. A graph (V, E) is called weakly normal if for each 
{v, H~)E E there are ~1, . . . , vk, wl, . . . , WI E V (k, I a 0) such that: 

(v, Vl}, l l l , iv, VIA Iw, WI, l l l 9 iw wk E 

and if 

t-4 , . . . , vi, w;, . . . , w; E v 

with 

then 

is not independent. 

Theorem 2.5. Let X be a supercompact space with binary subbase 9 and let X be the 
graph space of the graph G. The following assertions are equivalent : 

(i) X is a Hau 
(ii) 9 is a weakly normal subbase ; 

(iii) G is a weakly normal graph. 

roof. (i) =) (ii). Take &, Sz E 9 with S1 fI SZ = 8. As X is normal (compact Haus- 
dorff) there exist closed sets C and D with 

CnSl=0=S2nD and CU.D=X. 
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Since X is compact and C and 13 are intefsectiollS of finite utions of sets in Y, we can 
take C and B to be finite intersections of finite unions Of sets in 9, or, what is the 

same, finite unions of finite intersections of sets in 5? 

Since C n 5% =@, each of the finite intersections composing C has an empty 
~~te~e~tion with &. Now 9 is binary and therefore we can replace these finite 
intersections by single sets of 9, Hence we m;ry suppose that C is a finite union of 
elements of 9, Sim~ar~y we can take JJ as a finite union of elements of 3? 

(in) 3 (i). This is a consequence of a theorem of De Croat and Aarts [13]. 
(i) @(iii). The simple proof is left to the reader. ff 

This theorem rsow implies the following revokable fact, which was first observed 
by De Groat [K]. 

Proof, This is a consequ~ce of the deep result of Strok and Szyma~sk~ [16] that 
every compact metric space is super~ompa~t. ICJ 

Using this theorem we can derive a rather remarkable characterization of the 
Cantor discontinuum C. We call a graph ( V, E) 1~~~11~ knife if for all tt E V the set 

{w E Vj{v, w)E Et is finite. 

(6&(ii). By Theorem 2.3 X is homeomorphic to the graph space sof the 
following graph (cf. De Groat [12]): 

0 0 0 

I I I . . . 
0 0 0 

(iij 3 (i). We are going to show that X is a compact metric totally disconnected 
space without isolated points, whence it will follow that is homeomorphic to the 
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Cantor discontinuum. Let G be a countable locally finite graph with infinitely many 
edges. We will first show that the closed subbase 99(G) of T(G) consists of clopen 
sets. 

Take v E V. Since G is locally finite, there are R’J., ~2, . . . , wn E V such that 

h ,. . . , w,)={wE Vl{v, W}EE}. 

Now for all i = 1,2, . . . , n the set B, is closed, hence uyzl 43,,, is closed too. it is 
obvious that . 

x\ij BWi = BU9 i= 1 

and hence B, is open. 
Since it now follows that T(G) is I-Iausdorff (T(G) being T1 and totally dis- 

connected), compact and second countable, T(G) is compact metric. 
Finally we show that T(G) has no isolated points. For suppose there is a V’ E La(G) 

such that {V’} = nK 1 B,. That is, if V” e 9(G) and {vl, v2, . . . , v,~} c V” then 
V’= If”. Let W be the set 

{w E Vl{vi, w}EE for some iE{l, 2,. . . , m}}. 

Since G is locally finite, IV is finite. Now the set 

E’={{v, W}EEIWE W,VE: V} 

also is finite. Since E is infinite there is an edge {a, b) E E’$?‘. It is easy to see that 
a & W and b6 W, hence (~1, . . . . v~, a) and (VI,. . . 9 vm, 19) both are independent 
sets of vertices, and hence both are contained in a maximal independent set, say in Gi’z 
and Vi Izspectively. As (VI, . . . , v,,,)c Vz and (31,. . . , ivm)c V’ it follows that 
Vg = V’= V’; hence a, b E V’. But (a, b) E E, hence V’ is not indlependent which is a 
contradiction. 0 

The following corollary was suggested to us by the referee. 

CotdIary 2.8. Xis homemorphic to 2” for some infinite K @X is homeomorphic to the L 

graph space of a locally finite graph with infinitely many edges. 

Proog. To show e, note that the gra.ph breaks up into the sum (in the sense of 
Theorem 2.2) of graphs GU each with countably many edges. If G, has infinite1.y 
many edges, its graph space is homeomorphic to the Cantor set (Theorem 2.7); if 
finitely many, its graph space is a finite discrete space. By the axiom of choice we 
can lump these graphs together so that each one of the resulting graphs has NO edges3 
hence the graph space is homeomorphic to a product of Cantor sets. 0 

Finally we call attention to the fact that there is a natural relation between 
superextensions and graphs (cf, 
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3. Lattices and bipartite graphs 

In this section we give a correspondence between spaces induced by a lattice and 
graph spaces obtained jr’rom bipartite graphs. Let (X, s) be a lattice w-th universal 
boun& 0 and 1. If a and b are elements of X then [a, b] will denote t 

[a, b]={xEX[asxsb}. 

The interval space of X is the topological space X the topology of which is generated 
by the subbase 

Y={[O, x]lx EX}U{[.X’, 111x EX}. 

Spaces obtained in this way are called lattice spaces. According to a theorem of Frink 
(cf. Birkhoff [3]) the intervszl space of a lattice (X, 6) is compact iff (X, S) is complete. 

Thecrrsem 3.1. Every compact latttce is supercompact. 

Pro05 Let (X, s) be a complete lattice and define an interval structure (cf. Section 2) 
I on X by 

I(x, y) := [x A y, x v y]. 

This is easily seen to be an interval structure while moreover the subbase 9’ for X 
defined above consists of I-convex sets; consequently X is super compact by 
Theorem 2.1. 0 

A graph* ( V, E) is called bipartite if V can be partitioned in two sets Vo and VI such 
that each cl.dge consists of an element of CT0 and an element of VI. A well-known and 
easily proved theorem in graph theory, see e.g. Wilson [Ml; tells us that a graph 
(V, E) is bipartite ;i islnd only if each circuit is even, that is, whenever 

are edges in E, then rtc is even (this characterization uses a weak form of the axiom cbf 
choice). 

We call a collection 9 of subsets of a set X bipartite if the non-inters :ctron graph1 
G(Y) is bipartite. 

3.2. The following assertions are equivalent: 
(i) A7 is homeomorphic to a compact lattice space ; 

(ii) X possesses a binary bipartite subbase ; 
(iii) X is homeomorphic to the graph space of a bipartite graph. 

of. (i)* (ii). Let ( s) be a complete lattice; the subbase 

9={[o,x])x~x}u{[x, l]IXEX} 

is bipartite and binary. 
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(ii)+(i). Let X be a topolo,grcal space with ;3 bir-ary bipartite subbase 9’; let 

9 = Vo U 9’1, such that Y’o f3 3’1= 0 and ~~5% # 8 # nY1 (this is possible since 9 is 
binary and bipartite). Define an order “G” on X by 

x~y iff YES wheneverxESEY1. 

The relation “s9’ is reflexive and transitive; “G”’ ’ IS anti-symmetric too. For suppose 
that x # y and x G y G x. Since X is Tl, there exists an S E 9’such that x E S and ye S. 
However, this implies that there also exists a T E 9’ such that y E T and T fl S = 0, 
since 9 is binary. From this it follow:? that either S E: 9’1 or T E 9’1. If S E 91 then y EI S, 

since x G y, which is a contradiction.. If T E 9’1, th -n .x E T, since y G x, which also is a 

contradiction. 
We will show that “G’~ defines a complete lattice by proving that for each Fi’ c X 

there is a z E X such that z = sup X’. 
Let X’ c X. Define 

3% =(SE9(JIX’cS} 

and 

9’; ={T~9$1SflT#0 forallSO’&}. 

NOW n9; fln9’; # 0, since nY; # 0 Z nsPi and also S fl T # 0 for all S E 9; and 

T E 9; (notice that 9 is binary!). Choose z E n% hl f-j%. This point z is a? upper 
bound for X’, for let x’ E X’ and let x E T E 9$; th’en T E 9’; and hence z E T. 
Therefore x s z for all x E X’. 

Suppose now that x s z’ for all x E X’ and that z 6 2’. 3 hen there exists a T E Y1 
with the properties z E T and z’& T. As 9 is binary and bipartite, there is an S E 90 
such that S fl T = 8 and z’ E S. Now, X’ c S, since otherwise there must be an x0 E X’ 
and a T’ E (491 with the properties x0 E T’ and T’ fl S = 0. Then, since x0 6 z’ we have 
that Z’E T’, which contradicts the fact that S 17 T” = 0. Therefore X’ c S, which 
implies that S s 9%. But z ti S, which cannot be the case since z E n% f7 r]yl. 

Finally the topology induced by the lattice-ordering G coincides with the original 
topology of the space X. Indeed, for x E X we have that 

as can easily be seen. 
Furthermore 

~0, x~ =. (7(sdo 1 lt E s), 

for suppose that y G x and that y& S for some S E .Yo with x E S. Then there exists a 
2’ E Y1 such that S fl T = 18 and y E T. Hence x E T, contradicting the fact that 

snT=0. 
Also if T E 9’1, let 
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Then T n n,Yb # $3, since 9 is binary. Choose z E T f7 n%. We will show that 

If L < y, then y E T since z E T. If y E T and L’ g y, then there exists an S E Y0 such1 that 
y E S and z 6 S. However, S fl T f 8 and consequently S E 9’; and z E S, which is a 
contradiction. 

Conversely, if S E $70 let 

gP’, ={T~9#r)T#0}. 

Then S n nSb”, # 0, since 9 is binary. Choose z E S fl nP’i. We will show that 

[Cl, z] = s. 

If Y(:Z and y~lS then ycT for some TM, with SnT=0. Hence z@T, which 
contradicts the fact that y < z. If y E S and VYZ z then there is some T E 9’1 such that 
y E T and z ftt T. Then S fJ T # 0 and T E 9i. Hence z E T, contradicting the fact that 
z& T 

(ii) + (iii). Let X be a space with a binary bipartite subbase 9’. Jt‘,y definition G(9) is 
bipartite and, by theorem 2.2, X !s homeomorphic to the graph space of G(9). 

(iii) + (ii). Let G b e a b’ rpartite graph. It is easy to see that the binary subbase 3 (G) 
for the graph space of G is bipartite. Cl 

aphs 

We now turn our attention to compact tree-like spaces, which are characterized 
with the help of weakly comparable subbases and graphs. 

A tree-like space is a connected space in which every two distinct points x and y c ur 
be seperated by a third point z, i.e. x and y lie in different components of X\(Z). 
Obviously every connected orderable space is tree-like; however, the class of 
tree-like space is much bigger, see e.g. Kok [IS]. 

A collection .Y of subsets of a set X is called normal if for every So, Sr E 9 with 
son s1 := there exist TO, Tt E 9 with So fl TI = 0 = TO f7 S1 and TO U TI = X. Clearly 
a normal collection is weakly normal, cf. Section 1. In addition 9 is called weakly 
comparable if for all SO, &, SZE 9 satisfying SJl Sr = 0= Son SZ it follows that 
S1 c SZ or SZ c S1 or S1 n Sa = 0 (the notion comparable will be defined in Section 5). 

A collection 9 of subsets of a set X is called connected (strongly connected) if there 
is no partition of X in two (finitely many) elements of (49. 

.I. Let 9 be a weakly comparable collection qf subsets of the set X. Then the 
following properties are equi4ent: 

(i) 9 is normal and connected; 
(ii) 9 is weakly normal and strongly connected. 
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roof. (i) *(ii). Let be weakly comparable, normal and connected. Clearly 9 js 

weakly normal. Sup se ,tY is not strongly coneected and let Bc be the minim;11 
number such that there are pairwise disjoint sets S1, . ., . 9 & in 9 with union X Since 
,9’ is connected, k 2 3. As S1 fl S2 = 0 there exist, by the normality of Sp, T1 and T2 in 9 

1 f7 T2 = 0 = Tl (I S2 and Tl U Tz = X. Now & inteasects either Tl or Tr. 
may suppose Sf f7 TI f 0. Hence since S2 1’7 TI = 0= 232 fl&, by the weak 

comparability of 9, Ss n TI = 0 or TI c 233 or .Ss c Tl. Since the first two cases cannot 
occur, it follows that & c Tl. In the same way on? proves that for each j = 4, . . . , k 
either Si c Tt. or Si (7 Tl == 0. Hence there exists a smaller number of pair-wise disjoint 
T~t’ts in 9 covering X 

(ii)+(i). Let 9’ be a weakly normal, strongly connected, weakly comparable 
collection of subsets of X We need only show that 9’ is normal. To prove this let 
TO, Tl E 9’ such that 70 fl TI = 0. Let k be the minimal number such that there are 

Sl , . . . , Sk in Y’coveringX and such that each Si meets at most one of To and Tl. By 
the minimality of k vve may suppose that no two of these subsets Sj,, . . . , Sk are 
contained in each other. If k = 2 we are ready. 

Suppose therefore k a 3. We prove that the sets Sl, . Ib . . , Sk are pairwise disjoint. 
Without loss of generality we prove only that S1 n S2 = 0. Suppose that S1 n Sr # 0. 
By the weak comparability they are neither both disjoint from To nor are they both 
disjoint from Tl. We may suppose therefore St Cl TO # 0# S2 fl Tl. Since now 
S1 fl Tl = 0 = Tl n To it follows that either St c TO or TO c S1. If S1 C= TO then 
Ton Sz 2 S1 f7 S2 ~0, which cannot be the case since Ton SZ = 0. Et follows that 
TO c S1 and similarly T1 c S2_ We may suppose that S3 f7 TO = 0. Since also Sz 0 TO = 
0 we have S3 fl Sz = 0. From this it follows that Sr, n Tl == 0 and since also Sr n TI = 0, 
we have SJ n S1 = 0. Now from the weak comparability it follows from S3 fl S2 = 0 = 
S3 fl S1 that Sa n S1 = 0, which is a contradiction. 

Since there are no pairwise disjoint sets Sr, . . . , Sk in 9 with union X, it cannot be 
the case that k 3 3. Hence 9 is normal. D 

A graph (V, E) is called normal if for each edge {v,, W}E E there are edges {t’, v’} 
and {w, w’} in E such that whenever {v’, v”} and (w’, w”} are edges then also (v”, w”) is 
an edge (see Figure 2). 

V” 0 0 w” 

V W 

Fig. 2. 
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Clearly each normal graph is a weakly norma graph (see Section I). 
A graph (V, E) is called weakly comparable if for each “path” 

(110~ VI}, (VI, ~1, (~2, ~31, (~3, ~4) of edges either (01, ~31 E E or (VO, ~31) E E or 

(VI, v&z E (see Fig. 3). 

Fig. 3. 

A graph ( 5 5) is called contiguous ( ruijning [4]) if for each edge (v, w) E E there 
exist edgzs (v, v’) and {w, w’} such that (v’, w’)@ E. 

A graph (Vi, E) is connected if for each two vertices v, w E V there is a path of edges 
(t’, vl)r (01, 02)s - l l 3 bkr w;: 

Finally, we call a collection 9 of subsets of a set X graph-connected if the 
corresponding non-intersection graph G(9) is connected. 

Lemma 4.2. Let 9 be a binary collection of subsets of the set X with non-intersection 
graph G(9). Then 

(i) 93s normal iff G(Y) is normal; 
(ii) 9’ is weakly comparable iff G(9) is weaklv comparable ; 

(iii) 9 is connected iff G(9) is contiguous. 

roof. Note that S1 U l l .USk=X(S+~,iE’[1,2,...,k})ifandonlyifinG(.s@) 
for each S’,, . . . , S’, with {Si, Sl} is an edge of G(9) it follows that {Si, S& . . . , Sk) is 

not independent. Cl 

If X is a tree-like space then a subset A of X is called a segment if A is a component 
of X\(xo} for certain .Q E X. Kok 1151 has shown that every segment in a tree-like space 
is open. In particular every tree-like space is Hausdorff. 

eore 3. Licit X be a topological space. Then the following properties are 
equivalent: 

(i) X is compact tree-like. 
(ii) X possesses a binary normal connected (closed) subbase 9 such that for all 

To,T~~YwehavethatT&T~orT~cToorTonT~=OorT~UT~=X. 
(iii) Xis homeomorphic to the gridph space of a connected normal contiguous weakly 

comparable graph. 

. (i) 3 (ii). et X be compact tree-like and let % denote the collection of 
seg,ments of X. 01 distinct points of X are contained in disjoint 
segments, the co plies that % is an open su 
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e will show that for all Uo, Ul E % either U0 U VI =X or U0 n U1 = 0 or 
UOC Ut or Ul c UO. TO prove this, take Uo, U, E QiV And suppose that U1: is a 
component of X\(xi} (i E (0, I}). Without loss ok generality we may assume that 
xo it ~1. Suppose that X\{Xi} = Ui + UT (i E (0, 1)) (this means Uj n U” = fj and 
X\{Xi} = Ui U UF ). We have to (consider two cases: 

(a) suppose first that nr E V,. We again distinguish two subcases: 
(a”‘) no E Ul. It then followv that clx( U,* ) = U,* U {x0} c &, since clrr (U,* ) is 

connected. This implies Uo U Ul= X 
(atii’) x0 E UT. The clx( Ul) c t&o, siwe cl* ( Ul) is connected. Therefore U,, c 
Uo* 

(b) suppose that x1 E U,*. We distinguish two subcases: 
(b”‘) ~0 E Ul. This implies that C~X( UO) c Ul, since cPx( Co) is connected. Hence 
Uoc Ul. 
(b(“‘) x0 E UT. Now we have clx( UO) c UT, since cl&J~> is connected< 

Therefore UO c Ut and consequently U. fl l!Yl = 8. 
Now define 9 = {X\U 1 U E %}. Then 9 is a ~10s: \< s&base such that for all 

7’0, Tl E 9 either To U Tl= X or To f7 Tl = 8 or To t Tl or Tl c To. In particular 9 is 
weakly comparable. To show that 9 is binary it sufhces to show that each covering of 
X by elemems of LZI contains a subcover of two elements of %. Indeed, let & be an, 
open cover of X by elements of % By the compactness of X there already are finitely 
many elements of ti COwAng X, say 

&U&U l ** U&=X (L&&&(1,2 ,..., n)). 

In addition, we may assume that 8 # Uist Uj for i # j. We claim rihat for each 

UiE{Ul,hJ2,**~9 V,,} there exists a Uj E { U15 Uzy . . . :, r/,) such that Ui I7 Uj + 8, fox 
assume to the contrary for some fixed i it were true that Ui fl Uj = 8 for all j f k. AS 

Wl, u2, l l 9 9 V,} is a covering of X it would follow that X is not connected., which is 
a contradiction. Therefore Ui U Uj = X. Consequently 9’ is a binary subbase. 

As X is Hausdorff, by Theorem 2.5, Y is weakly normal, which implies that 9 is 
normal by Lt=mma 4.1, since trivially 9 is strongly connected (notice that 3 consists 
of closed sets), 

(ii)+(i). Since 9 is a binary subbase we have. that X is compact. Therefore we 
need only prove that. X is tree-like. First we wiXE show that X ds connected Suppose 
that X is not connected. Then there are closed disjoint sets G and H such that 
G U H = X and G # 0 # H. G and H are intersections of finite unions ob subbase 
elements. Since G and H are closed, G and IiT are even finite intersections of finite 
unoins of subbase elements, or, what is the same, finite unions of intersections. Let m 
be the minimal number such that there are Ga, . . , , Cm such that 

(4 
(0) 
(74 

G 1, . c . , G* are non-void and intersections of subbase elements; 
GIU 0.. IJG,=X; 
there is an I c {1,2, . . . , m} such that 

lJGi#lb~iJGi and \JGin\,JGj=@. 
iEI j&I ieI j&d 
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We first prove that Gi fl Gi = 0 if i # j. Suppose that Gi n Gj Z 0 for i # ja we daim 
that Gi (J Gj = ~{TEYI Gi lJ Gi c T). For take x e Gi U Gk Then, since Gi and Gj 
are intersections of subbase elements there are To and Ti in 9 such that Gi c To, 
xgTo, GjCTl and xtiTi. NOW since ToflT~~GinGjZ0 and ToUTl#X 
(x& To U Tl!) it follows that either Tot Tl or Tl c TO. Therefore XE T for some 
T e 9 with Gi U Gj t T. It now follows that m is not the minimal number of sets with 
the above property, which is a contradiction. 

Second, we prove that each Gi is an element of K Suppose that some Gig 9. 
Let i # i. Then since Gi is an intersection of subbase elements and 9 is binary, 
there is a T E 3 such that Gi c T and T Cl Gj =0. The sequence 

Gl , . . l , Gi-1, Ty Gi+l, * l l 9 (sm is also a sequence with the above properties ((Y), (0) 
and (y). So again T f7 Gk = 0 if k f i, hence Gi c T c X\UkfiGk, which implies 
that Gi = T and therefore Gi E .K Hence there is a collection Gl, . . . , G,,, of pairwise 
disjoint subbase elements covering X and as 9 is weakly comparable, and hence by 
Lemma 4.1 is strongly connected, this is a contradiction. This proves that X is 
connected. 

We will now show that every two distinct points can be separated by a third point. 
Let x, y E X such that x # y. As X is a T1-space we have that {r} = n(Tc91 z E T} 
for all z E X and consequently, since 9 is binary, there exist TO, Tl E 9 such that 
x E To, y E Tl and To I7 Tl = 0. The normality of 9 implies the existence of T& Ti E 
9 such that TbUT\=X and Tof7T;=0=T~17T~. Define J$= 
{TEYITUT; = X}. Since X is connected we have that cplz U {T& } is a linked system 
and consequently Tb fl nd#0. We claim that this intersection consists of one point. 
Assume to the contrary that zo, r 1 1 E Tb fl n&with z. # zl. In the same way as above 
there exist So, S1 E 9 such that z. E S& and zi E Sr\& and SOU S1 =X. Since 
zag S1 we have that S1 E ti and consequently Tb U S1 #X. Mence T& c S1 or 
Sx c T for SI 17 T:3 = 0 is impossible since z1 E S1 n Tb. However, this implies that 
S1 c T& since zo & Si. With the same technique one proves that So c Th ; but this is a 
contradiction since Th #X. Let (~0 } = Td n n&Z. Then z. is a separation point of x 
and y, since Tb and n.%! are closed subsets of X such that T& U (nd) =X and 
x E T& and y in&!. This proves that X is compact tree-like. 

(ii) + (iii). Let X be a space possessing a binary normal connected subbase g such 
that for all TO, T, 5 9 we have that either To c Tl or Tt c To or To fl Tl = 0 or 
Z u Tl = X We may suppose that B ti 9 and XE 9. Then the non-intersection graph 
G (9) is normal. G (9) is weakly comparable since Y is weakly comparable, as is easy 
to show. G(9) is contiguous since 9 is connected. So we need only to prove that 
G(Y) is connected. Let To, T, E 9” then either 

(a) TO n Tl = 8; hence there is an edge in G(Y) between To and Tl; or 
(b) TO U TI = X: hence there are Tb and Ti in 9 such that T, n Tb = TI, n Ti = 

T’1 f? Tl = 8, forming a path in G(Y) connecting To and Tl; or 
Cc) TO c K; hence there is a T2 E F s clh that To f7 T2 = 0 = Trt n Tl, giving again a 

path connecting To and T1; or 
(d) . TI c To; this case is similar to case (c). 
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(iii)+ (ii). Let X be the graph space of a connected normal contiguous weakly 

connected graph G = (V, E). We will prove that the subbase B(G) for the graph 
space satisfies the conditions of (ii). a(G) clearly is binary, normal and connected. 
Suppose that v, w E G; we must show that either B, c &, B, c B,, B, (I &, = 8 or 
& U B, ‘= X Pick a path of minimal number k of edges from v to w. By connected- 
ness and weak comparability we have that k = 1, 2 or 3. 

Case i. k = 1, i.e. {v, w)E E so that B, n B, = 8: 
Case 2. k = 2, say (v, v”} E E and (of9 w} E E. It now follows that (v, w} E E 

(otherwise k = 1) and therefore B, c B, olr’ B, c B,, for if not, there would be edges 
{v, ~‘3, {w, w”} E E such that (v, w’}& E and {it, v’}& E, contradicting the weak 
comparability of G ; 

Case 3. k = 3, say (u, VI}, {VI, ~21, (~2, WOE E. By Case 2 we have B, c B,, or 
B,, c BU. In the former case B, fI B, = 0 (but then k = l), so we have B, c BU atid 
similarly B,, c B,. Now suppose that & U B, # X; then we conclude that B, U B,, U 
B, U B, #X and consequently we may pick a maximal independent set M such ihat 
v, ~1, ~2, w& A#. By maximality there is a tl EM with (tl, V}E E. Since {v, ~2% & E 
(otherwise k = 2) and {v, w} lif E (otherwsie k = l), we have, by weak comparability, 
that (tl, v2}c E. But then, by Case 2, B, c B, (then B,, fI B, = 0) or &, c &. But the 
latter case contradicts ME B,,\B,. Cl 

Corollary 4.4. Each compact tree-like space is supercompact. 0 

CoPollaty 4.5. Let X be a topological space, Then the following properties are 
equivalent: 

(ii X is a product of compact tree-like space. 
(ii) Xpossesses a binary normal connected weakly comparable closed subbase 

(iii) X is homeomorphic to the graph space of a normal contiguous weakly cornpar- 
able graph. 

ProoB. Notice that each graph is the sum of its components. Then apply Theorem 1.3 
and Theorem 4.3. 0 

An interesting application of this corollary is the following. In [1 I], De Grtsot 
proved a topological characterization of the n -cell ?“, and of the I-Iilbert cube 1” by 
means of a binary subbase of a special kind (cf. Theorem 5.5). Anderson [1] has 
proved that the product of a countably infinite number of dendra is homeomorphic to 
the Hilbert cube, where a dendron is defined to be a nondegenerate, uniquely arcwise 
connected Peano continuum. It is well known, however, that a dedron is simpl:! a 
compact metric tree-like space (cf. Whyburn [ 181). Si,nce the dimension of a dendr+n 
is 1, using our characterization of products of compact tree-!&e spaces, we are able to 
give a new characterization of the Hilbert cube, thus generalizing the result of De 
Groot, mentioned above, for the case of the Piilbert cube. 
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.6. A topological space X is homeomorphic to the Hilbert cube I” if and 
only if X has the following properties : 

(i) X is in/in ite aimensional ; 
(iii Xpossesses a countable binary, connected normal weakly comparable subbase. 

Proof. The necessity follows from Corollary 4.5, since the Hilbert cube is a product 
of compact tree-like spaces. The sufficiency follows from the fact that by Corollary 
4.5 X is homeomorphic to a countable product of dendra. As X is infinite 
dimensional this must be a countable infinite product. Hence X is homeomorphic to 
the Hilbert cube. 0 

rdered spaces aa3 comparable sub 

Finally we treat the relations between ordered spaces and comparable subbases 
and graphs. Note that an ordered space is the interval space of a totally ordered set 
(cf. Section 3). Hence clearly every ordered space is a lattice space while moreover a 
connected ordered space is tree-like. 

Let X be a set and let 9’ be a collection of subsets of X. The collection 9 is called 
comparable (De Groot [ll]) if for all So, S1, Sz E 9’ with & $1& = 0 = S2 fI So it 
follows that either S1 c SZ. or Sz c &. A graph (V, E) is calletd comparable if for each 
path {vo, VI)? {VI, vz), (~2, v& [v3, ~41 of edges it follows that either (~0, v&z E or 
{VI, V~}E E (cf. Fig. 4). 

Fig. 4. 

Lemma 5.1, (i) A graph G is comparable iff G is weakly comparable and bipartite. 
(iii Each comparable .qraph is normal. 

(iii) A collection ,cP of subsets of a set X is comparable iff it is weakly comparble and 
bipartite. 

(iv) A comparable collection 9 of subsets of a set X is normal if it satisfies the 
following condition : for each x E .X and each 5’ E 9 with x e S there exists an So E 9 with 
xES@2izdSonS=@. 

roof, The simple proof is leie. to the reader. 0 

ewe . Let X be a topological space. The following assertions are equivalent: 
(i) X is compact orderable ; 
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(ii) X possesses a binary graph-connected comparable subbase ; 
(iii) X is homeomorphic to the graph space of a conrwted comparable graph. 

of. (i) + (ii). Let (X, s) be a complete totally-ord ered set, with universal boundls 
0 and 1. Clearly the subbase 

Y={[O, 111x EX, O~x < l)U{[x, 111x EX, o<x s 1) 

is binary, graph-connected and comparable. 
(ii) =$ (i). Let X be a space with a binary graph-connected comparable subbase 9. 

Since X is bipartite (Lemma S.l), 9’ induces a lattice ordering s on X, such as in the 
proof of Theorem 3.2 (ii) =$ (i). We only have to prove that this order is a total order. 

Suppose that < is not total, that is for some x, y E X we have XFZ y and y 6 x. 

Consequently there are S, T E ,sFi such that: 

XES, y&S, YET and xaT. 

Since 9 is graph-connected and bipartite there are &, . . . , Sk such that 

sns,=s,ns,=* l ’ =G,_,ns,=s,nT=Q) 

with k odd. Suppose that k is the smallest number for which such a path in G(9) 
exists. If k 2 3 then S1 fl& = 8 = SZ fl S3 and hence S1 c S3 or S3 c Si. If St c: Ss then 

ST& =s1fm$=s4ns,= l l * =s,nT=0, 

which gives a shorter path from S to T. 
The case S3 c Si can be treated similarly. 

Hence k = 1 and consequently S n S1 = 0 = Si f? T. Since 9’ is comparable, S c T 
or T c S:. This means that either x E T or y E S, which both are contradictions,, 

(ii) =$ (iii). Let X be a space with a binary graph-connected comparable subbase 9. 
Then X is homeomorphic to the graph space of the graph G(9), while moreover it is 

easy to see that G(Y) is connected and comparable. 

(iii) + (ii). Let X b e th e graph space of a connected comparable graph G = (V, E). 
<g(6) is graph-connected since G is connected. B(G) is comparable, for suppose 

that B,,, B,,,, B,, E 9 (G) and 

and B,, $ B,, and B,, c 13,,. 
IIence (~1, VZ}E E and (02, v&z E; and there are V’ and V”&a(Gj such that 

V’ E B,,\B, and V” E B,,\B,,. 
As v3 ti V’ there is a v4 E V' such that (~3, v4} E E. As vi & V” there is a vo E V” such 

that ( VO, VI} E E. Now 

{vo, VII, {2)1, v219 b2r v31, Iv39 t..4) E E 

and also {vo, ~3) & E (for V,O, 213 E V”) and {VI, ~4) e E (for VI, v4 E V’). This contradicts 
the comparability of the graph G. 
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Hence the graph space T(cZ:) of G has a binary comparable graph-connected 
subbase %I (G). 

This completes the proof of the theorem. c1 

Corollary 5.3 (De Groot & Schnare [14]). Let be a topological sapce. T&en the 

folio wing statements are equivalent: 
(a) X is a product of compact orderable spaces ; 

(ii) X possesses a binary comparable subbase ; 
(iii) X is homeomorphic to the graph space of a comparable graph. 

Proof. Apply Theorem 5.2 and Theorem 2.3. n 

Corollary 5.4. Let X be a topological space. Then the following statements are 
equivalent. 

(i) X is connected compact orderable; 
(ii) X possesses a connected graph-connected comparable subbase ; 

(iii) X is homeomorphic fo the graph space of a connected contiguous comparable 
graph. 

Proof. Apply Theorem 5.2 and Theorem 4.3. II 

Corollary 5.5. Let X be a topological space. Then the following statements are 
equivalent: 

(i) ,X is a product of connected compact orderable spaces; 
(ii) x possesses a connected comparable subbase ; 

(iii) X * h 1s omeomorphic to the graph space of a contrguous compambk graph. 

Proof. Combine Corollary 5.5 and Theorem 2.3. 0 

Adding countability conditions on the subbases and graphs one easily obtains 
characterizations of (products of) (connected) compact subsets of the real line (cf. De 
Groot [12], Bruijning 141). 

We are indebted to the referee and to Charles F. Mills for so me helpful comments. 

ote a 

Recently Van Douwen and Mills independently gave elementary proofs of the 
sul>ercompactness of cornpal -J-J tric spaces. In addition, 
compact tnpological gro; ‘ c’ S, ercompact. 
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