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PREFACE

In this treatise we mainly discuss supercompact spaces and super-
compact superspaces of arbitrary topological spaces. The class of super-
compact spaces was defined by DE GROOT [54]. This class naturally arose
from investigations of DE GROOT & AARTS [57] on complete regularity and
compactification theory.

The last years many people became interested in this part of the
mathematical inheritance of DE GROOT (for a beautiful exposition of
DE GROOT's topological works see BAAYEN & MAURICE [10] or BAAYEN [8]).
Many conjectures of DE GROOT are proved now, new techniques have been
developed and it is the author's expectation that this is still the begin-

ning. Some of the best results of the last years are that

a) every compact metric space is supercompact (cf. STROK & SZYMANSKI [116]);

b) BIN is not supercompact (cf. BELL [14]);

c) every compact metric space is regular supercompact (cf. VAN DOUWEN [42]);

d) supercompact spaces can be characterized by means of interval structures
(cf. SCHRIJVER [24],[81]);

e) every connected space with a binary normal subbase has the fixed point

property for continuous functions (cf. VAN DE VEL [118]).

This treatise consists of five chapters. In chapter 0 we present some
notational conventions, some definitions and some simple results which are
collected for easy reference throughout the remaining part of this mono-
graph. Chapter I is captioned "supercompact spaces"; here we discuss super-
compact spaces in general. The next chapter deals with superextensions,
which are natural supercompact superspaces of topological spaces. Super-
extensions are constructed in about the same way as Wallman compactifica-
tions; we regard superextensions as (generalized) Wallman spaces. Chapter
III contains the main results; among others, we show that the superexten-
sion of the closed unit interval is homeomorphic to the Hilbert cube, which
proves a conjecture of DE GROOT [59]. The results of chapter IV deal with
compactification theory. A final chapter is added to give a survey of some
recent results.

Throughout this treatise, SCHRIJVER's interval structures are used

extensively. Many good ideas are also taken from VERBEEK [119].
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CHAPTER O

BASIC CONCEPTS

This short chapter contains some notational conventions and some
simple facts for easy reference. In [A] some general remarks about sub-
bases are made. Then, in [B], [Cc] and [D] we collect some notions from

topology; our notation is standard, cf. DUGUNDJI [44], ENGELKING [48].

[A] General remarks about subbases

In this treatise ail topological spaces under discussion are assumed
to be T1. If in a statement we write Hausdorff then this is to indicate
that it is used essentially in the proof of the statement.

A compactification of a topological space X is a compact Hausdorff
space oX in which X can be densely embedded. At two places we deviate
from this convention, namely in the notes following theorem 2.2.4 and in
corollary 2.2.6.

We often deal with subbases. A collection of closed subsets S of a
topological space X is called a closed subbase provided that for each
closed set A ¢ X and for each point x ¢ A there is a finite F ¢ S such
that x ¢ UF > A. If S is a closed subbase for X then U = {X\S | s ¢ S}
is called an open subbase. In this treatise "subbase" will always mean

"closed subbase".

0.1. LEMMA. Let X be a compact topological space and let S be a collection
of closed subsets of X such that for all distinct x,y € X there is ‘an

S € S such that x ¢ Sand y € intx(s). Then S is a subbase for X.

PROOF. Let A be a closed subset of X and let x € X\A. For each a € A let
Sa € S such that x ¢ Sa and a € intx(sa). By the compactness of X there

is a finite F ¢ A such that A ¢ U S_. Clearly x ¢ U s. O
acF "a ae

F F a

Let S be a collection of subsets of a set X. We will write V.S for



the family of finite unions of elements of S and A.S for the family of
finite intersections of elements of S. The family A.V.S = V.A.S is closed
both under finite intersections and finite unions; it is called the ring
generated by S. If X is a topological space then S is called a separating
ring provided that S is a subbase and that S = A.vV.S. In addition, S is
,S, € Swith S, n S, = @ there are

0’71 0 1

S',S! € S with S c 8!\S! and S' U S! = X. A normal base is a
0'"1 0 1 170 0 1

normal separating ring; a normal subbase is a subbase which moreover is

called normal provided that for all S
c Sé\Si, S

normal.

0.2. LEMMA. Let X be a compact topological space and let S be a subbase

for X. Then for all disjoint closed sets A_,A, ¢ X there are disjoint

0
T.,T, ¢ A.V.S such that A, < T, (i € {0,1}).
0’1 i i

1

PROOF. Let F := {T ¢ A.v.S | A, c T}. Then, since F is closed under finite

0

intersections, the compactness of X implies that some member FO e F does

not intersect Al' Similarly one can choose F1 € A.vV.S such that A1 c F1

and F; n Fy = g. 0O

0.3. COROLLARY. Let X be a compact topological space and let S be a sub-
base for X which is closed under finite intersections. Then for all clopen

subsets A ¢ X there is a finite FA c S such that A = UFA. 0

A subbase S for a topological space X is called binary provided that
forall L ¢ S with NL = @ there are LysLy € L with Ly n Ly = @. In addition,

the subbase S is called a Tl-subbase if for all x € X and S € S with

X ¢ S there is an So e Swith x ¢ Sy and Sy n S8 = @.

0.4. LEMMA. A binary subbase is a Tl—subbase.

PROOF. Let S be a binary subbase for X. Let S ¢ S and let x ¢ X such that
x ¢ S. Since X is a T -space, there is an F ¢ S such that {x} = NF. Then
NFns =g and consequently, by binarity of S, there is an F ¢ F such that

Fns=¢g. [

A space which admits a binary subbase is called supercompact. The

proof of the following simple lemma is left to the reader.

0.5. LEMMA.

(i) Any product of supercompact spaces is supercompact;



(ii) a space X admits a binary (normal) subbase iff it admits a binary

(normal) subbase closed under arbitrary intersections. O
The following lemma is used frequently in the sequel.

0.6. LEMMA. Let S be a normal Tl-subbase for X. Then for all distinct

.S, € S such that x. € SO\Sl’ X

xo,x1 ; X there are S 1 0

€ Sl\S0 and

0 1

SO u S1 = X.

PROOF. Obvious. [

[B] Some conventions

A cardinal number is an initial ordinal number, and an ordinal number
is the set of all smaller ordinal numbers; the symbol w denotes the least
infinite cardinal and ¢ is 2“. If we want to index a set X of cardinality
K we usually write X = {xa | @ € k} or X = {xa | o < k}. A countable set
A is indexed as A = {aa | @ € w} or as A = {an | n € W}; here IN denotes
the set of natural numbers. The cardinality of a set X is denoted by [X|;
its powerset by P(X).

The domain of a function f is dom(f). If A and B are sets, then AB
is the set of all functions from A to B; recall that each f € AB is a sub-
set of AXxB. If f ¢ AB then if C ¢ A then f } C denotes the restriction of
f to C. So if f,g ¢ AB then £ ¢ g means £ = g } dom(f) .

if Xa (o € k) are sets then naeK Xa denotes their cartesian product.
In addition, X°° or Xw is the product of countably many copies of X.

Let S be a collection of subsets of a set X; then for any A c X we
write SnA={sna| se S}

[c] some definitions

We recall some definitions.

(a) For any topological space X, let

c(x) :={f ¢ *R | £ is continuous};

c*(x) := {f e C(X) | £ is bounded};

c(x,1) :={f e ' (x) | £[x] c 1 = [0,1]}.



(b)

(c)

(a)

(e)

(£)
(g)

(h)

(i)

(3

If Y € X then Y is called C*-embedded in X provided that for any
f e C*(Y) there is a g € C*(X) such that g tY = £.

A zeroset in X is a set of the form {x € X | f(x) = 0} with f € C*(X).
A cozeroset is the complement of a zeroset.

Define Z(X) := {Z ¢ X | 2 is a zeroset}. It is well known that Z(X)

is a normal base iff X is a Tychonoff space and that Z(X) is closed

under countable intersections.

An F-space (cf. GILLMAN & JERISON [52]) is a space in which every
cozeroset is C*—embedded. It is known that BX\X is an F-space if X is
a noncompact locally compact and o-compact topological space (cf.

GILLMAN & JERISON [52]).

A pseudocompact space is a space for which every real valued contin-

uous function is bounded.
IF A c X then JA denotes the boundary of A, i.e. 9A = clx(A)\intX(A).
A" continuum is a compact connected Hausdorff space.

A Peano continuum is a compact connected and locally connected metriz-
able space. It is well known that the class of Peano continua coincides

with the class of continuous images of the closed unit segment [0,1].

The Hilbert cube I  is the topological product of countably many copies
of the closed unit segment I = [0,1].

A Hilbert cube is a topological space which is homeomorphic to the
Hilbert cube.

Q denotes the countably infinite product of copies of [-1,1]. Clearly
Q is a Hilbert cube. Sometimes we will call Q also the Hilbert cube.
The pseudo-boundary B(Q) of the Hilbert cube Q is {x € Q l 3i ¢ IN:

Ixil =1}.

A pseudo-boundary is a subset A of the Hilbert cube Q for which there
is an autohomeomorphism ¢: Q - Q such that ¢[A] = B(Q).

The pseudo-interior of Q is the complement of B(Q).

~ A pseudo-interior is the complement of a pseudo-boundary. It is known

that a pseudo-interior of Q is homeomorphic to £ the space of all

2l
square summable sequences in IR (cf. ANDERSON [3]).

An AR (ébsolute Retract) is a space which is homeomorphic to a retract

of Q.



(k) If (Y,d) is a compact metric space and if f,g: X + Y are continuous,

then the distance between f and g is defined by
a(f,q) = sup{d(£(x),g(x)) | x ¢ x}.

(1) Let X be a topological space. We denote by 2X the collection of non-
void closed subsets of X. For all nonvoid Ai c X (1 £ n) define
<A0,A1,...,An> c 2X by

*

<ByiAgs...0A > = (B e 2 B c UiSn A; and B n A, #¢ (i < n}.

As a (closed) subbase for a topology on 2X we take the collection
{<B> | B e 2*} u (<B, x> | B e 25).

With this topology 2x is called the hyperspace of X. The space 2X is
compact iff X is compact (cf. MICHAEL [75]) and moreover 2* contains
a homeomorph of X; the mapping i: X - 2% gefinea by i(x) := {x} is
easily seen to be an embedding. The spaces X and i[X] are often
identified. ‘

If £f: X + Y is a closed continuous mapping, then there is a natural

extension 25: 2X — 2Y of £ defined by
2f(A) := f[al.

This mapping is easily seen to be continuous.

[D] set theoretic axioms

In this treatise we assume the axiom of choice; the only exception is
made in section 2.1.

The Continuum Hypothesis (CH) states that 2¥ =0 (the first uncount-

able cardinal); in section 2.8 only we have some resuits depending on CH.
Martin's axiom (MA) (cf. MARTIN & SOLOVAY [74]) states that no compact ccc

Hausdorff space is the union of less than ¢ nowhere dense sets. Clearly

CH implies MA; however MA is weaker than CH (cf. SOLOVAY & TENNENBAUM [1081])

and in particular it is consistent to assume MA and the negation of the

Continuum Hypothesis (MA + "ICH). Results depending on MA are to be found

in section 1.2 and section 2.8; MA + ICH is used in example 2.8.28 only.






CHAPTER 1

SUPERCOMPACT SPACES

The class of supercompact spaces - first introduced by DE GROOT [54] -
is easy to define, but in general it is hard to decide whether or not a
certain space belongs to it. A topological space is called supercompact if
it possesses a binary subbase for its closed subsets where a collection of
subsets S of a set X is called binary if for each subsystem M c S with
NM =@ there are My, € M such that My N M o= @. Equivalently a space X is
supercompact if there is a subbase for its closed sets (a closed subbase)
such that each linked subsystem (a subsystem any two members of which meet)
has a nonvoid intersection. Supercompactness of course can also be defined
in a dual form: a space X is supercompact iff there is a subbase U for its
open sets such that each covering of X by elements of U contains a subcover
consisting of at most two elements of U.

Clearly, by the lemma of ALEXANDER, each supercompact space is compact.
In addition the class of supercompact spaces is closed under products.
However closed subspaces of supercompact spaces need not be supercompact
(cf. BELL [14]) and it is unknown whether Hausdorff continuous images of
supercompact Hausdorff spaces are supercompact (VERBEEK [119] has given

a simple example of a nonsupercompact T, space which is the continuous

1

image of a supercompact space).
Hausdorff continuous images of supercompact Hausdorff spaces are

natural generalizations of dyadic spaces (Hausdorff continuous images of

generalized Cantor discontinua). It is known that
every compact metric space is supercompact (cf. STROK & SZYMANSKI
[116]) '
and

if BX is the continuous image of a supercompact Hausdorff space

then X is pseudocompact (cf. cor.1.1.7).



There are supercompact spaces that are not dyadic but we do not have an example of
a dyadic space that is not supercompact. As a consequence of our results

a compact infinite Hausdorff space in which no sequence converges is not

the continuous image of a supercompact Hausdorff space. Thus BIN and

BIN\IN are not supercompact. We also present a "small" nonsupercompact
compact Hausdorff space: there is a separable first countable compact
Hausdorff space that is not the continuous image of a supercompact Hausdorff
space (cf. also VAN DOUWEN & VAN MILL [43]).

As noted before STROK & SZYMANSKI [116] have shown that every compact
metric space is supercompact (a simpler proof of this fact was given recent-
ly by VAN DOUWEN [42]). This theorem implies that every separable metric
space admits at least one supercompact compactification. It seems reasonable
to try to generalize this corollary for a larger class of spaces, for example,
for the class of all separable semi-stratifiable spaces. Unfortunately this
is not possible: we will show that Martin's axiom implies that there exists
a countable stratifiable space no compactification of which is supercompact.
Our example also shows that not every countable space admits a supercompact
compactification, a result which is of independent interest.

DE GROOT [55], [56] and DE GROOT & SCHNARE [60] demonstrated that
certain classes of supercompact topological spaces can be characterized by
means of a binary subbase of a special kind. These results now can be
derived using a more general method. We also discuss other classes of
topological spaces which can be characterized by means of special binary
subbases. As an application, using a result of ANDERSON [2], we give a
new internal characterization of the Hilbert cube Q (cf. alsé VAN MILL &
SCHRIJVER [81]).

An interesting subclass of the class of supercompact spaces consists
of those spaces which possess a binary subbase which also is normal (two
disjoint subbase elements are separated by disjoint complements of subbase
elements) . Such spaces are surprisingly nice, for example in this class of
spaces connectedness implies local connectedness (cf. VERBEEK [119]) and
(generalized) arcwise connectedness (see section 1.5) and the fixed point
property for continuous functions (cf. VAN DE VEL [118]), while metrizabil-
ity and connectedness imply contractibility and local contractibility (see
section 1.5). Moreover such a space is a retract of the hyperspace of its

nonvoid closed subsets and a retract of its superextension.



1.1. Supercompact spaces

In this section we study "topological properties" of Hausdorff contin-
uous images of supercompact Hausdorff spaces. Of course, being the contin-
uous image of a supercompact Hausdorff space is itself such a topological
property. However we want properties which are easier to recognize. As a
consequence of our results it will follow that a compact Hausdorff space
in which no sequence converges is not the continous image of a supercompact
Hausdorff space. Several examples Qill be given. The results of this sec-

tion were obtained in collaboration with E. VAN DOUWEN, cf. [43].

1.1.1. Let X be a supercompact Hausdorff space which admits a continuous
mapping, say £, onto the topological space Y. Let S be a binary closed
subbase for X. Without loss of generality assume that S is closed under

arbitrary intersection. For A c X define I(A) < X by
1(a) :=nN{seS | acs}.

Notice that clx(A) c I(A), since each element of S is closed, that I(I(A)) =
= I(A) and that I(A) c I(B) if A ¢ B, for all A,B c X (the operator I defined
in this way will play an important role in our investigations; see sections

1.3, 1.5, 2.5, 2.6, 2.7, 2.10, 3.1, 3.2 and 3.4).

1.1.2. LEMMA. Let p € X. If U is a neighborhood of p and if A is a subset
of X with p € ch(A), then there is a subset B of A with p € ch(B) and
I(B) < U.

PROOF. Since X is regular, p has a neighborhood V such that ch(V) c U.
Choose a finite F ¢ S such that cly (V) © UF ¢ U (lemma 0.2). Now F is
finite, and A n V ¢ UF, and p ¢ clx(Arwv); hence there is an S ¢ F with
p € ch(A|1V|ws). Let-B :=ANnvVnS. Then p € clx(B), and B ¢ A, and
I(B) e sclUFcu. [

1.1:3. DEFINITION. If T is a subspace of Y, a family A of subsets of Y is
called a network for T in Y, if for each p € T and each neighborhood U of
p in Y there is an A ¢ A with p € A c U (if T = Y, then A simply is a net-

work for Y).

1.1.4. LEMMA. Let Y be a Hausdorff space which is a continuous image of a

supercompact Hausdorff space. If K is any countable infinite subset of Y,
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then the subspace

E :={yeY | y ecly(K\{y}), and no nontrivial sequence

in Y converges to y}
of Y has a countable network in Y.

PROOF. Let X be a supercompact Hausdorff space X with binary subbase S;
without loss of generality we may assume that S is closed under arbitrary
intersection. Suppose there is a continuous surjection f: X + Y. Choose
any countable subset J of X such that £[J] = K. Since J has only countably

many finite subsets, the family
A := {f[1(F)] | F is a finite subset of J}

is countable. We claim that it is a network for E in Y.

Let y € E be arbitrary, let U be any neighborhood of y in ¥, and let
J* = J\f'lt{y}].

Since f is a closed map (Y is Hausdorff), and f[J*] = K\{y}, and
y € clY(K\{y}), there ig an x € ch(J*) with £(x) = y. Then lemma 1.1.2
implies that there is a B ¢ 3" such that x e ch(B) and I(B) © f—i[U].
We will show that there is a finite F ¢ B such that y = f(x) e £[I(F)].
Since y and U are arbitrary, and £f[I(F)] < £[I(B)] c U, it would follow
that A is a network for E in Y.

Enumerate B as {bk | k € w}, and for each n € w define z and T, by
z =, 0 Ix,b ) n (b | x<n}

T, = kgnI({x,bk}) n I(B).

CLAIM. There is an n,. € w such that f[Zn] = {y} for all n2n

0 0’
Ind?ed, first observe that nbeBI({x'b}) = {x}. Evidently x ¢ I({x,b})
for all b € B. Let t € X\{x} be arbitrary. By lemma 1.1.2 there is a
CcB sgch that x € clx(c) and I(C) < X\{t}. Choose any b € C. Then
t ¢ I({x,b}), since {x,b} c clx(C) c I(C), which implies that
I({x,b}) < I(1(C)) = I(C).
To proceed with the proof of the claim, notice that, since x € clx(B) c

cI(B), it follows from the fact that N_ _I({b,x}) = {x} that N__ T = {x}.
beB new n
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But Zn S Tn for each n ¢ w, and {Tn [ n € w} is a decreasing collection of

closed sets in a compact space, hence

if V is any neighborhood of x in X, then there is an

(%) .
m0 € w such that Zk c V for all k 2 mo.

Now assume the claim to be false. Then for each k € w there is a z(k) 2 k
with f[Zz(k)] # {y}. But z, # @ for all n € w since S is binary (this is
the only point in the proof where we use the fact that S is binary). Con-
sequently, for each k ¢ w we can choose a y, € f[Zz(k)]\{y}. Then the
sequence <yk>kew converges to y. Indeed,_iet U be any neighborhood of y= f(x).
Then there is an my €W such that 2, < £ "[u] for all k 2 my- Since z(k) 2k
for all k € w, it follows that Yy € U for all k 2 m;. Since ¥y # y for all
k € w, this contradicts y € E.

Now define F := {bk [ k < no}, where n, is as in the claim. Then F is

0
a finite subset of J such that y ¢ f[I(F)] cu. [J

Now we can formulate the main result of this section.

1.1.5. THEOREM. Let Y be a Hausdorff space which is a continuous image of

a supercompact Hausdorff space, and let K be a countably infinite subset

of Y. Then

(a) at least one cluster point in K is the limit of a nontrivial convergent
sequence in Y (not necessarily in K), and

(b) at most countably many cluster points of K are not the limit of some

nontrivial convergent sequence in Y.

PROOF. Let Y and K be as in theorem 1.1.5 and let E be as in lemma 1.1.4.
We will first show that E is countable. Let A be a countable network for
E in Y. In order to show that E is countable it suffices to show that for
each p € E there is a finite Fp c A such that ﬂFP = {p}, since A as only
countably many finite subfamilies.

_ Let p € E be arbitrary. List {AecA |‘peA’}.as {An | new}. We claim
that niSn A = {p} for some n € w. For assume not. Then we can pick for each

newana € (N,
n i<n

some An, it follows that the sequence <an>new converges to p. Since a, # p,

Ai)\{p}. Since each neighborhood of p in Y contains

for all n € w, this contradicts p € E.
We next show that (a) holds. Suppose not. Then clY(K) = K U E, hence

clY(K) is countable. But each compact countable Hausdorff space is metriz-
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able, hence each cluster point of K is the limit of a nontrivial convergent

sequence of points in K. Contradiction. [J

1.1.6. COROLLARY. BIN, and BIN\IN and BIR\IR, or, more generally, any infinite
compact Hausdorff F-space, or, yet more generally, any infinite compact
Hausdorff space in which no sequence converges, cannot be a continuous image

of a supercompact Hausdorff space.

1.1.7. COROLLARY. If BX is the continuous image of a supercompact Hausdorff
space, then X is pseudocompact (cf. also M. BELL [14]).

PROOF. If X is not pseudocompact, there is a continuous f: BX -+ IR such that
£(x) > 0 for all x € X, while f(x) = 0 for some x € BX\X. Let
Y :

f_l[(O,w)] and for each n 2 1 pick p € Y with £(p) < 1/n; let

{pn | n21}. Then Y is o-compact, and P is a countably infinite subset

of BX all cluster points of which are in BX\Y. In view of theorem 1.1.5 it

now suffices to observe.that no point of BX\Y is the limit of a nontrivial

convergent sequence in BX. For completeness sake, we give the (known) proof.
Suppose that p € BX\Y is the limit of a nontrivial convergent sequence.

Then there is a countably infinite D c BX such that (*) every neighborhood

of p contains all but finitely many points of D, while also p ¢ D. Then

D is closed and discrete in D U Y. But D U Y is normal, being o-compact,

and B(DUY) = BX since X €« D U Y c BX; hence D is C*—embedded in BX. This

contradicts (x). [
Theorem 1.1.5 suggests some questions we can not answer at the moment.

1.1.8. QUESTION. Let Y be a Hausdorff continuous image of a supercompact
Hausdorff space (or even a supercompact Hausdorff space). If K is a count-
able subset of Y, then is every cluster point of K the limit of a nontrivial
convergent sequence in Y? Equivalently, is a point of Y the limit of a non-
trivial convergent sequence iff it is a cluster point of a countable subset
of* Y?

1.1.9, QUESTION. Is there a nonsupercompact Hausdorff space which is a con-

tinuous image of some supercompact Haudorff space?

We do not even know the answer for irreducible maps or for retrac-

tions. Indeed, we do not even know if X XY supercompact implies that X and
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Y are supercompact.

1.1.10. QUESTION. Is there a nonsupercompact Hausdorff space X and a

Hausdorff space Y such that X XY is supercompact?

We know that the answer to the above question is affirmative if we
replace "supercompact" by "having a normal binary subbase". SZYMANSKI [117]
recently has given an example of a (compact metric) AR which admits no
binary normal subbase. However, by a recent result of EDWARDS [45], each
AR is a Hilbert cube factor, that is a space whose product with the Hilbert
cube is homeomorphic to the Hilbert cube. Hence SZYMANSKI's [117] example
multiplied with the Hilbert cube admits a binary normal subbase.

With respect to question1.1.9 we only have the information that
VERBEEK's [119] example cited in the introduction of this chapter is the
continuous image of a supercompact Hausdorff space.

Corollary 1.1.7 generalizes the fact that X is pseudocompact if BX is
dyadic (recall that a dyadic space is a Hausdorff continuous image of some
product of a family of two-point discrete spaces). Corollary 1.1.6 was also
(essentially) known for dyadic spaces, cf. ENGELKING & PELCYNSKI [501],
footnote 2; see also ENGELKING [47] theorem 1.5. This suggests which other
theorems on dyadic spaces generalize. None of the theorems on dyadic spaces
recorded in EFIMOV & ENGELKING [46], ENGELKING [47] or ENGELKING & PELCYNSKI
[50] which are not related to corollary 1.1.6 or 1.1.7 can be generalized
for Hausdorff continuous images of supercompact Hausdorff spaces, see the
examples below, with the possible exception of the theorem that closed
Gg-subspaces of dyadic spaces are dyadic ([50], theorem 2). This leads to

the following question.

1.1.11. QUESTION. Is a closed G6~subspace of a supercompact Hausdorff space

supercompact? a continuous image of a supercompact space?

We now sketch some examples. Note that the first three of our examples are

compact linearly orderable spaces, while all four are supercompact.

1.1.12. EXAMPLES. (a) The Alexandroff double arrow line A, i.e.
fo,11 x {0,11\{<0,0>,<0,1>}, topologized by the lexicographic order.

If w: A+ [0,1] is the "projection", then m is a continuous surjec-
tion, yet there is no (closed) metrizable M ¢ A with w[M] = [0,1], cf.

[50], cor. on p.56. Also, A is a nonmetrizable supercompactification of
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a metrizable space (any countable dense subspace), cf. [50] appendix,
and A is first coutanble but not second countable, cf. [46], theorem 4.

(b) w, +1, the space of all ordinals less than or equal to w

1°
is not the limit of a nontrivial convergent sequence in

1
The point w

W +1, cf. [47],1cor. 2 to theorem 1.5. (Note however that theorem 1.1.5 is
a partial generalization of the theorem that every non-isolated point of
a dyadic space is the limit of a nontrivial convergent sequence.)
(c) An Aronszajn line.

An Aronszajn line, L, can be constructed from an Aronszajn tree in the
same way one constructs a Souslin line from a Souslin tree, cf. RUDIN [97].
It is known that there is a collection {Ua I a <w1} of dense open sets in

L such that U o U, if o < B, and N U = @¢. So [46] theorem 3 does not
a 0wy o

generalize. ’
(d) The Alexandroff double D of the product P = {0,1}c (see ENGELKING [491]).
The underlying set of D is P x {0,1}. Points of P x {0} are isolated
in D. A basic neighborhood of <x,1> has the form U x {0,1}\{<x,0>}, where
U is a neighborhood of x in P.
It is a straightforward exercise to show that D is supercompact. Let
B be any closed subspace without isolated points of P which is not the
continuous image of a supercompact Hausdorff space, e.g. a homeomorph of
BIN\IN. Then B x {0,1} is the closure of the open subset B x {0} of the
supercompact space D, yet it is not supercompact, not even the continuous
image of a supercompact Hausdorff space, since the "natural” map from

B x {0,1} to B is continuous.

1.1.13. Examples of compact Hausdorff spaces which are not supercompact,
obtained from theorem 1.1.5, are not first countable and have cardinality
at least 2c. This suggests two questions: are first countable compact
Hausdorff spaces supercompact? and: are "small" compact Hausdorff spaces
supercompact? These questions are answered in the negative by examples
1.1.17 and 1.1.18.

1.1.14. Let o be an ordinal less than or equal to w. We are interested in
a .

2. An element of *2 can be considered to be an a-sequence of O's and 1's.
As usual we denote Un<mn2 the set of finite sequences of O's and 1l's, by

92. For each f ¢ ) we define

() :={ge® | gcf}
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the set of initial sequences of £f; I(f) can be seen as the set of finite

approximations to f. It is clear that
(1) if f£f,9 € “2 are distinct, then I(f) n I(g) is finite.

In other words, {I(f) I £ e Y2} is an almost disjoint collection of subsets
of the countable set ¥2. A
The set T := $2 u w2, partially ordered by inclusion, is a tree (in
the sense of JECH [66]), the so-called Cantor tree, cf. RUDIN [98]. We give
T the usual tree topology by using the set of all open intervals as a base.
To be specific: points of Y are isolated, and a basic neighborhood of
£ ¢ “2 contains £ and all but finitely many points of I(f). The topological
space T is first countable, and every subspace is locally compact, by (1).
The set “2 can be viewed as a product of countably many two-point
discrete spaces. Under the product topology Y2 is nothing but the Cantor

discontinuum, a basis for this topology is
{{£e® 2| £5q} | ge ¥23,

as the reader can easily verify. We start with a simple but useful lemma

on the almost disjoint family {I(f) | £ ¢ “2}.

1.1.15. LEMMA. Let G be any uncountable subset of “2. Then there are a
g € G and an infinite H c G\{g} such that I(h) n I(h') c I(g) for any
two distinct h,h' € H (then also (I(h) u {h}) n (I(h') u {h'}) < I(g)).

PROOF. In this proof we provide “2 with the topology of the Cantor dis-
continuum. Then G is an uncountable separable metric space, hence we can
find a nonisolated point g in G. Basic neighborhoods of g in G have the

form

{(heGg | 3Fec1(@ n”

2 : £ chl, neow
hence we can find H = {hn | n e w} < 6\{g} such that
min{k € w | g(k) #h (k)} < min{k € | gtk) # hn+1(k)}.

for all n € w. Then g and H are as required. ]

This lemma implies the following
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1.1.16. PROPOSITION. Let L < “2 be uncountable. Then no Hausdorff compac-
s . [ , , ,
tification of the subspace “2 U L of T is the continuous image of a super-

compact Hausdorff space.

PROOF. Denote the subspace Y20Lo0fT by Z. Let aZ be any Hausdorff com-
pactification of Z. Let X be a supercompact Hausdorff space with binary
subbase S and assume that there is a continuous surjection £: X - aZ.
Also assume that S is closed under arbitrary intersection.

For each g ¢ Y2 choose an é(g) € 5_1[{9}]. If f € L then the set
I(f) v {£f} is open in Z and compact, hence it is clopen in aZ. Consequent-
ly E—l[I(f) u {£}] is clopen in X and hence it is the union of some finite
subfamily of S (cf. lemma 0. ). It follows that for each f € L we can choose
an S(f) € S such that

(2) S(H) < €715 u {£f}] and S(£) n {alg) | g € I(D)}isinfinite.

Since L is uncountablé and ¥2 is countable it follows that for some pes@2

the set
G={feL| alp e s(f)}

is uncountable. By lemma 1.1.15 there is a g € G and an infinite HcG\{g}

such that
(3) (I(h)u{h}) n (I(h")u{h'}) < I(g) for distinct h,h' € H.

Since (I(a)u{al) n (I(b)u{b}) is finite for distinct a,b € Wy it follows
from (2) and (3) that

(4) {S(h)\E_l[I(g) u{gl}l | h € H} is a disjoint collection of
nonempty subsets of X.

Since g_kl(g) u{g}] is a clopen subset of X, so is its complement in X.
-1 .

Hence X\ (£ [I(g) u{g}]) is the union of a finite subfamily of S. It now

follows from (4) that there is an S € S with

5) s n (E_l[I(g) v{gll) = @

such that there are distinct h,h' € H such that S intersects both S(h)
and S(h'). But S(h) and S(h') intersect, since a(p) € S(h) n S(h'), con-
sequently {S,S(h),S(h')} is linked. However, it follows from (2), (3) and
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(5) that
Sn S nsS@) csn (€ ImulhlD o €7 LTMh)uin'}n
=sn g amuinll a xhuh'h]
-1
csng [1(g)]
=@,
This is a contradiction, since S is binary. 0

REMARK. This lemma is similar to the proof in BELL [14]. It was discovered
independently, but only after learning about BELL's result (i.e. not every

compact Hausdorff space is supercompact) .
Now we can describe the examples promised in 1.1.13.

1.1.17. EXAMPLE. A separable first countable compact Hausdorff space which
is not the continuous image of a supercompact Hausdorff space.

We will describe a first countable Hausdorff compactification of
T =% y “2. Then proposition 1.1.16 implies that this compactification is
the desired example since it is not the continuous image of a supercompact
Hausdorff space. The basic idea is to identify the points of the subset
Y2 of T with the isolated points of the Alexandroff double (cf. ENGELKING
[49]) of the Cantor discontinuum, in the "natural way". It will be tech-
nically convenient to change the underlying set of T to {0} x Yy
{1} x “2, and the underlying set of the Cantor discontinuum to {2} x @2,
if only to tell the two “2's apart.

Let K be {0} x ¥2 u {1,2} x “2. we topologize K by assigning to each

%X € K a neighborhood base {U(x,n) | n € w}. For <i,k> € K define

{<i,£>} if i = 0;
U(<i,f>,n) = {<i,£>} u {<0,£tk> | k 2 n} if 1= 1;
{<j,g> e K | je3, ftncghU(<l,£>),0) if 1 = 2.

The sﬁraightforward check that this is a valid neighborhood assignment
for a Hausdorff topology is left to the reader. Note that the subspace
{1,2} x Wy of K is the Alexandroff double of the Cantor discontinuum, and

that {0} x 2 u {1} x “2 is a dense subspace of K which is homeomorphic
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to T. Hence if K is compact proposition1.1.16 will imply that K cannot be
the continuous image of a supercompact Hausdorff space.
It remains to show that K indeed is compact. For <i,f> € K let

n(i,f) € w be arbitrary. We have to show that the open cover
U= {u(<i,£>,n(i,£)) | <i,f> e K}

of K has a finite subcover. Since the subspace {2} x ) (which is homeo-
morphic to the Cantor discontinuum) is compact, there are for some p € w

functions £.,...,f € m2 such that
0 p
uo = {U(<21fi>rn(2:fi)) I 0<ic<p}

covers {2} x “2. Then UO covers {1} x “2, with possible exception of the

points <1,fi>, 0 £i < p. Let
U, = {u(<1,£,>,n(1,£,)) | 0<is<p}
and define m by
m := max{n(j,£f,) | 5 € {1,2}, 0<is<p}.

A straightforward check shows that Uo u U1 covers all points of K with
2

possible exception of the points of the finite set Uk<m k. It follows

that U has a finite subcover. [J

i

1.1.18. EXAMPLE. A separable compact Hausdorff space with w, points which

1
is not the continuous image of a supercompact Hausdorff space.

Choose any subset L of ©2 with cardinality w,. Then the subspace

1

1
point compactification of S has all properties required. 0

s=%vuL of T is a locally compact space with w, points, hence the one-

1.1.19. We now show that examples 1.1.17 and 1.1.18 are close to being
supercompact. Note that if X is compact, then any open base for X consist-

ing of clopen sets is a closed subbase for X.

1.1.20. PROPOSITION. Let E be either example 1.1.17 or example 1.1.18,
and let I be the (countable) set of isolated points of E. Then

(a) E\I is supercompact;

(b) E has a base B consisting of clopen sets such that for any A c B

with NA = @ there are Ag/B R, € A with AynA NA, = @.



19

PROOF. We prove this for example 1.1.18 and leave the proof for example
1.1.17 to the reader. Notice that (a) is trivial since E\I is the one-
point compactification D U {p} of a discrete space D.

To prove (b), for f e L and n € w let
B(f,n) := {f} u £+ (w\n)
and let

T := {B(f,n) | £eL, neuw}.
Let
U := {E\U{B(£,0) | £eF} | FcL is finite}.
Evidently U is a neighborhood base for the point p at infinity. Consequent-

ly B := UuTu¥ is a pvase for E. Clearly the. elements of B are clopen.

Let A be any subfamily of B such that A_nA na, # @ for all A B, ,A

01 3

€ A. Define F and F by:

F := {felL ] dnew : B(f,n) e A}

CASE 1: F = @. Then A contains a singleton or A ¢ U which implies p € NA.

CASE 2: |F| = 1. Let F = {f}. Clearly, if U e U, g ¢ L and g ¢ U then
B(g,n) n U =@ for all n € w. It follows that £ ¢ NA.

CASE 3: |F| > 1. We claim that
(*) there are B(a,p) and B(b,q) in F such that B(a,p) n B(b,q) = NF.
For any f,g € “2 we can define d(f£,g) < w by |

d(f,g) := max{a < w | fta = gtal}.

Let*B(f,m) and B(g,n) be any two members of F with f # g. Then for any
h e w2,_if j 2 d(f,g9) then B(h,j) can not intersect both B(f,m) and B(g,n).

Since any two members of F intersect, it follows that
p :=max{n e w | 3heF : B(h,n) e F}

exists. Choose any a € F such that B(a,p) € F. Let
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s := min{n € w I Jh e F: (h# a and d(a,h) =n)}

and choose any B(b,q) € F such that d(a,b) = s. Since q < p one easily
verifies that B(a,p) n B(b,q) © NF. This completes the proof of (%).

Let j = d(a,b). Then alj € B(a,p) n B(b,q), and if f € B(a,p) n B(b,q),
then f = alti for some i < j. It is clear from the form of the members of
U that U € U and atj ¢ U, then ati ¢ U for any i < j. Since A nAlnA2 @
e A, it follows that alj € NA. [

0

for any AO’Al’AZ

1.2. A countable stratifiable space no compactification of which is

*)

supercompact

In section 1.1 we gave an example of a locally compact separable

first countable space of cardinality w, that admits no supercompact com-

pactification (see proposition 1.1.16 ;nd example 1.1.18). It now is
natural to ask whether there is a countable space without supercompact
Hausdorff compactification. Obviously such a space cannot be first count-
able, since a (regular) first countable countable space is metrizable and
has an orderable compactification. By the same argument the example cannot
be locally compact. Under MARTIN's axiom there exists a countable space
with only one nonisolated point which admits no supercompact Hausdorff
compactification. Hence this example is locally compact and first countable
in all points but one.

The example also answers another natural question. As noted before the
theorem of STROK & SZYMANSKI [116] implies that every separable metric space
admits at least one supercompact compactification. It seems reasonable to
try to generalize this corollary for a larger class of spaces, for example
for the class of all separable stratifiable spaces or, more generally, for
the class of all separable semi-stratifiable spaces. Unfortunately this is
not possible since the space, constructed in this section, turns out to be

stratifiable.

1.2.1. The example depends on the existence of P-points in BIN\ N. A point
p of a topological space X is called a P-point if the intersection of count-
ably many neighborhoods of p is again a neighborhood of p. MARTIN's axiom
(cf. 0.D) implies that there is a P-point in BIN\IN [18], see also [99]

and [40]. It is conjectured that there exist P-points in BIN\IN without

*)
This section will also be published separately in Bull. L'Acad. Pol. Sci.
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set~theoretic assumptions; but this is as yet open.

1.2.2. THEOREM. Let p be a P-point in BIN\IN. Then the subspace N U {p}
of BIN has the property that no Hausdorff compactification of it is super-

compact.

PROOF. Define X := INU {p}, where p is a P-point in BIN\ IN. Let aX be any
Hausdorff compactification of X and let f: BX = BIN - aX be the unique
mapping which extends id . Notice that f_l[{p}] = {p}.

Assume that S is a binary closed subbase for oX, closed under arbi-

trary intersection, and as in section 1.1 for A c oX let I(A) be defined

by
I(A) :=nN{s eS| ac s}

Notice that Clax(A) c I(A), since each element of S is closed, that
I(I(A)) = 1(A) and that I(A) c I(B), for all A ¢ B c aX.
Let C be defined by

c:=1{ne N| 1({p,n}) n (ax\X) # @}.
For n € C choose an X € I({p,n}) n (axX\X) and let B := {xn l n € Cl.
CLAIM 1: p ¢ clax(B).

Indeed, as f-l[B] is a countable union of closed sets in BINN\IN which not

contains p, it follows that, since p is a P-point,

pécl (£ Bl = a1 n £ e

BIN\ IN B8

and consequently p ¢ f[canq(f-lfB])] for otherwise f_l[{p}] would consist

of more than one point. Now, as B ¢ f[cl (f_l[B])] and as f is a closed

BIN
mapping we conclude that p ¢ Clax(B)'

Choose open sets U,V ¢ aX such that p e U c CIaX(U) c V and

v B C1aX(B) =@. Let T = U, S, be an element of v.S (S, € S, i < n)

i<n i i
such that CluX(U) cTcV (c£. lemma 0.2). Then

p € C1aX(U) = claX(UnIU = Uisn CIQX(UmNnSi)'

and consequently there is an i0 < n such that p € claX(Un]ﬂnSiO). Define
M:=Un Nn Sio. Then M is infinite and
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p € Clax(M) c I(M) < Sio cv

(this is the same technique as used in lemma 1.1.2).

CLAIM 2: For each m € M the set I({p,m}) is finite and does not inter-
sect oX\X.

The latter is trivial since I({p,m}) n Bc I(M) n Bc V n B = @#. To prove
the former assume that’I({p,m}) were infinite. Then I({p,m}) n N were

*
infinite and as I({p,m}) n N is C -embedded in X it does not converge to

p; consequently
o # Clax(I({p'm}) n W) n (ex\Xx) ¢ I({p,m}) n (ax\X),

which is a contradiction.
Now for every ordinal k < w, define a finite subset A(k) of M such
that
(1) if p e cchx(U]J<K A(u)) then A(x) = @;
<k A(u)) then A(k) # @ and I(A(k)u{p}) = A(x)u{p}

and A(k) n UU<K A(u) = @.

(ii) if p ¢ cl (U

Take a point m € M and define A(o) := I({p,m}) n IN. Then A(o) has all
desired properties. Suppose that all A(u) have been constructed for
H<K =W

. Assume that p ¢ clax(U A(u)). Using the same technique as

1 H<K
above there exists an infinite NO c M such that p € C1ax(N ) < I(NO) and
I(No) n CIaX(Uu<K A(p)) = @. Take n € N, and define A(k) := I({p,n}) n NW.

Then A(k) is as required.
As there are only countably many finite subsets of M there exists a

K < w, such that p € c1__(U A(p)). Then, since Uu<K A(p) u {p} is not

1 X u<K

a convergent sequence, there is a q € claX(U < A(u)) n (oX\X). Take an

p<
infinite L < Uu<'< A(u) such that

qecl (L) cI@«c ax\{p}.

As L is infinite there exist two different ordinals « less than k

01
such that L intersects both A(Ko) and A(Kl). Then the subsystem

{I(L),A(KO) v {p}, A(k) U {p}}

of S is linked, but has a void intersection. This is a contradiction. 0
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1.2.3. A topological space X is called stratifiable (cf. BORGES [19]) if
co
to each open subset U of X one can assign a sequence of open sets {Un}n=1

such that

(@ U u =" el () =u;

(b) Un c Vn whenever U ¢ V (where {Vn}:=1 is the sequence assigned to V).

It is easy to see that each metrizable space is stratifiable while the
converse need not be true.

If p e BN\N then N U {p} clearly is stratifiable. Consequently
MARTIN's axiom implies that there is a countable stratifiable space no
Hausdorff compactification of which is supercompact. We do not have a
metrizable space no Hausdorff compactification of which is supercompact.

This suggests the following question.

1.2.4. QUESTION. Is there a metrizable space no Hausdorff compactification

of which is supercompact?

1.3. Subbase characterizations of compact topological spaces

Often, an important class of topological spaces can be characterized
by the fact that each element of the class possesses a subbase of a special
kind. For example compact spaces (ALEXANDER's lemma), completely regular
spaces (DE GROOT & AARTS [57]), second countable spaces (by definition),
metrizable spaces (BING, cf. [86]), (products of) orderable spaces (VAN
DALEN & WATTEL [39]; VAN DALEN [38]; DE GROOT & SCHNARE [60]). Such
characterizations we shall call subbase characterizations.

DE GROOT has observed that certain classes of supercompact spaces can
be characterized by means of special binary subbases; among the results
obtained by him were the nice internal characterization of 1" and 1
([55]) and the characterization of products of compact orderable spaces
([601) . Also he discovered the duality between supercompact spaces and
graphs ([56]). DE GROOT represented a supercompact space with binary sub-
base S by the intersection graph of S, i.e. the graph with vertex set S
and an edge between S and S, in S if and only if S

0 1 0
proved that the space under consideration is completely determined by this

ns, # @. DE GROOT

graph.

We will derive DE GROOT's results using a slight modification:
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a supercompact space with binary subbase S will be represented by the non-
intersection graph of S. This method, which of course is not essentially
different, has some advantages; e.g. connectedness and bipartiteness of
this latter graph imply interesting properties of the spaces under con-
sideration; also product structures become trivialities. Moreover, our
graph representation if often helpful to determine a subbase characteriza-
tion.

The results of this section are taken from the joint paper VAN MILL
& SCHRIJVER [81].

1.3.1. Here we define the notion of an interval structure, and use this
concept to characterize supercompactness. Next we demonstrate a correspond-

ence between graphs and supercompact spaces.

1.3.2. DEFINITION. Let X be a set and let I: XxX » P(X). Write I(x,y) =

I((x,y)). Then I is called an interval structure on X if:

(i) X,y € I(x,y) (x,y € X),
(ii) I(x,y) = I(y,x) (x,y € X),
(iii) if u,v € I(x,y) then I(u,v) c I(x,y) (u,v,x,y € X),
(iv) I(x,y) n I(x,2) n I(y,z) # @ (x,¥,2 € X).

Axioms (i), (ii) and (iii) together can be replaced by the following
axiom:

u,v € I(x,y) iff I(u,v) < I(x,y) (u,v,x,y € X).

A subset B of X is called I-convex if for all x,y € B we have I(x,y) < B.

1.3.3. THEOREM. Let X be a topological space. Then X is supercompact if
and only if X is compact and possesses a (closed) subbase S and an interval

structure I such that each S € S is I-convex.

PROOF. Let X be a supercompact space and let S be a binary subbase for X.
Define Ig: XXX * P(X) by

~

Is((x,y)) :=nN{s eS| x,v € s} (x,y € X).

Then it is easy to show that IS is an interval structure on X and that each
element of S is Ig-convex.
Conversely, let X be a compact space with a closed subbase S consisting

of I-convex sets, where I is an interval structure on X. We will show that
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S is binary.
Let S' ¢ S such that NS' = @. Then, since X is compact, there exists
a finite 36 c S such that 036 = @. Hence it is enough to prove the fol-
lowing: if Sl,...,Ske S and S1 N...ns, = @ then there exist i,j < k
such that Sinsj = @. We will prove this by induction with respect to k.
For k=1 or 2 there is nothing to prove. Therefore assume that k 2 3

and that the statement is true for all k' < k. Define

T, = s,ns,ns, n...ns.,

1° 2 3 4 k
T2 = S1 n S3 n 84 n ... n Sk'
T3 = S1 n 52 n S4 n...n Sk'

If one of the Ti's is empty, then the induction hypothesis applies.
Therefore suppose neither is empty and take x € Tl' y € T2 and z € T3.
Then

X,y e S,nS, n...nSs

3 4 k'’
X,2 € 52 n S4 N ..o N Sk,
Yi2 € S1 n S4 n...n Sk'
and thus
I(x,y) < S3 ns,n...n Sk’
I(x,2z) c 52 n S4 n...n Sk’
I(y,2z) < 81 n S4 n...n sk'
But
@ # I(x,y) n I(x,2) n I(y,z) c (S3ns4n...nsk) n (S2ns4n...nsk) n
n (Slns4n...nsk)
= S1 n 82 N ... N Sk.

This contradicts our hypothesis. [

For some related ideas see GILMORE [53].

1.3.4. REMARK. As noted in the introduction, the notion of an interval
structure is used extensively in the theory of maximal linked systems and
of supercompact spaces. It is simple but useful and often is helpful to

prove local properties of supercompact spaces.
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1.3.5. Now we turn our attention to the announced correspondence between
graphs and supercompact spaces.

A graph G is a pair (V,E), in which V is a set, called the set of
vertices, and E is a collection of unordered pairs of elements of V, that
is E c {(v,w) I v,w € V, v # w}. Pairs in E are called edges. Usually
a graph is represented by a set of points in a space with lines between
two points if these two points form an edge. A subset V' of V is called
independent if for all v,w € V' we have {v;w} ¢ E. A maximal independent
subset of V is an independent subset not contained in any other independent
subset. By Zorn's lemma each independent subset of V is contained in some

maximal independent subset. We write

I(G) := {V' ¢ V | V' is maximal independent}
and for each v € V

B, := {V' ¢ I(G) | v e v},

Finally let B(G) be defined by

The graph space T(G) of G is the topological space with I(G) as underlying
point set and with B(G) as a (closed) subbase.
If S is a collection of sets then the non-intersection graph G(S) of
S if the graph with vertex-set S and with edges the collection of all
pairs {SI'SZ} such that SN S = @. The following theorem follows from
observations made by DE GROOT [56]:

1.3.6. THEOREM. A topological space X is supercompact iff it is the graph

space of a graph, in particular

(i) if X has a binary subbase S then X is homeomorphic to the graph
space of G(S);

(i) For any graph G, the graph space T(G) is supercompact with B(G) as

a binary subbase.

Let Gj be a graph (j € J); the sum zj ; of these graphs is the

G,
€eJ 3]
graph with vertex set a disjoint union of the vertex sets of the G,
(j € J) and edge set the corresponding union of the edge sets. These sums

of graphs and products of topological spaces are related by the following
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theorem:

1.3.7. THEOREM. Let J be a set and for each j € J let Gj be a graph. Then
i 1 T .
T(zjEJ Gj) is homeomorphic to njeJ (Gj)

PROOF. Straightforward. [

1.3.8. DEFINITION. A collection S of subsets of a set X is called weakly

normal if for each 50,81 e S withrsons1 = @ there exists a finite covering
M of X by elements of S such that each element of M meets at most one of
SO and Sl.

Weakly normal closed subbases for topological spaces play an import-
ant role in characterizing complete regularity  (cf. DE GROOT & AARTS [57]).
They turn out to be the right natural generalizations to subbases of
normal bases as defined by FRINK [51], STEINER [114] and many others.
This will be discussed in chapter 4.

Clearly weak normality of a collection S of subsets of a subset X
must imply properties of the corresponding non-intersection graph G(S).
We call a graph (V,E) weakly normal if for each {v,w} € E there are

Viree sV Wyyee e Wy € Vv (k,£ 2 0) such that:
{v,vl},...,{v,vk},{w,wl},...,{w,wz} € E
and in addition, whenever

vi,...,vi,wi,...,wé €V

. with

{vl,vi},...,{vk,vi},{wl;wi},---,{w@,wk} €E,
then
{vi,...,vﬂ,wi,...,wé}

is not independent.

1.3.9. THEOREM. Let X be a supercompact space with binary subbase S and
let X be the graph space of the graph G. The following assertions are

equivalent:



28

(i) X is a Hausdorff space;
(ii) S is a weakly normal subbase;

(iii) G is a weakly normal graph.

PROOF. (i) = (ii). Take Sl,S e S with S,nS @. As X is normal (compact

2 172
and Hausdorff) there exist closed sets C and D in X with

cCnsS, =¢=S8,nD and C uD = X.

Since X is compact and C and D are intersections of finite unions of sets
in S, we can take C and D to be finite intersections of finite unions of
sets in 8, or, what is the same, finite unions of finite intersections of
sets in S.

Since CnS, = @ each of the finite intersections composing C has an

1

empty intersection with S Now the binarity of S implies that we can re-

1°
place these finite intersections by single sets of S. Hence we may suppose
that C is a finite union of elements of S. Similarly we can take D as a
finite union of elements of S.

(ii) = (1). By lemma 0.4 S is a T, -subbase. Now the result follows from

1
a theorem due to DE GROOT & AARTS [57].

(i) e (iii). The simple proof is left to the reader. [

This theorem now implies the following remarkable fact, which was

first observed by DE GROOT [56].

1.3.10. THEOREM. The following assertions are equivalent:

(i) X is compact metric;

(ii) X has a countable weakly normal binary subbase;

(iii) X is homeomorphic to the graph space of a countable weakly

normal graph.

PROOF. Part (i) = (ii) follows from STROK & SZYMANSKI's [116] result and
theorem 1.3.9. The other implications follow from URYSOHN's metrization

theorem. [J

From this theorem we can derive a, in our opinion, remarkable charac-
terization of the Cantor discontinuum. We call a graph (V,E) locally finite

if for all v e V the set {w ¢ V | {v,w} € E} is finite.

1.3.11. THEOREM. The following assertions are equivalent:
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(i) X is homeomorphic to the Cantor discontinuum;
(ii) X is homeomorphic to the graph space of a countable locally finite

graph with infinitely many edges.

PROOF. (i) = (ii). By theorem 1.3.7 X is homeomorphic to the graph space of
the following graph (cf. DE GROOT [561]);

1
| -

Figure 1.

ii) = (i). We shall show that X is a compact metric totally disconnected
space without isolated points; hence it will follow that X is homeomorphic
to the Cantor discontinﬁum.

Let G be a countable locally finite graph with infinitely many edges.
We will first show that the closed subbase B(G) of T(G) consists of clopen

sets. Take v € V. Since G is locally finite, there are w ,w2,...,wn eV

1
such that

{wl,...,wn} ={weVv | {v,w} e E}.

Now for all i € {1,2,...,n} the set Bwi is closed and consequently

? B is closed too. It is obvious that
i=1 wi

and hence B, is open.

It now follows that T(G) is Hausdorff, by lemma 0.4; moreover it is
compact totally disconnected and second countable. Hence T(G) is a compact
metric totally disconnectea topological space.

Finally we show that T(G) has no isolated points. For suppose to the
contré;y there is a V' € I(G) such that {V'} = n?=1 Bvi. That is, if
V" € 7(G) and {VI'VZ""'Vm} c V" then V' = V". Let W be the set

{wev | {Vi,w} € E for some i ¢ {1,2,...,m}}.

Since G is locally finite, W is finite. Now the set
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E' = {{v,w} | weW, veVl

also is finite. Since E is infinite there is an edge {a,b} € E\E'. It is
easy to see that a ¢ W and b ¢ W, hence {vl,...,vm,a} and {Vl""'vm'b}

both are independent sets of vertices, and hence both contained in a maximal
independent set, say in V; and V!. As {vl,...,vm} c V; and {vl,...,vm}(:v"

b b

it follows that V; = Vg = V'; hence a,b € V'. But {a,b} € E, hence V' is

not independent; this is a contradiction. 0

1.3.12. We will now give a correspondence between spaces induced by a
lattice and graph spaces obtained from bipartite graphs. Let (X,<) be a
lattice with universal bounds 0 and 1. If a and b are elements of X then

[a,b] will denote the set
[a,b] := {x € X | a < x £ b}.

The interval space of X is the topological space with underlying set X

and with (closed) subbase the collection
S :={[0,x] | x e X} u {[x,1] | x € X}.

Spaces obtained in this way are called lattice spaces. According to a
theorem of FRINK (cf. BIRKHOFF [17]) the interval space of a lattice

(X,<) is compact iff (X,<) is complete.
1.3.13. THEOREM. Every compact lattice space is supercompact.

PROOF. Let (X,<) be a complete lattice and define an interval structure

(cf. definition 1.3.2) I on X by
I(x,y) := [xAy,xvyl.

This is easily seen to be an interval structure while moreover the subbase
S for X defined in 1.3.12 consists of I-convex sets; consequently X is

supercompact by theorem 1.3.3. 0

1.3.14. A graph (V,E) is called bipartite if V can be partioned in two
sets V0 and V1 such that each edge consists of an element in V0 and an
element of V1. A well-known and easily proved theorem in graph theory,
see e.g. WILSON [129], tells us that a graph (V,E) is bipartite if and

only if each circuit is even, that is, whenever
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{vyv bty vty v b v vy

are edges in E, then k is even (this characterization uses a weak form of
the axiom of choice).
We call a collection S of subsets of a set X bipartite if the non-

intersection graph G(S) is bipartite.

1.3.15. THEOREM. The following assertions are equivalent:
(i) X is homeomorphic to a compact lattice space;
(ii) X possesses a binary bipartite subbase;

(iii) X is homeomorphic to the graph space of a bipartite graph.
PROOF. (i) = (ii). Let (X,<) be a complete lattice; the subbase
S =1{[0,x] | x e x} u {[x,1] | x € X}

is binary and bipartite.
(ii) = (i). Let X be a topological space with a binary bipartite subbase S;
let S = SO U Sl' such that SonS1 = @ and nSo # @ and nS1 # @ (this is pos-—

sible since S is binary and bipartite). Define an order " <" on X by
x £y iff y € S whenever x € S ¢ 31.

The relation " <" is reflexive and transitive; " <" is antisymmetric too.

For suppose that X # y and x £ y < x. Since the subbase S is T, (lemma 0.4)

there are S,T € S such that x € S, y € Tand SNT = @. From this it fol-
lows that either S ¢ S1 or T € Sl' If S ¢ 31 then y € S, since x £ y. But
this is a contradiction. On the other hand if T € S1 then x ¢ T, since
y < X. This also is a contradiction.

We will show that " <" defines a complete lattice by proving that
for each X' ¢ X there is a z € X such that z = sup X'.

Let X' c X. Define
' = ]
So := {s € SO | x* < So}
and

Sj=1TeS | Tns # @ for all s ¢ Spt

respectively.
Now n36 n nSi # @, since ﬂSé 0 # ﬂsi and also SNT # @ for all
S € 36 and T € Si (notice that S is binary!). Choose z € 036 n ﬂSi. This
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point z is an upper bound for X', for let x € X' and let x € T € 31; then
T € Si and consequently z € T. Therefore z < x for all x € X'.

Suppose now that x < z' for all x € X' and that z £ z'. Then there
exists a T € S1 with the properties z ¢ T and z' ¢ T. As S is binary and
bipartite there is an S € 30 such that SNT = @ and z' ¢ S. Now, X' c S,
since otherwise there must be an x_ € X' and a T' € Sl with the properties

0

0 € T'" and T' nS = @. Then, since xo < z' we have that z' € T', which

contradicts the fact that S n T' .= @. Therefore X' c S, which implies that

X

S e 36. But z ¢ S, which cannot be the case since z € n36 n Si.
Finally the topology induced by the lattice-ordering < coincides with
the original topology of the space X. Indeed, for x € X we have that

[x,1] =n{s e S, | x € s},

as can easily be seen.

Furthermore
[0,x] =n{s € SO | x e s},

for suppose that y < x and that y ¢ S for some S € SO with x € S. Then
there exists a T € S1 such that S n T = @ and y € T. Hence x € T, contra-
dicting the fact that S n T = @.

Also if T € 31' let

Sy =1{s e S, | snT#g}.

Then T n ﬂSé # @, since S is binary. Choose z € T n 036. We will show that

[z,1] = T.

If z <y, theny € T since z € T. If y € T and z £ y, then there exists an
S e SO such that y € S and z ¢ S. However, S n T # @ and consequently
S € Sb and z € S, which is a contradiction.

Conversely, if S € SO let
Si={T€S1| S nT# @}
Then S n nSi # @, since S is binary. Choose z € S n ﬂSi. We will show that

[0,z] = s.
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Ify<zandy ¢ Stheny e T for some T € S with S n T = @. Hence z ¢ T,
which contradicts the fact that y £ z. If y € S and y £ z then there is
some T € Sl such that y e T and z ¢ T. Then S n T# @ and T € Si. Hence

z € T, contradicting the fact that z ¢ T.

(ii) = (iii). Let X be a space with a binary bipartite subbase S. By defi-
nition G(S) is bipartite and, by theorem 1.3.6 X is homeomorphic to the
graph space of G(S).

(iii) = (ii). Let G be a bipartite graph. It is easy to see that the binary
subbase B(G) for the graph space of G is bipartite. [

1.3.16. We now turn our attention to compact trée-like spaces, which also
will be characterized with the help of weakly camparable subbases and
graphs.

A tree-like space is a connected space in which every two distinct
points x and y can be separated by a third point z, i.e. x and y belong to
different components of X\{z}. Obviously every connectdd orderable space
is tree-like; however, the class of tree-like spaces is much bigger; see
e.g. KOk [70].

A collection S of subsets of a set X is called normal if for every
8475, € S with S nS, = ¢ there exist T_,T eSwithSﬂTl =@ =T, nS, and

01 0'"1 0 T 0”1

TOUT1 = X. Clearly a normal collection is weakly normal, cf. definition

1.3.8. In addition S is called weakly comparable if for all S ,sl,S e S

0 2

OnS1 =@ = SOnS2 it follows that either 51 c 32 or 52 c S1 or

= @ (the notion "comparable" will be defined in 1.3.26).

satisfying S

.8, ns

1 2

A collection S of subsets of a set X will be called connected (strong-
ly connected) if there is no partition of X in two (finitely many) elements
of S.

1.3.17. PROPOSITION. Let S be a weakly comparable collection of subsets
of the set X. The following properties are equivalent: ‘
(i) S is normal and connected;

(ii) S is weakly normal and strongly connected.

PROOF. (i) = (ii). Let S be weakly comparable, normal and connected.
Clearly S is weakly normal. Suppose that S is not strongly connected and
let k be the minimal number such that there are pairwise disjoint sets
Sl,...,Sk

there exist, by the normality of S, T1 and T, in S such that

in S with union X. Since S is connected, k > 3. As S, NS, = @
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S1 n T2 =@ = T1 n 32 and T1 u T2 = X. Now 53 intersects either T1 or T2.

Without loss of generality we may suppose that S3 nT, # ¢. Hence since

S, NT, =@ =8S8_n 83, by the weak comparability of S, S3 nNT, =@ or
c S

2 1 2 1
1 3 OF S3 c Tl' Since the first two cases are impossible it follows
that S3 c Tl' In the same way one proves that for each j = 4,...,k either

T

Sj c T1 or Sj n T1 = @. Hence there exists a smaller number of pairwise

disjoint sets in S covering X.
(ii) = (i). Let S be a weakly normal, strongly connected, weakly comparable
collection of subsets of X. We need only show that S is normal. To prove

this, let T.,T, € S such that T. n T, = @#. Let k be the minimal number

0’1 0 1
such that there are sl""'Sk in S covering X and such that each S;.L meets

at most one of To and Tl’ By the minimality of k we may suppose that no
two of these subsets Sl”"’sk are contained in each other. If k = 2 then

we are done.

Suppose therefore k 2 3. We prove that the sets Sl""'s are pair-

k

wise disjoint. We onlyAprove that 81 n 82 = @. To the contrary assume that

81 n S2 were nonvoid. By the weak comparability of S they are neither both
disjoint from T

nor they are both disjoint from T,. We may suppose there-

0 1

fore 51 n TO # 0@ # 82 n Tl' Since now S1 n T1 =@ = T1 n TO it follows that

either 51 c T0 or T0 c Sl. If 51 c T0 then TO n 32 = S1 n 82 # @, which

cannot be the case. It follows that T0 c S1 and similarly T1 c 82' We may

suppose that S3 n T0 = @#. Since also 52 n T0 = @ we have S3 n 82 = @. From

this it follows that S3 n T1 = @ and since also S1 n T1 = @, we have

S3 n S1 = @. Now from the weak comparability of S it follows from S

=g = S3 n S1 that 82 n S1 = @, which is a contradiction.

Since there are no pairwise disjoint sets Spree-rSy in S with union X,

318,

it cannot be the case that k 2 3. Hence S is normal. O

1.3.18. A graph (V,E) is called normal if for each edge {v,w} ¢ E there
are edges {v,v'} and {w,w'} in E such that whenever {v',v"} and {w',w"}

are edges then also {v",w"} is an edge (see figure 2).

v" w
v' w'
v w

Figure 2.
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Clearly each normal graph is a weakly normal graph (see 1.3.8).

A graph (V,E) is called weakly comparable if for each "path" {VO'Vl}'
{vl,v2},{v2,v3},{v3,v4} of edges either {vl,v3} € E or {VO,VB} € E or
{VI’V4} € E (see figure 3).

= F= o =0 A
Yo Y1 V) V3 Va
Figgre 3.

A graph (V,E) is called contiguous (BRUIJNING [26]) if for each edge
{v,w} € E there exist edges {v,v'} and {w,w'} such that {v',w'} ¢ E.

A graph (V,E) is connected if for each two vertices v,w € V there is
a path of edges {V’VI}’{VI'VZ}""'{Vk'W} (k € IN).

Finally, we call a collection S of subsets of a set X graph-connected
if the corresponding non-intersection graph G(S) is connected.

We need a simple lemma.

1.3.19. LEMMA. Let S be a binary collection of subsets of the set X with
non-intersection graph G(S). Then

(1) S is normal iff G(S) is normal;

(ii) S is weakly comparable iff G(S) is weakly comparable;

(iii) S is connected iff G(S) is contiguous.

PROOF. Notice that S1 U ... u Sk =X (Si € S, i £k) if and only if the fol-

lowing holds in G(S8): for all Si,...,Si such that {Si,Si} is an edge of G(S)

(i € k) the set {S',Sé,...,si} is not independent. ]

1.3.20. If X is a tree-like space then a subset A of X is called a segment
if A is a component of x\{xo} for certain X, € X. KOK [70] has shown that
every segment in a tree-like space is open. In particular any tree-like

space is Hausdorff.

1.3.21. THEOREM. Let X be a topological space. Then the following properties

are egquivalent:
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(1) X is compact tree-like;
(ii) X possesses a binary normal connected (closed) subbase T such that
for all TO'Tl ¢ T we have that either T0 c T1 or T1 c T0 or

To n T1 =@ or TO u T1 = X;
(iii) X is homeomorphic to the graph space of a connected normal contiguous

weakly comparable graph.

PROOF . (i) = (ii). Let X be compact tree-like and let U denote the collec-
tion of segments of X. Sinceevefytwo distinct points of X are contained in
disjoint segments, the compactness of X implies that U is an open subbase
for the topology on X. We will show that for all UO,Ule U either U, U U, =

0 1
XorU,nu, = @ or Uy € Uy or U, < U,. To prove this, take UyeUy € U ana
suppose that U is a component of X\{xi} (i € {0,1}). Without loss of
generality we may assume that x0 # X . Suppose that X\{xi} = Ui + UI
(i € {0,1}) (this means Ui n Uz = ¢ and X\{xi} = Ui U U:). We have to con-

sider two cases:

(a) Suppose first that x, € U_.. We again distinguish two subcases:

1 0
(a)(i) X. € U,. It then follows that cl_(U:) = U. u {x.} c U
0 1 . X0 0 0 1’
since Clx(UO) is connected. This implies U0 u U1==X.
(a)(ii) X € U* Then cl_(U,) < U since cl_(U,) is connected
0 1° X1 o' X1 :

Therefore U1 c Uo.

*
(b) Suppose that x, € U,. We distinguish two subcases:

1 0
(1) R . . .
(b) xo € U1. This implies that ch(Uo) c Ul' since clx(UO) is
connected. Hence UO c Ul'
(b)(ii) X € U* Now we have cl_(U.) c U* since cl_(U.) is connected
0 1° x,0 1’ X 0 :
Therefore U0 < Uy and consequently Uy nu, = .

Now define T := {X\U | U e U}, Then T is a closed subbase for X such
that for all TyiT) € T either TqUTy =XorTynT = @ or Ty T, or
T, © Ty- In particular T is weakly comparable. To show that T is binary it
suffices to show that each covering of X by elements of U contains a sub-
cover consisting of two elements of U. Indeed, let A be an open cover of X
by elements of U. By the compactness of X the cover A has a finite sub-
cover {Ul""""'Un}' In addition we may assume that @ # Ui ¢ Uj for i#7.
We claim that for each Ui € {UI""'Un} there exists a Uj € {Ul""’Un}

such that Ui n Uj # @; for assume to the contrary that for some fixed
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i £ n it were true that u; n Uj =@ for all i # j < n. As {Ul,...,Un} is
a covering of X it would follow that X is not connected, which is a contra-
diction. Therefore Ui u Uj = X. Consequently T is a binary subbase.

As X is Hausdorff, by theorem 1.3.9, T is weakly normal, which implies
that T is normal by proposition 1.3.17, since trivially T is strongly con-
nected (notice that T consists of closed sets).

(ii) = (i). Since T is a binary subbase evidently X is compact. Therefore
we must prove that X is tree-like. We will éheck the connectedness first.

Suppose that X is not connected. Then there are closed disjoint sets
G and H such that G U H =X and G # @ # H. As G and H are intersections
of finite unions of elements of T and as G and H are disjoint, the com-
pactness of X implies that G and H both are finite intersections of finite
unions of elements of T, or, what is the same, finite unions of intersec-
tions. Let m be the minimal number such that there are Gi""'Gm such that
(i) Gl""'Gm are nonvoid and intersections of subbase elements;

(ii) G,u ... UGm=X;

1
(iii) there is an I < {1,2,...,m} such that

u Gi #0# U G. and U Gi n U G, =¢g.
iel 3€1 iel jér I
We first prove that Gi n Gj =@ if i # j. Suppose that Gi n Gj # ¢ for

some i # j.

CIAIM: G, UG, =N{T e T | G, uG, cT}.
i 73 i°7

Indeed, take x ¢ Gi u Gj' Then, since Gi and Gj are intersections of sub-
base elements there are T0 and T, in T such that Gy € Ty Gj < Ty and

X ¢ T0 u T1. Now since T0 n T1 > Gi n Gj # @ and T0 u T1 # X it follows

that either TO c T1 or T1 c TO. Therefore x ¢ T for some T ¢ T with
G, UG, ¢ T.
i J

Now it follows that m is not the minimal number of sets with the
above properties, which is a contradiction.

Second we prove that each Gi is an element of T. Suppose that some
Gi ¢ T. Let j # i. Then, since Gi is an intersection of subbase elements
and T is binary, there is a T € T such that G, T and T n Gj = @. The
sequence Gl""'Gi—l’T’Gi+1""'Gm is also a sequence with the above
properties (i), (ii) and (iii). So again T n Gk =@ if k # i, hence

Gi cTc X\kai Gy s which implies that G, = T and therefore G, € T.
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Hence there is a collection Gl""'Gm of pairwise disjoint subbase

elements covering X and as T is weakly comparable, and hence by proposi-
tion 1.3.17 is strongly connected, this is a contradiction. This proves
that X is connected.

We will now show that every two distinct points can be separated by

a third. Let x,y € X such that x # y. As X is a T, ~space we have that

1
{z} =n{T ¢ T | z € T} for all z € X and consequently, since T is binary,

there exist TO,T1 e T such that X € TO’ y € T1 and T, n = @ (cf. lemma 0.4).

0

The normality of T implies the existence of Ty T] € T such that TétJTi =X

| " — 1] 3
and TO n T1 =@ = T0 n Tl' Define

A:={T6T|TUT(')=X}.

Since X is connected we have that A u {Tb} is a linked system and conse-

quently Té n NA # @. We claim that this intersection consists of one point.

We assume to the contrary that z e T' n NA with zO # Z. In the same

0’%1 € 7o
0’51 € T such that z € SO\S1 and z, € sl\sO and

S0 u S1 = X. Since zq ¢ S1 we have that S1 ¢ A and consequently Té U51 #X.

n Té # @. However this implies

way as above there exist S

1] L i
Hence To c 51 or s1 c TO' notice that S1

that S1 c Té, since Zg ¢ Sl. With the same technique one proves that

Sy © Té; but this is a contradiction since Té # X. Let {zo} :=T6 n NA.

Then Zq is a separation point of x and y, since T6 and NA are closed sub-

sets of X such that T) U (NA) = X and x ¢ T, and ye NA. This proves that

X is compact tree-like.
(ii) = (iii). Let X be a space possessing a binary normal connected sub-

1 € T we have that either Ty € Ty or T © TO

or Ty n T, = @ or Ty U Ty = X. We may suppose that @ ¢ T and X ¢ T. Then

the non-intersection graph G(T) is normal by lemma 1.3.19. Also G(T) is

base T such that for all TorT

weakly comparable since T is weakly comparable, as is easy to show. G(T)
is contiguous since T is connected (lemma 1.3.19). So we only need to

prove that G(T) is connected. Let T.,T, € T, then either

0'"1
(a) T0 n T1 = @; hence there is an edge in G(T) between T0 and Tl; or,

(b) TO U T1 = X; hence there are T6 and Ti in T such that

"= mt 1 = Mt = i 5
Tg N Ty =TyNT} =TinT, @, forming a path in G(T)

connecting T, and Tl; or,

0

c) T, <cT,; i T = =
(c) 0 1 _ hence there is a T2 e T such that Ty nT2 [") T2 nT

giving a path connecting TO and T1; or,

1'

(a) T1 c TO; this case is similar to case (c).
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(iii) = (ii). Let X be the graph space of a connected normal contiguous
weakly comparable graph G = (V,E). We will prove that the subbase B(G)

for the graph space satisfies the conditions of (ii). B(G) clearly is
binary, normal and connected. Suppose now that Bv'Bw e B(G) (cf. 1.3.5),
with v,w € V. Let {v,vl},...,{vk_i,w} € E be a path connecting v and w
with minimal number k of edges. We will prove that always BV n Bw =@

or Bv u Bw = X or BV c Bw or Bw c Bv. The proof will be by induction to k.
If k = 1 then {v,w} ¢ E and hence B nB = @. Suppose that k > 1. There

is a path of (minimal) length k-1 between v, and w, hence by induction

1
hypothesis either
(a) Bvl nB, = @; i.e. {v,vl},{vl,w} € E. It now follows that {v,w} ¢ E
(otherwise k = 1) and therefore B_. <« B or B < B_,
v w W v
for if not, there would be an edge {v,v'} € E and
an edge {w,w'} € E such that {v,w'} ¢ E and

{w,v'} ¢ E, contradicting the weak comparability

of G; or,
(b) BV1 U Bw = X; since BV n BV1 = @ it follows that Bv c Bw; or,
(c) BV1 c Bw; now BV n BVk-l = @ and hence as in case (a)

B «cB or B c B ;, or

v w W v
(d) B < B_ ; then B. n B = @, which implies that k =1

w Vi v w

(contradiction) .

Therefore always B. N B =@ or B UB =Xor B ¢ B or B c B . 0
v w v w v w W v

1.3.22. COROLLARY. Each compact tree-like space is supercompact. 0

1.3.23. COROLLARY. Let X be a topological space. Then the following

properties are equiéalent:

(i) X is a prbduct of compact tree-like spaces;

(ii) X possesses a binary normai-connected weakly comparable
(closéd) sqppase; _‘L‘

(iii) X is homeomorphic to. the graph space of‘a normal contiguous

weakly comparablehgraph.

PROOF. Notice that each graph is the sum of its components. Then apply
theorem 1.3.7 and theorem 1.3.21. [J

1.3.24. An interesting application of corollary 1.3.23 is the following.
In [55], DE GROOT obtained a topological characterization of the n-cell "
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and of the Hilbert cube Ico by means of binary subbases of a special kind
(cf. theorem 1.3.31). ANDERSON [2] has proved that the product of a count-
ably infinite number of dendra is homeomorphic to the Hilbert cube, where
a dendron is defined to be a uniquely arcwise connected Peano continuum.
It is well known, however, that a dendron is simply a compact metric tree-
like space (cf. WHYBBURN [128]). Since the dimension of a dendron is 1,
using our characterization of products of compact tree-like spaces, we are
able to give‘a new characterization of the Hilbert cube, thus generalizing

the result of DE GROOT mentioned above for the case of the Hilbert cube.

1.3.25. THEOREM. A topological space X is homeomorphic to the Hilbert
cube 1 if and only if X has the following properties:

(1) X is infinite dimensional;

(ii) X possesses a countable binary connected normal weakly comparable

subbase.

PROOF. The necessity follows from corollary 1.3.23, since the Hilbert cube
is a product of compact tree-like spaces. The sufficiency follows from the
fact that by corollary 1.3.23 X is homeomorphic to a countable product of
dendra. As X is infinite dimensional this must be a countably infinite
product. Hence X is homeomorphic to the Hilbert cube by the result of
ANDERSON [2]1. 0

1.3.26. Now we will treat the relations between ordered spaces and com-
parable subbases and graphs. Note that an ordered space is the interval
space of a totally ordered set. Hence clearly every ordered space is a
lattice space while moreover a connected ordered space is tree-like.

Let X be a set and let S be a collection of subsets of X. The col-
lection S is called comparable (cf. DE GROOT [55]) if for all So,sl,s2 €S
with S0 n S1 =@ = SO n 82 it follows that either 81 c 52 or 52 c Sl'

A graph (V,E) is called comparable if for each path {VO'Vl}’{vl'v2}'
{vz,v3},{v3,v4} of edges it follows that either {vo,v3} € E or {V1,V4} €E
(cf. figure 4).
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1.3.27. LEMMA.

(i) A graph G is comparable iff G is weakly comparable and bipartite.

(ii) FEach comparable graph is normal.

(iii) A collection S of subsets of a set X is comparable iff it is weakly
comparable and bipartite.

(iv) A comparable collection S of subsets of a set X is normal if it
satisfies the following condition: for each x € X and each S € S

with x ¢ S there exists an_S0 € S with x € S0 and SO ns=g.

PROOF. The simple proof is left to the reader. [

1.3.28. THEOREM. Let X be a topological space. Then the following propert-
ies are equivalent:

(i) X i1s compact orderable;

(ii) X possesses a binary graph-connected comparable subbase;

(iii) X is homeomorphic to the graph space of a connected comparable graph.

PROOF. (i) = (ii). Let (X,<) be an order-complete totally ordered set,
with universal bounds O and 1. Clearly the subbase S = {[0,x] | x € %,
0<x<1}u {[x,1]1 | x e X, 0 <x <1} is binary, graph-connected and
comparable.

(ii) = (i). Let X be a space with a binary graph-connected comparable sub-
base S. Since S is bipartite (lemma 1.3.27), S induces a lattice ordering
"<" on X, such as in the proof of theorem 1.3.15 (ii) = (i). We only have
to prove that this order is a total order. Suppose " <" is not total, that
is suppose that for some x,y € X we have x £ y and y £ x. Then there are

s,T €~Sl (see theorem 1.3.14) such that
xeS, yé¢8S, yeT. and x ¢ T.

Since S is graph-connected and bipartite there are Syree-sS in S such

k
that

with k odd (cf. 1.3.13 and 1.3.17). Suppose that k is the smallest number

for which such a path in G(S) exists. If k > 3 then S, n S, = @ = S, n S,

and hence 31 c S3 or S3 < Sl' If 51 c S3 then
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which gives a shorter path from S to T.

The case S3 c S1 can be treated similarly.

Hence k = 1 and consequently S n S1 =@ = S1 n T. Since S is compar-
able it now follows that S € T or T < S. This means that either x ¢ T or
y € S, both of which are contradictory.

(ii) = (iii). Let X be a space with a binary graph-connected comparable
subbase S. Then X is homeomorphic to the graph space of the graph G(S),
while moreover it is easy to see that G(Si is connected and comparable.
(iii) = (ii). Let X be the graph space of a congected comparable graph
G = (V,E). The subbase B(G) is graph-connected since G is connected. Also

B(G) is comparable, for suppose that Bv1'3v2'BV3 € I(G) such that

and nevertheless By, ¢ BV3 and BV3 ¢ By, -
Then {vl,vz} € E and {vz,v3} € E; moreover there are V' and V" in
1] n
I(G) such that V' e Bvl\Bv3 and V" € BV3\BV1.

As vg ¢ V' there is a v, € V' such that {v } € E. Aas vy ¢ V" there

4 3'V4

is a vy € V" such that {VO'VI} € E. Now

{VO'VI}'{V1'V2}'{VZ'V3}'{V3'V4} € E

and also {vo,v3} ¢ E (because Vgrvy € V") and {VI’V4} ¢ E (because
VirVy, e€V'). This contradicts the comparability of the graph G.

Hence the graph space T(G) of G has a binary comparable graph con-
nected subbase.

This completes the proof of the theorem. 0

1.3.29. COROLLARY. (DE GROOT & SCHNARE [60].) Let X be a topological
space. Then the following statements are equivalent:

(i) X is a product of compact orderable spaces;

(ii) X possesses a binary comparable subbase;

(iii) X is homeomorphic to the graph space of a comparable graph.
PROOF. Apply theorem 1.3.28 and theorem 1.3.7. ' [J

1.3.30. COROLLARY. Let X be a topological space. Then the following

statements are equivalent:
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(1) X is connected compact orderable;
(ii) X possesses a connected graph-connected comparable subbase;
(iii) X is homeomorphic to the graph space of a connected contiguous

comparable graph.
PROOF. Apply theorem 1.3.28 and theorem 1.3.21. [

1.3.31. COROLLARY. Let X be a topological space. Then the following
statements are equivalent:

(1) X is a product of connected compact orderable spaces;

(ii) X possesses a connected comparable subbase;

(iii) X is homeomorphic to the graph space of a contiguous comparable

graph.

PROOF. Combine corollary 1.3.30 and theorem 1.3.7. 0

Adding countability conditions on the subbases and graphs one easily
obtains characterizations of (products of) (connected) compact subsets of

the real line (cf. DE GROOT [56], BRUIJNING [26]).

1.4. Reqular supercompact spaces

STEINER [114] defined a compact space to be regular Wallman if it pos-
sesses a closed subbase T such that A.V.T is a ring consisting of regular
closed sets, i.e. each element of A.V.T is the closure of its own interior.
Regular Wallman spaces are Wallman compactification of each dense subspace
(this will be discussed in chapter four) and many interesting classes of
compact topological spaces turn out to be regular Wallman, for example
the class of all compact metric spaces (AARTS [1], STEINER & STEINER [1091]).
Not all compact Hausdorff spaces are regular Wallman; SOLOMON [107] recent-
ly has given an example of a compact Hausdorff space that is not so.

It seems natural to define a topological space X to be regular super-
compact provided that it possesses a (closed) binary subbase T such that
A.v.T is a ring consisting of regular closed sets. Obviously a regular
supercompact space is (super)compact and regular Wallman. The space BIN
is a good example of a regular Wallman space (totally disconnected!) that
is not regular supercompact. We do not have an example of a supercompact

Hausdorff space that is not regular supercompact, or even of a supercompact
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Hausdorff space that is not regular Wallman.

Regular supercompact spaces behave similar to regular Wallman spaces;
for example products of regular supercompact spaces are again regular super-
compact, closed subspaces of regular supercompact spaces need not be regul-
ar supercompact. But regular supercompact spaces have an additional property,
they are not only a Wallman compactification of each dense subspace but they
are also a superextension of each dense subspace (this will be proved in
section 4.5). )

Many interesting classes of regular Wallman spaces are regular super-
compact. VAN DOUWEN [42] recently has shown that every compact metric space
is regular supercompact. As a consequence of our results every compact
orderable space is regular supercompact, every compact tree-like space of
small weight is regular supercompact, and the superextension of a Lindeldf

semi-stratifiable space is regular supercompact (section 4.5).

1.4.1. A topological space X is called regular supercompact provided that
it possesses a binary subbase T such that A.V.T is a ring consisting of
regular closed sets.

The proof of theorem 1.4.2 will be postponed till section 4.5. For

a precise definition and a discussion of superextensions, see chapter II.

1.4.2. THEOREM. A regular supercompact space is a superextension of each

dense subspace.

This theorem is of interest since intuitively superextensions are
"big"; however theorem 1.4.2 tells us that superextensions can be compacti-

fications as well.

1.4.3. THEOREM. The topological product of regular supercompact spaces is
regular supercompact.

PROOF. Let X = naeI xa be a product of regular supercompact spaces and let
Ta be a binary subbase for X, such that A’V°Ta is a ring consisting of

regular closed sets (a € I). A straightforward check shows that
-1
T := {ﬂa [Tl | Te Ta (0 € I)}

is a binary subbase for X such that A.V.T is a ring consisting of regular

closed sets. [
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We now give some classes of topological spaces that are regular super-

compact.

1.4.4. THEOREM. Each compact metric space is regular supercompact.
PROOF. See VAN DOUWEN [42]. [

1.4.5. THEOREM. A compact orderable space is regular supercompact.

PROOF. Let X be a compact ordered space and let A denote the collection of
isolated points of X. Then X\ch(A) is a locally compact topological space
without isolated points and therefore has disjoint dense subspaces (cf.
HEWITT [64], theorem 47). So X has dense subspacés D and E, such that

A =D n E and all points isolated from the left belong to D and all points
isolated from the right belong to E. Let a be the smallest element of X
and let b be the largest element of X. Then

T := {[a,a] | d e D} u {[e,b] | e ¢ E}

is a binary closed subbase such that A.V.T is a ring consisting of regular

closed sets. [

1.4.6. REMARK. HAMBURGER [62] has shown that a compact orderable space is
regular Wallman. This theorem was generalized by MISRA [85] who showed
that the éech-Stone compactification of a locally compact ordered space is
regular Wallman. MISRA's theorem cannot be generalized for regular super-
compactness since BIN, the éech—stone compactification of the natural
numbers, is not supercompact (cf. BELL [14] and corollary 1.1.7). Hence
‘BIN . is an example of a'regular Wallman space that is not (regular) super-

compact.

1.4.7. In section 1.3 we showea that every compact tree-like space is
_supercompact (theorem 1.3.21). This result suggests the question whether
every compact tree-like space is regular supercompact.'simple examples
show that the structure of compact tree-like spaces is much more complic-
ated than the structure of ordered compacta. Therefore the simple prodf
of theorem 1.4.5 cannot be generalized. However it is possible that a
modification of the technique "works", since each compact tree-like space
is the continuous image of an ordered compactum, by a result>of CORNETTE

[32]. We give a partial answer to the general question by showing that
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each compact tree-like space of weight at most ¢ is regular supercompact.

1.4.8. THEOREM. A compact tree-like space of weight at most C is regular

Supercompact.

PROOF. Let X be a compact tree-like space. Recall that the collection of
complements of segments forms a closed subbase for X (theorem 1.3.21).
Let T be a collection of complements of components which is a subbase

and which in addition is of cardinality at most €. Define
A:={(s,7) | s,TeTand snT-= g}

List A as {a, | @ € ¢}. By transfinite induction choose for each a € €
a point Pa € X such that

(i) if Aa = (S,T) then P, separates S from T;

(ii) p, ¢ {pB | 8 < al.

To define PO’ note that each element of T is connected and hence that if
Ao = (8,T) then there exists a separation point b € X which separates S
from T. Define Py = b.

Suppose that all pB have been constructed for B < a. Notice that

I{PB | 8 <al}l <ec.
Let Aa = (S,T) and take ¢ € S and d € T. Define
z = {x € X | x separates c from d}.

It is well-known, cf. PROIZVOLOV [92], KOK [70], that Z is a connected
orderable subspace of X (Z is ordered by the usual cut point order). The
connectedness of Z implies that U = Z\(SuT) is a nonvoid open subset of Z,
hence contains a nonvoid open order interval and consequently is of cardi-
nality at least C. Also each x € U separates S from T. As I{pB |8 <all<e
there is an e € U such that e ¢ {pB l B < a}. Define P, i=e- This com-~
pletes the inductive construction.

Now, if a, = (S,T) let Ua be the component of X\{pa} that contains T.
Define V  := X\Ua (¢ € ¢). Then v, NnT= @ and v, = {Pa} (¢ € ).
Clearly V := {Va I o € ¢} is a closed subbase for X. This subbase also is
binary since it is a subcollection of the collection of complements of

segments which is binary (theorem 1.3.21). Finally A.V.V is a ring consist-
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ing of regular closed sets. For take ao < oy < t.0 < oL (ai e ¢, i £n).
Then Vao n...n V“n is regular closed since avai n av“j = @ for all

oy # aj and each Vai is regular closed. Each finite union of regular
closed sets is regular closed and hence A.v.l/ is a ring consisting of

regular closed sets. [
Theorem 1.4.8 suggests the following question:
1.4.9. QUESTION. Is every compact tree-like space regular supercompact?

1.4.10. We will now describe how to construct regular supercompact compac-
tifications of discrete spaces.

STEINER & STEINER [110] have shown the following theorem: Let X be
an infinite discrete space and let K be a compact space with a dense sub-
set of cardinality less than or equal to that of X. Then X has a (Hausdorff)
compactification aX with K as remainder, i.e. aX\X is homeomorphic to K.

The construction of this compactification is very simple. Express X
as the union of disjoint subsets xi (i € w) each of cardinality [X|. Let
D be a dense subset of K with cardinality less than or equal to |X]|. Con-
struct a function £ of X into K which maps each Xi onto D. Let X* be the
Alexandroff one point compactification of X. The closure of the graph of
f in x* X K is a compactification oX of X with K as remainder. The
restriction of the projection'onto the second coordinate of the product

*
X X K to oX clearly is a retraction of aX onto K.

1.4.11. THEOREM. Let X be an infinite discrete space and let K be a
Hausdorff regular supercompact space with a dense subset of cardinality
less than or equal to that of X. Then X has a Hausdorff compactification
oX with the following properties:

(1) K = oxX\X;

(ii) aX is regular supercompact.

PROOF. Let oX be the "graph-closure" compactification of STEINER & STEINER,
described above, and let r: aX > K be a retraction. Let T be a binary sub-
base for K such that A.V.T is a ring consisting of regular closed sets.

Clearly

S := {{x} | xex}u fox\x} | xextuirllTl|TeT)

is a closed subbase for the topology on aX.



48

CLAIM 1. S is binary.

Indeed, let M ¢ S be a linked system with an empty intersection. By the
compactness of oX we may assume that M is finite. It is clear that M does

not contain a singleton. Hence we may write
M= {r_l[TOJ,...,r-l[Tn],ax\{xo},...,ax\{xm}}.
Since T is binary we have that niSn Ti # @ and consequently
g#N,__ T, cN._ r"ll:'ri] n anm ax\{'xj},
since r is a retraction. This is a contradiction.
CLAIM 2. A.V.S consists of regular closed sets.

Since A.V.T is a ring consisting of regular closed sets it suffices to

show that
X T n (aX\{x eee X I)
0' ’ n

is regular closed in aX for all T € T and xi € X (1 £n, n € w). But

this is a triviality since it is easy to see that
(r_lfint ()] v (r-1[T] nx))\{x ,...,x}
K o’ "“n

is a dense open set in r_1[T] n (ax\{xo,...,xn}) for all T € T and

X, €X (i<n,new. 0O

This theorem implies that there are many Hausdorff compactifications
of N that are regular supercompact. Also it is easy to construct nonmetriz-
able regular supercompact Hausdorff compactifications of N. For example,
let K be a separable nonmetrizable compact orderable space. Then theorem
1.4.5 and theorem 1.4.11 imply that there is a Hausdorff compactification
olN of N with K as remainder and which is regular supercompact.

We finish this section with an open question:

1.4.12. QUESTION. Is there a supercompact Hausdorff space that is not
regular supercompact, or, more generally, is there a supercompact Haus-

dorff space that is not regular Wallman?
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1.5. Partial orderings on supercompact spaces

Supercompact spaces which possess a binary subbase which also is
normal (cf. 1.3.16) behave surprisingly nice. In some sense these spaces
have much in common with (products of) compact tree-like spaces (section
1.3). It is well-known that a compact tree-like space
(a) can be partially ordered in a natural way (cf. WARD [123]);

(b) is locally connected (cf. PROIZVOLOV [92]);
(c) is (generalized) arcwise connected (cf. PROIZVOLOV [92]);
(d) has the fixed point property for continuous functions

(cf. WALLACE [120]).

We will show that a space with a binary normal subbase satisfies (a),
(b) and (c) if it is connected. Property (b) for these spaces is original-
ly due to VERBEEK [119] and property (d) was proved recently by VAN DE VEL
[118]. Basic tools in the proofs will be partial orderings and nearest
point mappings defined in 1.5.2. These mappings are fundamental and will
from now on be applied eﬁerywhere in this treatise.

Finally we show that a space with a binary normal subbase is a retract
of the hyperspace of its nonvoid closed subsets. As a corollary it follows,
using a result of WOJDYSLAWSKI [130], that if in addition such a space is

connected and metrizable it is an Absolute Retract.

1.5.1. Let X be a topological space and let S be a binary normal (cf.
1.3.16) subbase for X. Notice that the normality of S implies that X is
Hausdorff since S is a Tl-subbase (lemma 0.4) and that each supercompact
Hausdorff space possesses a binary weakly normal subbase (theorem 1.3.9).
Without loss of generality we assume that X e S.

For each subset A c X let IS(A) be defined by

I.(A) :=n{s eS| acs}.

S

Notice that ch(A) c IS(A), since S is a closed subbase, that IS(IS(A)) =
IS(A) and that IS(A) c IS(B) if A ¢ B, for all A,B c X. If A is a two point
set, say A = {x,y}, then we usually write Is(x,y) in stead of Is({x,y}).
The set Is(x,y) is interpreted as a "segment" joining x and y. The function
I: XXX > P(X) defined by I((x,y)) := IS(x,y) is an interval structure
(cf. 1.3.2 and 1.3.3).

A partially ordered topological space (in the sense of WARD [122]) is
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a toéological space Y endowed with a partial order, <, which is contin-
uous in the sense that the graph of < is closed in Y XxY. A partial order
" <" is called order dense if x < y implies that there is a z € Y such
that x < z < y. A chain in a partial ordered set is a subset which is
linear with respect to the partial order. A point is called minimal (max-
imal) if it has no proper predecessor (successor).

For a given point p € X define a binary relation sp on X by
x Sp y iff Is(p,x) < IS(P:Y)-

In theorem 1.5.13 we will show that Sp is a continuous partial ordering
for X. The notation x SP y is not such a good notation, since the ordering
SP also depends on the choice of the subbase S, and a topological space
can have many totally distinct binary normal subbases. For notational
simplicity we suppress the subindex S in the ordering; from the context

the meaning of x SP y will always be clear.

1.5.2. THEOREM. Let X be a topological space and let S be a binary normal
subbase for X. Let A c X,

(i) For every x € X the set

n (x,a) n IS(A)

I
aeA ~S

is a singleton.
We denote the unique point of this intersection by r(x).
(ii) r: X > IS(A) is a retraction.
(iii) For all x € X, the point r(x) is the greatest lower bound with

respect to Sx of A.

PROOF. (i). Define B(A) by B(Aa) :=N (x,A) n IS(A). Notice that the

aeA Is
binarity of S implies that B(A) is nonvoid. Assume that p and g are two

distinct elements of B(A). By normality of S there are SO,S1 € S such that
p € SO\Sl' q e Sl\s0 and SO u S1 =X. If A n S0 = @, then A c S1 and con-
sequently

B(p) c IS(A) <5,

which is impossible. Therefore A n S0 # @. In the same way also A n Sy # 8.
Now, as {SO'SI} is a covering of X there is an i € {0,1} such that x € Si;

Take a, € A n S,. Then

say X € SO' 0 0
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q € B(a) c Is(x,ao) c SO ’
which is a contradiction.

(ii). To prove the continuity of r, let S € S and take x ¢ r-1[S]. Then
r(x) ¢ S and as {r(x)} = naeA Is(x,a) n IS(A) we conclude, by the binarity
of S, that either IS(A) ns=¢or Is(x,ao) n s =¢ for some a, € A. In
the first case r—l[S] = @, hence is closed. In the second case, choose S

n (X\Sl) and S c S

0

and S1 in S such that Is(x,ao) c S0 L N (X\SO) and

Sgu S = x.vThen—? = x\s1 is a neighborhood of x which misses r_1[S].
Hence once more r [S] is closed; consequently r is continuous. Clearly
r is a retraction.
(iii) . First of all, let us check that r(x) is a lower bound for A. Take
a € A; then r(x) € Is(x,a), by construction, and consequently IS(x,r(x)) c
Is(x,a). Hence, by definition, r(x) sx a.

Now assume that p Sx a for all a € A. Then p Sx r(x), for assume to
the contrary that p ﬁx r(X). Then p ¢ Is(x,r(x)) and by the normality of S
there are SO,S1 € S such that p ¢ SO\SI' Is(x,r(x)) c Sl\S0 and SO U S1 =X.
The set A is not contained in Sl, for otherwise p ¢ Is(x,a) for all a € A.
Hence A intersects S, and, consequently, so does IS(A). Moreover Is(x,a)

0

intersects S, for all a € A since p € Is(x,a) n s

0 . Therefore the system

0

{SO} u{seS|acstu{seS| daeca: Ig(x,a) < s}
is linked. By the binarity of S it has a nonvoid intersection; consequently
g # Sy n Ig(a) n Na Ig(x,2) =5, n {r(x)},

O

which is a contradiction, since r(x) ¢ SO.
1.5.3. COROLLARY. For all x,y,z € X the set Is(x,y) n Is(y,z) n Is(x,z)

is a singleton. ]

The greatest lowerbound of A c X with respect to the binary relation

< 4
<, is denoted by glbx(A).
1.5.4. COROLLARY. For all A < X and x € X we have that glbx(A) = glbx(IS(A)).

PROOF . {glbx(A)} = na€A Is(x,a) n IS(A) >N Is(x,a) n IS(A) =

aeIS(A)

Macrga) Tstr@) 0 IglIg@) = {glb (zgaN}. O
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The following proposition indicates why we think of Is(x,y) as a
segment joining x and y. It will be used in theorem 1.5.13 and theorem
1.5.14.

1.5.5. PROPOSITION. If y € Is(a,b) and X € Is(a,y) then y € Is(x,b).

a X y - b

PROOF. Assume that y ¢ Is(x,b). By the normality of S there are Sqi8, € S
such that y ¢ SO\S1 and Is(x,b) c Sl\s0 and S, U S, = X. Now if a € S,then

0 1 1
Is(a,b) c S1 and consequently y € S, which is impossible. Therefore a € SO;

but since y € S

1

0 it follows that x € S0 since x € Is(a,y) c SO' This is

a contradiction. [
1.5.6. DEFINITION. A subset A c¢ X is called S-closed if A = IS(A) .

Recall that a subset A ¢ X is called S-convex if for all x,y € A we
have that Is(x,y) c A (cf. definition 1.3.2). Clearly each S-closed set
A c X also is S-convex. Simple examples show that the converse need not
be true. For example, an S-convex set need not even be a closed set. The
two concepts coincide on the collection of closed subsets of X, as the

following theorem shows.

1.5.7. THEOREM. Let X be a topological space which possesses a binary
normal subbase S. For a closed set A in X the following assertions are
equivalent:

(i) A is S-closed;

(ii) A is S-convex.

PROOF. We only need to check (ii) = (i). Indeed, assume there is a closed
set B in X which is S-convex and not S-closed. Choose x € IS(B)\B. By

theorem 1.5.2 (i) we have that {x} =N (x,b).
We claim that {x} =N

(x,b) n IS(B) cn

beB IS beB IS

beB Is(x,b). Indeed, assume there is

azel . Is(x,b)\{x}. Then z < b for all b ¢ B and consequently
z Sx glbx(B) = glbx(Is(B)) = {x}, by theorem 1.5.2 (i), (ii) and corollary
1.5.4. Therefore z € Is(x,x) = {x} which is a contradiction.

Define T := {Is(x,b) n B | b e B}. Then clearly T consists of subsets

of B, closed in B and hence in X. We will show that T is a linked system of



53

S-convex sets. Choose bo,b € B. Then, as S is binary IS(bO'bl) n IS(bl'x) n

Is(x,bo) #@ (cf. 1.3.2 ané 1.3.3) and as IS(bO’bl) c B, by assumption,
Is(x,bo) n B and IS(x’bl) n B must intersect. As B is S-convex, it is
easily seen that T consists of S-convex sets too.

As in the proof of theorem 1.3.3 it can be shown that NT # @. However,

this is a contradiction since NT = N (x,bp) n B={x}nB=¢g. 0

beB IS

The following result follows from theorem 1.5.2.

1.5.8. COROLLARY. Let X be a topological space and let S be a binary

normal subbase for X. Then

(1) Each S-closed set is a retract of X.

(ii) If X is connected, then each S-closed set is connected; in
particular each interval Is(x,y) is connected (x,y € X).

(iii) (cf. VERBEEK [119]). If X is connected then X is locally connected.

PROOF. (i) and (ii) follow from theorem 1.5.2.
To prove (iii), take x € X and let U be any neighborhood of x. Choose

s . <
finitely many SgrSyr-e-48 € S such that x ¢ UiSn S; 2 X\U. For each i <n
choose S! € S such that x € int_(S!) ¢ S! and S! n S, = @#. This is pos-

i X i i i i

sible since S is normal and Tl' Then V := ni<n Si is a closed neighborhood
of x, contained in U. Moreover it is clear that V is S-closed, and hence

connected ((ii)). [

1.5.9. Let X be a topological space. A mean m is a continuous map
m: XXX > X such that m(x,x) = x for all x € X and m(x,y) = m(y,x) for all
X,y € X. We will construct a mean on every supercompact space with a

binary normal subbase. First we need a simple lemma.

1.5.10. LEMMA. If S is a binary normal closed subbase for X, then the
mapping f: XXXXX -+ X defined by

{f(leIZ)} = IS(XJY) n Is(xlz) n IS(YIZ)
is a continuous surjection.

PROOF. Clearly f is well defined (cf. corollary 1.5.3). To prove the con-
tinuity of £ let S ¢ S and take (x,y,z) ¢ f—l[s]. Then

Is(x,y) n Is(x,z) n IS(Y’Z) ns=¢g,
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and hence, by binarity of S, without loss of generality Is(x,y) ns=g.
Choose So
neighborhood

€ S such that Is(x,y) c 1ntx(So) € Syand S, n S = @. Then the

S -1,
U= ﬂo [lntX(So)] n n1 [1ntX(SO)]

-1 .
of (x,y,2) € XxXxX does not intersect £ [S], as can easily been seen.
Hence f_1[S]is closed in XxXxX and consequently f is continuous. Also f

is surjective, since for an arbitrary x € X we have that
{f(xlxlx)} = Is(x:x) n Is(x,x) n Is(xlx) = {X}I
which completes the proof of the lemma. O

1.5.11. PROPOSITION. Any topological space which possesses a binary normal

closed subbase has a mean.

PROOF. Let S be a binary normal closed subbase for the topological space X.
Let f be defined as in lemma 1.5.10. Fix a point p € X and define

m: XxX + X by m := £+{P}xXxX. Then m is a continuous map of X XX onto X.
Furthermore {m(x,x)} = Is(x,x) n Is(x,p) n Is(p,x) = {x} for all x € X

and {m(x,y)} = Is(x,y) n Is(x,p) n Is(p,y) = Is(x,y) n Is(y,p) n Is(x,p) =

{m(x,y)} for all x,y € X. Therefore m is a mean. []

1.5.12. Proposition 1.5.11 gives us many easy examples of spaces which
are supercompact but which do not possess a binary normal subbase (recall
that each supercompact Hausdorff space possesses a binary weakly normal

subbase, cf. 1.3.9). For example the supercompact space
Y={(0,y)|—15y51}u{(x,sin}-1()|0<x51}

possesses no binary normal subbase, since this space has no mean (cf.
BACON [13]).

That Y is supercompact is not trivial; it follows of course from the
theorem of STROK & SZYMANSKI [116] (see also VAN DOUWEN [42]), but the
binary subbase obtained from their theorem cannot be described well.
Therefore we will indicate another binary subbase for Y. For each n € w
define

X = S
n  (2n+l)w °
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1 . :
Notice that sin(;}ﬁ =1 if n is even and that sin(;—) = -1 if n is odd.
n n
Let r: ¥ > [~-1,1] be the projection onto the second coordinate. It can be

shown that
{(r_l[x,l])\c [ -1 < x‘S 1 and C is a component of r_l[x,l]} U
u {(r_l[—l,x])\c | -1 £ x <1 and C is a component of r-l[—l,x]} U
v {(x,sin i) | x € [xn,p] with x § P<x _,,mne€ w}u

s 1 .
u {(x,sin ;) | x e [p,xn] with x <p<x,ne w}

is a binary closed subbase for Y. Moreover it is obvious that this subbase
is not normal. '

That Y possesses no binary normal subbase also follows from corollary
1.5.8 (iii) since Y is not locally connected. However, this argument cannot
be used in the class of connected and locally connected spaces. Then propo-
sition 1.5.11 applies. For example, the n-spheres Sn are supercompact, but
do not have a mean (cf. AUMANN [7]) and consequently they cannot possess a

binary normal subbase.

15.13. THEOREM. Let X be a topological space and let S be a binary normal
subbase for X. Let p € X. Then

(i) < 1is a continuous partial ordering for X;

(ii) {y e x I vy SP x} = Is(p,x) for all x € X;

(iii) {y € X | x < y} isS-closed for all x € X;

(iv) {y e x I X Sp y Sp z} = IS(x,z) for all x,z € X with x sp z;

(v) if X is connected, then Sp is order dense.

PROOF. (i) From the definition IS it is clear that Sp is reflexive. It is
symmetric too, for take x,y € X with x sp y and y SP x. Then, by definition
X € Is(p,y) and y € Is(p,x). But corollary 1.5.3 shows that

Ig(psx) n Ig(p,y) n Iglx,y) > {x,y}

is a singleton. Finally transitivity of Sp is obvious.

To prove that < is continuous, let (x,y) € XXX such that x ip y and
y #P X. Then {z} = Is(p,x) n Is(p,y) n Is(x,y) is not an element of {x,y}.
Let U be any neighborhood of z such that ch(U) n {x,y} = ¢. By lemma

1.5.10 there are disjoint neighborhoods V0 and V1 of x and y such that
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(a) (VOUV1) n ch(U) = @;

(b) for all a € VO and b € V1 we have that Is(p,a) n IS(p,b) n Is(a,b) c U.

Then V0 xV1 is a neighborhood of (x,y) € XxX which has an empty intersec-
tion with the graph of Sp.

(ii) The simple proof is left to the reader.

(iii) Clearly {y ¢ X | x < y} is closed in X (cf. WARD [124]). We will
show that {y € X | x <y} is S-convex. Then, by theorem 1.5.7 the set
{yex| x Sp y} is S-closed.

Take a,b € {y € X I x Sp vy} and take c € Is(a,b). Assume that

x ¢ Is(p,c). Then take S.,S, € S such that Is(p,c) c SO\S1 and x € Sl\s0

0’1
and So u S1 = X. If a and b are both contained in S1 then so is IS(a,b),
contradicting c ¢ Sl' Therefore either a € S0 or b € SO. Assume that
a e SO. Then p and a are both contained in So; consequently Is(p,a) c So.

This is a contradiction since x € Is(p,a).

(iv) Notice that

{yex | xc< < z}
y p Yy

{yex| x< y}n € X < z}
o % l o ¥ ly |yP

{yex| x sp vy} n Is(p,z),

which is an intersection of two S-closed sets (by (iii)) and hence is

S-closed itself. Therefore Is(x,z) c{yex | x SP v} n Is(p,z). Now take
geflyex | x Sp v}l n Ig(ps2).

Then x € Is(p,q) and gq € Is(p,z), hence q € Is(x,z) by proposition 1.5.5.

(v) Take x,y € X and assume that x <p y. Define

A := Is(p,x)

and

B:={z¢X < z}
v,

respectively; note that B is S-closed by (iii).

Then A and B are two disjoint S-closed sets, since SP is a partial
ordering. By normality of S there exist 80,81 € S such that A c SO\S1 and
B c SI\SO and S, u S, = X. Choose a point z, in S, n S, (X is connected!);

0 1 0 0 1
by 1.5.3 we can define g by
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{q} := IS(x’ZO) n Is(y,zo) n Is(x,y).

Then g € S, N S, n Is(x,y) and consequently g ¢ A U B; hence q # x and q # y.

0 1
But as q € Is(x,y) it follows from (iv) that x Sp q Sp y. Therefore

< < y. 0O
x p 4 p ¥

1.5.14. THEOREM. Let X be a topological space and let S be a binary normal

subbase for X. Choose p,q € X. Then the ordering sp induces a lattice order-

ing on Is(p,q). Moreover

(i) x Sp y iff y £ x for all x,y € Is(p,q);

(i) {y € Ig(p,a) | Sp v} = Ig(x,q) for all x € Ig(p,q);

(iii) the family {Is(p,x) I X € Is(p:q)} u {Is(x,q) | x e Is(p,q)} is a
closed subbase for Is(x,y); hence Is(x,y) is a compact lattice space
(cf. 1.3.12);

(iv) if X is connected, then SP is order dense on Is(p,q).

PROOF. (i) Since x sp y iff x € IS(p,y) and y Sq x iff y € IS(q,x), this
follows from proposition 1.5.5.
(ii) Since y € Is(x,q) iff y sq x, this is a restatement of (i).

(iii) Indeed, choose x,y € Is(p,q) such that x # y. The system

{Is(P:x) IIS(xlq) rIS(PlY) rls(Y:q)}

is a system of S-closed sets with an empty intersection, for Is(p,x) n
Ig(x,q) = {x}, by corollary 1.5.3 (x € Ig(p,q)!) and similarly Is(p,y) n
Is(y,q) = {y}. Therefore, by the binarity of S, either Is(p,x) n IS(y,q):=¢
or Is(p,y) n Is(x,q) = . Without loss of generality we may assume that

Is(p,x) n Is(y,q) = @. Choose So and S1 in S such that Is(p,x) c SO\S1 and

Is(y,q) c 81\80 and S0 U S1 = X. We will show that S0 n Is(p,q) =
IS(P:glbq(So)).

Recall that glbq(So) = nseso Is(s,q) n IS(SO) = nseso Is(s,q) n SO.

Therefore, as p € SO' glbq(so) € Is(p,q); moreover as glbq(so) € S0 we

conclude that {p,glbq(So)} € 8y N Ig(x,p) and consequently
Is(p,glbq(so)) < 8y N Iglp,q).

Now assume that there is a ye ((SonIS(p,q))\Is(p,glbq(so)) . Choose T ,T1 €S

0

such that y € TO\T1 and Is(p.gqu(so)) c Tl\TO and T. U T, = X. Now, if

0 1
q e Tl' then Is(p,q) c Tl' which is a contradiction, since y € Is(p,q).
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Therefore q € T,. This, however, also is a contradiction since then

0

glbq(So) e T.. We conclude that S0 n Is(p,q) = Is(p,glbq(so)). Similarly,

0
using (i), we can derive 81 n Is(p,q) = IS(glbp(sl)’q)’

Now, by lemma 0.1, {Is(p,x) I X € Is(p:q)} u {Is(x,q) ] X € Is(p,q)}
is a closed subbase for Is(p,q) (note that Is(p,q) is compact!)

It remains to establish (iv); this can be done using the same technique

as in theorem 1.5.13 (v). ]

1.5.15. A point x in a topological space X is called an endpoint if its
complement X\{x} is connected. We call a topological space X (generalized)
arcwise connected if for each two distinct x and y in X there is a totally
ordered compact connected subspace of X containing both x and y. Then x
and y are connected by an ordered continuum L such that L\{x,y} is connect-

ed; i.e. x and y are the oniy two endpoints of L.

1.5.16. THEOREM. Let X be a connected topological space and let S be a

binary normal subbase for X. Then X is (generalized) arcwise connected.

PROOF. Choose x,y € X and consider the connected subspace IS(x,y)
(corollary 1.5.8 (ii)). Then Is(x,y) is partially ordered by Sx and sx

is order dense (theorem 1.5.14 (iv)). An easy application of Zorn's lemma
shows that there is a maximal chain L in Is(x,y). But as Sx is order dense
so is the induced (total) order on L. Moreover by a theorem of WARD [124],
L is closed and connected in Is(x,y) (this is very easy to show). There-
fore, in virtue of theorem 1.5.14, L is an ordered compactum that clearly

contains both x and y. [

1.5.17. For a topological space X, let 2X be the space of all nonempty
closed subsets of X topologized by the Vietoris topology, i.e. a basis for

the open sets consists of all sets

X n .
<00'01""’On> ={Ge2 ]Gcig Oi and Gno, # @ for all i<n}

0

where 00,01,...,0n is an arbitrary finite collection of open subsets of X
(cf. MICHAEL [75]). The space 2¥ is called the hyperspace of X. For many
strong results concerning hyperspaces, see WOJDYSLAWSKI [130], CURTIS
& SCHORI [361,[37], SCHORI & WEST [102] and WEST [127].

Hyperspaces are widely used in general topology; for our purposes too

they will turn out to be of great help.
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1.5.18. THEOREM. Let X be a topological space with binary normal subbase S.
Then the mapping §&: ZXXX -+ X defined by §(A,x) := glbx(A) is continuous.

PROOF. Let S € S and suppose that (&,x) ¢ 5—1[53. Then glb_(A) ¢ S. By the

normality of S there are S.,S, in S such that glbx(A) € SO\SI' S c Sl\s0

0'"1

and S0 u 31 = X. Clearly A intersects X\Sl' for otherwise IS(A) c 31 which

would imply that glbx(A) €s,. If A ¢ x\sl, then clearly x ¢ S,. Let
V := <X\Sl> X X : if A c X\S1
and

vV := <x\sl,x> X (x\sl) if A ¢ x\sl.

Then V is an open neighborhood of (A,x) which, in addition, does not inter-
sect g'lts]. For take (B,y) € V. In the first case, B ¢ X\sl' whence
£(B,y) € X\S1 c X\S. In the second case, choose b € B n (X\Sl)' Then

cx\s. 0O

{b,y} ¢ Syi consequently £(B,y) € Sy

1.5.19. Recall that a topological space X can be embedded in 2X by the
mapping i(x) := {x} (MICHAEL [75]). We will identify X and i[X]. A topolog-
ical space X which possesses a binary normal subbase will be called, from

now on, normally supercompact.

1.5.20. COROLLARY. A normally supercompact space X is a retract of its
hyperspace 2x. If, in addition, X is connected and metrizable then X is

an Absolute Retract.

PROOF. Let S be a binary normal subbase for X. Fix a point p € X and
define r: ZX > X by ¥r(A) := £(A,p), where § is as defined in theorem

1.5.18. Then r is a continuous retraction. For take x € X. Then
{r(x)} = Is(x,p) n IS({x}) = {x}.

If in addition X is connected and metrizable, then X is a Peano
continuum (corollary 1.5.8 (iii)). Hence 2x is an Absolute Retract
(WOJDYSLAWSKI [130]; even 2x ~ Q, the Hilbert cube, see CURTIS & SCHORI
[36]). Therefore X is an Absolute Retract too. [

1.5.21. If X has a binary normal subbase S then the subspace
H(X,S) :={C ¢ X | C is S-closed} of 2% is of particular interest. It

will be discussed in section 2.10. From the results obtained there we
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mention the following:

(a) the mapping ¢: 2x + H(X,S) defined by ¢ (A) := IS(A) is a retraction
(hence H(X,S) is compact!) (theorem 2.10.5);

(b) H(X,S) has a binary normal subbase (corollary 2.10.12).

X .
H(X,S) inherits a partial ordering (by inclusion) from 2", which is

order dense if X is connected.

1.5.22. THEOREM. Let X be a topological space which possesses a binary
normal subbase S. Then H(X,S) is a densely ordered (by inclusion) compact

subset of 2X if and only if X is connected.

PROOF. H(X,S) always is compact (cf. theorem 2.10.5). Assume that X is
connected. Choose A,B € H(X,S) such that A is a proper subset of B. Take

x € B\A and let S € S such that A « S, n (X\S), x € Sl\s0 and

0’51 0

Sy U 8; = X. This is possible since S is normal and since A ¢ H(X,S).
Then {SO'Sl'B} is a linked system consisting of S-closed sets, hence
SO n 81 N B # @ since S is binary. Take b ¢ S0 n S1 n B and define

C := So N B. Then Ac CcBand A # C since b € C\A and C # B since
x € B\C. Clearly C ¢ H(X,S).

Conversely, assume that H(X,S) is a densely ordered (by inclusion)
compact subset of 2X. Take A € H(X,S) and let LA be a maximal chain, in
H(X,S), that contains A. Notice that X e LA' Then, since H(X,S) is compact
and densely ordered by inclusion, LA is compact and connected (WARD [124]).
But then H(X,S) = U{LA | A € H(X,S)} is connected too. As each singleton
in X is S-closed, X < H(X,S) and as X is a retract of H(X,S) by corollary

1.5.20 we conclude that X is connected. [

1.5.23. COROLLARY. Let X be a connected topological space which admits a
binary normal closed subbase S. Then for each x € X there is a compact
connected linearly ordered space J, with endpoints a and b, and a contin-
uous "contraction" p: XXJ -+ X such that ptX x{al is constant with values
on x and ptX x{b} is the identity mapping. If, in addition, X is metriz-

able then so is J and consequently p becomes an ordinary contraction.

PROOF. Choose x € X and let L < H(X,S) be a maximal chain that contains
{x}. Then L is densely ordered by inclusion (theorem 1.5.22) and con-
sequently L is a compact connected ordered space. Also {{x},X} are the

only endpoints of L as can easily be seen. Now let p: LxX » X be the
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restriction to L x X of the mapping &, described in theorem 1.5.18. Then
it is easy to see that p satisfies the required properties.

If in addition X is metrizable, then 2X is metrizable (cf. ENGELKING
[48], problem P.4H) and consequently so_is its subspace J. But then J is
homeomorphic to the closed unit interval [0,1] (WARD [124]). 0

The technique, used in the proof of the above corollary, is due to
VAN DE VEL [118].

Finally, we present some queétions which at the moment we cannot
answer. In section 1.3 we showed that each compact tree-like space is
supercompact. A compact tree-like space is rim finite (cf. PROIZVOLOV [921]),
i.e. each point admits arbitrary small neighborhoods with finite boundaries.

This suggests the question whether any rim finite continuum is supercompact.
1.5.24. QUESTION. Are rim finite continua supercompact?

It should be noticed that a rim finite continuum is the continuous
image of a supercompact Hausdorff space; indeed, it is even the continuous
image of an ordered continuum (cf. WARD [125]). Not all rim finite continua
are normally supercompact, since the l-sphere S, is rim finite but not

1
contractible (cf. corollary 1.5.20).

1.5.25. QUESTION. When is a normally supercompact space the continuous

image of an ordered compactum?

Not all connected spaces with a binary normal subbase are the con-
tinuous image of an ordered compactum. For example, Ic is not the contin-

uous image of an ordered compactum, since it is not hereditarily normal.

1.6. Notes

DE GROOT [54],[55] conjectured that every compact metric space is
supercoméact (which was proved to be correct by STROK & SZYMANSKI [116])
and also that not every compact Hausdorff space is supercompact (which
was proved by BELL [14]). Theorem 1.1.5 indicates why certain compact
Hausdorff spaces are not supercompact, but there are still many questions
left. '

After learning that not every compact Hausdorff space is supercompact,

VAN DOUWEN and the author together improved BELL's result. These results
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are included in the previous chapter; they fill section 1.1. They will also
be published separately in a forthcoming paper (cf. VAN DOUWEN & VAN MILL
[43]).

We also have some comments concerning section 1.3. As noted there,
supercompact spaces can be characterized as being those spaces obtainable
as the graph-space of a graph. This approach was developped by DE GROOT
[56] and it turned out to be useful (cf. DE GROOT [56], BRUIJNING [26],
SCHRIJVER [105]). BRUIJNING [26] used the‘graph—theoretical method's of
DE GROOT by reproving an internal characterization of 1" ana 17 (cf.

DE GROOT [55]). SCHRIJVER [105] used non-intersection graphs instead of
intersection graphs and considerably simplified and generalized the
techniques; among others he reproved in a simple way all the results in
DE GROOT & SCHNARE [60] and obtained some new subbase characterizations
of certain classes of topological spaces. The author proved the subbase
characterization of (products of) compact tree-like spaces (cf. VAN MILL
[76]); in particular that every compact tree-like space is supercompact,
which was proved independently by BROUWER & SCHRIJVER [24] (cf. also
BROUWER [23]) using a different method. BROUWER & SCHRIJVER [24] used
interval structures (which were first used by SCHRIJVER). Finally
SCHRIJVER and the author jointly wrote a paper in which we included the
interval structures, results from [105] and [76] and also some new
techniques (cf. VAN MILL & SCHRIJVER [81]). This paper was the basis for

section 1.3.
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CHAPTER II

SUPEREXTENSIONS

In this chapter we will construct for each topological space X and
for each suitable closed subbase S a supercompact superspace A(X,S) of X,
in the same way as FRINK [51], SHANIN [106al], and others, constructed a
compactification w(X,S) of X. The underlying set of A(X,S) is the set of
maximal linked systems in S; the topology is induced by a natural Wallman
subbase for the closed subsets. The space X (X,3) is called the super-
extension of X relative the subbase S (cf. DE GROOT [54]), and in case S
consists of all the closed subsets of X we usually write AX instead of
A (X,8), calling AX the superextension of X.

The spaces A(X,S) are supercompact, in a very natural way: their
canonical defining subbases are binary. It is not surprising that one has
to use something like the axiom of choice to prove this (cf. FRINK [51],
STEINER [114]). The first section in this chapter deals with the question
what set theoretic assumptions we have to make in order to extend arbitrary
linked systems to maximal linked systems. We do this in the setting of
Boolean algebras. We will reprove SCHRIJVER's [106] theorem that the

statement

(%) each linked system in a Boolean algebra can be extended to

at least one maximal linked system,

is strictly weaker than Stone's representation theorem; also (%) is
independent of the usual axioms of set theory since, as SCHRIJVER [106]
has shown, (*) implies that each product of sets containing at most two
elements is nonempty (that is to say: (%) implies C2, the axiom of choice
for two sets, cf. JECH [66]). We will show that (*) is equivalent to a
weaker form of the representation theorem of Stone; for this we define
neér4subalgebras of Boolean algebras. Each subalgebra is a near-subalgebra;

(*) is equivalent to the statement that each Boolean algebra is isomorphic
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to a near-subalgebra of a P(X).

The other sections in this chapter deal with topological properties
of superextensions. Some properties are inherited from the underlying
space, such as: AX is connected if X is connected (cf. VERBEEK [119]). But
other properties are new and unexpected and they turn out to be fundamental,
such as: AX is locally connected if X is connected (cf. VERBEEK [119]).

The superextension AX of a topological space X always is a "big"
space, in case X is normal, the dimension of XX either is zero (in case
Ind X = 0) or infinite. Also AX Eontains BX, the éech—Stone compactifica-
tion of X, as a subspace (again we only consider normal spaces) (cf.
VERBEEK [119]). This is a consequence of the fact that X is c*-embedded
in AX and this can be shown using a result of JENSEN [59] (cf. also
VERBEEK [119]). We will extend the result of JENSEN in such a way that
it becomes applicable in more general situations. Here we apply ideas of
STEINER & STEINER [111], [112].

Subspaces of superextensions often have rich structures. In section
2.8 a first attempt is made to describe some subspaces which appear to be
interesting. For a normal space X we define a subspace I(X) of A(X) which
seems to behave as the "remainder" of the "extension" AX of X; as we will
show I(X) has much in common with BX\X. In particular, as a consequence of
our results Z(X) is compact iff X is locally compact iff I (X) is homeo-
morphic to A(BX\X). Of particular interest is the space L(IWN). This is in
fact the space of all uniform maximal linked system on INN. The space I (IN)
can be characterized in about the same way as PAROVI&ENKO [91] character-
ized BIN\N. This characterization is valid under CH, the Continuum Hypoth-
esis. By an example of VAN DOUWEN [40] the Continuum Hypothesis is indeed
essential here. There is a locally compact, separable, o-compact topolog-
ical space M for which BM\M and BN\N are homeomorphic under CH but not
under MA + TICH. VAN DOUWEN's example also shows that CH is essential in
our characterization of I(IN). The spaces L(IN) and I(M) are homeomorphic
under CH but not under MA + TICH.

In section 2.10 we try to aefine a general notion of convexity in
topological spaces; convexity with respect to a certain closed subbase.
This section has in fact little to do with superextensions; it is hyper-
space theory. But to prove our theorems we use superextensions extensively.
Some of the conéequences of this section were used in 1.5.22 and the same

results will also be used in section 2.7. There we show that the super-
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extension of a normal space, with the property that each finite subset

is contained in a metrizable continuum, is contractible. This is really

a nice theorem. As a consequence it follows that AR, the superextension
of the real line IR, is contractible, in contrast with BIR (this space is
not even path connected). The contractibility of AR was claimed previous-
ly by VERBEEK [119]; his proof is incorrect however, since it relies on
the contactibility of BIR. The results about convexity in topological
spaces and about contractibility of superexfensions were obtained in good

cooperation with M. VAN DE VEL (cf. VAN MILL & VAN DE VEL [82], [83]).

2.1. Linked systems and the Stone representation theorem

This section deals with logical independency of some axioms in Boolean
algebra's. Our main interest is in (maximal) linked systems, which are
natural generalizations.of filters. We refer to the book of HALMOS [61]

for general concepts concerning Boolean algebras.

2.1.1. DEFINITION. Let B = <B,0,1,',A,V> be a Boolean algebra. A subset

M c B is called a linked system if m. A m, # 0 for all my,my € M.

0
A maximal linked system is a linked system not properly contained in any

other linked system.

It is easy to verify that the lemma of Zorn implies that each linked
system in a Boolean algebra can be extended to at least one maximal linked
system. However, much weaker axioms imply this fact, cf. SCHRIJVER [106].

We deal with the following axioms:

FA : FEach Boolean algebra contains an ultrafilter.
FA': Each filter in a Boolean algebra is contained in at least
one ultrafilter.
LA : Fach Boolean algebra contains a maximal linked system.
LA': Each linked system in a Boolean algebra is contained in at least

one maximal linked system.

Again it is easy to see that FA and FA' are equivalent, forming quotient
algebra's (cf. JECH [66]). Also, LA and LA' are equivalent (SCHRIJVER
[106]; cf. 2.1.7 below) but this is less trivial.

2.1.2. LEMMA (LA'). Let B = <B,0,1,',A,V> be a Boolean algebra. Then for
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all x,y € B there is a maximal linked system L c B such that |Ln{x,y}|=1.

PROOF. If x equals y, then the linked system {x} is contained in at least
one maximal linked system L, by LA'.

If x is not equal to y, then we may assume, without loss of generality,
that y £ x. Clearly, x'Ay # O. Then the linked system {x',y} is contained
in at least one maximal linked system L ¢ B. Then L n {x,y} = {y}, since

x'e L. 0O

Let (X,<) be a partially ordered set; then each subset A of X will be
partially ordered by the induced ordering SA' defined by a SA b iff a<b
(a,b € A).

2.1.3. DEFINITION. Let B = <B,0,1,',A,v> be a Boolean algebra. A subset
A c B is called a near-subalgebra of B provided that

(i) (A,SA) is a distributive lattice;

(ii) 0,1 € Aa;

(iii) Va € A: a' € A.

For any two elements a, and a, of the near-subalgebra A of B write

a, AA a, (a0 VA al)

for the greatest lower bound (least upper bound) of ag and ay . We then

have

2.1.4. LEMMA. Let A be a near-subalgebra of the Boolean algebra B. Then

any b<aAbandaVbc<a Va b for all a,b e A. [

2.1.5. PROPOSITION. Let A be a near-subalgebra of Boolean algebra

B = <B,0,1,',A,v>, Then A = <A,0,1,", vV _> is a Boolean algebra.

AA' A
Moreover each subalgebra of a Boolean algebra is a near-subalgebra. ]

The proof of this proposition is straightforward.
Proposition 2.1.5 suggests the question whether each near-subalgebra of
a Boolean algebra is a subalgebra (in the usual sense). The answer to

this question is in the negative, as the following example shows.

2.1.6. EXAMPLE. A4 near-subalgebra which is not a subalgebra.

In P({11213’4}) let A := {¢l{1}l{2}1{3}1{11214}1{113'4}1{21314}:{112'3:4}}-
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It is easy to see that A is a near-subalgebra, which is not a subalgebra

of P(X). For example {1} ¢ A and {2} ¢ A while {1,2} ¢ A. O

2.1.7. THEOREM. The following statements are equivalent:

(1) LA;

(ii) LA';

(iii) each Boolean algebra is isomorphic to a near-subalgebra of some P(X).
PROOF. SCHRIJVER [106] has first shown that (i) is equivalent to (ii). We
will present a different and simpler proof here. As obviously (ii) = (i),
we need only prove (i) = (ii). Indeed, let B = <B,0,1,',A,V> be a Boolean

algebra; let M ¢ B be a maximal linked system. If L ¢ B is a linked system,

then define
L' :={me M I mAR #0 (VieL)}u{m' |meM and 32e L:mA L =0}.

Then it is easily seen that L' is a maximal linked system that contains L.

(ii) = (iii). Let B = <B,0,1,',A,V> be a Boolean algebra. Define
X ={L cB | L is a maximal linked system}.

Then X is nonvoid, because of LA'. For any b € B define

b" :={Lex|beL).

Define a function

¢: B> P(X) by ¢(b) :=b".

CLAIM. ¢[B] is a near-subalgebra of P(X) and ¢: B > ¢[B] is an isomorphism.

Indeed, first notice that ¢(0) = @. Also ¢(x') = {L e X | x' e L} =

{Lex | x¢1}=x\{Lc¢ X‘| x € L}

¢(x)c, since each element L € X is

a maximal linked system.
We will proceed to show that ¢[B] is a near-subalgebra of P(X) and for
this it only remains to be shown that (¢[B],c) is a lattice.

Choose x+,y+ € ¢[B]. Let us show that (xA y)+ is the greatest lower

+

+
bound of x and y+ in [B]. Trivially (x/\y)+ cx n y+; therefore suppose

+ +
that z ¢ x+ n y . Now, z+ c x+ implies that z < x, for suppose to the
contrary that z £ x. Then the linked system {x',z} is contained in a max~-

. . + + . P s
imal linked system L € X. Hence L € z and L ¢ x , since x' € L. This is
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a céntradiction. Hence z £ x and in the same way also z < y. Consequently
z < x A y; thus 2t c (x/\y)+.

In the same way (xV y)+ is the least upper bound of x+ and y+ in
¢[B]. Hence ¢[B] is a near-subalgebra of P(X). Also it is clear that
¢: B > ¢[B] is an homomorphism, since for example ¢(xAy) = (x/\y)+ =
x+ A¢[B] y+ = ¢(x) A¢[B] ¢(y). Finally, ¢ is injective. For take x,y € B
such that x # y. By lemma 2.1.2 there is an L € X such that |Ln {x,y}|=1.
This implies that x+ # y+ and consequently ¢(x) # ¢(y). We conclude that

¢: B » ¢[B] is an isomorphism.

(iii) = (i). Let B be a near-subalgebra of some P(X). Choose Xg € X and
define

L:={1eB| Xy € L}.

We will show that L is a maximal linked system.
First of all notice that L # @ since X € L. Also L is a linked system.

For suppose LO,L € L 'such that L0 AB L1 = @. Then L0 SB (X\Ll) and con-

1

sequently L < (X\Ll)' since B is a near-subalgebra. This is a contradic-

0
tion. Finally L is a maximal linked system, since for all B € B either
Be Lor Xx\Be L.

This completes the proof of the theorem. O
2.1.8. In [106] SCHRIJVER showed that LA follows from OEP, the order
extension principle, which can be formulated as follows:
OEP: Each partial order on a set can be extended to a total order.
He also proved that LA implies C2, where

C2 : Each product of sets, each containing at most two elements,

is nonempty.

It is unlikely that LA is equivalent to OEP, although LA is equivalent to

a statement which seems to be very close to OEP. We define

REP (relation extension principle): For each Boolean algebra B=<B,0,1,',A,V>

there is a binary relation R on B satisfying:

(i) x < y implies xRy (x,y € B);
(ii) xRy or yRx (x,y € B);
(iii) N(xRx' and x'Rx) (x € B);
(iv) xRy and yRz implies xRz (x,y,2 € B).

(Notice that R is a total pre-ordering.)



71

2.1.8. THEOREM. LA is equivalent to REP.

PROOF. Let B = <B,0,1,',A,V> be a Boolean algebra and let M be a maximal
linked system in B. Then the relation R on B defined by xRy iff (x' e M
or y € M) satisfies all requirements.

on the other hand, let B = <B,0,1,',A,V> be a Boolean algebra and
let R be a binary relation on B satisfying (i)-(iv). Let M:={xe B | x'Rx}.
We will show that M is a maximal linked system. To prove that M is linked,
take a,b € M. Suppose to the contfary, that aAb = 0. Then a < b' and

b < a'. Therefore
aRb'RbRa'Ra,

since a,b € M. But then aRa' and a'Ra (by (iv)), which contradicts (iii).
Finally M is a maximal linked system since for all x € B either x'Rx or

xRx' and consequently x € M or x' € M. 0

REMARK. The proof of the implication REP = LA is the same as SCHRIJVER's
[106] proof OEP = LA.

As clearly OEP implies REP we conclude that OEP implies LA and hence,
as OEP is weaker than FA (JECH [66]), that LA if weaker than FA.

2.2. Superextensions; some preliminaries

In this section we.will describe how to construct superextensions of
topological spaces; we give some simple lemma's which we frequently use
without explicit reference. Moreover we will characterize the class of all

superextensions of a given topological space.

2.2.1. Let X be a topological space and let S be a subbase for the closed

subsets of X. Recall the following definitions; S is defined to be

(i) a Tl—subbase if for each Xq € X and S € S with X, ¢ S there exists

aTeSwithxoeTandTnS=¢(cf.O.A);
(ii) a weakly normal subbase if for each S,T € S with S n T = @ there
is a finite cover M of X by elements of S such that each element

of M meets at most one of S and T (cf. 1.3.8);
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(iii) a normal subbase if for each SO,T0 e S with S0 n TO = @ there exist

.47y € S with §, 0T, = g = T, N S, and S, UT =X (cf. 1.3.16).

Finally we define S to be

(iv) a supernormal subbase if S is normal while moreover for all S € S
and closed G ¢ X with S n G = @ there exists an S, € S such that

0
G «c S0 and S n S0 = @.

A maximal linked system, or briefly mls, in S is a linked system of S
not properly contained in any other linked system of S. Usually we do not
explicitly mention S.

The simple propositions 2.2.2 and 2.2.3 and the proof of theorem 2.2.4
can be found in [119].

2.2.2. PROPOSITION. Let Mo’ M1 be mls's in S. Then
(i) ¢ ¢ Mo;

(ii) if S e MO' Te Sand Sc T thenT € M_;
(iii) if S € S\Mo then 3T € MO: SnT=@g;
(iv) M0 # M1 iff 3S € MO, aT e M1’ SnT=@;

(v) if S,Te Sand SuUT = X then S € MO or T ¢ MO. |

The above proposition shows that maximal linked systems in some

respects behave like ultrafilters. Define
A(X,8) := {McS | M is a maximal linked system in S}.

If S is a Tl—subbase then for each x € X we have that
Mx :={seS l x € s} is an mls in §; the function i: X + A(X,S) defined by
i(x) := Mx is one to one.

For A c¢ X we define

at .= {Me x(x,9 | A contains a member of M}.
2.2.3. PROPOSITION. For any A,B c X we have
(i) A c B implies A+ c B+;

+
(ii) A n B =@ implies A n B+ = @;

+ +
(iii) ifA,Be S then An B =@ iff A n B @;

A (x,8);

(iv) ifA,Be S then AU B =X iff AT uB"
(v) if A e S then &t v (x\A)+ = 1 (x,S).
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As a closed subbase for a topology on A(X,S) we take
st .= (st | s e Sy

With this topology A(X,S) is called the superextension of X with respect
to the subbase S. In case S consists of all the closed subsets of X, then
A(X,S) is denoted AX and is called the superextension of X.

Zorn's lemma implies that each linked system M ¢ S is contained in at

least one maximal linked system Mf c S. Thié proves theorem 2.2.4 (iv).

2.2.4. THEOREM.

(i) If S is a Tl-subbase then i: X ~ A(X,S) is an embedding;

(ii) A (x,S) is Tl;

(iii) A(X,S) is Hausdorff if S is normal, since S* is normal if
S is normal;

(iv) A(X,S) is supercompact; in fact st is binary;

(v) for all S € S: {%[sﬁ = S.

In case i is a topological embedding we will always identify X and
i[X]. Because of theorem 2.2.4 (iv), if S is a Tl—subbase the closure of
X in A(X,S) is a compactification of X, the so called GA (de Groot-Aarts)
compactification B(X,S) of X with respect to the subbase S. These compac-
tifications were introduced by DE GROOT and AARTS in [57]. They showed
that if S is weakly normal then B(X,S) is a Hausdorff compactification
of X; consequently k is completely regular. The counterpart of this
theorem is also true: if B(X,S) is Hausdorff then S is weakly normal
(cf. 4.6.2). The GA compactifications will be discussed in detail in
chapter four.

The following theorem is simple but useful; it will be used frequent-

ly in chapter 3.

2.2.5. THEOREM. Let S be a binary subbase for the topological space X.

Let Y be a subspace of X such that for all so,s e S with SO n s, # 0

1

also So n 81 nY # @. Then X is homeomorphic to A(Y,SnY).

PROOF. Define a function ¢: X -+ A(Y,SnY¥) by ¢(x) := {Sn Y| SeS and
x € S}. We will show that ¢ is a homeomorphism.
To prove that ¢ is well defined, choose x € X. Then clearly ¢(x) is

a linked system. Assume it were not maximally linked. Choose SO € S such
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that ¢(x) U {sony} is linked but Sy n Y ¢ ¢(x). Clearly x ¢ S). Choose

0

0= @ (this is possible since S is a T,

subbase) . But then T n Y € ¢(x) and (TnY) n (SOnY) = @, which is a contra-

T ¢ S such that x ¢ Tand T n S

diction. Hence ¢ is well defined.

Also ¢ is one to one and surjective. For take x,y € X such that
X # y. Choose S and T in S such that x € S, y € T such that S n T = @.
But then S n Y e ¢(x) and T n Y € ¢(y) and as (SnY) n (TnY) = @ it follows
that ¢fx) # ¢ (y). To prove that ¢ is surjective, take M e A(Y,SnY). Define
L={seS|snvYeM. Then L is a linked system (in S) and consequently,
since S is binary, there is an x € NL. It now is not hard to see that
o(x) = M.

Finally ¢ and ¢—1 are continuous. This is trivial since for all Se S
we have x € ¢ [(sn¥) V] iff ¢(x) € (sn¥)t iff S Y e ¢(x) iff x € S.
Therefore ¢_1[(SnY)+] = S.

We conclude that ¢ is a homeomorphism. [J

2.2.6. COROLLARY (VERBEEK [119]). Every superextension of a topological
space X can be regarded as a superextension of a compactification of X,

viz.

A (x,8) = A (8(x,8),8"),
where
S =1{s" n B39 | se S

PROOF. Let so,s € S. If st n s: # @ then S

1 0 0

n S1 # @ and consequently
(S;n 8(x,5)) n (s’;n B(x,8)) # @, since s, < SI n B(x,8) (i ¢ {0,1}). Now

apply theorem 2.2.5. [

Theorem 2.2.5 implies much more; it was the starting point for the
author's proof that AI = I . Also theorem 2.2.5 allows us to construct
nice superextensions of topological spaces. Let us demonstrate this by
an example. It is clear that the canonical subbase of right- and left-tails
of a linearly ordered compact space is binary and also that if T is a
binary subbase for X then A(X,T) is homeomorphic to X (in the obvious
way) . In particular the subbase S = {[0,x] | x € 1} u {[x,1] | x € 1}
is a binary subbase for the unit segment I = [0,1], and consequently
A(1,S) is homeomorphic to I. Hence the unit segment is a superextension
of the unit seghent, VERBEEK ([119], p.136) gives a list of superexten-

sions of the unit segment, but none of the examples is homeomorphic to
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the unit square or to a higher dimensional hypercube. Theorem 2.2.5 gives
us for each n € N an easily described subbase Sn for which X(I,Sn) is
homeomorphic to 1". Let us describe 32. To this end define an embedding

of I into [O,%]2 as suggested in the following figure.

< ‘nl
1 11 2
©3 5:3 ; 3
. E
%no KT;\
E
1 1
(0,0) 3:0) 0 3
Figure 5.

Define a binary subbase T for [0,%]2 by
T o= {n200,x1 | 0Osx<s, 1€{0,1}} v {n '[x,21 | 0sxsi, ie{0,1}}
: i ’ =X=3 ’ i '3 =X=3 ’ .

That T is a binary subbase is easily checked (of course this is also shown
in lemma 0.5). Also it is clear that for all TO,T1 e T with T0 n T1 @
we have that To n T1 n ¢[1] # @. Hence theorem 2.2.5 implies that
AOLI],TnolI]) =~ [0,%]2. Therefore ‘

S, = {00,x1u [1-x,11 | 0 x< 3} u {T5x, 2] 0sx< 3}

win

}ulx,1]] s<x<5

Wi

UL, | S5 xs

is a subbase for I such that A(I,Sz) ~ 12.
To get I3 as a superextension of I we must embed I in [0,%]3 as

suggested in figure 6.
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Figure 6.

Therefore

S, t= {10,x]u [3-x,3+x]u [1-x,11 | 0<x < 2}

1 2 5 6 1 3 1

u {[5x,5+x] U [5-x, 5+x] |osxs =} u {[0,5+x] | 0O<x=<3}u
4 1 1 6 1

U {[7—x,1] | 0Sx$:,-}u{[0,7+x]u [:7--x,1] | OSXS7} u

1
=}

U {[%—x,g+x] |osxs<
is a subbase for I such that A(I,S3) ~ I3. It is clear that with a simple
induction we now can construct the subbases Sn (n e W).

Using an embedding of I in I” we can also construct a subbase Sm for
I for which A(I,Sm) ~ I . We will not describe the subbase Sm as there
are much nicer subbases for I for which the corresponding superextension
is homeomorphic to the Hilbert cube Q, cf. chapter 3. But it must be
noticed that the first subbase for the closed unit segment with a super-
extension homeomorphic to the Hilbert cube was constructed in the indicate

manner.
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2.3. Extending continuous functions to superextensions

In this section we deal with the question under what conditions
continuous functions can be extended over superextensions. This is of
importance of course, since several properties of superextensions can be
derived by considering the space to be a quotient of a superextension
with a richter subbase (cf. VERBEEK [119]).

G.A. JENSEN [59] gives a solution of the extension problem but for
some purposes her solution is not‘satisfactory. We will extend JENSEN's
result, but our result still is not really satisfactory because we cannot
give a necessary and sufficient condition for extension of continuous

functions.

2.3.1. DEFINITION. Let S and T be two families of closed sets in the
topological space X. We way that S separates T if for any TyeTy € T with
To n T1 = @ there exist S
Sy N S = ?.

Notation: TLC S.

,S. € S such that T, < S (i € {0,1}) and

0’71

2.3.2. DEFINITION (VERBEEK [119]). Let S be a T, -subbase for the topolog-

1
ical space X. Then a linked system M c¢ S is called a pre-mls if M is con-

tained in precisely one mls M' ¢ A (Xx,S).

The following lemma will be used frequently without reference. It is

straightforward to prove.

2.3.3. LEMMA (VERBEEK [119]). Let S be a closed T,-subbase for the topo-

logical space X and let M € A(X,S). Then '

(1) a linked system P ¢ S is a pre-mls iff VS,S' € S: (P u {s} and
P u {s'} are linked = S n S' # @);

(ii) if P ¢ S is a pre-mls, contained in M, then

M={s eS| Pu{s} is linked}.

The unique S-mls that contains a pre-mls M c¢ S is denoted by M. we
say that M is a pre-mls for M.
We now can formulate the main result in this section.

2.3.4. THEOREM. Let S be a Tl—subbase for X, let T be a normal Tl—subbase

for Y and let f: X +~ Y be a continuous map satisfying
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(g1 | TeTICS.

Then f can be extended to a continuous map £: A(X,8) > A(y,T).
Moreover, if £ is onto, then f is onto.

If f is one to one and {f[S] | S € S} C T then £ is an embedding.
PROOF. Define
A:={acx|AeSorareT:n-= £l

Then A is a T, -subbase for X. Choose Me 2(x,8).

CLAIM 1. M is a pre-mls in A.

Indeed, assume to the contrary that M were not a pre-mls in A. Then there

exist AyA e A with a,na = @ and M u {Ai} is linked (i € {0,1}).

Without loss of generality we may assume that A; ¢S (i e {0,1}) for if,

say A, € S, it would follow that, since M is a maximal linked system,

0

AO € M, which is a contradiction since AO n A1 = @. Hence

A € (£ | Te T} (i e {0,1}). Take s, € S such that A, < s,

(i € {0,1}) and Sp NSy = @. Now M u {Ai} is linked implies that M u {Si}
is linked and therefore Si e M (i € {0,1}). This contradicts the linked-
ness of M.

Now, let M be the unique mls in A that contains M.
CLAIM 2. PM := {T ¢ T | £l . M} is a pre-mls in T.

Clearly PM is .linked. Suppose that PM were not a pre-mls. Then there

exist TyrTy € T such that PM u {T.} is linked (i ¢ {0,1}) but T NT, = @.

The normality of T implies the existence of T' eT (i€ {0 1}) such that

1 | - my = - 1 1
Ty U T) YandTonI‘1 @ TOnT1 Thenf [T]uf [T] Xand

consequently, by proposition 2.2.2 (v), elther £ 1[T leMor £ [T']e M.
Without loss of generality assume that f [T'] e M. But then Ty e PM

which is a contradiction since Té n T1 = @.

Now define
£: A(x,8) » A(y,T) by E(M) :=BM .
CLAIM 3. f is continuous.

It suffices to show that E—l[T+] is closed in A(X,S) for all T e T.
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Therefore choose T, € T arbitrarily and assume that M ¢ f_l[TI]. Then

(M) ¢ T: and consequently PM u {Tl} is not linked, by claim 2. Choose
Ty € PM such that T, N Ty = @. Also choose Ti e T (i € {0,1}) such that

1 [ = = v -
Ty U Ty X and T} n T, @ Ty N T1 As T, e PM also T € PM and con

sequently M u {f—l[T ]} is llnked Now as {f [T] | T e TYC S there are

and £ [T Jcs, and S, n s, = @.

S, and S, in S satlsfylng £ [T 1lc So 1 0

0 1
Define U = X\Sl. We then have

f_l[TO] €8§,cUc f_IETél.
Now, T, € PM implies that M v {f_l[To]} is linked and therefore also
Mu {S } is linked. Hence S, € M and consequently M € U+. We claim that

0
vt is a nelghborhood of M which does not intersect f [T ]. For take

L e U n £ [T 1. Then there is an L € L such that L ¢ U. Hence

(£ [T']} U L is linked and therefore Ty € f(l). This is a contradiction,

1=
since T1 n T0

It now follows thaﬁ f_l[T+] is closed and hence that f is continuous.

————————* Y commutes.

X

A (x,S) ——————+ Ay,

CLAIM 4. The diagram

Indeed, let x € X. Then i(x) is the S-mls {s ¢ § | x € S} and f(i(x)) is

the unique T-mls containing the pre-mls
{TeT | (gl uise S | x € s} is linked}.

Let us show that i(£(x)) contains this pre-mls. It then follows that

E(1(x)) = i(£(x)). Choose T e T such that {f'1[T1]} u{s eS| xes}is

linked, while moreover f(x) ¢ Tl' Now, by the fact that T is a Tl—subbase,
there is a TO eT such that f(x) € Ty and To nT o= @. Choose S0 and 5,
in § satlsfylng £ [T ]c s; (e {0,1}) and Sg N 8 = @. Then

xe £ [T lcs whlch lmplles that S. n f—l[Tll # @. Contradiction.

0 0

CLAIM 5. If f is onto then f is onto.

Let K € A(Y,T) and define

Li={seS|3rek: £ c 5.
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Since f is a surjection, L is a linked system. Choose M € A(X,S) such that
L ¢ M. We assert that £f(M) = K. For this it suffices to prove that K con-
tains the pre-mls PM. Let us assume, to the contrary, that for some

T, ¢ PM we have that Ty ¢ K. Then there is a T, € K such that T, n T, = @.

0 1 0 1
Choose S; and S, in S such that f_l[Ti] c 55 (i € {0,1}) and Sy N8 = .
As f—1[T0] e M also Sy € M and consequently Sy € M. But T, € K implies

that S, € L c M. This contradicts the linkedness of M.

CLAIM 6. If £ is one to one and -{£f[S] | s € S} C T, then f is an embedding.

First notice that f: A(X,S) > A(¥,T) is a closed mapping, since A(X,S) is
compact and A(Y,T) is Hausdorff (theorem 2.2.4 (iii)).
It suffices to show that f is one to one. For this take

MO’MI € A (X,S) such that M0 # Ml' Choose S. and S, in S such that

0 1
§; € Mi (i € {0,1}) and SO ns, = @. Clearly f[SOJ n f[51] = @ and hence
there exist T, and T, in T such that f[Si] T, (i € {0,1}) and Ty N T1==¢.

as s, < f-l[Ti] it follows that T, € PMi (i € {0,1}) and therefore
£(My) # £M).

This completes the proof of the theorem. O

As noted in the introduction of this section theorem 2.3.4 does not
give a necessary and sufficient condition for extension of continuous
functions over superextensions. But if we, moreover, assume that the
closed subbase S for X is a separating ring (cf. 0.A) and that f is a
surjection, then the condition mentioned in the theorem is necessary and

sufficient.

2.3.5. COROLLARY. Let S be a separating ring of closed subsets of X, and
let T be a normal Tl—subbase for Y and let f: X + Y be a continuous sur-
jection. Then the following assertions are equivalent:
(i) there is a continuous surjection £: A(x,8) > A(Y,T) such that

EMX = £.

(i) {£T1 | T e TICS.

PROOF. We only need to show that (i) implies (ii).

Choose T, and T, in T and assume that f—l[To] n f_l[Tl] = @.

Without loss of generality we may assume that both f-l[TO] and f—l[Tl] are
+
nonvoid. As A.V.S is a separating ring in A(X,S) there are Sij €S

(i,7 < n) and V o € S (k,% < p) such that

k
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-1+ +

£ [T0] S, Uan Sij
and

--1_ 4+ +

£ 0T e Nep Vosp Vig
and

+ +

Ni<n Y55n Si5 " Mksp Yesp Ykn = ?-

This is possible, since f_l[T;] n f—l[TI] = . Now as f restricted
to X is f it follows that

-1 ) I + _
£ [TOJ = f [To] nxen . Uan sij nx=n_. uan sij
and
-1 --1__+ +
£ [T1] =f [le nxec nksp UlSp Vi, N X= nksp UzsP Vot

Now, as S = A.V.S, f—l[TO] and f_l[Tll are separated by elements of S. [

In the light of theorem 2.3.4, the question arises whether the con-
dition of normality of the subbase T for Y can be weaked in a natural way,
say to weak normality. The following example shows that the answer to this

question is in the negative.

2.3.6. EXAMPLE. Let X = S, be the boundary of the closed unit-square 12.

1
As in section 2.2, define

T := {Ac 12 ! A=ﬂ;1[0,x]VA = ﬂ;l[x,l] (ie {0,1}), xe1}.

Then T is a binary normal cibsed subbase for 12 and also for all TO,Tle T
with To n T1 # @ we have that T0 n T1 n X # @. Hence we may apply theorem

2.2.5. To this end, define

*

T :={Tnx | TeT}

Then T is a closed Tl—subbase for X and also A(X,T*) = 12 (theorem 2.2.5).

Finally let

S :={AcX | Ais an interval of length less than 1}.

Then S is a weakly normal binary subbase for X, which is not normal of

course. Also SC T*.
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Now assume that the identity mapping on X can be extended to a con-
tinuous f: A(X,T*) + A(X,S). By the binarity of S we have that A(X,S) = X
and hence it would follow that X = S1 is a retract of the closed unit
square Iz, which is a contradiction. [

The following corollary of theorem 2.3.4 was not stated explicitly in
VERBEEK [119]; because of its importance we present it here, but we must

acknowledge that it certainly was known to VERBEEK.

2.3.7. COROLLARY. Let X be a topological space which admits a binary
normal closed subbase S. Then the mapping r: AX + X defined by

{rM} :=n{s eS| seM
is a retraction. [

The normality of the subbase S also is essential in this corollary:

the 1-sphere S admits.a binary weakly normal subbase while it is not a

1
1I
1.5.20) (recall that

retract of AS since the latter space is an Absolute Retract (corollary

(1) X normal implies that AX has a binary normal subbase (theorem
2.2.4 (iii)),

(ii) X connected implies that AX is connected (VERBEEK [119], cf. also
section 2.5), and

(iii) X compact metric implies AX is compact metric (VERBEEK [119], cf.
also corollary 2.4.10).)

2.3.8. Theorem 2.3.4 also implies that always X is C*—embedded in AX. We
argue as follows: let f: X - I be a continuous function; then, as the
unit segment I has a binary normal subbase, there is a continuous exten-
sion f: AX > I (theorem 2.3.4).

This suggests the question of whether for any compact Hausdorff
space Z and for any continuous function f: X - Z there is a continuous
extension £: AX -+ Z. This is a nontrivial question which has a nontrivial
answer. The machinery developed in section 1.1 settles the question
negatively. For let id: IN» BIN be the identity mapping on N. Then there
is a no continuous f: AIN-> BIN which extends id, since if there were such
an f it would follow that BIN would be the continuous image of a super-

compact Hausdorff space, which is not the case (corollary 1.1.7).
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2.3.9. COROLLARY. Let X be a Tychonoff space. Then the closure of X in
A(X,2(X)) is BX.

PROOF. We show that X is C -embedded in A(X,Z(X)). For let £: X > I be a
continuous mapping. Then for each closed set A ¢ I the set f_lfA] is a
zero-set in X. Consequently by theorem 2.3.4 there is a continuous exten-
sion f: A(X,Z2(X)) > I. Thus the closure of X in A (X,Z2(X)) is a Hausdorff
compactification of X (recall that Z(X) is a normal base, cf. 0.C) in
which X is C*—embedded. Now, by a'well—known characterization of BX (cf.

GILLMAN & JERISON [52]) we obtain the desired result. 0

2.3.10. The concept of supernormality for subbases (cf. definition 2.2.1)
seems to be pathological, since in compactification theory a closed sub-
base almost always fails to be supernormal. In our construction for AI
however, cf. chapter 3, subbases which are supernormal appear in a natural
way and therefore it is worthwile to derive some properties of superexten-
sions relative supernormal subbases, using theorem 2.3.4.

Our main interest lies in the following problem: given two subbases
S and T of a topological space X, what can be said about A(X,SuT) in terms
of A(X,S) and A(X,T)? In general the answer is: nothing; but if we make
the additional assumption that S and T are both supernormal then there
turns out to exist a very nice and very important relation between A(X,SuT)
and A(X,S) and A(X,T). We will show that then X(X,SuT) can be embedded,
in a natural way, in A(X,S8) x A(X,T). First we need some simple lemma's.

2.3.11. LEMMA. Let S be a closed supernormal Tl—subbase for X and let U

be a closed Tl-subbase such that S < U. Then for all M ¢ A (xX,U) the col-

lection M n S is an mls in S.

PROOF. Let M € A(X,U) and define PM := M n S. From the normality of S it
follows that PM # @, and therefore PM is a linked system. Suppose that PM

is not maximally linked. Then there exists an S, € S such that PM v {SO}

0
is linked and So ¢ PM. Clearly So ¢ M and consequently there is an M € M
such that M n SO = @. Since S is supernormal there is an S* € S with

* *
McS and S n So = ¢. This is a contradiction, however, since M ¢ M

*
implies that S° e M and therefore S* e PM. []

2.3.12. COROLLARY. Let S be a supernormal T,-subbase for X and let U be

1
a closed T,-subbase for X such that S < U. Then A (X,S) is a Hausdorff
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quotiént of A(X,U) under the mapping f defined by
£(M) :=Mn S.

Moreover, f is the identity of X.

PROOF. This immediately follows from lemma 2.3.11 and from the proof of
theorem 2.3.4. [

We now can formulate the announced embedding property of superexten—

sions with respect to supernormal subbases.

2.3.13. THEOREM. Let {Sa | @ € I} be a collection of supernormal T, -sub~

bases for the topological space X. Then Uae Sa iIs a supernormal subbase

I

. ] .
for X. Moreover the mapping e: A(X'Uas Sa) — naeI A(X,Sa) defined by

I

(eM)) :=Mn$S
a a

is an embedding.

PROOF. The statement that UaeI Sa is a supernormal subbase can easily be

checked using the fact that all the Sa's are supernormal (o e I).

Let fa: A(X,U Sa) — A(X,Sa) be the mapping described in corollary

ael
2.3.12, i.e. fa(M) = Sa n M. Then the evaluation mapping

e: A(X,UmE Sa) — naeI A(X,Sa)

I

defined by'(e(M))a = fa(M) is continuous. Also it is a closed mapping,
since )\(X,UOI'€I Sa) and nasI A(X,Sa) both are compact Hausdorff spaces
(cf. theorem 2.2.4 (iii)). We will proceed to show that e is one to one.
To this end, choose two distinct elements M0 and M1 in )\(X,UmEI Sa)'
nM

In addition take M, € Mi (i € {0,1}) such that M = @. Choose

0 1
ay € I such that M, € Sao. Then, since S“O is supernormal and M1 is an
mls in UaeI Sa' we may assume that also M, « S“O' But then M, € f“O(Mi)
(i € {0,1}) by corollary 2.3.12, and as MO n M1 = @ we conclude that
f“o(MO) # fao(Ml). a

If {Sa | @ € 1} is a collection of supernormal subbases for X then
we will often study A(X,U S ) as a subspace of Tl

ael o 133

let us Ldentify')\(X,UmEI Sa) and eD\(X,UOLEI
what points of naeI A(X,Sa) belong to A(X,UmEI Sa)' There is a simple

I A(X,Sa). Hence

Sa)]' It then is useful to know

characterization for these points, as the following lemma shows.
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Notice that a point x = (xa)ael of nasI A(X,Sa) is a point of which
the coordinates are maximal linked systems, so that we can speak of

UaeI X0t

2.3.14. LEMMA. Let {S | @ € 1} be a collection of supernormal subbases

for X. Then X € naeI A(X,Sa) belongs to A(X’Uael Sa) if and only if

U X 1is a linked system.
acl a

. = X i
e T Sa If x € A(X,S) then x UaeI X,r SO UaeI oy 18

X be linked. Then U x is an mls in S.
I a aeIl "o

1 ¥, U {8} is linked for some S ¢ S“O' with aj € I.

Then Xg, U {s} is linked, hence S € xy; since xqy is an mls in Sy4. There-

PROOF. Let S := U
linked. Conversely, let Uae
Indeed, suppose Uae
fore S € U
ae

x . It is easy to see that e[U x ]1=x. 0O
() ael “o

I I

The importance of theorem 2.3.13 and lemma 2.3.14 is that one can
study the behaviour of a superextension relative the union of certain sub-
bases in a product of superextensions. We will demonstrate this by two
examples. The examples are both superextensions of the closed unit inter-
val; they are constructed in a similar way as in section 2.2. Hence we
have to use theorem 2.2.5. The examples are both homeomorphic to I3 and
hence they are homeomorphic. This demonstrates that a topological space

can have many quite distinct binary (normal) subbases.

2.3.15. EXAMPLES.

A(I,SO)

A(I,SOUSI)

___________ - A(I,Sl)

Figure 7. = -
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2.4. A partial ordering on the set of all superextensions of a fixed space

It is natural to ask whether the set of all superextensions of a fixed
topological space X can be partially ordered in a natural way, analogous to
the usual ordering of Hausdorff compactifications (cf. DUGUNDJI [44]). This
turns out to be the case. There also is a relation between the partial order-
ing of Hausdorff compactifications, mentioned above, and the partial order-

ing of superextensions.

2.4.1. DEFINITION. Two superextensions of a topological space X are defined
to be equivalent, when there exists a homeomorphism between them which on

X is the identity.

As a first step we derive a sufficient condition for ‘equivalence of
superextensions in terms of their generating subbases. This result was sug-

gested by a theorem of STEINER [114],

2.4.2. THEOREM. Let S and T be two Tl—subbases for X such that SC T and

TC S (see definition 2.3.1). Then \(X,S) and A(X,T) are equivalent.
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mog; For A c S define PA ¢ T by

PA :={TeA| 3acA:ncrT}
For B ¢ T define QB c S by

OB :={s eS| 3B e B: Bc s}

CLAIM 1. If M ¢ S is a pre-mls in S, then PM is a pre-mls in T. If Nc T

is a pre-mls in T then QN is a pre-mls in S.

By symmetry it suffices to prove the first statement. Let M c S be
a pre-mls in S. It is clear that PM is linked. Suppose PM were not a pre-

mls in T. Then there are disjoint TorT in T such that PM u {Ti} is linked

(i € {0,1}). Since T C S there are dis;oint SO,S1 in S with T, © Si

(i € {0,1}). Clearly PM v {Si} is linked (i € {0,1}), hence M u {Si} is
linked (i € {0,1}). For suppose there is an M ¢ M not intersecting Sp-
Then S C T implies that there is a T' € T such that M ¢ T' and T' n SO==¢.
Then T' € PM which contradicts the linkedness of PM u {TO}. Therefore

Mu {Si} is linked (i € {0,1}) which contradicts the fact that M is a
pre-mls.

Now define

¢: A(X,8) » A(x,T) and ¥: A(X,T) > A(X,5)
by

$M) := BM and  p(N) = ON .

CLAIM 2. w—l = ¢; consequently ¢ is a bijection.

By symmetry it suffices to prove that (¢ (M)) = M for all Me A (X,3).
Let M € A(X,S) be arbitrary. ThenQPMc y(¢(M)). But QPM is a pre-mls in
S by claim 1, and it is easy to see that QPM c M. Hence Y (¢ (M)) = M.

CLAIM 3. The diagram i A(x,S) commutes.
' =T
ir Xx,T)

Indeed, let x € X. Then ir(x) is the T-mls {T ¢ T | x € T}, while

¢(is(x)) is the unique T-mls containing the pre-mls
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Pigx) ={T e T | 35 e S: xescrh

However, if T € iT(x), then clearly Pis(x) u {T} is linked, and so
T e Pis(x). It follows that iT(x) = ¢(is(x)).

CLAIM 4. ¢ is a homeomorphism.

It suffices to show that ¢ is continuous, because for symmetry
reasons it then follows that ¢_1 = ¢y is continuous too.
’ =1 4+ . .
So take any T € T; we must prove that ¢ [T ] is closed in A(X,S).

Now

ot =yt = W) | N e T}

{oN | N e A(x,T) and T € N}.

If Se Sand T ¢ S then S ¢ QN for every N ¢ T+, hence oN « st for any
N et thus

¢—1[T+] c n{s* | s €S andTc s}.

Conversely, if M ¢ ¢-1[T+], then T ¢ ¢ (M) and consequently PM u {T} is

not linked, so T, N T = @ for some T. ¢ PM. As TC S there are S,,S ¢ S

0 0 o’

such that T0 c SO' T < S and S0 n S = @. Exactly as in the proof of

+
claim 1 we derive that S, € M; therefore S ¢ M, or M ¢ S'. It now follows

0
that

6T 1 =n{s" | scSanarTc s}

and hence that ¢_1[T+] is closed. [

Theorem 2.4.2 leads us to the announced partial ordering on the class

of all superextensions of a fixed topological space X.

2.4.3. DEFINITION. Let X be a topological space and let K := {A(X,S) |
Sis a T,-subbase for X}. Define an order "<" on K by

A(x,8) < Ax,T) iff SCT.
2.4.4. COROLLARY. If we identify equivalent superextions, "<" is a

partial order.

PROOF. It suffices to prove that "< " is an antisymmetric and this a
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coroliary of theorem 2.4.2. [

2.4.5. Let F be a family of nonempty closed subsets of the topological
space X. Then we put

w(X,F) := {A c F | A is maximal with respect to the

finite intersection property}.

For each F ¢ F we define F~ := {A ¢ w(x,F) | F € A}. As a closed subbase

for a topology on w(X,F) we take the collection

*

F* .= (F" | F e F}.

With this topology w(X,F) is called a Wallman space. In case F is a T1—
subbase w(X,F) is a compactification of X and is called the Wallman com-
pactification of X with respect to F (cf. chapter 4). STEINER [114] showed
(a) every Wallman space is compact, and w(X,F) is homeomorphic to

w(X,AV.F);
(b) if S and T are separating rings of closed sets in X, then

w(X,S8) and w(X,T) are equivalent compactifications iff SC T

and TC S.

The first part of (a) is also true for superextensions; every super-

extension is (super) compact. The second part unfortunately does not hold

for superextensions.

2.4.6. EXAMPLE. Let X = {xl,xz,x3} be a space with 3 points with discrete

topology. Define

S := {{xl},{xz},{x3}}.

Then S is a closed binary subbase for X. Hence A(X,S) = X. Let T :=A,V.S.
Then there is precisely one free mls M in T (i.e. an mls with an empty

intersection);
M= {{xl,xz},{xz,x3},{xl,xz},x}.

Hence A(X,T) is a space of 4 points and hence is not homeomorphic to

xx,S). 0O

However (b) is true for superextensions; this is a direct consequence

of theorem 2.4.2.
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2.4.7. THEOREM. Let S and T be two separating rings of closed subsets
of X. Then X(X,S) and A(X,S) are equivalent iff SC T and TC S,

PROOF. This is a consequence of theorem 2.4.2 and of the proof of
corollary 2.3.5. 0

Finally, the partial ordering, constructed in this section, has much
in common with the usual ordering or compactifications if we restrict
ourselves to superextensions with respect to normal subbases.

2.4.8. COROLLARY. Let S be a normal Tl-subbase for X and let T be a
Tl-subbase for X. Then A (X,S) < A(X,T) implies that there is a continuous

surjection f£f: A(X,T) > A (X,S) which on X is the identity.
PROOF. This is a consequence of theorem 2.3.4. ' [

2.4.9. COROLLARY. Let S be a separating ring of closed subsets of X and

let T be a normal T,-subbase for X. Then the following assertions are

1
equivalent:

(i) )\(XIT) < )‘(XIS);

(ii) there is a continuous surjection f: A(X,S) - A(X,T) such that

f restricted to X is the identity. [

The following important corollary of theorem 2.4.2. is due to
VERBEEK [119].

2.4.10. COROLLARY. AX is metrizable if and only if X is compact metrizable.

PROOF. Assume that AX is metrizable; then X is normal and consequently
AX is equivalent to A(X,Z(X)) (cf. 2.4.2). Hence BX is a subspace of AX
(cf. 2.3.9). But then BX is metrizable and hence X is compact.

On the other hand, assume that X is compact and metrizable. LetS be
a countable closed base for X. Then A.V.S is a countable closed subbase
for X which separates the closed subsets of X (cf. 0.2). Then A(X,A.v.S)
and AX are equivalent (theorem 2.4.2) and consequently A(X,A.v.S) is a
compact Hausdorff space with a countable closed subbase. Hence, by
URYSOHN's metrization theorem (cf. DUGUNDJI [44]) A (X,A.V.S) is metriz-
able and therefore AX is metrizable too. [
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2.5. Connectedness in superextensions

We now turn our attention to connectedness in superextensions.
Superextensions behave surprisingly nice with respect to connectedness.
VERBEEK [119] showed that X is connected if and only if AX is connected
and locally connected. From this, he derived that a superextension A(X,S)
of a connected space X with respect to a normal Tl—subbase S is both con-
nected and locally connected. Also the supefextension 2 (X,S) of a con-
nected space X with respect to a subbase S that contains all finite sub-
sets of X is both connected and locally connected.

Since the Hilbert cube Q has a dense subset homeomorphic to the
rationals it follows from theorem 1.4.5, theorem 1.4.3 and theorem 1.4.2
that the space of the rationals has a superextension homeomorphic to the
Hilbert cube. In view of this example VERBEEK's results on connectedness
of superextensions do not cover all situations (this he also noticed him-
self, see [119] p.143). We will show the following: let X be a topolog-
ical space and let S be a Tl—subbase for X that satisfies one of the fol-
lowing conditions:

(i) S is closed under finite unions;

(ii) S is normal.

Then X (X,S) is connected and locally connected if and only if for all
nonvoid SprSy € S: (S0 ns; = @ = SO
and at the same time generalizes some of the results of VERBEEK [119]

u S1 # X). This proves once again,

mentioned above.

Our method of proof is not a generalization of VERBEEK's proof. We
work with partial orderings while VERBEEK [119] used very technical results
concerning types of maximal linked system.

2.5.1. THEOREM. Let S be a normal Tl-subbase for the topological space X.
Then the following assertions are equivalent:

(i) A(X,S) is connected;

(ii) A(X,8) is connected and locally connected;

(iii) for all nonvoid SprSy € S: (S0 n S1 =@ = S U S1 # X).

0

PROOF. The implications (ii) = (i), (i) = (iii) are trivial. In addition
(i) = (ii) follows from corollary 1.5.8 (iii). Therefore we only prove
(iii) = (1).

-+
In view of theorem 1.5.22 we need only show that H(A(X,S),S") is
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densely ordered by inclusion (H(A(X,S),S+) is compact, cf. section 2.10).
Therefore let A and B be elements of H(A(X,S),S+) such that A is properly
contained in B. Choose M ¢ B\A. As A is S+-closed, there are Mi e S

(i € {0,1}) such that M ¢ M;, Ac M+ and M+ n M+ = (. Then M0 n M1 =g

1 0 1

and by the normality of S there are T, € S (i € {0,1}) such that Myn T =

=@ = To n M1 and TO u T1 = X. Then T0 n T1 # @, by our assumptions.

Define C := B n T;. Then A ¢ C ¢ B. We first note that A is a proper sub-

: + +
set of C. Indeed, since {Tg,TI,B} is linked we have that ToerlfwB # @.
+ -

1nCt:C\A. Next we note that C is a proper subset of B,
since M € B\C. This completes the proof of the theorem. [

+
Hence @ # Ton T

We now prove connectedness of superextensions with respect to sub-
bases closed under finite unions.

From now on, let X be a topological space and let S be a Tl—subbase
for X closed under finite unions. As in section 1.5 for all M,N ¢ A(X,S)

define I(M,N) < A(x,S). by
+
I(M,N) :=n{s” | s e Mn N}.
We need a simple lemma, which is strongly related to theorem 1.5.13.

2.5.2. LEMMA.

(i) For all M,N,P ¢ A (X,S) the intersection I(M,N) n I(N,P) n I(M,P)
consists of one point;

(ii) for all M € M € I(N,P) we have that M ¢ N or M ¢ P;

(iii) for all M,N ¢ X(X,S) the relation M defined on I(M,N) by
L M H iff Le I(M,H) is a partial ordering;

(iv) for all M,N € A (x,S) and all LO,L1 e I(M,N) such that LO S Ll'
the following holds: I(Ly,L;) = {P e T(M,N) | Ly <y P sy Ly

PROOF. We will first prove (ii). To this end, take M ¢ M ¢ I(N,P) such
that M ¢ N and M ¢ P. Then there are N € N and P € P such that
MNN=¢=MnP. But then M n (NUP) = @ and as I(N,P) ¢ (NuP)” this is
a contradiction (for M ¢ I(N,P) implies that N U P ¢ M, contradicting
the linkedness of M).

To prove (i), take distinct L,H ¢ I(M,N) n I(M,P) n 1(N,P). Also
choose L € L and H € H such that L n H = @. By (ii) there are at least
two distinct elements of {M,N,P} containing L. By the same reasons there

are at least two distinct elements of {M,N,P} both containing H. Hence
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there is at least one element of {M,N,P} containing both L and H, which is
a contradiction.

To prove (iii), we only need to check that SM is anti-symmetric. Let
LO,L1 e I(M,N) such that L0 M L1 and L1 M LO. Then L0 € I(M,Ll) and
consequently, by (i), {Lo} = I(M,Ll) n I(M,Lo) n I(LO'Ll)' In the same way,
as L1 € I(M,LO) we also have that {Ll} = I(M,LO) n I(M,Ll) n I(LO'LI)'
Hence L0 equals Ll' ‘

To prove (iv), take LO,L1 € I(M,N) such that L0 < Ll' Choose
Pe I(LO'LI)' Assume that L0 £ P. Then LO ¢ I1(M,P) and consequently there
isan L € Lo such that L ¢ M and L ¢ P. Now, since LO € I(M,Ll), by (ii)
it follows that L € L1. This is a contradiction since L € L0 n L1 implies

that

+
Pe I(Lo"'1) cL .

This shows that L0 M P. To prove that also P S Ll' notice that
L0 ST L1 implies that P e I(LO'Ll) c I(M,Ll). Therefore P S Ll' This
proves that I(LO’Ll) c{Pe1IM,N) | L= M P M Ll}' Now take Pe I(M,N)

such that L0 SM P i L, and assume that P ¢ I(LO’Ll)' Then there is a

P € P such that P ¢ Loland P ¢ Ll' Since P ¢ I(M,Ll) and since P ¢ Ll' by
(ii) it follows that P € M. But then P € M n P which implies that P € L0
since L0 € I(M,P). This is a contradiction. This completes the proof of
the equality I(LO’Ll) ={P e T(M,N) | L0 ST P S Ll}' 0

2.5.3. THEOREM. Let X be a topological space and let S be a closed Tl—
subbase for X which is closed under finite unions. Then the following
assertions are equivalent:

(i) A (X,S) is connected; ‘

(ii) A (X,S) is connected and locally connected;
=¢g = S

(iii) for all nonvoid SO’Sl e S (So ns u 51 # X).

1 0

PROOF. The implications (ii) = (i) and (i) = (iii) are trivial. We will
only establish the implication (iii) = (ii).

For this, take M,N ¢ A(X,S) and consider I(M,N). By lemma 2.5.2 this
set is partially ordered, by SM. For simplicity of notation we from now on

suppress the index M in the ordering.

CLAIM 1. < 1is order dense.

Indeed, take distinct LO and L1 in I(M,N) such that LO < Ll' We assert
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that II(LO'Ll)I > 2. For assume to the contrary that I(LO'Ll) = {LO'LI}'

Choose L, € Li (i € {0,1}) such that L, n L, = @. We will show that

0 1
Ly UL, = X. For choose x € X. Then I(x,Lo) n I(x,Ll) n I(LO'Ll) is a
singleton (cf. lemma 2.5.2 (i)). Hence, without loss of generality
{Lo} = I(x,LO) n Itx,L) n I(LO’LI)' Hence L0 € I(x,Ll), which implies
that x € LO’ since L0 ¢ L1 (cf. lemma 2.5.2 (ii)).

Therefore L0 U L1 = X; but this contradicts (iii).

We conclude that there is a P ¢ I(Lo)Ll) such that P # Li (ie{0,1}).

However, it is clear that LO < P < L,, which implies that < is order dense.

1

CLAIM 2. There is an ordered continuum in I(M,N) connecting M and N.

Let L be a maximal chain in I(M,N) (the existence of such a chain easily
follows from Zorn's lemma). Clearly L contains both M and N. We will show
that the subspace topology on L coincides with the order topology on L
(notice that in general A(X,S) is not Hausdorff so that L need not be
closed in I(M,N)). Thén, by claim 1, L is densely ordered by < and con-
sequently is connected (cf. WARD [124]). Also, L has two endpoints

(M and N) which implies that L is compact.

To prove that the order topology on L coincides with the subspace
topology on L, first notice that the order topology on L is weaker than
the subspace topology on L because of lemma 2.5.2 (iv). Take S0 € S such
that S; n I(M,N) # @#. We claim that Sg n L is an order interval in L, which

will establish the claim. By lemma 2.5.2 (ii) either S, € M or Sg € N.

0
o € M and that S, ¢ N, for

if 5, € M n N then Sg n L = L. Choose a point H from

+
o " nLeLnsa nPeL\S

Without loss of generality we may assume that S

s + I(L,P).

0
This intersection is nonvoid since {Sg} v {1(L,P) l Le ersg, Pe L\Sg} is
a linked system. To prove this, choose LO,L1 eLnNn Sg and PO'Pl € L\Sg.

We claim that I(Ly,Py) n I(L,,P,) # . Notice that S

0
in L, because of lemma 2.5.2 (iv). This implies that max{Lo,L1}< min{Po,Pl}

n L is order-convex

and consequently I(LO,PO) n I(Ll’Pl) # @. Therefore

+
So " nLeLnSS nPeL\SS HLP) # 9.
We claim that H € L. By the fact that L is a maximal chain we need only

prove that any member of L and the point H are comparable. Assume that
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L0 € L and H are incomparable. As H ¢ I(M,P) for all P ¢ L\S; it follows
that H < P for all P ¢ L\S;. on the other hand H ¢ I(L,N) for all
LeLn Sg so that L < H for all L € L n S;. This is a contradiction. We

claim that SS nL={LelL | L<H} which will complete the proof. Indeed,

take L € Sg n L. Then L < H, as was proved above. On the other hand, take

Pe{lerL | L <H} and assume that P ¢ S; n L. Then P ¢ L\S; and con-

sequently H < P. Therefore H = P, which is a contradiction.
CLAIM 3. A(X,S) is connected and locally connected.

Indeed, by claim 2, A(X,S) is connected. The superextension A(X,S) is also
locally connected. In order to prove this, let M € A(X,S) and let U be an
open neighborhood of M. Without loss of generality, U equals

i<n
+
C < N
where X\Vi € S (i<n). Take LO,L1 € niSn v then

+
I(LO’LI) c niSn v, .

. . s +
To prove this, fix i < n; then {LO’LI} c ViO and hence there are Li € Li
(i € {0,1}) such that L, < Vi, (i€ {0,1}). But then Ly U Ly < Vi, and
consequently

+ +
I(LO,LI) c (LOULI) c vio.

Hence, by claim 2, N, v’ is connected. [
isn ‘i

2.5.4. COROLLARY (VERBEEK [119]). Let X be a topological space. Then the
following assertions are equivalent:

(i) X is connected;

(ii) AX is connected;

(iii) AX is connected and locally connected.

2.6. The dimension of AX

VERBEEK [119] proved the following results on the dimension of AX.
(a) AX is zero-dimensional iff X is strongly zero-dimensional and normal;
(b) AX is infinite dimensional if X is normal and contains a subspace

homeomorphic to [0,1];
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(c) if X is compact metrizable then AX either is zero-dimensional

(if X is) or is infinite dimensional.

We will extend these results by showing that for any normal space X

we have: dim(AX) = « iff X is not strongly zero~-dimensional.

2.6.1. Recall that a Tychonoff space X is called strongly zero-dimensional
if its Eech-Stone compactification BX is zero-dimensional. Also recall that
for any Tychonoff space X the superextension A(X,Z(X)) is homeomorphic to
A(BX) (cf. 2.2.6).. '

2.6.2. THEOREM. Let X be a Tychonoff space. Then the following assertions
are equivalent:
(i) X is not strongly zero-dimensional;

(ii) A (X,2(X)) is infinite dimensional.

PROOF. (ii) = (i) follows from VERBEEK's [119] result, mentioned in the
introduction of this section.

To prove (i) = (ii) assume that X is not strongly zero-dimensional
and that A(X,Z2(X)) is not infinite dimensional, say dim A(X,Z(X)) < n
(n € w). Then BX is not zero-dimensional, in other words, BX is not
totally disconnected. Choose a nontrivial closed connected set A in BX.
As A is an infinite Hausdorff space, its cellularity is at least w; choose

open (in A) sets Ui (i € w) such that
clA(Ui) n_clA(Uj) =@ iff i # 3.

Now if clA(Uil is totally disconnected, it admits a base of open and
closed sets; hence there is an open and closed (in clA(Ui)) set C ¢ Ui,
which is nonvoid. But then C is clopen in A, which contradicts A being
connected.

. Therefore we may assume that there is a collection Ki (i € w) of

connected closed sets in A satisfying
K. nK, =@ iff i # j.

Now fix p € Kn+1

homeomorph of ni<n AKi which contradicts dim A(X,Z2(X)) < n (cf. LIFANOV

. We will show that A(X,Z(X)) (= A(BX)) contains a

[73]) (notice that ni<n AK; is a product of n+1 compact (generalized)

arcwise connected Hausdorff spaces (cf. theorem 2.5.3 and theorem 1.5.16)
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so that ni<n AKi contains a product of n+ 1 ordered compact connected
spaces) .

Define a mapping ¢: niSn AKi — A(BX) in the following manner:

¢ ((M Mn)) := {AcBx | A is closed and either (Ar\Kie Mi

gr e
for all i < n) or

(3i<n: pe A and AnKieMg}.

It is easy to see that ¢ is well-defined, that is: ¢((MO,...,Mn)) is a

maximal linked system for all (MO""'Mn) € niSn AK, .

CLAIM. ¢ is injective and continuous.

Indeed, choose (Mi)i,(Ni)i e Tl n AKi such that (Mi)i # (Ni)i. Assume

i<
that Mj # Nj for some j < n. Then take M ¢ Mj and N € Nj such that
M n N = . Notice that M and N are both contained in Kj. Then

M u {p} € ¢((Mi)i) and N u Ui#j
¢((Mi)i) # ¢((Ni)i) since (Mu{p}) n (Nuui#j Ki) = @.

Let D be a closed subset of BX and assume that (Mi)i ¢ ¢-1[D+].

K, € ¢((Ni)i) which proves that

Then ¢((Mi)i) ¢ D+, or, equivalently D ¢ ¢((Mi)i). We have to consider

two cases:
CASE 1. D n K, ¢ Mi for all i < n.

-1 +q . s s . -1 +
Then niSn ﬂi [(Ki\D) ] is a neighborhood of (Mi)i which misses ¢ "[D J.

CASE 2. There is a j < n and an M ¢ Mj such that ({p}uM) n D = @.

- -1+
Then ﬂjl[Kj\D] is a neighborhood of (Mi)i which misses ¢ 1[D 1.

It now follows that ¢ is an embedding, since ni<n AKi and A(BX) are

both compact Hausdorff spaces. [J

2.6.3. COROLLARY. Let X be a normal space. Then the following assertions
are equivalent:
(i) X is not strongly zero-dimensional;

(ii) AX is infinite dimensional.

PROOF. If X is normal, then AX is homeomorphic to A(X,Z2(X)) (cf. theorem
2.4.2). Then apply theorem 2.6.2. [J



98

2.6.4. COROLLARY. Let X be a normal space. Then MX either is zero-dimen-

sional or is infinite dimensional. O

2.7. Path connectedness and contractibility of AX

The following results have been proved:

(i) if X is compact Hausdorff, and either contractible or a suspension,
then its superextension AX is contractible (VERBEEK [119]);

(ii) 4if X is a metric continuum, then AX is an AR (compact metric)
(VAN MILL [79], also 2.5.1, 2.4.21 and 1.5.20). In particular
AX is contractible;

(iii) iIf X is connected and normal, then MX is acyclic and has the

fixed point property for continuous functions (VAN DE VEL [118]).

In this section we make a first attempt to fill up the gaps which
obviously exist between the above results. Among other things, we show
that AX is contractible if X is a continuum of finite category or if X
is path connected,‘separable and normal. We also show that if X is seper-
able and normal then MX is contractible if and only if it is path connected.

The results in this section are taken from VAN MILL & VAN DE VEL [83].

2.7.1. For the remainder of this section, let X be a Tychonoff space;

let S be a normal T,-subbase for X. An ST-closed set in A(X,S) will be

called convex for s;ort (notice that each S+—closed set also is S+-convex
and that conversely each closed S+—convex set is S+-closed (cf. theorem
1.5.7); this motivates our terminology). Also the subspace H(A(X,S),S+)
of 2A(X’S)(cf. 1.5.22 and section 2.10) will be denoted by K(A(X,S)).

In the following we need two results:

A(x,8
2 X5 K(A(X,S)) is a continuous retraction of

(a) the map Ig4:
A S heo kO (x,8)) 5
(b) the map p: A(X,S8) x K(A(X,S)) — A(X,S) defined by p(M,n) F=gle(A)

is contimious.

Statement (b) is a direct consequence of theorem 1.5.2 (i) and theorem

1.5.18. We will refer to the map p described in (b) as the "nearest point

map of A(X,S)"; cf. also VAN DE VEL [118] and VAN MILL & VAN DE VEL [82].
The following general result will be our main tool for deriving

contractibility results on A(X,S).
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2.7.2} PROPOSITION. Let S be a normal T,-subbase for X and assume that

1
X .

there exists a continuous mapping ¢: [0,1] - 2° such that ¢(0) is a

singleton and ¢ (1) = X. Then there is a contraction of \(X,S) onto ¢(0)

keeping ¢ (0) fixed.

PROOF. Define a mapping y: Pa ZA(X'S)

by ¢ () := ClA(X,S)(A)' This
mapping is easily seen to be continuous, since A(X,S) is compact Hausdorff

(cf. theorem 2.2.4 (iii)). Define

o': [0,1] » 2A(X,S)
by ¢'(t) := U{Y¢(t") | t' < t}. Then ¢'(t) is compact, being the union of
a compact family of compact sets, and ¢' is eaéily seen to be continuous
again. Notice that ¢'(0) = ¢(0), that ¢'(1) = ¢(1) and that ¢' is increas-
ing.

2A(X’S) — K(A(X,S8)). It is easy to verify

We now use the mapping IS+:
that IS+ preserves singletons, and that IS+(S) = S+ for each S € S.
Let Xq be the unique point in IS+(¢'(O)) and define a map

F: A(x,S) x [0,1] » A(%,S) by
F(M,t) := p(M,IS+(¢'(t))).

where p is the nearest poinf mapping of A(X,S). Then, clearly F is contin-

uous, and by the construction bf the map p

F(M,0) p(M,{xo})

1
]

i
=

F(M,1) = p(M,AX)

Moreover, X € IS+(¢'(t)) for each t € [0,1], whence
F(xo,t) = p(xO,IS+(¢'(t))) = Xgs

proving that F is a contraction of A(X,S) onto x. keeping x, fixed. [

0 0

Recall that a space X is said to be of category < n (n<w) if X is
the union of n closed subspaces {xi}i<n’ each deformable onto a point
of X (cf. WILLARD [129]). A space X is of finite category if it is of

category less than or equal to n, for some n < w.
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2.7.3. COROLLARY. Let X be a continuum of finite category and let S be a

normal Tl-subbase for X. Then A (X,S) is contractible.

PROOF. Let X = U?

i=1 Xi' where each xi is a closed subspace of X which

admits a mapping

F.: X, x [0,1] > X
1 1

with the properties: Fi(—,O) is a constant map onto, say Xi and Fi(—,l)
equals the inclusion Xi c X. It is easy to see, using the connectedness

of X, that the space X is path connected. For each i > 1 we fix a path
Ei: [0,1] » X

with Ei(O) = x, and Ei(l) = x; (i < n). Define

1
X
¢i: [0,1]1 » 2

by ¢i(t) = Fi(xi x [0,t]). It is easy to see that each ¢i is continuous
(cf. VAN DE VEL [118], lemma 1.3). Let

¢: [0,1] » 2%

be defined as follows

n . 1
so) == 0, £.00,2¢] i£0stsh
ot) = oky v .U ¢.2t-1) iflsces<t

) 2 i=1 "i 2 - -

Then ¢ is easily seen to be a continuous map with ¢(0) a singleton and

¢ (1) = X. Applying proposition 2.7.2 we find that A (X,S) is contractible. [

This corollary includes, as a particular case, the contractibility
results of VERBEEK, mentioned in the introduction of this section. In fact,
a contractible (compact Hausdorff) space is of category 1, and a (compact
Hausdorff) suspension is of category 2.

The main result in this section is the following:

2.7.4. THEOREM. Let X be a separable space such that each finite subset

of X is contained in a metric continuum and let S be a normal Tl-subbase

for X. Then A (X,S) is contractible.
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PROOF. We need two auxiliary results:

CLAIM 1. There is an increasing seguence (Kn)n<m of metrizable subcontinua

. . X
of X, such that KO is a singleton and (Kn)n<w converges to X in 2.

Indeed, let {xn | n < w} be a countable dense subspace of X. For each
n < w let L be a metric subcontinuum of X containing {xo,...,xn}. We

choose L := {xo}. Then put

K =LyU...UuL,

for each n < w, so that (Kn)n<w is an increasing sequence of metrizable
subcontinua of X whose union is dense in X.
The sets of the type

<oo,...,op,x>

where each Oi is open (i<p), form a neighborhood base at X € 2x. Fix
open sets OO,...,Op in X. For each i < p we cah find n(i) < w such that

> . fo s R
Kn n 0i # @ for all n 2 n(i) (the sequence (Kn)n<w is increasing!). Hence,
if n_ = max{n(i) | i < p} we have that K € <0

0
Therefore (K_) converges to X in 2%,
n’ n<w

0""'op’X> for each n 2 ng-

CLAIM 2. If K and L are metric subcontinua of X, with K ¢ L, then there

is a continuous increasing mapping ¢: [0,1]1 - 2X with ¢(0) = K and ¢(1) =L.

Using the fact that 2L is a subspace of 2X, this statement is a direct
consequence of a result in KURATOWSKI [72], vol. II.

We now combine the two statements. For each n > 0 we have a contin-

uous increasing map (with rearranged domain)

Loy X

op: L1~ n+l

n n

1 1 . . .
such that ¢n(1-ﬁ) = Kn—l and ¢n(lf-;:T) = Kn' Since each ¢n is monotonic,

and since (Kn)n<w converges to X, the map ¢: [0,1] > 2X, defined by

¢ :=U ¢ u ({1} x X)

n<w 'n

is also continuous. Applying proposition 2.7.2 yields the desired

result. [
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2.7.5. Several classes of topological spaces are in the scope of theorem
2.7.4. For example the class of all separable path connected spaces. The

class of spaces, described in theorem 2.7.4, is countably productive.

2.7.6. As a particular consequence of theorem 2.7.4, it follows that AR,
the superextension of real line is contractible, in contrast with the fact
that the éech—Stone compactification BRR ¢ AR is not contractible (it is
not even math connected) .

By the above remark on productivity, a countable product of real
lines also has a contractible superextension. Recall that R is homeo-

morphic to the separable Hilbert space %, by a result of ANDERSON [3]

2
(cf. also ANDERSON & BING [6]).

2.7.7. We now turn our attention to path connectedness of superextensions.
It is rather surprising that the existence of dense path connected sub-
spaces is easy to prove under fairly general circumstances. In contrast

to this, it seems to be rather difficult to find an improvement of theorem
2.7.4 in the direction of path connectedness of AX. A partial explanation
is provided by theorem 2.7.8 below, which shows that path connectedness

and contractibility are equivalent on separable superextensions.

2.7.8. THEOREM. Let X be a separable space and let S be a normal Tl-subbase

for X. Then A (X,S) is contractible if and only if it is path connected.

PROOF. By a result of VERBEEK ([119], p.96), A(X,S) is separable. Let
{Mn | n € IN} be a countable dense subspace of A(X,S). For each n21 we

fix a path
o [1-1,1-1 75 ax,S)
n’ n’ n+l =l
. 1. 1 _ cas .
with an(l— ;) = Mn and an(l— n+1) = Mn+1' Lateral composition yields a

continuous map on the half open interval [0,1),
a: [0,1) — A(X,9),

the image of which contains the above dense subspace.

Define a mapping

6: [0,1] — 2M&S)

by ¢(t) := al[0,t] if t < 1 and ¢(1) := A(X,S). The continuity of ¢ follows
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from a rather obvious type of argument similar to the one in the proof of
theorem 2.7.4.

Now, by proposition 2.7.2, A(A(X,S),S+) is contractible. But
A(A(X,S),S+) is homeomorphic to A(X,S) (cf. theorem 2.2.5) and consequent-
ly A(X,S8) is contractible. [

2.7.9. THEOREM. Let X be a topological space and let S be a normal Tlsubbase

for X. If X contains a dense path connected subspace, then so does A(X,S).
PROOF. We need the following three auxiliary results:

CLAIM 1. Let M,N € A (X,S8). If M and N can be joined by some path in A(X,S),
then the interval IS+(M,N) is path connected.

Indeed, let £: [0,1] — A(X,S) be a path joining M and N. as IS+(M,N) is
a retract of A(X,S) (cf. theorem 1.5.2), hence we may assume that

£[0,1] < Is+(M,N). Let P ¢ Is+(M,N). Then

Ig(M,P) < 1o, (M,N) and 1g,(M,P) n Ig,(P,N) = {P},
cf. 1.3.2 and 1.5.3. Let

x: 13+(M,N) — Ig4(M,P)

be the restriction of the retraction of A(X,S) onto Is+(M,P) described in
theorem 1.5.2. Then r(M) = M and r(N) = P and hence it follows that the
path f "retracts" onto a path re f of I(M,P) joining M and P. It now easily
follows that IS+(M,N) is path connected.

CLAIM 2. If A c A(X,S) is path connected, then so is the space

Ige(axa) = U{Igi(x,y) | %,y € A},

By claim 1, each interval IS+(x,y) with x,y € A, is path connected.
Moreover A is a path connected subspace of IS+(AXA); therefore the desired

result follows.

CLAIM 3. Let B c A(X,S) be such that for all x,y € B the set IS+(x,y) c B.

Then the closure cl (B) of B in A (X,S) is S*-closed.

A (x,S)

Choose x,y € cl (B) such that IS+(x,y) ¢ cl (B) . By the contin-

A(x,8) A (x,8)
uity of the mapping f, described in lemma 1.5.10, there are disjoint
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neighborhoods U and V of x and y such that

IS+(P,q) ¢ clA(X'S)(B)

for all p € U and q € V. Choose zg € U n B and z, € V n B. Then

IS+(zo,zl) ¢ B,

A(X,S)(B) is S+—closed.

\

which is a contradiction. Now, by theorem 1.5.7, cl

To prove the theorem, let Y, ¢ X be a dense path connected subspace.

0
For each n € w we define, inductively

= X .

Ynt g+ (YY)

Using claim 2, each Yn is path connected. Since Yn c Yn+1 for all n € w,
we find that Y := U Y is path connected too. This subspace of A(X,S)

new n
obviously satisfies the conditions of claim 3, 'whence ClA(x S)(Y) is
. ’

S+—closed. But

X cecl (YO) ccl (v),

A (x,S) A (x,S)

+
and the only S -closed subsets of A(X,S) containing X is A(X,S) itself.
This shows that Y is dense in A(X,S). 0O

2.7.10. Our final results in this section involve some particular dense
subspaces of superextensions introduced in VERBEEK [119]. An mls M € XX
is said to be defined on a closed set A c X if M n A € M for all M € M.

For any space X, let

A (X) 2= {Me Ax | Mis definedon some finite subset of X}
and

)\comp(x) :={Me AX | Mis definedon some compact closed subset of X}.
2.7.11. THEOREM. Let X be a normal space such that each finite subset of
X is contained in a metrizable continuum., Then Af(X) is path connected

within Acomp(x) (notice that the space is not assumed to be separable).

PROOF. Let M,N ¢ Af(x); say, M is defined on F ¢ X and N is defined on
G ¢ X, where F and G are finite., By assumption there is a metrizable

continuum K ¢ X containing F U G. The inclusion mapping K < X induces an
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embedding AK c AX (cf. theorem 2.3.4). Clearly AK c Acomp(x)' But AK is
contractible (theorem 2.7.4) and hence M and N are joined by a path in

AK © A x). O
comp
The results derived in this section suggest some questions:

2.7.12. QUESTION. Find necessary and sufficient conditions on a continuum

X in order for AX to be path connected/contractible.
We found the following "controversial" examples:

2.7.13. EXAMPLES.

(1) Let X be a compact tree~like space which is not path connected.
Then AX is not path connected.

(ii) Let X = BRR, the éech—stone compactification of the real line 1R.

Then X is not path connected, but AX is contractible.

The proofs are simple:A

(i) a compact tree-like space admits a binary normal subbase (cf. theorem
1.3.21) and hence it is a retract of its superextension (cf. corol-
lary 2.3.7).

(ii) A(BR) is homeomorphic to AIR (cf. VERBEEK [119]; also corollary 2.2.6
and theorem 2.4.2).

It is well known that AR's in the category of compact Hausdorff
spaces are contractible and locally contractible: see e.g. SAALFRANK [101].
The two properties are not equivalent in general. However, in view of our
result that AX is an AR (compact metric) iff X is a metrizable continuum,
and in view of nice convexity structure of superextensions, one is lead

to the following:

2.7.14. QUESTION. Find conditions on a continuum X in order that AX be an

AR (in the category of compact Hausdorff spaces).

Concerning the superextensions of non-compact spaces we have no
information on the necessity of the separability condition appearing in

our present results.
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*)

2.8. Subspaces of superextensions; the spaces o(X) and I (X)

In this section we will describe some subspaces of superextensions
which seem interesting. This is only a first attempt; many questions are
unsolved. We are particularly interested in subspaces of AN, the super-
extension of the natural numbers. It is clear, due to the definition of
AN, that AIN and BN, the éech—stone compactification of N, must be
related, but it is not clear in what way. It was noticed by VERBEEK [119]
that AN and BIN are not homeomérphic, since AN contains nontrivial con-
vergent sequences. But AIN contains a dense set of isolated points
(VERBEEK [119]) and hence can considered to be a compactification of IN;
consequently AIN is a continuous image of BIN, however BIN is not a con-
tinuous image of AIN (cf. corollary 1.1.6).

Proposition 2.2.3 implies that AN is totally disconnected and has
weight €. The isolated points in AIN are just the points with a finite
defining set (VERBEEK {119]; recall that an mls M e AX is said to be
defined on a closed set A © X provided that M n A € M for all M ¢ M,
cf. section 2.7). The space AN \)\f(JN) is compact and possesses points
with a countable neighborhood basis and points without a countable neigh-

borhood basis. For example
M={Mcw | 3i>1: {1,i}cMor {2,3,...} cM}

can easily be seen to be an mls in AIN \Af(JN) with a countable neighborhood
basis.

An ultrafilter F ¢ BIN\IN c AN \)\f(JN) is an example of a point with-
out countable neighborhood basis (notice that each ultrafilter is a max-
imal linked system and hence that BIN is a subset of AIN; BIN also is a
subspace of AIN; indeed it equals the closure of N in AN, cf. corollary
2.3.9). We see that )\JN\Af(I\I) differs essentially from BN \IN. The fol-
lowing subspace of AN \)\f(]N) at first glance seems to be closer to
BIN\IN than AN \Af(]N) :

o(N) := {M e \IN | M contains no finite set}.

Unfortunately, however, ¢(IN) is separable, because of the following

lemma, while BIN\IN is not.

2.,8.,1. LEMMA, O(IN) is a retract of AN.

*) This section will also be published separately in Math. Z.
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PROOF. Let A = {A ¢ W | |N\A|<w}. Then o(m) = n{a* | A ¢ A} and hence
by theorem 1.5.2, o(IN) is a retract of AIN. As AN is separable (VERBEEK
[119]),s0is o(IN). [

[ The definition of o(IN) suggests a more general definition. For any

topological space X let o(X) be defined by
o(X) :={M e AX | M contains no compact set}.

We did not yet study the spaces cfx) in detail.]

The subspace (W) := {M ¢ AN | for allM,,M, € M: IMoanl =w}l of
A]ﬂ\kf(lﬂ)is a better candidate for an analogue of BN \IN. One can look
at Z(IN) as the set of all uniform maximal linked systems. This appears
to be the most interesting subspace. More generally, for any topological

space X, define

o(x) := {Me Ax I for all MMy € M: M. n M, is not compact}.

1 0 1

Notice that I(X) = @ if X is compact Hausdorff and that I(X) c o(X).

2.8.2. THEOREM. Let X be a normal topological space. Then
(1) Z(X) < AX\Xf(x);
(ii) X(X) is compact iff X is locally compact;

(iii) if X is locally compact then I(X) is homeomorphic to X (BX\X).

PROOF. (i) is trivial. To prove (ii), assume that I(X) is compact. Notice
that BX is closed in AX and consequently BX\X is closed in Ax\xf(x).
Therefore, as BX\X c Z(X), BX\X is closed in I(X) too. It follows that
BX\X is compact and consequently X is locally compact. The converse of
(ii) follows from (iii), since A(BX\X) is compact.

To prove (iii), assume that X is locally compact. For each closed
subset M c X define M* := ClBX(M)\M' Then {M" | M is closed in X} is a

closed base for the topology of BX\X, closed under finite intersections

and finite unions. Define a mapping ¢: A(BX\X) - I(X) by

oM := {Mcx | M e M.

First we will show that ¢ is well-defined. Clearly ¢ (M) is a linked
system for all M e A(BX\X). Suppose that ¢(M) is not a maximal linked

system for some M ¢ A(BX\X). Then there exists a closed set A c X such
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that ¢(M) u {A} is linked, while A ¢ ¢(M). Then a* ¢ M and consequently
there exists an M € M such that A* n M = @. By the compactness of BX\X
there is a closed subset B c X such that M c B and B® n A" = @. As

M e M it follows that B® e M and consequently B € ¢ (M). Therefore BnA#@.
But B* n A* = @ implies that B n A is compact. Choose a relatively compact
neighborhood U of A n B and define C := B\U. Then C* = B* and consequently
also C € ¢(M). This is a contradiction, since C n A = @. Also it is clear
that ¢(M) € I(X); for take M,N € ¢ (M) such that M n N is compact. Then

*

* .
M n N =@ and consequently M is not linked. Contradiction.
Let B be a closed subset of X. Then

Me o et nz(x)] iff oM € BV n 3 (x)

iff ¢(M) e BT

iff BY e M
iff M e 39Y.

Therefore ¢_1[B+n 1)1 = (897" (the first "plus" is taken in AX, the
second in A(BX\X)!) showing that ¢ is continuous. Also it is not difficult
to show that ¢ is one to one and surjective. As A(BX\X) and I(X) both are

compact Hausdorff spaces, it follows that ¢ is a homeomorphism. 0

2.8.3. REMARKS.

(1) The present proof of theorem 2.8.2 (ii) is due to E. VAN DOUWEN;
he discovered a mistake in our original proof.

(ii) Theorem 2.8.2 shows that I(IN) is a homeomorph of A (BIN\N) and
hence that I (IN) is supercompact. The proof of theorem 2.8.2 shows that the
subbase {M+ nL(IN) | Mc N} for £ (N) is binary. For this fact there is also
an elementary proof. For take M,N,P e¢ I(IN). Then

I . (M,Ny n I +(M,P) niI + (N,P)

P(m) P(m) P(m)
consists of one point, say L (cf. corollary 1.5.3). Take LyeLy € L
and assume that L0 n L1 is finite. Then, as in the proof of lemma

2.5.2 L, and L, both belong to an element of {M,N,P}, which is a

contradiction,lsince {M,N,P} c z ().
Now, theorem 1.3.3 implies that {M' n I(N) | M ¢ N} is a binary
subbase for I(N).

(iii) The supercompactness of I (N) implies that BIN\IN and I(IN) are not
homeomorphic after all, since BIN\IN is an F-space (cf. 0.C), and

no infinite compact F-space is supercompact (cf. corollary 1.1.6).
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We will now derive some properties of I(IN) (and hence of A(BIN\N)).
2.8.4. LEMMA. The cellularity of I(IN) is C.

PROOF. Let A be an almost disjoint collection of infinite subset of N
of cardinality ¢; i.e. for all A € A we have |A| = w while |AnB| < w for
all distinct A,B € A (there is such a collection, cf. GILLMAN & JERISON
[52]). Then {a* n (W) | & € A} is a collection of C pairwise disjoint
open subsets of I(IN). For take distinct A,B ¢ A and M ¢ a"nB'n Z(NWN).
Then |AnB| = w since M € I(IN). Contradiction.

Since weight (AIN) = ¢, the weight of I(WN) also equals ¢ (recall
that BN\IN c I(N)). [

2.8.5. Let k be any cardinal. The following principle is called P(k).

Let A be a collection of fewer than x subsets of N such that each
finite subcollection of A has infinite intersection. Then there is an
infinite F ¢ N such that F\A is finite for all A € A.

It is easy to show that P(wl) holds in ZFC and moreover that Martin's
axiom (MA) implies P(c) (BOOTH [18]). Also P(k) implies that 2>\ = ¢ for
each infinite A < k¢ (ROTHBERGER [96]). Clearly P(mz) implies the negation
of the Continuum Hypothesis.

It is easy to show that P(k) is equivalent to the statement that
each nonvoid intersection of fewer than k open subsets of BIN\IN has non-
empty interior. Unfortunately P(k) does not imply the same property for
I(IN). In fact we will show that there is a nonvoid countable intersection
of clopen subsets of L(IN) with a void interior. The following lemma shows
that P(k) works for intersections of open sets in IZ(IN) containing an

ultrafilter.

2.8.6. LEMMA [P(k)]. Let A be an intersection of fewer than x open sub-
sets of (IN). If A n (BIN\IN) # @ then there is an infinite B ¢ N such

that B+ n (IN) ¢ A. In particular, A has a nonvoid interior.

PROOF. Let A = ﬂ{Oa I a € B}, where B < k and each Oa is open in I(WN).
Take a point FeaAn (BN\IN). For each o € B choose an Foz e F such that
F; n I(IN) c Oa. This is possible since it is easy to see that

{F" 0 z(m) | F e F} is a neighborhood basis for F in I(IN). Then

'{Fq | o € B} is a collection of fewer than k subsets of N each finite

subcollection of which has infinite intersection. Choose an infinite Bc IN
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such that IB\FaI < w for all a € B. We will show that

+
8" n () e N{F. 0 Z(N) | o e Bl
Indeed, choose a point M ¢ (B+ n IZ(WN)) \(F: n LZ(IN)) for some a € B. Then
F, ¢ M and consequently N\Fa e M. Hence |Bn (]N\Fu)l = w, since M € L(N).
Contradiction. Therefore B+ n Z(N)c F; n Z(IN) (o € B) and asB is infinite,

8" n I(N) is a nonvoid open set in I(WN). [

2.8.7. REMARK. In the proof of lemma 2.8.6 we showed that AT n L (IN) cstn
n L(WN)iff |A\B| < w. This is a property of the binary subbase {A+ nI(m) |
A ¢ N}. The binary subbase (a* | A ¢ W} does not have this property.

For example let A = {1} and B = {1,2}. Define an mls M ¢ AIN by

M := {cc NI {1,2} c cor {1,3} c C or {2,3} cc}.

. ,
It is easy to see that M is an mls. Moreover M ¢ B\A" and yet |B\A| < w.
We will now give an example showing that lemma 2.8.6 cannot be

sharpened.

2.8.8. EXAMPLE. A countable nonvoid intersection of clopen subsets of
L(IN) with a void interior.
Inductively we construct a collection {An | n e w}of infinite subsets

of IN such that for all i € w

(i) k<2<i = IAknA£l=m;

(ii) k <1i = IAk\UjSi Ajl = w;
j#k

(iii) IZIN\Ujsi Aj[ = w;

(iv) k< 2 <m<i = AknAR,nAm=¢'

To define Ao just pick an infinite subset of N with an infinite complement.
Suppose that {Aj | 0 <3 < i} are defined satisfying (i) - (iv). For each

k < i choose an infinite

C B N Uy By
j#k

such that also

(B \ Uy 2\ ¢

j#k .
is infinite. Choose an infiniite D c ]N\UjSi Aj such that also (IN \Ujsi Aj)\D
is infinite. Define Ai+1 .= Uj=0 Cj U D. Then clearly (i), (ii) and (iii)



are satisfied. Take k,% < i such that k < &. Then
i
AknAanAiH_AknAanj=0cj_cknCJL_¢'

hence (iv) is also satisfied.
+
We will show that the nonvoid set ﬂ{An I n € w} n L(N) has a void
interior (that ﬁ{A:l | n € w} n I(N) is nonvoid is trivial since
IAinAjl =w for all i,j € w). First we prove one more simple lemma.
2.8.9. LEMMA. Let Mcx c N (a € B) such that nasB M; n L(N) # @. Then for
+

all B c N we have N o M 0 I(W)c B' 0 L(N) iff |Myg\B| < w for some

aOeB.

PROOF. If IMa\BI < w for some a € B then M; n I(N) c B+ n Z(N) (cf. the
proof of lemma 2.8.6) and consequently naeB M; n Z(W)c B+ n Z(N).

On the other hand, if lMa\BI = for all o € B, then the linked
system {Ma | @ € B} u {WN\B} is a linked system any two members of which
meet in an infinite set. Hence this linked system can be extended to a
maximal linked system

+ +
M e naeB M, 0 (N\B) n I(N).

Contradiction. [

Now suppose there exists a nonvoid open (in I (IN)) set
+ +
Uc n{An- | ne w} n Z(N). Without loss of generality U = ni<n M, 0 (W)
for some infinite Mi € N (i £ n). Now lemma 2.8.9 implies that for each

m € w there is a k(m) < n such that

IMk(m)\Aml <.

Hence there must be a i < n such that B = {m € | k(m) = i} is infinite.
Choose three elements m, ,m, My € B such that m, < m, < m3. Then clearly
Mi is finite since A1111 n I-\m2 n Am3 = @, which is a contradiction. |

2.8.10. REMARK. E. VAN DOUWEN has pointed out to me that lemma 2.8.6 and
example 2.8.8 imply that I(N) is not homogeneous. Indeed, let F ¢ BIN\N,
let L be a nonempty countable intersection of open sets in I(WN) with a
" void interior and let L € L. Then lemma 2.8.6 implies that there is no

autohomeomorphisni ¢ of I(IN) which maps F onto L.

The above example shows that nonvoid countable intersections of open
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sets in I(IN) need not have nonvoid interiors in I(N). The following

. . . . . R c
theorem in any case implies that such intersections have cardinality 2°.

2.8.11. THEOREM. Let A be a nonvoid countable intersection of open sets in
L(IN). Then A contains a homeomorph of BIN\IN.

PROOF. Since {M+ | M ¢ N}is an open subbase for AN there are Bi c N
(i € w) such that

. .
@ # niew Bi n Z(IN)c A,

Then B = {Bi | i € w} is a countable collection of subsets of N,any
two members of which meet in an infinite set. If |IN\B| < w for all Be B
then (M) = N{B* n z(m) | B € B} < A and hence clearly A contains a
homeomorph of BIN\IN. Therefore we may assume that there is a BO € B such

that Inu\Bol = w. Define

C:={Bn B, | B e B}.

Then C consists of countably many infinite subsets of B. List C as
{Ci | i € w} such that each C € C is listed countably many times.
Now, by induction, for each i € w pick P;fq; € ci such that
(1) p; #q;i
(ii) {pi,qi} n {po,...,pi_l,qo,...,qi_l} = @.
Define P = {pi | i € w} and g = {qi | i € w}. Then P and Q are two dis-
joint infinite subsets of B such that IPnCiI = IQnCiI = for all i € w.
Let r: I(N) — n{B" | B e B} n 2(N) be a retraction defined by

r(N) :=ﬂ{N+nZ(]N) l Ne N and |[NnB| =w forall Be B} n ﬂ{B+nZ(I\I) | B ¢ B}

(cf. theorem 1.5.2).

Let D := ]N\BO. We will show that r#BD\D is a homeomorphism (notice
that BD\D ¢ BIN\IN < I(IN)). Take two ultrafilters FO’Fl € BD\D such
that FO # Fl' Then there are F, € Fi such that F, cD (i € {0,1}) and

F. nF, =@. Clearly F UuQe F1 and (FOUP) n (FluQ) = @.

o 1 ogUPe Fo' F, ’ .
Also I(FOUP) NB|l =w = I(FluQ) nB| for all B € B. Hence r(FO) € (FOUP)

and r(Fl) € (FIUQ)+' But (FOUP)+ n (]3'1UQ)+ = @ and consequently

r(Fo) #,r(F1) . Hence r}BD\D is one to one and consequently riBD\D is a

homeomorphism. [
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2.8.12. COROLLARY. No p € L(N) admits a countable neighborhood basis.

A well-known property of BN \IN, under P(c¢), is that each nonvoid
open set contains 2c Pc—points (see e.g. VAN DOUWEN [40]). Recall that a
point p of a topological space is called a Pc—point if the intersection
of less than C neighborhoods of p is again a neighborhood of p. We will

show that each nonvoid open set in I(IN) also contains 2c Pc—points.
2.8.13. THEOREM [P(c)]. Each nonvoid open éet in I (N) contains 2¢ Pc—points.
PROOF. Let A := {F ¢ BN\N | F is a P -point}. Define
:= {Me () | EiFi € A (i<n, new) 3Le r{0,1,2,...,n}
={F < mIHLeL:FeFi(iem}L

We will show that B consists of P -p01nts of £(IN) and that each nonvoid
open set contains 2% elements of B. Indeed, take M ¢ B and let {O | o e B}
be a collection of less than ¢ neighborhoods of M. Without loss of general-
ity we may assume that each Oa is of the form M: with Ma e M (e € B).
Choose Fi € A (i<n, new) and L € A1{0,1,2,...,n} such that

={FcN |3Lel:Fe Fi (i € L)}. For each M choose L ¢ L such that
M € Fi for all i € L . For each L € L define A(L) := {a ¢ B | = L}

Fix L € L. For each i € L choose F. (L) € Fi such that IFi(L)\Mal< w

for all o € A(L). This is possible since Fi is a Pc—point of AIN\N.

Moreover for each i e {0,1,2,...,n} define Li :={L e L | i e L}.
Then let
Fi = N Fi(L).
Lel,
i

Clearly F, Fi (i € n). Finally define

+
u:= N (U Fi) n I(N).
Lel ieL
+
It is easy to see that U is a neighborhood of M such that U c naeB Oa.
This shows that B consists of Pc—points.

Now, let U be a nonvoid open set in I(IN). Take M ¢ U and let Mie M
(i £ n) such that n1<n MI n (IN) c U. For each i,j ¢ {0,1,2,...,n} take

aPpP —p01nt F = F]l € A such that M, n M € F 50 This is possible since
lMinMjI = w. Take a maximal linked system L e A({O 1,...,n)} such that
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that for all i < n the set Li = {(i,3) | j £ n} is an element of L.

Notice that {Li | i < n} is a linked system. Now define

N:i={Fcmw |3Lel:Fe Fij ((i,3) € L)}

We will show that N is a maximal linked system. Clearly N is linked. Now
suppose that N is not maximally linked. Take M ¢ IN such that N u {M} is
linked while M ¢ N. Define E := {(i,j) | M ¢ Fij}. Clearly E # @ and
also {E} u L is linked. Hence, as L is a maximal linked system E € L and
consequently M € N. Contradiction.

Since each Fij is an ultrafilter, N is a maximal linked system any
two members of which meet in an infinite set and hence N ¢ I(IN). Also

it is clear that N € U and that there are 2° different choices for N. [

REMARK. The technique used in the proof of the previous theorem is due
to VERBEEK [119].

2.8.14. It is well-known that BIN\IN is an F-space. In particular, a
countable union of clopen subsets of BN\IN is always C*—embedded. The
space I(IN) cannot be an F-space, since no infinite compact F-space is
supercompact (cf. corollary 1.1.6). We give an example of a countable
union of clopen subsets of I(IN) that is not C*—embedded.

NEGREPONTIS [90] has shown that the closure of a countable union of
clopen sets in BIN\IN is a retract of BIN\IN. The following theorem shows
that a similar assertion holds in I(IN) for suitable countable unions of
clopen sets, taken from the "canonical" closed subbase oz | Mc m}.

For the remainder of this section, let S = Mt n z(m) | M c ).
This subbase is binary and for all S € S the set I(NIN) \S is also in S. In

particular, S is normal.

2.8.15. THEOREM. Let {Aa I o € B} be a collection of S-closed sets such
that Aa c AY iff o < y. Then cl
gy

Z(JN)(UasB Acx) equals IS(UOLGB

Aa) is supercompact and is a retract of L (NWN).

A). In
¢

particular cl

L(IN) "“aeB

PROOF. Clearly cl
MO’MI e cl
such that

3 (N) (UaeB Aa) c IS(UaeB Aa) . Take two distinct points

(1) (UaeB Aa) and assume that there exists a point P e I(IN)

Pe IS(MO'MI) \ CIZ(]N) (alé'B Aa)'
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' +
PR i < = -
Take finitely many Pi € P (i<n, new) such that niSn Pirwuaes Aa @

Now suppose that for some £ < n we have that Py ¢ MO and PZ ¢ Ml' Take

M, € Mi such that M, n P, = @ (i € {0,1}). Clearly P, n (MOUMI) =@ and

2
also

+
IS(MO'Ml) < (MyuM,) .

However P' n (MOUM1)+ = @, which is a contradiction since P ¢ IS(MO'MI)'

2
Therefore each P, either belongs to MO or belongs to Ml' Define
Ci ={¢ <n | P, € Mi} (i e {0,1}).
\
Then N P is a neighborhood of M, and hence intersects U A
feCy 1 i oeB o
(i e {0,1}h.

+ . .
Choose o, € B such that nzeci P, N Bgy #@ (i € {0,1}). Without

loss of generality assume that a. < o Then

0

+ +
{zéEO Por 2£E1 Py Aal}

1°

is a linked system of S-convex sets; consequently, by the fact that S is
binary

n p* n + +

n
sec, Fr sec, Py @, — isn i a

@ #

which is a contradiction.

It now follows that cl Aa) is S-convex and hence S-closed,

L (W) (Uaeﬁ

by theorem 1.5.7. Therefore ClZ(IU (UaeB Aa) = IS(UaeB Aa)° Hence

CIZ(IU (UaeB Aq) is supercompact (lemma 0.5) and is a retract of Z(IN)

(theorem 1.5.2). 0

2.8.16. COROLLARY. Let si € S such that S; <8,

i+l
Then U, S. is not C*—embedded in (W) .
iew "i

and Si+1\si#¢ (i € w).

PROOF. Notice that A = Uiew Si is not pseudocompact, since A is z—compact,
hence normal, and not countable compact. Now suppose that A is C -embedded
in Z(IN). Then ClZ(nD (a) is equivalent to the éech—stone compactification
BA of A. Hence, by theorem 2.8.15, BA is supercompact and consequently

A is pseudocompact (cf. corollary 1.1.7). Contradiction. O

2.8.17. There are still many questions to be asked concerning I(N). For

example theorem 2.8.11 says that each nonvoid countable intersection of
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opeﬁ sets in I(IN) contains a homeomorph of BIN\IN. Hence such an inter-
section contains many countable subspaces that are C*—embedded. On the
other hand Z(N) is supercompact and hence for each countable subspace K
it follows that at least one cluster point of K is the limit of a non-
trivial convergent sequence in L(N) (cf. theorem 1.1.5). Hence there are
also many countable subspaces of I(IN) that are not C*-embedded. This

suggests the following question:
2.8.18. QUESTION. When is a countable A c L (IN) C*—embedded?

Also we have said nothing about normality in I(N). It is well-known
that CH implies that BIN\N \{p} is not normal for all p ¢ BIN\IN (cf.
COMFORT & NEGREPONTIS [31], RAJAGOPALAN [95], WARREN [126]). Hence if for
each p € Z(IN) there is a copy of BN\N in I(IN) containing p, then CH
also implies that I(NIN) \{p} is not normal. Theorem 2.8.11 suggests that

such may well be the case.

2.8.19. QUESTION. Is there for each p € L(N) a homeomorph of BIN\IN con-

taining p?

2.8.20. QUESTION. Is it true that I(WN) \{p} is not normal for all
peI(N)?

2.8.21. 1n [91], PAROVIEENKO characterized BIN\IN in terms of its Boolean
algebra of clopen subsets. We will show that PAROVIEENKO'S result allows
us to give a characterization of I (W), not in terms of its Boolean algebra
of clopen subsets but in terms of the Boolean algebra {M+n I(N) | MmN}
Clearly S = M 0z | M ¢ IN} is not a Boolean subalgebra of the
Boolean algebra of clopen subsets of I(IN). Therefore we define for S new
Boolean operations and show that, under the Continuum Hypothesis, the
Boolean algebra thus obtained characterizes IZ(IN) and hence A (BN \NN).
PAROVI&ENKO also uses the Continuum Hypothesis and from an example given
by VAN DOUWEN [40] it follows that the Continuum Hypothesis is essential
in this characterization: there is a locally compact, o-compact and
separable space M for which SIN\IN and BM\M are homeomorphic under CH
but not under P(c) + TICH. This same example can be used for showing that
in our characterization CH is essential. The spaces Z(M) and I(N) are
homeomorphic under CH, but not under P(c) + ICH. One might think that
this immediately follows from VAN DOUWEN's result, using the equalities
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I(N) ~ A(BIN\IN) and I(M) ™ A(BM\M) (cf. theorem 2.8.2). Such is not
true, however. We will present an example of two compact metric spaces

X and Y which are not homeomorphic while nevertheless AX and AY are homeo-
morphic.

PAROVIEENKO [91] has also, without using the Continuum Hypothesis,
shown that each compact Hausdorff space of weight at most w, is a contin-
uous image of BIN\N. We will show that for I(IN) this is not true, since
there is a compéct Hausdorff space with wy points which is not the con-

tinuous image of I(WN).

2.8.22. Let B = <B,0,1,',A,V> be a Boolean algebra. B is called Cantor
separable if no strictly increasing sequence has a least upper bound,

i.e. if

then there exists an element c < b such that a <c for all n € w. In
addition B is called Du Bois-Reymond separable if a strictly increasing
sequence can be separated from a strictly decreasing sequence dominating

the increasing one, i.e. if

ag<a <...<a <...<b <...<b <by,

then there exists an element c € B such that a, < c < bn for all n € w.
Finally B is called dense in itself if for all a,c € B with a < c there

is a b € B such that a < b < c.

2.8.23. PAROVIEENKO [91] has shown that, under CH, a compact totally
disconnected Hausdorff space of weight C which possesses no isolated
points is homeomorphic to BIN\IN if the Boolean algebra of clopen subsets
of X is both Cantor and Du Bois-Reymond separable. If fact he showed
that all Boolean algébras of cardinality € which are dense in themselves
and which are both Cantor and Du Bois-Reymond separable are isomorphic

v
under CH. We will use PAROVICENKO's result in this form.

2.8.24. If X is a set and if S is a collection of subsets of X for any
A c X let WS(A) c X be defined by

WS(A) =X\ IS(X\A).

The set WS(A) is sometimes called the S-interior of A, just as
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Ig(a) =N{s eS | A& c s} is called the S-closure of A.

For technical reasons we will assume for the remainder of this
section that each closed subbase S for a topological space contains @

and X,

2:8.:25. THEOREM [CHI. Let X be a compact Hausdorff space of weight C which
possesses no isolated pcints. Then X is homeomorphic to I (W) (and hence

to AM(B(IN) \N)) iff X possesses a binary closed subbase S satisfying:
(i) for all S € S also X\S € S;

(ii) for all 80,51 e S also IS(SOUSI) e S;

(iii) for all SO,S1 e S: IS(SOUSI) = X &> SolJ51 = X;

(iv) for all so,sl,s2 € S: WS(SO”IS(Slusz)) =IS(WS(SO”S1) n ws(sonsz));

(v) ifs e€8,s os (ne w) then N S_ contains a nonvoid element
n n n+1 new n

of S;

(vi) disjoint countable unions of elements of S have disjoint S-closures.

PROOF. " = ".

First we remark that I(IN) indeed is a compact Hausdorff space of
weight ¢ without isolated points; this follows from proposition 2.2.3 and
theorem 2.8.11. Also, S is a binary subbase for L(IN) which satisfies (i) .

In order to show that S also satisfies (ii), (iii) and (iv) we use the

equalities
+ + +

(1) Is((M0 nI(N)) v (M1 ni(m)) = (MOUMI) nI(mw.
+ + _ +

(2) WS((Mo nI(N)) n (M1 nZ(mM)) = (MynM,) " n Z(N).

Let us prove (1) only.
Clearly 13((»43 nI(mN) U (M’l' n (W) < (MOUM1)+ n I(N). Suppose
oM 0 T \1g ((Mg nI(m) U (M) 0 Z(N)).

Choose L ¢ IN such that 13((M; nZ(N)) u (M‘l” n (M) <t n (v ana

that there exists an M ¢ ((M

M ¢ o L(N). Then M; nI(N) c ta I(N) implies that IMi\LI <w
(i € {0,1}) (lemma 2.8.9) and hence that '(MOUMI)\LI < w, which is a
contradiction since M ¢ (MOUM1)+\L+.

This shows that S satisfies (ii), and also (iii); for take SO,S1 e S
such that Ig(SyuS,) = Z(N).Let S, = M; n I(N) (i € {0,1}). Then
I(N) = (MOUM1)+ n Z(N) by (1). Hence III\(MOUMl)I < w and consequently
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(M; nI(N)) u (MI n Z(NN)) = Z(IN) (notice that in general IJN\(MOUMI) | <w
+ + ,

o UM = AN !)

Using (1) and (2) it is easy to see that S satisfies (iv).

need not imply M

S also satisfies (v), because of lemma 2.8.6 (recall that P(wl) is
true in ZFC and hence that we do not use CH or P(c) here).

Finally S satisfies (vi). Let A = Uiew (Mi+ n £(N)) and

+ *

B = =

Uiew (Li n L(IN)) such that A n B = @. If. now follows that Uiew Mi and
Uiew L;‘_ are disjoint subsets of BIN \IN. As BIN\IN is an F-space (cf. 0.C)
these two sets have disjoint closures. Therefore we can choose two disjoint
sets E and F in IN such that U, Mf c EX and U, Lf c F*. Then U,

N + lew "1 lew i iew

(Mi nI(IN)) < C n I(N) and Uiew (Li nNI(IN)) cF n Z(IN), which estab-

lishes (v).
"«" pDefine operations A,V,' on S in the following manner:

AABS= WS(Ar?B);

AV B (AuUB);

Ig
A' = X\A.

We will show that <S,A,v,',0,1> is a Boolean algebra, where 0 = @ and
1 = X. Notice that for all A,B € S we have that A A B c A n B and
A UBCAV B. Because of (ii) AV B ¢ S for all A,B ¢ S. Blso AAB € S

for all A,B € S, because of the equality
AAB= (A'VB")'.

To prove this, notice that AAB = U{X\S | S ¢ S and X\S ¢ AnB} =
=U{S €S| scaAnB} by (i). Now take S € S such that S ¢ A n B. Then
A' v B' ¢ S' and consequently IS(A' UB') < S'. Therefore S c X\IS(A' UB') =
= (A'AB')'. Since (A'VB')' € S, by (i) and (ii) it follows that
AAB= (A'VB'")'.

Define a relation "<" on S by putting A < B iff A A B = A.
Let us prove that A < B iff A c B, for all A,B ¢ S. Indeed, assume that
A cB. ThenAAB= (A'VB')' = (A'")' = A and therefore A < B. Next,
suppose that A.< B and that there exists an x € A\B. Then x ¢ A A B and
consequently A A B # A. Contradiction.

It now follows that the relation "<" is a partial ordering. Also
it is clear that for all A,B € S the set A A B is the greatest lower bound
of A and B with respect to this ordering and in the same way A V B is the

least upper bound for A and B. Hence (S,<) is a lattice. Also (S,<) is
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disfributive because of (iv) and clearly it is complemented. Hence
<S,A,v,",0,1> is a Boolean algebra.
Let us show that this Boolean algebra is Cantor separable. Take

a e S (ne€ w) and B € S such that A, < ... < A < ... <B. Define

0
Sn :=B A AQ (n € w). We will show that Sn # 0 (n € w). For suppose to

the contrary that for some n_. € w we have Sno = 0. Then 1 = Sﬁo =

0
= (BA Aﬁo)' = B' V Ano and hence, by (iii), B' U Ano = X. This is a con-

tradiction, since A < B (notice that in fact we have shown that for all

no
. 3 1 3 A ]
A,Be S: AnB#¢@iff AAB # 0). Also An < An+1 implies that B An+1 c
cBAA_ (ne€ w). By (v) there is a nonvoid C € S such that C c N S .
n new n
Then A, <A, < ... <A < ... <C' <B.
0 1 n

Let us prove that <S,A,v,',0,1> is dense in itself. Indeed, take
A,C € S such that A < C. If A = 0, then C # @ implies that there are two
distinct points x and y in C since X contains no isolated points. By the
fact that S is binary there is an S € S such that x € S and y ¢ S. Then
define B := C A S. Now A < B < C. If A # 0 define D := C A A'. Then D # O,
since C n A' # @; define B := D'AC. Clearly A < B < C.

Let us prove that <S,A,v,',0,1> is Du Bois-Reymond separable. Suppose
that A <...<An<...<Bn<...<B

0 0

U A_ and U B' are disjoint countable unions of elements of S and
new n new n

hence, by (vi), have disjoint S-closures. Let C0 = IS(Unew An) and

for some An,Bn € S (n € w). Then

C, := IS(Unew Bﬁ). By the binarity of S there now is a D € S such that
C0 c D and D n C1 = @. Then clearly An < D and Bﬁ < D' for all n € w. It
now follows that

< .. < < eee < < eee < < eee < .
AO An D Bn BO

The cardinality of S equals ¢ since X has weight ¢ and since S is a
subbase. Now, by PAROVI%ENKO'S result the Boolean algebra <S,A,v,',0,1>
is isomorphic to the Boolean algebra of clopen subsets CO(BIN \N) of
BAN\IN. Let 0: S — CO(BIN\N) be an isomorphism. Define a function
¢: X — I(N) by

$(x) :={Mc N | M e {o(s) |xes} }.

*
Recall that M = canq(M)\M for all M ¢ IN. We will show that ¢ is a

homeomorphism.

CLAIM 1. Take x € X; then Sx :={s e S l x € S} is a maximal linked system

in the Boolean algebra <S,A,v,',0,1>.
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Indeed, take S € Sx. Then S. n Sy # ¢ implies that Sy A Sy # @,

0’51 0
which shows that Sx is a linked system. Also Sx is maximally linked, for
suppose that there is an A ¢ S such that SX u {a} is linked but A ¢ Sx'
Then x ¢ A and consequently x € A'. But A n A' = @ implies that AAA' = 0.
Contradiction.

The Boolean isomorphism ¢ maps SX onto a maximal linked system in

CO(BIN\IN). Now it follows that
Mcw | M e {o(s)|xes}}

is a maximal linked system in P(IN) and that it is an element of I(N).
Also, the fact that o is an isomorphism implies that ¢ is one to one and

. . . . . -1 + -1, %
surjective. Moreover ¢ is continuous, since ¢ 1[M nI(N)]=o0 1[M ] for all

M ¢ IN. Therefore ¢ is a homeomorphism. 0

2.8.26. COROLLARY [CH]. If X is a zero-dimensional noncompact o-compact
and locally compact space with |C(X)| = ¢, then I(X) and I(N) are homeo-

morphic.

+
PROOF. It is easy to see that {M n I(X) | M is open and closed in X}
satisfies all conditions of theorem 2.8.25 (notice that X Lindeldf being
o-compact implies that for closed sets A,B ¢ X with A n B = @ there is an

open and closed U ¢ X such that A ¢ U and B < xX\u). [

2.8.27. REMARK. Corollary 2.8.26 also follows directly from PAROVIéENKO's
result. For if X is a zero-dimensional noncompact o-compact and locally
compact space with |C(X)| = ¢ then there is a homeomorphism ¢: BX\X=+ BN \IN
by PAROVI%ENKO'S characterization of BIN\NWN. This homeomorphism can be
extended to a homeomorphism A(¢): A(BX\X) — A(BIN\N) (theorem 2.3.4).
Now theorem 2.8.2 implies that I(X) is homeomorphic to I(IN).

2.8.28. EXAMPLE. A locally compact and o-compact separable space M for
which I (M) and I(N) are homeomorphic under CH but not under P(cC) + "ICH.

As noted in the introduction of this chapter this example is based
on an example of VAN DOUWEN [40].
Let M = INXx {O,l}c. Then clearly Z(M) and I(IN) are homeomorphic

under CH (cf. corollary 2.8.26). Assume that w, < C and let K = {0,1}0.

1
Let K := {ﬂ;l[{i}] | o e wyr i€ {0,1} }. Then {NxK|Ke K} is a collec-

tion of wy clopen subsets of M each infinite subcollection of which has
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a void interior. As for each a € wl we have

(N x n;l[{o}]) v x N =

for each M € MM there is an i € {0,1} such that IN X ﬂ;l[{i}] e M. For

each M ¢ T (M) let K(M) := {K € K | IN x K e M}. It follows that K(M) is
uncountable for each M € I(N) and also that {K(M) | M ¢ ()} has cardin-
ality 2w1. Also

A= {n{mxK [ KeKMlnzm | Me s}

w
covers I(M). The collection A has cardinality 2 1 and consists of pairwise

disjoint sets each an intersection of w, clopen subsets of I(M).

1
Let us prove that each A ¢ A has a void interior. Assume there exist

open and closed C ,...,Cn c M such that

0

+
P # ign ¢, n Z(M) < Ay

mrsmmAOeA.therM)smhﬂmtAo=nHNXKf'|KeKM&}nsz

Now the fact that

+ +
JALchazan entavx 0t | ke KO 0z

implies that for all K € K(MO) there is an i_ < n such that Ci\(IJXK)

K
is compact; for otherwise ni<n CI n M ¢ (]NXK)+ n (M.
Hence there is an i, < n such that L={ke K(Mo) | i = io} is un-

countable. Also, clearly, Cio is not compact. Choose for every L € L an
integer i(L) such that @ # ciO n ({i(@)}IxK) c {i(L)} x L (this is possible
since Cio\(IMXL) is compact!). There is an integer i such that the collec-

tion
B={Lel | i(r) = i}

is infinite, since L is uncountable. But then NB has a nonvoid interior
in K, since ¢ # ciO n ({i}xK) < {i} x NB, which is a contradiction.

Now suppose that there is a homeomorphism ¢: I(IN) — I(M). Take
F € BN\IN and take A € A such that F ¢ ¢_1(A). As A is an intersection
of Wy clopen sets, so is ¢_1(A). Also ¢~1(A) has a void interior. However
P(c) + TICH implies that this intersection has a nonvoid interior (lemma

2.8.6) . Contradiction. [



123

2.8.29. EXAMPLE. Two compact metric spaces X and Y which are not homeo-

morphic while yet XX and AY are homeomorphic.

Let X = I, the closed unit interval and let Y = {(0,y) | -1<y<1} v
u {x,sin )1{) I 0<x<1}. In chapter 3 (sections 3.4 and 3.2) we will show

that AX and AY both are homeomorphic to the Hilbert cube Q. [

2.8.30. EXAMPLE. A separable compact Hausdorff space with w, points which

1
is not the continuous image of L(N).

In section 1.1 we gave an example of a separable compact Hausdorff

space with w, points which is not the continuous image of a supercompact

1
Hausdorff space (cf. example 1.1.18). Hence this space is not the contin-

uous image of I(IN). O

2.8.31. QUESTION. Is there a separable supercompact first countable

Hausdorff space which is not the continuous image of I (IN)?

2.9. Another nonsupercompact compact Hausdorff space

In section 1.1 we gave an example of a compact Hausdorff space which
is not supercompact but which admits a closed subbase T such that for all

M c T with "M = @ there are MMM, € M such that M. n M, n M, = §. In

0 1 2
this section we will present another space with this property. The space
is a subspace of AIN and the subbase with the above property is just the
restriction of the canonical binary subbase of AIN to the space under

consideration. This makes the example of independent interest.

2.9.1. Let S denote the canonical binary subbase of AIN and for each
A c AN, let I(A) (as usual) be defined by I(A) :=N{S e S | A c s} (cf.

section 1.1). We start with a simple but useful lemma.

2.9.2. LEMMA. Let A ¢ AN. Then for all M e M ¢ I(A) there is an A ¢ A
such that M e A.

PROOF. Suppose that M ¢ A for all A ¢ A. Then IN\M belongs to each A in A
and consequently A ¢ (IN \M)+. But then I(A) ¢ (N \M)+, which is a contra-
diction since M ¢ 1(a). 0O



124

2.9.3. EXAMPLE. There is a subspace X of AN with the following properties:
(a) X is not supercompact;
(b) for all M c {s n X ] S € S} with N\M = @ there are My M, M, € M

such that MO n M1 n M2 = @.

Indeed, define

X :={Me An | VMM, M, € M:

[MOnM

My = @=3i¢ {0,1,2}: 1 ¢ Mi]}.

Notice that IN c X and therefore, as we will show that X is closed in AN,

also BIN c X.
CLAIM 1. X is compact.

Indeed, assume that M ¢ X. Then there exist MO’MI'MZ e M with
. + + +
My nM oM, o= @ and 1A¢ M, (i€ {0,1,2}). Then My 0 M, 0 M, is an open
neighborhood of M which obviously misses X. Hence X is closed in the

compact space ANN.

CLAIM 2. The closed subbase T = {M' n x | M ¢ W} has the property that
for each M ¢ T with NM = @ there are Mo/M M, € M such that

MonmlnM2=¢.

Let M ¢ T be a subsystem any three members of which meet. We will
show that NM # @. This suffices to prove the claim.

We will show, by induction, that M has the finite intersection
property; then, by claim 1, NM # @. Assume that any n- 1 members of M
meet. If n=2 or n=3 then cbviously any n members of M meet. Therefore
we may assume that n>3. Let MI nxeM(@{ie{1,2,...,n} and take, for
each i € {1,2,3,4}

L, e n M nx.
. e

Now define
7 := I({L1'L2'L3}) n 1({L1,L3,L4}) n 1({L1,L2,L4}) n I({L2,L3,L4})
n .I({l,Ll,Lz}) n 1({1,L1,L3}) n I({l,Ll,L4}) n I({l,Lz,L3})

n I({1,L2,L4}) n I({1,L3,L4}).
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: + . . :
Notice that, as {M | M ¢ N} is binary the set Z is nonvoid. We claim that

Z c

=1

+
M, n X.
1

i=1

That Z c ﬂ? MT
i=1 i

were an N € Z with N, € N (i € {1,2,3}) such that N, NN, 0Ny = @ and
1 ¢ N, (i e {1,2,3}). We will derive a contradiction.
Fix i € {1,2,3} and let A, := {j € {1,2,3,4} | N; € Lj}. Then

lAil > 3. Suppose that IAi{ < 3; then there exist distinct %,me {1,2,3,4}\Ai.

is trivial. We proceed to show that Z < X. Suppose there

Then, as N € I({l’Ll'Lm}) and as 1 ¢ Ni’ by lemma 2.9.2, we must have that
either N, ¢ L, or N, ¢ L_. Contradiction.
i 2 i m

Now, IAil > 3 for all i € {1,2,3}; therefore
A1 n A2 n A3 # @.

Take m € A, n A, n A,. Then N, ¢ L for all i € {1,2,3} and as L_ € X this
1 2 3 i m m

is a contradiction.

CLAIM 3. X is not supercompact; it is not even the continuous image of a

supercompact Hausdorff space.

Assume that T is a binary closed subbase for X. We assume that T is
closed under arbitrary intersection (cf. lemma 0.5). Let A ¢ P(W) \{1}) be

an uncountable almost disjoint family of infinite sets which satisfies:

For each uncountable B c A there is a B ¢ B and an
() infinite C < B\{B} such that C n C' ¢ B for all distinct
c,c' ¢ C.

There is such an almost disjoint family, cf. 1.1.14 and lemma 1.1.15.

For each infinite B c© N, the set B+ n X is clopen in X and consequent-
ly, since T is closed under arbitrary intersection, there exists a finite
F c T such that BY n X = UF (cf. 0.3). Therefore there exists an T(B) e T
such that T(B) c B+ n X and T(B) n B is infinite.

As {T(a) n A I A ¢ A} is an uncountable collection of subsets of

N\{1} there is an n. € N\{1} such that A1 ={aeA | n, € T(A) n A} is

0

uncountable. Take an Aj € A1 and an infinite C c Al such that

.
cnCcC C:AO

for all distinct C,C' € C. Then
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{T(c) n ((W\{1}) \AO)+ nx|cecC}

is an infinite disjoint collection nonvoid subsets of ((IN \{1})\AO)+ n X.
As this latter set is clopen in X, there is a finite F ¢ T such that

UF = (N \{1}\A0)+ N X. Choose a T € F such that T intersects both T(C)
and T(C') for certain C,C' € C (C # C'). Then

L = {T,T(C),T(C")}

is a linked system with a void intersection. That L is indeed linked is

trivial since no € T(C) n T(C'). But

nL

T n T(C) n T(C')

n (AT act et nx

@,

since ((N\{1h\ay) n cnc'c (MA{1)\ay) 0 3

neither contains 1. Contradiction.

c (]N\AO) nA. =@ and

0 0

The assertion that X is not the continuous image of a supercompact

space can be shown using the same technique, cf. proposition 1.1.16. 0O

REMARK. The proof of claim 3 of the above example is a simple modification

of the technique used in the proof of proposition 1.1.16.

2.9.4. In section 2.8 we defined two subspaces o(N) and L(IN) of AN
which are, in some sense, related to the space X constructed in example
2.9.3. The spaces (W) and I(IN) both have a void intersection with I,
but both contain BIN \IN. Therefore o(IN) U IN and Z(N) u N are closed in
AN. This suggests the question whether the spaces (W)U N and I(N)u IN
have the same properties as example 2.9.3 (recall that Nc BIN < X!).

For 0(IN) u IN this is disproved in the next proposition; Z(IN) u N is
more difficult to treat, however, it can also be shown that it differs in

compactness type from X.

2.9.5. PROPOSITION.

(i) o(N) and I (IN) are supercompact;

(ii) o(WN) u N is supercompact; in fact o(N) U N ® A(N),H) where
H={McwN| IM=1vV M| =u};

(iii) Z(IN) U N is not supercompact;
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(iv) the subbase T := M 0 (o(mu W) | M ¢ N} for o(N) u IN has the
property that for each n 2 3 there is an F ¢ T with |F| = n and
NF = @ while N(F\{F}) # @ for all F ¢ F;

(v)  the subbase V := {M' n (Z(N)u N) | M ¢ N} for I(N)u IN has the

same property as T.

PROOF. (i) The supercompactness of o(IN) follows from (ii). That I(N) is
supercompact was shown in theorem 2.8.2 (iii).

(ii) Define a mapping ¢: A(N,H) — AN by ¢ (M) := M (it is easy to see
that an mls M ¢ H is also an mls in P(IN)). The simple proof that ¢ is an
embedding and that ¢[A(N,H)] = o(IN) u N is left to the reader.

(iii) This can be proved using the same technique as in example 2.9.3
claim 3. Under P(C), we will give another proof, which uses theorem 1.1.5.
Assume that IZ(IN) u IN were supercompact. Then, by theorem 1.1.5, at most
countably many points of BIN\IN are not the limit of a nontrivial conver-
gent sequence in I(IWN) u IN. As no sequence in IN converges it follows that
at most countably many points of BIN\IN are not the limit of a nontrivial
convergent sequence in I(IN). Under P(c), there are 2c Pc-points in BIN\IN
(VAN DOUWEN [40]). It is easy to see that a Pc—point in BIN\IN is also a
Pc—point in Z(IN). But a Pc—point is not the limit of a nontrivial con-
vergent sequence. Hence there are 2c points in BIN\NWN which are not the
limit of a nontrivial convergent sequence in I (IN). Contradiction.

(iv) Fix n > 3 and define F := {({1,2,...,a)\{iD¥ | i < n}. Then |F| = n
and NF n (o(N) u W) = @ while N(F\{F}) n (6(N) \IN) # @ for all F ¢ F,
as can easily be seen.

(v) This can be proved in the same way as in (iv). O

2.10. Subbases, convex sets and hyperspaces

In this section we will study the operator IS’ defined in 1.5.1. We
do not restrict ourselves to binary normal subbases. For any topological

space X and for any closed subbase S for X we define
Iga) :=N{seS | ac s}

for all A ¢ X (an empty intersection will represent, by convention, the
whole space X). The set IS (a) is called the S-closure of A, or, the

S-convex closure of A. By definition, H(X,S) will denote the space of all
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nonvoid S-closed sets, endowed with the subspace topology of 2x.

We are interested in compactness properties for the spaces H(X,S).
Our main result in this section is that if X is a compact space and if S
is a normal Tl—subbase which is closed under arbitrary intersection, then
H(X,S) is compact if and only if H(X,S) is a retract of 2X, and also if
and only if the map IS: 2x — H(X,S) (which sends each closed set A c X
onto its S-closure) is a retraction.

‘We first prove that if S is a binary normal subbase for X then H(X,S)
is compact though establishing that the closure operator IS is a retrac-
tion. This fact then is used to obtain the general compactness result
cited above.

The results in this section are taken from VAN MILL & VAN DE VEL [82].

We start with the following remarkable result:

2.10.1. THEOREM. Let S be a binary normal subbase for X. Then the operation

of intersecting two S-closed sets is continuous.

PROOF. First notice that X is normal, being compact and Hausdorff (cf.

2.2.4 (iii)). Let
A c H(X,S) x H(X,S)

be the subspace of all pairs (A,B) such that A n B # #. We have to show
that the mapping

‘n: A — H(X,S)

assigning to (A,B) € A the S-closed set A n B, is continuous. We shall use
the open subbase of 2X, consisting of all sets of type <0> or <0,X>,
where O ¢ X is open.

Assume first that (A,B) ¢ A and that O ¢ X is an open set such that
A n B © 0. A straightforward argument, using the normality of X, then

shows that there exists a neighborhood V., of A and a neighborhood V, of B,

in 2x, such that (Voxvl) n A is mapped igto <O0> by the intersection
operator.

Assume next that A n B n O # § for some pair (A,B) ¢ A and for some
open set O ¢ X. Let x ¢ A n B n O. Since S is a normal Tl—subbase (cf. 0.4)
there are Syre--sS, € S such that

n n
X € int N S,)J]ec N S, coO.
X \i=1 i i=1 1
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Hence (<ﬂ?= Si,x> X <n2= Si,X>) n A is a neighborhood of (A,B) and for

1 1
each pair (A',B') in this neighborhood the system {AI’B"Sl""’Sn} is

linked. Hence, by binarity of S, also

N S, naA' nB'#@.
i=1 i

,X>)nA.. O
1

It follows that A’ nB' nO=@for all (A',B') € (<N]_ .

n
S, ,X>x <1,
171’ n1=

2.10.2. It can easily been deduced from theorem 2.10.1 (or proved direct-
ly with the above method) that n-fold intersection is also continuous on
the hyperspace of S-closed sets, associated to a normal binary subbase S.
The contimuity of the 2-fold intersection operator - even in one
variable at the time - seems to be fairly exceptional in hyperspaces, as

can be seen from the next example.

2.10.3. EXAMPLE. Let X be the unit 2-cell. For each t € [0,7] we let
Ft € 2x be the line segﬁent joining 0 and elt (regarding X as a subspace
of the complex mumbers). The mapping

F: [0,7] — 2%,

sending t onto F_ obviously is continuous. The map

t

G: FL[0,7]] — 2%

assigning to Ft the set FTr n Ft’ is not continuous, since the image of

G ° F consists of the two points {0} and F_of X, 0

Before passing to general normal subbases, we need one other theorem
dealing with binary normal subbases. We begin with the following auxiliary

result (compare lemma 1.5.10).

2.10.4. LEMMA. Let S be a binary normal subbase for the topological

space X. For each n 2 2 the mapping f: Xn+1 — X, which sends an (n+l)-

n+l

. . , n
tuple (x,xl,...,xn) € X onto the unique point in ﬂi=1 Is(x,xi) n

n IS({xl""’xn})’ is continuous.

PROOF. The uniqueness of f(x,xl,...,xn) is a consequence of theorem 1.5.2.
To prove the continuity, let S € S and let (X,XI:---,Xn)G Xn+1\f—1[S].

Then
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n
121 IS(XlXi) n I({xlr---lxn}) ns-= ¢I
and S being binary, we have that either IS(x,xi) nsS=¢ for some i < n,
or that IS({xl""’xn}) ns=g@g.

In the first case, using the normality of S, there is an S, € S

0
such that

Is(x,xi) c intx(SO) c S, < X\s.

0

Let nj: Xn+1 —> X denote the projection mapping onto the jth coordinate.

Then
U =M int (5.)] n M ‘Lint (S.)]
0 X0 i X'"0

is a neighborhood of (x,xl,...,xn) which does not meet f—l[S]. For, if

(y,yl,...,yn) € U, then {y,yi} c intx(so) < Sy whence
f(Y,yl,...,yn) € Is(y,yi) c s0 c x\s.

In the second case one can proceed in the same way. First, choose

Sy € S such that

IS({x,xl,...,xn}) c intx(so) c s, c xX\s.

0

Then, let U := n?=1 n;1[intx(so)]. This set is a neighborhood of

(x,xl,...,xn) not meeting £ [s]. 0O

2.10.5. THEOREM. Let S be a normal binary subbase for the topological
. X
space X. Then the map IS: 2X — H(X,S) is a continuous retraction of 2

onto H(X,S) (in particular H(X,S) is compact).

PROOF. For simplfication of notation, write r = IS' Let us prove that r
-1
is continuous. Fix an open set O ¢ X and assume first that A € r "[<0>].
Then IS(A) c 0. Since X is compact and since S is a closed subbase, there
exists Sij € S (i,3 < n, n € w) such that
N0« U N s, cX\Ig(A).
i<n j<n 13
Since S is normal and binary, we have that the collection of S-closed

also is normal (cf. 0.5). For each i < n, we therefore can choose Ti e S

such that
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(a) c intx(Ti) c Ti c X\ jgn Sij'

Ig

Define Z := N, T.. Then Z is S-closed and
i<n "1

IS(A) c intx(Z) c Zco.

For each A' € <Z> we have that IS(A') c Z2 c O, proving that <2> is a
neighborhood of A which is mapped by r into <O>.
Assume next that A € r_1[<0,x>]. Choose p € IS(A) n oO.

CLAIM 1. {p} =n (p,a).

aeA IS

Indeed, choose z € N (p,a) such that z # p. By the fact that

aeA IS
S is a normal Tl—subbase (cf. 0.4), there are SO,S1 € S such that
z € SO\Sl’ p € Sl\S0 and SO U S1 = X. Now if A n s1 = @ it would follow
that

A c IS(A) c SO'
which is a contradiction since p € IS(A). Therefore, there is an

ao e An Sl. But then

which also is a contradiction since z ¢ Sl'
By claim 1, and by the compactness of X there exist finitely many
a, € A (1 £n, n € w such that
N Is(p,a,) c oO.
isn S Pray

Consequently, using the notation of lemma 2.10.4,
{f(Plaolall---ran)} = ign Is(ai,p) n IS({ao,al,...,an}) c 0.

By the continuity of £, cf. lemma 2.10.4, there exist open neighborhoods
Vi of‘ai (i £ n) such that f(p,aé,ai,...,aﬂ) € O for all n+l-tuples

(aé,ai,...,aﬁ) e Vi' Hence, the set <V0,V1,...,Vn,x> is a neighbor-

i<n
hood of A ¢ 2x, which is mapped by r into O. For take B € <V0,V1,...,Vn,x>

and choose bi € Bn Vi (i £ n). Then

g # ign Is(Prbi) n IS({bolbll---rbn}) cO0n IS(B)I
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since {bO'bl""’bn} c B. In particular, O n IS(B) # @, or, equivalently,
r(B) € <0,X>.
Finally, clearly r(C) = C for each S-closed set C, proving that r

is a retraction. [

2.10.6. CURTIS & SCHORI [36] have shown that C(X), the space of all sub-
continua of X, is a Hilbert cube factor (that is, a space of which the
product with the Hilbert cube is homeomorphic to the Hilbert cube) if
and only if X is a Peano contimium. In particular, this implies that C(X)
is a retract of 2x. Theorem 2.10.5 implies that for the class of dendra,
a subclass of the class of all Peano continua, such a retraction can be
explicitly described. For, the collection of subcontinua of a dendron X
is a binary normal closed subbase for X (in theorem 1.3.21 it was shown
that the collection of complements of segments of a compact tree-like
space is a binary normal subbase. As each connected closed subset A of

a compact tree-like space X is the intersection of all complements of
segments containing A, it follows that the collection of subcontinua of

X is also a binary normal subbase).

We now can prove the following compactness theorem for normal sub-

bases.

2.10.7. THEOREM. Let X be a compact space and let S be a normal Tl-subbase
for X which is closed under arbitrary intersection. Then the following

assertions. are equivalent:

(i) H(X,S) is compact;

(ii) the map Is is a retraction of 2X onto H(X,S);
(iii) H(X,S) is a retract of ZX;

(iv) regarding X as a subspace of its superextension A(X,S), the opera-

tion of intersection with X yields a continuous mapping
+ +
H(A(X,S),S) > S'\{g} — H(X,S);

(v) H(X,S) has a closed normal T, -subbase consisting of all sets of type

1
<s> n H(X,S), or, <S,X> n H(X,S) (s e S);

(vi) IS is continuous on the space of all finite subsets of X, and in
addition a nonempty closed set A ¢ X is S-closed iff for each

finite F ¢ A also IS(F) c A.
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The implications (ii) = (iii) = (i) are obvious, using the fact that 2X is
compact (cf. MICHAEL [75]). We shall prove the following statements:

(i) = (ii) and (iv); (iv) = (i) = (v) = (iv); (i) <« (vi). We assume
throughout that @ ¢ S (and hence that @ ¢ S+), allowing us to identify S

with H(X,S), since S is closed under intersection.
PROOF. (i) = (ii) and (iv). Let g denote the composed mapping

; Ig+
X i, xS ST H(A(X,9),8h),

where i sends A ¢ X onto A ¢ A(X,S); let h be the restriction of g to
S = H(X,S). It is easy to see that h[S8] c S* and that h has a two-sided

inverse, which is the mapping
enx: St — S

+ + +
which sends S ¢ S onto S =S n X € S. By theorem 2.10.5, the map g
(and hence h) is continuous. Since S is compact and Hausdorff, h is a
+
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