MATHEMATICS
(GENERAL TOPOLOGY)

A Countable Space No Compactification of Which Is Supercompact

by

J. van MILL

Presented by K. BORSUK on November 4, 1976

Summary. We will show that the space $N \cup \{p\}$, the subspace of $\beta N \setminus N$ where p is a P-point of $\beta N \setminus N$, has no supercompact compactification.

All topological spaces under discussion are assumed to be Tychonoff. A topological space X is called *supercompact* provided that it possesses an open subbase $\mathscr U$ such that each covering of X by elements of $\mathscr U$ contains a subcover consisting of two elements of $\mathscr U$ (De Groot [6]). A supercompact space is compact; supercompactness is a topological invariant; it is productive and the class of all supercompact spaces contains the compact metric spaces [10], compact orderable spaces and compact tree-like spaces [4], [7]. Not all compact Hausdorff spaces are supercompact, as was shown by Bell [1].

Let X be a supercompact space. The supercompactness of X can also be described in terms of a closed subbase. A space is supercompact iff it possesses a closed subbase $\mathscr S$ such that each linked subsystem $\mathscr M \subset \mathscr S$ has a nonvoid intersection ($\mathscr M$ is called *linked* if every two of its members meet). Such a subbase is called *binary*.

A point p of a topological space X is called a P-point if the intersection of countably many neighborhoods of p is again a neighborhood of p.

If $\mathscr S$ is a closed subbase for the topological space X, then we will write $\vee \mathscr S$ for the family of finite unions of elements of $\mathscr S$ and $\wedge \mathscr S$ for the family of finite intersections of elements of $\mathscr S$. The family $\vee \cdot \wedge \mathscr S = \wedge \cdot \vee \mathscr S$ is closed both under finite intersections and finite unions; it is called the *ring* generated by $\mathscr S$. If X is compact, then for all open $U, V \subset X$ with $\operatorname{cl}_X(U) \subset V$ there exists a $T \in \vee \cdot \wedge \mathscr S$, such that $\operatorname{cl}_X(U) \subset T \subset V$, as can easily be seen. If $\mathscr S$ is binary, then for all $B \subset X$ define

$$I(B) := \cap \{S \in \mathcal{S} \mid B \subset S\}.$$

Notice that $B \subset \operatorname{cl}_X(B) \subset I(B) = I(I(B))$ for all $B \subset X$ and that $A \subset B$ implies that $I(A) \subset I(B)$.

THEOREM. Let p be a P-point in $\beta N \setminus N$. Then the subspace $N \cup \{p\}$ of βN has the property that no compactification of it is supercompact.

J. Van Mill

Proof. Define $X=N \cup \{p\}$. Let αX be a compactification of X and let $f: \beta X = \beta N \rightarrow \alpha X$ be the unique projection mapping which extends id_X . Assume that \mathcal{S} is a binary closed subbase for αX ; define

$$A := \{ n \in N \mid I(\{p, n\}) \cap (\alpha X \setminus X) \neq \emptyset \}.$$

For all $n \in A$ choose an $x_n \in I(\{p, n\}) \cap (\alpha X \setminus X)$ and let $B = \{x_n \mid n \in A\}$. As $f^{-1}(B)$ is an F_{σ} and as p is a P-point in $\beta N \setminus N$ it follows that

$$p \notin \operatorname{cl}_{\beta N} f^{-1}(B)$$

and consequently $p \notin f(\operatorname{cl}_{\beta N} f^{-1}(B))$, for if not, then $f^{-1}(p)$ consists of more than one point, which is a contradiction. Now, as $B \subset f(\operatorname{cl}_{\beta N} f^{-1}(B))$ and as f is a closed mapping, we conclude that $p \notin \operatorname{cl}_{\alpha X} B$. Choose open sets $U, V \subset \alpha X$ such that $p \in U \subset \operatorname{cl}_{\alpha X} U \subset V$ and $V \cap \operatorname{cl}_{\alpha X} B = \emptyset$. Let

$$T = \bigcup_{i=1}^{n} \bigcap_{j=1}^{n} S_{ij}$$

be an element of $\land . \lor .\mathscr{S}$ $(S_{ij} \in \mathscr{S}, i, j \in \{1, 2, ..., n\})$ such that $\operatorname{cl}_{\alpha X} U \subset T \subset V$. Then

$$p \in \operatorname{cl}_{\alpha X} U = \operatorname{cl}_{\alpha X} (U \cap N) = \bigcup_{i=1}^{n} \operatorname{cl}_{\alpha X} \left(U \cap N \cap \bigcap_{j=1}^{n} S_{ij} \right),$$

and consequently there exists an $i_0 \in \{1, 2, ..., n\}$ such that

$$p \in \operatorname{cl}_{\alpha X} \left(U \cap N \cap \bigcap_{j=1}^{n} S_{i_0, j} \right).$$

Define $M = U \cap N \cap \bigcap_{j=1}^{n} S_{i_0,j}$. Then M is infinite and

$$p \in \operatorname{cl}_{\alpha X} M \subset I(M) \subset \bigcap_{j=1}^{n} S_{i_0, j} \subset V.$$

Take $m \in M$. Then $I(\{p, m\}) \subset I(M)$ and therefore $I(\{p, m\}) \cap (\alpha X \setminus X) = \emptyset$, for if not, then $x_m \in I(\{p, m\}) \cap B \subset I(M) \cap B \subset V \cap B = \emptyset$. Consequently, $I(\{p, m\})$ if finite, since if $I(\{p, m\})$ is infinite then $I(\{p, m\}) \cap N$ is infinite and as $(I(\{p, m\}) \cap N) \cup \{p\}$ is not a convergent sequence

$$\emptyset \neq \operatorname{cl}_{\alpha X} (I(\{p, m\}) \cap N) \cap (\alpha X \setminus X) \subset I(\{p, m\}) \cap (\alpha X \setminus X),$$

which is a contradiction.

For every $\kappa \leq \omega_1$ now define a finite subset $A(\kappa)$ of M such that

- (i) If $p \in cl_{\alpha X} \bigcup A(\mu)$ then $A(\kappa) = \emptyset$.
- (ii) If $p \notin \operatorname{cl}_{\alpha X} \bigcup_{\mu < \kappa} A(\mu)$ then $A(\kappa) \neq \emptyset$ and $I(A(\kappa) \cup \{p\}) = A(\kappa) \cup \{p\}$ and $A(\kappa) \cap \bigcup_{\mu < \kappa} A(\mu) = \emptyset$.

Take a point $m \in M$ and define $A(0) = I(\{p, m\}) \cap N$. Then A(0) has all desired properties. Suppose that all $A(\mu)$ have been constructed for $\mu < \kappa \le \omega_1$. Assume

that $p \notin \operatorname{cl}_{\alpha_X} \bigcup_{\mu < \kappa} A(\mu)$. Obviously, using the same technique as above, there exists an infinite $N_0 \subset M$ such that $p \in \operatorname{cl}_{\alpha_X} N_0 \subset I(N_0)$ and $I(N_0) \cap \operatorname{cl}_{\alpha_X} \bigcup_{\mu < \kappa} A(\mu) = \emptyset$. Take $n \in N_0$ and define $A(\kappa) = I(\{p, n\}) \cap N$. Then as $I(N_0) \subset I(M)$ the set $A(\kappa)$ has all desired properties.

As there are only countably many finite subsets of M there exists a $\kappa < \omega_1$ such that $p \in \operatorname{cl}_{\alpha X} \bigcup_{\mu < \kappa} A(\mu)$. As $\bigcup_{\mu < \kappa} A(\mu) \cup \{p\}$ is not a convergent sequence there exists a $q \in \operatorname{cl}_{\alpha X} \bigcup_{\mu < \kappa} A(\mu) \cap (\alpha X \setminus X)$; clearly $p \neq q$. Take an open neighborhood 0 of q such that $p \notin 0$ and choose $L \subset \bigcup_{\mu < \kappa} A(\mu)$ such that

$$q \in \operatorname{cl}_{\alpha X} L \subset I(L) \subset 0$$
 . The grades were Q and Q and Q

Then L is infinite and consequently there exists two different κ_0 , κ_1 less than κ such that $L \cap A(\kappa_i) \neq \emptyset$ (i=0, 1). Then the subsystem

$$\mathcal{M} = \{ S \in \mathcal{S} \mid A(\kappa_0) \cup \{p\} \subset S \text{ or } A(\kappa_1) \cup \{p\} \subset S \text{ or } L \subset S \}$$

of $\mathcal G$ is linked, but has a void intersection. This is a contradiction.

Consequently, the existence of P-points in $\beta N \setminus N$, cf. [8], [3]; also [2] and [5], implies that there is a countable space no compactification of which is supercompact. Also, the scattered compactification of $N \cup \{p\}$, where p is a P-point in $\beta N \setminus N$, described by Ryll-Nardzewski and Telgársky [9] is not supercompact. This compactification provides for an interesting and presumably new example of a non-supercompact space.

We do not have an example of a metrizable space no compactification of which is supercompact.

Question Is there a metrizable space no compactification of which is super-compact?

Added in proof. Recently, Shelah, has shown that it is consistent to assume that there are no *P*-points in $\beta N \setminus N$. In addition, both van Douwen and Mills have found elementary proofs of the fact that every compact metric space is supercompact.

DEPARTMENT OF MATHEMATICS, FREE UNIVERSITY, DE BOELELAAN 1081, AMSTERDAM, THE NETHERLANDS

REFERENCES

- [1] M. Bell, Not all compact Haudsdorff spaces are supercompact [to appear].
- [2] A. Blass, The Rudin-Keisler ordering of P-points, Trans. Amer. Math. Soc., 179 (1973), 145-166.
 - [3] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic, 2 (1970), 1-24.
- [4] A. E. Brouwer, A. Schrijver, A characterization of supercompact spaces with an application to treelike spaces, Report ZW 34/74 MC, Amsterdam, 1974.
 - [5] E. K. Van Douwen, Martin's axiom and pathological points in $\beta X \setminus X$ [to appear].

- [6] J. de Groot, Supercompactness and superextensions, Proc. I. Intern. Symp. on Extension theory of topological structures and its applications, VEB Deutscher Verlag Wiss., Berlin, 1969, 89-90.
- [7] J. Van Mill, A topological characterization of products of compact treelike spaces, Rapport 36, Wisk. Sem. Vrije Universiteit, Amsterdam, 1975.
- [8] W. Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Math. J. 23 (1956), 409-419.
- [9] C. Ryll-Nardzewski, R. Telgársky, On the scattered compactification, Bull. Acad. Polon. Sci., Sér. Sci., Math. Astronom. et Phys., 18 (1970), 233-234.
- [10] M. Strok, A. Szymański, Compact metric spaces have binary bases, Fund. Math., 89 (1975), 81-91.

Я. ван Милл, Счетное пространство, никакая компактификация которого не является суперкомпактной

Содержание. Показывается, что пространство $N \cup \{p\}$, подпространство $\beta N \setminus N$, где p является P-точкой $\beta N \setminus N$ не имеет суперкомпактной компактификации.