COMPACTIFICATIONS OF LOCALLY COMPACT SPACES WITH ZERO-DIMENSIONAL REMAINDER

P.C. BAAYEN and J. van MILL

Department of Mathematics, Free University, Amsterdam

Received 12 September 1976

For a locally compact space X we give a necessary and sufficient condition for every compactification αX of X with zero-dimensional remainder to be regular Wallman. As an application it follows that the Freudenthal compactification of a locally compact metrizable space is regular Wallman.

AMS (MOS) Subj. Class.: 54D30, 54D45

Wallman compactification

s-ring.

regular Wallman.

locally compact

1. Introduction

Every Tychonoff space X admits Hausdorff compactifications obtainable as the ultra-filter space of some normal base on X. Such compactifications are called Wallman compactifications. Until now the question, raised in [2] and [4], whether all Hausdorff compactifications are Wallman compactifications remains unanswered, although many well known compactifications turned out to be Wallman compactifications [1, 6, 7, 9, 10, 11].

In this paper we will consider Wallman compactifications of locally compact spaces only; in particular compactifications of locally compact spaces with zero-dimensional remainder (that such a compactification is a Wallman compactification follows from a theorem of Njåstad [9]). Our main result is that a locally compact space X admits a separating ring of regular closed sets if and only if every compactification of X with zero-dimensional remainder is regular Wallman (in the sense of Steiner [11]; such a space is a Wallman compactification of each dense subspace). As an application of this theorem it follows that the Freudenthal compactification of a locally compact metrizable space is regular Wallman.

2. s-rings

All topological spaces under discussion are assumed to be Tychonoff. Let X be a topological space and let \mathcal{S} be a collection of subsets of X. We will write $\vee \mathscr{S}$ for the family of finite unions of elements of \mathscr{S} and $\wedge \mathscr{S}$ for the family of finite intersections of elements of \mathscr{S} . The family $\wedge \cdot \vee \mathscr{S} = \vee \cdot \wedge \mathscr{S}$ is closed both under finite unions and intersections; it is called the *ring* generated by \mathscr{S} . We say that \mathscr{S} is *separating* if for each closed subset $F \subset X$ and each $x \in X \setminus F$ there exist S_0 , $S_1 \in \mathscr{S}$, such that $x \in S_0$, $F \subset S_1$ and $S_0 \cap S_1 = \emptyset$. In addition \mathscr{S} is called a *separating ring* if $\mathscr{S} = \vee \cdot \wedge \cdot \mathscr{S}$ and \mathscr{S} is separating. A *regular Wallman* space is a compact space which possesses a separating ring of regular closed sets. It is known that *each regular Wallman space is a Wallman compactification of each dense subspace* [11]. For shortness, from now on a separating ring of regular closed subsets of X will be called an s-ring.

Proposition 2.1. Any open subspace of a regular Wallman space possesses an s-ring.

Proof. Let U be an open subspace of the compact space X and let \mathscr{F} be an s-ring in X. Then it is easy to see that $\mathscr{G} = \{F \cap U \mid F \in \mathscr{F}\}$ is an s-ring in U.

When A and B are open subsets of X and $A \cap B = \emptyset$, we will write A + B instead of $A \cup B$. If X is a locally compact space and \mathcal{F} is an s-ring in X then we will write $\mathcal{F}^* = \{F \in \mathcal{F} \mid F \text{ is compact or } (X \setminus F) \text{ is relatively compact}\}$. Clearly \mathcal{F}^* is an s-ring. In addition, if αX is any compactification of X, we define a collection $\alpha \mathcal{F}$ of X in the following manner:

 $S \in \alpha \mathcal{F}$: \Leftrightarrow there are $F \in \mathcal{F}^*$, compact $K \subseteq X$ and open subsets V_1 , V_2 of αX such that:

- (i) $F \cap K = \emptyset$,
- (ii) $\alpha X \setminus K = V_1 + V_2$ and $S = F \cap V_1$.

Lemma 2.2. Let X be a locally compact space, αX a compactification of X, and \mathcal{F} an s-ring in X. Then $\alpha \mathcal{F}$ is closed under finite intersections, and $\vee .\alpha \mathcal{F}$ is again an s-ring.

Proof. First notice that $\alpha \mathcal{F}$ consists of regular closed sets. Secondly we show that $\alpha \mathcal{F}$ is closed under finite intersections. Take S_0 , $S_1 \in \alpha \mathcal{F}$. Then for $i \in \{0, 1\}$ there exist $F_i \in \mathcal{F}^*$, compact $K_i \subset X$ and open U_i , $V_i \subset \alpha X$ such that $\alpha X \setminus K_i = U_i + V_i$ and $F_i \cap K_i = \emptyset$ and $S_i = F_i \cap U_i$. Then $S_0 \cap S_1 = (F_0 \cap F_1) \cap (U_0 \cap U_1)$. Since $K_0 \cup K_1$ is compact, $(F_0 \cap F_1) \cap (K_0 \cup K_1) = \emptyset$, and

$$\alpha X \setminus (K_0 \cup K_1) = (\alpha X \setminus K_0) \cap (\alpha X \setminus K_1)$$

$$= (U_0 + V_0) \cap (U_1 + V_1)$$

$$= (U_0 \cap U_1) + \{(U_0 \cap V_1) \cup (V_0 \cap U_1) \cup (V_0 \cap V_1)\}$$

it follows that $S_0 \cap S_1 \in \alpha \mathcal{F}$.

Trivially $\mathscr{F}^* \subset \alpha \mathscr{F}$ and hence $\alpha \mathscr{F}$ is separating if \mathscr{F}^* is. To prove the latter, let $x \in X$ and let G be a closed set in X such that $x \notin G$. Take an open U in X such that

 $x \in U \subset \operatorname{cl}_X(U)$ and $\operatorname{cl}_X(U) \cap G = \emptyset$, while moreover $\operatorname{cl}_X(U)$ is compact. This is possible, since X is locally compact. Now, \mathscr{F} is separating and therefore there exist F_0 , $F_1 \in \mathscr{F}$ such that $x \in F_0$, $X \setminus U \subset F_1$ and $F_0 \cap F_1 = \emptyset$. Evidently F_0 , $F_1 \in \mathscr{F}^*$ and hence \mathscr{F}^* is separating. Since the union of finitely many regular closed sets is again regular closed it now follows that $\vee .\alpha \mathscr{F} = \vee . \wedge .\alpha \mathscr{F}$ is an s-ring.

Theorem 2.3. Let X be a locally compact space. Then the following properties are equivalent:

- (i) X possesses an s-ring.
- (ii) Any compactification αX of X with zero-dimensional remainder $\rho X = \alpha X \backslash X$ is regular Wallman.

Proof. (ii) \Rightarrow (i) Follows from Proposition 2.1.

- (i) \Rightarrow (ii) Let \mathscr{F} be an s-ring in X and let $\mathscr{S} = \{\operatorname{cl}_{\alpha X}(S) \mid S \in \alpha \mathscr{F}\}$. We will show that $\vee \mathscr{S}$ is an s-ring in αX . Hence αX is regular Wallman.
- (a) Let $F \in \mathcal{F}^*$ and let K be a compact subset of X such that $\alpha X \setminus K = V_0 + V_1$ and $F \cap K = \emptyset$; we put $S_i = F \cap V_i$. Then

$$\operatorname{cl}_{\alpha X}(S_i) = S_i$$
 or $\operatorname{cl}_{\alpha X}(S_i) = S_i \cup (V_i \cap \rho X)$.

Indeed, if F is compact, then also S_i is compact; consequently $\operatorname{cl}_{\alpha X}(S_i) = S_i$. If $X \setminus F$ is relatively compact, then $\operatorname{cl}_{\alpha X}(F) = F \cup \rho X$ and consequently

$$\operatorname{cl}_{\alpha X}(S_i) = \operatorname{cl}_{\alpha X}(F \cap V_i) \subset (F \cup \rho X) \cap \operatorname{cl}_{\alpha X}(V_i)$$
$$\subset (F \cup \rho X) \cap (V_i \cup K) = (F \cap V_i) \cup (\rho X \cap V_i)$$
$$= S_i \cup (\rho X \cap V_i).$$

Since $\operatorname{cl}_{\alpha X}(S_0 \cup S_1) \cap \rho X = \rho X$ and $\operatorname{cl}_{\alpha X}(S_0) \cap \operatorname{cl}_{\alpha X}(S_1) = \emptyset$ it follows that

$$\operatorname{cl}_{\alpha X}(S_i) = S_i \cup (\rho X \cap V_i) \qquad (i \in \{0, 1\}).$$

(b) For all S_0 , $S_1 \in \alpha \mathcal{F}$ we have $\operatorname{cl}_{\alpha X}(S_0) \cap \operatorname{cl}_{\alpha X}(S_1) = \operatorname{cl}_{\alpha X}(S_0 \cap S_1)$. If S_0 or S_1 is compact, then this is a triviality. Therefore, suppose neither is compact. For $i \in \{0, 1\}$ let K_i be a compact subset of X, $F_i \in \mathcal{F}^*$ and U_i , V_i open subsets of αX such that $S_i = F_i \cap V_i$, while $\alpha X \setminus K_i = V_i + U_i$ and $F_i \cap K_i = \emptyset$. Then

$$\operatorname{cl}_{\alpha X}(S_0) \cap \operatorname{cl}_{\alpha X}(S_1) = (S_0 \cup (V_0 \cap \rho X)) \cap (S_1 \cup (V_1 \cup \rho X))$$
$$= (S_0 \cap S_1) \cup (\rho X \cap V_0 \cap V_1).$$

Suppose there exists an $x \in (\operatorname{cl}_{\alpha X}(S_0) \cap \operatorname{cl}_{\alpha X}(S_1)) \setminus \operatorname{cl}_{\alpha X}(S_0 \cap S_1)$. Then $x \in V_0 \cap V_1$. Now, as $\operatorname{cl}_{\alpha X}(F_0 \cap F_1) \cap \rho X = \rho X$, it follows that (cf. the proof of Lemma 2.2)

$$x \in V_0 \cap V_1 \cap \operatorname{cl}_{\alpha X}(F_0 \cap F_1) \subset \operatorname{cl}_{\alpha X}((V_0 \cap V_1) \cap (F_0 \cap F_1))$$

= $\operatorname{cl}_{\alpha X}(S_0 \cap S_1),$

which is a contradiction.

It follows that $\mathcal{T} = \vee . \wedge . \mathcal{S}$ is a ring consisting of regular closed sets.

(c) \mathcal{T} is separating.

Let $x_0 \in \alpha X$ and let G be a closed set of αX such that $x_0 \notin G$.

If $x_0 \in X$, then the existence of T_0 , $T_1 \in \mathcal{T}$ such that $x_0 \in T_0 = \operatorname{cl}_{\alpha X}(T_0)$ and $G \subset \operatorname{cl}_{\alpha X}(T_1)$ and $\operatorname{cl}_{\alpha X}(T_0) \cap \operatorname{cl}_{\alpha X}(T_1) = \emptyset$ is evident. So, we may assume that $x_0 \in \rho X$. Since ρX is zero-dimensional, it possesses a base of open and closed sets. Let C be an open and closed subset of ρX such that $x_0 \in C$ and $C \cap G = \emptyset$. Define $C_0 = \rho X \setminus C$. Then C and C_0 are disjoint closed subsets in αX such that $C_0 \cup C = \rho X$. As αX is normal, there exist open U_0 , $U_1 \subset \alpha X$ such that $C_0 \cup G \subset U_0$, $C \subset U_1$ and $U_0 \cap U_1 = \emptyset$. Then $K = \alpha K \setminus (U_0 \cup U_1)$ is a compact subset of X such that $K \cap G = \emptyset$. Choose a relatively compact, open O in X such that $K \subset O \subset \operatorname{cl}_X(O)$ and $\operatorname{cl}_X(O) \cap (G \cap X) = \emptyset$. As \mathscr{F}^* is separating,

$$X \setminus O = \bigcap \{ F \in \mathscr{F}^* \mid X \setminus O \subseteq F \}$$

and consequently, by the compactness of K, there exists an $F \in \mathcal{F}^*$ such that $X \setminus O \subset F$ and $F \cap K = \emptyset$. Define $S_0 = F \cap U_0$ and $S_1 = F \cap U_1$. From (a) it now follows that $x_0 \in \operatorname{cl}_{\alpha X}(S_1)$ and $G \subset \operatorname{cl}_{\alpha X}(S_0)$, while $\operatorname{cl}_{\alpha X}(S_0) \cap \operatorname{cl}_{\alpha X}(S_1) = \emptyset$.

This completes the proof of the theorem.

3. Some applications

If X is a topological space, then each compactification αX of X is a quotient of the Čech-Stone compactification βX of X, by a quotient map f which on X is the identity. A point $p \in \alpha X \setminus X$ is called a *multiple point* of αX if $f^{-1}(p)$ consists of more than one point.

Corollary 3.1. Let X be a topological space and let αX be a compactification of X such that the set M of multiple points is compact and zero-dimensional. If βX is regular Wallman, then also αX is regular Wallman.

Proof. According to Proposition 2.1, $\alpha X \setminus M$ possesses an s-ring and hence, as αX is a compactification of $\alpha X \setminus M$, αX is regular Wallman (Theorem 2.3).

Note that in the above corollary X need not be locally compact.

In [7], Misra showed that βX is regular Wallman if X is separable metric and that $\beta(\sum_{i\in I}X_i)$ is regular Wallman if βX_i is regular Wallman for each $i\in I$. It is well known that a locally compact metrizable space is a topological sum of locally compact separable metric spaces and hence βX is regular Wallman in case X is locally compact and metrizable.

Corollary 3.2. Let X be a locally compact metrizable space. Then each bounding system compactification of Gould, all finite and countable compactifications, all finite multiple point compactifications and the Freudenthal compactification are regular Wallman.

Proof. Bounding system compactifications of Gould have only 1 multiple point [8] and the Freudenthal compactification has zero-dimensional remainder.

In [7], Misra also showed that βX is regular Wallman in case X is normal and homeomorphic to a finite product of locally compact ordered spaces. Thus the above corollaries also hold for these spaces.

Added in proof. Recently R. C. Solomon has constructed an example of a compact Hausdorff space which is not regular Wallman (General Topology Appl. 6 (1976)).

More recent yet is V.I. Ul'janov's result that not every Hausdorff compactification is Wallman (Dokl. Akad. Nauk SSR 233 (1977)).

References.

- [1] J.M. Aarts, Every metric compactification is a Wallman-type compactification, Proc. Intern. Symp. on Topology and its Applications, Herceg-Novi (Yugoslavia) (1968).
- [2] B. Banachschewski, On Wallman's method of compactification, Math. Nachr. 27 (1963) 105-114.
- [3] H. Freudenthal, Kompaktisierungen und Bikompaktisierungen, Indag. Math. 13 (1951) 184-192.
- [4] O. Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964) 602-607.
- [5] J. van Mill, A note on Wallman compactifications, Nw. Arch. Wisk. 24 (1976) 168-172.
- [6] J. van Mill, Compactifications in which the collection of multiple points is Lindelöf semistratifiable, Indag. Math. 37 (1976) 349–356.
- [7] A.K. Misra, Some regular Wallman βX , Indag. Math. 35 (1973) 237–242.
- [8] O. Njåstad, A note on compactifications by bounding systems, J. London Math. Soc. 40 (1965) 526–532.
- [9] O. Njåstad, On Wallman-type compactifications, Math. Zeitschrift 91 (1966) 267-277.
- [10] A.K. Steiner and E.F. Steiner, Products of compact metric spaces are regular Wallman, Indag. Math. 30 (1968) 428-430.
- [11] E.F. Steiner, Wallman spaces and compactifications, Fund. Math. 61 (1968) 295-304.
- [12] H. Wallman, Lattices and topological spaces, Annals of Math. 39 (1938) 112-126.