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COMPACTIFICATIONS OF LOCALLY COMPACT SPACES
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For a locally compact space X we give a necessary and sufficient condition for every
compactification aX of X with zero-dimensional remainder to be regular Wallman. As an
application it follows that the Freudenthal compactification of a locally compact metrizable space
is regular Wallman.
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1. Introduction

Every Tychonoff space X admits Hausdorff compactifications obtainable as the
ultra-filter space of some normal base on X, Such compactifications are called
Wallman compactifications. Until now the question, raised in [2] and [4], whether
all Hausdorff compactifications are Wallman compactifications remains
unanswered,. although many well known compactifications turned out to be
Wallman compactifications [1, 6, 7, 9, 10, 11].

In this paper we will consider Wallman compactifications of locally compact
spaces only; in particular compactifications of locally compact spaces with zero-
dimensional remainder (that such a compactification is a Wallman compactification
follows from a theorem of Njastad [9]). Our main result is that a locally compact
space X admits a separating ring of regular closed sets if and only if every
compactification of X with zero-dimensional remainder is regular Wallman (in the
sense of Steiner [11]; such a space is a Wallman compactification of each dense
subspace). As an application of this theorem it follows that the Freudenthal
compactification of a locally compact metrizable space is regular Wallman.

2. s-rings

All topological spaces under discussion are assumed to be Tychonoff.
Let X be a topological space and let & be a collection of subsets of X. We will



126 P.C. Baayen, J. van Mill /] Compactifications of locally compact spaces

write v .¥ for the family of finite unions of elements of & and .. for the family of
finite intersections of elements of & The family A.v.¥= v.A.% is closed both
under finite unions and intersections; it is called the ring generated by & We say
that & is separating if for each closed subset F = X and each x € X'\F there exist S,
S, e %, such that x €Sy, F< 8§, and §,n §; =0. In addition & is called a separating
ring if $=v.An.% and & is separating. A regular Wallman space is a compact
space which possesses a separating ring of regular closed sets. It is known that each
regular Wallman space is a Wallman compactification of each dense subspace [11].
For shortness, from now on a separating ring of regular closed subsets of X will be
called an s-ring.

Proposition 2.1. Any open subspace of a regular Wallman space possesses an s-ring.

Proof. Let [J be an open subspace of the compact space X and let % be an s-ring
in X. Then it is easy to see that ¥={Fn U | Fe %} is an s-ring in U. Od

When A and B are open subsets of X and A n B =, we will write A + B instead of
A UB. If X is a locally compact space and & is an s-ring in X then we will write
F* ={F e % | F is compact or (X\F) is relatively compact}. Clearly %™ is an s-ring.
In addition, if &X is any compactification of X, we define a collection a% of X in
the following manner:

Sea%: & there are Fe F*, compact K < X and open subsets Vi, V, of aX
such that;

(i) FnK =4,

(i) aX\ K=V +V,and S=Fn V.

Lemma 2.2. Let X be a locally compact space, aX a compactification of X, and & an
s-ring in X. Then a% is closed under finite intersections, and v .a% is again an
s-ring.

Proof. First notice that «% consists of regular closed sets. Secondly we show that
a% is closed under finite intersections. Take Sy, S1€ a%. Then for i €{0, 1} there
exist F; € F*, compact K; © X and open U, V; © @X'such that «X\K; = U; + V; and
FinK;=0and S;=F;n U, Then S¢nS1=(Fon F))n(Uyn U;). Since Kyu K is
compact, (Fon F1)n (Ko K;)=0, and

O.’X\(KoUKl): (CEX\K())('\(Q’X\Kl)
=(Up+ Vo) (U + V1)
=(Upn UDH(Usn VDU (Von UDuw (Vo Vi)

it follows that $, S, € a%.
Trivially #* < % and hence a% is separating if F* is. To prove the latter, let
x € X and let G be a closed set in X such that x€ G. Take an open U in X such that
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xeUcclx(U) and clx(U)n G =@, while moreover clx(U) is compact. This is
possible, since X is locally compact. Now, & is separating and therefore there exist
F,, Fie % such that x € F,, X\U = F; and Fyn F; =0. Evidently F,, F; € #* and
hence F* is separating. Since the union of finitely many regular closed sets is again
regular closed it now follows that v.a% = v.A.a% is an s-ring. |

Theorem 2.3. Let X be a locally compact space. Then the following properties are
equivalent:
(i) X possesses an s-ring.
(if) Any compactification aX of X with zero-dimensional remainder pX = aX\X
is regular Wallman.

Proof. (ii)= (i) Follows from Proposition 2.1.

()= (ii) Let & be an s-ring in X and let & ={cl.x(S)| § € aF}. We will show
that v.% is an s-ring in aX. Hence aX is regular Wallman.

(a) Let Fe %* and let K be a compact subset of X such that aX\K = V,+ V)
and F~ K =0; we put §; = Fn V.. Then

Clax(Si)=Si or Clax(si):SfU(‘/fﬂpX).

Indeed, if F is compact, then also S; is compact; consequently cl.x (S;) = S;. If X\F
is relatively compact, then cl,x (F)= F w pX and consequently

clax (S)=clax(Fn V)< (FupX)nclex(V:)
S(FupX)n(ViuK)=(FnV)u(eXnV)
=S5iv(pX V)
Since cl.x (SouwS1)npX =pX and cl,x(So) N cl.x (S1) =@ it follows that
clax(S)=Siu (X V) (i {0, 1}).
(b) For all 8§y, §;a% we have clox(So) M clax (S1)=clax (Son S1). If Sy or Sy is

compact, then this is a triviality. Therefore, suppose neither is compact. For
ie{0, 1} let K; be a compact subset of X, F;e %* and U, V; open subsets of aX
such that S; = F; n V,, while X \K; = V; + U; and F; n K; =#. Then
Clax(S())ﬁ Clgx(Sl) = (S(] () (VU m pX))m (Sl (] (Vl o pX))
= (ng'\ S])U (pXﬁ Vo V1)

Suppose there exists an x € (cl.x (So) M clax (S1)Nelax (So 1 S1). Then x € Vo Vi,
Now, as clax (Fon F1)m pX = pX, it follows that (cf. the proof of Lemma 2.2)

X e V()ﬁ V] f\C]aX(FUﬁF-l)CClax((Vof\ Vl)('\(FUF‘\Fl))
=clax (Son $1),

which is a contradiction.
It follows that 7 = v. A .¥ is a ring consisting of regular closed sets.
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(c) T is separating.

T'et xoc X and let G be a closed set of X such that xo2 G.

If xqoc X, then the existence of Ty, Ti1€J such that xqe To=clux(To) and
G <clux(T1) and clax (To) N cl.x (T1) =9 is evident. So, we may assume that xo€
pX. Since pX is zero-dimensional, it possesses a base of open and closed sets. Let C
be an open and closed subset of pX such that xoe C and C G =@. Define
Co=pX\C. Then C and C, are disjoint closed subsets in X such that Cou C =
pX. As aX is normal, there exist open Uy, U; © @X such that Cou G = Uy, C = U,
and Uyn U;=@. Then K =aK\(Uyu U;) is a compact subset of X such that
K n G =0. Choose a relatively compact, open O in X such that K = O =clx(O) and
clx(O)Yn (G X)=0. As F* is separating,

X\O=n{FeF* | X\OcF}

and consequently, by the compactness of K, there exists an F e %* such that
X\O<F and FNnK =0. Define So=Fn U, and §,=Fn U;. From (a) it now
follows that xg € clax (S1) and G < clx(So), while clax (So) N clax (S1)=0.

This completes the proof of the theorem. O

3. Some applications

If X is a topological space, then each compactification X of X is a quotient of
the Cech-Stone compactification X of X, by a quotient map f which on X is the
identity. A point p € X\ X is called a multiple point of a X if £ (p) consists of more
than one point.

Corollary 3.1. Ler X be a topological space and let aX be a compactification of X
such that the set M of multiple points is compact and zero-dimensional. If BX is
regular Wallman, then also aX is regular Wallman.

Proof. According to Proposition 2.1, aX\M possesses an s-ring and hence, as a X
is a compactification of aX\M, aX is regular Wallman (Theorem 2.3). O

Note that in the above corollary X need not be locally compact.

In [7], Misra showed that 8X is regular Wallman if X is separable metric and
that 8(Y;c; X;) is regular Wallman if BX; is regular Wallman for each i  I. It is well
known that a locally compact metrizable space is a topological sum of locally
compact separable metric spaces and hence X is regular Wallman in case X is
locally compact and metrizable.

Corollary 3.2. Let X be a locally compact metrizable space. Then each bounding
system compactification of Gould, all finite and countable compactifications, all finite
multiple point compactifications and the Freudenthal compactification are regular
Wallman.
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Proof. Bounding system compactifications of Gould have only 1 multiple point [8]
and the Freudenthal compactification has zero-dimensional remainder. =

In [7], Misra also showed that X is regular Wallman in case X is normal and
homeomorphic to a finite product of locally compact ordered spaces. Thus the
above corollaries also hold for these spaces.

Added in proof. Recently R. C. Solomon has constructed an example of a compact

Hausdorff space which is not regular Wallman (General Topology Appl. 6 (1976)).
More recent yet is V.I. Ul'janov’s result that not every Hausdorft

compactification is Wallman (Dokl. Akad. Nauk SSR 233 (1977)).

References.

[1] J.M. Aarts, Every metric compactification is a Wallman-type compactification, Proc. Intern. Symp.
on Topology and its Applications, Herceg-Novi (Yugoslavia) (1968).

[2] B. Banachschewski, On Wallman’s method of compactification, Math. Nachr. 27 (1963) 105-114.

[3] H. Freudenthal, Kompaktisierungen und Bikompaktisierungen, Indag. Math. 13 (1951) 184-192,

[4] O. Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964) 602-607.

[5] J. van Mill, A note on Wallman compactifications, Nw. Arch. Wisk. 24 (1976) 168-172.

[6]

stratifiable, Indag. Math. 37 (1976) 349-356.
[7] A.K. Misra, Some regular Wallman 8X, Indag. Math. 35 (1973) 237-242.
[8] O. Njastad, A note on compactifications by bounding systems, J. London Math. Soc. 40 (1965)
526-532.
[9] O. Njastad, On Wallman-type compactifications, Math, Zeitschrift 91 (1966) 267-277.
[10] AK. Steiner and E.F. Steiner, Products of compact metric spaces are regular Wallman, Indag.
Math. 30 (1968) 428-430.
[11] E.F. Steiner, Wallman spaces and compactifications, Fund. Math. 61 (1968) 295-304.
[12] H. Wallman, Lattices and topological spaces, Annals of Math. 39 (1938) 112-126.



