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PAROVICENKO’S CHARACTERIZATION OF Bw — w
IMPLIES CH

ERIC K. van DOUWEN AND JAN van MiLL!

ABSTRACT. Parovicenko characterized S — w (dually: the field of subsets of
» modulo the finite sets) under CH. We show that his characterization
implies CH.

What we do: It will be convenient to call a space X a Parovi¢enko space if
(@) X is a zero-dimensional compact space without isolated points with
weight c.
(B) every two disjoint open F,’s in X have disjoint closures, and
(v) every nonempty G, in X has nonempty interior.
We complete the proof of the following theorem, begun by Parovicenko.

THEOREM. CH is equivalent to the statement that every Parovienko space is
homeomorphic to Bw — w.

[We leave the translation of this theorem in Boolean algebraic language to
the reader.]

ParoviCenko proved the implication from CH. We prove the converse
implication by constructing two real examples of Parovi¢enko spaces which
are not homeomorphic to each other under - CH.

In [vD] it is shown that several other results about spaces satisfying ( 8),
which were proved from CH in the literature, also are in fact equivalent to
CH.

How we do it: Recall that if X is a space and p € X, then x(p, X), the
character of p in X, is the minimum cardinality of a neighborhood base for p.
We identify cardinals with initial ordinals.

ExAMPLE 1. A Parovitenko space S having a point p such that x(p, S) =
w,.

Let X be any Parovicenko space, e.g. fw — w. There is an w,-sequence
(U, a < w;) of clopen sets in X with U, C Up if B < a < w, (C denotes
proper inclusion). Let P = N, U,, and let S = S/ P, the quotient space
obtained from X by collapsing P to one point.

One can easily check that § and p = {} are as required.
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ExaMPLE 2. A Parovicenko space T such that x(x, 7) = cforallx € T.

We define T = B(w X 2) — w X 2, where 2 denotes the product of ¢
copies of 2, the two-point discrete space. Clearly 7 is compact.

w X 2 is (strongly) zero-dimensional, hence so is 8(w X 2), [GJ, 16.11].
Also, w X 2 is a Lindelof space with weight ¢, hence w X 2 has ¢ = ¢ clopen
subsets, hence B (w X 2) has weight c. It follows that T is a zero-dimensional
space with weight < c. There are several reasons that 7" has weight > ¢ and
has no isolated points; one is given below.

T satisfies ( B), i.e. T is an F-space, since w X 2 is o-compact and locally
compact, [GJ, 14.27].

T satisfies (y) since w X 2 is real compact and locally compact, [FG, 3.1].

For a < ¢ denote the ath projection 2 —2 by 7,. Fora < candi=0or |
define

K(a,i)y=T N cl(w X 75 {i}).

Note that each K (a, i) is a nonempty clopen subset of T and that K (a, i) =
K(a, i) iff « = o’ and i = i’. Define

H={K(a,i):a <c,i=0o0rl}.

CLAIM. Any intersection of w, distinct members of K has empty interior.

ProOF oF CLAIM. For symmetry reasons it suffices to prove that I =
M a<w, K(a, 0) has empty interior. Suppose I does not have empty interior.
Then there is a clopen U in B(w X 22) such that % U N T C I. For every
a < w, the set U — (w X 75 {0}) is a compact subset of w X 2, and since
U N (w X 2) is not compact because U N T #J, there is an integer n, such
that J## U N ({n,} X 2) C {n,} X 75 {0}. There is an integer n such that
A = {a < w;: n, = n} is infinite. But then {n} X N c, 75 {0} is a subset
of {n} X 2 with nonempty interior, which is impossible.

Let x € T be arbitrary, and let AU be a neighborhood base for x. The
family ¥ = {K € ¥K: x € K} has cardinality c. For each K € F there is a
U(K) € A with U(K) C K, hence || > |F| = ¢ since the claim implies
that |{K € H: U(K) = U}| < wfor all U € Q. It follows that x(x, T) = ¢
since we know already that 7 has weight < c. It also follows that x is not
isolated.

REMARKS. (A) If S is constructed from 7, then S is homeomorphic to
Bw — w iff CH holds. Indeed, every nonempty clopen subspace of fw — w is
homeomorphic to Bw — w, but under - CH no clopen subspace of S which
does not contain p is homeomorphic to S.

Note that the fact that x(p, S) = w, does not by itself imply that S and
Bw — w are nonhomeomorphic, since it is consistent with - CH that x(g, Bw
— w) = w, for some point g of fw — w, [K].

(B) We do not know if T can be homeomorphic to Bw — w under — CH.
However, it is easy to see that 7 and Sw — w are not homeomorphic under
MA + —CH. For it is well known that MA implies that (*) any nonempty
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intersection of < ¢ open sets in Sw — w has nonempty interior, e.g. adapt [B,
4.7]. But the claim shows that N ., K(a, 0) is a nonempty intersection of
w, open sets with empty interior. Alternatively,

{ M K(a i(a)): i(a)=00rlfora<wl}

a<wp

is a cover of T consisting of 2“* nowhere dense sets. But () implies that
2“r = ¢, [R, p. 43], and (*) clearly implies that Sw — w is not the union of ¢
nowhere dense sets.

(©) It is well known that CH implies that Bw — w has 2° auto-
homeomorphisms, [Ru, 4.7], but it is now known if this can be true under
— CH. But clearly T has 2° autohomeomorphisms.

(D) The proof that x(x, T) = ¢ for all x € T is similar to the proof that
x(x, Bw — w) = ¢ for some x € fw — w, [Po], see e.g. [C, 2.7]. Our use of two
spaces is similar to the use of two spaces in Weiss’ solution of the Blumberg
problem, [W].

(E) Ryszard Frankiewicz has informed us, without giving a proof, that he
has shown that Parovi¢enko’s characterization implies 2¢' > .
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