AN EXTERNAL CHARACTERIZATION OF SPACES
WHICH ADMIT BINARY NORMAL SUBBASES.

By J. van MiLL and E. WATTEL.

Abstract. We give an external characterization of spaces which admit
binary normal subbases. This is done by constructing sufficiently many nice
Urysohn mappings to separate points in the space under consideration.

1. Introduction. In this note we give a characterization of those spaces
which admit a closed subbase which is both binary (each of its linked'
subsystems has a nonvoid intersection) and normal (two disjoint subbase ele-
ments are separated by two disjoint complements of subbase sets). A space with
a binary closed subbase usually is called supercompact (cf. de Groot [5]). Many
spaces are supercompact (for example all compact metric spaces, cf. Strok and
Szymanski [10]) but many compact spaces are not supercompact (for example
BN: cf. Bell [1]; or, more generally, all infinite F-spaces: cf. van Douwen and
van Mill [3]).

As noted above, supercompact spaces were introduced by de Groot [5]. A
space X with a normal closed subbase &, which in addition is T; (for all x€X
and SES with x&S§S there is an S;€S with x€S; and S,N S=4) is com-
pletely regular (this was proved by Frink [4] under the additional assumption
that S is closed under finite intersections and finite unions; however, Frink’s
technique easily can be adapted to obtain the above result). For a nontrivial
generalization of this result, see de Groot and Aarts [6]. Spaces which have a
closed subbase which is both binary and normal behave surprisingly nicely.
They have very rich “geometric” structure. If, in addition, such a space is
connected, then the following assertions are true:

i. Itis locally connected (cf. Verbeek [12]).
ii. It is generalized arcwise connected (cf. van Mill [8]).
iii. It can be partially ordered in a natural way by means of an order
dense partial ordering (cf. van Mill [8]).
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1A linked subsystem is a subsystem in which each two members meet.
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iv. It has the fixed point property for continuous maps (cf. van de Vel
[11]).

v. It is an absolute retract if it is metrizable (cf. van Mill [7]).

We will give an “external” characterization of spaces possessing a binary
normal subbase, by showing that such a space can be embedded in a product of
closed unit segments in a prescribed nice way. We use an adaption of Urysohn’s
lemma to separate the points of the space under consideration by real valued
continuous functions, which respect the convexity structure induced by the
binary subbase (cf. Schrijver [2, 9]). Then we embed the space into the product
of the images under those functions.

On the way we re-prove Frink’s [4] result. All topological spaces under
discussion are assumed to be T;.

2. An Adaptation of Urysohn’s Lemma. A closed subbase & for a T
space X is defined to be a

i. T,-subbase if for all x€X and SES with x&S$ there is an SHES
with x€ S, and S,N S=4;
ii. normal subbase if for all S,S, €S with SyN S, = there are T, T, €
S with S, T,=@=T,N S, and T,UT,=X;
iii. binary subbase if for all M CS with M M = there are My, M, €
M with MyN M, =;
iv. binary normal subbase if it is both binary and normal.

It is easy to see that a binary subbase is a T}-subbase (cf. van Mill and Schrijver
[9]) and that each supercompact space is compact.

If S is a closed subbase, then the collection of all countable intersections
of members of & is denoted by S;. For a,b real the symbol [a,b] denotes the
closed real line segment between a and b, no matter whether a <b or a >b.

TueEOREM 2.1. Let & be a normal T,-subbase for the space X. If p and q
are distinct points of X (if P and Q are disjoint sets of S), then there is a
function f:X—[0,1] such that f(p)=0 and f(q)=1 (f[P]=0, f[Q]=1), while
for every tE[0,1] the sets f ~([0,t]) and f~*([¢,1]) are members of Sg.

Proof. In the case of the two points p and g we can define two sets P and
Qin & such that pEP and g€ Q and P N Q=(, because S is a T;-subbase for
the T)-space X. Thus we use the same proof for both assertions.

We construct two nests of subbase members, indexed by the dyadic
rationals, such that P is in all members of the first, and Q is in all members of
the second nest. We proceed by induction.
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Start: Choose H,K €S such that HNQ=J, KNP=, and HUK=X.
We define H(3):=H, K(}):=K, H(0):=P, K(1):=Q and finally H(1):=
K(0): = X. Note that for every two dyadic rationals d <r we have

H(d)C H(r), K(r)CK(d) and H(d)nK(r)=@, (¥
H(r) U K(r) = X (**)

whenever those sets are defined.

Step: Assume that all H(d) and K(d) are defined for 0 <d <1, where d is a
dyadic rational with denominator less than or equal to 2", satisfying (*).
Moreover we assume that no H(d) or K(d) is as yet defined for dyadic rationals
with a larger denominator.

Let r<s be any two consecutive fractions for which H(r) and K(s) are
defined. Then precisely one of them has (in simplest terms) denominator 2".
Choose S,,S;€S such that H(r)n S, =F=S,nK(s) and SyUS;=X. Then
define H((r+s)):=S, and K(%(r+s)):=S,. We proceed in this way simulta-
neously for every two consecutive fractions with denominator less than or equal
to 2" and thus obtain all H(d) and K(d) for dyadic d with denominator 2"**.
The now defined sets, together with the earlier defined ones, still satisfy the
induction requirements (*), (**).

This completes the inductive construction.

Now define f:X—1I by

f(x):= inf{r|xEH(r)}.

Observe that if s is a dyadic rational smaller than f(x), then x € K(s), and also if
s is a dyadic rational larger than f(x), then there is an r <s such that x € H(r)
and hence x & K(s). Therefore

f(x) = sup{s|x€K(s)}.
Moreover for all t£[0,1] we have that

fot]] = {x|inf{rlx€H(r)} <t} = QtH(r)
and

FH[t1]] = {x|sup{slxEK(s)} >t} = QtK(s)

respectively. Both inverse images are the intersection of a countable collection
of closed subbase members. Therefore f is continuous, and since clearly f(P)=0

and f(Q)=1, this proves the theorem. []
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CoroLLARY 2.2 (Frink [4]). A space X is completely regular if and only if
it admits a normal closed T,-subbase.

Proof. If X is completely regular, then the ring of zero-sets Z(X) is a
normal closed T;-subbase (cf. Frink [4]).

Let S be a normal T;-subbase for X. Given x € X and a closed set G C X
not containing x, choose a finite ¥ CS such that GC U ¥ and x& U 4. By
the proof of Theorem 2.1, for each FEY there is a continuous mapping
fr: X—[0,1] such that fz(x)=0 and fz[F]=1. Next we define

g:X —>[0,1]

by g(x):=max({ fx(x)|F €¥}. Since ¥ is finite, g is a continuous mapping.
Moreover g(x)=0 and g[G]=1, as can easily be seen. []

3. An External Characterization of Spaces Which Admit Binary Normal
Closed Subbases. Let X be a set, and let I: X X X—>% (X). We write I(x,y) for
I((x,y)). Then I is called an interval structure (Schrijver [2, 9]) on X if

i xy€l(x,y) (x,yE€X);

ii. I(x,y)=1I(y,x) (x,y EX);
iii. if u,0€I(x,y), then I(u,v) CI(x,y) (u,0,x,y EX);
iv. I(x,y)nI(x,2)NI(y,2)#D (x,y,2E X).

A subset B of X is called I-convex iff for all x,y €B we have I(x,y) C B.
If X is a supercompact space with binary subbase &, then the function
Ig: X X X—% (X)) defined by

Is(x,y):= N {SES|x,yES}

is easily seen to be an interval structure. Clearly each S €3 is Is-convex. The
converse also is true. If X is a compact space which admits an interval structure
I and a closed subbase S consisting of I-convex sets, then & is binary
(Schrijver [2, 9]); in particular X is supercompact.

Definition 3.1. Let X and Y be supercompact spaces with binary sub-
bases & and 9 respectively. We say that a continuous mapping f:X—>Y is

convexity preserving provided that f[Is(x,y)]=Is(f(x),f(y))NfIX] for all
xyEX.

Tueorem 3.2. Let X and Y be supercompact spaces with binary subbases
S and F. Let f:X—Y be a convexity preserving surjection. Then for all S €5
we have that f[S] is Ig-convex in Y. Moreover, for all TEJ the set fUT) is
also Is-convex in X.
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Proof Given S €S, let y, and y, be in f[S]. Choose x, and x, in S such
that f(x)=y, (i€{0, 1}) Then Ig(xo,xl)CS by definition of Ig(xo,xl) Hence
Is( yo,yl) flIs(xg,%,)] C f[S]; hence f[S] is Is-convex.

On the other hand, let TE€J and assume that f ~[T] is not Is-convex.
There are x5,x, €f “'[T] such that Ig(xg,x,) N (X\f '[T])#2. But then J+
FlIs(x0,2)]N (Y \T) = Ig( f(xo),f(x1)) N (Y\T), which is a contradiction, since
each TE€Y is I-convex. []

In the remainder of this section we are interested in spaces which admit a
closed subbase which is both binary and normal. As noted in the introduction,
the existence of such a subbase implies may interesting topological properties of
the space under consideration.

Theorem 2.1 gives us enough continuous function to separate the points in
a space with a binary normal subbase in a nice way. This gives rise to special
embeddings of such a space in a product of unit segments.

Recall that the unit segment I=[0,1] is supercompact. For example, the
collection § of all closed intervals is a binary subbase for I. The interval
structure I defined by this subbase is very simple to describe. It is easy to see
that Ig(x, y) =[x, y] for all x,y €. In the sequel we use this interval structure on
I without further reference.

TreoREM 3.3. Let X be a space which admits a binary normal closed
subbase . Then for any two distinct p,q EX there is a continuous convexity
preserving mapping f: X—I such that either f[X]={0,1} or f[X]=1 and which
sends p to 0 and q to 1.

Proof. Let g:X—I be a continuous mapping such that g(p)=0 and
g(p)=1, while g 7'[0,#] and g~ '[¢,1] are in S, for each t EI (cf. Theorem 2.1).
Case 1: g[X]#I. Choose s €I\g[X], and define a mapping f: X—I by

o if g(x)<s,
f(x)_{l if g(x)>s

Then, in view of Theorem 2.1, f satisfies our requirements, since if for some
u,0EX we have g(u)<g(v)<s, then Is(u,v)C N {Slu,vES}CCN
{S|g~"[0,s]CcS and SE€S }=g '[0,s] and f[Is(u,v)]=0. Similarly, if g(u)>
g(v) >s, we obtain f[Is(u,v)]=1.

Case 2: g[X]=1. We will show that g is convexity preserving. For this,
let x,yy € X and assume that g(x) < g( y). First of all notice that g ~'[[ g(x),g(y)]]

is a countable intersection of elements of & and consequently is Is-convex.
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Therefore

Is(x,y) c g7'[[ g(=)g(9)]]s

and consequently g[Is(x,y)]C[g(x),g(y)]. Now if g(x)=g(y), then clearly
glIs(x,y)]=[g(x),g(y)]. Therefore assume that there is a tE[g(x),g(y)] such
that g(x) <t <g(y). Then, since g is surjective,

L:={seS|g '[[0.t]]cStu{seS|g ! [[t1]]cS)
U {S€E€S|I5(x,y)cS}
is a linked subsystem of S, since members in the first and the second

collection intersect in g ~!(¢) and members of the first and the third collection
intersect in x etc. Consequently, by binarity of S,

Ne =g '[[0¢]]ng  [[61]] nIs(xy) = g7 [{t}] N Is(xy)
is nonvoid. We conclude that g[Is(x,y)]=[ g(x),g(y)]. This completes the proof
of the theorem. []

If x,y,z €1, then let m(x,y,2) be the unique point in [x,y]N[y,z]N[z,x].
We call a subset X in a product of unit segments I* triple-convex provided that
for all x,y,2 € X the point p of I* defined by

Po:= m<x¢x’y¢x:za) (aEA)

also belongs to X. Triple-convex sets need not be convex, and convexity does
not imply triple-convexity. We get the following characterization of spaces
possessing a binary normal subbase:

TueoRrEM 3.4. A compact space X admits a binary normal subbase if and
only if it can be embedded as a triple-convex set in a product of closed unit
segments.

Proof. Assume that X is compact and is a triple-convex subspace of I4.
Define an interval structure on X by putting

I(xy):= N 7 [[%y.]]n X

,a€EA

2A subsystem any two members of which meet.
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This indeed is an interval structure, since for all x,y,2E€ X we have
I(x,y) N I(x,2) N I(y,z)
N (7 [ [ % ¥a) ]N 7 [ [2a] [0 7 [ [ Ye02a] ]) N X

aEA

N 7 [{m (%0 Yo z) } ]

aEA

which consists of one point and which belongs to X, by assumption. It now
follows that

S = {77[0,t]nX|0<t<1&a€A} U {7, [t1]NX[0<t<1&aEA}

is a binary subbase for & (cf. the remark preceding Definition 3.1). Hence we
only need to show that & is normal. For this, take S),S,ES such that
SoN S;=9. W.lo.g. Sy=m,'[0,t]N X for some a EA. Then [0,{]N7,[S,]=0,
since SyN S; =<. Take sE I such that t<s and 7,[S,] C(s,1]. This is possible
because S, is compact and hence 7,[S,] is compact too. Then {7, '[0,s]N X,
7, '[s,11N X} is the desired covering of X by elements of S.

On the other hand, assume that & is a binary normal subbase for X. Let
@:={f:X->I|f is convexity preserving and either f[X]=1I or f[X]={0,1}}.
Then Theorem 3.3 implies that the evaluation mapping ¢: X—I¢ defined by

e(x)s: = f(#)

is an embedding. We claim that e[X] is triple-convex in I ¢ In order to show
this, assume p,q,r € e[X]. Then for each fE@® the point

m( Ps> G ff)

belongs to f[X], because either f[X]=1I or f[X]={0,1}. If we consider the
possible inequalities between py, gy, and r; belonging to some f €A and p,, g,

and r, belonging to some gEA, we obtain that all intersections of the type
£[0,m( Prap1llN g~ HIm( Pg>GgsTy)> 1]] are nonempty. Consequently the

subsystem

L:.= {S €ES|IfeR :f_l[[O,m(pf,qf,rf)]] cS orf_l[[m(pf,qf,rf),l]]cs }

of & is linked. Choose x€ (N £. Then e(x);=m(py,q5,7) for all fEQ. This
completes the proof of the theorem. [
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