SOME VERY SMALL CONTINUA

Miroslav Hušek, Jan van Mill & Charles F. Mills

O. INTRODUCTION

Given spaces X, Y, we shall say $X \le Y$ if Y embeds in a product of copies of X. This gives a preorder on the class of topological spaces. In what follows we shall pretend that " \le " is an order; it will be clear how to formalize what we say, but we feel that our informal approach is more perspicuous.

The properties of " \leq " have been extensively studied (see [H], [P],[HP] for references). Our interest here is in a smaller class, the class of continua, and in particular the question of the existence of \leq -minimal continua and related questions.

In 1970 the first author asked whether or not the pseudoarc P is minimal. We answer this question in the negative, but with a very nonmetrizable continuum. It is natural to ask whether P is minimal among metric continua; we answer this question in the negative also.

CONVENTION 0.1. All given spaces are compact Hausdorff and have more than one point. In particular, continua are assumed to be nondegenerate.

<u>DEFINITION 0.2</u>. $X \le Y$ if C(X,Y) separates points of X.

Observe that for compact X, 0.2 is equivalent to the definition of \leq in the first paragraph above.

Clearly, $\{0,1\} = 2 \le X \le [0,1]$ for all X, $X \le 2$ iff X is zero-dimensional, and $[0,1] \le X$ iff X contains an arc.

1. THE MAIN RESULTS

Henceforth all given spaces are continua. Put $\mathbf{H} = [0,\infty) \subseteq \mathbb{R}$, $\mathbf{H}^* = 8\mathbf{H} - \mathbf{H}$.

THEOREM 1.1. IH is strictly smaller than any metric continuum.

This is the smallest of the continua promised in the title. The result is a corollary of

THEOREM 1.2. If f: $\mathbb{H}^* \to K$ is nonconstant then $\mathbb{H}^* \leq K$.

A more general, and in one sense sharper, result on lower bounds is:

THEOREM 1.3. If κ is a cardinal, and A is a collection of at most κ continua, each of weight at most κ , then there is a continuum K of weight κ with $K \leq H$ for each $H \in A$.

COROLLARY 1.3.1. Every set of continua is bounded below.

COROLLARY 1.3.2. If $\rm K_0$ and $\rm K_1$ are metric continua then there is K with $\rm K \leq \rm K_0$ and K $\leq \rm K_1$.

Since it is known [R] that there is a plane continuum incomparable with \mathbb{P} , 1.3.2 shows that \mathbb{P} is not minimal, indeed, that any minimally metric continuum is a minimum (i.e. a least metric continuum). We do not know whether such a beast exists.

2. PROOFS

<u>PROOF OF THEOREM 1.1.</u> By [AVEB] every metric continuum is the remainder in a compactification of \mathbb{H} , and hence an image of \mathbb{H}^* . Since every continuum has more than one point, the result follows from Theorem 1.2.

PROOF OF THEOREM 1.2. For U open in H, define

$$\hat{\mathbf{U}} = \mathbf{H}^* - \mathbf{cl}_{\beta \mathbf{H}} (\mathbf{H} - \mathbf{U}).$$

We shall say that <U, V> is an alternating sequence of intervals if

$$\mathbf{U} = \overset{\infty}{\overset{\vee}{\mathsf{U}}} <_{\mathbf{a}_{n}}, \mathbf{b}_{n}^{>}, \quad \mathbf{V} = \overset{\infty}{\overset{\vee}{\mathsf{U}}} <_{\mathbf{c}_{n}}, \mathbf{d}_{n}^{>},$$

 $a_n < b_n < c_n < d_n < a_{n+1}$ for each n, and $\sup_{n < \omega} a_n = \infty$.

The theorem follows at once from the following three observations:

- (a) If U, V are disjoint open sets of \mathbb{H}^* , then there is an alternating seguence <U,V> of intervals with $\hat{U} \subseteq U$, $\hat{V} \subseteq V$.
- (b) If p, g are distinct points of H * then there is an alternating sequence $\langle U, V \rangle$ of intervals with $p \in \hat{U}$, $q \in \hat{V}$.
- (c) All alternating sequences of intervals are the same; that is, for any two there is an autohomeomorphism of IH taking one to the other.

The above may be neatly summarized by saying that $\operatorname{\mathbb{H}}^*$ is nearly homogeneous.

PROOF OF THEOREM 1.3. We leave the elementary verification of the following fact to the reader:

FACT. If H and K are continua, U and V are open subsets of H with \overline{U} \cap \overline{V} = \emptyset , and U' and V' are open proper subsets of K with U' \cup V' = K, then

$$H \times K - (U \times U' \cup V \times V')$$

is a continuum.

Fix $\lambda \leq \kappa$ and $A = \{K_{\alpha} : \alpha < \lambda\}$ as in the hypotheses of the theorem. Let j: $\kappa \to \kappa^2 \times \lambda$ be a bijection such that if $j(\alpha) = \langle \beta, \gamma, \delta \rangle$, then $\beta \leq \alpha$; we write $j(\alpha) = \langle j_1(\alpha), j_2(\alpha), j_3(\alpha) \rangle$. Fix, for each $\alpha \leq \lambda$, proper open subsets A_{α} , B_{α} of K_{α} with $A_{\alpha} \cup B_{\alpha} = K_{\alpha}$.

We define inductively an inverse system ${}^{\mathsf{H}}_{\alpha}, {}^{\mathsf{f}}_{\alpha\beta}, {}^{\mathsf{K}}{}^{\mathsf{F}}$ of continua of weight at most $\kappa.$ Given ${\rm H}_{\alpha}$, let $\{{\rm U}_{\alpha}\colon \alpha<\kappa\}$ be an open basis for ${\rm H}_{\alpha}$ and let $\{< v_{\beta}^{\alpha}, w_{\beta}^{\alpha}>: \beta < \kappa\}$ enumerate the pairs of basic open sets of H_{α} with disjoint closures.

- (a) $H_0 = K_0;$
- (b) For λ a limit, $H_{\lambda} = \lim_{\leftarrow} \langle H_{\alpha}, f_{\alpha\beta}, \lambda \rangle;$ (c) $H_{\alpha+1} = K_{j_3(\alpha)} \times H_{\alpha} \langle A_{j_3(\alpha)} \times f_{\alpha j_1(\alpha)}^{-1} (V_{j_2(\alpha)}^{j_1(\alpha)}) \cup V_{\alpha\beta}^{-1} (V_{j_2(\alpha)}^{-1}) \cup V_{\alpha\beta$ $\cup B_{j_3(\alpha)} \times f_{\alpha j_1(\alpha)}^{-1} (W_{j_2(\alpha)}^{j_1(\alpha)})),$

and the f's are defined as the restrictions of the appropriate projections. We claim that $K = \lim_{\leftarrow} \langle H_{\alpha}, f_{\alpha\beta}, \kappa \rangle$ satisfies the conclusion of the theorem. We need only show that there are point-separating maps from K into ${\rm K}_{\rm w}$ for $\alpha < \lambda$; so fix $\alpha < \lambda$ and distinct p,q \in X. For some $\gamma < \kappa$, $f_{\kappa\gamma}(p) \neq f_{\kappa\gamma}(q)$, and so for some $\xi < \kappa$, $f_{\kappa\gamma}(p) \in V_{\xi}^{\gamma}$ and $f_{\kappa\gamma}(q) \in W_{\xi}^{\gamma}$. Let $\eta = j^{-1} < \gamma, \xi, \alpha > 1$. Then

$$\mathbf{H}_{\eta+1} \; = \; \mathbf{K}_{\alpha} \; \times \; \mathbf{H}_{\eta} \; - \; (\mathbf{A}_{\alpha} \; \times \; \mathbf{f}_{\eta\gamma}^{-1}(\mathbf{V}_{\xi}^{\gamma}) \; \cup \; \mathbf{B}_{\alpha} \; \times \; \mathbf{f}_{\eta\gamma}^{-1}(\mathbf{W}_{\xi}^{\gamma})) \; , \label{eq:hamiltonian}$$

and one sees directly that projection onto K separates f (p) from f (q). \Box

3. QUESTIONS AND REMARKS

As we have already noted we do not know whether there is a minimally metric continuum; one feels strongly however that there is not. One can ask also whether there is a minimal planar continuum.

We should note that one can easily construct, given a continuum K, a continuum H with $H \not\geq K$; with Theorem 1.3 this shows that there are no minimal continua.

Let us also add the following information. If X is a hereditarily indecomposable (metric) continuum, then $X \leq \mathbb{P}$, $[B_1]$. There is also a hereditarily indecomposable continuum M_1 in \mathbb{R}^3 such that $X \not\leq M$, for every plane continuum X, [C], [R]. Finally, \mathbb{H}^* is indecomposable, $[B_2]$.

REFERENCES

- [AVEB] AARTS, J.M. & P. van EMDE BOAS, Continua as remainders in compact extensions, Nw. Arch. Wisk. (3) 15 (1967) 34-37.
- [B₁] BELLAMY, D.P., Mapping hereditarily indecomposable continua onto a pseudoarc, Topology Conf. Virginia 1973, Lecture Notes Math. 375 (1974) 6-14.
- [B₂] BELLAMY, D.P., A nonmetric indecomposable continuum, Duke Math. J. 38 (1971) 15-20.
- [C] COOK, H., Continua which admit only the identity mapping onto nondegenerate subcontinua, Fund. Math. 60 (1967) 241-249.
- [H] HERRLICH, H., Topologische Reflexionen und Coreflexionen, Lecture Notes Math. 78 (1968).
- [HP] HUSEK, M. & J. PELANT, Note about atom-categories of topological spaces, Comment. Math. Univ. Carolinae 15 (1974) 767-773.
- [P] PELANT, J., Lattices of E-compact spaces, Comment. Math. Univ. Carolinae 14 (1973) 719-738.

151