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SOUSLIN DENDRONS
J. van MILL AND E. WATTEL

ABSTRACT. A dendron is a continuum in which every two distinct points
have a separation point. We call a dendron X a Souslin dendron provided
that X satisfies the countable chain condition, is not separable and has the
additional property that every countable subset of X is contained in a
metrizable subcontinuum of X. We prove that the existence of a Souslin line
is equivalent to the existence of a Souslin dendron. In addition, each Souslin
dendron is a continuous image of some Souslin continuum.

1. Introduction. A dendron or compact tree-like space is a connected
compact Hausdorff space (or briefly “continuum”) in which every two
distinct points have a separation point. Clearly every orderable continuum is
a dendron; however the class of dendrons is much bigger (see e.g. Kok [7]).

We call a dendron X a Souslin dendron provided that it satisfies the
following three conditions

(i) X satisfies the countable chain condition;

(i) X is not separable;

(iif) each countable subset of X is contained in a metrizable subcontinuum

of X.
(Notice that the condition (iii) implies that a Souslin line never is a Souslin
dendron.)

In this paper we will prove that the existence of a Souslin line is equivalent
to the existence of a Souslin dendron. Hence ¢ implies that there is a Souslin
dendron (cf. Jensen [5]) and MA + — CH implies that there is no Souslin
dendron (cf. Rudin [13]). We will also prove that each Souslin dendron is the
continuous image of some Souslin line.

2. Dendrons. Let X be a dendron. For all distinct a, b € X let S(a, b) C X
be defined by

S(a, b) = {x € X|x separates a fromb} U {a, b}.

It is well known that S(a, b) is an orderable continuum (cf. Proizvolov [10],
Kok [7]). In fact S(a, b) is ordered by the usual cut point ordering. In [7],
Kok has proved that S (a, b) can also be represented as the intersection of all
closed connected subsets of X containing {a, b}. This implies that if X is a
Souslin dendron then S(a, b) is metrizable and moreover S(a, b) is order
isomorphic to [0, 1], the closed unit interval (cf. Ward [14]). This observation
leads to the following:
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2.1 LeMMA. Let X be a dendron which is ccc and not separable. Then the
Sollowing statements are equivalent:

(1) X is a Souslin dendron;

(i) for all distinct a, b € X: S (a, b) is metrizable;

(iii) for all distinct a, b € X: S (a, b) is homeomorphic to [0, 1];

(iv) for all distinct a, b € X: S(a, b) is separable.

PROOF. (iv) = (i) The union of all S (a,, a,) with a,, a, € 4, in which 4 is a
countable subset of X, is separable. Its closure is contained in a separable
dendron, and (i) now follows from Proizvolov [11]. The other implications are
clear. []

Let X be a dendron. For all B C X the intersection of all subcontinua of X
containing B is denoted by S(B). By the above cited result of Kok [7] it
follows that S'(B) is a subcontinuum of X.

The following proposition follows from earlier results (cf. van Mill and
Schrijver [8], van Mill and van de Vel [9]).

2.2 PROPOSITION. Let X be a dendron and let A C X be a subcontinuum.
Then the mapping r: X — A defined by

{rx)} =M S{x,a})n 4

a€A

is a retraction.

3. ccc Dendrons. In this section we investigate some special properties of
cce dendrons and prove an important lemma which is used in the proof of the
main result in the present paper.

3.1 THEOREM. Let X be a dendron which satisfies the countable chain
condition. Then X is hereditarily ccc, hereditarily Lindelof and consequently is
perfectly normal.

PROOF. By a result of Cornette [2] there is an ordered continuum L and a
continuous surjection f: L — X. Let A C L be a closed set such that f | 4 is
irreducible, that is, if B is a closed subset of 4 with f[B] = X then B = 4
(the existence of A4 is an easy consequence of Zorn’s lemma). For all nonvoid
open U C A4 define U* c X by U* = X\ f[A\ U]. Since f is closed and
irreducible the set U* is open and nonvoid. In addition, for all nonvoid open
U,V C A we have that U N ¥V =& implies U* N V* =. This implies that
A is ccc. An ordered space which satisfies the countable chain condition is
hereditarily ccc and hereditarily Lindeldf (this is well known, see for instance
Faber [3]). We conclude that X is hereditarily ccc and hereditarily Lindelf.
O

3.2 CoroLLARY (MA + — CH). Let X be a dendron. Then the following
statements are equivalent:
(i) X is metrizable;
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(i) X is ccc.
PROOF. (i) = (ii) is trivial. (ii) = (i). Follows from 3.1; 2.1 and Juhasz [6].[]

3.3 LEMMA. Let X be a dendron which satisfies the countable chain condition.
Let X, and X be subcontinua of X such that X, C X, g- Let r, (resp. rp) be the
retractions of X onto X, (resp. X) described in Proposition 2.2. For § € {a, B}
let My = {x € Xj| |ry (x)| > 2}. Then

(@) for all x € X: r,rpg(x) = r,(x);

(1) if & € {a, B} then r{’(x)\{x} is open for all x € Xj;

(i) if & € {a, B} then | M;| < w.

PROOF. (i) is trivial using the precise definition of r, and rp and (iii) follows
from (ii) since X is ccc. To prove (ii), take x € M, andy € r; '(x)\ {x} and
let p be a separation point of x and y. Since S(y, x) N M, = {x}, as can
easily be seen, it follows that S(p, x) N M, also equals {x} (notice that
S(p, x) C S(y, x)). Consequently r,(p) = x, i.e. p € r]'(x). Let U be the
component of X\ {p} containing y. Then U is open since X is locally
connected (cf. Gurin [4]).

We claim that U C r; !(x). Indeed, take ¢ € U. Then

S(¢,p) Cc U U {p},

since U U {p} is connected and closed. In addition, U U {p} does not
intersect X, since p separates x from y and x € X, and X, is connected.
Therefore

S(¢: x)N X, C(S(¢p) U S(p, x) N X,)
=(S(g:P) N X,) U (S(P,x)N X,)
c((Uu{r))nX,)u {x}={x},

which implies that r,(¢) = x. Hence U c r;'{x} and consequently
re '(x)\{x} is open. [J

4. The existence of Souslin dendrons. In this section we prove that the
existence of a Souslin line implies the existence of a Souslin dendron. We use
inverse limit techniques. For more information concerning inverse limits we
refer to Capel [1].

(X, fup> ), where « is an ordinal number, means that for all a < «, X, isa
topological space and that for all 8 < a < &, Jup: Xo = Xj is continuous such
that y < B < a implies that f,, = f, © f,5.

4.1 LEMMA. Let X be a compact connected ordered space of weight at most ;.
Then there is an inverse system (I, f,z, w;) where each 1, is a copy of the closed
unit interval and where each f,; is monotone and onto such that
inv lim (Z,,, f, g, @) is homeomorphic to X. In addition, the mappings Jup can be
chosen in such a way that they have at most one nondegenerate point inverse if
a=B+1.
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PrOOF. Let D be a dense subset of X of cardinality at most w,. Let
E = {(dy d,)|dy d\ € D and dy # d, }.

In addition, let I' be the collection of nonlimit ordinals in w,. List E as
{(dd, d))|y €T}. We will now inductively construct the inverse system
approximating X. We will do it in such a way that for each « < w, there is a
monotone surjection II,: X — I, such that for all « < 8 < w, we have that
I1, = fg, ° Iz while in addition for each y €T the points II (df) and
IL (d}) are distinct.

Suppose that we have completed the construction for all a« < B. First
suppose that 8 = 0. Without loss of generality assume that dJ < d_. It now is
easy to construct a monotone Urysohn mapping f: X — I = [0, 1] such that
f(@)) =0 and f(d) = 1. Define I, := I and II, := f. If B # 0 we consider
the case that § is a limit ordinal first. Consider the inverse system (I, f,,, B).
Since for each y < B there is, by induction hypothesis, a monotone surjection
II,: X — I, such that for each § < y < B the diagram

X
L

commutes, the mapping e: X — inv lim(,, f,,, B) defined by
e(x), = IL(x) (v<B)

is a continuous surjection. It is easily seen that e is monotone. Let J =
inv lim(Z,,, f,,, B). By a result of Capel [1], J is an ordered compactum, while
in addition J is metrizable since B is a countable ordinal. Hence J is
homeomorphic to [0, 1]. Define I, = J and for all a < S let f;, be the
projection of J = inv lim(/,, f,,, B) onto I ; in addition define II; = e.Itis
easy to show that our inductive assumptions are satisfied. If B is a nonlimit,
say B = a + 1, then there are two cases; if II (df)  I1,(df) then we do
nothing, i.e. we define Iy = [, Il = II, and for all y < B define
fay = fuy if Y # a and fz, =idy if y = a. Now suppose that df < df and
that IT_(df) = I1,(df). (W.lo.g. we may assume that II_ is order preserving.)

Let g: [d8, df] — I = [0, 1] be a continuous monotone surjection such that
g(df) = 0 and g(dP) = 1. In I split the point II_ (df) in two points, say a
and b; let a < b and identify a with 0 and b with 1. The resulting set J is
ordered in the natural way, hence is homeomorphic to the closed unit
interval. Define a mapping f: X — J by

f(x)=1I(x) ifx<a,
f(x) =11 (x) ifb<x,
f(x)=g(x) ifa<b<ux

Then f is monotone and hence continuous. Let 4: J — I, be the mapping
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which collapses [a, b] to II(df). Define I, = J, Il = f and fg, = h.
Finally define fz,(y < a) as the composition of fz, and f,,. It is easily seen
that our inductive hypotheses are satisfied. This completes the transfinite
construction.

Now define a mapping e: X — inv lim(Z,, f,5, w;) by e(x), = IL,(x).
Then e is well defined and consequently is a continuous surjection (X is
compact!). It suffices to prove that e is one-to-one. Indeed, take x, y € X
such that x < y; choose distinct dy, d;, € D such that x < d, < d;, < y. Then
(dy, d,) € E and hence there is a nonlimit ordinal number B such that
I15(dp) # Ig(d,). By the fact that I, is monotone it now follows that
IIz(x) # Ilg(y); consequently e(x) # e(y). We conclude that e is a
homeomorphism. []

4.2 THEOREM. The existence of a Souslin line implies the existence of a
Souslin dendron.

Proor. It is well known that the existence of a Souslin line implies the
existence of a Souslin continuum of weight w,, cf. Rudin [13]. Let L be a
Souslin continuum of weight (or, equivalently, density) w,. By Lemma 4.1,
L ~inv lim(J,, f,4, @;) where each f, is monotonetFor each a < w; we
construct a metric dendron 7, and a mapping §,: I, — T, such that for each
a < B < w, there is a monotone retraction rg,: Ty — T, with the property
that the diagram

commutes.

Suppose that the construction is completed for all a < 8 < w,. If 8 =0
then define 7, =1, and § = id,. If B is a limit ordinal set T, =
inv lim(7,,, r,,, B) and define all mappmgs in the obvious way. It is easy to
see that TB indeed is a dendron since the inverse limit of dendrons with
monotone surjective bonding maps is a dendron (this result is not stated
explicitly in Capel [1], but it can be proved using the same technique). If 8 is
a successor, say 8 = a + 1, consider the point x for which f[,;‘(x) is nonde-
generate. (If it exists; otherwise we do nothing.)

Let Z := T, X I and consider the subspace Y = (T, X {0}) U ({£(x)} X
I). This space clearly is a metric dendron and in addition the projection II,:
Y — T, onto the first coordinate is (equivalent to) a retraction. Let a and b be
the endpoints of the interval fg,'(x). Let ¢: fz,'(x) > 1 be a continuous
surjection such that ¢(a) = ¢(b) = 0. Now define T = Y, ry, = II, and §;
by the following rules
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{gﬂ (1) = (&ufoa (), 0)  ify &[a, b],
& (») = (& (x), ¢(»)) ify €[a, b].

It then is easily seen that our inductive hypotheses are satisfied.

Now put T = inv lim(7,, 7,5, ;). Then there is a continuous surjection f:
L — T which implies that T is perfectly normal and ccc. That 7 is a dendron
is obvious (cf. the above remark). Since each Tg, 18 a Tetraction it is easy to
identify each 7, in a canonical way with a subspace of 7. We will do so.
Then since T = inv im(7,,, .5, w,) we see that U, <w, T, 1s dense in T and
also that « < B implies that T, C T,. Since T is first countable (cf. 3.1) and
since there are precisely w, distinct 7,’s we conclude that U, <o, I 1s closed
in T. Consequently U,., T, =T, since Ua<w, T, 1s dense in T. This
implies that T is not separable and also that each countable subset of 7 is
contained in some T,. The 7,’s being metrizable we conclude that 7 is a
Souslin dendron. []

5. The existence of Souslin lines. In this section we prove that each Souslin
dendron is a continuous image of some Souslin line. As a corollary it follows
that the existence of a Souslin line is equivalent to the existence of a Souslin
dendron.

5.1 THEOREM. Each Souslin dendron is a continuous image of some Souslin
continuum.

Proor. Let T be a Souslin dendron. We construct a Souslin continuum L
which can be mapped continuously onto T by means of transfinite induction
using a suitable inverse limit system (7, r,5, ;) of metrizable dendrons
approximating 7. The T,’s are comparable subdendrons of T and the Tup’s are
the canonical retractions between them (cf. Proposition 2.2).

For every a < w; we now construct a metrizable subcontinuum 7, c T
such that

DB<a<w—>Tp c T,;

@ii) |r,3 (%) = 1 for each x € T,, where r,,;: T — T,,, is the canonical
retraction of T onto T, , ,.

Assume that we have completed the construction for all 8 < a < w,. If
a = 0 then choose two distinct endpoints a, and b, of T and define T, :=
S (ag, by). Now suppose that a is a nonlimit ordinal, say a = § + 1. Define
M; as in 3.3. Then |Mj| < w. Let {a5|i € w} be an enumeration of M;. Then
for each i € w the set T\ {ay;} has at most countably many components and
consequently has at most countably many components not intersecting Tj.
Choose an endpoint by; from the jth component disjoint from T of T\ {aj}.
We put

Tu = T(S U U S(a&', bsy).
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First we claim that 7, is closed in T (it is obvious that T}, is connected). Take
x & T,. Then ry(x) = a5 for some i € w; in addition x € C; for some
component C; of T\ {ay)}. Let by be the endpoint chosen from this
component. Since 7;: T — T; maps C;; onto a,; we see that

U= Cy\ S(a&', bSy)

is an open neighbourhood of x disjoint from 7,. We conclude that T, is a
metrizable subcontinuum of T since clearly T is separable. In addition the
point x cannot be an element of r; '(y) for somey € Ty C T,, where r, is the
canonical retraction of 7 onto T,. For suppose to the contrary that there were
such a y. Since r,[{a5} U C;] = S(ay;, by;) the point y equals ag. Then
S (x, a5;) N S(ag;, bsj) = {a5} which implies that a5 € S(x, by;); in other
words a,; separates x from b;;. Then x and b;; are not in the same component
of T\ {4y}, which is a contradiction.

If a is a limit ordinal then we put T, = clp(Upg.,Tp)- Then T, is
metrizable since a is a countable ordinal. Since T is not separable for all
B < a we have that T, < T,. This completes the transfinite construction.

We claim that U, T, = 7. Indeed, assume to the contrary there exists
an x € T\ U ,,,T,- First of all, notice that since T is first countable (cf.
Theorem 3.1) the set Z = U, T, is closed in T and hence is a proper
subcontinuum of T. Let r: T — Z be the canonical retraction. Suppose that
r(x) € T, (a < w,). By construction of the retractions of Proposition 2.2 we
see that

r(x) = ry(%) = 1o (%),
which contradicts (i) since r,(x) € T, and x € r}',(r,(X)\{r,(x)}.
For every a < B < w, define rg,: Tg— T, by rg, =r,| Tg. Then, by
Lemma 3.3(i) for each a < B the diagram

/N

T,«~—T
a Tsa [

commutes. It follows that (T, r,s, ;) is an inverse system such that
T ~inv im(7,, 7,p, w,);

for take distinct x, y € T. Then since T = U ,,, T, there is an a < w, such
that x and y both belong to T,, hence r,(x) # r,(») and consequently the
mapping e: T — inv im(7T,, r,p, w,) defined by e(x), = r,(x) is a
homeomorphism.

Next we construct for every @ < w, a continuous surjection §,:  — T, and
for each a < 8 < w, a monotone surjection f,z: I — I such that the following
diagram commutes
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fya
4/——_\
L L L
* e ’ Tye !
S
T, TB T’Y

For the sake of convenience we consider a collection of w, different copies of
I called {L,|a < w,;}. In addition, we construct the mappings £, in such a
way that &, is two-to-one in all but countably many points for every nonlimit
ordinal a < w,.

Suppose that the construction is completed for all @ < y. If y = 0 then let
Ly = [0, 1]. Let ¢: [0, 3]—> S(aq, by) = T, be an (order) isomorphism. Then
define §;: Ly — T, by £y(x) = ¢(min{x, 1 — x}). Next suppose that y = § +
1. If Mj is dense in itself (cf. Lemma 3.3) then we divide the Mj into two
subsets Ms" and My~ which are dense in M; (notice that M is homeomorphic
to the space of the rationals). Let a;; € M;*; now let v; be the first member of
L; such that &(v;) = ay;. If a; € My or if Mj is not dense in itself then we
choose v; to be the last member of L; such that &(v,) = ag;. For each segment
S (as;, bs;;) there exists a mapping &; from a copy L,; of I onto S(ay;, b))
such that &,(0) = &,;(1) = a; and which is two-to-one except on by; and

1

which in addition is an isomorphism with respect to the cutset ordering on
both [0, 1] and [3, 1].
We define

L, =Ly u U {Lyy\{15}]i.J € w}

and we obtain an ordering on it by defining:

[if X,y € Lyand x < y in L; then alsoin L,;

ifx € Lyandy € Ly; and x < v;in Lythenx < yin L,;
if x > vinLsthenx > yin L,;

if x € Ly; andy € L,,, and v; < v, in Lythenx < yinL;

if x € Ly;andy € Ly, andj < kthenx < yin L,;

if x,y € Ly; and x < y in Ls; then x < y in L,.

The mapping £, is defined to be & on L; and &; on Ly;\ {1;}; in addition
f,s 1s the identity on L; and {v;} on Ls;\ {15;}. For all a < § the mapping f,,
is defined to be the composition fs, © f,s.

In this way we can consider L, to be constructed from L; by replacing
countably many times a point by a closed unit interval, and in this way it is
easy to show that the L, is homeomorphic to the closed unit interval and f; is
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a monotone mapping (cf. Lemma 4.1). The continuity of £ can be checked
directly if we consider the inverse images of components of points in T, (the
components of points in 7, form an open subbase for 7., as can easily be
seen).

If y is a limit ordinal then we take L, := inv lim(L,, f,5, v). Then since y
is a countable ordinal, L, is again homeomorphic to the closed unit interval
and the mappings f, and £ can be defined in the natural way (because
T, ~inv lim(7,,, r,g, y) which can be proved in practically the same way as
T ~ inv lim(7,,, r,5, ;) above). This completes the transfinite construction.

Let L be inv im(L,, f,5, @,) with projections {f,: L —» L |Ja < w,}. Let &:
L — v lim(T,, r,g, w;) ~ T be defined by &(x), = £ (f,(x)). Then £ is a
continuous surjection. Note that L is an ordered compactum (cf. Capel [1])
since the mappings f,; are monotone (8 < a < w,). Since T is not separable,
the space L cannot be separable either, and the only thing left to prove is that
L satisfies the countable chain condition.

The space T\ Tj is a countable union of half open intervals. If M, , is
dense in T;,,\ Ts (notice that by construction M;,, C Ts,,\ T,!) then
M; ., | is dense in itself and hence can be divided into two dense subsets. If
Mj;., , is not dense then there is a nonvoid open set Oy, ; (open in Ty, \ Ty)
in T5, \ T} disjoint from Mj ,. Clearly Oy, is also open in Ty, since T} is
closed in Ty, ,. Moreover, since 75, maps T\ Ty, , onto M;,, we find that
rs:1[0s.1] = Oy, and consequently O,,, is open in T too. From this
observation it follows that there exist only countably many §’s for which
M, is not dense in T, ,\\ T; and consequently we can find a § < w, such
that M;, | is dense in T5, ,\ T; forall § < § < w,.

Let C be a collection of pairwise disjoint nonvoid connected open subsets
of L. We will prove that |C| < w. For each C € € we can define an ordinal
number ¢(C) < w, as the least number @ < w, such that int, (f[C]) #2.
Since f, is monotone (cf. Capel [1]) we have that for all « > ¢(C) the set

c* = £ '[int, (L[ C])]

is an open interval in C. The number ¢(C) = a can never be a limit ordinal
since for limit ordinals 8 we have that L; = inv lim(L,, f,5, B) and

{f5'[0]|0is openin L (y < B)}
is a base for Ls. If @ < 6, where 6 is as defined above, then
AlC*] = fi'[int (£ C])]

is an open set in L, and C* = f [ f,[C*]]. If a; = ¢(C,) < 0 and a, = ¢(C,)
< 8 then f[C¥] N f,[C§] =D since C; N C, =. Since L, is ccc it follows
that ¢(C) < @ for at most countably many C € C and hence we can restrict
our attention to the collection

D = {f'[int, (L[C])]IC € Canda = ¢(C) > 0}.
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Fix D € 9, say D = f,”'[int,_(f,[C])] where C € C and a = ¢(C). Let 6 be
the predecessor of a. Define D, := f,[D]. Then D, is an open interval in L,
but f,s[D,] is convex without interior in L, therefore f,,[D,] has to be some
point v, of Ly with §(v,) = a5;(i € w). Therefore D, must be contained in
U {L&'j\{ls.j}lj IS w}

and consequently there exists an open interval (/,, /,) in some Ls; which is
entirely contained in D,. Without loss of generality we may assume that
either /, and /; are both smaller than § or both larger than 1. Assume that
Iy < I, < 3. The set (I, /) is mapped by §, onto the open interval (¢, ¢,) in
the set S(ay; bs;) in T. Since (1, ¢,) is open in T,\ Ty and M,* is dense in
T, \ Tj there is a point a,, € M," N (#y, t,). In the construction of L_, , we
have assigned a point v, to a,, and since a,, € M;* and [, < [, < 1 the point
v, isin (/y, /). Let E, C T be defined by

ED = ra_l[ {aak} ] \{aak}'
By Lemma 3.3(ii) this set is open in T and

ra+l[ED] = U S(aak’ bakj)\{aak}

JEw
and consequently

_+ll[ra+l[ED]] cU Ly,

JEw
and therefore f, , | o[£, 2 \[7a+1[Ep]ll = {v;}. We obtain

g_l[ED] Cj;x_-f-lll: U Lakjj' Cfi'(v) c D.
JEw

If we assume that 5 < J, < /; we can follow the same procedure for some Aoy
in M,” N &[(/, /})] and also in this case we find an open subset E,, of T such
that £ ~'[E,] C D. Since the collection ) is pairwise disjoint, the correspond-
ing collection & = {Ep|D € D} is also pairwise disjoint. The space T
satisfies the countable chain condition and therefore neither & nor % can be
uncountable. This finishes the proof. []

5.2 COROLLARY. The existence of a Souslin line is equivalent to the existence
of a Souslin dendron. []
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