MATHEMATICS
(GENERAL TOPOLOGY)

Path Connectedness, Contractibility, and LC-Properties of Superextensions

by

Jan Van MILL and Marcel Van de VEL

Presented by K. BORSUK on May 2, 1977

Summary. A number of recent results on the contractibility or on LC-type properties of superextensions are considerably strengthened by means of a technique involving the nearest point map and the convex closure operator on a superextension.

The following results on superextensions have recently been proved:

- 1. If X is compact, and either contractible or suspended, then its superextension $\lambda(X)$ is contractible (Verbeek [15]). By Theorem 3.1. below, $\lambda(X)$ is even LC*.
- If X is a metric continuum, then λ(X) is an AR (compact metric) (Van Mill [8] or Van de Vel [15]). In particular, λ(X) is contractible and LC*.
- 3. If X is a connected normal T_1 space, then $\lambda(X)$ is acyclic and lc (Van de Vel [15]). (For a definition of lc, see Begle [2]).

In this paper we make a first attempt to fill up the gaps which obviously exist among the above results. We shall concentrate on superextensions of completely regular T_1 spaces.

1. Some definition and preliminary results. A closed subbase \mathscr{S} of a T_1 space X is a called a T_1 subbase if for each $S \in \mathscr{S}$ and for each $x \in X - S$, there is an $S' \in \mathscr{S}$ with $x \in S' \subset X - S$. \mathscr{S} is called a *normal subbase* if for each pair S_1 , $S_2 \in \mathscr{S}$ of disjoint sets there exist S'_1 , $S'_2 \in \mathscr{S}$ such that

$$S_1 \subset S_1' - S_2'; S_2 \subset S_2' - S_1'; S_1' \cup S_2' = X.$$

A linked system in $\mathcal S$ is a subfamily $\mathcal S'$ of $\mathcal S$ such that each two members of $\mathcal S'$ intersect. The superextension $\lambda(X,\mathcal S)$ of X relative to a closed subbase $\mathcal S$ is the T_1 space defined on the set of all maximal linked systems (mls's) in $\mathcal S$, topologized by means of a Wallman-type closed subbase

$$\mathcal{S}^+ = \{ S^+ \mid S \in \mathcal{S} \},\,$$

where S^+ denotes the set of all $\mathcal{L} \in \lambda(X, \mathcal{L})$ with $S \in \mathcal{L}$. If $\mathcal{L} = H(X)$, the set (space) of all nonempty closed subsets of X, then $\lambda(X) = \lambda(X, H(X))$ is called *the* superextension of X. If \mathcal{L} is a T_1 -subbase, then there is an obvious embedding of X in $\lambda(X, \mathcal{L})$.

The closed subbase \mathscr{G}^+ of $\lambda(X,\mathscr{G})$ has the property that each linked system in \mathscr{G}^+ has a nonempty intersection. Such a subbase is called *binary*. By Alexander's lemma, a space carrying a binary subbase is compact (it is called a *supercompact space*). If \mathscr{G} is a binary subbase of X, then obviously $\lambda(X,\mathscr{G}) \approx X$. These notions were introduced by De Groot in [3].

The usual topology for the hyperspace H(X) of X is generated by the open base, consisting of all sets of type

$$\langle 0_1, ..., 0_n \rangle = \{ A \mid A \subset \bigcup_{i=1}^n 0_i \text{ and } A \cap 0_i \neq \emptyset \text{ for all } i \},$$

where $0_1, ..., 0_n \subset X$ are open (see e.g. Michael [6]).

A closed subset C of $\lambda(X, \mathcal{S})$ is called *convex* (relative of \mathcal{S}^+) if it equals an intersection of subbasic closed sets. The subspace of $H(\lambda(X, \mathcal{S}))$, consisting of all nonempty convex sets in $\lambda(X, \mathcal{S})$, will be denoted by $K(\lambda(X, \mathcal{S}))$. The notion of subbase convexity was introduced in [12].

An important class of convex sets in $\lambda(X, \mathcal{S})$ can be described as follows: Let $\mathcal{M}, \mathcal{N} \in \lambda(X, \mathcal{S})$. The interval joining \mathcal{M} and \mathcal{N} is the (convex) set

$$I(\mathcal{M}, \mathcal{N}) = \bigcap \{ P^+ | P \in \mathcal{M} \cap \mathcal{N} \}.$$

(Van Mill and Schrijver [11]). Notice that $I(\mathcal{M}, \mathcal{N})$ is the smallest convex set containing \mathcal{M} and \mathcal{N} . More generally, the *convex closure* of a set $A \subset \lambda(X, \mathcal{S})$ is defined to be the set

$$I(A) = \bigcap \{S^+ | S \in \mathcal{S} \text{ and } A \subset S^+\}.$$

1.1. Theorem. Let X be a T_1 space and let $\mathscr G$ be a normal T_1 subbase for X. Then the convex closure map

$$I: H(\lambda(X, \mathcal{S})) \to K(\lambda(X, \mathcal{S}))$$

is a continuous retraction.

See [12].

1.2. NEAREST POINT MAPPING THEOREM. Let X be a T_1 space and let \mathcal{G} be a normal T_1 subbase for X. If $\mathcal{M} \in \lambda(X, \mathcal{G})$ and if $C \subset \lambda(X, \mathcal{G})$ is nonempty and convex, then there is a unique point $p(\mathcal{M}, C)$ in $\lambda(X, \mathcal{G})$ with the property that

$$I(\mathcal{M}, p(\mathcal{M}, C)) \cap C = \{p(\mathcal{M}, C)\},\$$

and the mapping

$$p: \lambda(X, \mathcal{S}) \times K(\lambda(X, \mathcal{S})) \rightarrow \lambda(X, \mathcal{S})$$

so obtained, is continuous.

See [12]. p is called the nearest point map of $\lambda(X, \mathcal{S})$ in view of certain metric and order-theoretic considerations: see [13] and [15]. Techniques involving this mapping have already got a variety of applications. See Van Mill [9] and [10], Van de Vel [15]. New applications are given below.

- 2. Contractibility of certain superextensions. The following general result will be our main tool in deriving contractibility results on $\lambda(X, S)$:
- 2.1. Lemma. Let X be a T_1 -space and let $\mathcal S$ be a normal T_1 subbase for X. Assume that there exists a continuous mapping

$$\varphi \colon [0, 1] \to H(X)$$

such that $\varphi(0)$ is a singleton, and $\varphi(1)=X$. Then there is a contraction of $\lambda(X,\mathcal{S})$ onto $\varphi(0)$ keeping $\varphi(0)$ fixed.

Proof. Regarding X as a subspace of $\lambda(X, \mathcal{S})$, there is a mapping

$$\psi: H(X) \rightarrow H(\lambda(X, \mathcal{S}))$$

sending $D \in H(X)$ onto its closure \overline{D} in $\lambda(X, \mathcal{S})$. This map is continuous since $\lambda(X, \mathcal{S})$ is normal, being compact and Hausdorff (Verbeek [16]). Define

$$\varphi': [0,1] \rightarrow H(\lambda(X, \mathcal{S}))$$

as follows:

$$\varphi'(t) = \bigcup \{ \psi \varphi(u) | u \leq t \}.$$

 $\varphi'(t)$ is compact, being the union of a compact family of compact sets, and φ' is obviously continuous again. Notice that $\varphi'(0) = \varphi(0)$ and that φ' is increasing.

We now use the convex closure map

$$I: H(\lambda(X, \mathcal{S})) \to K(\lambda(X, \mathcal{S}))$$
 (cf. section 1).

It is easy to verify that I preserves singletons, and that $I(D) = D^+$ for each $D \in \mathcal{G}$. Moreover, $\varphi'(1) = \overline{X} \subset \lambda(X, \mathcal{G})$, whence $I\varphi'(1) = \lambda(X, \mathcal{G})$ ($\lambda(X, \mathcal{G})$ is the only convex set containing X).

Let x_0 be the unique point in $I\varphi'(0)$, and define a map

$$F: \lambda(X, \mathcal{S}) \times [0, 1] \rightarrow \lambda(X, \mathcal{S})$$

by $F(\mathcal{M}, t) = p(\mathcal{M}, I\varphi'(t))$, where p is the nearest point map (see Section 1). Then by the construction of the map,

$$F(\mathcal{M}, 0) = p(\mathcal{M}, \{x_0\}) = x_0;$$

$$F(\mathcal{M}, 1) = p(\mathcal{M}, \lambda(X, \mathcal{S})) = \mathcal{M}.$$

Moreover, $x_0 \in I\varphi'(t)$ for each t, whence

$$F(x_0, t) = p(x_0, I\varphi'(t)) = x_0,$$

proving that F is a contraction of $\lambda(X, \mathcal{S})$ onto x_0 keeping x_0 fixed.

2.2. COROLLARY. Let X be a T_1 space, let \mathcal{G} be a normal T_1 subbase of X, and assume that $\lambda(X,\mathcal{G})$ is contractible. Then for each $\mathcal{M}_0 \in \lambda(X,\mathcal{G})$ there is a contraction of $\lambda(X,\mathcal{G})$ onto \mathcal{M}_0 keeping \mathcal{M}_0 fixed.

Proof. Let $F: \lambda(X, \mathcal{S}) \times [0, 1] \rightarrow \lambda(X, \mathcal{S})$ be a contraction of $\lambda(X, \mathcal{S})$. Then there is an associated continuous map

$$\varphi \colon [0, 1] \to H(\lambda(X, \mathcal{S}))$$

defined by $\varphi(t) = F(\lambda(X, \mathcal{S}) \times \{t\})$ (cf. Van de Vel [15]). In particular, $\varphi(0)$ is some singleton and $\varphi(1) = \lambda(X, \mathcal{S})$.

Let $\mathcal{M}_0 \in \lambda(X, \mathcal{S})$ be arbitrary. Then there is a path

$$\alpha$$
: $[0, 1] \rightarrow \lambda(X, \mathcal{S})$

with $\alpha(0) = \mathcal{M}_0$ and $\{\alpha(1)\} = \varphi(0)$. Define

$$\psi : [0, 1] \rightarrow H(\lambda(X, \mathcal{S}))$$

by

$$\psi(t) = \{\alpha(2t)\} \quad \text{if} \quad 0 \leqslant t \leqslant \frac{1}{2},$$

$$\psi(t) = \{\alpha(1)\} \cup \varphi(2t-1) \quad \text{if} \quad \frac{1}{2} \leqslant t \leqslant 1.$$

Then ψ is a well-defined continuous path in $H(\lambda(X, \mathcal{S}))$ joining $\{\mathcal{M}_0\}$ with $\lambda(X, \mathcal{S})$. Since \mathcal{S}^+ is a normal subbase of $\lambda(X, \mathcal{S})$ and since $\lambda(\lambda(X, \mathcal{S}), \mathcal{S}^+) \approx \lambda(X, \mathcal{S})$ (\mathcal{S}^+ is binary), Lemma 2.1 yields that $\lambda(X, \mathcal{S})$ is contractible to \mathcal{M}_0 with a contraction keeping \mathcal{M}_0 fixed.

As a second application, we now show that, as far as *normal* spaces are concerned, one has to look after *the superextension*:

2.3. COROLLARY. Let X be a normal T_1 space such that $\lambda(X)$ is contractible. Then for each normal T_1 subbase $\mathcal S$ of X, the superextension $\lambda(X,\mathcal S)$ is also contractible.

Proof. First, notice that if $f: Y \rightarrow Z$ is a continuous map of a T_1 space Y to a normal T_1 space Z, then the mapping

$$H(f): H(Y) \rightarrow H(Z),$$

sending $A \subset Y$ to $\operatorname{Cl}_Z f(A)$, is also continuous. If φ is a path in H(Y) joining some singleton with Y, then $H(f) \circ \varphi$ joins some singleton of Z with Z in H(Z), provided that f is onto (or, at least, that f(Y) is dense in Z).

Assume now, that \mathcal{S} is a normal T_1 subbase for X. Then there is a continuous surjection

$$f: \lambda(X) \rightarrow \lambda(X, \mathcal{S})$$

(the so-called *Jensen-map*, cf. Verbeek [16]). Notice that $\lambda(X, \mathcal{S})$ is normal, being compact, and being Hausdorff by the normality of the subbase \mathcal{S} . Also, each superextension is T_1 . If $\lambda(X)$ is contractible, then there is a path in $H(\lambda(X))$ joining some singleton of $\lambda(X)$ with $\lambda(X)$ (see the proof of Corollary 2.2). Combining the above remark with Lemma 2.1 then yields the desired result.

We now come to our main results.

2.4. Theorem. Let X be a separable T_1 space such that each finite subset of X is contained in a metric subcontinuum of X. Let $\mathscr G$ be a normal T_1 subbase for X. Then $\lambda(X,\mathscr G)$ is contractible.

Proof. We need two auxiliary results.

(2.5; 1) There is an increasing sequence $(K_n)_{n=0}^{\infty}$ of metrizable subcontinua of X, such that K_0 is a singleton, and $(K_n)_{n=0}^{\infty}$ converges X in H(X).

Let $\{x_n | n \in \mathbb{N}\}$ be a countable (counted) dense subspace of X. For each $n \geqslant 0$ we let L_n be a metric continuum containing $\{x_0, ..., x_n\}$. In particular, we choose $L_0 = \{x_0\}$. Then $K_n = \bigcup_{n=0}^{n} L_i$ is a metric continuum, $(K_n)_{n=0}^{\infty}$ is an increasing sequence, and $\bigcup_{n=0}^{\infty} K_n$ is dense in X. Let $\langle 0_1, ..., 0_p \rangle$ be a basic open set in H(X) containing X as a member. Then $0_i \neq \emptyset$ for each i, and $\bigcup_{i=1}^{p} 0_i = X$. For each i=1, ..., p there is an $n_i \in \mathbb{N}$ such that $K_{n_i} \cap 0_i \neq \emptyset$, and hence $K_n \cap 0_i \neq \emptyset$ for all $n \geqslant n_i$. If n_0 denotes the maximum of $\{n_1, ..., n_p\}$, then $K_n \in \langle 0_1, ..., 0_p \rangle$ for each $n \geqslant n_0$, proving that $(K_n)_{n=0}^{\infty}$ converges to X.

(2.5; 2) If $K \subset L$ are metric subcontinua of X, then there is a continuous increasing mapping

$$\varphi \colon [0, 1] \to H(X)$$

with $\varphi(0) = K$ and $\varphi(1) = L$.

Using the fact that $H(L) \subset H(X)$, this statement is a direct consequence of a result of Borsuk and Mazurkiewicz, which can be found e.g. in Kuratowski [5] p. 127.

We now combine the two statements. For each n>0 we have a continuous increasing map (with rearranged domain)

$$\varphi_n: \left[1 - \frac{1}{n}, 1 - \frac{1}{n+1}\right] \to H(X)$$

such that $\varphi_n\left(1-\frac{1}{n}\right)=K_{n-1}$ and $\varphi_n\left(1-\frac{1}{n+1}\right)=K_n$. Since each φ_n is monotonic and since $(K_n)_{n=0}^{\infty}$ converges to X, the join

$$\varphi \colon [0, 1] \to H(X)$$

of the maps φ_n , with $\varphi(1) = X$, is also continuous. Applying Lemma 2.1 then proves the Theorem.

Some classes of spaces satisfying the hypotheses of Theorem 2.4. are worth mentioning (all spaces are T_1 and completely regular):

- (i) the class of all separable, path connected spaces, with, in particular, the class of separable topological vector spaces;
- (ii) the class of all separable, compactly connected, compactly metrizable spaces. (If P is a topological property, then a space is called compactly P if each compact subspace is contained in a compact subspace satisfying P).

As a particular consequence of Theorem 2.4, it follows that λ (**R**) is contractible, in contrast with the fact that the Cěch-Stone compactification β (**R**) $\subset \lambda$ (**R**) is not contractible, not even path connected. The contractibility of λ (**R**) was claimed pre-

viously by Verbeek ([16] p. 133). His proof is wrong, however, as it relies on the contrability of β (**R**).

By (i) above, a countable product of real lines also has contractible superextensions. Notice that R^{∞} is homeomorphic to the space l_2 of all square summable sequences in **R** by a result of Anderson [1].

Recall that a space X is said to be of $category \le n$, where n > 0 is a natural number, if X equals the union of n closed subspaces, each deformable to a point in X. X is of *finite category* if it is of category $\le n$ for some n.

2.5. Theorem. Let X be a connected T_1 space of finite category, containing a dense σ -compact subspace. If $\mathscr G$ is a normal T_1 subbase for X then λ $(X, \mathscr G)$ is contractible.

Proof. Let $C_1, ..., C_p$ be nonempty closed subspaces of X such that $X = \bigcup_{i=1}^{p} C_i$, and such that C_i is deformable to a point $x_i \in X$, i.e. there is a mapping

$$F_i: C_i \times [0, 1] \rightarrow X$$

with $F_i(-,0)$ =constant map onto x_i , and $F_i(-,1)$ =inclusion map of C_i in X. Let $(K_n)_{n=0}^{\infty}$ be a sequence of compact subspaces of X such that $\bigcup_{n=0}^{\infty} K_n$ is dense in X. We may assume that this sequence is increasing, and that $K_n \cap C_i \neq \emptyset$ for all n, i.

Fix $i \in \{1, ..., p\}$ for a while. For each $n \ge 0$ there is an associated continuous map $\psi_{n,i} : [0, 1] \rightarrow H(X)$

with $\psi_{n,i}(t) = F_i(K_{n,i} \times \{t\})$, where $K_{n,i} = K_n \cap C_i$ (Van de Vel [15]). Notice that $\psi_{n,i}(0) = \{x_i\}$ and that $\psi_{n,i}(1) = K_{n,i}$. We put $\varphi'_{0,i} = \psi_{0,i}$, and for each $n \ge 0$ we let

$$\varphi'_{n+1,i}$$
: [0, 1] $\to H(X)$

be a path joining $K_{n,i}$ with $K_{n+1,i}$ (using the paths $\psi_{n,i}$ and $\psi_{n+1,i}$). These mappings are now made monotonic and compatible as follows. Define $\varphi_{0,i}$ by

$$\varphi_{0,i}(t) = \bigcup_{t' \leq t} \varphi'_{0,i}(t').$$

Notice that $\varphi_{0,i}$ has compact values, and $K_{0,i} \subset \varphi_{0,i}$ (1). If $\varphi_{0,i}, ..., \varphi_{n,i}$ have been constructed such that each $\varphi_{m,i}$ is continuous, monotonic, with compact values, and such that $\varphi_{m,i}(1) = \varphi_{m+1,i}(0)$ if m < n, and $K_{n,i} \subset \varphi_{n,i}(1)$, then we put

$$\varphi_{n+1,i}(t) = \bigcup_{t' \leq t} \varphi'_{n+1,i}(t') \cup \varphi_{n,i}(1).$$

Hence, $\varphi_{n+1,i}$ is continuous, monotonic, and with compact values again. Moreover,

$$\varphi_{n+1,i}(0) = \varphi'_{n+1,i}(0) \cup \varphi_{n,i}(1) = \varphi_{n,i}(1),$$

since $\varphi'_{n+1,i}(0) = K_{n,i} \subset \varphi_{n,i}(1)$, and

$$K_{n+1,i} = \varphi'_{n+1,i}(1) \subset \bigcup_{t \leq 1} \varphi'_{n+1,i}(t) \cup \varphi_{n,i}(1) = \varphi_{n+1,i}(1),$$

completing the inductive construction.

Let D_i be the closure of $\bigcup_{n=0}^{\infty} \varphi_{n,i}(1)$. We now proceed as in the proof of Theorem 2.4: the sequence $(\varphi_{n,i}(1)_{n=0}^{\infty}$ converges to D_i in H(X), and the monotonic maps $\varphi_{n,i}$ can be joined such as to yield a mapping

$$\varphi_i : [0, 1] \rightarrow H(X)$$

with $\varphi_i(1) = D_i$. In particular, $\varphi_i(0) = \{x_i\}$.

Proceeding as above for each $i \in \{1, ..., p\}$ we obtain mappings $\varphi_i : [0, 1] \rightarrow H(X)$ with

$$\varphi_i(1) = D_i = \operatorname{Cl}_X \left(\bigcup_{n=0}^{\infty} \varphi_{n,i}(1) \right),$$

where $\varphi_{n,i}(1) \supset K_{n,i} = K_n \cap C_i$. Hence

$$\bigcup_{i=1}^{p} D_{i} = Cl_{X} \left(\bigcup_{i=1}^{p} \bigcup_{n=0}^{\infty} \varphi_{n,i} (1) \right) \supset Cl_{X} \left(\bigcup_{n=0}^{\infty} \bigcup_{i=1}^{p} K_{n} \cap C_{i} \right) = Cl_{X} \left(\bigcup_{n=0}^{\infty} K_{n} \right) = X.$$

A connected space of finite category is easily seen to be path connected. Fix $x_0 \in X$ and for each i=1,...,p, fix a path

$$\alpha_i \colon [0, 1] \to X$$

joining $x_0 = \alpha_i(0)$ with $x_i = \alpha_i(1)$. A path

$$\varphi \colon [0, 1] \to H(X)$$

joining $\{x_0\}$ with X can now be constructed as follows:

$$\varphi(t) = \{\alpha_i(2t) | i = 1, ..., p\} \quad \text{if} \quad 0 \leqslant t \leqslant \frac{1}{2};$$

$$\varphi(t) = \varphi(\frac{1}{2}) \cup \bigcup_{i=1}^{p} \varphi_i(2t-1) \quad \text{if} \quad \frac{1}{2} \leqslant t \leqslant 1.$$

This map is continuous, $\varphi(0) = \{x_0\}$, and $\varphi(1) \supset \bigcup_{i=1}^{p} D_i = X$ as we computed above. Lemma 2.1 can now be applied.

This theorem includes the contractibility results of Verbeek, mentioned in the introduction. In fact, a contractible (compact) space is of category 1 and a (compact) suspension is of category ≤ 2 .

A new class of examples is provided by the topological vector spaces, which are densely σ -compact, e.g. (uncountable) products of real lines. Countable products of **R** are even separable, and Theorem 2.4 can be called on in this case.

- 3. LC^{∞} and LC^* spaces. We now use the nearest point mapping on a super-extension to obtain LC-type properties. The reader is referred to Hu [4] for a definition of LC^{∞} and of LC^* .
- 3.1. THEOREM. Let X be a T_1 space that admits a normal binary subbase. Then (i) X is LC^{∞} if it is path connected,
- (ii) X is LC* if it is contractible.

Proof. The following results can be found in [15]:

- (3.1; 1) Each mapping of an *n*-sphere, n > 0, into $\lambda(X)$ is homotopic to a constant map;
- (3.1; 2) Each point of $\lambda(X)$ has a neighbourhood base, consisting of convex sets;
- (3.1; 3) Each convex subset of $\lambda(X)$ is a retract of $\lambda(X)$.

The latter result first appeared in [9]. Its short proof involves the nearest point map p: if $C \subset \lambda(X)$ is convex, then

$$p(-, C): \lambda(X) \rightarrow \lambda(X)$$

is a retraction of $\lambda(X)$ onto C.

Theorem 3.1 is a direct consequence of these results, using the fact that a space with a normal binary subbase is a retract of its superextension (Van Mill [7]). Actually, the above cited results can be proved directly on the original space X, using the same method as in the $\lambda(X)$ -case.

- 3.2. COROLLARY. Let \mathcal{G} be a normal T_1 subbase for the T_1 space X. Then $\lambda(X, \mathcal{G})$ is a contractible LC^* space in each of the following cases:
 - (i) X is a densely σ -compact, connected space of finite category;
- (ii) X is separable, compactly connected, and compactly metrizable;
- (iii) X is separable and path connected.

Notice that (i) covers the case of contractible or suspended compacta, and that (ii) covers the case of metric continua.

- **4. Some remarks and problems.** In addition to the contractibility results of Van Mill and Verbeek on the superextension of a compact space, we have now proved that $\lambda(X)$ is also contractible if X is separable, compact, and path connected, or if X is a continuum of finite category. However, the following problem remains open:
- 4.1. Question. Find necessary and sufficient conditions on a continuum X for $\lambda(X)$ to be path connected/contractible. Are there path connected non-contractible superextensions of continua?

Concerning the first part of the question, we found the following examples:

- 4.2. Examples. (i) Let X be a compact tree which is not path connected. Then $\lambda(X)$ is not path connected.
 - (ii) Let $X = \beta(\mathbf{R})$, the Cech-Stone compactification of the real line \mathbf{R} . Then X is not path connected, but $\lambda(X)$ is contractible.

The proofs are simple:

- (i) A compact tree admits a normal binary subbase (Van Mill and Schrijver [11], and hence it is a retract of its superextension (Van Mill [7]);
- (ii) $\lambda(\beta(\mathbf{R}))$ is homeomorphic to $\lambda(\mathbf{R})$ (Verbeek [16]).

Concerning the second part of question 4.1, Theorem 2.4 implies that path connectedness and contractibility are equivalent on separable superextensions.

It is well-known that AR's in the category of compact spaces are contractible and locally contractible (LC*) (see e.g. Saalfrank [14]). The two properties are not equivalent in general. However, in view of Van Mill's result that $\lambda(X)$ is an AR (compact metric) if X is a metric continuum, and in view of the nice convexity structure of superextensions, one is led to the following

4.3. Problem. Find conditions on a continuum X in order that $\lambda(X)$ be an AR (compact).

DEPARTMENT OF MATHEMATICS, FREE UNIVERSITY, DE BOELELAAN 1081, AMSTERDAM, (HOLLAND)

REFERENCES

- [1] Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Am. Math. Soc., 72 (1966), 515-519.
- [2] E. G. Begle, Locally connetted spaces and generalized manifolds, Amer. J. Math., 64 (1942), 553-574.
- [3] De Groot, Supercompactness and superextensions, Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutsche Verlag der Wissenschaften, Berlin 1969, 89-90.
 - [4] S. T. Hu, Theory of retracts, Wayne State University Press, 1965.
 - [5] C. Kuratowski, Topology II, 3rd. ed., Warszawa, 1961.
 - [6] E. Michael, Topologies on spaces of subsets, Trans. Am. Math. Soc., 71 (1951), 152-182.
- [7] J. Van Mill, On supercompactness and superextensions, report 37, Free University, Amsterdam, 1975.
- [8] , The superextension of the closed unit interval is homeomorphic to the Hilbert Cube [to appear in Fund. Math.].
 - [9] , A pseudo-interior of λI [to appear].
 - [10] , Some subspaces of λX homeomorphic to the Hilbert Cube [to appear].
- [11] J. Van Mill, A. Schrijver, Subbase characterizations of compact topological spaces [to appear].
 - [12] J. Van Mill, M. Van de Vel., Subbases, convex sets and hyperspaces [to appear].
- [13] , , Convexity preserving mappings in subbase convexity theory, Proc. Kon. Ned. Acad. Wet. Ser. A, 81 (1), 76-90.
- [14] C. W. Saalfrank, Retraction properties for normal Hausdorff spaces, Fund. Math., 36 (1949], 93-108.
- [15] M. Van de Vel, Superextensions and Lefschetz fixed point structures [to appear in Fund. Math.].
- [16] A. Verbeek, Superextensions of topological spaces, M.C. Tracts 41, Mathematisch Centrum, Amsterdam, 1972.
- Й. ван Милл, М. Ван де Вель, Связанность, сжимаемость и LC-свойство суперрасширений Содержание. Число последних результатов по сжимаемости или по свойствам LC-типа значительно увеличилось с помощью техники' включающей ближайшую точку отображения и оператор выпуклого замыкания на суперрасширении.