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INTRODUCTION

The present paper is a continuation of investigations on subbase con-
vexity theory, started in [7] and in [8]. We are now concerned with
so-called conwexity preserving (cp) mappings, a notion comparable to affine
mappings in vector space theory.

A first result is a characterization of ¢p maps in terms of subbasic line
segments, from which it can be deduced that normal binary subbases on
a given space are incomparable. It is also proved that a cp map commutes
with the fundamental operations on spaces with normal binary subbases.
This leads to a uniqueness theorem of induced Jensen mappings on super-
extensions, and to a new order theoretic classification of the super-
extensions of a space. We finally prove the existence of metrics which
are intimately related to normal binary subbases of metrizable compacta.

1. CONVEXITY PRESERVING MAPPINGS

1.1 susBasiCc cONVEX sETS. Let & be a closed subbase of a space X.
A nonempty set O C X is called F-closed (or S -convex) if there is a family
% C & such that C= N €. We let H(X, .%) denote the set of all &-closed
subsets of X, equipped with the subspace topology of H(X), the hyper-
space of X. These notions originated from investigations on normal
binary subbases and superextension theory: see [6], [7] and [9].
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1.2 perisirioN. Let X and ¥ be spaces, and let & and 7 be closed
subbases of, respectively, X and Y. A function f: X — ¥ is called a
convexity preserving map (briefly: a cp map) relative to & and 7 if for
each T e H(Y, ) it is true that f1(7) e H(X, &) v {#}. In this case
we shall write

(X, &)= (Y, 7).

Notice that a ¢p map is automatically continuous.

A definition of ¢p maps has already occured in van Mill and Wattel [8]
in the case of binary subbases. Using theorem 1.5 below, it can be seen
that the latter definition coinecides with ours in the case of normal binary
subbases. The main advantage of the present definition is that the com-
position of ep maps is again a ¢p map. It easily follows that there is a
category, whose objects are the pairs (X, &), X a space and & a closed
gsubbage of X, and whose morphisms are the cp maps.

1.3 EXAMPLES AND BASICAL CONCEPTS

(a) For each i€ I, let X; be a space and let %; be a closed subbase
of X;. The product space, X = [ier Xi, is given the following product
subbase

& = HY@:{nZl(&)ib‘ie‘% ?:EI},
iel
where m;: X — X; denotes the projection. Each map 7 is then a cp map
with respect to & and .

(b) Let & be a closed subbase of X. A linked system in & is a family
# C % such that each two members of & meet. A maximal linked system
in & is briefly called an mls. Let A(X, &) be the set of all mls’s in e
topologized by the following closed (Wallman-type) subbase:

Pr={8+|8 e 1,

where S+={% e (X, ¥)|8 e ¥}

This subbase has the obvious property that each linked system % C &+
has a nonempty intersection. Such a subbase is called binary. The resulting
topological space is called a superextension of X.

If X is a Tq-space, and if & is a T:-subbase (i.e. for each z € X and
S € & such that z ¢ S, there is an S’ € & with z € §' C X —8), then there
is a canonical embedding i: X — A(X, &), defined by

i(x)={8lxe 8 e &}.

It is easy to see that ¢ is a cp map, relative to & and S+ For details,
see Verbeek [10].

(¢) Let.% be a closed Ti-subbase of the Th-space X. As usual, H(X, &)
denotes the space of all &-closed subsets of X. At certain occassions,
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the collection H(%), consisting of all sets of type

(0, X>={De H(X, #)D N C=0}, Cc HX, &)
> ={DeH(X,#)DCC}), CeHZX, ),

forms a closed subbase of H(X, ). This is the case if & satisfies the
following conditions: & is closed under intersections, H(X, &) is compact,
and & is normal (i.e. for each pair of disjoint sets 81, 82 € & there exist
81, 83 € & such that S; C 8y —8s, Se C 8;—81, and 8; U S:=X): cf. van
Mill and van de Vel [7].

In this case, the (canonical) embedding of X in H(X, &) is a ¢p map
again.

(d) The most interesting examples of such “compact” subbases are

the normel binary subbases, for which a rich *“‘geometric” theory can be
built up with as a main tool the so-called nearest point map

»: X xHX, &¥)—> X.

This map is constructed as follows. For each subset 4 of X, the & -convex
closure of A is the set

Ig(d)= N {Se L|8D 4).

(with the intersection of the empty family equal to X). If 4 is a two-
point set {1, 22}, then I (A4) is also called the S -interval joining x1 and
x9. Then for each z ¢ X and for each C € H(X, %), p(x, C) is the unique
point contained in the set

Y Ler(®, e,

ceC
See [7], where it has also been proved that p is continuous. We shall
prove that the map p is a c¢p map in each variable separately. Hor con-
venience, the mappings

p(—,0) with C e H(X, &) fixed,

p(x, —) with x € X fixed
will also be called “nearest point maps”. Notice that p(—, C)is a retraction
of X onto C for each C = H(X, &).

(e) A particular type of ¢p maps has already been used by Jensen
(ef. [10]) in extending mappings to superextensions. This goes as follows.
Let & be a closed subbase of X, and let ¥ be a closed normal subbase
of Y. If f: X — Y is such that f}(T) e & for each T €5, then there
is a continuous map

AN=Mf; &, T): A&, &) = UY, T),
sending % € A(X, &) onto the unique mls in 7 containing the linked
system

(@111 e £}
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(a linked system, which is contained in a unique maximal linked system
is often called a pre-mis). A(f) is called the induced Jensen map of . If &
and J are T'i-subbases, and if X and Y are T'y-spaces, then A(f) extends
{ relative to the canonical embeddings

X CAX, #); YCUY,T)

We shall prove below that A(f) is a cp map, relative to the induced subbases
&+ and F+. We shall also prove a uniqueness property for A(f).
It is assumed throughout that all topological spaces are Ti-spaces.

1.4 mueorREM. Let & and F be normal binary subbases of the spaces
X and Y, respectively, and let f: X — ¥ be a continuous map. Then the
following assertions are equivalent:

{ is a cp map relative o & and T
b) for each pair of points a1, 22 € X,

f (1, 22)) C L (f(a1), f(wa))-
PROOF OF (a)=- (b). Let xy, x5 X. Then

a1, ¥ € YT g (f(21), f(z2)),
and using the convexity of the latter set,

L (21, 22) C fFHILg (f(1), fl2)).

PROOF OF (b)=- (a). Let Te H(Y,7), and let ay, zz € /(7). Then
f(x1), f(22) € T and hence Iz (f(x1), f(z2)) CT. Using (b), it follows that

Lo(y, @) C fHT).

/ being continuous, f1(7") i closed. It has been proved in [7] that a non-
empty closed set € of X iy F-closed if (and only if) for each x;, w2 € C,
Toe(wy, x2) C €. Hence, fHT") is &-closed or empty. O

1.5 mamorEM. Let f: (X, &) = (Y,.9) be a ¢p map, where & and I
are normal binary subbases of X and Y respectively. Then for each
Se H(X, &), the set {(S) is the trace on im (f) of some F -closed set of Y.
In particular, we have for each @1, 20 € X that

[l (@1, 22)) =17 (f(21), Haw2)) Mim (f).
rroor. Let S e H(X, &). Then obviously
H(8) C Iz (f(8)) Nim (f).
Let y e I5(f(S)) M im (f). Then ([7] lemma 2.1)
W= N Iz (f@), y),

xesS
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and hence

f=y)= N g (), ),

TS

where each member of the right hand intersecting family is & -closed.
Hence

P {8}V {7 (@), y)lw € 8}
is a linked system within H(X, %), and &% being binary, N %+ 0. But
NF—Fly NS,
proving that y e f(S). This argument yields that
L ((8)) M im (f) C £(S).
Applying this result on 8=1TIg(21, z2). we find that

L (21, %)) =L (f(L g (1, 22)) O im (f).
Now,

L7 (f(m), f(x2)) C Lg (f(L (1, 22))

since f(w1), f(x2) € I (f(L (w1, 22)) and since the latter set is 7 -closed,
whereas

fsr (1, 22)) C L7 (f(21), f(a2))
since f is a cp map, and hence

L7 (fLs (21, 22))) C L (f(zn), f(22))-
This proves that

Tg (U (2, @2) = L7 (f(21), f(22)),
and hence that

flo (@, @2)) =L (f(1), f(w2) O im (f)). O

1.6 corOLLARY. Incomparability of normal binary subbases. If &1 and
Fa are normal binary subbases of the space X such that H(X, %) C
C H(X, F3), then H(X, $)=H(X, ).

PROOF. By assumption, the identity map

id: (X, %) = (X, 1)
18 a cp map. Applying theorem 1.5 then yields that
H(X, %) CH(X, %1). O

The above corollary motivates the following definition: two closed
subbases ) and &3 of a space X are called equivalent if H(X, %)=
e LX),
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1.7 coroLLarYy. Let X be a compact tree-like space. Then wp to equi-
valence, X admits a unique normal binary subbase.

PROOF. There is a normal binary subbase #p=H(X, %) of X, con-
sisting of all nonempty subcontinua of X (cf. van Mill and Schrijver [6]).
Let % be another normal binary subbase of X. Using the associated
nearest point map (cf. example 1.2(d)), each member of H(X, &) is a
retract of X, and hence a subcontinuum. This proves that H(X, %) C
C H(X, %), and by corollary 1.6, % and & are equivalent. O

If X is a metrisable continuum which admits a normal binary subbase,
then X ig an AR (cf. van Mill [5]). Hence, if X is 1-dimensional moreover,
then X is a dendron, i.e. a metric compact tree-like space (cf. Borsuk [2]).
This leads to the following problem. If X is a metric continuum of
dimension >1 which admits a normal binary subbase, does X then admit
at least two non-equivalent normal binary subbases? Does X admit two
normal binary subbases which are not even isomorphic in the category
of cp maps!?

2, MORE PROPERTIES AND EXAMPLES OF CP MAPS

There are three fundamental operations on spaces with normal binary
subbases: the nearest point map, the convex closure operator and the inter-
section operator. It turns out that each of them is preserved by a cp map.
Moreover, we prove that the nearest point map is cp in each variable
separately and that c¢p extensions on superextensions are unique.

2.1 THROREM. Let & be a normal binary subbase of X and let C e H(X, &).
Then the nearest poini mapping p: X — C is a cp map.

PROOF. (' is given the canonical trace subbase, derived from &. Let
DeH(X, )N (. Let z, yep(D) and assume that there is a point
ze Ig(x, y)—pYD). Then p(z) ¢ D and consequently, by normality of &,
there are Sy, S; € & such that p(z) e §g—81, D C 81 —8p and 8§y U §;=X.
We claim that z € So—S1. For assume to the contrary that z € 8;. Fix a
point d € D C C. Then

{p()}= N Iz, c) N CClg(z d)C8y,
ced
which is a contradiction. Hence z € So—81. However, this implies that
[{z, ¥} N So| =1, for, suppose that = and y are both contained in ;. Then
so is I (x, y), which contradicts the fact that z ¢ S;. Therefore we may
assume that z eS8 This is again a contradiction however, since
p@E)}= N Lgx c) N CC Iy, p() C S
ceC
The result then follows from the continuity of p (cf. [7]) and from
theorem 1.4. ]



2.9 TEmOREM. Let & be a binary normal subbase of X, and let xo € X.
Then the mearest point map p: H(X, ) — X, sending A e HX, &) to
plxe, A), is a cp retraction.

PrROOF. Let H(S) denote the canonical subbase of H(X, &), as de-
scribed in example 1.3. It has been shown in [7] that this subbase is normal
and binary if % is. Then:

%) Imed, B=de(4 U By 0 N{Ug(@b), Xlacd,beB)

ie. Celngw)(4,B) ift 0 CIg(A U B) and for each aed,be B: C'N
N To(a, )= 0. In fact,

Iy 4, B)= N KDY|4, Be(D)}n N{(E, |4, BelB, X5},

by definition, and formula (x) easily follows.

Let A, Be H(X, &) and let O € Ig(s)(4, B). For simplicity of notation,
we write zp— p(xo, D) for each D € H(X, &). Assume that 2¢ &1 op(ra, zB).
By normality of & there exist 8o, 81 € & such that wx¢e So—~5y,
I(24, 28) C 81 —8o, and So U S1=X. Then 4, or B, meets Sp, for other-
wise A UBCIg(A U B)CS; and consequently € C 8i, contradicting
that xc € C —81. Assume e.g. that 4 meets So. Then o ¢ 8o, for otherwise,
z4€ 8. Hence ape S1; also T g (x4, 25) C Sy and €N T (x4, xp) # 0 whence
O meets S;. But this implies that z¢ € 81, which is a contradiction. Using
the fact that p is continuous (cf. van Mill and van de Vel [7]), theorem 1.4
implies that p is a cp map. Clearly, p is a retraction. O

REMARK. The above theorems suggest the question whether the nearest
point mapping p: X x H(X, &) — X is a c¢p map. The following example
answers this question negatively. Let X =1 and & ={[0,z][0<z<1}V
U {[z, 1]|0<z < 1}. There is an obvious embedding ¢: H{I, &) — I? de-
fined by

H(A):=(min 4, max A4).
Identify H(I, &) and ¢(H(I, ¥))={(x, y) € 2|z <y}. Then it is easily seen
that

3 = ([0, 31> {3, wiE<y}) v (5 Ux{(& dla<z)) V

U ({3 x {(@, plle <t y= 3
It can be verified that the canonical product subbase of X x H(X, &)

coincides with the trace of canonical product subbase of I3 on the sub-
space I x $(H(X, &)). It easily follows that p~1(}) is not subbasic closed.

2.3 tEEOREM. Leét f: (X, #)— (Y, T), where & and T are normal
binary subbases. Then f commutes with the nearest point map, i.e. if
TeH(Y,F) and if

p: X = T); p: Y = Ly (D)



denote the corresponding nearest point mappings, then the following diagram
commates :

x— P

1
f Jflfl(T)

P :
Y (T

PROOF. Choose € X. Then

p@}= N Igkv)n D).

vel (1)

Consequently, by theorem 1.4,
{fp@}C N g ) n YD)

'vef_I(T)

C N Iz, fv) 0 fFT)

vef~LT)
C N Ig(f),t) 0 Iz ({AT)
tesy= 1T
= {pf()}
(for the last equality see [7], lemma 1.2). ]

2.4 TEHEOREM. Let f: (X, %) = (Y, 7), where & and F are normal
binary subbases. Then [ commutes with the convex closure operators I and
Ig, d.e. for each closed set A C X,

fIo(A)=17(f(4)) Nim (f).

PROOF. Since f(4) C f(Is(4)), we have that I (f(4)) Nim (f) C (L (A4
by theorem 1.5. On the other hand, 4 C f-1Ig(f(4)) and since f is a cp
map we conclude that Ig(4) C g (f(4)). Therefore,

H(4) C Lz (f(4)) nvim (f). O

2.5 THEOREM. Let f: (X, %) —> (Y, T), where & and I are normal
binary subbases. Then [ commutes with the intersection operator, @'e for
each linked system ¥ C H(X, %) we have that (N L)= Nrew (L

PROOF. Let ye ﬂLng (L). Since f is a cp map, the fiber f(y) is in
H(X, ). Then £ U {fy)} is a linked system of -closed sets. Conbe—
quently, by the binarity of &, we have that N # N j-1(y)#@, proving
that y € f(N &). O

2.6 THEOREM. Let & and 7 be normal T1-subbases for the spaces X
and Y, respectively, and let f: X — Y be a mapping such that {Y(T) e &
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for each T € 7. Then the induced Jensen mapping
M=Af: &£, T): UX, &) = WY, T)

s a cp mapping extending f. Moreover, A(f) is the unique cp mapping which
extends f.

Due to the fact that a space X is usually not dense in A(X, &) (e.g.
if X is compact and if & is not binary), there may as well exist more
than one continuous extension of the map f. Restricting to the category
of ¢p mappings, the extension is unique. Hence, superextension theory
can be regarded as “‘ordinary compactification theory” within the appro-
priate category.

PROOF. First notice that the Jensen mapping A(f): (X, &) — MY, T)
is continuous. Let 7' € .7. We will prove that A(f)[T+] € HA(X, &), F+)
or is empty, which suffices to prove that i(f) is a cp map. Take .#, 4" €
€ A(f)[T*] and Felg+(4, A7) such that &P ¢ i(f)[T+]. As {TeT|
HT) € #} is a pre-mls for A(f)(#) there is a Ty € F such that f1(Ty) e #
and T N T=0. Take T4, 7" € 7 such that Ty C To—T", T CT'—T and
TowT'=Y. Then fYTo)u FYT")=X and consequently [-1(Tp)* U
U YT =AX, &). Now if .# and A4 both belong to f~1(7T")* we con-
clude that

Pelgi(M, V) C T,
which is a contradiction since Z e f1(To)* and [1(To)* N f-1(T")y=0.
Hence, without loss of generality we may assume that .# ¢ f-1(75)+. Then
To € Af)(#) and as To N T=0, this is a contradiction. Now, from the
continuity of A(f) and from the characterization of %+-closed sets in
AX, &) mentioned in the proof of theorem 1.4, we conclude that A(f)
is a cp map.

We next prove that A(f) is unique. Suppose that g: A(X, &) - A(Y, 7))
is another cp map which extends f. Let .# ¢ A(X, #). Then

(#)}=g( N M%)
Me.#

C N g
Me#

— N gUg(M)) (since M+ =T g+(M))
Me#

= () Ig+g(M)) nim (g) (theorem 2.4)
Me.#

C N Ig+(f(M)) (since f equalg ¢ on X)
MeH

= (| {T*Te7 and &M c A :{(M)CT}
TeF

=N (2},
since {T'e 7|AM e 4 {(M)CT} is a pre-mls for A(f)(.#). O
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The above theorem can now be used to construct a natural partial
ordering on the set of superextensions with respect to normal subbases
of a fixed space. To this end, let X be a topological space and define

AX):={AX, &)|& is a normal Ti-subbase for X}.

27 perxnmmioN  Two elements A(X, &) and A(X,.7) of A(X) are
called equivalent when there is a cp homeomorphism ¢: A(X, &) — A(X, 7))
which extends idx

Now define an order < on A(X) by putting

MX, #)<MX,T) iff there exists a cp surjection
f1 AX, ) — MX, &) which extends idx.

We then have:
2.8 THEOREM. Up to equivalence, < 1is a partial ordering.

PROOF. We only need to prove that < is antisymmetric. Take (X, &),
AX, T) e A(X) and assume that there exist cp surjections f: A(X, &) —
- MX,7) and g: A(X, T) - AX, &) extending idx. Then

fog:MX,T)—=UX,T)

is a cp surjection which extends idx. By theorem 2.6, we have that
f og=idix,7). In the same way, g of=idix,s. Hence A(X, &) and
AMX, J) are equivalent. O

3. APPLICATION: THE EXISTENCE OF SUBBASE-CONVEX METRICS

3.1 DEFINITION. Let & be a closed subbase of the space X, and let
d be a metric on X. Then d is called F-convex provided that for each
Se H(X, %) and for each r=0,

= {z|d(z, S)<r}

is #-closed.

We shall present examples showing that the above defined notion is
independent of the classical notion of a convex metric, even in the case
of normal binary subbases of connected spaces (a connected space, which
admits a normal binary subbase, is also locally connected: cf. Verbeek
[10]. If the space is metrizable, then it is a peano continuum — even an
AR — and hence it admits a convex metric, cf. Bing [1]).

3.2 EXAMPLES

(8) o denotes the cardinal number of the natural number system.
Let Q =[0, 1]° be the Hilbert cube, and let .7, be the canonical (product)
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subbase of ¢, which is normal and binary. Then the metric d on @, de-
fined by

d{(Zn)news (Yn)neo) = max {277 |zp —ya| |n € 0}
is a J w-convex metric on @.

(b) Let X be a compact space, and let d be a metric on X. Then the
formula

d(M, N)=inf {r]FM € M: B(M)e N}

defines a metric d on A(X, H(X)) extending d (cf. Verbeek [10]). We prove
that d is convex relative to the induced subbase H(X)™ of M(X, H(X))
(it is customary to write A(X) instead of A(X, H(X))).

Let T e H(AX), H(X)*). Then there is a (linked) collection ¥ C H(X)
such that

= N {Ct|C e €}
We prove that for each r>0,
(*) B(T)= N {B(C)|C e €}.

Let .# € B(T). By the compactness of A(X), there is an 4" € [ with
d(M, NV)<r. Hence B(N)e # for each N .4, and since ¥ C 4", we
find that .# is in the right hand set of the equation (x).

If the latter is true, then by the symmetry of d,

B (M) C#0, Me # Ce¥.
By Zorn’s lemama, there is an mls A" in H(X) such that
N DE U {B(M)|M e A}.
Hence A4 €7 and d(.#,.4")<r by construction.
(¢) The usual metric d on [0, 1]2,
d((x1, @2), (41, ¥2)) = (|21 — 41>+ w2 —ya )3,

is convex, but not Zs-convex, where 75 is the canonical (product) sub-
base of the square.

(d)y Let the metric d on the square [0, 1] be defined by,
d((w1, @2), (Y1, y2)) = max {{v1—ml, |22 —2/}
and consider the metric subspace
X = ([0, 1] {0}) L ({1} x [0, 1]).

Then the trace of the canonical subbase 2 of the square on X yields a
normal binary subbase of X, the metric d on X is subbase convex, but
it is not convex on X. Notice that X a [0, 1], and hence the subbase
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of X in consideration is equivalent to the usual one (theorem 1.6): the
unit interval admits @ nonconvexr, subbase convexr metric.

The main objective of this final section is to prove the existence, on
metrizable spaces with a given normal binary subbase, of an associated
subbase convex metric. Such a metric has certain desirable features, as
is shown in our next result:

3.3 THEOREM. Let & be a normal binary subbase of X, let d be an
F-convex metric on X, and let 8 € H(X, ). Then the corresponding nearest
point map

ps: X — 8

has the following properties:

(a) ps ts @ metric nearest point map, t.e. for each xc X,
d(z, 8)=d(z, ps(z))

(b) ps is a metric conlraction, i.e. for each xy, zee X,
d(ps(er), ps(es)) <d(@s, ).

Recall, moreover, that ps is a relraction of X onto S.

PROOF OF (a). Let r=d(x, 8). Since {x}ec H(X, %), we find that
By(x) e HX, &).
X being compact,
8 N B(x)#0.
Hence, by the construction of ps, ps(x) € By(x), i.e. d(z, ps(x)) <r, and (a)
easily follows from this.
PROOF OF (b). Let d(x1, ze)=r and d(ps(z:), ps(z))=s. Since
L (@1, ps(er)) N 8= {ps(a1)},
we find that
Lg(x1, ps(z1)) N Ly (ps(a), ps(@a)) = {ps(ar)}-
Hence, putting 7' =1 g(z1, ps(®1)), we obtain
Pr(Ps(@2)) = ps(@r).
Applying (a) on pr,
d(ps(az), (w1, ps(a1))) =d(ps(a2), ps(er))=s.

Since d is & -convex, the set Byf g(x1, ps(an))) is in H(X, &).
Now, xs € By(J o(z1, ps(®1))), and Br(I (a1, ps(x1))) N S+£0, whence by



the construction of pg,

Ps(we) € Br(L g (1, ps(1))).
It follows that

s=d(ps(22), Ler(z1, psla1)) <7 E

The first property, (a), has been known for some time on the super-
extension A(X) of a compact metric space X, using the metric d on A(X)
which is described in example 3.2(h).

The result (a) also comes close to an old result of Kuratowski (ef. [4])
which states that a subspace A of a metrizable space X is a retract of X
iff there is a metric ¢ on X such that for each x ¢ X there is a unique
fz) e 4 such that o(x, f(x))=o(x, 4). In the present case, the desired
metric is a subbase convex metric, which does the job with respect to a
large number of retractions at the time. Only, the nearest point need
not be unique with respect to the metric.

3.4 THEOREM. JLel % and .7 be normal binary subbases of, respectively,
X and Y, and let e: (X, &) — (Y, T) be a cp embedding. Then each T -
convex melric on Y induces an F-convex metric on X.

PROOF. Let d be a & -convex metric on Y. We use the same symbol
d to denote the induced metric on X making the map e into an isometry.
We let B(A) denote the closed r-ball around 4 C X, and B} (4) the
closed r-ball around 4 C Y.

Let Se H(X, %) and »>0. We prove that

(%) e(Br (8)) =B (I7(e(8))) N e(X)

In fact, one inclusion (C) is obvious, since ¢ is an isometry. Let e(x) now
be in the right hand set of (%), and consider the two nearest point maps

p*: X — 8§ (derived from %)
p¥: Y — Ig(e(S)) (derived from 7).

By theorem 2.4,
e(S) =17 (e(S)) N e(X)

and e being injective, it follows that 8=e-1(Iz(e(S))). Applying theorem
2.3, we find that

ep*(x) = pe(z),

and using theorem 3.3(a),
r=d(e(x), 17 (e(S))) = d(e(x), epX(z)) = d(z, p¥(2) > d(z, S),

whence x € Bf(S). This proves the other half of (x), and it follows that
BX(S)y=e1 (B I5¢(8)) € H(X, &)

since e i3 an injective cp map. O
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3.5 THEOREM. Let & be a closed normal subbase of a compact space X.
Then there is a cp embedding of (X, &) in some Tychonov cube I* with
its canomical product subbase T .. If X is metrizable, moreover, then the
cardinal number x can be taken equal to w.

This theorem can easily be derived from the following result in van Mill
and Wattel [8]: if p#q¢ are in X, then there is a map f: X — [0, 1] such
that f(p)=0, f(¢)=1, and for each € [0, 1], both ([0, t]) and f~X([¢, 1])
are (countable) intersections of members of &. In our terminology, f is
a cp map (where [0, 1] carries its canonical normal binary subbase).

Let & be a family of cp maps (X, &) — [0, 1] which separates the
points of X. If X is metrizable, then % may be assumed to be countable.
Then, if « is the cardinality of &, we obtain the desired cp embedding

e: (X, &) — ([0, 1]%, T )
by putting
o(z) = (f(2))yes -

3.6 coroLLARY. Let X be a meirizable space with a normal binary
subbase . Then X admits an & -convex meiric.

PrROOT. Use the 7 o-convex metric of the Hilbert cube and theorems
3.4, 3.5. O

As we noticed above, a metrizable continuum carrying a normal binary
subbase is a Peano continuum, and hence it carries a convex metric.
Tt is an unsolved problem whether such a space admits a metric which
is both convex and subbase convex. Lots of spaces possess such a metric,
e.g. the cubes I, a<w. Also:

3.7 tHEOREM. Let X be a peano continuum. Then the superextension
MX) of X admits a convex and subbase convex metric.

PROOF. Let d be a convex metric for X (Bing [1]). Then its canonical
extension d on A(X) (cf. example 3.2(b)) is H(X)*-convex. We now prove

that d is also a convex metric.
In fact, let .#, 4 € A(X) and let d(#, #")=r. For a fixed t [0, ],
we claim that

P = (BAM)\M € M} U {Br (V)N € A}

is a linked system. Indeed, let M € .# and N € A". Since B,(M) N N =<0,
we can choose xze€ M, ye N, such that d(z, y)<r. If d(z,y)<{, then
obviously By(M) N By (N)=#0.

Hence, assume d(x, y)>t. d being a convex metric. there is a ze X
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such that d(x,z)=t and d(z, y)=d(z, y) —t<r—t. Therefore,

2z € By(M) N B,—y(N).

Let %, be an mls containing . By construction,

d(M, Py <t; dN, P)<r—t,

and hence the equalities must hold. O
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