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Summary. A number of recent results on the contractibility or on LC-type properties of super-
extensions are considerably strengthened by means of a technique involving the nearest point map
and the convex closure operator on a superextension.

The following results on superextensions have recently been proved:

I. If X is compact, and either contractible or suspended, then its superextension
A (X) is contractible (Verbeek [15]). By Theorem 3.1. below, 4 (X) is even LC*.

2. If X is a metric continuum, then Z (X) is an AR (compact metric) (Van Mill [8]
or Van de Vel [15]). In particular, A (X) is contractible and LC*.

3. If X is a connected normal T, space, then A (X) is acyclic and ¢ (Van de Vel
[15]. (For a definition of Ic, see Begle [2]).

In this paper we make a first attempt to fill up the gaps which obviously exist
among the above results. We shall concentrate on superextensions of completely
regular T spaces.

1. Some definition and preliminary results. A closed subbase & of a T, space
Xis a called a T subbase if for each S € & and for each x € X— S, there is an S’ € &
with x € §'=X—S. & is called a normal subbase if for each pair §,, 5, € % of disjoint
sets there exist S|, S, € & such that

8,c8,—5;; S,=8,-8;; S;US,=X.

A linked system in & is a subfamily %' of & such that each two members of &’
intersect. The superextension /. (X, &) of X relative to a closed subbase & is the T
space defined on the set of all maximal linked systems (mis’s) in &, topologized
by means of a Wallman-type closed subbase

F+={S*|Se ¥,

where §* denotes the set of all L € 2 (X, ¥)with Se L. If ¥=H (X), the set (space)
of all nonempty closed subsets of X, then /. (X) =4 (X, H (X)) is called the superexten-
sion of X. If & is a T -subbase, then there is an obvious embedding of X in 1 (X, .

[261]
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The closed subbase &* of A (X, &) has the property that each linked system in &%
has -a nonempty intersection. Such a subbase is called binary. By Alexander’s
lemma, a space carrying a binary subbase is compact (it is called a supercompact
space). If & is a binary subbase of X, then obviously 4 (X, &)~ X. These notions
were introduced by De Groot in [3].

The usual topology for the hyperspace H (X) of X is generated by the open base,

consisting of all sets of type
n
{0y, ..., 0O,p=4A4| A<= 0; and A0,z for all i},
i=1
where 0,, ..., 0,cX are open (see e.g. Michael [6]).

A closed subset C of 1(X, %) is called convex (relative ot &%) if it equals an inter-
section of subbasic closed sets. The subspace of H (4 (X, ¥#)), consisting of all
nonempty convex sets in A(X, &), will be denoted by K(4(X, &#)). The notion
of subbase convexity was introduced in [12].

An important class of convex sets in 4 (X, &) can be described as follows: Let
M, N el (X, ). The interval joining 4 and A" is the (convex) set

T, /)= {P*|Pe MK}

(Van Mill and Schrijver [11]). Notice that 7 (.#, .47) is the smallest convex set con-
taining .# and ¥ More generally, the convex closure of a set Aci(X, %) is
defined to be the set

I(A)=){S*|Se & and AcS+}.

1.1. THEOREM. Let X be a T, space and let & be a normal T, subbase for X. Then
the convex closure map

I: H(A(X, )~ K (A (X, &)

Is a continutous retraction.

See [12].

1.2. NEAREST POINT MAPPING THEOREM. Let X be a T, space and let & be
a normal T, subbase for X. If # €/ (X, %) and if Ccl(X, ) is nonempty and
conwex, then there is a unigue point p (M, C) in 2 (X, &) with the property that

1(M,p (i, CY)O C={p (M, C)},
and the mapping
P: A (X, P)x K (X, P))=A (X, )
so obtained, is continuous.
See [12]. p is called the nearest point map of A (X, &) in view of certain metric
and order-theoretic considerations: see [I13] and [15]. Techniques involving this

mapping have already got a variety of applications. See Van Mill [9] and [10],
Van de Vel [15]. New applications are given below.
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25 Contractihilitg}- of certain superextensions. The following general result will
be our main tool in deriving contractibility results on 4 (X, S):
2.1. LeMMA. Let X be a T\-space and let & be a normal T, subbase for X. Assume

that there exists a continuous mapping
¢: [0, 1]-H (X)

such that ¢ (0) is a singleton, and ¢ (1)=X. Then there is a contraction of A (X, &)

onto p (0) keeping ¢ (0) fixed.
Proof. Regarding X as a subspace of A (X, %), there is a mapping

w: H(X)~H (0. (X, 9))

sending D € H (X) onto iits closure D in / (X, ). This map is continuous since
A (X, %) is normal, being compact and Hausdorff (Verbeek [16]). Define

p': [0, 1]-H (A (X, 9))

as follows:
o' (O)={wo ()iu<t}.
S

@' (¢) is compact, being the union of a compact family of compact sets, and ¢’ is
obviously continuous again. Notice that ¢’ (0)=g (0) and that ¢’ is increasing.

We now use the convex closure map
I'H (A (X, $))=K (A (X, )

It is easy to verify that 7 preserves singletons, and that /(D)=D" for each De %
Moreover, ¢’ (1)=X<i(X, &), whence Ip' (1)=2 (X, &) (A(X, &) is the only

(cf. section 1).

convex set containing X).
Let x, be the unique point in f¢’ (0), and define a map

A (X, #)x[0, 114 (X, %)
by F(#, t)y=p (M, Ip’ (1)), where p is the nearest point map (see Section 1). Then

by the construction of the map,
F (M, 0)=p (M, {xo}) =xo;
F(M, )=p (M, L(X, F))=M.

Moreover, x, € Ip’ (t) for each r, whence
F(xo, t)=p (Xo, Ip' (l‘)):,\’o R

proving that F is a contraction of 4 (X, &) onto x, keeping x, fixed.

2.2. COROLLARY. Let X be a T, space, let & be a normal T, subbase of X,
and assume that J.(X, &) is contractible. Then for each M€ i (X, ) there is a

contraction of A (X, &) onto i, keeping 4, fixed.
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Proof. Let F: A (X, ¥)x[0,1]—=4 (X, &) be a contraction of A (X, #). Then
there is an associated continuous map

p: [0, 1]=H (A (X, 9))

defined by ¢ ()=F (A (X, F)»{t}) (cf. Van de Vel [I15]). In particular, @ (0) is
some singleton and ¢ (1)=41 (X, &).
Let .#q € 4 (X, %) be arbitrary. Then there is a path

x: [0, 1]-4 (X, &)
with « (0)=.#, and {« (1)} =¢ (0). Define
w: [0, 1]-H (A (X, &)

by
f

(S

w (0)={x (20)} if 0

y(O={z(D}Ug@—1) if 1}

Then y is a well-defined continuous path in H (4 (X, %)) joining {.#,} with

2 (X, ). Since &* is a normal subbase of 1 (X, %) and since A (L (X, &), 9" )=

~A (X, %) (&7 is binary), Lemma 2.1 yields that A (X, &) is contractible to
., with a contraction keeping .#, fixed.

As a second application, we now show that, as far as normal spaces are concerned,
one has to look after rhe superextension:

t

F/AN/AN
NN

2.3. COROLLARY. Let X be a normal T, space such that ) (X) is contractible. Then
Jor each normal T, subbase & of X, the superextension A (X, ) is also contractible.

Proof. First, notice that if /* Y—Z is a continuous map of a T, space Y to
a normal 7' space Z, then the mapping

H(f): H(Y)=H(Z),

sending AcY to Cl, f(A), is also continuous. If ¢ is a path in H (YY) joining
some singleton with ¥, then H (f)o ¢ joins some singleton of Z with Z in H (Z),
provided that f is onto (or, at least, that f(Y) is dense in Z).

Assume now, that % is a normal T, subbase for X. Then there is a conti-
nuous surjection

£ (0= (X, )

(the so-called Jensen-map, cf. Verbeek [16]). Notice that 4 (X, &) is normal, being
compact, and being Hausdorff by the normality of the subbase &. Also, each super-
extension is 7;. If A(X) is contractible, then there is a path in H (4 (X)) joining
some singleton of A (X) with 4 (X) (see the proof of Corollary 2.2). Combining the
above remark with Lemma 2.1 then yields the desired result.

We now come to our main results.

2.4. THEOREM. Let X be a separable T, space such that each finite subset of X
is contained in a metric subcontinuum of X. Let & be a normal T, subbase for X.
Then 4 (X, ) is contractible.
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Proof. We need two auxiliary results.

(2.5: 1) There is an increasing sequence (K,)._, of metrizable subcontinua of
X, such that K, is a singleton, and (K,)7_, converges X in H (X).

Let {x,/neN} be a countable (counted) dense subspace of X. For each nz=0

we let L, be a metric continuum containing {x, ..., X,;. In particular, we choose
n

Lo={xo}. Then K,=| | L; is a metric continuum, (K,)"_, is an increasing sequence,
o] n=0

and |_J K, is dense in X. Let {0y, ..., 0,> be a basic open set in H (X) containing
n=0 P

X as a member. Then 0; #@ for each i, and |_J 0;=X. For each i=1, ..., p there

is an n;€ N such that K, N0, #@, and hence K” N0, #@ for all nzn;. If n, denotes
the maximum of {n,, ...,n,}, then K,€<0,,...,0,> for each n=n,, proving that
(K,)7_, converges to X.

(2.5; 2) If K<L are metric subcontinua of X, then there is a continuous increasing
mapping
¢: [0, 11> H (X)
with ¢ (0)=K and ¢ (1)=L.
Using the fact that A (L)c H (X), this statement is a direct consequence of
a result of Borsuk and Mazurkiewicz, which can be found e.g. in Kuratowski

[5] p- 127.
We now combine the two statements. For each n>0 we have a continuous
increasing map (with rearranged domain)

1 1
5”.,-[1—7, l—mJ—*H(X)

’ 1 1
such that ¢, (1 = ”)=Kn_1 and rp,,(l = i?'l)_K"' Since each ¢, is monotonic
e
and since (K,)._, converges to X, the join
9: [0, 1]—H (X)

of the maps ¢,, with ¢ (1)=X, is also continuous. Applying Lemma 2.1 then

proves the Theorem.
Some classes of spaces satisfying the hypotheses of Theorem 2.4. are worth

mentioning (all spaces are 7, and completely regular):

(i) the class of all separable, path connected spaces, with, in particular, the class
of separable topological vector spaces;

(ii) the class of all separable, compactly connected, compactly metrizable spaces.
(If P is a topological property, then a space is called compactly P if each compact
subspace is contained in a compact subspace satisfying P).

As a particular consequence of Theorem 2.4, it follows that A (R) is contractible,
in contrast with the fact that the C&ch-Stone compactification ff(R)c/ (R) is not
contractible, not even path connected. The contractibility of 7 (R} was claimed pre-
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viously by Verbeek ([16] p. 133). His proof is wrong, however, as it relies on the con-
trability of £ (R).

By (i) above, a countable product of real lines also has contractible superexten-
sions. Notice that R® is homeomorphic to the space /, of all square summable
sequences in R by a result of Anderson [1].

Recall that a space X is said to be of category<n, where n>0 is a natural number,
if X equals the union of n closed subspaces, each deformable to a point in X.
X is of finite category if it is of category <n for some n.

2.5. THEOREM. Let X be a connected T, space of finite category, containing a
dense a-compact subspace. If & is a normal T, subbase for X then L (X, &) is contrac-
tible.

p
Proof. Let C,, ..., C, be nonempty closed subspaces of X such that X=(_J C,,
i=1
and such that C; is deformable to a point x; € X, i.e. there is a mapping

Fi: C;x[0,1]-X
with F; (—, 0)=constant map onto x;, and F;(—, 1)=inclusion map of C; in X.

Let (K,)7_, be a sequence of compact subspaces of X such that Lj K, is dense in
X. We may assume that this sequence is increasing, and thatn 12',,0 C, #@ for
all n, 1.
Fix ie{l, ..., p} for a while. For each n>0 there is an associated continuous map
Vit [0, 11 H (X)
with y, ; (1)=F; (K, ;< {t}), where K, :=K,nC; (Van de Vel [15]). Notice that
Wi (0)={x;} and that w, , (D=K, ;. We put qu('},i:t,yos,-, and for each n=0 we let

Ppsr it [0, 115 H (X)

be a path joining K, ; with K,,;, ; (using the paths W, and v, ., ;). These mappings
are now made monotonic and compatible as follows. Define ?0,: by
9o,i (=1 0 ; ().
t'<t
Notice that ¢, ; has compact values, and Ko <o, (1). If @51, ...; ¢ ; have been
constructed such that each ¢, ; is continuous, monotonic, with compact values, and
such that ¢, ; (1)=@u+, ; (0) if m<n, and K, <9, (1), then we put
Pusr, e D=\ 0,51, ()Y @, (1).
<t
Hence, ¢,., ; is continuous, monotonic, and with compact values again. More-
over,
gﬁ?l‘}l,i (0):¢J;:+1,i (O)U (Dn,r' (1):(9n,i (1)’
since ¢, (0)=K, =g, (1), and
Koit,1=00r (DU 014 OV 0 (D=0, 1,: (1),
; t<1

completing the inductive construction.
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o0
Let D, be the closure of (] ¢, ; (1). We now proceed as in the proof of
n=0
Theorem 2.4: the sequence (g, ; (1)7_, converges to D, in H(X), and the monotonic

maps ¢, ; can be joined such as to yield a mapping
¢ [0, 1]=H (X)

with @; (1)=D;. In particular, ¢; (0)={x;}.
Proceeding as above for each ie{l,..,p} we obtain mappings ¢;: [0, 1]—
— H (X) with

I R W (A

n=0
where ¢, ; (1)2K,, ;=K,Nn C;. Hence
p r @ o] ] w
UDi=Cl (U U go,,,i(l)):aC!X (! U K.NC)=Cly (U K,,)=X.
i=1 i=1 n=0 n=0 i=1 n=0

A connected space of finite category is easily seen to be path connected. Fix
xo€X and for each i=1, ..., p, fix a path

o [0, 1]-X
joining x,=g; (0) with x;=«; (1). A path
¢: [0, 1]1=H (X)

joining {x,} with X can now be constructed as follows:
p (O)={«; @0)|i=1, .., p} if 0<t<d;

b @O=p @l 0 @=1) if 4Ll

i=1

¢
This map is continuous, ¢ (0)={x,}, and ¢ (1)>| ) D,=X as we computed above.
Lemma 2.1 can now be applied. Eil
This theorem includes the contractibility results of Verbeek, mentioned in the

introduction. In fact, a contractible (compact) space is of category 1 and a (compact)
suspension is of category <2,

A new class of examples is provided by the topological vector spaces, which are
densely o-compact, e.g. (uncountable) products of real lines. Countable products
of R are even separable, and Theorem 2.4 can be called on in this case.

3. LC* and LC* spaces. We now use the nearest point mapping on a super-

extension to obtain LC-type properties. The reader is referred to Hu [4] for a defini-
tion of LC* and of LC*.

3.1. THEOREM. Let X be a T, space that admits a normal binary subbase. Then
(1) X is LC* if it is path connected,
(ii)) X is LC* if it is contractible.
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Proof. The following results can be found in [15]:

(3.1; 1) Each mapping of an n-sphere, n>0, into A(X) is homotopic to a constant
map;

(3.1; 2) Each point of A (X) has a neighbourhood base, consisting of convex sets;
(3.1; 3) Each convex subset of A (X) is a retract of A (X).

The latter result first appeared in [9]. Its short proof involves the nearest point
map p: if Ccl(X) is convex, then

p(—, ) A(X)=1(X)

is a retraction of A (X) onto C.

Theorem 3.1 is a direct consequence of these results, using the fact that a space
with a normal binary subbase is a retract of its superextension (Van Mill [7]). Actually,
the above cited results can be proved directly on the original space X, using the
same method as in the A4 (X)-case.

3.2. CoROLLARY. Let % be a normal T, subbase for the T, space X. Then A (X, &)
is a contractible LC* space in each of the following cases:
(i) X is a densely o-compact, connected space of finite category;
(i1) X is separable, compactly connected, and compactly metrizable;
(iii) X is separable and path connected.

Notice that (i) covers the case of contractible or suspended compacta, and
that (ii) covers the case of metric continua.

4. Some remarks and problems. In addition to the contractibility results of
Van Mill and Verbeck on the superextension of a compact space, we have now
proved that / (X)) is also contractible if X is separable, compact, and path connected,

or if X is a continuum of finite category. However, the following problem re-
mains open:

4.1. Question. Find necessary and sufficient conditions on a continuum X for
A(X) to be path connectedfcontfacnb!e Are there path connected non-contractible
superextensions of continua?

Concerning the first part of the question, we found the following examples:

4.2. Examples. (i) Let X be a compact tree which is not path connected. Then
A{X) is not path connected.

(i1) Let X=p (R), the Céch—Stone compactification of the real
line R. Then X is not parh connected, but A(X) is con-
tractible.

The proofs are simple:

(i) A compact tree admits a normal binary subbase (Van Mill and Schrijver [11],
and hence it is a retract of its superextension (Van Mill [7]);

(i) 2 (8 (R)) is homeomorphic to 1 (R) (Verbeek [16]).

Concerning the second part of question 4.1, Theorem 2.4 implies that path
connectedness and contractibility are equivalent on separable superextensions.
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It is well-known that AR’s in the category of compact spaces are contractible
and locally contractible (LC*) (see e.g. Saalfrank [14]). The two properties are
not equivalent in general. However, in view of Van Mill’s result that 1 (X)is an AR
(compact metric) if X is a metric continuum, and in view of the nice convexity struc-
ture of superextensions, one is led to the following

4.3. Problem. Find conditions on a continuum X in order that 2 (X) be an AR
(compact).
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‘1. Bam Mumun, M. Bas ne Bens, Ceasannocts, ckpvaemocts B LC-cnoficTsG cyneppaciumpeHmii

Cogepsranne. Yucno rocnenHux PE3VILTATOR IO CHHHUMAEMOCTH WK 110 ceoiicTeam LC-Tupna 38aun-
TEJBHO YBE/IHYMIIOCh ¢ TIOMOIIbLIO TEXHHKH® BKJIIOYANOLUEH OmmKalioyio TO4YKy OTOOpaxeHHs H
CTIePaTOp BHIMYKIOTG 3aMBIKAHUS HA CYNEPPACIIHPEHHIL.



