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1. Introduction

The Cech-Stone compactification BN of the natural numbers N is extensively
studied in general topology because of its nice topological properties and also
because of its relations to set theory. This space has as underlying set the set
of all ultrafilters on IN topologized by the Wallman topology. Another type of
extension, called the superextension AN of N, is the space with underlying set
the set of all maximal linked systems in #(N) (i.e. systems maximal with respect
to the property that every two of its members meet) also topologized by a natural
Wallman topology.

Verbeek [19] has shown that AN is a compact totally disconnected superspace
of N which contains SIN as a subspace but which is not homeomorphic to SIN.
Also AN possesses a countable dense set of isolated points and has weight c.
In this paper we will derive more topological properties of AN in order to show
its relation and its difference with SIN.

We are indebted to Eric van Douwen for some helpful suggestions.

2. Superextensions

All topological spaces under discussion are assumed to be T,. Let X be a topo-
logical space and let & be a closed subbase for X. Then & is defined to be a

(i) T,-subbase if for each x,eX and Se¥ such that x,¢S there exists a
Te such that x4e T and SN T=g;

(i) normal subbase if for each S, T, €& with S, Ty = & there exist §;, T;e¥
such that Son Ti=2=T,n S, and S, U T;=X.

A subsystem .# c & is called a linked system (1s), if every two of its members
meet. A linked system .# <& is called a maximal linked system, or mls, if it is
not properly contained in any other linked system 4" < %. By Zorn’s lemma each
linked system .# <& is contained in at least one maximal linked system 4 = &,
The following simple lemma is due to Verbeek [19].
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Lemma 2.1. Let A, #, be mls’s in . Then
(a) ¢y,
(b) If Se#y, TeF and ST then TeH,;
(c) If S M, then there is a TeMH, such that SN T=g;
(d) Mo+ .4, iff there are M e M; (ie{0, 1}) such that My~ M, =@ ;
(e) If S, Te¥and SuT=X then Se#, or TeM,.

The above lemma shows that maximal linked systems in some respect behave
like ultrafilters.

Define: A,(X)={# <& |4 is an mls in &¥}. If ¥ is a T;-subbase then for
each xeX we have that .#, ={Se%|xeS} is an mls; the map i: X - 1,(X)
defined by i(x): =.#, is one to one. For 4= X we define

At :={ M el (X)| A contains a member of #}.

Lemma 2.2. (a) If AcBcX then A*<B*;
(b) If AABcX and AnB=g then ATnB*=g;
(© If S, Te& then SNT=g iff S"nT*=gw,
d) If S, Te&# then SUT=X iff STUT*=1,(X);
(e) If Se& then STU(X N\ =A,(X).

For a proof of this simple lemma see Verbeek [19]. As a closed subbase for
a topology 4. (X) we take

S+ ={S*|Se¥}.

With this topology A (X) is called the superextension of X relative the subbase & .
In case & consists of all the closed subsets of X, then 1,(X) is denoted by A X
and is called the superextension of X. It is easy to see, using Lemma 2.2, that
L4 (X) always is T,, is Hausdorff if & is normal and that in case & is a T;-subbase
the function i described above is a homeomorphism. Moreover it is easy to show
that the closed subbase &* has the property that each linked subsystem of it
has a nonvoid intersection and hence that, by Alexander’s subbase lemma,
Ao (X) is compact. A closed subbase with the property that each linked subsystem
of it has a nonvoid intersection is called binary and a topological space which
admits such a subbase is called supercompact. The class of supercompact spaces
was introduced by de Groot [8]. Clearly each superextension is supercompact.
It is known that many spaces are supercompact (for example all compact metric
spaces, cf. Strok and Szymanski [18]) and that many spaces are not supercompact
(for example SN, cf. Bell [1], or, more generally, all infinite F-spaces, cf. van
Douwen and van Mill [6]).

An mls #eAX is said to be defined on a set N< X if for all Me.# there exist
an M'e# such that M'c M~ N (Verbeek [197]). We say that N is a defining set
for . Let 1,(X) denote the set of all .#eAX which have a finite defining set.
Verbeek [19] showed that A, (X) is dense in X and that a point .#€AX is isolated
iff # has a defining set M consiting of finitely many isolated points of X. Com-
bining these two results it follows that AN, the superextension of the natural
numbers, possesses a dense set of countably many isolated points. Therefore
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AN can considered to be a compactification of N (Note that the set i [IN] is not
dense in AN). Consequently AN is a continuous image of fIN; however fIN is
not a continuous image of AIN (van Douwen and van Mill [6]). Also lemma 2.2
implies that AN is totally disconnected and weight (AIN)=c. The space AN~ A, N
is compact and possesses points with a countable neighborhood basis and points
without a countable neighborhood basis. For example

M={McN|Ji>1:{l,i}cM or {2,3,..}cM}

easily can be seen to be an mls with a countable neighborhood basis. Theorem
2.9 will provide us with 2¢ points in AIN ~.A.(IN) without countable neighborhood
basis. Hence AN ~ /(IN) is not homogeneous and has less in common with SIN ~N.
Yet AN~A4,(N) contains a homeomorph of SIN ~IN. Verbeek [19] showed that
i[IN] (which will be identified with IN from now on) is C*-embedded in AN and
hence that the closure of N in AN is SIN. Also it is easily follows that cl, [IN]~\IN
< AN~ A, (N) and hence that N ~N< AN~ 4.(IN). It must be noticed that there
also exists an other proof of this fact. It can easily be seen that each ultrafilter on
NN is a maximal linked system and hence that SN, as a set, is contained in AN.
Also the subspace topology for SN clearly coincides with the usual Wallman
topology on SN so that the topological space N is a subspace of AIN. Therefore
cl,n[IN]J=pBN, since the compactness of fIN implies that fIN is closed in AN.

The following subspace of 1IN ~ A.(N), wich seems to be closer to $IN <N than
AN~ (N), also fails to look like BIN~IN; define

d(N): ={# AN | A contains no finite set}.

Unfortunately o (IN) is separable, because of the following lemma, while SIN ~IN
is not.

Lemma 2.3. g(N) is a retract of AIN.

Proof. Let of ={A=N| N\ A|<w}. Then 6(N)=n {A" |Ae/} and by theorem
3.2(i1) o(IN) is a retract of AN. [

The subspace Z(N)={.#eciN| for all My, M,ed:|MynM,|=w} of
AN~ ,(N) is another candidate for a substitute of BIN \IN. This seems to be the
right subspace. More general, for each topological space X define

Z(X)={MeliX |for all My, M ,e#: My M, is not compact}.

Theorem 2.4. Let X be a normal topological space. Then
() T(X)=AX ~A(X);

(i) X' (X)is compact iff X is locally compact;

(i) If X is locally compact then Z(X) is homeomorphic to A(f X ~ X).
Proof. (i) is trivial. To prove (ii) assume that X(X) is compact. Notice that f X
is closed in AX and consequently X \ X is closed in X \4,(X). Therefore, as
BX~XcXZ(X), BX \X is closed in ¥ (X) too. It follows that f X \ X is compact
and consequently X is locally compact.



190 J. van Mill

The counterpart of (ii) follows from (iii), since (8 X \ X) is compact. To prove
(iii), assume that X is locally compact. For each closed subset M <X define
M*=clyx (M)~M. Then {M*|M is closed in X} is a closed base for the topology
of BX ~ X, closed under finite intersections and finite unions. Define a mapping
@: A(fX~X)- X(X) by

o(M):={McX|M*ek}.

First we will show that ¢ is well-defined. Clearly ¢(.#) is a linked system for
all #eA(fX\X). Suppose that ¢ () is not a maximal linked system for some
M €A(BX ~X). Then there exists a closed set A< X such that ¢(#)u {4} is
linked while A¢p(.#). Then A*¢.# and consequently there exists an M e#
such that 4¥ "M = g. By the compactness of BX \X there is a closed subset
B<X such that M= B* and B¥*n A*=g. As Me it follows that B*e.# and
consequently Bep(.#). Therefore Bn A+ @. But B* n A* =& implies that BN A
is compact. Choose a relatively compact neighborhood U of A~ B and define
C=B~U. Then C*=B* and consequently also Ce¢(#). This is a contradiction
since CnA=g. Also it is clear that ¢ (#)eX (X) for take M, N e (.#) such that
M N is compact. Then M* n N* =& and consequently .# is not linked. Contra-
diction.
Let B be a closed subset of X. Then

Mep ' [B*nZ(X)] iff o(M)eB*nZ(X) iff p(#)eB*
iff B¥et  iff Me(BY)*.

Therefore @ ~! [B* n Z(X)]=(B*)* (the first “plus” is taken in AX, the second
in A(BX ~ X)!) showing that ¢ is continuous. Also it is not difficult to see that ¢
is one to one and surjective. Clearly A(8X ~X) and X(X) both are Hausdorff
spaces (Verbeek [19]). It follows that ¢ is a homeomorphism. []

Remark. The present proof of Theorem 2.4(ii) is due to van Douwen; he discovered
that our original proof was incorrect.

The space Z(N) hence is a homeomorph of A(fIN \IN). We prefer to study
A(BIN\N) as a subspace of AIN. It must be noticed that the proof of the above
theorem shows that {M+ 2 (IN)| M =N} is a binary closed subbase for X (IN)
and hence that Z(N) is supercompact (for this fact there is also an elementary
proof). This shows that Z(N) and SIN~N are not homeomorphic since each
infinite supercompact Hausdorff space contains nontrivial convergent sequences
(van Douwen and van Mill [6]). We will now derive some properties of X (IN)
(and hence of 1(SIN\IN)).

Lemma 2.5. The cellularity of Z(N) is ¢.

Proof. Let {A,| xec} be an almost disjoint collection of infinite subsets of N, i.e.
for all aec we have |4,|=w and a<p<c implies |4, N 45| <o (there is such a
collection, see Gillman and Jerison [7]). Then {4~ Z(IN)|aec} is a collection
of ¢ pairswise disjoint open subsets of Z(N). For take a <f<c and .#eA; NA;
NZ(N). Then |4,nA4;|=w, since .#eXZ(N). Contradiction. Since the weight
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of AN is ¢, the weight of ¥(N) also equals ¢ (BINNNcX(N)) and the result
follows. [

Let x be any cardinal. The following principle is called P (k).

Let o be a collection of fewer than x subsets of N such that each finite sub-
collection of o/ has infinite intersection. Then there is an infinite F <IN such that
F~Ais finite for all Aef.

It is easy to show that P(w,) holds in ZFC and moreover Martin’s axiom (MA)
implies P(c) (Booth [2]). Moreover P (k) implies that 2*=¢ for each infinite A <x
(Rothberger [14]). In particular, P(w,) implies the negation of the Continuum
Hypothesis.

It is easy to show that P(x) is equivalent to the statement that each nonvoid
intersection of fewer than x open subsets of SIN~\IN has nonempty interior.
Unfortunately P(x) does not imply the same property for X (IN). In fact we will
show that there is a nonvoid countable intersection of clopen subsets of X(IN)
with a void interior. The following lemma shows that P (k) works for intersections
of open sets in X (IN) containing an ultra-filter.

Lemma 2.6 [P(x)]. Let A be an intersection of fewer than k open subsets of X (N).
If An(BN~N)=+@& then there is an infinite BN such that Bt nX(N)c A.
In particular A has a nonvoid interior.

Proof. Let A=n{0,|aep}, where f<k and each O, is open in X(N). Take a
point # €A n(BIN ~N). For each o€ choose an F,e % such that F,;* n X(N)<O,.
This is possible since it is easy to see that {F* n X (N)| FeZ} is a neighborhood
basis for # in Z(IN). Then {F, | aef} is a collection of fewer than x subsets of N
each finite subcollection of which has infinite intersection. Choose an infinite
B<N such that |[BNE| < for all aef. We will show that

B*n2Z(N)en {E* nZ(IN)| aep}.

Indeed, choose a point A e(B* nZ(IN)N(E* nX(N)) for some acf. Then
F¢.# and consequently N~ Fe .#. Hence |BNn(N\E)|=w, since .#cZ(N).
Contradiction. Therefore Bt nZ(IN)c=A and as B is infinite, B*tnZ(N) is a
nonvoid open set. []

Remark. In the proof of Lemma 2.6 we showed that A* "nZ(IN)c B+ n Z(N) iff
|ANB| <w.This is a property of the binary subbase {4* " Z(N)|A<N}. The
binary subbase {4+ | A <IN} does not have this property. For example let 4= {1}
and B={1,2}. Define an mls #€iAN by A#:={CcN|{l,2}cC or {1,3}cC
or {2,3}€C}. It is easy to see that .# is an mls. Moreover .#€B* ~ A" and yet
|[BNA|<w.

We will now give an example showing that Lemma 2.6 cannot be sharpened.

Example 2.7. A countable nonvoid intersection of clopen subsets of X (IN) with a
void interior.

Inductively we construct a collection {4, | new} of infinite subsets of N such
that for all iew
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(i) k<ISi=|4,nA|=0;

(i) ksi =4~ 4)=0
FE

(iii) |]N\]L<jiAj|=w;

(iv) k<l<mZi=>A,nANnA,=2.

To define 4, just pick an infinite subset of IN with an infinite complement.
Suppose that {A4;|0<j<i} are defined satisfying (i)-(iv). For each k <i choose an
infinite C,cA,~{J 4; such that also (4,~|) 4,)~C, is infinite. Choose an

J<i ]St

infinite subset D of ]N\ U A; such that also (JN ~U 4 D is infinite. Define

j=i j<i

U C; v D. Then clearly (i), (ii) and (iii) are satisfied. Take k, | <i such that

Jj=0
k<l Then A,nANA,_ =4 r\A,nU C;=C,nC,=g. Hence (iv) also is

satisfied. We will show that the nonv01d set N {A4} | new} has a void interior (that
N {4, | new} is nonvoid is trivial since |4;n 4;| = w for all i, jew). We prove one
more simple lemma.

Lemma 28. Let M,cIN (wep) such that (| M; nZ(N)+ &. Then for all BcN

aep
we have () M} nZ(N)c B* nZ(N) iff |[M, ~B|<w for some «,€p.
aep
Proof. If [M,~ B|<w for some a€f then M} nZ(N)c BT n Z(N) (cf. the proof
of Lemma 2.6) and consequently () M; nX(N)< B* n Z(N). On the other hand

aep
if /M, ~ B|=w for all aef, then the linked system {M |axef} U {IN\ B} is a linked
system any two members of which meet in an infinite set. Hence this linked
system can be extended to a maximal linked system .#e() M; n(N~B)*

N Z(N). Contradiction. [] aeh

Now suppose there exists a nonvoid open (in Z(IN)) set U = n {4, |new} n Z(N).
Without loss of generality U= (") M;" n Z(N) for some infinite M; = N(i < n). Now
isn
Lemma 2.8 implies that for each mew there is a k(m) <n such that |M, ,,, ~ 4,| <o.
Hence there must be a i<n such that B={mew|k(m)=i} is infinite. Choose
three elements m,, m,, myeB such that m; <m, <m,. Then clearly M, is finite
since 4,,, N4,,N A,,,= &, which is a contradiction. [J

Van Douwen has pointed out to me that Lemma 2.6 and Example 2.7 imply
that X(IN) is not homogeneous. For take #e€ N~ NN and .# in a nonvoid countable
intersection of clopen subsets of Z(IN) with a void interior. Then lemma 2.6 im-
plies that there is no autohomeomorphism ¢ of Z(N) which map & onto Z.
The above example shows that nonvoid countable intersections of open sets need
not have nonvoid interiors in Z(IN). The following theorem in any case implies
that such intersections have cardinality 2¢ and hence are rather big.

Theorem 2.9. Let A be a nonvoid countable intersection of open sets in X(IN). Then
A contains a homeomorph of BN~ IN.
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Proof. Take #MeA=) O,, where O, is open in Z(N), and let M}, ..., M} be

elements of .# such that

N Mi*nZI(N)<O,
JSk()
for all iew. Then 33={M§| j=k(i), iew} is a countable collection of subsets of N
any two members of which meet in an infinite set. If [N \ B| < ® for all BeZ# then
Z(IN)=n{B*nX(N)|Be%#} <A and hence clearly 4 contains a homeomorph of
BIN~IN. Therefore we may assume that there is a ByeZ such that [N\ B,|=w.
Define € ={BnB,|Be%#} Then € consists of countably many infinite subsets
of B,. List € as {C;|iew} such that each Ce® is listed countably many times.
Now, by induction, for each iew pick p;, q;€ C; such that

@ pi=*4q;;
@) {p:» ¢} " {Pos> - Pii1> 905 > 41} = 2.

Define P={p;|iew} and Q ={q;|icw}. Then P and Q are two disjoint infinite
sets such that |PnCj|=|Q@nC;|=w for all iew. Define a retraction r: X(N)
- n{B*|Be#}nZ(N)by

HA)i={N*AZIN)|Net and [N ~B|=w for all Be®} n{B* Z(N)| Be®)}.

That r is a retraction will be shown in Theorem 3.2 (ii).

Let D=N~\B,. We will show that r} D~ D is a homeomorphism (notice
that fD~Dc fINNINc X(N)). Take two ultra-filters %, #eBD D such that
%+ % . Then there exist Fe %, such that F;,c D(i€{0, 1}) and F,n F, = &. Clearly
F,uPe%,, FKuQe#% and (F,uP)n(FuQ)=g. Also [(F,uP)nBl=0=
(F,uQ)nB| for all Be#. Hence r(%)e(F,uP)* and r(#)e(F,uQ)*. But
(FouP)* n(F,uQ)* =2 and consequently r(%)=+r(%). Hence r} fD~D is one
to one and consequently | D~ D is a homeomorphism. []

Corollary 2.10. No pe Z(N) admits a countable neighborhood basis.

A well-known property of SINN\N is, under P(c), that each nonvoid open
set contains 2° P-points (see e.g. van Douwen [4]). Recall that a point p of a
topological space is called a P-point if the intersection of less than ¢ neighborhoods
of p is again a neighborhood of p. We will show that each nonvoid open set in
Z(N) also contains 2° P-points.

Theorem 2.11 [P(c)]. Each nonvoid open set in (IN) contains 2° P-points
Proof. Let A={F epN~N|Z is a E-point}. Define
B={#cZ(N)|3ZcA(i<n ncw)3Lel{0,1,...,n}
M ={FcN|ILe ¥ : Fe%(icL)}}.

We will show that B consists of P-points of X(IN) and that each nonvoid open
set contains 2° elements of B. Indeed, take .# €B and let {O,|ae B} be a collection
of less than ¢ neighborhoods of .#. Without loss of generality we may assume
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that each O, is of the form M; with M, e.#(axep). Choose FeA(i<n, new) and
“e2{0,1,...,n}such that # ={F=N|ILe ¥ : FeZ(icL)}. For each M, choose
L,e such that M e %, for all ieL,. For each Le.%# define A(L)={0ef|L=L,}.
Fix Le %. For each ie L choose F,(L)e%; such that |F,(L)~M,| <w for all ae A(L).
This is possible since &, is a B-point of fIN ~IN. Moreover for each i€ {0, 1, ..., n}
define &;={Le%|ieL}. Then let

F= () F(L).
Le¥,
Clearly Fe #,(i<n). Finally define
U= (UB*"nZN).

LeZ iel

It is easy to see that U is a neighborhood of .# such that U< () O,. This shows
that B consists of P-points. aep

Now, let U be a nonvoid open set in Z(IN). Take .# €U and let M,e #(i<n)
such that () Mt n Z(N)c U. For each i, je {0, 1, ..., n} take a B-point %;;=%,,€ 4

such that =Mir*\M ;€%,;. This is possible since |M;n M |=cw. Take a maximal
linked system £eA({0, 1, ..., n}?) such that for all i<n the set L,={(i, j)| j<n}
is an element of .#. Notice that {L,|i<n} is linked. Now define

A:={FcN|ILeZ: Fe# (i, j)eL}.

We will show that 4 is a maximal linked system. Clearly 4" is linked. Now
suppose 4" is not maximally linked. Take M <N such that 4"U {M} is linked
while M ¢.4". Define E={(i, )| M€ #,;}. Clearly E+ & and also {E} U Z is linked.
Hence, as .# is a maximal linked system, E€ % and consequently M e #". Contra-
diction. Since each %; is an ultra-filter, 4" is a maximal linked system any two
members of which meet in an infinite set and hence 4 '€ X(N). Also it is clear
that 4 e U and that there are 2° different choices for 4". []

Remark. The technique used in the proof of Theorem 2.11 is based on a technique
due to Verbeek [19].

3. Spaces with a Binary Normal Closed Subbase

Let X be a set and let & be a collection of subsets of X. For each A< X define
cly(Ad)=n{S|Se¥ and AcS}

and
int,(4)=U{X \S|Ses and X ~Sc 4}

respectively.
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The sets cl,(A4) and int,(A) are called the &-closure and the & -interior of A.
In addition a set B< X is called &-closed (¥-convex) if B=cl,(B) (for all b,, b,e B
ey ({by, b;})= B, respectively). Clearly each $-closed set also is -convex.
Simple examples show that the converse need not be true. If & is a binary normal
closed subbase for the topological space X then these two concepts coincide as
the following theorem shows. We will often use, without reference, the following
simple lemma

Lemma 3.1. Let & be a binary subbase for X. Then

(i) Fis a T,-subbase;
(ii) If & is normal then for each x, ye X with x+y there exist S, S,€< with
xeSoN (X N\S,)and yeS,N(X \S,) and Squ S, =X;
(iii) Let B X be & -closed. Then {S n B|Se %} is binary.

Theorem 3.2. Let & be a binary normal closed subbase for the topological space X.
Then

(1) If B is closed in X, then
B=cl(B)iff for all x, ye B we have cl({x, y})=B;
(i) If B=cl,(B) then the mapping r : X — B defined by
{rx)}=n{SeZ|xeS and SNB=+ @} B is a retraction;
(iii) (Verbeek [19]) If X is connected then X also is locally connected.

Proof. (i) “=" trivial.

“<=" Suppose there exists an xecl,(B)~B.
We will show that {x} = () cl,({x, }).

yeB

Indeed, assume there exists a ze () cl({x, y}) such that x#z.
yeB

Choose Sy, §;€4 such that xeS,N (X \S,), yeS; (X \Sy) and S,uS, =X.
Clearly BE S, , for otherwise B =cl,, (B) <= S, whichis a contradiction since xecl, (B).
Therefore there exists a boeS,nB. Then cl ({x,b,})=S, which implies that

ve () cg({x, bYhccly({x, bo}) =S, which also is a contradiction. Define
beB
T :={cly({x,b})nB|beB}. Clearly J consists of closed subsets of B (and

hence of X). We will show that  is linked. Choose b, b, € B. Then as & is binary,
cly({by, b} cly({bg, x})nely({by, x})+ 2 and as cy,({b,, b,})=B the sets
cl ({by, x})nB and cl ({b,, x})nB must intersect. Therefore J is a linked
system with an empty intersection. By the compactness of B there are already
finitely many elements of 4 which have a void intersection. Let new be the
smallest element for which there are n elements of 7 with an empty intersection.

Clearly n23 since J is linked. Take n elements Ty,..., T, ,eZ such that
-1 n-1

(| T,=2.Chooseb,e () T,n () Tile{0,1,2}). Then
i=0

isn-1 i=l+1
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g#cly({bo, bi})nely({by, by})nely({by b= () T,

isn—-1

which is a contradiction.

(ii) Take xeX. Then N {SeS|xeS and SN B+ g} B+ g, since B=cl,(B)
and & is binary. Assume that this intersection contains two distinct points, say
b, and b,. There are S,, S, such that b,eS, N (X~ S,) and b, S, N (X \S5;)
and S;u S, =X. One of the sets {S,, S, } must intersect x; assume xeS,. Then,
since S, B+, the set N{Se¥|xeS and SNB+g}NBcS,nB which is a
contradiction since b, ¢S, N B. Therefore r is well-defined. To prove the conti-
nuity of r, take Se& and suppose that x¢r~' [S] (consider r to be a mapping
of X into X). Also assume that r~! [S]+@. Then r(x)¢S and as {r(x)}
=n{SeS|xeS and SN B+ @} B either BnS= g or there is an S,e such
that xeS, and S;nB#+@ and S,NS=@ (notice that B=cl,(B) and that & is
binary). In the first case r~! [S] =&, which is a contradiction. In the second case

choose S;, S; €& suchthat §,N S| =2 =8,nS, and S, US; =X. Then U= X \§)
is a nelghborhood of x which misses r—1! [S] for X \S’ c:S0 Hence r~! [S] is
closed. Therefore r is continuous. Clearly r is a retraction.

(ili) Take xeX and let U be a neighborhood of x. Choose fintely many

S,,....8,€¥ such that x¢ U S;2X~\U. For each ie{l,2,...,n} choose S;e¥
such that xelnt S;cS; and S' N S;=g. This is possible since & is T, and normal.
Then V= ﬂ S; is a neighborhood of x, contained in U. Moreover it is clear that
V=cly( V)fél"lherefore V is connected, being a retract of a connected space. [

Remark. The circle, S,, admits a binary subbase for which (i) and (ii) of the above
theorem do not hold. Hence the normality of the subbase is essential. It is well-
known that N \NN is an F-space (Gillman and Jerison [7]) and hence that
each cozeroset of SIN~\IN is C*-embedded. In particular it follows that a count-
able union of clopen sets is C*-embedded. On the other hand X(N) cannot be an
F-space, since no infinite compact F-space is supercompact (van Douwen and
van Mill [6]). We give an example of a countable union of clopen subsets of
Z(N) that is not C*-embedded.

Negrepontis ([12]) has shown that the closure of a countable union of clopen
sets in BIN \N is a retract of fIN ~IN. The following theorem shows that a similar
assertion holds in X(N) for suitable countable unions of clopen sets taken from
the “canonical” closed subbase {M* N Z(IN)|M =IN}.

From now on let ¥ ={M* n X(N)| M =N}. This subbase is binary and for
all Se& the set X \S is also in .. In particular, & is normal.

Theorem 3.3. Let {A,|aepf} be a collection of F-closed sets such that A,cA,
iff a<y. Then (U A,)~ equals cly(U A,). In particular (| ) 4,)" is supercompact

aef
and is a retract of Z(N).
Proof. Clearly (| ) 4,)~ =cly (| A4,). Take two distinct points .#,, .#, (| 4,)"

acf aep aef
and assume there exists a point 2 such that
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Pecly, ({(My, )N 4)".

aef

Take finitely many Be# (i<n, new) such that () B* n () 4,=2. Now suppose
that for some /<n we have that B¢.#, and B¢.#,. Then ﬂtake M e M; such that
M;nRB=g (ie{0,1}). Clearly En(M,uM,)=2 and also cl,({#,, #,})=
(MyuM,)*. However B*n(MouUM,)* =g, which is a contradiction since
Pecly({M,, #,}). Therefore each B either belongs to .#, or belongs to .4,.
Define C;={/<n|ReM} (ie{0,1}). Then () B* is a neighboorhood of .#, and

leC;
hence intersects ( ] 4, (i€{0, 1}). Choose a,ef such that () B* N4, * & (i€{0,1}).

aef leC,
Without loss of generality assume that a;<o,. Then { () B*, [ B*,A4,}isa
leCo 1eCy
linked system consisting of &-closed sets (Theorem 3.2). Consequently, by the

fact that & is binary,
N B* 4= () B [) B* 04, +2.

iZn leCo leCy
which is a contradiction.
It now follows that () 4,)” is ¥-convex and hence #-closed by Theorem 3.2.

aef
Therefore () A,)” =cly(|J 4,)~. Hence Z=(|) 4,)" is supercompact (Lemma
aep aef aep
3.1) and is a retract of Z(N) (Theorem 3.2). []
Corollary 3.4. Let S;e¥ such that S;<S,, , and S, ,~S;+& (iew). Then | ) S;
is not C*-embedded in X (N). iew

Proof. Notice that A=) S; is not compact for {S;|icew} is a countable open
covering of A without finite subcover. Suppose that 4 is C*-embedded in X (N).
Then A~ is a compactification of 4 which is equivalent to the Cech-Stone com-
pactification of 4. Hence, by Theorem 3.3, A (=A~) is supercompact. This
implies, by a theorem of Bell [1], that A4 is pseudocompact. However A4 is not
pseudocompact as can easily be seen. Contradiction. []

There are still many questions to be asked concerning X (N). For example
Theorem 2.9 says that each nonvoid countable intersection of open sets in X (IN)
contains a homeomorph of SN\ IN. Hence such an intersection contains many
countable subspaces that are C*-embedded. On the other hand X(N) is super-
compact and hence for each countable subspace K it follows that at least one
cluster point of K is the limit of a nontrivial convergent sequence in X (IN) (van
Douwen and van Mill [6]). Hence there are also many countable subspaces of
2 (N) that are not C*-embedded.

This suggests the following question:

Question 3.5. When is a countable A = Z(N) C*-embedded?

Also we have said nothing about normality in X(N). It is well-known that CH
implies that SINNIN\{p} is not normal for all pefIN~N (see Comfort and
Negrepontis [3], Warren [20]). Hence if for each pe X'(IN) there exists a copy of
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BN~ N in Z(N) containing p, then CH also implies that ¥ (IN)\ {p} is not normal.
Theorem 2.9 suggests such a fact.

Question 3.6. Is there for each pe X(N) a homeomorph of SIN \NN containing p?
Question 3.7. Is it true that X (N)~ {p} is not normal for all pe X (IN)?

4. A Characterization of X (IN)

In [13], Parovi¢enko characterized fIN NN in terms of its Boolean algebra of
of clopen subsets. We will show that Parovienko’s result allows us to give a
characterization of Z(N), not in terms of its Boolean algebra of clopen subsets
but in terms of the Boolean algebra {M*NXI(N)|McN}. Clearly &=
{M*NnZ(N)| McIN} is not a Boolean subalgebra of the Boolean algebra of
clopen subsets of X' (IN). Therefore we define for . new Boolean operations and
show that, under the Continuum Hypothesis (CH), the Boolean algebra thus
obtained characterizes ~(IN) and hence A(BIN ~N). Parovienko also uses the
Continuum Hypothesis and from an example given by van Douwen [4] it follows
that the Continuum Hypothesis is essential in this characterization. There is a
locally compact, s-compact and separable space M such that SN ~\N and M ~ M
are homeomorphic under CH but not under MA + 71CH. Van Douwen’s example
also shows that in our characterization CH is essential. The spaces X(IN) and
Z (M) are homeomorphic under CH but not under MA + 7JCH. One moment
one might think that this immediately follows from van Douwen’s result using
the equalities X (N)~ A(SIN ~N) and X (M)~ A(BM ~ M). This is not true, however.
We give an example of two compact metric spaces X and Y which are not homeo-
morphic while yet 1 X and AY are homeomorphic.

Parovienko [13] has also shown that, without using the Continuum Hy-
pothesis, each compact Hausdorff space of weight less than or equal to w, is a
continuous image of SIN \IN. We will show that for X (N) this is not true. There
is a compact Hausdorff space with w, points which is not the continuous image
of Z(IN).

Let #=(B,0,1,’, A, v) be a boolean algebra. # is called Cantor separable
if no strictly increasing sequence has a least upper bound, i.e. if

g <--<a,<--<b,

there exists an element ¢ <b such that a,<c for all new. In addition 2 is called
DuBois-Reymond separable if a strictly increasing sequence can be separated
from a strictly decreasing sequence dominating the increasing one, i.e. if

Ay <+ <@,<--<b,<-<b,,

there exists a ceB such that a,<c<b, for all new. Finally # is called dense in
itself if for all a, ce B with a <c there is a be B such that a<b<c. A subset M B
is called a linked system if my A m; £0 for all my, m,e M. A maximal linked system
is a linked system not properly contained in any other linked system. By Zorn’s
Lemma each linked system is contained in at least one maximal linked system.
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This fact, however, also follows from the Order Extension Principle (each partial
ordering on a set can be extended to a total ordering), which is strictly weaker than
Stone’s representation theorem which is, in turn, strictly weaker than Zorn’s
lemma, see Schrijver [17]. Parovi¢enko [13] has shown that, under CH, a compact
Hausdorff totally disconnected space of weight ¢ which possesses no isolated
points is homeomorphic to FIN\IN iff the Boolean algebra of clopen subsets of X
is both Cantor and DuBois-Reymond separable. In fact he showed that all Boolean
algebra’s of cardinality ¢ which are dense in itself and which are both Cantor and
DuBois-Reymond separable are isomorphic under CH. We will use Parovitenko’s
result in this form.

For technical reasons we will assume from now on that each closed subbase &
for a topological space X contains & and X.

Theorem 4.1 [CH]. Let X be a compact Hausdorff space of weight ¢ which possesses
no isolated points. Then X is homeomorphic to £(N) (and hence to A(BIN \IN)) iff
X possesses a binary closed subbase & satisfying :

(i) For all Se& also X ~\SeZ.

(ii) For all 8y, S,€% also cl,(S,US))e.
(iii) Forall Sy, S,eF:cly, (SouS)=X<S,US, =X.
(iv) Forall Sy, S,,S,e%:

int, (S Nl (S, U S,))=cl, (int, (S, N S;) Ninty (SN S,)).

V) If S,e¥, 8,285, (new) then (" S, contains a nonvoid element of <.

new

(vi) Disjoint countable unions of elements of & have disjoint ¥-closures.

Proof. “=" Define ¥ ={M* n ¥(N) | M «N}. Then & is a binary closed subbase
for X(IN) which satisfies (i). It satisfies (ii), (ili) and (iv) because of the equalities

cle(Mg nZ(IN) U (M N Z(IN))=(M,uM)* nZ(N) *)
int, (Mg nZ(IN)NMFAZIN)=(Myn M)* nZ(N). (**)

Let us proof (*) only.

Clearly cl, (Mg n Z(IN)) u(Mr nZ(N))) = (MU M,)* N Z(N). Suppose there
exists an Ae(Myu M)t ~cl (M nZIN) UM} N ZN)))nZIN). Choose
LcN such that cly (Mg nZIN)UM;PnEZN)c Lt A Z (M) such that A ¢L*
NX(N). Then M;"nZ(IN)c L*n Z(N) implies that |M,\L|<w (i{0,1}) and
hence that |(M,uUM,)~L|<w. Choose Me# such that |MnL|<w. Then
|Mn (M, U M,)|<w, which is a contradiction since #e(M,u M,)*.

This shows that ¥ satisfies (iii) for take S, S;e&. If S,uUS, =X (N) then
clearly cl,(S,US;)=2(N). Now assume that cl,(S,uS;)=2Z(N). Let S;
=M} nZ(N) (ie{0,1}). Then XZ(N)=(M,uM,)*nZ(N) by (*). Hence
[N~ (M, uM,)| <wand consequently (M§ n Z(IN))u (M n Z(IN))=Z(N) (notice
that in general [N\ (M, U M,)|<w need not imply M§ UM} =AN!). Using (*¥)
and (**) it follows that . satisfies (iv). & also satisfies (v), because of Lemma 2.6
(recall that P(w,) is in ZFC and hence that we do not use CH or P(c) here).

Finally & satisfies (vi). Let A={) (M; nZ(N)) and B= ) (L} n £(N)) such
that An B= . Using the same technique as (*) it follows that cl,(4)=(| ) M))*

icw
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NZ(N) and cl,(B)=(| ) L)* nZ(N). Now suppose that cl,(4)ncl,(B)+ 2. It
then follows that |({ ) M)*n({) L)*|#0 and hence there are i,jew such that

icw icw
IM;n L;|=w. Contradiction.
Finally of course 2 (IN) is a compact Hausdorff space of weight ¢ and possesses
no isolated points because of Theorem 2.9 (see also Verbeek [19]).
“<«=" Define operations A, v,  on & by

Av B=cl,(AuUB),
AAB=int,(ANB),
A'=X~A.

We will show that (&, A, v,’,0,1) is a Boolean algebra, where 0= and
1=X. Notice that for all A, Be¥we have that ANBcAnBand AUBcAvV B.
Because of (i) Av Be4 for all A, Be#. Also A A Be¥ because of the equality

AAB=(4'vBY.

To prove this notice that AA B=U {X~S§|Se& and X\ScAnB}=u{§|Ses
and Sc AN B} by (i). Now take Se& such that Sc A B. Then A’UB (X \S)
and consequently cly (A’ UB’)=(X ~8). Therefore S= X ~cl, (4"UB)=(4'v B).
Since (4’ v B'Y e &, by (i) and (ii) it follows that AA B=(A'v B').

Define a relation < on & by putting ASBiff AN B=A.

Let us prove that A<B iff AcB for all 4, Be#. Indeed assume that AcB
Then AAB=(A'v BY) =(4') =A and therefore A <B. Next, suppose that A<B
and that there exists an xe4~B. Then x¢A A B and consequently AA B+ A.
Contradiction. It now follows that the relation < is a partial ordering. Also it
is clear that for all A4, Be& the set A A B is the greatest lower bound of 4 and B
with respect to this ordering and in the same way A v B is the least upper bound
for A and B. Hence (&, <) is a lattice. Also (¥, £) is distributive because of (iv)
and clearly it is complemented. Hence (¥, v, A,’,0,1) is a Boolean algebra.
Let us show that this Boolean algebra is Cantor separable. Take A,e (new)
and Be¥ such that 4,<---<A,<--<B. Define S,=BA A, (new). We will
show that S, 40 (new). For suppose to the contrary that for some nyew we have
S,,=0. Then 1=S5, =(BAA4,)=Bv A, and hence, by (i), B'u4,,=X. This
is a contradiction, since A, <B (notice that in fact we have shown that for all
A,Be¥ we have AAB+0 iff AnB+@2). Also A,<A,,, implies BnA4,
cBn A, and consequently B A 4] ;=B A A;, (new). By (v) there is a nonvoid C
such that Cc () §,. Then 4y <4, <--<A4,<--<C'<B.

Let us prove that {§, v, A,’,0, 1) is dense in itself.

Take A4, Ce& such that A<C. If A=0, then C=+ g implies that there are
two distinct points x and y in C since X contains no isolated points. By the fact
that & is binary there is an Se& and y¢S. Then define B= C A S. Notice that
B+0. Then A<B<C. If A+0 define D=CA A'. Then D0, since CNnA'+g&
and define B=D' A C. Then clearly A <B< C. Let us prove that (%A, Vv,’,0,1)
is Dubois-Reymond separable. Suppose that 4y <+ <A4,<:--<B,<--<B, for
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" some A,,B,e#(new). Then () A4, and (J B, are disjoint countable unions of

n*>—n
new new

clements of ¥ and hence have, by (vi), disjoint &-closures. Let Co=cly (| 4,)

new

and C;>cly(|J B,) such that Co, C,e and ConC, =g. Then clearly A4,<C,
and B, < C, for all new. It now follows that
Ap<--<4,<--<Cy<--<B,<--<B,.

Also, since the weight of X is ¢ the cardinality of % equals ¢ since . is a subbase.
Now by Parovi€enko’s result the Boolean algebra (&, A, v ,’,0, 1) is isomorphic
to the Boolean algebra of clopen subsets CO(SN ~N) of SN ~N.

Let 6: ¥ —» CO(BN \N) be an isomorphism. Define a function ¢: X—2Z(N)
by

@x):={McN|M*ec{o(S)| xeS}}.

Recall that M*=cl; (M)~ M for all M=N. We will show that ¢ is a homeo-
morphism.

Take xe X; then &, = {Se | x€eS} is a maximal linked system in the Boolean
algebra (&, A, v,’,0, 1.

Indeed take S,, S, €%, then S, S, + & implies that S, A S, +0 which shows
that & is a linked system. Also %, is maximally linked for suppose there is an
Ae¥ such that &, U {4} is linked but 4¢%. Then x¢A and consequently xeA'.
But 4nA'= gz implies that A A A’=0. Contradiction. The Boolean isomorphism
o maps & onto a maximal linked system in CO (8NN ~N). Now it is not hard to
see that

{McN|M*e{c(S)| xeS}}

is a maximal linked system in 2 (IN) and that it is an element of X (N). Also the
fact that ¢ is an isomorphism implies that ¢ is one to one and surjective. More-
over ¢ is continuous since it is easy to see that

P MM NZ(N)=0"1(M*)
for all M =N. Therefore ¢ is a homeomorphism. [J

Corollary 4.2 [CH]. If X is a zero-dimensional noncompact a-compact and locally
compact space with |C(X)|=c¢, then X(N) and X(X) are homeomorphic.

Proof. It is easy to see that {M* N Z(X)| M is open and closed in X} satisfies all
conditions of Theorem 4.1 (notice that X Lindeldf, being o-compact, implies that
for all closed sets 4, B< X with A~ B= g there is an open and closed U = X such
that AcU and BcX~\U). O

Remark. Corollary 4.2 also follows directly from Parovitenko’s result. For if
X is a zero-dimensional noncompact g-compact and locally compact space with
|C(X)|=c then there is a homeomorphism ¢: X~ X —BN~N using Paro-
vicenko’s characterization of SIN~IN. This homeomorphism easily can be
extended to a homeomorphism @: A(8X \ X)— A(BIN~\IN) (Verbeek [19]). Now
theorem 2.4 shows Z(X)~X(N). [
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Example 4.3. A locally compact and g-compact separable space M for which X (M)
and X (N) are homeomorphic under CH but not under P(c)+ 7CH.

As noted in the introduction of this section this example is based on an example
of van Douwen [4].

Let M =N x{0,1}<. Then clearly (M) and X(N) are homeomorphic under
CH. Assume that w, <c and let K={0, 1}. Let 2" ={II; ' [{i}]|acw,, i€{0, 1}}.
Then {NxK|Kex'} is a collection of w, clopen subsets of M each infinite
subcollection of which has a void interior. As for each ae w, we have (N x IT;'[{0}])
U(NXII7[{1}])=M for each .#eAM there is an ie{0,1} such that
N x IT; ' [{i}]e.# (recall that ./ is a maximal linked system). For each .#€2 (M)
define A (M)={KeX |N x Ke#}. 1t follows that A" (.#) is uncountable for
each .#eX (M) and also that {4 (#)|.#€Z(N)} has cardinality 2. Also

A={n{(NxK)* |KeX (M)} (M)} | MecZ (M)}

covers X (M). The collection &/ has cardinality 2* and consists of pairwise disjoint
intersections of w, clopen subsets of X(M).

Let us prove that each Ae«/ has a void interior.

Assume that there exists open and closed Cy, ..., C,=M such that

g+ () C; nE(M)cA,
for some Ayesf. Let Ag=n{(INx K)* | KeX (Mo} N Z(M).

Now the fact that () C; nE(M)cn {(N x K)* | KeX (#,)} n 2 (M) implies
that for all KeX (.#,) there is an iy <n such that C;~(N x K) is compact; for
otherwise (| C;i7 N Z(M)&(IN x K)* nZ(M).

Hence there is an i, <n such that ¥ ={KeX (M,)|ix=i,} is uncountable.
Also, clearly, C;, is not compact. Choose for every Le% an integer i(L) such that
@+ Cy,n({i(L)} x K)c {i(L)} x L (this is possible since C;,~ (N x L) is compact!).
There is an integer i such that the collection #Z={Le% |i(L)=i} is infinite,
because .2 is uncountable. But then N8 has a nonvoid interior in K since &+ C,
N ({i} x K)< {i} x " 4, which is a contradiction.

Now suppose that there is a homeomorphism ¢: X(N)-X(M). Take
F efN~N and take Ae.of such that Fe¢p~'(4). As 4 is an intersection of w,
clopen sets, ¢~ '(A4) is also an intersection of w, clopen subsets of Z(IN). However
P(c) implies that this intersection has a nonvoid interior (Lemma 2.6). Contra-
diction. [J

Example 4.4. Two compact metric spaces X and Y which are not homeomorphic
while yet AX and AYare homeomorphic.

Let X =1, the closed unit interval and let
Y={0, y)| —1=ys1}Uu{(x,sin1/x)[0=x=1}.

Then clearly X and Yare not homeomorphic. In [10] it was shown that AX ~Q,
the Hilbert cube. This also implies that 1Y is homeomorphic to the Hilbert cube,
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because of the following theorem ([11]): If Y~ 11m {X.}; and if all the bonding
maps in the inverse sequence {X,}, are surjections, “then 1X, i~ Q(iew) implies that
AX~Q.

Example 4.5. A separable compact Hausdorff space with w, points which is not
the continuous image of Z(N).

Let T=22U“2 be a Cantor tree (cf. Rudin [15]) and let L =“2 be such that
|L|=w,. In [6] it was shown that no compactification of the subspace S=%2UL
of T is supercompact. With the same technique however it also follows that no
compactification of § can be the continuous image of a supercompact space.
However, as S is locally compact, the one point compactification of S is not the
continuous image of Z(N). [
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