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PREFACE 

In this treatise we mainly discuss supercompact spaces and super­

compact superspaces of arbitrary topological spaces. The class of super­

compact spaces was defined by DE GROOT [54J. This class naturally arose 

from investigations of DE GROOT & AARTS [57J on complete regularity and 

compactification theory. 

The last years many people became interested in this part of the 

mathematical inheritance of DE GROOT (for a beautiful exposition of 

i 

DE GROOT's topological works see BAAYEN & MAURICE [10J or BAAYEN [8J). 

Many conjectures of DE GROOT are proved now, new techniques have been 

developed and it is the author's expectation that this is still the begin­

ning. Some of the best·results of the last years are that 

a) every compact metric space is supercompact (cf. STROK & SZYMANSKI [116J); 

b) alN is not supercompact (cf. BELL [14J); 

c) every compact metric space is regular supercompact (cf. VAN DOUWEN [42J); 

d) supercompact spaces can be characterized by means of interval structures 

(cf. SCHRIJVER [24J,[81J); 

e) every connected space with a binary normal subbase has the fixed point 

property for continuous functions (cf. VAN DE VEL [118J). 

This treatise consists of five chapters. In chapter 0 we present some 

notational conventions, some definitions and some simple results which are 

collected for easy reference throughout the remaining part of this mono­

graph. Chapter I is captioned "supercompact spaces"; here we discuss super­

compact spaces in general. The next chapter deals with superextensions, 

which are natural supercompact superspaces of topological spaces. Super­

extensions are constructed in about the same way as Wallman compactifica­

tions; we regard superextensions as (generalized) Wallman spaces. Chapter 

III contains the main results; among others, we show that the superexten­

sion of the closed unit interval is homeomorphic to the Hilbert cube, which 

proves a conjecture of DE GROOT [59J. The results of chapter IV deal with 

compactification theory. A final chapter is added to give a survey of some 

recent results. 

Throughout this treatise, SCHRIJVER's interval structures are used 

extensively. Many good ideas are also taken from VERBEEK [119J. 
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CHAPTER 0 

BASIC CONCEPTS 

This short chapter contains some notational conventions and some 

simple facts for easy reference. In [A] some general remarks about sub­

bases are made. Then, in [B], [C] and [D] we collect some notions from 

topology; our notation is standard, cf. DUGUNDJI [44], ENGELKING [48]. 

[A] General remarks about subbases 

In this treatise all topological spaces under discussion are assumed 

to be T1 . If in a statement we write Hausdorff then this is to indicate 

that it is used essentially in the proof of the statement. 

A compactification of a topological space X is a compact Hausdorff 

space aX in which X can be densely embedded. At two places we deviate 

from this convention, namely in the notes following theorem 2.2.4 and in 

corollary 2.2.6. 

We often deal with subbases. A collection of closed subsets S of a 

topological space X is called a closed subbase provided that for each 

closed set A c X and for each point x i A there is a finite F c S such 

that x i uF ~ A. If S is a closed subbase for X then U = {X\S S E S} 

is called an open subbase. In this treatise "subbase" will always mean 

"closed subbase". 

0.1. LEMMA. Let X be a compact topological space and let S be a collection 

of closed subsets of X such that for all distinct x,y E X there is "an 

S E S such that xis and y E intx(S), Then S is a subbase for X. 

PROOF. Let A be a closed subset of X and let x E X\A. For each a E A let 

Sa E S such that x i Sa and a E intx(Sa)' By the compactness of X there 

is a finite F c A such that A c UaEF Sa" Clearly x i UaEF Sa' 0 

Let S be a collection of subsets of a set X. We will write v.S for 
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the family of finite unions of elements of S and A.S for the family of 

finite intersections of elements of S. The family A.V.S = V.A.S is closed 

both under finite intersections and finite unions; it is called the ring 

generated by S. If X is a topological space then S is called a separating 

ring provided that S is a subbase and that S = A.V.S. In addition, S is 

called normal provided that for all SO,Sl € S with So n Sl = ~ there are 

So,Si € S with So C SO\S1' Sl C Si\So and So U Si = X. A normal base is a 

normal separating ring; a normal subbase is a subbase which moreover is 

normal. 

0.2. LEMMA. Let X be a compact topological space and let S be a subbase 

for X. Then for all disjoint closed sets AO,A1 C X there are disjoint 

TO,T1 € A.V.S such that Ai C Ti (i € {0,1}). 

PROOF. Let F := {T € A.V.S AO C T}. Then, since F is closed under finite 

intersections, the compactness of X implies that some member Fa € F does 

not intersect A1 • Similarly one can choose F1 € A.V.S such that A1 C F1 

and F1 n Fa =~. 0 

0.3. COROLLARY. Let X be a compact topological space and let S be a sub­

base for X which is closed under finite intersections. Then for all clopen 

subsets A C X there is a finite FA C S such that A = UFA. 0 

A subbase S for a topological space X is called binary provided that 

forall L c S with nL ~ there are LO,L1 E L with La n L1 ~. In addition, 

the subbase S is called a T1-subbase if for al1 x € X and S € S with 

x t S there is an So € S with x EO So and So n S ~. 

0.4. LEMMA. A binary subbase is a Tt-subbase. 

PROOF. Let S be a binary subbase for X. Let S E S and let x E x such that 

xiS. Since X is a T1-space, there is an F c S such that {x} nF. Then 

nF n S = ~ and consequently, by binarity of S, there is an F E F such that 

F n S =~. 0 

A space which admits a binary subbase is called supercompact. The 

proof of the following simple lemma is left to the reader. 

0.5. LEMMA. 

(i) Any product of supercompact spaces is supercompact; 



(ii) a space X admits a binary (normal) subbase iff it admits a binary 

(normal) subbase closed under arbitrary intersections. 0 

The following lemma is used frequently in the sequel. 

0.6. LEMMA. Let S be a normal T l-subbaSe for X. Then for all distinct 

xO,xl € X there are 50 ,51 € S such that Xo € 50\51 , xl € 51\50 and 

50 u 51 X. 

PROOF. Obvious. 0 

[B] 50me conventions 
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A cardinal number is an initial ordinal number, and an ordinal number 

is the set of all smaller ordinal numbers; the symbol w denotes the least 

infinite cardinal and e is 2w. If we want to index a set X of cardinality 

K we usually write X = "{xa I a € K} or X = {xa 
A is indexed as A = {a I a € w} or as A = {a a n 

a < K}. A countable set 

n € IN}; here IN denotes 

the set of natural numbers. The cardinality of a set X is denoted by Ixl; 
its powerset by p(X). 

The domain of a function f is dom(f). If A and B are sets, then AB 

is the set of all functions from A to B; recall that each f € AB is a sub­

set of AX B. If f € AB then if C c A then f ~ C denotes the restriction of 

f to C. 50 if f ,g € AB then f c g means f = g ~ dom(f) • 

If Xa (a € K) are sets then "a€K Xa denotes their cartesian product. 

In addition, X~ or XW is the product of countably many copies of X. 

Let S be a collection of subsets of a set X; then for any A c X we 

write S n A = {5 n A I 5 € S}. 

[C] 50me definitions 

We recall some definitions. 

(a) For any topological space X, let 

C(X) := {f € XlR f is continuous}; 

* C (X) := {f € C(X) f is bounded} ; 

C(X,I) := {f € * C (X) f[X] c I = [0,1]}. 
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* (b) If Y c X then Y is called C -embedded in X provided that for any 

* * f € C (Y) there is a g € C (X) such that g ~Y = f. 

(c) A zeroset in X is a set of the form {x € X I f(x) = a} with f € c*(X). 

A cozeroset is the complement of a zeroset. 

Define Z(X) := {Z c X I Z is a zeroset}. It is well known that Z(X) 

is a normal base iff X is a Tychonoff space and that Z(X) is closed 

under countable intersections. 

(d) An F-space (cf. GILLMAN & JERI SON [52J) is a space in which every 

cozeroset is C*-embedded. It is known that 8X\X is an F-space if X is 

a noncompact locally compact and a-compact topological space (cf. 

GILLMAN & JERISON [52J). 

(e) A pseudocompact space is a space for which every real valued contin­

uous function is bounded. 

(f) IF A c X then aA denotes the boundary of A, i.e. aA 

(g) Arcontinuum is a compact connected Hausdorff space. 

(h) A Peano continuum is a compact connected and locally connected metriz­

able space. It is well known that the class of Peano continua coincides 

with the class of continuous images of the closed unit segment [O,lJ. 

(i) The Hilbert cube 100 is the topological product of countably many copies 

of the closed unit segment I = [O,lJ. 

A Hilbert cube is a topological space which is homeomorphic to the 

Hilbert cube. 

Q denotes the countably infinite product of copies of [-l,lJ. Clearly 

Q is a Hilbert cube. Sometimes we will call Q also the Hilbert cube. 

The pseudo-boundary B(Q) of the Hilbert cube Q is {x € Q I 3i € IN: 

Ix. I = 1}. 
~ 

A pseudo-boundary is a subset A of the Hilbert cube Q for which there 

is an autohomeomorphism ~: Q + Q such that ~[AJ = B(Q). 

The pseudo-interior of Q is the complement of B(Q) . 

. A pseudo-interior is the complement of a pseudo-boundary. It is known 

that a pseudo-interior of Q is homeomorphic to ~2' the space of all 

square summable sequences in IR (cf. ANDERSON [3J). 

(j) An AR (Absolute Retract) is a space which is homeomorphic to a retract 

of Q. 



(k) If (y,d) is a compact metric space and if f,g: X+ Yare continuous, 

then the distance between f and g is defined by 

d(f,g) = sup{d(f(x) ,g(x» I x EO x}. 

(1) Let X be a topological space. We denote by 2X the collection of non­

void closed subsets of X. For all nonvoid Ai C X (i S n) define 

A A A 2x by < O~ 1"'" n> C 
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<AO,A1, ••• ,An> := {B EO 2X I Be UiSn Ai and B n Ai ,,¢ (i S n}. 

As a (closed) subbase for a topology on 2X we take the collection 

{<B> I B EO 2X} U {<B,X> I B EO 2X}. 

With this topology 2X is called the hyperspace of X. The space 2X is 

compact iff X is compact (cf. MICHAEL [75]) and moreover 2X contains 

a homeomorph of X; the mapping i: X ~ 2X defined by i(x) := {x} is 

easily seen to be an embedding. The spaces X and !Ex] are often 

identified. 

If f: X ~ Y is a closed continuous mapping, then there is a natural 

extension 2f: 2X -+ 2Y of f defined by 

2f (A) := f[A]. 

This mapping is easily seen to be continuous. 

[D] Set theoretic axioms 

In this treatise we assume the axiom of choice; the only exception is 

made in section 2.1. 
W The Continuum Hypothesis (CH) states that 2 = WI (the first uncount-

able cardinal); in section 2.8 only we have some results depending on CH. 

Martin's axiom (MA) (cf. MARTIN & SOLOVAY [74]) states that no compactccc 

Hausdorff space is the union of less than c nowhere dense sets. Clearly 

CH implies MA; however MA is weaker than CH (cf. SOLOVAY & TENNENBAUM [108]) 

and in particular it is consistent to assume MA and the negation of the 

Continuum Hypothesis (MA +iCH). Results depending on MA are to be found 

in section 1.2 and section 2.8; MA +iCH is used in example 2.8.28 only. 
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CHAPTER I 

SUPERCOMPACT SPACES 

The class of supercompact spaces - first introduced by DE GROOT [54J -

is easy to define, but in general it is hard to decide whether or not a 

certain space belongs to it. A topological space is called supercompact if 

it possesses a binary subbase for its closed subsets where a collection of 

subsets S of a set X is called binary if for each subsystem M c S with 

nM = ¢ there are MO,Ml E M such that MO n Ml = ¢. Equivalently a space X is 

supercompact if there is a subbase for its closed sets (a closed subbase) 

such that each linked subsystem (a Subsystem any two members of which meet) 

has a nonvoid intersection. Supercompactness of course can also be defined 

in a dual form: a space X is supercompact iff there is a subbase U for its 

open sets such that each covering of X by elements of U contains a subcover 

consisting of at most two elements of U. 

Clearly, by the lemma of ALEXANDER, each supercompact space is compact. 

In addition the class of supercompact spaces is closed under products. 

However closed subspaces of supercompact spaces need not be supercompact 

(cf. BELL [14J) and it is unknown whether Hausdorff continuous images of 

supercompact Hausdorff spaces are supercompact (VERBEEK [119J has given 

a simple example of a nonsupercompact Tl space which is the continuous 

image of a supercompact space) . 

Hausdorff continuous images of supercompact Hausdorff spaces are 

natural generalizations of dyadic spaces (Hausdorff continuous images of 

generalized Cantor discontinua). It is known that 

and 

every compact metric space is supercompact (cf. STROK & SZY~'lA..\ISKI 

[116J) 

if aX is the continuous image of a supercompact Hausdorff space 

then X is pseudocompact (cf. cor.l.l.7). 
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There are supercompact spaces that are not dyadic but we do not have an example of 

a dyadic space that is not supercompact. As a consequence of our results 

a compact infinite Hausdorff space in which no sequence converges is not 

the continuous image of a supercompact Hausdorff space. Thus BIN and 

/3IN\lN are not supercompact. We also present a "small" nonsupercompact 

compact Hausdorff space: there is a separable first countable compact 

Hausdorff space that is not the continuous image of a supercompact Hausdorff 

space (cf. also VAN DOUWEN & VAN. MILL [43J). 

As noted before STROK & SZYMANSKI [116J have shown that every compact 

metric space is supercompact (a simpler proof of this fact was given recent­

ly by VAN DOUWEN [42J). This theorem implies that every separable metric 

space admits at least one supercompact compactification. It seems reasonable 

to try to generalize this corollary for a larger class of spaces, for example, 

for the class of all separable semi-stratifiable spaces. Unfortunately this 

is not possible: we will show that Martin's axiom implies that there exists 

a countable stratifiable space no compactification of which is supercompact. 

Our example also shows that not every countable space admits a supercompact 

compactification, a result which is of independent interest. 

DE GROOT [55J, [56J and DE GROOT & SCHNARE [60J demonstrated that 

certain classes of supercompact topological spaces can be characterized by 

means of a binary subbase of a special kind. These results now can be 

derived using a more general method. We also discuss other classes of 

topological spaces which can be characterized by means of special binary 

subbases. As an application, using a result of ANDERSON [2J, we give a 

new internal characterization of the Hilbert cube Q (cf. also VAN MILL & 

SCHRIJVER [81 J) • 

An interesting subclass of the class of supercompact spaces consists 

of those spaces which possess a binary subbase which also is normal (two 

disjoint subbase elements are separated by disjoint complements of subbase 

elements). Such spaces are surprisingly nice, for example in this class of 

sp~ces connectedness implies local connectedness (cf. VERBEEK [119J) and 

(generalized) arcwise connectedness (see section 1.5) and the fixed point 

property for continuous functions (cf. VAN DE VEL [118J), while metrizabil­

ity and connectedness imply contractibility and local contractibility (see 

section 1.5). Moreover such a space is a retract of the hyperspace of its 

nonvoid closed subsets and a retract of its superextension. 
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1.1. Supercompact spaces 

In this section we study "topological properties" of Hausdorff contin­

uous images of supercompact Hausdorff spaces. Of course, being the contin­

uous image of a supercompact Hausdorff space is itself such a topological 

property. However we want properties which are easier to recognize. As a 

consequence of our results it will follow that a compact Hausdorff space 

in which no sequence converges is not the continous image of a super compact 

Hausdorff space. Several examples will be given. The results of this sec­

tion were obtained in collaboration with E. VAN DOUWEN, cf. [43J. 

1.1.1. Let X be a supercompact Hausdorff space which admits a continuous 

mapping, say f, onto the topological space Y. Let S be a binary closed 

subbase for x. Without loss of generality assume that S is closed under 

arbitrary intersection. For A c X define I(A) c X by 

I(A) := n{SES lACS}. 

Notice that clx(A) C I(A), since each element of S is closed, that I(I(A» = 

= I(A) and that I(A) C I(B) if A C B, for all A,B c X (the operator I defined 

in this way will play an important role in our investigations; see sections 

1.3, 1.5, 2.5, 2.6, 2.7, 2.10, 3.1, 3.2 and 3.4). 

1.1.2. LEMMA. Let p E x. If u is a neighborhood of p and if A is a subset 

of X with P E clx(A), then there is a subset B of A with P E clx(B) and 

I (B) cU. 

PROOF. Since X is regular, p has a neighborhood V such that clx(V) c u. 
Choose a finite F c S such that clx(V) c UF c U (lemma 0.2) . Now F is 

finite, and A It V c UF, and p E clx(A ltV); hence there is an S E F with 

P E clx(AltVltS). Let B:= A It V n S. Then p E clx(B), and B c A, and 

I(B) eSc UF c u. 0 

1.1:3. DEFINITION. If T is a subspace of Y, a family A of subsets of Y is 

called a network for T in Y, if for each pET and each neighborhood U of 

p in Y there is an A E A with pEA c U (if T = Y, then A simply is a net­

work for Y). 

1.1.4. LEMMA. Let Y be a Hausdorff space which is a continuous image of a 

supercompact Hausdorff space. If K is any countable infinite subset of Y, 



10 

then the subspace 

E := {YEY Y E cly(K\{y}), and no nontrivial sequence 

in Y converges to y} 

of Y has a countable network in Y. 

PROOF. Let X be a supercompact Hausdorff space X with binary subbase S; 

without loss of generality we may assume that S is closed under arbitrary 

intersection. Suppose there is a continuous surjection f: X + Y. Choose 

any countable subset J of X such that f[J] = K. Since J has only countably 

many finite subsets, the family 

A := {f[I(F)] I F is a finite subset of J} 

is countable. We claim that it is a network for E in Y. 

Let y E E be arbitrary, let U be any neighborhood of y in Y, and let 

J* := J\f- 1[{y}]. 

Since f is a closed map (Y is Hausdorff), and f[J*] = K\{y}, and 

* . y E cly(K\{y}), there ip an x E clx(J ) W1th f(x) = y. Then lemma 1.1.2 

implies that there is aBc J* such that x E clx(B) and I(B) c f- 1[U]. 

We will show that there is a finite FeB such that y = f(x) E f[I(F)]. 

Since y and U are arbitrary, and f[I(F)] c f[I(B)] c U, it would follow 

that A is a network for E in Y. 

Enumerate B as {bk k E w}, and for each nEW define Zn and Tn by 

CLAIM. There is an nO E W such that f[Zn] = {y} for all n ~ nO. 

Indeed, first observe that nb I({x,b}) = {x}. Evidently x E I({x,b}) EB 
for all b E B. Let t E X\{x} be arbitrary. By lemma 1.1.2 there is a 

C c B such that x E clx(C) and I(C) c x\{t}. Choose any b E C. Then 

t i I({x,b}), since {x,b} c clx(C) c I(C), which implies that 

I({x,b}) c I(I(C)) =I(C). 

To proceed with the proof of the claim, notice that, since x E clx(B) c 

cI(B), it follows from the fact that nb I({b,x}) = {x} that n T = {x}. 
EB nEW n 
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But Zn C Tn for each n € w, and {Tn n € w} is a decreasing collection of 

closed sets in a compact space, hence 

if V is any neighborhood of x in X, then there is an 

mO € w such that Zk C V for all k ~ mO· 

Now assume the claim to be false. Then for each k € W there is a z(k) ~ k 

with f[Zz(k)] F {y}. But Zn F ~ for all n € w since S is binary (this is 

the only point in the proof where ·we use the fact that S is binary). Con­

sequently, for each k € W we can choose a Yk € f[ZZ(k)]\{Y}. Then the 

sequence <Yk>k converges to y. Indeed, let U be any neighborhood of y = f (x) • 
€w -1 

Then there is an mO € w such that Zk C f [U] for all k ~ mO. Since z (k) ~ k 

for all k € w, it follows that Yk € U for all k ~ mO. Since Yk F Y for all 

k € w, this contradicts Y € E. 

Now define F := {bk I k S nO}' where nO is as in the claim. Then F is 

a finite subset of J such that y € f[I(F)] cU. 0 

Now we can formulate the main result of this section. 

1.1.5. THEOREM. Let Y be a Hausdorff space which is a continuous image of 

a supercompact Hausdorff space, and let K be a countably infinite subset 

of Y. Then 

(a) at least one cluster point in K is the limit of a nontrivial convergent 

sequence in Y (not necessarily in K), and 

(b) at most countably many cluster points of K are not the limit of some 

nontrivial convergent sequence in y. 

~. Let Y and K be as in theorem 1.1.5 and let E be as in lemma 1.1.4. 

We will first show that E is countable. Let A be a countable network for 

E in Y. In order to show that E is countable it suffices to show that for 

each p € E there is a finite F C A such that nF 
p p 

{p}, since A as only 

countably many finite subfamilies. 

, Let p € E be arbitrary. List {A € A I p € A.} as {An I n € w}. We claim 

that n.< Ai= {p}··for some n € w. For assume not. Then we can pick for each 
~_n 

n € w an an € (niSn Ai)\{p}. Since each. neighborhood of pin Y contains 

some An' it follows that the sequence <an>n€w converges top. Since an F p, 

for all n € w, thi.s .contradicts p € E. 

We next show that (a) holds. Suppose not. Then cly(K) = K U E, hence 

cly(K) is countable. But each compact countable Hausdorff space is metriz-
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able, hence each cluster point of K is the limit of a nontrivial convergent 

sequence of points in K. Contradiction. 0 

1.1.6. COROLLARY. i3lN, and i3lN\rn and i3JR\JR, or, more generally, any infinite 

cowpact Hausdorff F-space, or, yet more generally, any infinite compact 

Hausdorff space in which no sequence converges, cannot be a continuous image 

of a supercompact Hausdorff space. 

1.1.7. COROLLARY. If i3X is the continuous image of a supercompact Hausdorff 

space, then X is pseudocompact (cf. also M. BELL [14J). 

PROOF. If X is not pseudocompact, there is a continuous f: i3X + JR such that 

f(x) > 0 for all x € X, while f(x) = 0 for some x € i3X\X. Let 
-1 

lin; Y := f [(O,oo)J and for each n ;:: 1 pick Pn € Y with f(Pn) < let 

P := {Pn I n;:: 1}. Then Y is a-compact, and P is a countably infinite subset 

of i3X all cluster points of which are in i3X\Y. In view of theorem 1.1.5 it 

now suffices to observe that no point of i3X\Y is the limit of a nontrivial 

convergent sequence in i3X. For completeness sake, we give the (known) proof. 

Suppose that p € i3X\Y is the limit of a nontrivial convergent sequence. 

Then there is a countably infinite D c i3X such that (*) every neighborhood 

of p contains all but finitely many points of D, while also p i D. Then 

D is closed and discrete in D U Y. But D U Y is normal, being a-compact, 

and i3 (D U Y) = i3X since XeD U Y c i3X; hence D is c* -embedded in i3X. This 

contradicts (*). 0 

Theorem 1.1.5 suggests some questions we can not answer at the moment. 

1.1.8. QUESTION. Let Y be a Hausdorff continuous image of a supercompact 

Hausdorff space (or even a supercompact Hausdorff space). If K is a count­

able subset of Y, then is every cluster point of K the limit of a nontrivial 

convergent sequence in Y? Equivalently, is a point of Y the limit of a non­

trivial convergent sequence iff it is a cluster point of a countable subset 

of' Y? 

1.1.9, QUESTION. Is there a nonsupercompact Hausdorff space which is a con­

tinuous image of some supercompact Haudorff space? 

We do not even know the answer for irreducible maps or for retrac­

tions. Indeed, we do not even know if X x Y supercompact implies that X and 



Yare supercompact. 

1.1.10. QUESTION. Is there a nonsupercompact Hausdorff space X and a 

Hausdorff space Y such that X x Y is supercompact? 
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We know that the answer to the above question is affirmative if we 

replace "supercompact" by "having a normal binary subbase". SZYMANSKI [117J 

recently has given an example of a (compact metric) AR which admits no 

binary normal subbase. However, by a recent result of EDWARDS [45J, each 

AR is a Hilbert cube factor, that is a space whose product with the Hilbert 

cube is homeomorphic to the Hilbert cube. Hence SZYMANSKI's [117J example 

multiplied with the Hilbert cube admits a binary normal subbase. 

With respect to question 1.1.9 we only have the information that 

VERBEEK's [119J example cited in the introduction of this chapter is the 

continuous image of a supercompact Hausdorff space. 

Corollary 1.1.7 generalizes the fact that X is pseudocompact if ax is 

dyadic (recall that a dyadic space is a Hausdorff continuous image of some 

product of a family of two-point discrete spaces). Corollary 1.1.6 was also 

(essentially) known for dyadic spaces, cf. ENGELKING & PELCYNSKI [50J, 

footnote 2; see also ENGELKING [47J theorem 1.5. This suggests which other 

theorems on dyadic spaces generalize. None of the theorems on dyadic spaces 

recorded in EFIMOV & ENGELKING [46J, ENGELKING [47J or ENGELKING & PELCYNSKI 

[50J which are not related to corollary 1.1.6 or 1.1.7 can be generalized 

for Hausdorff continuous images of supercompact Hausdorff spaces, see the 

examples below, with the possible exception of the theorem that closed 

Go-subspaces of dyadic spaces are dyadic ([50J, theorem 2). This leads to 

the following question. 

1.1.11. QUESTION. Is a closed Go-subspace of a supercompact Hausdorff space 

supercompact? a continuous image of a supercompact space? 

We now sketch some examples. Note that the first three of our examples are 

compact linearly orderable spaces, while all four are supercompact. 

1.1.12. EXAMPLES. (a) The Alexandroff double arrow line A, i.e. 

[O,lJ x {0,1}\{<0,0>,<0,1>}, topologized by the lexicographic order. 

If TT: A+ [O,l] is the "projection", then TT is a continuous surjec­

tion, yet there is no (closed) metrizable MeA with TT[MJ = [O,lJ, cf. 

[50J, cor. on p.56. Also, A is a nonmetrizable supercompactification of 
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a metrizable space (any countable dense subspace), cf. [50J appendix, 

and A is first coutanble but not second countable, cf. [46J, theorem 4. 

(b) w1 + 1, the space of all ordinals less than or equal to w1• 

The point w1 is not the limit of a nontrivial convergent sequence in 

w1 + 1, cf. [47J, cor. 2 to theorem 1.5. (Note however that theorem 1.1.5 is 

a partial generalization of the theorem that every non-isolated point of 

a dyadic space is the limit of a nontrivial convergent sequence.) 

(c) An Aronszajn line. 

An Aronszajn line, L, can be constructed from an Aronszajn tree in the 

same way one constructs a Souslin line from a Souslin tree, cf. RUDIN [97J. 

It is known that there is a collection {U a < w1 } of dense open sets in 
a 

L such that U :::J Us if a < /3, and n U !/I. SO [46J theorem 3 does not 
a a<wl a 

generalize. 

(d) The Alexandroff double D of the product P = {O,l}C (see ENGELKING [49J). 

The underlying set of D is P x {0,1}. Points of P x {O} are isolated 

in D. A basic neighborhood of <x,l> has the form U x {O,l}\{<x,O>}, where 

U is a neighborhood of x in P. 

It is a straightforward exercise to show that D is supercompact. Let 

B be any closed subspace without isolated points of P which is not the 

continuous image of a supercompact Hausdorff space, e.g. a homeomorph of 

SIN\lN. Then B x {0,1} is the closure of the open subset B x {O} of the 

supercompact space D, yet it is not supercompact, not even the continuous 

image of a supercompact Hausdorff space, since the "natural" map from 

B x {0,1} to B is continuous. 

1.1.13. Examples of compact Hausdorff spaces which are not supercompact, 

obtained from theorem 1.1.5, are not first countable and have cardinality 

at least 2C• This suggests two questions: are first countable compact 

Hausdorff spaces supercompact? and: are "small" compact Hausdorff spaces 

supercompact? These questions are answered in the negative by examples 

1:1.17 and 1.1.18. 

1.1.14. Let a be an ordinal less than or equal to w. We are interested in 
a . a 

2. An element of 2 can be considered to be an a-sequence of O's and l's. 

As usual we denote U n2 the set of finite sequences of O's and l's, by n<w 
~2. For each f € w2 we define 

I (f) := {g € ~2 I g c f}, 



the set of initial sequences of f; I(f) can be seen as the set of finite 

approximations to f. It is clear that 

(1) if f,g E w2 are distinct, then I(f) n I(g) is finite. 
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In other words, {I(f) I f E w2 } is an almost disjoint collection of subsets 

of the countable set ~2. 

The set T := ~2 u w2 , partially ordered by inclusion, is a tree (in 

the sense of JECH [66J), the so-called cantor tree, cf. RUDIN [98J. We give 

T the usual tree topology by using the set of all open intervals as a base. 

To be specific: points of ~2 are isolated, and a basic neighborhood of 

f E w2 contains f and all but finitely many points of I(f). The topological 

space T is first countable, and every subspace is locally compact, by (1). 

The set w2 can be viewed as a product of countably many two-point 

discrete spaces. Under the product topology w2 is nothing but the cantor 

discontinuum, a basis for this topology is 

{{f E w2 I f ~ g} I g E ~2}, 

as the reader can easily verify. We start with a simple but useful lemma 

on the almost disjoint family {I(f) I f E w2 }. 

1.1.15. LEMMA. Let G be any uncountable subset of w2 . Then there are a 

g E G and an infinite H c G\{g} such that I(h) n I(h ' ) c I(g) for any 

two distinct h,h ' E H (then also (I(h) u {h}) n (I(h ' ) u {hi}) c I(g». 

PROOF. In this proof we provide w2 with the topology of the Cantor dis­

continuum. Then G is an uncountable separable metric space, hence we can 

find a nonisolated point g in G. Basic neighborhoods of g in G have the 

form 

{h E G 3f E I(g) n n 2 f c h}, nEw 

hence we can find H = {h 
n 

nEW} c G\{g} such that 

min{k E W I g(k) f hn(k)} < min{k E W I g(k) f hn+l (k)} 

for all nEW. Then g and H are as required. 0 

This lemma implies the following 
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1.1.16. PROPOSITION. Let L c w2 be uncountable. Then no Hausdorff compac­

tification of the subspace ~2 u L of T is the continuous image of a super­

compact Hausdorff space. 

PROOF. Denote the subspace 1!12 u L of T by Z. Let aZ be any Hausdorff com­

pactification of Z. Let X be a supercompact Hausdorff space with binary 

subbase S and assume that there is a continuous surjection ~: X + aZ. 

Also assume that S is closed under arbitrary intersection. 
. -1 

For each g € ~2 choose an a(g) € ~ erg}]. If f € L then the set 

I(f) U {f} is open in Z and compact, hence it is clopen in aZ. Consequent-
-1 

ly ~ [I(f) u {f}] is clopen in X and hence it is the union of some finite 

subfamily of S (cf. lemma O. ). It follows that for each f € L we can choose 

an set) € S such that 

(2) and S(f) n {a(g) I g € I(f)} is infinite. 

Since L is uncountabl~ and 1!}2 is countable it follows that for some p € ~2 

the set 

G = {f € L I a(p) € S(f)} 

is uncountable. By lemma 1.1.15 there is a g € G and an infinite He G\{g} 

such that 

(3) (I(h)u{h}) n (I(h')u{h'}) c I(g) for distinct h,h' € H. 

Since (I(a)u{a}) n (I(b)u{b}) is finite for distinct a,b € w2 it follows 

from (2) and (3) that 

(4) {S(h)\~-I[I(g) u{g}] I h € H} is a disjoint collection of 

nonempty subsets of X. 

Since ~-tI (g) u {g}] is a clopen subset of X, so is its complement in X. 

I{ence X\(~-I[I(g) u {g}]) is the union of a finite subfamily of S. It now 

follows from (4) that there is an S € S with 

(5) 

such that there are distinct h,h' € H such that S intersects both S(h) 

and S(h'). But S(h) and S(h') intersect, since a(p) € S(h) n S(h ' ), con­

sequently {S,S(h) ,S(h')} is linked. However, it follows from (2), (3) and 
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(5) that 

S n S(h) n S(h') c S n (~-l[I(h)U{h}J) n (~-l[I(h')U{h'}J) 

S n ~-l[(I(h)U{h}J) n (I(h')u{h'})J 

c S n ~-l[I(g)J 

¢. 

This is a contradiction, since S is binary. D 

REMARK. This lemma is similar to the proof in BELL [14J. It was discovered 

independently, but only after learning about BELL's result (i.e. not every 

compact Hausdorff space is supercompact). 

Now we can describe the examples promised in 1.1.13. 

1.1.17. EXAMPLE. A separable first countable compact Hausdorff space which 

is not the continuous image of a supercompact Hausdorff space. 

We will describe a first countable Hausdorff compactification of 

T = ~2 u w2 • Then proposition 1.1.16 implies that this compactification is 

the desired example since it is not the continuous image of a supercompact 

Hausdorff space. The basic idea is to identify the points of the subset 

w2 of T with the isolated points of the Alexandroff double (cf. ENGELKING 

[49J) of the Cantor discontinuum, in the "natural way". It will be tech­

nically convenient to change the underlying set of T to {oJ x ~2 u 

{1} x w2 , and the underlying set of the Cantor discontinuum to {2} x w2 , 

if only to tell the two w2 's apart. 

Let K be {OJ x ~2 u {1,2} x w2 • We topologize K by assigning to each 

x € K a neighborhood base {U(x,n) I n € w}. For <i,k> € K define 

{

{<i,f>} if i 0; 

U«i,f>,n) = {<i,f>} u {<O,f~k> I k ~ n} if i 1; 

{<j,g> € K I j € 3, Hn c g}\U«1,f» ,0) if 2. 

The straightforward check that this is a valid neighborhood assignment 

for a Hausdorff topology is left to the reader. Note that the subspace 

{1,2} x w2 of K is the Alexandroff double of the Cantor discontinuum, and 

that {oJ x ~2 u {1} x w2 is a dense subspace of K which is homeomorphic 
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to T. Hence if K is compact proposition 1 .1 .16 will imply that K cannot be 

the continuous image of a supercompact Hausdorff space. 

It remains to show that K indeed is compact. For <i,f> € K let 

n(i,f) € w be arbitrary. We have to show that the open cover 

U = {U«i,f>,n(i,f)) I <i,f> € K} 

of K has a finite subcover. Since the subspace {2} x w2 (which is homeo­

morphic to the Cantor discontinuufu) is compact, there are for some p € w 

functions fO, •.. ,fp € w2 such that 

Uo = {U « 2 , f . > , n (2, f . )) I 0::; i ::; p} 
~ ~ 

covers {2} x w2 • Then Uo covers {1} x w2 , with possible exception of the 

points <l,fi >, 0 ::; i ::; p. Let 

U1 = {U«l,f.>,n(1,f.)) I O::;i::;p} 
1. 1. 

and define m by 

m := max{n(j,f.) I j € {l,2}, O::;i::;p}. 
1. 

A straightforward check shows that Uo u U1 covers all points of K with 

possible exception of the points of the finite set Uk 2k . It follows <m 
that U has a finite subcover. 0 

1.1.18. EXAMPLE. A separable compact Hausdorff space with w1 points which 

is not the continuous image of a supercompact Hausdorff space. 

Choose any subset L of w2 with cardinality w1• Then the subspace 

S = ~2 u L of T is a locally compact space with w1 points, hence the one­

point compactification of S has all properties required. 0 

1.1.19. We now show that examples 1.1.17 and 1.1.18 are close to being 

s~percompact. Note that if X is compact, then any open base for X consist­

ing of clopen sets is a closed subbase for X. 

1.1.20. PROPOSITION. Let E be ei ther example 1.1.17 or example 1.1.18, 

and let I be the (countable) set of isolated points of E. Then 

(a) E\I is supercompact; 

(b) E has a base B consisting of clopen sets such that for any A c B 
with nA = ¢ there are AO,A1 ,A2 € A with AOnA1nA2 = ¢. 



PROOF. We prove this for example 1.1.18 and leave the proof for example 

1.1.17 to the reader. Notice that (a) is trivial since E\I is the one­

point compactification D U {p} of a discrete space D. 

To prove (b), for f ELand nEW let 

B(f,n) := If} u H(w\n) 

and let 

T:= {B(f,n) I fEL, nEw}. 

Let 

U := {E\U{B (f ,0) I f E F} I Fe L is finite}. 
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Evidently U is a neighborhood base for the point p at infinity. Consequent­

ly B : = U u T u (92 is a base for E. Clearly the elements of Bare clopen. 

Let A be any subfamily of B such that AOnAlnA2 ~ ¢ for all A1 ,A2 ,A3 
E A. Define F and F by: 

F := {f E L I 3n E W B(f,n) E A} 

F := AnT. 

CASE 1: F = ¢. Then A contains a singleton or A c U which implies p E nA. 

CASE 2: IFI = 1. Let F {fl. Clearly, if U E U, gEL and g i U then 

B(g,n) n U = ¢ for all nEW. It follows that f E nA. 

CASE 3: I F I > 1. We claim that 

(*) there are B(a,p) and B(b,q) in F such that B(a,p) n B(b,q) nF. 

For any f,g E w2 we can define d(f,g) $ W by 

d(f,g) := max{a $ W 

Let'B(f,m) and B(g,n) be any two members of F with f ~ g. Then for any 

h E w2,if j ~ d(f,g) then B(h,j) can not intersect both B(f,m) and B(g,n). 

Since any two members of F intersect, it follows that 

p := max{n E W I 3hEF : B(h,n) En 

exists. Choose any a E F such that B(a,p) E F. Let 
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S := min{n E W I 3h E F : (h # a and d(a,h) = n)} 

and choose any B(b,q) E F such that d(a,b) = s. Since q ~ p one easily 

verifies that B(a,p) n B(b,q) c nF. This completes the proof of (*). 

Let j = d(a,b). Then a~j E B(a,p) n B(b,q), and if f E B(a,p) n B(b,q), 

then f a~i for some i ~ j. It is clear from the form of the members of 

U that U E U and a~j i U, then a~i iu for any i ~ j. Since AOnAlnA2 # ¢ 
for any AO,A1 ,A2 E A, it follows that a~j E nA. 0 

1.2. A countable stratifiable space no compactification of which is 

supercompact *) 

In section 1.1 we gave an example of a locally compact separable 

first countable space of cardinality w1 that admits no supercompact com­

pactification (see proposition 1.1.16 and example 1.1.18). It now is 

natural to ask whether there is a countable space without supercompact 

Hausdorff compactification. Obviously such a space cannot be first count­

able, since a (regular) first countable countable space is metrizable and 

has an orderable compactification. By the same argument the example cannot 

be locally compact. Under MARTIN's axiom there exists a countable space 

with only one nonisolated point which admits no supercompact Hausdorff 

compactification. Hence this example is locally compact and first countable 

in all points but one. 

The example also answers another natural question. As noted before the 

theorem of STROK & SZYMANSKI [116J implies that every separable metric space 

admits at least one super compact compactification. It seems reasonable to 

try to generalize this corollary for a larger class of spaces, for example 

for the class of all separable stratifiable spaces or, more generally, for 

the class of all separable semi-stratifiable spaces. Unfortunately this is 

not possible since the space, constructed in this section, turns out to be 

stratifiable. 

1.2.1. The example depends on the existence of P-points in BlN\lN. A point 

p of a topological space X is called a P-point if the intersection of count­

ably many neighborhoods of p is again a neighborhood of p. MARTIN's axiom 

(cf. O.D) implies that there is a P-point in BlN\lN [18J, see also [99J 

and [40J. It is conjectured that there exist P-points in BlN\lN without 

*l . 
This section will also be published separately in Bull. L'Acad. Pol. Sci. 
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set-theoretic assumptions; but this is as yet open. 

1.2.2. THEOREM. Let P be a P-point in 13lN\lN. Then the subspace IN U {p} 

of 13lN has the property that no Hausdorff compactification of it is super­

compact. 

PROOF. Define X := IN U {p}, where p is a P-point in 13lN\ IN. Let tlX be any 

Hausdorff compactification of X and let f: 13X = 13lN ->- tlX be the unique 

mapping which extends idx . Notice that f- 1[{p}] {pl. 

Assume that S is a binary closed subbase for tlX, closed under arbi­

trary intersection, and as in section 1.1 for A C tlX let I(A) be defined 

by 

I(A) := n{s E S I A C S}. 

Notice that cltlX(A) C I(A), since each element of S is closed, that 

I(I(A» = I(A) and thatI(A) C I(B), for all A C B C tlX. 

Let C be defined by 

C := {n E IN I I({p,n}) n (aX\X) 'f !Ill. 

For n E C choose an xn E I({p,n}) n (aX\X) and let B := {x 
n 

I n E C}. 

Indeed, as f- 1[B] is a countable union of closed sets in 13lN\ IN which not 

contains p, it follows that, since p is a P-point, 

-1 -1 
P i cl13lN \lN (f [B]) = cl13lN (f [B]) 

-1 -1 
and consequently p i f[cl 13lN (f [B])] for otherwise f [{p}] would consist 

-1 
of more than one point. Now, as B C f[cl 13lN (f [B]) ] and as f is a closed 

mapping we conclude that p i cltlx(B). 

Choose open sets U,V C aX such that p E U C clax(U) C V and 

V n Clax(B) = !Il. Let T = Ui~n Si be an element of v.S (Si E S, i ~ n) 

such that clax(U) eTc V (cf. lemma 0.2) . Then 

and consequently there is an iO ~ n such that p E cl (UnlNnS,) . Define 
aX ·0 

M := U n IN n S· • Then M is infinite and 
~O 
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P € cl X(M) C I(M) C s. C V 
a ~O 

(this is the same technique as used in lemma 1.1.2). 

CLAIM 2: For each m € M the set I({p,m}) is finite and does not inter­

sect aX\X. 

The latter is trivial since I({p,m}) nBc I(M) nBc V n B = ¢. To prove 

the former assume that/fI({p,m}) were infinite. Then I({p,m}) n lN were 

infinite and as I({p,m}) n lN is C*-embedded in X it does not converge to 

p; consequently 

¢ of cl (I({p,m}) n IN) n (ax\X) C I({p,m}) n (aX\X), 
aX 

which is a contradiction. 

that 

(i) 

(ii) 

Now for every ordinal K ~ w1 define a finite subset A(K) of M such 

if P € cl (U A(~» then A(K) 
aX ~<K 

if P i cl x(U A(~» then A(K) of ¢ and I(A(K)U{p}) 
a ~<K 

A(K) u{p} 

and A(K) n U A(~) = ¢. 
~<K 

Take a point m € M and define A(o) := I({p,m}) n IN. Then A(o) has all 

desired properties. Suppose that all A(~) have been constructed for 

~ < K S w1 • Assume that p i cl x(U A(~». Using the same technique as 
a ~<K 

above there exists an infinite NO C M such that p € clax(NO) C I(NO) and 

I (NO) n clax(U~<K A(~» = ¢. Take n € NO and define A(K) := I({p,n}) n IN. 

Then A(K) is as required. 

As there are only countably many finite subsets of M there exists a 

K < w1 such that p € cl x(U A(~». Then, since U A(~) U {p} is not 
a ~<K ~<K 

a convergent sequence, there is a q € cl (U A(~» n (aX\X). Take an 
aX ~<K 

infinite L C U~<K A(~) such that 

q € cl (L) C I(L) C ax\{p}. 
aX 

As L is infinite there exist two different ordinals KO,K 1 less than K 

such that L intersects both A(KO) and A(K 1). Then the subsystem 

of S is linked, but has a void intersection. This is a contradiction. 0 
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1.2.3. A topological space X is called stratifiable (cf. BORGES [19]) if 

to each open subset U of X one can assign a sequence of open sets {Un }:=l 

such that 

UOO 1 clX(U ) = U; n= n 

(b) U c V whenever U c V (where {V }oo 1 is the sequence assigned to V). 
n n n n= 

It is easy to see that each metrizable space is stratifiable while the 

converse need not be true. 

If p € BlN\ IN then IN U {p} clearly is stratifiable. Consequently 

MARTIN's axiom implies that there is a countable stratifiable space no 

Hausdorff compactification of which is supercompact. We do not have a 

metrizable space no Hausdorff compactification of which is supercompact. 

This suggests the following question. 

1.2.4. QUESTION. Is there a metrizable space no Hausdorff compactification 

of which is supercompact? 

1.3. Subbase characterizations of compact topological spaces 

Often, an important class of topological spaces can be characterized 

by the fact that each element.of the class possesses a subbase of a special 

kind. For example compact spaces (ALEXANDER's lemma), completely regular 

spaces (DE GROOT & AARTS [57]), second countable spaces (by definition), 

metrizable spaces (BING, cf. [86]), (products of) orderable spaces (VAN 

DALEN & WATTEL [39]; VAN DALEN [38]; DE GROOT & SCHNARE [60]). Such 

characterizations we shall call subbase characterizations. 

DE GROOT has observed that certain classes of super compact spaces can 

be characterized by means of special binary subbases; among the results 

obtained by him were the nice internal characterization of In and roo 

([55]) and the characterization of products of compact orderable spaces 

([~O]). Also he discovered the duality between supercompact spaces and 

graphs ([56]). DE GROOT represented a supercompact space with binary sub­

base S by the intersection graph of S, i.e. the graph with vertex set S 

and an edge between So and Sl in S if and only if sOns l # !/l. DE GROOT 

proved that the space under consideration is completely determined by this 

graph. 

We will derive DE GROOT's results using a slight modification: 
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a supercompact space with binary subbase S will be represented by the non­

intersection graph of S. This method, which of course is not essentially 

different, has some advantages; e.g. connectedness and bipartiteness of 

this latter graph imply interesting properties of the spaces under con­

sideration; also product structures become trivialities. Moreover, our 

graph representation if often helpful to determine a subbase characteriza­

tion. 

The results of this section are taken from the joint paper VAN MILL 

& SCHRIJVER [81J. 

1.3.1. Here we define the notion of an interval structure, and use this 

concept to characterize supercompactness. Next we demonstrate a correspond­

ence between graphs and supercompact spaces. 

1.3.2. DEFINITION. Let X be a set and let I: XxX + p(X). Write I(x,y) 

I«x,y». Then I is called an interval structure on X if: 

(i) x,y € I(x,y) 

(H) I (x, y) I (y,x) 

(iii) if u,v € I(x,y) then I(u,v) c I(x,y) 

(iv) I (x,y) n I (x,z) n I (y ,z) t-!Il 

(x,y € X), 

(x,y € X), 

(u,v,x,y € X), 

(x,y,z € X). 

Axioms (i), (ii) and (iii) together can be replaced by the following 

axiom: 

u,v € I (x,y) iff I(u,v) c I(x,y) (u,v,x,y € X). 

A subset B of X is called I-convex if for all x,y € B we have I(x,y) c B. 

1 • 3 • 3,. THEOREM. Let X be a topological space. Then X is supercompact if 

and only if X is compact and possesses a (closed) subbase S and an interval 

structure I such that each S € S is I-convex. 

PROOF. Let X be a supercompact space and let S be a binary subbase for X. 

Define IS: XxX + P(X) by 

IS( (x,y» := n{s € S I x,y € S} (x,y € X). 

Then it is easy to show that IS is an interval structure on X and that each 

element of S is IS-convex. 

Conversely, let X be a compact space with a closed subbase S consisting 

of I-convex sets, where I is an interval structure on X. We will show that 
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S is binary. 

Let S' c S such that ns' ~. Then, since X is compact, there exists 

a finite So c S such that nsO ~. Hence it is enough to prove the fol­

lowing: if 5 1 , ..• ,5k € S and 51 n .•• n 5k = ~ then there exist i,j S k 

such that 5.n5. = ~. We will prove this by induction with respect to k. 
~ J 

For k = 1 or 2 there is nothing to prove. Therefore assume that k 2: 3 

and that the statement is true for all k' < k. Define 

52 n 53 n 54 n 

51 n 53 n54 n 

51 n 52 n 54 n 

If one of the Ti'S is empty, then the induction hypothesis applies. 

Therefore suppose neither is empty and take x € T l' Y € T 2 and z € T 3· 

Then 

x,y € 53 n 54 n n 5k , 

x,z € 52 n 54 n n 5k , 

y,z € 51 n 54 n n 5k , 

and thus 

I(x,y) c 53 n 54 n n 5k , 

I(x,z) c 52 n 54 n n 5k , 

I(y,z) c 51 n 54 n n 5k • 

But 

~ F I(x,y) n I(x,z) n I(y,z) c (5 3n54n ..• n5k) n (52n54n •.• n5k) n 

n (51n54n ••• n5k ) 

= 51 n 52 n .•• n 5k • 

This contradicts ~ur hypothesis. 0 

For some related ideas see GILMORE [53J. 

1.3.4. REMARK. As noted in the introduction, the notion of an interval 

structure is used extensively in the theory of maximal linked systems and 

of super compact spaces. It is simple but useful and often is helpful to 

prove local properties of supercompact spaces. 
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1.3.5. Now we turn our attention to the announced correspondence between 

graphs and supercompact spaces. 

A graph G is a pair (V,E), in which V is a set, called the set of 

vertices, and E is a collection of unordered pairs of elements of V, that 

is E c {(v,w) v,w € V, v F w}. Pairs in E are called edges. Usually 

a graph is represented by a set of points in a space with lines between 

two points if these two points form an edge. A subset V' of V is called 

independent if for all v,w € V' we have {v,w} i E. A maximal independent 

subset of V is an independent subset not contained in any other independent 

subset. By Zorn's lemma each independent subset of V is contained in some 

maximal independent subset. We write 

I(G) := {V' c V I V' is maximal independent} 

and for each v € V 

B := {V' €I(G) I v € V'}. 
v 

Finally let B(G) be defined by 

B(G) := {B I v € vL 
v 

The graph space T(G) of G is the topological space with I(G) as underlying 

point set and with B(G) as a (closed) subbase. 

If S is a collection of sets then the non-intersection graph G(S) of 

S if the graph with vertex-set S and with edges the collection of all 

pairs {Sl,S2} such that sn S = \11. The follo\Ving theorem follo\Vs from 

observations made by DE GROOT [56J: 

1.3.6. THEOREM. A topological space X is supercompact iff it is the graph 

space of a graph, in particular 

(i) if X has a binary subbase S then X is homeomorphic to the graph 

space of G (S) ; 

(i~) For any graph G, the graph space T(G) is supercompact with B(G) as 

a binary subbase. 

Let G. be a graph (j € J); the sum L. G.; of these graphs is the 
J J€J J 

graph \Vith vertex set a diSjoint union of the vertex sets of the G. 
J 

(j € J) and edge set the corresponding union of the edge sets. These sums 

of graphs and products of topological spaces are related by the following 
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theorem: 

1.3.7. THEOREM. Let J be a set and for each j € J let Gj be a graph. Then 

T(L, G,) is homeomorphic to n)'€J T(G,). 
)EJ ) ) 

PROOF. Straightforward. D 

1.3.8. DEFINITION. A collection S of subsets of a set X is called weakly 

normal if for each SO,Sl E S with· sOns 1 = ~ there exists a finite covering 

M of X by elements of S such that each element of M meets at most one of 

So and Sl· 

Weakly normal closed subbases for topological spaces play an import­

ant role in characterizing complete regularity,,(cf. DE GROOT & AARTS [57J). 

They turn out to be the right natural generalizations to subbases of 

normal bases as defined by FRINK [51J, STEINER [114J and many others. 

This will be discussed in chapter 4. 

Clearly weak normality of a collection S of subsets of a subset X 

must imply properties of the corresponding non-intersection graph G(S) • 

We call a graph (V,E) weakly normal if for each {v,w} € E there are 

v1 , ••• ,vk ,w1 , ••• ,w1 E V (k,l ~ 0) such that: 

and in addition, whenever 

with 

then 

is not independent. 

1.3.9. THEOREM. Let X be a supercompact space with binary subbase Sand 

let X be the graph space of the graph G. The following assertions are 

equi valent: 
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(i) x is a Hausdorff space; 

(ii) S is a weakly normal subbase; 

(iii) G is a weakly normal graph. 

¢. As X is normal (compact 

and Hausdorff) there exist closed sets C and D in X with 

and CUD = X. 

Since X is compact and C and D are intersections of finite unions of sets 

in S, we can take C and D to be finite intersections of finite unions of 

sets in S, or, what is the same, finite unions of finite intersections of 

sets in S. 
Since cns 1 = ¢ each of the finite intersections composing C has an 

empty intersection with S1. Now the binarity of S implies that we can re­

place these finite intersections by single sets of S. Hence we may suppose 

that C is a finite union of elements of S. Similarly we can take D as a 

finite union of elements of S. 
(ii) ~ (1). By lemma 0.4 S is a T1-subbase. Now the result follows from 

a theorem due to DE GROOT & AARTS [57J. 

(i) ~ (iii). The simple proof is left to the reader. 0 

This theorem now implies the following remarkable fact, which was 

first observed by DE GROOT [56J. 

1.3.10. THEOREM. The following assertions are equivalent: 

(i) X is compact metric; 

(ii) X has a countable weakly normal binary subbase; 

(iii) X is homeomorphic to the graph space of a countable weakly 

normal graph. 

PROOF. Part (i) ~ (ii) follows from STROK & SZYMANSKI's [116J result and 

theorem 1.3.9. The other implications follow from URYSOHN's metrization 

theorem. 0 

From this theorem we can derive a, in our opinion, remarkable charac­

terization of the Cantor discontinuum. We call a graph (V,E) locally finite 

if for all v E V the set {w E V I {v,w} E E} is finite. 

1.3.11. THEOREM. The following assertions are equivalent: 



(i) x is homeomorphic to the Cantor discontinuum; 

(ii) X is homeomorphic to the graph space of a countable locally finite 

graph with infinitely many edges. 
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PROOF. (i) ~ (ii). By theorem 1.3.7 X is homeomorphic to the graph space of 

the following graph (cf. DE GROOT [56J); 

I I I 
Figure 1. 

ii) ~ (i). We shall show that X is a compact metric totally disconnected 

space without isolated points; hence it will follow that X is homeomorphic 

to the Cantor discontinuum. 

Let G be a countable locally finite graph with infinitely many edges. 

We will first show that the closed subbase B(G) of T(G) consists of clopen 

sets. Take v € V. Since G is locally finite, there are w1 ,w2 , .•• ,wn € V 

such that 

Now for all i € {1,2, .•. ,n} the set Bwi is closed and consequently 
n Ui =1 BWi is closed too. It is obvious that 

n 
X \ U B Bv' 

i=1 wi 

and hence Bv is open. 

It now follows that T(G) is Hausdorff, by lemma 0.4; moreover it is 

compact totally disconnected and second countable. Hence T(G) is a compact 

metric totally disconnected topological space. 

Finally we show that T(G) has no isolated points. For suppose to the 

contrary there is a V' € I(G) such that {V'} = n~=1 BVi • That is, if 

V" € I(G) and {v1,v2 ' ..• ,vm} c V" then V' = V". Let W be the set 

{w € V I {v.,w} € E for some i € {1,2, ••• ,m}}. 
1. 

Since G is locally finite, W is finite. Now the set 
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E' = {{V,W} I w € W, V € V} 

also is finite. Since E is infinite there is an edge {a,b} € E\E'. It is 

easy to see that a i Wand b i W, hence {v1 , ••. ,vm,a} and {v1 , ••• ,vm,b} 

both are independent sets of vertices, and hence both contained in a maximal 

independent set, say in V~ and Vb. As {v1 ' ••. ,vm} C V~ and {v1 '···,vm} CVb 
it follows that V~ = Vb = V'i hence a,b € V'. But {a,b} € E, hence V'is 

not independent; this is a contradiction. 0 

1.3.12. We will now give a correspondence between spaces induced by a 

lattice and graph spaces obtained from bipartite graphs. Let (X,~) be a 

lattice with universal bounds 0 and 1. If a and b are elements of X then 

[a,bJ will denote the set 

[a,bJ := {x € X I a ~ x ~ b}. 

The interval space of X is the topological space with underlying set X 

and with (closed) subbase the collection 

S := {[O,xJ I x € X} u {[x,1J I x € X}. 

Spaces obtained in this way are called lattice spaces. According to a 

theorem of FRINK (cf. BIRKHOFF [17J) the interval space of a lattice 

(X,~) is compact iff (X,~) is complete. 

1.3.13. THEOREM. Every compact lattice space is supercompact. 

PROOF. Let (X,~) be a complete lattice and define an interval structure 

(cf. definition 1.3.2) I on X by 

I(x,y) := [xAy,xVyJ. 

This is easily seen to be an interval structure while moreover the subbase 

S for X defined in 1.3.12 consists of I-convex sets; consequently X is 

supercompact by theorem 1.3.3. 0 

1.3.14. A graph (V,E) is called bipartite if V can be partioned in two 

sets Vo and V1 such that each edge consists of an element in Vo and an 

element of V1• A well-known and easily proved theorem in graph theory, 

see e.g. WILSON [129J, tells us that a graph (V,E) is bipartite if and 

only if each circuit is even, that is, whenever 



are edges in E, then k is even (this characterization uses a weak form of 

the axiom of choice). 

We call a collection S of subsets of a set X bipartite if the non­

intersection graph G(S) is bipartite. 

1.3.15. THEOREM. The following assertions are equivalent: 

(i) X is homeomorphic to a compact lattice space; 

(ii) X possesses a binary bipartite subbase; 

(iii) X is homeomorphic to the graph space of a bipartite graph. 

PROOF. (i) ~ (ii). Let (X,~) be a complete lattice; the subbase 

S = {[O,x] I x E X} U {[x,l] I x E X} 

is binary and bipartite., 
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(ii) ~ (i). Let X be a topological space with a binary bipartite subbase S; 

let S = So U Sl' such that SOnS 1 = ~ and nsO f ~ and nS1 f ~ (this is pos­

sible since S is binary and bipartite). Define an order "~,, on X by 

x ~ Y iff YES whenever XES E Sl. 

The relation " ~" is reflexive and transitive; "~" is antisymmetric too. 

For suppose that X f Y and x ~ y ~ x. Since the subbase S is T1 (lemma 0.4) 

there are S,T E S such that XES, YET and S n T 111. From this it fol­

lows that either S E Sl or T E Sl. If S E Sl then YES, since x ~ y. But 

this is a contradiction. On the other hand if T E Sl then x E T, since 

y ~ x. This also is a contradiction. 

We will show that " ~" defines a complete lattice by proving that 

for each X' c X there is a z E X such that z = sup X'. 

Let X' c X. Define 

and 

S1 := {T E Sl I Tn S f ~ for all S E SO} 

respectively. 

Now nsO n nSi f ~, since nsO f 111 f nSi and also S n T f ~ for all 

S E So and T E S1 (notice that S is binary!). Choose z E nsO n nSi. This 
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point z is an upper bound for X', for let x E X' and let x E T E SI; then 

T E Si and consequently Z E T. Therefore z ~ x for all x EX'. 

Suppose now that x ~ z' for all x E X' and that z ~ z'. Then there 

exists aTE SI with the properties z E T and z, f T. As S is binary and 

bipartite there is an S E So such that S nT = ¢ and z' E S. Now, X' c S, 

since otherwise there must be an Xo E X' and a T' E SI with the properties 

Xo E T' and T' nS = ¢. Then, since Xo ~ z' we have that z' E T', which 

contradicts the fact that S n T'= ¢. Therefore X' c S, which implies that 

S E SO. But z f S, which cannot be the case since z E nsO n Si. 
Finally the topology induced by the lattice-ordering ~ coincides with 

the original topology of the space X. Indeed, for x E X we have that 

[x,l] = n{s E SI I XES}, 

as can easily be seen. 

Furthermore 

[o,x] = n{s E So I XES}, 

for suppose that y ~ x and that y f S for some S E So with XES. Then 

there exists aTE SI such that S n T = ¢ and YET. Hence x E T, contra­

dicting the fact that S n T = ¢. 
Also if T E SI' let 

So := {S E So I S n T ~ ¢}. 

Then T n nsO ~ ¢, since S is binary. Choose z E T n nsO. We will show that 

[z,1] T. 

If z ~ y, then YET since z E T. If YET and z ~ y, then there exists an 

S E So such that YES and z f S. However, S n T ~ ¢ and consequently 

S E So and z E S, which is a contradiction. 

Conversely, if S E So let 

Then S n nSi ~ ¢, since S is binary. Choose z E S n nSi. We will show that 

[o,z] = S. 



If Y $ z and y i S then y € T for some T € S with S n T ¢. Hence ziT, 

which contradicts the fact that y $ z. If Y € Sand y ~ z then there is 

some T € S1 such that y € T and ziT. Then S n T ~ ¢ and T € Si. Hence 

z € T, contradicting the fact that ziT. 
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(ii) ~ (iii). Let X be a space with a binary bipartite subbase S. By defi­

nition G(S) is bipartite and, by theorem 1.3.6 X is homeomorphic to the 

graph space of G(S) . 

(iii) ~ (ii). Let G be a bipartite graph. It is easy to see that the binary 

subbase B (G) for the graph space of G is biparti!te. 0 

1.3.16. We now turn our attention to compact tree-like spaces, which also 

will be characterized with the help of weakly comparable subbases and 

graphs. 

A tree-like space is a 'connected space in which every two distinct 

points x and y can be separated by a third point z, i.e. x and y belong to 

different components of X\{z}. Obviously every connect~d orderable space 

is tree-like; however, the class of tree-like spaces is much bigger; see 

e.g. KOK [70]. 

A collection S of subsets of a set X is called normal if for every 

SO'S1 € S with sOns 1 ¢ there exist TO,T1 € S with SOn T1 ¢ = TOns1 and 

TOUT1 = X. Clearly a normal collection is weakly normal, cf. definition 

1.3.8. In addition S is called weakly comparable if for all SO,S1,S2 € S 

satisfying sOns1 = ¢ = sOns2 it follows that either S1 c S2 or S2 c S1 or 

S1 n S2 = ¢ (the notion "comparable" will be defined in 1.3.26). 

A collection S of subsets of a set X will be called connected (strong­

ly connected) if there is no partition of X in two (finitely many) elements 

of S. 

1.3.17. PROPOSITION ~ Let S be a weakly comparable collection of sUbsets 

of the set X. The following properties are equivalent: 

(i) S is normal and connected; 

(ii) S is weakly normal and strongly connected. 

PROOF. (i) ~ (ii). Let S be weakly comparable, normal and connected. 

Clearly S is weakly normal. Suppose that S is not strongly connected and 

let k be the minimal number such that there are pairwise disjoint sets 

S1' ..• ,Sk in S with union X. Since S is connected, k ~ 3. As S1 n S2 = ¢ 

there exist, by the normality of S, Tl and T2 in S such that 



34 

Sl n T2 = ~ = T1 n S2 and T1 U T2 = X. Now S3 intersects either T1 or T2 · 

Without loss of generality we may suppose that S3 n T1 # ~. Hence since 

S2 n T1 = ~ = S2 n S3' by the weak comparability of S, S3 n T1 = ~ or 

T1 c S3 or S3 C T1 . Since the first two cases are impossible it follows 

that S3 C T l' In the same way one proves that for each j = 4, ..• ,k either 

Sj C T1 or Sj n T1 ~. Hence there exists a smaller number of pairwise 

disjoint sets in S covering X. 

(ii) ~ (i). Let S be a weakly normal, strongly connected, weakly comparable 

collection of subsets of X. We need only show that S is normal. To prove 

this, let TO,T1 E S such that TO n T1 = ~. Let k be the minimal number 

such that there are Sl"."Sk in S covering X and such that each Si meets 

at most one of TO and T1 • By the minimality of k we may suppose that no 

two of these subsets Sl"",Sk are contained in each other. If k = 2 then 

we are done. 

Suppose therefore k ~ 3. We prove that the sets Sl"",Sk are pair­

wise disjoint. We only prove that Sl n S2 = ~. To the contrary assume that 

Sl n S2 were nonvoid. By the weak comparability of S they are neither both 

disjoint from TO nor they are both disjoint from T1 . We may suppose there­

fore Sl n TO # ~ # S2 n T1 • Since now Sl n Tl ~ = T1 n TO it follows that 

either Sl C TO or TO C Sl' If Sl C TO then TO n S2 ~ Sl n S2 #~, which 

cannot be the case. It follows that TO C Sl and similarly T1 C S2' We may 

suppose that S3 n TO = ~. Since also S2 n TO = ~ we have S3 n S2 = ~. From 

this it follows that S3 n T1 = ~ and since also Sl n T1 = ¢, we have 

S3 n Sl = ~. Now from the weak comparability of S it follows from S3 n S2 

= ~ = S3 n Sl that S2 n Sl = ~, which is a contradiction. 

Since there are no pairwise disjoint sets Sl"" ,Sk in S "'ith union X, 

it cannot be the case that k ~ 3. Hence S is normal. 0 

1.3.18. A graph (V,E) is called normal if for each edge {v,w} E E there 

are edges {v,v·} and {w,w·} in E such that whenever {v' ,v"} and {w· ,w"} 

are edges then also {v", w"} is an edge (see figure 2). 

v" 

D 
w" 

v' w' 

v w 

Figure 2. 
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Clearly each normal graph is a weakly normal graph (see 1.3.8). 

A graph (V,E) is called weakly comparable if for each "path" {vO,v1}, 

{v1,v2},{v2,v3},{v3,v4} of edges either {v1 ,v3} € E or {vO,v3} € E or 

{v1,v4} € E (see figure 3). 

-;.... - ------ - .- ...:..-

Figure 3. 

A graph (V,E) is called contiguous (BRUIJNING [26J) if for each edge 

{v,w} € E there exist edges {v,v'} and {w,w'} such that {v',w'} t E. 

A graph (V,E) is connected if for each two vertices v,w € V there is 

a path of edges {v,v1},{v1 ,v2}, ••• ,{vk ,w} (k € IN). 

Finally, we call a collection S of subsets of a set X graph-connected 

if the corresponding non-intersection graph G(S) is connected. 

We need a simple lemma. 

1.3.19. ~. Let S be a binary collection of subsets of the set X with 

non-intersection graph G(S). Then 

(i) S is normal iff G(S) is normal; 

(H) S is weakly comparable iff G(S) is weakly comparable; 

(iii) S is connected iff G(S) is contiguous. 

PROOF. Notice that S1u U Sk = X (Si € S, i S k) if and only if the fol-

lowing holds in G(S): for all S1" .•• 'Sk' such that {S. ,S~} is an edge of G(S) . ~ ~ 

(i S k) the set {Si'Si, ••• ,Sk} is not independent. 0 

1.3.20. If X is a tree-like space then a subset A of X is called a segment 

if A is a component of X\{xO} for certain Xo € X. KOK [70J has shown that 

every segment in a tree-like space is open. In particular any tree-like 

space is Hausdorff. 

1.3.21. THEOREM. Let X be a topological space. Then the following properties 

are equivalent: 
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(i) x is compact tree-like; 

(ii) X possesses a binary normal connected (closed) subbase T such that 

for all TO,T1 € T we have that either TO C Tl or Tl C TO or 

TO n Tl = ¢ or TO U Tl = X; 

(iii) X is homeomorphic to the graph space of a connected normal contiguous 

weakly comparable graph. 

PROOF. (i) ~ (ii). Let X be compact tree-like and let U denote the collec­

tion of segments of X. Since every two distinct points of X are contained in 

disjoint segments, the compactness of X implies that U is an open subbase 

for the topology on X. We will show that for all UO,U1€ U either Uo U U1 = 

X or °0 n U1 = ¢ or Uo C U1 or U1 C UO. To prove this, take UO'U1 € U and 

suppose that U. is a component of X\{x.} (i € {0,1}). Without loss of 
~ ~ 

generality we may assume that Xo ~ xl. Suppose that X\{x.} = U. + U~ 
*~ ~ ~ 

(i € {O,!}) (this means U. n U~ = ¢ and X\{x.} 
~ ~ ~ 

sider two cases: 

U. 
~ 

U U.). We have to 
~ 

(a) Suppose first that xl € UO. We again distinguish two subcases: 

(a) (i) * * Xo € U1• It then follows that clx(UO) = Uo U {xO} C U1 ' 

* 

con-

since clx (U 0) is connected. This implies U 0 U U 1 = X. 

(a) (ii) x € U*l. o Then clx (U 1) c UO' since clx (U 1) is connected. 

Therefore U1 C UO. 

* (b) Suppose that xl € UO. We distinguish two subcases: 

(b) (i) Xo € U1 . This implies that c1x (UO) C U1 ' since c1x (UO) is 

connected. Hence Uo C U1 • 

(b) (ii) x € U*l. o * Now we have clx(UO) C U1 ' since clx(UO) is connected. 

* Therefore Uo C U1 and consequently Uo n U1 = ¢. 

Now define T := {X\U I U € U}, Then T is a closed subbase for X such 

that for all TO,T1 € T either TO U Tl = X or TO n Tl = ¢ or TO C Tl or 

Tl C TO. In particular T is weakly comparable. To show that T is binary it 

suffices to show that each covering of X by elements of U contains a sub­

cover consisting of two elements of U. Indeed, let A be an open cover of X 

by elements of U. By the compactness of X the cover A has a finite sub­

cover {U1 ' •••.••. 'Un}. In addition we may assume that ¢ ~ Ui ¢ Uj for i ~ j. 

We claim that for each Ui € {U1 ' ... ,Un } there exists a Uj € {Ul' ... ,Un } 

such that U. n U. ~ ¢; for assume to the contrary that for some fixed 
~ J 
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i Snit were true that Ui n Uj = ~ for all i ~ j S n. As {u1 , ••• ,Un } is 

a covering of X it would follow that X is not connected, which is a contra­

diction. Therefore Ui U Uj = X. Consequently T is a binary subbase. 

As X is Hausdorff, by theorem 1.3.9, T is weakly normal, which implies 

that T is normal by proposition 1.3.17, since trivially T is strongly con­

nected (notice that T consists of closed sets). 

(ii) -(i). Since T is a binary subbase evidently X is compact. Therefore 

we must prove that X is tree-like. We will check the connectedness first. 

Suppose that X is not connected. Then there are closed disjoint sets 

G and H such that G U H = X and G ~ ~ ~ H. As G and H are intersections 

of finite unions of elements of T and as G and H are disjoint, the com­

pactness of X implies that G and H both are finite intersections of finite 

unions of elements of T, or, what is the same, finite unions of intersec­

tions. Let m be the minimal number such that there are G1, ••• ,Gm such that 

(i) G1 , ••• ,Gm are nonvoid and intersections of subbase elements; 

(ii) G1U ••• U Gm = X;· 

(iii) there is an I c {1,2, ••• ,m} such that 

U Gi ~ ~ ~ U G, and U Gi n U G, ~. 
iEI jtI J i€I jiI J 

We first prove that G, n G, = ~ if i ~ j. Suppose that G, n G, ~ ~ for 
~ J ~ J 

some i ~ j. 

n{T € T I G, U G, C T}. 
~ J 

Indeed, take x i G, U Gj . Then, since G, and G. are intersections of sub-
~ ~ J 

base elements there are TO and Tl in T such that Gi C TO' Gj C Tl and 

x i TO U T1 • Now since TO n Tl ~ Gi n Gj ~ ~ and TO U Tl ~ X it follows 

that either TO C Tl or Tl C TO' Therefore x i T for some T € T with 

Gi U Gj C T. 

Now it follows that m is not the minimal number of sets with the 

above properties, which is a contradiction. 

Second we prove that each Gi is an element of T. Suppose that some 

G, i T. Let j ~ L Then, since G, is an intersection of subbase elements 
~ ~ 

and T is binary, there is a T € T such that Gi C T and T n Gj = ~. The 

sequence Gl, ••• ,Gi_l,T,Gi+l, ••• ,Gm is also a sequence with the above 

properties (i), (ii) and (iii). So again T n Gk = ~ if k ~ i, hence 

Gi eTc X\Uk~i Gk , which implies that Gi = T and therefore Gi € T. 
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Hence there is a collection G1 , ..• ,Gm of pairwise disjoint subbase 

elements covering X and as T is weakly comparable, and hence by proposi­

tion 1.3.17 is strongly connected, this is a contradiction. This proves 

that X is connected. 

We will now show that every two distinct points can be separated by 

a third. Let x,y € X such that x t y. As X is a T1-space we have that 

{z} = niT € T I Z € T} for all Z € X and consequently, since T is binary, 

there exist TO,T1 € T such that x € TO' Y € Tl and TO n = ~ (cf. lemma 0.4) . 

The normality of T implies the existence of TO,Ti € T such that TO U Ti = X 

and TO n Ti = ~ = TO n T1• Define 

A := {T € TIT U TO = X}. 

Since X is connected we have that A U {TO} is a linked system and conse­

quently T' n nA t ~. We claim that this intersection consists of one point. o 
We assume to the contrary that zO,zl € TO n nA with Zo t zl" In the same 

way as above there exist SO'Sl € T such that Zo € SO\Sl and zl € Sl\SO and 

So U Sl = X. Since Zo i Sl we have that Sl i A and consequently TO U Sl t X. 

Hence TO C Sl or Sl C TO; notice that Sl n TO t ~. However this implies 

that Sl C TO' since Zo i Sl' With the same technique one proves that 

So C TO; but this is a contradiction since TO t X. Let {ZO} :=TO n nA. 

Then Zo is a separation point of x and y, since TO and nA are closed sub­

sets of X such that TO U mA) = X and x € TO and y€ nA. This proves that 

X is compact tree-like. 

(ii) - (iii). Let X be a space possessing a binary normal connected sub­

base T such that for all TO,T1 € T we have that either TO C Tl or T1 C TO 

or TO n T1 = ~ or TO U Tl = X. We may suppose that ~ i T and X i T. Then 

the non-intersection graph G(T) is normal by lemma 1.3.19. Also G(T) is 

weakly comparable since T is weakly comparable, as is easy to show. G(T) 

is contiguous since T is connected (lemma 1.3.19). So we only need to 

prove that G(T) is connected. Let TO,T1 € T, then either 

(a) TO n T1 ~; hence there is an edge in G(T) between TO and Tl ; or, 

(b) TO U Tl X; hence there are TO and Ti in T such that 

TO n TO = TO n Ti = Ti n Tl = ~, forming a path in G(T) 

connecting TO and T1; or, 

hence there is a T2 €Tsuchthat TOnT2=~ 

giving a path connecting TO and T1 ; or, 

this case is similar to case (c). 



(iii) ~ (ii). Let X be the graph space of a connected normal contiguous 

weakly comparable graph G = (V,E). We will prove that the subbase B(G) 

for the graph space satisfies the conditions of (ii). B(G) clearly is 

binary, normal and connected. Suppose now that Bv,Bw E B(G) (cf. 1.3.5), 

with v,w E V. Let {v,v1}, .•• ,{vk_1 ,w} E E be a path connecting v and w 

with minimal number k of edges. We will prove that always Bv n Bw = ¢ 
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or Bv U Bw X or Bv C Bw or Bw C Bv. The proof will be by induction to k. 

If k = 1 then {v,w} E E and hence Bv n Bw = ¢. Suppose that k > 1. There 

is a path of (minimal) length k-l between Vi and w, hence by induction 

hypothesis either 

(a) BVl n Bw = ¢; i.e. {v,v1},{v1 ,w} E E. It now follows that {v,w} i E 

(otherwise k = 1) and therefore Bv C Bw or Bw C Bv ' 

for if not, there would be an edge {v,v'} E E and 

an edge {w,w,} E E such that {v,w'} i E and 

{w,v'} i E, contradicting the weak comparability 

'of G; or, 

(b) BV1 U B X; since B n BV1 ¢ it follows that B C B w; or, 
w v v 

(c) BV1 C Bw; now B n BVk_1 ¢ and hence as in case (a) 
v 

B C B or B C B vi, or 
v w w 

(d) B C B then B n Bw = ¢, which implies that k w v1 v 
(contradiction) . 

Therefore always Bv n Bw = ¢ or Bv U Bw X or B C B or B C B . 
v w w v 

1.3.22. COROLLARY. Each compact tree-like space is supercompact. 0 

1.3.23. COROLLARY. Let X be a topological space. Then the following 

properties are equivalent: 

(i) X is a product of compact tree-like spaces; 

(ii) X possesses a binary normal connected weakly comparable 

(closed) subbase; 

(iii) X is homeomorphic to. the graph space of a normal contiguous 

weakly comparable graph. 

o 

PROOF. Notice that each graph is the sum of its components. Then apply 

theorem 1.3.7 and theorem 1.3.21. 0 

1.3.24. An interesting application of corollary 1.3.23 is the following. 

In [55J, DE GROOT obtained a topological characterization of the n-cell In 
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co 
and of the Hilbert cube I by means of binary subbases of a special kind 

(cf. theorem 1.3.31). ANDERSON [2J has proved th~t the product of a count­

ably infinite number of dendra is homeomorphic to the Hilbert cube, where 

a dendron is defined to be a uniquely arcwise connected Peano continuum. 

It is well known, however, that a dendron is simply a compact metric tree­

like space (cf. WHYBBURN [128J). Since the dimension of a dendron is 1, 

using our characterization of products of compact tree-like spaces, we are 

able to give a new characterization of the Hilbert cube, thus generalizing 

the result of DE GROOT mentioned above for the case of the Hilbert cube. 

1.3.25. THEOREM. A topological space X is homeomorphic to the Hilbert 
co 

cube I if and only if X has the following properties: 

(i) X is infinite dimensional; 

(ii) X possesses a countable binary connected normal weakly comparable 

subbase. 

PROOF. The necessity follows from corollary 1.3.23, since the Hilbert cube 

is a product of compact tree-like spaces. The sufficiency follows from the 

fact that by corollary 1.3.23 X is homeomorphic to a countable product of 

dendra. As X is infinite dimensional this must be a countably infinite 

product. Hence X is homeomorphic to the Hilbert cube by the result of 

ANDERSON [2J. 0 

1.3.26. Now we will treat the relations between ordered spaces and com­

parable subbases and graphs. Note that an ordered space is the interval 

space of a totally ordered set. Hence clearly every ordered space is a 

lattice spaca while moreover a connected ordered space is tree-like. 

Let X be a set and let S be a collection of subsets of X. The col­

lection S is called comparable (cf. DE GROOT [55J) if for all SO,S1'S2 E S 

with So n S1 = ¢ = So n S2 it follows that either S1 c S2 or S2 c S1· 

A graph (V,E) is called comparable if for each path {vO,v1},{v1 ,v2}, 

{v2 ,v3},{v3,v4} of edges it follows that either {vO,v3} E E or {v1 ,v4} EE 

(cf. figure 4) . 

- - - ::. -..... ---
~~ 

'-- " 0' c::J 0 '0 '0 

va V1 v2 v3 v4 

Figure 4. 



1.3.27. LEMMA. 

(i) A graph G is comparable iff G is weakly comparable and bipartite. 

(ii) Each comparable graph is normal. 
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(iii) A collection S of subsets of a set X is comparable iff it is weakly 

comparable and bipartite. 

(iv) A comparable collection S of subsets of a set X is normal if it 

satisfies the following condition: for each x E X and each S E S 

with x t S there exists anSOE S with x E So and So n S = ~. 

PROOF. The simple proof is left to the reader. 0 

1.3.28. THEOREM. Let X be a topological space. Then the following propert­

ies are equivalent: 

(i) X is compact orderable; 

(ii) X possesses a binary graph-connected comparable subbase; 

(iii) X is homeomorphic to the graph space of a connected comparable graph. 

PROOF. (i) - (ii). Let (X,S) be an order-complete totally ordered set, 

with universal bounds 0 and 1. Clearly the subbase S = {[o,x] I x E X, 

o S x < 1} u {[x,l] I x E X, 0 < x S 1} is binary, graph-connected and 

comparable. 

(ii) • (i). Let X be a space with a binary graph-connected comparable sub­

base S. Since S is bipartite (lemma 1.3.27), S induces a lattice ordering 

"s" on X, such as in the proof of theorem 1.3.15 (ii) _ (i). We only have 

to prove that this order is a total order. Suppose" SOl is not total, that 

is suppose that for some x,y E X we have x ~ y and y ~ x. Then there are 

S,T ~ Sl (see theorem 1.3.14) such that 

XES, Y t s, YET. and x t T. 

since S is graph-connected and bipartite there are Sl"",Sk in S such 

that 

with k odd (cf. 1.3.13 and 1.3.17). Suppose that k is the smallest number 

for which such a path in G(S) exists. If k ~ 3 then Sl n S2 = ~ = S2 n S3 

and hence Sl c S3 or S3 c Sl' If Sl c S3 then 

~ , 
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which gives a shorter path from S to T. 

The case S3 c Sl can be treated similarly. 

Hence k = 1 and consequently S n Sl = ¢ = Sl n T. Since S is compar­

able it now follows that SeT or T c S. This means that either x E T or 

YES, both of which are contradictory. 

(ii) ~ (iii). Let X be a space with a binary graph-connected comparable 

subbase S. Then X is homeomorphic to the graph space of the graph G(S) , 

while moreover it is easy to se~ that G(S) is connected and comparable. 

(iii) ~ (ii). Let X be the graph space of a con~ected comparable graph 

G = (V,E). The subbase B(G) is graph-connected since G is connected. Also 

B(G) is comparable, for suppose that Bvl,Bv2,Bv3 E I(G) such that 

and nevertheless BVl ¢ BV3 and BV3 ¢ Bv1 ' 

Then {v1 ,v2} E Eand {v2 ,v3} E E; moreover there are V' and V" in 

I(G) such that V' E B \B and V" E B \B . 
Vi v3 v3 Vi 

As v3 ( V' there is a v4 E V' such that {v3 ,v4} E E. As Vi i V" there 

is a Vo E V" such that {vO,v1} € E. Now 

and also {v 0' v 3} ( E (because v 0' v 3 E V") and {v 1 ' v 4} ( E (because 

v 1,v4 EV'). This contradicts the comparability of the graph G. 

Hence the graph space T(G) of G has a binary comparable graph con­

nected subbase. 

This completes the proof of the theorem. 0 

1.3.29. COROLLARY. (DE GROOT & SCHNARE [60J.) Let X be a topological 

space. Then the following statements are equivalent: 

(i) X is a product of compact orderable spaces; 

(ii) X possesses a binary comparable subbase; 

(iii) X is homeomorphic to the graph space of a comparable graph. 

PROOF. Apply theorem 1.3.28 and theorem 1.3.7. 0 

1.3.30. COROLLARY. Let X be a topological space. Then the following 

statements are equivalent: 



(i) x is connected compact orderable; 

(ii) X possesses a connected graph-connected comparable subbase; 

(iii) X is homeomorphic to the graph space of a connected contiguous 

comparable graph. 

PROOF. Apply theorem 1.3.28 and theorem 1.3.21. D 

1.3.31. COROLLARY. Let X be a topological space. Then the following 

statements are equivalent: 

(i) X is a product of connected compact orderable spaces; 

(ii) X possesses a connected comparable subbase; 

(iii) X is homeomorphic to the graph space of a contiguous comparable 

graph. 

PROOF. Combine corollary 1.3.30 and theorem 1.3.7. D 
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Adding countability conditions on the subbases and graphs one easily 

obtains characterizations of (products of) (connected) compact subsets of 

the real line (cf. DE GROOT [56J, BRUIJNING [26J). 

1.4. Regular supercompact spaces 

STEINER [114J defined a compact space to be regular Wallman if it pos­

sesses a closed subbase T such that A.v.T is a ring consisting of regular 

closed sets, i.e. each element of A.y.T is the closure of its own interior. 

Regular Wallman spaces are Wallman compactification of each dense subspace 

(this will be discussed in chapter four) and many interesting classes of 

compact topological spaces turn out to be regular Wallman, for example 

the class of all compact metric spaces (AARTS [lJ, STEINER & STEINER [109J). 

Not all compact Hausdorff spaces are regular Wallman; SOLOMON [107J recent­

ly has given an example of a compact Hausdorff space that is not so. 

It seems natural to define a topological space X to be regular super­

compact provided that it possesses a (closed) binary subbase T such that 

A.v.T is a ring consisting of regular closed sets. Obviously a regular 

supercompact space is (super)compact and regular Wallman. The space SIN 

is a good example of a regular Wallman space (totally disconnected!) that 

is not regular supercompact. We do not have an example of a supercompact 

Hausdorff space that is not regular supercompact, or even of a supercompact 
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Hausdorff space that is not regular Wallman. 

Regular supercompact spaces behave similar to regular Wallman spaces; 

for example products of regular super compact spaces are again regular super­

compact, closed subspaces of regular supercompact spaces need not be regul­

ar supercompact. But regular supercompact spaces have an additional property, 

they are not only a Wallman compactification of each dense subspace but they 

are also a superextension of each dense subspace (this will be proved in 

section 4.5). 

Many interesting classes of regular Wallman spaces are regular super­

compact. VAN DOUWEN [42J recently has shown that every compact metric space 

is regular supercompact. As a consequence of our results every compact 

orderable space is regular supercompact, every compact tree-like space of 

small weight is regular supercompact, and the superextension of a Lindel6f 

semi-stratifiable space is regular supercompact (section 4.5) . 

1.4.1. A topological space X is called regular supercompact provided that 

it possesses a binary subbase T such that A.v.T is a ring consisting of 

regular closed sets. 

The proof of theorem 1.4.2 will be postponed till section 4.5. For 

a precise definition and a discu.ssion of superextensions, see chapter II. 

1.4.2. THEOREM. A regular supercompact space is a superextension of each 

dense subspace. 

This theorem is of interest since intuitively superextensions are 

"big"; however theorem 1.4.2 tells us that superextensions can be compacti­

fications as well. 

1.4.3. THEOREM. The topological product of regular supercompact spaces is 

regular supercompact. 

PROOF. Let X = na€I Xa be a product of regular supercompact spaces and let 

T be a binary subbase for X such that A.v.T is a ring consisting of a a a 
regular closed sets (a € I). A straightforward check shows that 

T € Ta (a € I)} 

is a binary subbase for X such that A.v.T is a ring consisting of regular 

closed sets. 0 
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We now give some classes of topological spaces that are regular super­

compact. 

1.4.4. THEOREM. Each compact metric space is regular supercompact. 

PROOF. See VAN OOUWEN [42 J . 0 

1.4.5. THEOREM. A compact orderable space is regular supercompact. 

PROOF. Let X be a compact ordered space and let A denote the collection of 

isolated points of X. Then X\clx(A) is a locallY,compact topological space 

without isolated points and therefore has disjoint dense subspaces (cf. 

HEWITT [64J, theorem 47). So X has dense subspaces D and E, such that 

A = D n E and all points isolated from the left belong to D and all points 

isolated from the right belong to E. Let a be th~ smallest element of X 

and let b be the largest element of X. Then 

T := {[a,dJ I d € D} U {[e,bJ I e € E} 

is a binary closed subbase such that A.v.T is a ring consisting of regular 

closed sets. 0 

1.4.6. REMARK. HAMBURGER [62J has shown that a compact orderable space is 

regular Wallman. This theorem was generalized by MISRA [85J who showed 
v 

that the Cech-Stone compactification of a locally compact ordered space is 

regular Wallman. MISRA's theorem cannot be generalized for regular super­

compactness since SlN, the ~ech-Stone compactification of the natural 

numbers, is not supercompact (cL BELL [14J and corollary 1.1.7). Hence 

SlN is an example of a regular Wallman space that is not (regular) super­

compact. 

1.4.7. In section 1.3 we showed that every compact tree-like space is 

supercompact (theorem 1.3.21). This result suggests the question whether 

every compact tree-like space is regular supercompact. Simple examples 

show that the structure of compact tree-like spaces is much more complic­

ated than the structure o~ ordered compacta. Therefore the simple proof 

of theorem 1.4.5 cannot be generalized. However it is possible that a 

modification of the technique "works", since each compact tree-like space 

is the continuous image of an ordered compactum, by a result of CORNETTE 

[32J. We give a partial answer to the general question by showing that 
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each compact tree-like space of weight at most e is regular supercompact. 

1.4.8. THEOREM. A compact tree-like space of weight at most e is regular 

supercompact. 

PROOF. Let X be a compact tree-like space. Recall that the collection of 

complements of segments forms a closed subbase for X (theorem 1.3.21). 

Let T be a collection of complements of components which is a subbase 

and which in addition is of cardinality at most e. Define 

A := {{S,T) I S,T E T and S n T = ~}. 

List A as {Aa I a E e}. By transfinite induction choose for each a ~ e 

a point Pa E X such that 

(i) if Aa (S,T) then Pa separates S from T; 

(ii) Pa t {Pe I e < a}. 

To define PO' note that each element of T is connected and hence that if 

AO = (S,T) then there exists a separation point b E X which separates S 

from T. Define Po := b. 

Suppose that all Pe have been constructed for e < a. Notice that 

LetA 
a 

I{Pe I e < a}1 < e. 

(S,T) and take c E S and d E T. Define 

Z = {x E X x separates c from d}. 

It is well-known, cf. PROIZVOLOV [92J, KOK [70J, that Z is a connected 

orderable subspace of X (Z is ordered by the usual cut point order). The 

connectedness of Z implies that U = Z\{SUT) is a nonvoid open subset of Z, 

hence contains a nonvoid open order interval and consequently is of cardi­

nality at least e. Also each x E U separates S from T. As I {Pe I e < a} I < e 

there is an e E U such that e t {Pe I e < a}. Define Pa := e. This com­

pletes the inductive construction. 

Now, if A = (S,T) let U be the component of x\{p } that contains T. a a a 
Define V := X\U (a E e). Then V n T = ~ and av = {p } (a E e) • a a a a a 
Clearly V := {V a I a E e} is a closed subbase for X. This subbase also is 

binary since it is a subcollection of the collection of complements of 

segments which is binary (theorem 1.3.21). Finally A.V.V is a ring consist-



ing of regular closed sets. For take aO < a 1 < ••• < an (ai E e, i ~ n). 

Then Va n ... n Van is regular closed since ava . n ava . = ¢ for all 
o ~ J 

a i ~ a j and each Vai is regular closed. Each finite union of, regular 

closed sets is regular closed and hence A.V.V is a ring consisting of 

regular closed sets. 0 

Th,eorem 1.4.8 suggests the following question: 

1.4.9. QUESTION. Is every compact tree-like space regular supercompact? 
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1.4.10. We will now describe how to construct regular supercompact compac­

tifications of discrete spaces. 

STEINER & STEINER [110J have shown the following theorem: Let X be 

an infinite discrete space and let K be a compact space with a dense sub­

set of cardinality less than or equal to that of X. Then X has a (Hausdorff) 

compactification aX with K as remainder, i.e. aX\X is homeomorphic to K. 

The construction o'f this compactification is very simple. Express X 

as the union of disjoint subsets Xi (i E w) each of cardinality Ixi. Let 

D be a dense subset of K with cardinality less than or equal to Ixi. Con­

* struct a function f of X into K which maps each Xi onto D. Let X be the 

Alexandroff one point compactification of X. The closure of the graph of 

* f in X x K is a compactification aX of X with K as remainder. The 

restriction of the projection onto the second coordinate of the product 

* X x K to aX clearly is a retraction of aX onto K. 

1.4.11. THEOREM. Let X be an infinite discrete space and let K be a 

Hausdorff regular supercompact space with a dense subset of cardinality 

less than or equal to that of X. Then X has a Hausdorff compactification 

aX with the following properties: 

(i) K = aX\X; 

(ii) aX is regular supercompact. 

PROOF. Let aX be the "graph-closure" compactification of STEINER & STEINER, 

described above, and let r: aX + K be a retraction. Let T be a binary sub­

base for K such that A.v.T is a ring consisting of regular closed sets. 

Clearly 

S := {{x} I XE X} U {a.X\{x} I x E xl u {r-1[TJ I TEn 

is a closed subbase for the topology on aX. 
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CLAIM 1. S is binary. 

Indeed, let M c S be a linked system with an empty intersection. By the 

compactness of aX we may assume that M is finite. It is clear that M does 

not contain a singleton. Hence we may write 

Since T is binary we have that ni~n Ti ~ ¢ and consequently 

since r is a retraction. This is a contradiction. 

CLAIM 2. A.V.S consists of regular closed sets. 

Since A.v.T is a ring consisting of regular closed sets it suffices to 

show that 

is regular closed in aX for all T € T and xi € X (i ~ n, n € w). But 

this is a triviality since it is easy to see that 

is a dense open set in r- 1[T] n (ax\{xO""'xn }) for all T € T and 

xi € X (i ~ n, n € w). 0 

This theorem implies that there are many Hausdorff compactifications 

of ~ that are regular supercompact. Also it is easy to construct nonmetriz­

able regular supercompact Hausdorff compactifications of ~. For example, 

let K be a separable nonmetrizable compact order able space. Then theorem 

1.4.5 and theorem 1.4.11 imply that there is a Hausdorff compactification 

a~ of ~ with K as remainder and which is regular supercompact. 

We finish this section with an open question: 

1.4.12. QUESTION. Is there a supercompact Hausdorff space that is not 

regular supercompact, or, more generally, is there a supercompact Haus­

dorff space that is not regular Wallman? 



1.5. Partial orderings on supercompact spaces 

Supercompact spaces which possess a binary subbase which also is 

normal (cf. 1.3.16) behave surprisingly nice. In some sense these spaces 

have much in common with (products of) compact tree-like spaces (section 

1.3). It is well-known that a compact tree-like space 

(a) can be partially ordered in a natural way (cf. WARD [123]); 

(b) is locally connected (cf. PROIZVOLOV [92]); 

(c) is (generalized) arcwise connected (cf. PROIZVOLOV [92]); 

(d) has the fixed point property for continuous functions 

(cf. WALLACE [120]). 
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We will show that a space with a binary normal subbase satisfies (a), 

(b) and (c) if it is connected. Property (b) for these spaces is original­

ly due to VERBEEK [119] and property (d) was proved recently by VAN DE VEL 

[118]. Basic tools in the proofs will be partial orderings and nearest 

point mappings defined in 1.5.2. These mappings are fundamental and will 

from now on be applied everywhere in this treatise. 

Finally we show that a space with a binary normal subbase is a retract 

of the hyperspace of its nonvoid closed subsets. As a corollary it follows, 

using a result of WOJDYSLAWSKI [130J, that if in addition such a space is 

connected and metrizable it is an Absolute Retract. 

1.5.1. Let X be a topological space and let S be a binary normal (cf. 

1.3.16) subbase for X. Notice that the normality of S implies that X is 

Hausdorff since S is a T1-subbase (lemma 0.4) and that each supercompact 

Hausdorff space possesses a binary weakly normal subbase (theorem 1.3.9). 

Without loss of generality we assume that XES. 

For each subset A c X let IS(A) be defined by 

IS (A) := n{s E S I A c S}. 

Notice that clx(A) c IS (A) , since S is a closed subbase, that IS(IS(A» = 
IS(A) and that IS(A) C IS(B) if A c B, for all A,B C X. If A is a two point 

set, say A = {x,y}, then we usually write IS(X'y) in stead of IS({X,y}). 

The set IS(X'y) is interpreted as a "segment" joining x and y. The function 

I: XxX + p(X) defined by I«x,y» := IS(X,y) is an interval structure 

(cf. 1.3.2 and 1.3.3). 

A partially ordered topological space (in the sense of WARD [122J) is 
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a topological space Y endowed with a partial order, S, which is contin­

uous in the sense that the graph of S is closed in Y xy. A partial order 

"S" is called order dense if x < y implies that there is a Z E Y such 

that x < Z < y. A chain in a partial ordered set is a subset which is 

linear with respect to the partial order. A point is called minimal (max­

imal) if it has no proper predecessor (successor). 

For a given point p E X define a binary relation S on X by 
P 

In theorem 1.5.13 we will show that S is a continuous partial ordering 
p 

for X. The notation x S y is 
P 

not such a good notation, since the ordering 

S also depends on the choice of the subbase S, and a topological space 
p 

can have many totally distinct binary normal subbases. For notational 

simplicity we suppress the subindex S in the ordering; from the context 

the meaning of x S Y will always be clear. 
p 

1.5.2. THEOREM. Let X be a topological space and let S be a binary normal 

subbase for X. Let A c X. 

(i) For every x E X the set 

is a singleton. 

We denote the unique point of this intersection by r(x) • 

(ii) r: X + IS(A) is a retraction. 

(iii) For all x E X, the point r(x) is the greatest lower bound with 

respect to Sx of A. 

PROOF. (i). Define B(A) by B(A) := naEA IS(x,A) n IS(A). Notice that the 

binarity of S implies that B(A) is nonvoid. Assume that p and q are two 

distinct elements of B(A). By normality of S there are 50 ,51 E S such that 

p E 50\5 1 , q E 51\50 and So U 51 = X. If A n So = ¢, then A c Sl and con­

sequently 

which is impossible. Therefore A n So ~ ¢. In the same way also A n Sl ~ ¢. 
Now, as {SO'Sl} is a covering of X there is an i E {0,1} such that x E Si; 

say x E SO' Take aO E A n SO' Then 



51 

which is a contradiction. 

(ii). To prove the continuity of r, let S € S and take x t r- l [S]. Then 

r(x) t S and as {r(x)} = na€A IS(x,a) n IS(A) we conclude, by the binarity 

of S, that either IS(A) n S = ~ or IS(x,aO) n S = ~ for some aO € A. In 
-1 the first case r [S] = ~, hence is closed. In the second case, choose So 

and SI in S such that IS(x,aO) c So n (X\SI) and SCSI n (X\SO) and 
. ~ 

So U SI = X •. Then U = X\SI is a neighborhood of x which misses r [S]. 
-1 Hence once more r [S] is closed; consequently r is continuous. Clearly 

r is a retraction. 

(iii). First of all, let us check that r(x) is a lower bound for A. Take 

a € A; then r(x) € IS(x,a), by construction, and consequently IS(x,r(x» c 

IS(x,a). Hence, by definition, r(x) ~x a. 

Now assume that p ~x a for all a € A. Then p ~x r(x), for assume to 

the contrary that p ~x r(X). Then p t IS(x,r(x» and by the normality of S 

there are SO'SI € S such that p € SO\Sl' IS(x,r(x» c SI\SO and So U Sl =x. 
The set A is not contained in SI' for otherwise p t IS(x,a) for all a € A. 

Hence A intersects So and, consequently, so does IS(A). Moreover IS(x,a) 

intersects So for all a € A since p € IS(x,a) n SO. Therefore the system 

{So} U {S € S I A c S} U {S € S I 3a € A : IS(x,a) c S} 

is linked. By the binarity of S it has a nonvoid intersection; consequently 

which is a contradiction, since r(x) t SO. 0 

1.5.3. COROLLARY. For all x,y,z € X the set IS(X'y) n IS(y,Z) n IS(X,Z) 

is a singleton. 0 

The greatest lowerbound of A c X with respect to the binary relation 

~x is denoted by glbx(A). 

1.5.4. COROLLARY. For all A c X and x € X we have that glbx(A) = glbx(IS(A». 

PROOF. {glbx(A)} na€A IS(x,a) n IS(A) ~ na€IS(A) IS(x,a) n IS(A) = 

na€IS(A) IS(x,a) n IS(IS(A» = {glbx(IS(A»}. 0 
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The following proposition indicates why we think of IS(X'y) as a 

segment joining x and y. It will be used in theorem 1.5.13 and theorem 

1.5.14. 

1.5.5. PROPOSITION. If Y € IS(a,b) and x € IS(a,y) then y € IS(x,b) • 

• _____ 0 ______________ __ 

a x y b 

PROOF. Assume that y t IS(x,b). By the normality of S there are SO'Sl € S 
such that y € SO\Sl and IS(x,b) C Sl\SO and So U Sl = X. Now if a € Slthen 

IS(a,b) C S1 and consequently y € Sl which is impossible. Therefore a € SO; 

but since y € So it follows that x € So since x € IS(a,y) c SO. This is 

a contradiction. 0 

1.5.6. DEFINITION. A subset A c X is called S-closed if A = IS (A) . 

Recall that a subset A c X is called S-convex if for all x,y € A we 

have that IS(X'y) c A (cf. definition 1.3.2). Clearly each S-closed set 

A c X also is S-convex. Simple examples show that the converse need not 

be true. For example, an S-convex set need not even be a closed set. The 

two concepts coincide on the collection of closed subsets of x, as the 

following theorem shows. 

1.5.7. THEOREM. Let X be a topological space which possesses a binary 

normal subbase S. For a closed set A in X the following assertions are 

equivalent: 

(i) A is S-closed; 

(ii) A is S-convex. 

PROOF. We only need to check (ii) - (i). Indeed, assume there is a closed 

set B in X which is S-convex and not S-closed. Choose x € IS(B)\B. By 

theorem 1.5.2 (i) we have that {x} = nb€B IS(x,b) n IS(B) c nb€B IS(x,b). 

We claim that {x} = nb€B IS(x,b). Indeed, assume there is 

a z € nb€B IS(x,b)\{x}. Then z Sx b for all b € B and consequently 

Z Sx glbx(B) = glbx(IS(B» = {x}, by theorem 1.5.2 (i), (ii) and corollary 

1.5.4. Therefore Z € IS(X'X) = {x} which is a contradiction. 

Define T := {IS(x,b) n Bib € B}. Then clearly T consists of subsets 

of B, closed in B and hence in X. We will show that T is a linked system of 
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S-convex sets. Choose bO,b1 € B. Then, as S is binary IS (bO,b1) n IS (b1 ,x) n 

IS (x,bO) F ¢ (cf. 1.3.2 and 1.3.3) and as IS (bO,b1) c B, by assumption, 

IS(x,bO) n B and IS (x,b1) n B must intersect. As B is S-convex, it is 

easily seen that T consists of S-convex sets too. 

As in the proof of theorem 1.3.3 it can be shown that nT F ¢. However, 

this is a contradiction since nT = nb€B IS(x,b) n B = {x} n B = ¢. 0 

The following result follows from theorem 1.5.2. 

1.5.8. COROLLARY. Let X be a topological space and let S be a binary 

normal subbase for X. Then 

(i) Each S-closed set is a retract of X. 

(ii) If X is connected, then each S-closed set is connected; in 

particular each interval IS(X'y) is connected (x,y € X). 

(iii) (cf. VERBEEK [119J). If X is connected then X is locally connected. 

PROOF. (i) and (ii) follow from theorem 1.5.2. 

To prove (iii), take x € X and let U be any neighborhood of x. Choose 

finitely many SO,Sl' •.• 'Sn € S such that x i Uisn Si ~ X\U. For each iSn 

choose Si € S such that x € intx(Si) C Si and Si n Si = ¢. This is pos­

sible since S is normal and T1• Then V := nisn Si is a closed neighborhood 

of x, contained in U. Moreover it is clear that V is S-closed, and hence 

connected «ii». 0 

1.5.9. Let X be a topological space. A mean m is a continuous map 

m: XXX + X such that m(x,x) = x for all x € X and m(x,y) = m(y,x) for all 

x,y € X. We will construct a mean on every supercompact space with a 

binary normal subbase. First we need a simple lemma. 

1.5.10. LEMMA. If S is a binary normal closed subbase for X, then the 

mapping f: XXXXX + X defined by 

is a continuous surjection. 

PROOF. Clearly f is well defined (cf. corollary 1.5.3). To prove the con­
-1 

tinuity of f let S € S and take (x,y,z) i f [sJ. Then 
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and hence, by binarity of S, without loss of generality IS(X'y) n S = ¢. 
Choose So E S such that IS(X'y) c intx(SO) c So and So n S = ¢. Then the 

neighborhood 

-1 -1 
U = ITO [intx(SO)] n ITl [intx(SO)] 

-1 of (x,y,z) E xxxxX does not intersect f [S], as can easily been seen. 

Hence f- 1[S]is closed in XxXxx and consequently f is continuous. Also f 

is surjective, since for an arbitrary x E X we have that 

which completes the proof of the lemma. D 

1.5.11. PROPOSITION. Any topological space which possesses a binary normal 

closed subbase has a mean. 

PROOF. Let S be a binary normal closed subbase for the topological space X. 

Let f be defined as in lemma 1.5.10. Fix a point p E X and define 

m: XxX + X by m := ft{p}xxxX. Then m is a continuous map of X x X onto x. 

Furthermore {m(x,x)} = IS(X'X) n IS(X'p) n IS(p,x) = {x} for all x E X 

and {m(x,y)} = IS(X,y) n IS(X,p) n IS(p,y) = IS(X,y) n IS(y,p) n IS(X'p) 

{m(x,y)} for all x,y E X. Therefore m is a mean. D 

1.5.12. Proposition 1.5.11 gives us many easy examples of spaces which 

are supercompact but which do not possess a binary normal subbase (recall 

that each super compact Hausdorff space possesses a binary weakly normal 

subbase, cf. 1.3.9). For example the supercompact space 

Y = {(O,y) I -1 S Y S 1} u {(x,sin~) I 0 < x S 1} 
x 

possesses no binary normal subbase, since this space has no mean (cf. 

BACON [13]). 

That Y is supercompact is not trivial; it follows of course from the 

theorem of STROK & SZYMANSKI [116] (see also VAN DOUWEN [42]), but the 

binary subbase obtained from their theorem cannot be described well. 

Therefore we will indicate another binary subbase for Y. For each nEW 

define 

2 
xn : = -;(";:2-n'::'+71~) TI-
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Notice that sin(~) = 1 if n is even and that sin(~) = -1 if n is odd. 
xn xn 

Let r: Y + [-l,lJ be the projection onto the second coordinate. It can be 

shown that 

-1 I -1 {(r [x,lJ)\C -1 ~ x ~ 1 and C is a component of r [x,lJ} u 

u {(x,sin!) 
x 

u {(x,sin !) 
x 

-1 
-1 ~ x ~ 1 and C is a component of r [-l,xJ} u 

is a binary closed subbase for Y. Moreover it is obvious that this subbase 

is not normal. 

That Y possesses no binary normal subbase also follows from corollary 

1.5.8 (iii) since Y is not locally connected. However, this argument cannot 

be used in the class of .connected and locally connected spaces. Then propo­

si tion 1.5. 11 applies. For example, the n·-spheres Snare supercompact, but 

do not have a mean (cf. AUMANN [7J) and consequently they cannot possess a 

binary normal subbase. 

15.13. THEOREM. Let X be a topological space and let S be a binary normal 

subbase for X. Let P € X. Then 

(i) ~ is a continuous partial ordering for X; 
p 

(H) {y € X Y ~ x} 
p = IS(p,x) for all x € X; 

(Hi) {y € X X ~ y} is S-closed for all 
p 

x € X; 

(iv) {y € X X ~ Y ~ z} = IS(X'Z) for all x,z € X with x ~ z; 
p p p 

(v) if X is connected, then ~ is order dense. p 

PROOF. (i) From the definition IS it is clear that ~p is reflexive. It is 

symmetric too, for take x,y € X with x ~ y and y ~ x. Then, by definition 
p p 

x € IS(p,y) and y € IS(p,x). But corollary 1.5.3 shows that 

is a singleton. Finally transitivity of ~ is obvious. 
P 

To prove that ~p is continuous, let (x,y) € XxX such that x ip y and 

y ip x. Then {z} = IS(p,x) n IS(p,y) n IS(X'y) is not an element of {x,y}. 

Let U be any neighborhood of z such that clx(U) n {x,y} = ¢. By lemma 

1.5.10 there are disjoint neighborhoods Va and V1 of x and y such that 
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(a) (VOUV1) n clx(U) = ¢; 

(b) for all a € Va and b € Vl we have that IS(p,a) n IS(p,b) n IS(a,b) c U. 

Then Va xVl is a neighborhood of (x,y) € XXX which has an empty intersec­

tion with the graph of ~ • 
p 

(ii) The simple proof is left to the reader. 

X I x ~ y} is closed in X 
p 

x ~ y} is S~convex. Then, 
p 

(iii) Clearly {y € 

show that {y € X 

{y € X I x ~ y} is S-closed. 
p 

(cf. WARD [124J). We will 

by theorem 1.5.7 the set 

Take a,b € {y € X I x ~p y} and take c € IS(a,b). Assume that 

xi IS(p,c). Then take sO,sl € S such that IS(p,c) c SO\Sl and x € Sl\SO 

and So U Sl = X. If a and b are both contained in Sl then so is IS(a,b), 

contradicting c i Sl. Therefore either a € So or b € SO. Assume that 

a € SO. Then p and a are both contained in SO; consequently IS(p,a) c SO. 

This is a contradiction since x € IS(p,a). 

(iv) Notice that 

{y € X I x ~ y < z} p -p {y € X x ~ y} n {y € X I y ~ z} 
p p 

= {y € X 

which is an intersection of two S-closed sets (by (iii» and hence is 

S-closed itself. Therefore IS(X,Z) c {y € X 

Then x € IS(p,q) and q € IS(p,Z), hence q € IS(X'Z) by proposition 1.5.5. 

(v) Take x,y € X and assume that x < y. Define 
p 

and 

B := {z € X I y ~ z} 
p 

respectively; note that B is S-closed by (iii). 

Then A and B are two disjoint S-closed sets, since ~ is a partial 
p 

ordering. By normality of S there exist SO'Sl € S such that A c SO\Sl and 

Be Sl\SO and So U Sl = X. Choose a point Zo in So n Sl (X is connected!); 

by 1.5.3 we can define q by 
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Then q € So n Sl n IS(X'y) and consequently q i. A U B; hence q 'f x and q 'f y. 

But as q € IS(X,y) it follows from (iv) that x ~p q ~p y. Therefore 

o 

1.5.14. THEOREM. Let X be a topological space and let S be a binary normal 

subbase for X. Choose p,q € X. Then the ordering ~ induces a lattice order­
p 

ing on IS (p,q) • Moreover 

(i) x ~ y iff Y ~ x for all x,y € IS(p,q); 
p q 

(ii) {y € IS(p,q) I x ~p y} = IS(x,q) for all x € IS(p,q); 

(iii) the family {IS(p,x) I x € IS(p,q)} U {Is (x,q) I x € IS(P,q)} is a 

closed subbase for IS(X'y); hence IS(X,y) is a compact lattice space 

(cL 1.3.12); 

(iv) if X is connected, then ~p is order dense on IS(p,q). 

PROOF. (i) Since x ~p y iff x € IS(p,y) and y ~q x iff Y € IS(q,X), this 

follows from proposition 1.5.5. 

(ii) Since y € IS(x,q) iff y ~q x, this is a restatement of (i). 

(iii) Indeed, choose x,y € IS(p,q) such that x 'f y. The system 

is a system of S-closed sets with an empty intersection, for IS(p,x) n 

IS(X,q) = {x}, by corollary 1.5.3 (x € IS(p,q)!) and similarly IS(p,y) n 

IS(y,q) = {y}. Therefore, by the binarity of S, either IS(p,x) n IS(y,q) =121 
or IS(p,y) n IS(X,q) = 121. Without loss of generality we may assume that 

IS(p,x) n IS(y,q) = 121. Choose So and Sl in S such that IS(p,x) c SO\Sl and 

IS(y,q) c Sl\SO and So U Sl X. We will show that So n IS(p,q) = 

IS(P,glbq(SO))' 

Recall that glbq(SO) = nS€SO IS(S,q) n IS(SO) = nS€SO IS(s,q) n SO' 

Therefore, as p € SO' glbq(SO) € IS(p,q); moreover as glbq(SO) € So we 

conclude that {P,glbq(SO)} C So n IS(X,p) and consequently 

Now assume that there is a y€ ((SonIS(p,q))\IS(p,glbq(SO))' Choose TO,T1 €S 

such that y € TO\T1 and IS(p,glbq(SO)) C T1\TO and TO U T1 X. Now, if 

q € T1 , then IS(p,q) C T1 , which is a contradiction, since y € IS(p,q). 
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Therefore q E TO. This, however, also is a contradiction since then 

glbq(SO) E TO. We conclude that So n IS(p,q) = IS(p,glbq(SO)). Similarly, 

using (i), we can derive Sl n IS(p,q) = IS (glbp (Sl) ,q). 

Now, by lemma 0.1, {IS(p,X) I x E IS(p,q)} u {Is (x,q) I x E IS(p,q)} 

is a closed subbase for IS(p,q) (note that IS(p,q) is compact!) 

It remains to establish (iv) , this can be done using the same technique 

as in theorem 1.5.13 (v). 0 

1.5.15. A point x in a topological space X is called an endpoint if its 

complement X\{x} is connected. We call a topological space X (generalized) 

arcwise connected if for each two distinct x and y in X there is a totally 

ordered compact connected subspace of X containing both x and y. Then x 

and yare connected by an ordered continuum L such that L\{X,y} is connect­

ed, i.e. x and y are the only two endpoints of L. 

1.5.16. THEOREM. Let X be a connected topological space and let S be a 

binary normal subbase 'for X. Then X is (generalized) arcwise connected. 

PROOF. Choose x,y E X and consider the connected subspace IS(X'y) 

(corollary 1.5.8 (ii)). Then IS(X,y) is partially ordered by ~x and ~x 

is order dense (theorem 1.5.14 (iv)). An easy application of Zorn's lemma 

shows that there is a maximal chain L in IS(X,y). But as ~x is order dense 

so is the induced (total) order on L. Moreover by a theorem of WARD [124J, 

L is closed and connected in IS(x,y) (this is very easy to show). There­

fore, in virtue of theorem 1.5.14, L is an ordered compactum that clearly 

contains both x and y. 0 

1.5.17. For a topological space x, let 2X be the space of all non empty 

closed subsets of X topologized by the Vietoris topology, i.e. a basis for 

the open sets consists of all sets 

where 00'Ol' .•. 'On is an arbitrary finite collection of open subsets of X 

(cf. MICHAEL [75J). The space 2X is called the hyperspace of X. For many 

strong results concerning hyperspaces, see WOJDYSLAWSKI [130J, CURTIS 

& SCHORI [36J,[37J, SCHORI & WEST [102J and WEST [127J. 

Hyperspaces are widely used in general topology, for our purposes too 

they will turn out to be of great help. 
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1.5.18. THEOREM. Let X be a topological space with binary normal subbase S. 
Then the mapping ~: 2XxX + X defined by ~(A,x) := glb (A) is continuous. x 

-1 
PROOF. Let S € S and suppose that (A,x) t ~ [sJ. Then glbx(A) t s. By the 

normality of S there are SO'Sl in S such that glbx(A) € SO\Sl' S c Sl\SO 

and So U Sl = X. Clearly A intersects X\Sl' for otherwise IS(A) C Sl which 

would imply that glbx(A) € Sl' If A ¢ X\Sl' then clearly x t Sl' Let 

if A c X\Sl 

and 

if A ¢ X\Sl . 

Then V is an open neighborhood of (A,x) which, in addition, does not inter­

sect ~-l[SJ. For take (B,y) € V. In the first case, B c X\Sl' whence 

~(B,y) € X\Sl c X\S. In the second case, choose b € B n (X\Sl)' Then 

{b,y} c SO; consequently ~(B,y) € So c X\S. 0 

1.5.19. Recall that a topological space X can be embedded in 2X by the 

mapping i(x) := {x} (MICHAEL [7SJ). We will identify X and i[XJ. A topolog­

ical space X which possesses a binary normal subbase will be called, from 

now on, normally supercompact. 

1.5.20. COROLLARY. A normally supercompact space X is a retract of its 
X 

hyperspace 2 • If, in addition, X is connected and metrizable then X is 

an Absolute Retract. 

PROOF. Let S be a binary normal subbase for X. Fix a point p € X and 

define r: 2X + X by r (A) := ~(A,p), where ~ is as defined in theorem 

1.5.18. Then r is a continuous retraction. For take x € X. Then 

{r(x)} 

If in addition X is connected and metrizable, then X is a Peano 

continuum (corollary 1.5.8 (iii». Hence 2X is an Absolute Retract 

(WOJDYSLAWSKI [130J; even 2X ~ Q, the Hilbert cube, see CURTIS & SCHORI 

[36J). Therefore X is an Absolute Retract too. 0 

1.5.21. If X has a binary normal subbase S then the subspace 

H(X,S) := {C € 2X I C is S-closed} of 2X is of particular interest. It 

will be discussed in section 2.10. From the results obtained there we 
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mention the following: 

(a) the mapping ~: 2X + H(X,S) defined by ~(A) := IS(A) is a retraction 

(hence H(X,S) is compact!) (theorem 2.10.5); 

(b) H(X,S) has a binary normal subbase (corollary 2.10.12). 

H(X,S) inherits a partial ordering (by inclusion) from 2X, which is 

order dense if X is connected. 

1.5.22. THEOREM. Let X be a topological space which possesses a binary 

normal subbase S. Then H(X,S) is a densely ordered (by inclusion) compact 

subset of 2X if and only if X is connected. 

PROOF. H(X,S) always is compact (cf. theorem 2.10.5). Assume that X is 

connected. Choose A,B € H(X,S) such that A is a proper subset of B. Take 

x € B\A and let SO'S1 € S such that A c So n (X\S), x € S1\SO and 

So U S1 = X. This is possible since S is normal and since A € H(X,S). 

Then {SO'S1,B} is a linked system consisting of S-closed sets, hence 

So n S1 n B ~ ¢ since S is binary. Take b € So n S1 n B and define 

C := So n B. Then A c C c B and A ~ C since b € C\A and C ~ B since 

x € B\C. Clearly C € H(X,S). 

Conversely, assume that H(X,S) is a densely ordered (by inclusion) 

compact subset of 2X. Take A € H(X,S) and let LA be a maximal chain, in 

H(X,S), that contains A. Notice that X € LA. Then, since H(X,S) is compact 

and densely ordered by inclusion, LA is compact and connected (WARD [124J). 

But then H(X,S) = U{LA I A € H(X,S)} is connected too. As each singleton 

in X is S-closed, X c H(X,S) and as X is a retract of H(X,S) by corollary 

1.5.20 we conclude that X is connected. 0 

1.5.23. COROLLARY. Let X be a connected topological space which admits a 

binary normal closed subbase S. Then for each x € X there is a compact 

connected linearly ordered space J, with endpoints a and b, and a contin­

uous "contraction" p: XXJ + X such that p~X x {a} is constant with values 

on x and p~X x {b} is the identity mapping. If, in addition, X is metriz­

able then so is J and consequently p becomes an ordinary contraction. 

PROOF. Choose x € X and let L c H(X,S) be a maximal chain that contains 

{x}. Then L is densely ordered by inclusion (theorem 1.5.22) and con­

sequently L is a compact connected ordered space. Also {{x},X} are the 

only endpoints of L as can easily be seen. Now let p: Lxx + X be the 
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it is easy to see that p satisfies the required properties. 
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If in addition X is metrizable, then 2X is metrizable (cf. ENGELKING 

[48J, problem P.4H) and consequently so is its subspace J. But then J is 

homeomorphic to the closed unit interval [O,lJ (WARD [124J). 0 

The technique, used in the proof of the above corollary, is due to 

VAN DE VEL [118J. 

Finally, we present some questions which at the moment we cannot 

answer. In section 1.3 we showed that each compact tree-like space is 

supercompact. A compact tree-like space is rim finite (cf. PROIZVOLOV [92J), 

i.e. each point admits arbitrary small neighborhoods with finite boundaries. 

This suggests the question whether any rim finite continuum is supercompact. 

1.5.24. QUESTION. Are rim finite continua supercompact? 

It should be noticed that a rim finite continuum is the continuous 

image of a supercompact Hausdorff space; indeed, it is even the continuous 

image of an ordered continuum (cf. WARD [125J). Not all rim finite continua 

are normally supercompact, since the I-sphere Sl is rim finite but not 

contractible (cf. corollary 1.5.20). 

1.5.25. QUESTION. When is a normally supercompact space the continuous 

image of an ordered compactum? 

Not all connected spaces with a binary normal subbase are the con­

tinuous image of an ordered compactum. For example, Ie is not the contin­

uous image of an ordered compactum, since it is not hereditarily normal. 

1.6. Notes 

DE GROOT [54J,[55J conjectured that every compact metric space is 

supercompact (which was proved to be correct by STROK & SZYMANSKI [116J) 

and also that not every compact Hausdorff space is supercompact (which 

was proved by BELL [14J). Theorem 1.1.5 indicates why certain compact 

Hausdorff spaces are not supercompact, but there are still many questions 

left. 

After learning that not every compact Hausdorff space is supercompact, 

VAN DOUWEN and the author together improved BELL's result. These results 
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are included in the previous chapter; they fill section 1.1. They will also 

be published separately in a forthcoming paper (cf. VAN DOUWEN & VAN MILL 

[43 J) • 

We also have some comments concerning section 1.3. As noted there, 

supercompact spaces can be characterized as being those spaces obtainable 

as the graph-space of a graph. This approach was developped by DE GROOT 

[S6J and it turned out to be useful (cf. DE GROOT [S6J, BRUIJNING [26J, 

SCHRIJVER [10SJ). BRUIJNING [26J used the graph-theoretical method's of 

DE GROOT by reproving an internal characterization of In and I oo (cf. 

DE GROOT [ssJ). SCHRIJVER [10SJ used non-intersection graphs instead of 

intersection graphs and considerably simplified and generalized the 

techniques; among others he reproved in a simple way all the results in 

DE GROOT & SCHNARE [60J and obtained some new subbase characterizations 

of certain classes of topological spaces. The author proved the subbase 

characterization of (products of) compact tree-like spaces (cf. VAN MILL 

[76J); in particular that every compact tree-like space is supercompact, 

which was proved independently by BROUWER & SCHRIJVER [24J (cf. also 

BROUWER [23J) using a different method. BROUWER & SCHRIJVER [24J used 

interval structures (which were first used by SCHRIJVER). Finally 

SCHRIJVER and the author jointly wrote a paper in which we included the 

interval structures, results from [10SJ and [76J and also some new 

techniques (cf. VAN MILL & SCHRIJVER [81J). This paper was the basis for 

section 1. 3 . 
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CHAPTER II 

SUPEREXTENSIONS 

In this chapter we will construct for each topological space X and 

for each suitable closed subbase S a supercompact superspace A(X,S) of X, 

in the same way as FRINK [51J, SHANIN [106aJ, and others, constructed a 

compactification w(X,S) of X. The underlying set of A(X,S) is the set of 

maximal linked systems in S; the topology is induced by a natural Wallman 

subbase for the closed subsets. The space A(X,S) is called the super­

extension of X relative" the subbase S (cf. DE GROOT [54J), and in case S 

consists of all the closed subsets of X we usually write AX instead of 

A(X,S), calling AX the superextension of X. 

The spaces A(X,S) are supercompact, in a very natural way: their 

canonical defining subbases are binary. It is not surprising that one has 

to use something like the axiom of choice to prove this (cf. FRINK [51J, 

STEINER [114J). The first section in this chapter deals with the question 

what set theoretic assumptions we have to make in order to extend arbitrary 

linked systems to maximal linked systems. We do this in the setting of 

Boolean algebras. We will reprove SCHRIJVER's [106J theorem that the 

statement 

each linked system in a Boolean algebra can be extended to 

at least one maximal linked system, 

is strictly weaker than Stone's representation theorem; also (*) is 

independent of the usual axioms of set theory since, as SCHRIJVER [106J 

has shown, (*) implies that each product of sets containing at most two 

elements is nonempty (that is to say: (*) implies C2 , the axiom of choice 

for two sets, cf. JECH [66J). We will show that (*) is equivalent to a 

weaker form of the representation theorem of Stone; for this we define 

near~subalgebras of Boolean algebras. Each subalgebra is a near-subalgebra; 

(*) is equivalent to the statement that each Boolean algebra is isomorphic 
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to a near-subalgebra of a P(X). 

The other sections in this chapter deal with topological properties 

of superextensions. Some properties are inherited from the underlying 

space, such as: AX is connected if X is connected (cf. VERBEEK [119J). But 

other properties are new and unexpected and they turn out to be fundamental, 

such as: AX is locally connected if X is connected (cf. VERBEEK [119J). 

The superextension AX of a topological space X always is a "big" 

space, in case X is normal, the dimension of AX either is zero (in case 
v 

Ind X = 0) or infinite. Also AX contains SX, the Cech-Stone compactifica-

tion of X, as a subspace (again we only consider normal spaces) (cf. 

VERBEEK [119J). This is a consequence of the fact that X is C*-embedded 

in AX and this can be shown using a result of JENSEN [59J (cf. also 

VERBEEK [119J). We will extend the result of JENSEN in such a way that 

it becomes applicable in more general situations. Here we apply ideas of 

STEINER & STEINER [111J, [112J. 

Subspaces of superextensions often have rich structures. In section 

2.8 a first attempt is made to describe some subspaces which appear to be 

interesting. For a normal space X we define a subspace E(X) of A(X) which 

seems to behave as the "remainder" of the "extension" AX of X; as we will 

show E(X) has much in common with SX\X. In particular, as a consequence of 

our results E(X) is compact iff X is locally compact iff E(X) is homeo­

morphic to A(SX\X). Of particular interest is the space E(~). This is in 

fact the space of all uniform maximal linked system on ~. The space E (~) 

can be characterized in about the same way as PAROVI~ENKO [91J character­

ized S~\~. This characterization is valid under CH, the Continuum Hypoth­

esis. By an example of VAN DOUWEN [40J the Continuum Hypothesis is indeed 

essential here. There is a locally compact, separable, a-compact topolog­

ical space M for which SM\M and S~\N are homeomorphic under CH but not 

under MA + iCH. VAN DOUWEN's example also shows that CH is essential in 

our characterization of E (~). The spaces E (~) and E (M) are homeomorphic 

under CH but not under MA + iCH. 

In section 2.10 we try to define a general notion of convexity in 

topological spaces; convexity with respect to a certain closed subbase. 

This section has in fact little to do with superextensions; it is hyper­

space theory. But to prove our theorems we use superextensions extensively. 

Some of the consequences of this section were used in 1.5.22 and the same 

results will also be used in section 2.7. There we show that the super-
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eKtension of a normal space, with the property that each finite subset 

is contained in a metrizable continuum, is contractible. This is really 

a nice theorem. As a consequence it follows that A~, the supereKtension 

of the real line~, is contractible, in contrast with S~ (this space is 

not even path connected). The contractibility of A~ was claimed previous­

ly by VERBEEK [119J; his proof is incorrect however, since it relies on 

the contactibility of S~. The results about conveKity in topological 

spaces and about contractibility of supereKtensions were obtained in good 

cooperation with M. VAN DE VEL (cf. VAN MILL & VAN DE VEL [82J, [83J). 

2.1. Linked systems and the Stone representation theorem 

This section deals with logical independency of some axioms in Boolean 

algebra's. Our main interest is in (maximal) linked systems, which are 

natural generalizations of filters. We refer to the book of HALMOS [61J 

for general concepts concerning Boolean algebras. 

2.1.1. DEFINITION. Let B = <B,O,l,' ,A,V> be a Boolean algebra. A subset 

M c B is called a linked system if mO A m1 # a for all mO,m1 € M. 

A maximal linked system is a linked system not properly contained in any 

other linked system. 

It is easy to verify that the lemma of Zorn implies that each linked 

system in a Boolean algebra can be extended to at least one maximal linked 

system. However, much weaker axioms imply this fact, cf. SCHRIJVER [106J. 

We deal with the following axioms: 

FA Each Boolean algebra contains an ultrafilter. 

FA': Each filter in a Boolean algebra is contained in at least 

one ultrafilter. 

LA : Each Boolean algebra contains a maximal linked system. 

LA': Each linked system in a Boolean algebra is contained in at least 

one maximal linked system. 

Again it is easy to see that FA and FA' are equivalent, forming quotient 

algebra's (cf. JECH [66J). Also, LA and LA' are equivalent (SCHRIJVER 

[106J; cf. 2.1.7 below) but this is less trivial. 

2.1.2. LEMMA (LA'). Let B <B,O,l,' ,A,V> be a Boolean algebra. Then for 
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all x,y £ B there is a maximal linked system L c B such that ILn{x,y}1 =1. 

PROOF. If x equals y, then the linked system {x} is contained in at least 

one maximal linked system L, by LA'. 

If x is not equal to y, then we may assume, without loss of generality, 

that y ~ x. Clearly, x, Ay # a. Then the linked system {x',y} is contained 

in at least one maximal linked system L c B. Then L n {x,y} = {y}, since 

x I £ L. 0 

Let (X,~) be a partially ordered set; then each subset A of X will be 

partially ordered by the induced ordering ~A' defined by a ~A b iff a ~ b 

(a,b £ A). 

2.1.3. DEFINITION. Let B = <B,a,l,',A,V> be a Boolean algebra. A subset 

A c B is called a near-subalgebra of B provided that 

(i) (A'~A) is a distributive lattice; 

(ii) 0,1 £ Ai 

(iii) Va £ A: a ' £ A. 

For any two elements aa and a l of the near-subalgebra A of B write 

for the greatest lower bound (least upper bound) of aa and a l . We then 

have 

2.1.4. LEMMA. Let A be a near-subalgebra of the Boolean algebra B. Then 

a AA b ~ a A b and a v b ~ a VA b for all a,b £ A. 0 

2.1.5. PROPOSITION. Let A be a near-subalgebra of Boolean algebra 

B = <B,a,l,',A,V>. Then A = <A,a,l,' ,AA'vA> is a Boolean algebra. 

Moreover each subalgebra of a Boolean algebra is a near-subalgebra. 0 

The proof of this proposition is straightforward. 

Proposition 2.1.5 suggests the question whether each near-subalgebra of 

a Boolean algebra is a subalgebra (in the usual sense). The answer to 

this question is in the negative, as the following example shows. 

2.1.6. EXAMPLE. A near-subalgebra which is not a subalgebra. 

In P ({ 1 ,2,3,4}) let A : = {¢, {1 } , { 2} , {3} , {1 ,2,4 }., {1 ,3,4} , { 2, 3,4} , {1 ,2,3,4} } • 



It is easy to see that A is a near-subalgebra, which is not a subalgebra 

of p(X). For example {1} € A and {2} € A while {1,2} i A. D 

2.1.7. THEOREM. The following statements are equivalent: 

(i) LA; 

(ii) LA'; 
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(iii) each Boolean algebra is isomorphic to a near-subalgebra of some p(X). 

PROOF. SCHRIJVER [106] has first shown that (i) is equivalent to (ii). We 

will present a different and simpler proof here. As obviously (ii) ~ (i), 

we need only prove (i) ~ (ii). Indeed, let B = <B,O,l,',A,V> be a Boolean 

algebra; let M c B be a maximal linked system. If L c B is a linked system, 

then define 

L' :={m€M I mAR.#O (VR.€L)}u{m' Im€Mand 3R.€L:mAR.=OL 

Then it is easily seen that L' is a maximal linked system that contains L. 

(ii) ~ (iii). Let B = <B,O,l,',A,v> be a Boolean algebra. Define 

x = {L c B I L is a maximal linked system}. 

Then X is nonvoid, because of LA'. For any b € B define 

b+ := {L € X I b € L}. 

Define a function 

</>: B .... p(X) by 

CLAIM. </>[B] is a near-subalgebra of p(X) and </>: B .... </>[B] is an isomorphism. 

Indeed, first notice that </>(0) 

{L € X I x i L} = X\{L € X I x € L} 

a maximal linked system. 

!IS. Also </> (x') {L € X I x' € L} = 
</>(x)c, since each element L € X is 

We will proceed to show that </>[B] is a near-subalgebra of p(X) and for 

this it only remains to be shown that (</>[B],c) is a lattice. 

Choose x+,y+ € </>[B]. Let us show that (x A y)+ is the greatest lower 

bound of x+ and y+ in [B]. Trivially (xA y)+ c x+ n y+; therefore suppose 

that z+ c x+ n y+ Now, z+ c x+ implies that z ~ x, for suppose to the 

contrary that z ~ x. Then the linked system {x',z} is contained in a max­

imal linked system L € X. Hence L € z+ and L i x+, since x' € L. This is 
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a contradiction. Hence z ~ x and in the same way also z ~ y. Consequently 

z ~ x A y; thus z+ C (xAy)+. 

In the same way (x v y) + is the least upper bound of x + and y+ in 

~[BJ. Hence ~[BJ is a near-subalgebra of p(X). Also it is clear that 

~: B -+ ~[BJ is an homomorphism, since for example ~ (x A y) (x A y) + = 
+ + 

x A~[BJ y = ~(x) A~[BJ ~(y). Finally, ~ is injective. For take x,y E B 

such that x f. y. By lemma 2.1.2 there is an LEX such that ILn {x,y}1 = 1. 

This implies that x+ f. y+ and consequently ~(x) f. ~(y). We conclude that 

~: B -+ ~[BJ is an isomorphism. 

(iii) ~ (i). Let B be a near-subalgebra of some p(X). Choose Xo E X and 

define 

L := {L E B 

We will show that L is a maximal linked system. 

First of all notice that L f. ¢ since X E L. Also L is a linked system. 

For suppose LO,L1 E L 'such that La AB Ll = ¢. Then La ~B (X\L1) and con­

sequently La C (X\L1), since B is a near-subalgebra. This is a contradic­

tion. Finally L is a maximal linked system, since for all B E B either 

BEL or X\B E L. 
This completes the proof of the theorem. 0 

2.1.8. In [106J SCHRIJVER showed that LA follows from OEP, the order 

extension principle, which can be formulated as follows: 

OEP: Each partial order on a set can be extended to a total order. 

He also proved that LA implies C2 ' where 

C2 : Each product of sets, each containing at most two elements, 

is nonempty. 

It is unlikely that LA is equivalent to OEP, although LA is equivalent to 

a statement which seems to be very close to OEP. We define 

REP (relation extension principle): For each Boolean algebra B = <B,O,l,' ,A, v> 

there is a binary relation R on B satisfying: 

(i) x ~ y implies xRy 

(ii) xRy or yRK 

(iii) l(xRK' and x'RK) 

(iv) xRy and yRz implies xRz 

(x, y E B) ; 

(x, y E B); 

(x E B); 

(x,y,z E B). 

(Notice that R is a total pre-ordering.) 



2.1.8. THEOREM. LA is equivalent to REP. 

PROOF. Let B = <B,O,l,',A,V> be a Boolean algebra and let M be a maximal 

linked system in B. Then the relation R on B defined by xRy iff (x' E M 

or y E M) satisfies all requirements. 
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On the other hand, let B <B,O,l,',A,V> be a Boolean algebra and 

let R be a binary relation on B satisfying (i)-(iv). Let M:= {x E B I x'Rx}. 

We will show that M is a maximal linked system. To prove that M is linked, 

take a,b E M. Suppose to the contrary, that a A b = 0. Then a ~ b' and 

b ~ a'. Therefore 

aRb'RbRa'Ra, 

since a,b E M. But then aRa' and a'Ra (by (iv», which contradicts (iii). 

Finally M is a maximal linked system since for all x E B either x'Rx or 

xRx' and consequently x E M or x' E M. 0 

REMARK. The proof of the implication REP => LA is the same as SCHRIJVER' s 

[106J proof OEP => LA. 

As clearly OEP implies REP we conclude that OEP implies LA and hence, 

as OEP is weaker than FA (JECH [66J), that LA if weaker than FA. 

2.2. Superextensions; some preliminaries 

In this section we will describe how to construct superextensions of 

topological spaces; we give some simple lemma's which we frequently use 

without explicit reference. Moreover we will characterize the class of all 

superextensions of a given topological space. 

2.2.1. Let X be a topological space and let S be a subbase for the closed 

subsets of X. Recall the following definitions; S is defined to be 

(i) a T1-subbase if for each Xo E X and S E S with Xo i S there exists 

aTE S with Xo E T and T n S ¢ (cf. O.A); 

(ii) a weakly normal subbase if for each S,T E S with S n T = ¢ there 

is a finite cover M of X by elements of S such that each element 

of M meets at most one of Sand T (cf. 1.3.8); 
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(iii) a normal subbase if for each SO,TO E S with So n TO = ¢ there exist 

Sl,T1 E S with Sl n TO = ¢ = T1 n So and Sl U T1 = X (cf. 1.3.16). 

Finally we define S to be 

(iv) a supernormal subbase if S is normal while moreover for all S E S 

and closed G c X with S n G = ¢ there exists an So E S such that 

G c So and S n So = ¢. 

A maximal linked system, or briefly mls, in S is a linked system of S 

not properly contained in any other linked system of S. Usually we do not 

explicitly mention S. 
The simple propositions 2.2.2 and 2.2.3 and the proof of theorem 2.2.4 

can be found in [119J. 

2.2.2. PROPOSITION. Let MO' M1 be mls's in S. Then 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

<P i MO; 

if S E MO' T E S 

if S E S\MO then 

MO # M1 iff 3s E 

if S,T E Sand S 

and SeT then T E MO; 

3T E MO: S n T ¢; 

MO' 3T E M1 : S n T = ¢; 

u T = X then S E MO or T E MO. 0 

The above proposition shows that maximal linked systems in some 

respects behave like ultrafilters. Define 

>.. (X,S) := {M c S I M is a maximal linked system in S}. 

If S is a T1-subbase then for each x E X we have that 

Mx := {S E S XES} is an mls in S; the function i: X -+ >.. (X,S) de,f;ined by 

~(x) := Mx is one to one. 

For A c X we define 

A+ := {M E >"(X,S) I A contains a member of M}. 

2.2.3. PROPOSITION. For any A,B c X we have 

(i) A c B implies A+ + 
c B 

(ii) A n B = ¢ implies A 
+ + 

= ¢; n B 

(iii) if A,B E S then A n B ¢ iff A+ n B+ ¢; 

(iv) if A,B E S then A u B X iff A+ u B 
+ 

>.. (X,S); 

(v) if A E S then A+ u (X\A) + =>..(X,S). 
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As a closed subbase for a topology on A(X,S) we take 

S+ : = {S + I S E S}. 

With this topology A(X,S) is called the superextension of X with respect 

to the subbase S. In case S consists of all the closed subsets of X, then 

A(X,S) is denoted AX and is called the superextension of X. 

Zorn's lemma implies that each linked system M c S is contained in at 

least one maximal linked system M' c S. This proves theorem 2.2.4 (iv). 

2.2.4. THEOREM. 

(i) If S is a T1-subbase then i: X + A(X,S) is an embedding; 

(ii) A(X,S) is T1 ; 

(iii) A(X,S) is Hausdorff if S is normal, since S+ is normal if 

S is normal; 

(iv) A(X,S) is supercompact; in fact S+ is binary; 

(v) for all S E S: i- 1[S+J = S. 

In case i is a topological embedding we will always identify X and 

i[XJ. Because of theorem 2.2.4 (iv), if S is a T1-subbase the closure of 

X in A(X,S) is a compactification of X, the so called GA (de Groot-Aarts) 

compactification SeX,s) of X with respect to the subbase S. These compac­

tifications were introduced by DE GROOT and AARTS in [57J. They showed 

that if S is weakly normal then SeX,S) is a Hausdorff compactification 

of X; consequently X is completely regular. The counterpart of this 

theorem is also true: if SeX,S) is Hausdorff then S is weakly normal 

(cf. 4.6.2). The GA compactifications will be discussed in detail in 

chapter four. 

The following theorem is simple but useful; it will be used frequent­

ly in chapter 3. 

2.2.5. THEOREM. Let S be a binary subbase fo.r the topological space X. 

Let Y be a subspace of X such that for all SO,Sl E S with So n Sl i ¢ 
also So n Sl n Y i ¢. Then X is homeomorphic to A(Y,SnY). 

PROOF. Define a function ~: X + A(y,SnY) by ~(x) := {S n Y I S E Sand 

XES}. We will show that ~ is a homeomorphism. 

To prove that ~ is well defined, choose x E X. Then clearly ~(x) is 

a linked system. Assume it were not maximally linked. Choose So E S such 
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that ~(x) U {sOnY} is linked but So n Y i ~(x). Clearly x i SO. Choose 

T € S such that x € T and T n So = ¢ (this is possible since S is a T1-

subbase). But then T n Y € ~(x) and (TnY) n (SOnY) = ¢, which is a contra­

diction. Hence ~ is well defined. 

Also ~ is one to one and surjective. For take x,y € X such that 

x ~ y. Choose Sand T in S such that x € S, Y € T such that S n T = ¢. 
But then S n Y € ~(x) and T n Y € ~(y) and as (SnY) n (TnY) ¢ it follows 

that ~ (x) ~ </> (y). To prove that ~ is surjective, take M € A (Y ,SnY). Define 

L = {S € sis n Y € M}. Then L is a linked system (in S) and consequently, 

since S is binary, there is an x € nL. It now is not hard to see that 

~(x) = M. 
Finally ~ and ~-1 are continuous. This is trivial since for all S € S 

we have x € ~-l[(snY)+J iff ~(x) € (snY)+ iff S n Y € ~(x) iff x € S. 

Therefore ~-l[(snY)+J S. 

We conclude that ~ is a homeomorphism. 0 

2.2.6. COROLLARY (VERBEEK [119J). Every superextension of a topological 

space X can be regarded as a superextension of a compactification of X, 

viz. 

where 

+ + 
PROOF. Let SO,Sl € S. If So n Sl ~ ¢ then So n 

+ + + 
(SO n J3 (X,S» n (Sl n J3 (X,S» ~ ¢, since Si c Si 

Sl ~ ¢ and consequently 

n J3 (X,S) (i € {0,1}). Now 

apply theorem 2.2.5. o 

Theorem 2.2.5 implies much more; it was the starting point for the 

author's proof that AI ~ 100. Also theorem 2.2.5 allows us to construct 

nice superextensions of topological spaces. Let us demonstrate this by 

an example. It is clear that the canonical subbase of right- and left-tails 

of a linearly ordered compact space is binary and also that if T is a 

binary subbase for X then A(X,T) is homeomorphic to X (in the obvious 

way). In particular the subbase S = {[O,xJ 

is a binary subbase for the unit segment I 

X € I} U {[x,lJ I x € I} 

[O,lJ, and consequently 

A(I,S) is homeomorphic to I. Hence the unit segment is a superextension 

of the unit segment, VERBEEK ([119J, p.136) gives a list of superexten­

sions of the unit segment, but none of the examples is homeomorphic to 
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the unit square or to a higher dimensional hypercube. Theorem 2.2.5 gives 

us for each n E N an easily described subbase Sn for which A(I,Sn) is 

homeomorphic to In. Let us describe S2' To this end define an embedding 

of I into [0,~J2 as suggested in the following figure. 

-<- 7T1 
1 1 1 2 

(0'3) (3'3) 1 -

~~ '" 7T 0 

I 
(0,0) 1 

0 1 
(3,0) 3 

Figure 5. 

Define a binary subbase T for [O,~J2 by 

-1 T := {7Ti [O,xJ 0 < <1 { }} -x- 3, iE 0,1 • 

That T is a binary subbase is easily checked (of course this is also shown 

in lemma 0.5). Also it is clear that for all TO,T1 E T with TO n T1 ~ ¢ 

we have that TO n T1 n $[IJ ~ ¢. Hence theorem 2.2.5 implies that 

A($[IJ,Tn $[IJ) Rj [0,~J2 Therefore 

2 is a subbase for I such that A(I,S2) Rj I • 
3 [0,_17J3 To get I as a superextension of I we must embed I in as 

suggested in figure 6. 
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Therefore 

4 
:; 

~--'-----___('R 
7 

o 

3 
:; 

I 

)------------

7 

Figure 6. 

3 4 
S3 := {[O,x] u [:;-x,:;+x] u [i-x,i] 

4 
u {[:;-x,i] 

5 
:; 

2 
:; 

3 is a subbase for I such that A{I,S3) ~ I • It is clear that with a simple 

induction we now can construct the subbases S (n € IN). 
n 

"" Using an embedding of I in I we can also construct a subbase S 
"" 

for 

I for which A{I,S ) ~ I"". We will not describe the subbase S as there 
"" "" 

are much nicer subbases for I for which the corresponding superextension 

is homeomorphic to the Hilbert cube Q, cf. chapter 3. But it IllUst be 

noticed that the first subbase for the closed unit segment with a super­

extension homeomorphic to the Hilbert cube was constructed in the indicate 

manner. 



2.3. Extending continuous functions to superextensions 

In this section we deal with the question under what conditions 

continuous functions can be extended over superextensions. This is of 

importance of course, since several properties of superextensions can be 

derived by considering the space to be a quotient of a superextension 

with a richter subbase (cf. VERBEEK [119J). 
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G.A. JENSEN [59J gives a solution of the extension problem but for 

some purposes her solution is not satisfactory. We will extend JENSEN's 

result, but our result still is not really satisfactory because we cannot 

give a necessary and sufficient condition for extension of continuous 

functions. 

2.3.1. DEFINITION. Let Sand T be two families of closed sets in the 

topological space X. We way that S separates T if for any TO,T1 E T with 

TO n T1 ¢ there exist SO'Sl E S such that T. c S. (i E {0,1 }) and 
~ ~ 

So n Sl ¢. 

Notation: T C S. 

2.3.2. DEFINITION (VERBEEK [119J). Let S be a T1-subbase for the topolog­

ical space X. Then a linked system M c S is called a pre-mls if M is con­

tained in precisely one mls M' E A (X,S) • 

The following lemma will be used frequently without reference. It is 

straightforward to prove. 

2.3.3. LEMMA (VERBEEK [119J). Let S be a closed T1-subbase for the topo­

logical space X and let M E A(X,S). Then 

(i) a linked system PeS is a pre-mls iff VS,S' E S: (p U {S} and 

P U {S'} are linked ~ S n S' # ¢); 

(ii) if PeS is a pre-mls, contained in M, then 

M = {S E Sip U {S} is linked}. 

The unique S-mls that contains a pre-mls M c S is denoted by M. We 

say that M is a pre-mls for ~. 

We now can formulate the main result in this section. 

2.3.4. THEOREM. Let S be a T1-subbase for X, let T be a normal T1-subbase 

for Y and let f: X ~ Y be a continuous map satisfying 
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Then f can be extended to a continuous map f: A(X,S) + A(Y,T). 

Moreover, if f is onto, then f is onto. 

If f is one to one and {f[S] 8 € S} C T then f is an embedding. 

PROOF. Define 

A := {A c X I A € S or 3T € T: A = f- 1[T]}. 

Then A is a T1-subbase for X. Choose M € A(X,S). 

CLAIM 1. M is a pre-mls in A. 

Indeed, assume to the contrary that M were not a pre-mls in A. Then there 

exist AO,A1 € A with AO n A1 = ¢ and M U {Ai} is linked (i € {0,1}). 

Without loss of generality we may assume that Ai i S (i € {0,1}) for if, 

say AO € S, it would follow that, since M is a maximal linked system, 

AO € M, which is a contradiction since AO n A1 = ¢. Hence 

A € {f-1[T] I T € T} (i € {0,1}). Take S. € S such that A. c 8. 
i ~ ~ ~ 

(i € {0,1}) and So n 81 = ¢. Now M U {Ai} is linked implies that M U {Si} 

is linked and therefore Si € M (i € {0,1}). This contradicts the linked­

ness of M. 

NOw, let M be the unique mls in A that contains M. 

CLAIM 2. P~ := {T 6 T I f-1[T] € ~} is a pre-mls in T. 

Clearly pM is linked. Suppose that P~ were not a pre-mls. Then there 

exist TO,T1 € T such that pM U {Ti } is linked (i 6 {0,1}) but TOnT1 = ¢. 

The normality of T implies the existence of T~ 6 T (i € {O,l}) such that 
~1 -1 

TO U Ti = Y and TO n Ti = ¢ = TO n Tl • Then f [TO] U f [Ti] = X and 

consequently, by proposition 2.2.2 (v), either f- 1[TO] € ~ or f-1[Ti]€~' 
Without loss of generality assume that f-l[TO] 6 M. But then TO 6 pM, 

which is a contradiction since TO n T1 = ¢. 
Now define 

f: A(X,S) +A(Y,T) byf(M) :=pM. 

CLAIM 3. f is continuous. 

--1 + 
It suffices to show that f [T] is closed in A(X,S) for all T € T. 



--1 + 
Therefore choose Tl € T arbitrarily and assume that M t f [Tl ]. Then 

f(M) t T; and consequently P~ u {Tl } is not linked, by claim 2. Choose 

TO € P~ such that TO n Tl = ~. Also choose Ti € T (i € {0,1}) such that 

TO U Ti = X and TO n Tl = ~ = TO n Ti. As TO € P~ also TO € P~ and con­

sequently M U {f- l [TOJ} is linked. Now as {f-l [T] I T € T} C S there are 
-1 -1 

So and Sl in S satisfying f [TO] C So and f [Ti] c Sl and So n S1 = ~. 
Define U = X\Sl. We then have 

f-1[TO] C So cUe f- l [TO]. 

Now, TO € P~ implies that M u {f-l[TO]} is linked and therefore also 

M u {SO} is linked. Hence So € M and consequently M_€ u+. We claim that 
+ -1 + U is a neighborhood of M which does not intersect f [T1]. For take 

+ --1 + 
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L € U n f [T1]. Then there is an L € L such that LeU. Hence 

{f-l[TO]} u L is linked and therefore TO € f(L). This is a contradiction, 

since Tl n TO = ~. 
It now follows that f-l[T+] is closed and hence that f is continuous. 

f 
CLAIM 4. The diagram X Y commutes. 

~1 1 !y 

>'(X,S) 
f >. (Y, T> ---+-

Indeed, let x € x. Then !(x) is the S-mls {S € S I x € S} and f(!(x» is 

the unique T -mls containing the pre-mls 

{T € T I {f-l [T]} u {S € S I x € S} is linked}. 

Let us show that i(f(x» contains this pre-mls. It then follows that 

f(!(x» = !(f(X»~ Choose Tl € T such that {f-l [Tl ]} u {S € S I x € S} is 

linked, while moreover f(x) t T1 • Now, by the fact that T is a T1-subbase, 

there is a TO € T such that f(x) € TO and TO n Tl = ~. Choose So and S1 

in S satisfying f- l [T.] c S. (i e: {O,!}) and So n S1 = ~. Then 
-1 ~ ~ -1 

x e: f [TO] c So which implies that So n f [Tl ] r ~. Contradiction. 

CLAIM 5. If f is onto then f is onto. 

Let K € >'(Y,T) and define 

I -1 
L := {S € S 3T e: K: f [T] c s}. 
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Since f is a surjection, L is a linked system. Choose M E A(X,S) such that 

L c M. We assert that f(M) K. For this it suffices to prove that K con-

tains the pre-mls P~. Let us assume, to the contrary, that for some 

TO E P~ we have that TO i K. Then there is a T1 E 

Choose So and Sl in S such that f- 1[T.] c S. (i E 

K such 

{a,!}) 

that TO n T1 

and So n Sl = 
-1 ~ ~ 

As f [TO] E ~ also So E ~ and consequently So E M. But T1 E K implies 

that Sl E L c M. This contradicts the linkedness of M. 

= !/l. 

!/l. 

CLAIM 6. If f is one to one and {f[S] S E S} C T, then f is an embedding. 

First notice that f: A(X,S) + A(y,T) is a closed mapping, since A(X,S) is 

compact and A(Y,T) is Hausdorff (theorem 2.2.4 (iii)). 

It suffices to show that f is one to one. For this take 

MO,M1 E A(X,S) such that MO i MI. Choose So and Sl in S such that 

Si E Mi (i E {0,1}) and So n Sl = !/l. Clearly f[SO] n f[S1] = !/l and hence 

there exist TO and T1 in T such that f[Si] c Ti (i E {a,!}) and TO n T1 =!/l. 

As Si c f- 1[Ti ] it follows that Ti E P~i (i E {a,!}) and therefore 

f(Mo ) i f(M 1). 

This completes the proof of the theorem. 0 

As noted in the introduction of this section theorem 2.3.4 does not 

give a necessary and sufficient condition for extension of continuous 

functions over superextensions. But if we, moreover, assume that the 

closed subbase S for X is a separating ring (cf. O.A) and that f is a 

surjection, then the condition mentioned in the theorem is necessary and 

sufficient. 

2.3.5. COROLLARY. Let S be a separating ring of closed subsets of X, and 

let T be a normal T1-subbase for Y and let f: X + Y be a continuous sur­

jection. Then the following assertions are equivalent: 

(i) there is a continuous surjection f: A(X,S) + A(y,T) such that 

ffX = f. 

(ii) a-1[T] I TEn C S. 

PROOF. We only need to show that (i) implies (ii). 
-1 

Choose TO and T1 in T and assume that f [TO] 
-1 

n f [T1 ] =!/l. 
-1 -1 

Without loss of generality we may assume that both f [TO] and f [T1] 

nonvoid. As A.V.S+ is a separating ring in A(X,S) there are S .. E S 
~J 

(i,j $ n) and Vkt E S (k,t $ p) such that 

are 



and 

and 

This is possible, since i-l[T~] n i-l [T;] 

to X is f it follows that 

f- l [Ta ] i-l[T~ n X c nisn Ujsn 
+ 

Sij 

and 

f- l [Tl ] ;-l[T+] 
1 

n X c nkSp 
+ 

UR.Sp Vu 

~. Now as f restricted 

n X nisn Ujsn Sij 

n X = nkSp UR.Sp VU' 

Now, as S = A.V.S, f-l[Ta ] -1 
and f [Tl ] are separated by elements of S. 
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D 

In the light of theorem 2.3.4, the question arises whether the con­

dition of normality of the subbase T for Y can be weaked in a natural way, 

say to weak normality. The following example shows that the answer to this 

question is in the negative. 

2 
2.3.6. EXAMPLE. Let X = Sl be the poundary of the closed unit-square I • 

As in section 2.2, define 

. . 2 I -1 -1 T := {AcI A=TTi [a,x]vA = TTi [x,l] (i€ {a,!}), X€ I}. 

2 Then T is a binary normal closed subbase for I and also for all Ta,Tl € T 

with TO n Tl ~ ~ we have that TO n Tl n X ~ ~. Hence we may apply theorem 

2.2.5. To this end, define 

T* := {T n X I T € T}. 

* * 2 Then T is a closed Tl-subbase for X and also A(X,T ) ~ I (theorem 2.2.5). 

Finally let 

S := {A c X I A is an interval of length less than l}. 

Then S is a weakly normal binary subbase for X, which is not normal of 

course. Also S C T*. 
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Now assume that the identity mapping on X can be extended to a con­

tinuous f: A(X,T*) + A(X,S). By the binarity of S we have that A(X,S) = X 

and hence it would follow that X = Sl is a retract of the closed unit 

square 12, which is a contradiction. 0 

The following corollary of theorem 2.3.4 was not stated explicitly in 

VERBEEK [119J; because of its importance we present it here, but we must 

acknowledge that it certainly was known to VERBEEK. 

2.3.7. COROLLARY. Let X be a topological space which admits a binary 

normal closed subbase S. Then the mapping r: AX + X defined by 

{r(M)} := n{S E Sis E M} 

is a retraction. 0 

The normality of the subbase S also is essential in this corollary: 

the 1-sphere Sl admits a binary weakly normal subbase while it is not a 

retract of AS1 , since the latter space is an Absolute Retract (corollary 

1.5.20) (recall that 

(i) X normal implies that AX has a binary normal subbase (theorem 

2.2.4 (iii», 

(ii) X connected implies that AX is connected (VERBEEK [119J, cf. also 

section 2.5), and 

(iii) X compact metric implies AX is compact metric (VERBEEK [119J, cf. 

also corollary 2.4.10) .) 

* 2.3.8. Theorem 2.3.4 also implies that always X is C -embedded in AX. We 

argue as follows: let f: X + 1 be a continuous function; then, as the 

unit segment 1 has a binary normal subbase, there is a continuous exten­

sion f: AX + 1 (theorem 2.3.4). 

This suggests the question of whether for any compact Hausdorff 

space Z and for any continuous function f: X + Z there is a continuous 

extension f: AX + Z. This is a nontrivial question which has a nontrivial 

answer. The machinery developed in section 1.1 settles the question 

negatively. For let id: IN+ SlN be the identity mapping on:N. Then there 

is a no continuous f: AlN+ SlN which extends id, since if there were such 

an f it would follow that S~T would be the continuous image of a super­

compact Hausdorff space, which is not the case (corollary 1.1.7). 



2.3.9. COROLLARY. Let X be a Tychonoff space. Then the closure of X in 

A(X,Z(X» is ax. 
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PROOF. We show that X is C*--embedded in A(X,Z(X». For let f: X ~ I be a 

continuous mapping. Then for each closed set A c I the set f-1[A] is a 

zero-set in X. Consequently by theorem 2.3.4 there is a continuous exten­

sion f: A(X,Z(X» ~ I. Thus the closure of X in A(X,Z(X» is a Hausdorff 

compactification of X (recall that Z(X) is a normal base, cf. O.C) in 

whidh X is C*-embedded. Now, by a well-known characterization of ax (cf. 

GILLMAN & JERISON [52]) we obtain the desired result. 0 

2.3.10. The concept of supernormality for subbases (cf. definition 2.2.1) 

seems to be pathological, since in compactification theory a closed sub­

base almost always fails to be supernormal. In our construction for AI 

however, cf. chapter 3, sUbbases which are supernormal appear in a natural 

way and therefore it is worthwile to derive some properties of superexten­

sions relative supernormal subbases, using theorem 2.3.4. 

Our main interest lies in the following problem: given two subbases 

Sand T of a topological space X, what can be said about A(X,SuT) in terms 

of A(X,S) and A(X,T)? In general the answer is: nothing; but if we make 

the additional assumption that S and T are both supernormal then there 

turns out to exist a very nice and very important relation between A(X,SuT) 

and A(X,S) and A(X,T). We will show that then A (X,SuT) can be embedded, 

in a natural way, in A(X,S) x A(X,T). First we need some simple lemma's. 

2.3.11. LEMMA. Let S be a closed supernormal T1-subbase for X and let U 
be a closed T1-Subbase such that S c U. Then for all M € A(X,U) the col­

lection M n S is an mls in S. 

PROOF. Let M € A(X,U) and define pM := M n S. From the normality of S it 
follows that pM ~ ~, and therefore pM is a linked system. Suppose that pM 
is not maximally linked. Then there exists an So € S such that pM u {SO} 

is linked and So t pM. Clearly So t M and consequently there is an M € M 
such that M n So ~. Since S is supernormal there is an S* € S with 

* * M c Sand S n So = ~. This is a contradiction, however, since M € M 
implies that S* € M and therefore S* € pM. 0 

2.3.12 • COROLLARY. Let S be a supernormal T I-subbase for X and let Ube 

a closed T1-subbase for X such that S c U. Then A(X,S) is a Hausdorff 
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quotient of A(X,U) under the mapping f defined by 

f (M) : = M n S. 

Moreover, f is the identity of x. 

PROOF. This immediately follows from lemma 2.3.11 and from the proof of 

theorem 2.3.4. 0 

We now can formulate the announced embedding property of superexten­

sions with respect to supernormal subbases. 

2.3.13. THEOREM. Let {Sa I a E I} be a collection of supernormal T1-sub­

bases for the topological space x. Then U S is a supernormal subbase aEI a 
for X. Moreover the mapping e: A(X,UaEI Sa) -+ n~EI A(X,Sa) defined by 

(e(M» :=MnS 
a a 

is an embedding. 

PROOF. The statement that UaEI Sa is a supernormal subbase can easily be 

checked using the fact that all the Sa's are supernormal (a E I) • 

Let f : A(X,U IS) -+ A(X,S ) be the mapping described in corollary a aE a a 
2.3.12, i.e. f (M) = S n M. Then the evaluation mapping 

a a 

e: A(X,U IS) -+ n A(X,SN) aE a aEI u 

defined by (e(M» = f (M) is continuous. Also it is a closed mapping, 
a a 

since A(X,UaEI Sa) and naEI A(X,Sa) both are compact Hausdorff spaces 

(cf. theorem 2.2.4 (iii». We will proceed to show that e is one to one. 

To this end, choose two distinct elements MO and Ml in A (X,UaEI Sa)' 

In addition take Mi E Mi (i E {O,l}) such that MO n Ml = ~. Choose 

aO E I such that MO E SaO. Then, since SaO is supernormal and Ml is an 

mls in UaEI Sa' we may assume that also Ml E SaO. But then Mi E fao(Mi ) 

(i E {O,l}) by corollary 2.3.12, and as MO n Ml = ~ we conclude that 

faO(MO) # f aO (M1). 0 

If {S I a E I} is a collection of supernormal subbases for X then 
a 

we will often study A(X,UaEI Sa) as a subspace of "aEI A(X,Sa)' Hence 

let us identify A(X,UaEI Sa) and e[A(x,UaEI Sa)]. It then is useful to know 

what points of "aEI A(X,Sa) belong to A(X,UaEI Sa). There is a simple 

characterization for these points, as the following lemma shows. 



Notice that a point x = (x) of IT A(X,S) is a point of which 
a aEI aEI a 

the coordinates are maximal linked systems, so that we can speak of 

UaEI xa· 

2.3.14. LEMMA. Let {S I a E I} be a collection of supernormal subbases 
a 

for X. Then x E ITaEI A(X,Sa) belongs to A(X,UaEI Sa) if and only if 

UaEI xa is a linked system. 
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PROOF. Let S := UaEI Sa. If x E A(X,S) then x = UaEI Xa ' so UaEI xa is 

linked. Conversely, let UaEI xa be linked. Then UaEI xa is an mls in S. 
Indeed, suppose UaEI xa U {S} is linked for some S E SaO' with a O E I. 

Then xaO U {S} is linked, hence S E xaO since xaO is an mls in Sao. There­

fore S E UaEI xa' It is easy to see that e[UaEI XaJ = X. 0 

The importance of theorem 2.3.13 and lemma 2.3.14 is that one can 

study the behaviour of a superextension relative the union of certain sub­

bases in a product of superextensions. We will demonstrate this by two 

examples. The examples are both superextensions of the closed unit inter­

val; they are constructed in a similar way as in section 2.2. Hence we 

have to use theorem 2.2.5. The examples are both homeomorphic to 13 and 

hence they are homeomorphic. This demonstrates that a topological space 

can have many quite distinct binary (normal) subbases. 

2.3.15. EXAMPLES. 

/ 

/ 
/ 

I 

Figure 7. 
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2.4. A partial ordering on the set of all superextensions of a fixed space 

It is natural to ask whether the set of all superextensions of a fixed 

topological space X can be partially ordered in a natural way, analogous to 

the usual ordering of Hausdorff compactifications (cf. DUGUNDJI [44J). This 

turns out to be the case. There also is a relation between the partial order­

ing of Hausdorff compactifications, mentioned above, and the partial order­

ing of superextensions. 

2.4.1. DEFINITION. Two superextensions of a topological space X are defined 

to be equivalent, when there exists a homeomorphism between them which on 

X is the identity. 

As a first step we derive a sufficient condition for ~quivalence of 

superextensions in terms of their generating subbases. This result was sug­

gested by a theorem of STEINER [114J. 

2.4.2. THEOREM. Let Sand T be two T1-subbases for X such that S C T and 

TC S (see definition 2.3.1). Then A(X,S) and A(X,T) are equivalent. 



PROOF. For A c S define pA c T by 

pA := {T € A I 3A E A: AcT}. 

For BeT define QB c S by 

QB := {S E S I 3B E B: B c S}. 

CLAIM 1. If M c S is a pre-mls in S, then pM is a pre-mls in T. If NeT 
is a pre-mls in T then QN is a pre-mls in S. 

By symmetry it suffices to prove the first statement. Let M c S be 
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a pre-mls in S. It is clear that pM is linked. Suppose pM were not a pre­

mls in T. Then there are disjoint TO,T1 in T such that pM U {Ti } is linked 

(i E {0,1}). Since T C S there are disjoint 50 ,51 in S with Ti c Si 

(i E {O,l}). Clearly pM U {S.} is linked (i E {0,1}), hence M u {S.} is 
~ ~ 

linked (i E {O,l}). For suppose there is an ME M not intersecting SO. 

Then SeT implies that there is a T' E T such that MeT' and T' n So = {IS. 

Then T' E pM which contradicts the linkedness of pM U {TO}. Therefore 

M U {S.} is linked (i E {0,1}) which contradicts the fact that M is a 
~ 

pre-mls. 

Now define 

~: A(X,S) + A(X,T) and 

by 

~(M) := pM and 

-1 
CLAIM 2. W =~; consequently ¢ is a bijection. 

By symmetry it suffices to prove that W (~(M)) = M for all MEA (X,S) • 

Let MEA (X,S) be arbitrary. Then QPM c W (~(M) ). But QPM is a pre-mls in 

S by claim 1, and it is easy to see that QPMc M. Hence w(~(M)) = M. 

CLAIM 3. The diagram ~. !.T A(Xj,S) 

X~¢ 

~T A(X,T) 

commutes. 

Indeed, let x E X. Then !.T(x) is the T-mls {T € T I x € T}, while 

~(~S(x)) is the unique T-mls containing the pre-mls 
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P~S(x) = {T E T I 38 E S: X E 8 c T}. 

However, if T E ~T(x), then clearly P~S(x) U {T} is linked, and so 

T E P~S(x). It follows that ~T(x) $(~S(x)). 

CLAIM 4. $ is a homeomorphism. 

It suffices to show that $ is continuous, because for symmetry 

reasons it then follows that $-1 = W is continuous too. 
. -1 + 

80 take any T E T; we must prove that $ [T] is closed in A(X,S). 

Now 

{QN I N E A(X,T) and TEN}. 

If 8 E Sand T c 8 then 8 E QN for every N E T+, hence QN E 8+ for any 

N E T+; thus 

Conversely, if M i $-l[T+], then T i $(M) and consequently pM u {T} is 

not linked, so TO n T = ~ for some TO E pM. As T C S there are 80 ,8 E S 
such that TO c 80 , T c 8 and 80 n 8 = ~. Exactly as in the proof of 

claim 1 we derive that 80 E M; therefore 8 i M, or M i 8+. It now follows 

that 

-1 + and hence that $ [T] is closed. 0 

Theorem 2.4.2 leads us to the announced partial ordering on the class 

of all superextensions of a fixed topological space X. 

2.4.3. DEFINITION. Let X be a topological space and let K := {A(X,S) I 
S is a T i-subbase for X}. Define an order ,,~ " on K by 

A(X,S) ~ A(X,T) iff SeT. 

2.4.4. COROLLARY. If we identify equivalent superextions, liS II is a 

partial order. 

PROOF. It suffices to prove that "~ " is an anti symmetric and this a 



corollary of theorem 2.4.2. 0 

2.4.5. Let F be a family of nonempty closed subsets of the topological 

space X. Then we pu t 

w(X,F) := {A c F I A is maximal with respect to the 

finite intersection property}. 

For each F € F we define F* := {A € w(X,F) I F € A}. As a closed subbase 

for a topology on w(x,F) we take the collection 

* * I F := {F F € F}. 
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With this topology w(X,F) is called a Wallman space. In case F is a T1-

subbase w(X,F) is a compactification of X and is called the Wallman com­

pactification of X with respect to F (cf. chapter 4). STEINER [114J showed 

(a) every Wallman space is compact, and w(X,F) is homeomorphic to 

w(X,A.v.F); 

(b) if Sand T are separating rings of closed sets in X, then 

W(X,S) and w(x,T) are equivalent compactifications iff S L T 

and T L S. 

The first part of (a) is also true for superextensions; every super­

extension is (super) compact. The second part unfortunately does not hold 

for superextensions. 

2.4.6. EXAMPLE. Let X 

topology. Define 

{x 1,x2,x3} be a space with 3 points with discrete 

Then S is a closed binary subbase for X. Hence ,,(X,S) = X. Let T := A. v.S. 

Then there is precisely one free mls M in T (i.e. an mls with an empty 

intersection) ; 

Hence ,,(X,T) is a space of 4 points and hence is not homeomorphic to 

"(X,S). 0 

However (b) is true for superextensions; this is a direct consequence 

of theorem 2.4.2. 
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2.4.7. THEOREM. Let Sand T be two separating rings of closed subsets 

of X. Then A(X,S) and A(X,S) are equivalent iff S C T and TC S. 

PROOF. This is a consequence of theorem 2.4.2 and of the proof of 

corollary 2.3.5. 0 

Finally, the partial ordering, constructed in this section, has much 

in common with the usual ordering or compactifications if we restrict 

ourselves to superextensions with respect to normal subbases. 

2.4.8. COROLLARY. Let S be a normal T1-subbase for X and let T be a 

T1-subbase for X. Then A(X,S) $ A(x,T) implies that there is a continuous 

surjection f: A(X,T) + A(X,S) which on X is the identity. 

PROOF. This is a consequence of theorem 2.3.4. 0 

2.4.9. COROLLARY. Let S be a separating ring of closed subsets of X and 

let T be a normal T1-subbase for X. Then the following assertions are 

equivalent: 

(i) A(X,T) $ A(X,S); 

(ii) there is a continuous surjection f: A(X,S) + A(X,T) such that 

f restricted to X is the identity. 0 

The following important corollary of theorem 2.4.2. is due to 

VERBEEK [119 J. 

2.4.10. COROLLARY. AX is metrizable if and only if X is compact metrizable. 

PROOF. Assume that AX is metrizable; then X is normal and consequently 

AX is equivalent to A(X,Z(X» (cf. 2.4.2). Hence 8X is a subspace of AX 

(cf. 2.3.9). But then 8X is metrizable and hence X is compact. 

On the other hand, assume that X is compact and metrizable. LetS be 

a countable closed base for X. Then A.V.S is a countable closed subbase 

for X which separates the closed subsets of X (cf. 0.2). Then A(X,A.V.S) 

and AX are equivalent (theorem 2.4.2) and consequently A(X,A.V.S) is a 

compact Hausdorff space with a countable closed subbase. Hence, by 

URYSOHN's metrization theorem (cf. DUGUNDJI [44J) A(X,A.V.S) is metriz­

able and therefore AX is metrizable too. 0 
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2.5. Connectedness in superextensions 

We now turn our attention to connectedness in superextensions. 

SUperextensions behave surprisingly nice with respect to connectedness. 

VERBEEK [119J showed that X is connected if and only if AX is connected 

and locally connected. From this, he derived that a superextension A(X,S) 

of a connected space X with respect to a normal T1-subbase S is both con­

nected and locally connected. Also the superextension A(X,S) of a con­

nected space X with respect to a subbase S that contains all finite sub­

sets of X is both connected and locally connected. 

Since the Hilbert cube Q has a dense subset homeomorphic to the 

rationals it follows from theorem 1.4.5, theorem 1.4.3 and theorem 1.4.2 

that the space of the rationals has a superextension homeomorphic to the 

Hilbert cube. In view of this example VERBEEK's results on connectedness 

of superextensions do not cover all situations (this he also noticed him­

self, see [119J p.143).We will show the following: let X be a topolog­

ical space and let S be a T 1-subbase for X that satisfies one of the fol­

lowing conditions: 

(i) S is closed under finite unions; 

(ii) S is normal. 

Then A(X,S) is connected and locally connected if and only if for all 

nonvoid SO'Sl € S: (SO n Sl = ~ ~ So U Sl # X). This proves once again, 

and at the same time generalizes some of the results of VERBEEK [119J 

mentioned above. 

OUr method of proof is not a generalization of VERBEEK's proof. We 

work with partial orderings while VERBEEK [119J used very technical results 

concerning types of maximal linked system. 

2.5.1. THEOREM. Let S be a normal T1-subbase for the topological space X. 

Then the following assertions are equivalent: 

(i) A(X,S) is connected; 

(ii) A(X,S) is connected and locally connected; 

(iii) for all nonvoid SO,Sl € S: (SO n S1 = ~ ~ So U S1 # X). 

PROOF. The implications (ii) ~ (i), (i) ~ (iii) are trivial. In addition 

(i) ~ (ii) follows from corollary 1.5.8 (iii). Therefore we only prove 

(iii) ~ (i). 

In view of theorem 1.5.22 we need only show that H(r.,(X,Sl,S+) .is 
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+ densely ordered by inclusion (H(A(X,S),S ) is compact, cf. section 2.10). 

Therefore let A and B be elements of H(A(X,S),S+) such that A is properly 

contained in B. Choose M E B\A. As A is S+-closed, there are M. E S 
l. 

+ + + + 
(i E {0,1}) such that MEMO' A C Ml and MO n Ml = ¢. Then MO n Ml = ¢ 
and by the normality of S there are Ti E S (i E {O,!}) such that MO n Tl 

= ¢ = TO n Ml and TO U Tl = X. Then TO n Tl # ¢, by our assumptions. 
+ Define C := B n T1 • Then A c C c B. We first note that A is a proper sub-

set of C. Indeed, since {T;,T;,B} is linked we have that T~nT~nB # ¢. 
+ + 

Hence ¢ # TO n Tl n C c C\A. Next we note that C is a proper subset of B, 

since M E B\C. This completes the proof of the theorem. 0 

We now prove connectedness of superextensions with respect to sub­

bases closed under finite unions. 

From now on, let X be a topological space and let S be a T1-subbase 

for X closed under finite unions. As in section 1.5 for all M,N E A(X,S) 

define I(M,N) C A(X,S). by 

I(M,N) := n{s+ I s E M n N}. 

We need a simple lemma, which is strongly related to theorem 1.5.13. 

2.5.2. LEMMA. 

(i) For all M,N,P E A(X,S) the intersection I(M,N) n I(N,P) n I(M,P) 

consists of one point; 

(ii) for all M E M E I(N,P) we have that MEN or M E P; 

(iii) for all M,N E A(X,S) the relation $M defined on I (M,N) by 

L $M H iff LE I (M,H) is a partial ordering; 

(iv) for all M,N E A(X,S) and all LO,L 1 E I(M,N) such that LO $M L1, 

the following holds: I (LO' L1) = {P E I(M,N) I LO $M P $M L1}. 

PROOF. We will first prove (ii). To this end, take M E M E I(N,P) such 

that MiN and M i P. Then there are N E Nand PEP such that 

M n N = ¢ = M n P. But then M n (NUP) = ¢ and as I(N,P) C (NUP)+ this is 

a contradiction (for M E I(N,P) implies that N U P E M, contradicting 

the linkedness of M). 
To prove (i), take distinct L,H E I(M,N) n I(M,P) n I(N,P). Also 

choose L ELand H E H such that L n H = ¢. By (ii) there are at least 

two distinct elements of {M,N,P} containing L. By the same reasons there 

are at least two distinct elements of {M,N,P} both containing H. Hence 
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there is at least one element of {M,N,P} containing both Land H, which is 

a contradiction. 

To prove (iii), we only need to check that SM is anti-symmetric. Let 

LO,L1 € I(M,N) such that LO SM L1 and L1 SM LO. Then LO € I(M,L 1) and 

consequently, by (i), {LO} = I(M,L 1) n I(M,LO) n I(LO,L1). In the same way, 

as L1 € I(M,LO) we also have that {L 1} = I(M,LO) n I(M,L 1) n I(LO,L1). 

Hence LO equals L1• 

To prove (iv), take LO,L1 € ~(M,N) such that LO SM L1• Choose 

P € I(LO,L1). Assume that LO ~ P. Then LO t I(M,P) and consequently there 

is an L € LO such that L t M and L t P. Now, since LO € I(M,L1), by (ii) 

it follows that L € L1• This is a contradiction since L € LO n L1 implies 

that 

This shows that LO SM P. To prove that also P SM L1, notice that 

LO SM L1 implies that p.€ I(LO,L1) c I(M,L 1). Therefore P SM L1• This 

proves that I(LO,L1) c {P € I(M,N) I L S M P SM L1}. Now take P€ I(M,N) 

such that LO SM P SM L1 and assume that P t I(LO,L1). Then there is a 

P € P such that p t LO and P t L1• Since P € I(M,L1) and since p t L1, by 

(ii) it follows that p € M. But then P € M n P which implies that P € LO 

since LO € I(M,P). This is a contradiction. This completes the proof of 

the equality I(LO,L1) = {P € I(M,N) I LO SM P SM L1}. 0 

2.5.3. THEOREM. Let X be a topological space and let S be a closed T1-

subbase for X which is closed under finite unions. Then the following 

assertions are equivalent: 

(i) A(X,S) is connected; 

(ii) A(X,S) is connected and locally connected; 

(iii) for all nonvoid SO'S1 € S (SO n 51 = ~ - So U S1 t X). 

~. The implications (ii) .. (i) and (i) - (iii) are trivial. We will 

only establish the implication (iii) ~ (ii). 

For this, take M,N € A(X,S) and consider I(M,N). By lemma 2.5.2 this 

set is partially ordered, by SM. For simplicity of notation we from now on 

suppress the index M in the ordering. 

~ 1. S is order dense. 

Indeed, take distinct LO and L1 in I (M,N) such that LO S L1• We assert 
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that il(LO,Ll)i > 2. For assume to the contrary that l(LO,L l ) = {LO,L 1}. 

Choose Li E Li (i E {0,1}) such that LO n Ll = ~. We will show that 

LO U Ll = X. For choose x E X. Then l(x,LO) n l(x,L1) n l(LO,L l ) is a 

singleton (cf. lemma 2.5.2 (i». Hence, without loss of generality 

{LO} = l(x,LO) n l(x,Ll ) n l(LO,Ll ). Hence LO E l(x,L1), which implies 

that x E LO' since LO i Ll (cf. lemma 2.5.2 (ii». 

Therefore LO U Ll = X; but this contradicts (iii). 

We conclude that there is aPE l(LO,L l ) such that P 'I Li (iE {0,1}). 

However, it is clear that LO ~ P ~ L1, which implies that ~ is order dense. 

CLAIM 2. There is an ordered continuum in l(M,N) connecting M and N. 

Let L be a maximal chain in l(M,N) (the existence of such a chain easily 

follows from Zorn's lemma). Clearly L contains both M and N. We will show 

that the subspace topology on L coincides with the order topology on L 

(notice that in general A(X,S) is not Hausdorff so that L need not be 

closed in l(M,N». Then, by claim 1, L is densely ordered by ~ and con­

sequently is connected (cf. WARD [124J). Also, L has two endpoints 

(M and N) which implies that L is compact. 

To prove that the order topology on L coincides with the subspace 

topology on L, first notice that the order topology on L is weaker than 

the subspace topology on L because of lemma 2.5.2 (iv). Take So E S such 

that S~ n l(M,N) 'I ~. We claim that S~ n L is an order interval in L, which 

will establish the claim. By lemma 2.5.2 (H) either So E M or So E N. 
Without loss of generality we may assume that So E M and that So i N, for 

if So E M n N then + 
So n L = L. Choose a point H from 

This intersection is nonvoid since {S~} U (I(L,P) I LE Ln s~, PE L\S~} is 

a linked system. To prove this, choose LO,L1 E L n S~ and PO'P1 E L\S~. 
We claim that l(LO'PO) n l(L1,P1) 'I ~. Notice that S~ n r, is order-convex 

in L, because of lemma 2.5.2 (iv). This implies that max{LO,L1} < min{PO'P1} 

and consequently l(LO'PO) n l(L1 ,Pl ) 'I ~. Therefore 

We claim that H E L. By the fact that L is a maximal chain we need only 

prove that any member of L and the point H are comparable. Assume that 
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+ LO € Land H are incomparable. As H € I(M,P) for all P € L\SO it follows 
+ that H ~ P for all P € L\SO. On the other hand H € I(L,N) for all 

L € L n S~ so that L ~ H for all L € L n S~. This is a contradiction. We 

claim that S~ n L = {L € L I L ~ H}, which will complete the proof. Indeed, 
+ take L € So n J .. Then L ~ H, as was proved above. On the other hand, take 

1 ++ 
P € {L € L L ~ H} and assume that P i So n L. Then P € L\SO and con-

sequently H ~ P. Therefore H P, which is a contradiction. 

CLAIM 3. A(X,S) is connected and locally connected. 

Indeed, by claim 2, A(X,S) is connected. The superextension A(X,S) is also 

locally connected. In order to prove this, let M € A(X,S) and let U be an 

open neighborhood of M. Without loss of generality, U equals 

+ To prove this, fix iO ~ n; then {LO,L1} c ViO and hence there are Li € Li 

(i € {0,1}) such that Li C ViO (i € {0,1}). But then LO U Ll C ViO and 

consequently 

+ Hence, by claim 2, ni~n Vi is connected. 0 

2.5.4. COROLLARY (VERBEEK [119J). Let X be a topological space. Then the 

following assertions are equivalent: 

(i) X is connected; 

(ii) AX is connected; 

(iii) AX is connected and locally connected. 

2.6. The dimension of AX 

VERBEEK [119J proved the following results on the dimension of AX. 

(a) AX is zero-dimensional iff X is strongly zero-dimensional and normal; 

(b) AX is infinite dimensional if X is normal and contains a subspace 

homeomorphic to [O,lJ; 
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(c) if X is compact metrizable then AX either is zero-dimensional 

(if X is) or is infinite dimensional. 

We will extend these results by showing that for any normal space X 

we have: dim(AX) = iff X is not strongly zero-dimensional. 

2.6.1. Recall that a Tychonoff space X is called strongly zero-dimensional 
v 

if its Cech-Stone compactification eX is zero-dimensional. Also recall that 

for any Tychonoff space X the superextension A(X,Z(X» is homeomorphic to 

A (eX) (cf. 2.2.6) .. 

2.6.2. THEOREM. Let X be a Tychonoff space. Then the following assertions 

are equivalent: 

(i) X is not strongly zero-dimensional; 

(ii) A(X,Z(X» is infinite dimensional. 

PROOF. (ii) ~ (i) follows from VERBEEK's [119] result, mentioned in the 

introduction of this section. 

To prove (i) ~ (ii) assume that X is not strongly zero-dimensional 

and that A(X,Z(X» is not infinite dimensional, say dim A(X,Z(X» ~ n 

(n E w). Then ex is not zero-dimensional, in other words, ex is not 

totally disconnected. Choose a nontrivial closed connected set A in ex. 

As A is an infinite Hausdorff space, its cellularity is at least W; choose 

open (in A) sets Ui (i E w) such that 

iff i t- j. 

Now if clA(Ui ) is totally disconnected, it admits a base of open and 

closed sets; hence there is an open and closed (in clA(Ui » set C CUi' 

which is nonvoid. But then C is clopen in A, which contradicts A being 

connected. 

Therefore we may assume that there is a collection Ki (i E w) of 

connected closed sets in A satisfying 

K. n K. = ¢ 
~ J 

iff i t- j. 

Now fix P E Kn+1 • We will show that A(X,Z(X» (~A(eX» contains a 

homeomorph of ITi~n AKi which contradicts dim A(X,Z(X» ~ n (cf. LIFANOV 

[73]) (notice that IT. AK~ is a product of n + 1 compact (generalized) 
~~n • 

arcwise connected Hausdorff spaces (cf. theorem 2.5.3 and theorem 1.5.16) 



so that ni::;n AKi contains a product of n + 1 ordered compact connected 

spaces) • 

Define a mapping ~: ni::;n AKi -+ A(SX) in the following manner: 

:= {Ae SX I A is closed and either (An K. € M. 
~ ~ 

for all i ::; n) or 

(3i ::; n: p € A and A n K. € M. ) } • 
~ ~ 

It is easy to see that ~ is well-defined, that is: ~((MO, ••• ,Mn» is a 

maximal linked system for all (MO,··.,Mn) € ni::;n AKi • 

CLAIM. ~ is injective and continuous. 

Indeed, choose (M.) .,(N.). € n.::;n AK. such that (M.). " (N.) .• Assume 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

that M. " N. for some j ::; n. Then take M € M. and N € N. such that 
J J J J 

M n N = ¢. Notice that M and N are both contained in Kj . Then 

M U {p} € ~((M.).) and N U U.~. K. € ~((N')i) which proves that 
~ ~ ~rJ ~ ~ 

~((M.).) " ~((N.).) since (MU{p}) n (NUU.~. K.) = ¢. 
~ ~ ~ ~ ~rJ ~ -1 + 
Let D be a closed subset of SX and assume that (M.). i ~ [D J. 

~ ~ 

Then ~((M.).) t D+, or, equivalently D t ~((M.) .). We have to consider 
~ ~ ~ ~ 

two cases: 

CASE 1. D n K. t M. for all i ::; n. 
~ ~ 
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Then n.< n~1[(K.\D)+J is a neighborhood of (M.). which misses ~-1[D+J. 
~_n ~ ~ ~ • 

CASE 2. There is a j 

-1 
Then nj [Kj \DJ 

::; n and an M € M. such that ({p}UM) n D = ¢. 
J 

is a neighborhood of (Mi)i which misses ~-1[D+J. 

It now follows that ~ is an embedding, since ni::;n AKi and A(SX) are 

both compact Hausdorff spaces. 0 

2.6.3. COROLLARY. Let X be a normal space. Then the following assertions 

are equivalent: 

(i) X is not strongly zero-dimensional; 

(ii) AX is infinite dimensional. 

PROOF. If X is normal, then AX is homeomorphic to A(X,Z(X» (cf. theorem 

2.4.2). Then apply theorem 2.6.2. 0 
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2.6'.4. COROLLARY. Let X be a normal space. Then AX either is zero-dimen­

sional or is infinite dimensional. 0 

2.7. Path connectedness and contractibility of AX 

The following results have been proved: 

(i) if X is compact Hausdorff, and either contractible or a suspension, 

then its superextension AX is contractible (VERBEEK [119J); 

(ii) if X is a metric continuum, then AX is an AR (compact metric) 

(VAN MILL [79J, also 2.5.1, 2.4.21 and 1.5.20). In particular 

AX is contractible; 

(iii) if X is connected and normal, then AX is acyclic and has the 

fixed point property for continuous functions (VAN DE VEL [118J). 

In this section we make a first attempt to fill up the gaps which 

obviously exist between the above results. Among other things, we show 

that AX is contractible if X is a continuum of finite category or if X 

is path connected, separable and normal. We also show that if X is seper­

able and normal then AX is contractible if and only if it is path connected. 

The results in this section are taken from VAN MILL & VAN DE VEL [83J. 

2.7.1. For the remainder of this section, let X be a Tychonoff space; 

let S be a normal T1-subbase for X. An S+-closed set in A(X,S) will be 

called convex for short (notice that each S+-closed set also is S+-convex 

and that conversely each closed S+-convex set is S+-closed (cf. theorem 

1.5.7); this motivates our terminology). Also the subspace H(A(X,S),S+) 

of 2A(X,S) (cf. 1.5.22 and section 2.10) will be denoted by K(A(X,S)). 

In the following we need two results: 

( ) th I • 2A(X,S) ... ~ K('( S)) a e map S+. ~ A X, is a continuous retraction of 

2A(X,S) onto K(A(X,S)); 

(b) the map p: A(X,S) x K(A(X,S)) - A(X,S) defined by p(M,A) :=glbM(A) 

is continuous. 

Statement (b) is a direct consequence of theorem 1.5.2 (i) and theorem 

1.5.18. We will refer to the map p described in (b) as the "nearest point 

map of A (X,S)" i cf. also VAN DE VEL [118J and VAN MILL & VAN DE VEL [82J. 

The following general result will be our main tool for deriving 

contractibility results on A(X,S). 



2.7.2. PROPOSITION. Let S be a normal T1-subbase for X and assume that 

there exists a continuous mapping ~: [O,lJ + 2X such that ~(O) is a 

singleton and ~(1) = X. Then there is a contraction of A(X,S) onto ~(O) 

keeping ~(O) fixed. 
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PROOF. Define a mapping ~: 2X + 2A(X,S) by ~(A) := clA(X,S) (A). This 

mapping is easily seen to be continuous, since A(X,S) is compact Hausdorff 

(cf. theorem 2.2.4 (iii)). Define 

by ~'(t) := U{~~(t') t' s t}. Then ~'(t) is compact, being the union of 

a compact family of compact sets, and ~' is easily seen to be continuous 

again. Notice that ~. (0) = ~(O), that~' (1) = ~(1) and that ~. is increas­

ing. 

We now use the mapping IS+: 2A(X,S) -+ K(A(X,S)). It is easy to verify 
+ that IS+ preserves singletons, and that IS+(S) = S for each S € S. 

Let xo be the unique point in IS+(~' (0)) and define a map 

F: A(X,S) x [O,lJ + A(X,S) by 

F(M,t) := p(M,IS+(~' (t))), 

where p is the nearest point mapping of A(X,S). Then, clearly F is contin­

uous, and by the construction of the map p 

F(M,l) = p(M,AX) = M. 

Moreover, xo € IS+(~' (t)) for each t € [O,lJ, whence 

proving that F is a contraction of A(X,S) onto xo keeping Xo fixed. D 

Recall that a space X is said to be of category s n (n < w) if X is 

the union of n closed subspaces {X,},< ' each deformable onto a point 
~ ~-n 

of X (cf. WILLARD [129J). A space X is of finite category if it is of 

category less than or equal to n, for some n < w. 
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2.7.3. COROLLARY. Let X be a continuum of finite category and let S be a 

normal T1-subbase for X. Then A(X,S) is contractible. 

n 
PROOF. Let X = Ui =l Xi' where each Xi is a closed subspace of X which 

admits a mapping 

with the properties: Fi(-,O) is a constant map onto, say xi' and Fi (-,1) 

equals the inclusion Xi C X. It is easy to see, using the connectedness 

of X, that the space X is path connected. For each i > 1 we fix a path 

with ~i (0) = xl and ~i (1) 

~.: [O,lJ + 2X 
~ 

Xi (i ~ n). Define 

by ~i(t) := Fi(Xi x [O,tJ). It is easy to see that each ~i is continuous 

(cf. VAN DE VEL [118J, lemma 1.3). Let 

be defined as follows 

if 0 ~ t ~ 
1 
2; 

if 2 ~ t ~ 1. 

Then ~ is easily seen to be a continuous map with ~(O) a singleton and 

~(1) X. Applying proposition 2.7.2 we find that A(X,S) is contractible. 0 

This corollary includes, as a particular case, the contractibility 

results of VERBEEK, mentioned in the introduction of this section. In fact, 

a contractible (compact Hausdorff) space is of category 1, and a (compact 

Hausdorff) suspension is of category 2. 

The main result in this section is the following: 

2.7.4. THEOREM. Let X be a separable space such that each finite subset 

of X is contained in a metric continuum and let S be a normal T1-subbase 

for X. Then A(X,S) is contractible. 
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PROOF. We need two auxiliary results: 

CLAIM 1. There is an increasing sequence (Kn)n<w of metrizable subcontinua 

of X, such that KO is a singleton and (Kn)n<w converges to X in 2X. 

Indeed, let {xn n < w} be a countable dense subspace of X. Por each 

n < w let Ln be a metric subcontinuum of X containing {xO, ••• ,xn}. We 

choose LO := {xO}. Then put 

K 
n 

for each n < w, so that (Kn)n<w is an increasing sequence of metrizable 

subcontinua of X whose union is dense in X. 

The sets of the type 

where each 0i is open (i:5 p), form a neighborhood base at X E 2X. Fix 

open sets 00, ••• ,op in X. For each i :5 P we cah find n(i) < w such that 

Kn n 0i # ¢ for all n ~ n(i) (the sequence (Kn)n<w is increasing!). Hence, 

if nO = max{n(i) I i :5 p} we have that Kn E <oO, ••• ,op'X> for each n ~ nO' 

Therefore (Kn)n<w converges to X in 2X. 

CLAIM 2. If K and L are metric subcontinua of X, with K c L, then there 

is a continuous increasing mapping cj>: [O,lJ ->- 2X with cj> (0) Kandcj>(1)=L. 

Using the fact that 2L is a X 
subspace of 2 , this statement is a direct 

consequence of a result in KURATOWSKI [72J, vol. II. 

We now combine the two statements. For each n > 0 we have a contin-

uous increasing map (with rearranged domain) 

1 1 
cj>n: [I-Ii' l-n+l J 

such that cj> (1-!) = K and cj>n(l- n+lll = K • Since each cj> is monotonic, 
n n n-l n X n 

(Kn)n<w converges to X, the map cj>: [O,lJ ->- 2 , defined by and since 

is also continuous. Applying proposition 2.7.2 yields the desired 

result. 0 
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2.7.5. Several classes of topological spaces are in the scope of theorem 

2.7.4. For example the class of all separable path connected spaces. The 

class of spaces, described in theorem 2.7.4, is countably productive. 

2.7.6. As a particular consequence of theorem 2.7.4, it follows that AJR, 

the superextension of real line is contractible, in contrast with the fact 

that the ~ech-Stone compactification BJR C AJR is not contractible (it is 

not even oath connected) • 

By the above remark on productivity, a countable product of real 

line" also has a contractible superextension. Recall that JRoo is homeo­

morphic to the separable Hilbert space ~2 by a result of ANDERSON [3J 

(cf. also ANDERSON & BING [6J). 

2.7.7. We now turn our attention to path connectedness of superextensions. 

It is rather surprising that the existence of dense path connected sub­

spaces is easy to prove under fairly general circumstances. In contrast 

to this, it seems to be rather difficult to find an improvement of theorem 

2.7.4 in the direction of path connectedness of AX. A partial explanation 

is provided by theorem 2.7.8 below, which shows that path connectedness 

and contractibility are equivalent on separable superextensions. 

2.7.8. THEOREM. Let X be a separable space and let S be a normal T1-subbase 

for X. Then A (X,S) is contractible if and only if it is path connected. 

PROOF. By a result of VERBEEK ([119J, p.96), A(X,S) is separable. Let 

{Mn n € IN} be a countable dense subspace of A (X ,S). For each n ~ 1 we 

fix a path 

an: [1 - ~ , 1 - n!l J -+- A (X,S) , 

with a (1-!) = M and a (1 - _1_) = M • Lateral composition yields a 
n n n n n+1 n+1 

continuous map on the half open interval [0,1), 

a: [0, 1) -->- A (X,S) , 

the image of which contains the above dense subspace. 

Define a mapping 

~: [O,lJ -+- 2A(X,S) 

by ~(t) := a[O,tJ if t < 1 and ~(1) := A(X,S). The continuity of ~ follows 
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from a rather obvious type of argument similar to the one in the proof of 

theorem 2. 7 • 4 • 

Now, by proposition 2.7.2, A(A(X,S),S+) is contractible. But 

A(A(X,S),S+) is homeomorphic to A(X,S) (cf. theorem 2.2.5) and consequent­

ly A(X,S) is contractible. 0 

2.7.9. THEOREM. Let X be a topological space and let S be a normal T1subbase 

for X. If X contains a dense path connected subspace, then so does A(X,S). 

PROOF. We need the following three auxiliary results: 

CLAIM 1. Let M,N € A(X,S). If M and N can be joined by some path in A(X,S), 

then the interval IS+(M,N) is path connected. 

Indeed, let f: [0,1] -+ A(X,S) be a path joining M and N. As IS+(M,N) is 

a retract of A(X,S) (cf. theorem 1.5.2), hence we may assume that 

f[O,l] C IS+(M,N). Let P € IS+(M,N). Then 

cf. 1.3.2 and 1.5.3. Let 

be the restriction of the retraction of A(X,S) onto IS+(M,P) described in 

theorem 1.5.2. Then r(M) = M and r(N) P and hence it follows that the 

path f "retracts" onto a path r 0 f of I (M, p) joining M and P. It now easily 

follows that IS+(M,N) is path connected. 

CLAIM 2. If A C A(X,S) is path connected, then so is the space 

By claim'l, each interval IS+(X,y) with x,y € A, is path connected. 

Moreover A is a path connected subspace of IS+(AXA); therefore the desired 

result follows. 

CLAIM 3. Let B C A(X,S) be such that for all x,y € B the set IS+(X'Y) C B. 

Then the closure clA(x,S) (B) of B in A(X,S) is S+-closed. 

Choose x,y € clA(X,S) (B) such that IS+(X,y) ¢ clA(X,S) (B). By the contin­

uity of the mapping f, described in lemma 1.5.10, there are disjoint 
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neighborhoods U and V of x and y such that 

for all p € U and q € V. Choose zo € U n Band zl € V n B. Then 

which is a contradiction. Now, by theorem 1.5.7, clA(X,S) (B) is S+-closed. 

To prove the theorem, let YO C X be a dense path connected subspace. 

For each n € w we define, inductively 

Using claim 2, each Yn is path connected. Since Yn C Yn+1 for all n € w, 

we find that Y := UnEw Yn is path connected too. This subspace of A(X,S) 

obviously satisfies the conditions of claim 3, ,'whence clA (X,S) (y) is 

S+-closed. But 

X c clA (X,S) (yO) c clA (X,S) (Y) , 

and the only S+-closed subsets of A(X,S) containing X is A(X,S) itself. 

This shows that Y is dense in A(X,S). 0 

2.7.10. Our final results in this section involve some particular dense 

subspaces of superextensions introduced in VERBEEK [119J. An mls M € AX 

is said to be defined on a closed set A c X if M n A € M for all M € M. 

For any space X, let 

Af(X) :={ME AX I Mis defined on some finite subset of X} 

and 

A (X) : = {M € AX I M is defined on some compact closed subset of X} • comp 

2.7.11. THEOREM. Let X be a normal space such that each finite subset of 

X is contained in a metrizable continuum. Then Af(X) is path connected 

within A (X) (notice that the space is not assumed to be separable). 
comp 

PROOF. Let M,N € Af(X); say, M is defined on F c X and N is defined on 

G c X, where F and G are finite. By assumption there is a metrizable 

continuum K c X containing F U G. The inclusion mapping K c X induces an 
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embedding AK C AX (cf. theorem 2.3.4). Clearly AK C A (X). But AK is 
comp 

contractible (theorem 2.7.4) and hence M and N are joined by a path in 

AK C A (X). 0 
comp 

The results derived in this section suggest some questions: 

2.7.12. QUESTION. Find necessary and sufficient conditions on a continuum 

X in order for AX to be path connected/contractible. 

We found the following "controversial" examples: 

2.7.13. EXAMPLES. 

(i) Let X be a compact tree-like space which is not path connected. 

Then AX is not path connected. 
v 

(ii) Let X = SlR, the Cech-Stone compactification of the real line lR. 

Then X is not path connected, but AX is contractible. 

The proofs are simple: 

(i) a compact tree-like space admits a binary normal subbase (cf. theorem 

1.3.21) and hence it is a retract of its superextension (cf. corol­

lary 2.3.7). 

(ii) A (SlR) is homeomorphic to AIR (cf. VERBEEK [119J; also corollary 2.2.6 

and theorem 2.4.2). 

It is well known that AR's in the category of compact Hausdorff 

spaces are contractible and locally contractible: see e.g. SAALFRANK [101J. 

The two properties are not equivalent in general. However, in view of our 

result that AX is an AR (compact metric) iff X is a metrizable continuum, 

and in view of nice convexity structure of superextensions, one is lead 

to the following: 

2.7.14. QUESTION. Find conditions on a continuum X in order that AX be an 

AR (in the category of compact Hausdorff spaces). 

Concerning the superextensions of non-compact spaces we have no 

information on the necessity of the separability condition appearing in 

our present results. 
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2.8. SUbspaces of superextensions; the spaces o(X) and L(X) 

In this section we will describe some subspaces of superextensions 

which seem interesting. This is only a first attempt; many questions are 

unsolved. We are particularly interested in subspaces of AlN, the super­

extension of the natural numbers. It is clear, due to the definition of 

AlN, that AlN and f3lN, the ~ech-Stone compactification of IN, must be 

related, but it is not clear in what way. It was noticed by VERBEEK [119J 

that AlN and f3lN are not homeomorphic, since AlN contains nontrivial con­

vergent sequences. But AlN contains a dense set of isolated points 

(VERBEEK [119J) and hence can considered to be a compactification of IN; 

consequently AlN is a continuous image of f3lN, however f3lN is not a con­

tinuous image of A IN (cf. corollary 1.1.6). 

Proposition 2.2.3 implies that AlN is totally disconnected and has 

weight C. The isolated points in AlN are just the points with a finite 

defining set (VERBEEK (119J; recall that an mls M E AX is said to be 

defined on a closed set A c X provided that M n A E M for all M E M, 
cf. section 2.7). The space AlN\Af(lN) is compact and possesses points 

with a countable neighborhood basis and points without a countable neigh­

borhood basis. For example 

M = {M C IN I 3i> 1: {l,i}cM or {2,3, ••• }cM} 

can easily be seen to be an mls in AlN\Af(lN) with a countable neighborhood 

basis. 

An ultrafilter F E f3lN\lN C AlN\Af(lN) is an example of a point with­

out countable neighborhood basis (notice that each ultrafilter is a max­

imal linked system and hence that f3lN is a subset of AlN; f3lN also is a 

subspace of AlN; indeed it equals the closure of IN in AlN, cf. corollary 

2.3.9). We see that AlN\Af(lN) differs essentially from f3:N\lN. The fol­

lowing subspace of AlN \Af (IN) at first glance seems to be closer to 

f3lN\lN than AlN\Af(lN): 

o(lN) := {M E AlN I M contains no finite set}. 

Unfortunately, however, o(lN) is separable, because of the following 

lemma, while f3lN \IN is not. 

2.8.1. LEMMA. o(lN) is a retract of AlN. 

*) This section will also be published separately in Math. Z. 



107 

PROOF. Let A = {A c IN I IJN\AI < wL Then a(JN) = n{A+ I A E A} and hence 

by theorem 1.5.2, a(JN) is a retract of AJN. As AJN is separable (VERBEEK 

[119J), so is a(lN). 0 

[The definition of a(lN) suggests a more general definition. For any 

topological space X let a(X) be defined by 

a(X) := {M E AX I M contains no compact set}. 

We did not yet study the spaces a(X) in detail.] 

The subspace E (IN) := {M E AJN I for all MO,M1 EM: 1MOnM11 = w} of 

AJN \Af (IN) is a better candidate for an analogue of !3N \IN. One can look 

at E(lN) as the set of all uniform maximal linked systems. This appears 

to be the most interesting subspace. More generally, for any topological 

space X, define 

E(X) := {M E .AX I for all MO,M1 E M: MO n Ml is not compact}. 

Notice that E(X) = ¢ if X is compact Hausdorff and that E(X) c a(X). 

2.8.2. THEOREM. Let X be a normal topological space. Then 

(i) E(X) c AX\Af(X); 

(ii) E(X) is compact iff X is locally compact; 

(iii) if X is locally compact then E(X) is homeomorphic to A(!3X\X). 

~. (i) is trivial. To prove (ii), assume that E(X) is compact. Notice 

that !3X is closed in AX and consequently !3X\X is closed in AX\Af(X). 

Therefore, as !3X\X c E(X), !3X\X is closed in E(X) too. It follows that 

!3X\X is compact and consequently X is locally compact. The converse of 

(ii) follows from (iii), since A(!3X\X) is compact. 

To prove (iii), assume that X is locally compact. For each closed 

* * I subset M c X define M := cl!3X(M)\M. Then {M M is closed in X} is a 

closed base for the topology of !3X\X, closed under finite intersections 

and finite unions. Define a mapping ~: A(!3X\X) + E(X) by 

~ (M) := {M c X 

First we will show that ~ is well-defined. Clearly ~(M) is a linked 

system for all M E A(!3X\X). Suppose that ~(M) is not a maximal linked 

system for some M E A(!3X\X). Then there exists a closed set A c X such 



lOB 

that ~(M) U {A} is linked, while A i ~(M). Then A* i M and consequently 

there exists an M E M such that A* n M = ¢. By the compactness of SX\X 

there is a closed subset B c X such that M c B* and B* n A* = ¢. As 

M E Mit follows that B * E M and consequently B E cp (M). Therefore B n A" ¢. 

But B* n A* = ¢ implies that B n A is compact. Choose a relatively compact 

neighborhood U of A n B and define C := B\U. Then C* = B* and consequently 

also C E ~(M). This is a contradiction, since C n A = ¢. Also it is clear 

that cp(M) E L(X); for take M,N E cp(M) such that M n N is compact. Then 

* * M n N ¢ and consequently M is not linked. Contradiction. 

Let B be a closed subset of X. Then 

M E cp-l[B+ n L(X)] iff cp (M) E B + n L(X) 

iff cp (M) E B 
+ 

* 
E M iff B 

M * + iff E (B ) • 

Therefore cp-l[B+n L(X)] = (B*)+ (the first "plus" is taken in AX, the 

second in A(SX\X)!) showing that ~ is continuous. Also it is not difficult 

to show that cp is one to one and surjective. As A(SX\X) and L(X) both are 

compact Hausdorff spaces, it follows that cp is a homeomorphism. 0 

2.B.3. REMARKS. 

(i) The present proof of theorem 2.B.2 (ii) is due to E. VAN DOUWEN; 

he discovered a mistake in our original proof. 

(ii) Theorem 2.B.2 shows that LON) is a homeomorph of A(SlN\lN) and 

hence that L (IN) is supercompact. The proof of theorem 2 .B.2 shows that the 

subbase {M+ n L (IN) 1M c:iil} for L (:iii) is binary. For this fact there is also 

an elementary proof. For take M,N,P E L(lN). Then 

I (M,N) n I (M,P) n I (N,P) 
P(:iiI) + p(:iiI) + p(:iiI) + 

consists of one point, say L (cf. corollary 1.5.3). Take LO,L1 E L 

and assume that La n Ll is finite. Then, as in the proof of lemma 

2.5.2 La and Ll both belong to an element of {M,N,P}, which is a 

contradiction, since {M,N,P} c L(lN). 

NOW, theorem 1.3.3 implies that {M+ n L(lN) I Me IN} is a binary 

subbase for L (:iii) • 

(iii) The supercompactness of L (IN) implies that SlN \IN and L (IN) are not 

homeomorphic after all, since SlN\lN is an F-space (cf. O.C), and 

no infinite compact F-space is supercompact (cf. corollary 1.1.6). 
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We will now derive some properties of E (:IN) (and hence of A (8JN \IN)) • 

2.8.4. LEMMA. The cellularity of E(lN) is c. 

PROOF. Let A be an almost disjoint collection of infinite subset of IN 

of cardinality C; i.e. for all A € A we have IAI = w while IAnBI < w for 

all distinct A,B € A (there is such a collection, cf. GILLMAN & JERISON 

[52J). Then {A+ n E (IN) I A E A} is a collection of C pairwise disjoint 

open subsets of E (IN). For take distinct A,B € A and M € A + n B + n E (IN) • 

Then IAnB I w since M € E(lN). Contradiction. 

Since weight (AlN) = C, the weight of E (N) also equals C (recall 

that 8JN \IN e E (:N» • D 

2.8.5. Let K be any cardinal. The following principle is called P(K). 

Let A be a collection of fewer than K subsets of IN such that each 

finite subcollection of A has infinite intersection. Then there is an 

infinite F e IN such that F\A is finite for all A € A. 

It is easy to show that P(w 1) holds in ZFC and moreover that Martin's 

axiom (MA) implies P(C) (BOOTH [18J). Also P(K) implies that 2A = C for 

each infinite A < K (ROTHBERGER [96J). Clearly P(w2) implies the negation 

of the Continuum Hypothesis. 

It is easy to show that P(K) is equivalent to the statement that 

each nonvoid intersection of fewer than K open subsets of 8lN \IN has non­

empty interior. Unfortunately P(K) does not imply the same property for 

E(lN). In fact we will show that there is a nonvoid countable intersection 

of clopen subsets of E(lN) with a void interior. The following lemma shows 

that P(K) works for intersections of open sets in E(lN) containing an 

ultrafilter. 

2.8.6. LEMMA [P(K)J. Let A be an intersection of fewer than K open sub­

sets of E (IN). If A n (8lN\lN) t- !II then there is an infinite B e IN such 

that B+ n E(lN) e A. In particular, A has a nonvoid interior. 

PROOF. Let A n{o I a € 8}, where 8 < K and each 0 is open in E(lN). 
a a 

Take a point F € A n (BJN \IN). For each a € 8 choose an F € F such that 
a 

F+ n E(lN) e 0a' This is possible since it is easy to see that 
a+ 

{F n E (IN) I F € F} is a neighborhood basis for F in E (IN). Then 

{F q q € f3} is a collection of fewer than K subsets of :IN each finite 

subcollection of which has infinite intersection. Choose an infinite Be IN 
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such that IB\Fa l < w for all a E 8. We will show that 

+ + I B n I:(]N) c n{F n I:(:IN) a E 8}. 
a 

Indeed, choose a point M E (B + n I: (:IN» \ (F + n I: (:IN» f or some a E 8. Then 
a 

F t. M and consequently N \F E M. Hence IB n (:IN \F ) I = w, since M E I: (:IN). 
a a a 

Contradiction. Therefore B+ n I:(1iI) c F+ n I:(:IN) (a E 8) andasBisinfinite, 
a 

B + n I: CN) is a nonvoid open set in I: (:IN). 0 

2.8.7. REMARK. In the proof of lemma 2.8.6 we showed that A+ n I: (:IN) cB+n 

n I: (:IN) iff I A \B I < w. This is a property of the binary subbase {A + n I: (N) I 
} {A+ I } A c :IN • The binary subbase A c:IN does not have this property. 

For example let A = {l} and B = {1,2}. Define an mls M E A:IN by 

M : = {C c N I {1, 2} c C or {1, 3} c C or {2, 3} c C}. 

It is easy to see that M is an mls. Moreover M E B+\A+ and yet IB\AI < w. 

We will now give an example showing that lemma 2.8.6 cannot be 

sharpened. 

2.8.8. EXAMPLE. A countable nonvoid intersection of clopen subsets of 

I: (:IN) with a void interior. 

Inductively we construct a collection {A I nEw} of infinite subsets 
n 

of :IN such that for all i E W 

(i) k :> R, :> i ... 
(ii) k :> i ... 

(iii) I:IN\U,<, A,I = w; 
J-~ J 

l~nAR,1 = Wi 

I~ \U,<, A,I 
J-~ J 
jfk 

w; 

(iv) k < R, < m :> i ... ~ n AR, n Am = ¢. 

To define AO just pick an infinite subset of 1iI with an infinite complement. 

Suppose that {Aj I 0 :> j :> i} are defined sa.tisfying (i) - (iv). For each 

k :> i choose an infinite 

Ck c ~ \ Uj:>i Aj 

j~k 

such that also 

(~ \ Uj:>i Aj) \ Ck 
j~ 

is infinite. Choose an infinite Dc :IN\U,<, A, such that also (:IN\U,<, A,)\D 
i J-~ J J-~ J 

is infinite. Define Ai + 1 := Uj=O Cj U D. Then clearly (i), (ii) and (iii) 
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\21; 

hence (iv) is also satisfied. 

We will show that the nonvoid set n{A+ I nEw} n L(~) has a void 
n 

interior (that n{A + I nEw} n L (IN) is nonvoid is trivial since 
n 

IA.nA.1 = W for all i,j E w). First we prove one more simple lemma. 
1. J 
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+ 2.8.9. LEMMA. Let Ma C ~ (a E S)such that naES Ma n L (~) of \21. Then for 

all B c ~ we have naES M: n L (~) C B + n L (IN) iff I MaO \B I < W for some 

aO E S. 

PROOF. If 1M \BI < w for some a E S then M+ n L(JN) C B+ n L(JN) (cL the 
a a 

proof of lemma 2.8.6) and consequently naES M: n L (N) C B+ n L (IN). 

On the other hand, if IMa\BI = w for all a E S, then the linked 

system {M I a E S} U {IN \B} is a linked system any two members of which 
a 

meet in an infinite set. Hence this linked system can be extended to a 

maximal linked system 

Contradiction. 0 

Now suppose there exists a nonvoid 

U C n{A+ 
n I nEw} n L(JN). Without loss 

for some infinite M. 
1. 

C ~ (i S n) • Now 

m E W there is a k(m) S n such that 

open (in L (IN) ) set 

of generality U = n.< M: n L(N) 
1._n 1. 

lemma 2.8.9 implies that for each 

Hence there must be a i S n such that B = {m E W I k(m) = i} is infinite. 

Choose three elements m1,m2 ,m3 E B such that m1 < m2 < m3• Then clearly 

Mi is finite since Am1 n Am2 n Am3 = \21, which is a contradiction. 0 

2.8.10. REMARK. E. VAN DOUWEN has pointed out to me that lemma 2.8.6 and 

example 2.8.8 imply that L(N) is not homogeneous. Indeed, let F E SJN\~, 

let L be a nonempty countable intersection of open sets in L (IN) with a 

void interior and let L E L. Then lemma 2.8.6 implies that there is no 

autohomeomorphism cP of L (IN) which maps F onto L. 

The above example shows that nonvoid countable intersections of open 
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sets in l: (IN) need not have nonvoid interiors in l: (N). The following 

theorem in any case implies that such intersections have cardinality 2C• 

2.8.11. THEOREM. Let A be a nonvoid countable intersection of open sets in 

l: (IN). Then A contains a homeomorph of BlN \IN. 

PROOF. Since {M+ I M C :N} is an open subbase for A:N there are Bi C :N 

(i € w) such that 

III ..t n B + 0 l: (IN) C A. 
'I' r i€w i 

Then B = {B. I i € w} is a countable collection of subsets of N, any 
~ 

two members of which meet in an infinite set. If IlN \B I < w for all B € B 

then l: (IN) = n{B + 0 l: (IN) I B € B} C A and hence clearly A contains a 

homeomorph of BlN \IN. Therefore we may assume that there is a BO € B such 

w. Define 

C := {B 0 BO I B € B}. 

Then C consists of countably many infinite subsets of BO' List C as 

{Ci I i € w} such that each C € C is listed countably many times. 

Now, by induction, for each i € w pick Pi,qi € Ci such that 

(i) Pi f. qi' 

(ii) {Pi ,qi} 0 

Define P = {Pi 

{PO,···,Pi - 1,qO,···,qi-1} = ¢. 
I i € w} and Q = {q. I i € w}. Then P and Q are two dis­

~ 

joint infinite subsets of B such that Ipoc. I = IQoc. I = w for all i € w. 
~ ~ 

Let r: l:(:N) -+ n{B+ I B € B} 0 l:(lN) be a retraction defined by 

r(N) :=n{N+Ol:(lN) I N€ Nand INOBI =w for all B€ B} 0 n{B+Ol:(lN) I B € B} 

(cf. theorem 1.5.2). 

Let D := IN\BO' We will show that r~BD\D is a homeomorphism (notice 

that BD\D c BlN\lN c l:(lN)). Take two ultrafilters FO,F 1 € BD\D such 

that FO f. Fl' Then there are Fi € Fi such that Fi cD (i € {O,l}) and 

F 0 0 F 1 = ¢. Clearly F 0 U P € F 0' FlU Q € F 1 and 

Also I (FOUP) 0 BI = w = I (F1UQ) 0 BI for all B € B. 
+ + + 

and r(F1) € (F1UQ) • But (FOUP) 0 (F1UQ) ¢ and consequently 

r(FO) f. r(F1). Hence r~BD\D is one to one and consequently r~BD\D is a 

homeomorphism. D 
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2.8.12. COROLLARY. No p E L(N) admits a countable neighborhood basis. 

A well-known property of BJN\JN, under p(e), is that each nonvoid 

open set contains 2e . P e -poJ.nts (see e.g. VAN DOUWEN [40J). Recall that a 

point p of a topological space is called a Pe-point if the intersection 

of less than e neighborhoods of p is again a neighborhood of p. We will 

show that each nonvoid open set in L (IN) also contains 2e Pe-points. 

2.8.13. THEOREM [p(e)J. Each nonvoid open set in L(N) contains 2e Pe-points. 

PROOF. Let A := n= E BJN\JN I F is a Pe-point}. Define 

B := {M E L(JN) I 3Fi E A (i';;n, nEw) 3LE A{0,1,2, •.. ,n} 

M {F c JNI 3LELI FEF. (iEL)}}. 
J. 

We will show that B consists of Pe-points of L(JN) and that each nonvoid 

open set contains 2e elements of B. Indeed, take M E B and let {O I 0. E B} 
0. 

be a collection of less than e neighborhoods of M. Without loss of general-

ity we may assume that each ON is of the form M+ with M E M (0. E B). 
~ 0. 0. 

Choose Fi E A (i';;n, nEw) and L E A{0,1,2, •.. ,n} such that 

M = {F c IN 3L E L: FE F. (i E L)}. For each M choose L E L such that 
J. 0. 0. 

Mo. E Fi for all i E La. For each L E L define A(L) := {a E B L = La}. 

Fix L E L. For each i E L choose Fi (L) E Fi such that 1Fi(L)\Mo.l < W 

for all 0. E A(L). This is possible since Fi is a Pe-point of BJN\N. 

Moreover for each i E {0,1,2, .•. ,n} define Li := {L ELI i E L}. 

Then let 

n 
LEL. 

J. 

F. (L). 
J. 

Clearly Fi E Fi (i ,;; n). Finally define 

u:= n 
LEL 

+ (U Fi ) n L(JN). 
iEL 

+ It is easy to see that U is a neighborhood of M such that U c n Q 0 • 
o.E.., 0. 

This shows that B consists of Pe-points. 

NOw, let U be a nonvoid open set in L (IN). Take M E U and let Mi E M 

(i ,;; n) such that ni,;;n M; n L(JN) c U. For each i,j E {0,1,2, ••• ,n} take 

aPe-point Fij = Fji E A such that Mi n Mj E Fij . This is possible since 

lu.nM.1 = w. Take a maximal linked system L E A({O,l, ... ,n)} such that 
J. J 
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that for all i ~ n the set L. = {(i,j) I j ~ n} is an element of L. 
1. 

Notice that {L. I i ~ n} is a linked system. Now define 
1. 

N:={FClN 13L€L:F€F .. ((i,j)€L)}. 
1.J 

We will show that N is a maximal linked system. Clearly N is linked. Now 

suppose that N is not maximally linked. Take M C IN such that N U {M} is 

linked while MiN. Define E := {(i,j) M. € F .. }. Clearly E # ¢ and 
1.J 

also {E} u L is linked. Hence, as L is a maximal linked system E € Land 

consequently M € N. Contradiction. 

Since each F .. is an ultrafilter, N is a maximal linked system any 
1.J 

two members of which meet in an infinite set and hence N € E(lN). Also 

it is clear that N € U and that there are 2e different choices for N. D 

REMARK. The technique used in the proof of the previous theorem is due 

to VERBEEK [119J. 

2.8.14. It is well-known that BlN \IN is an F-space. In particular, a 

countable union of clopen subsets of BlN \:IN is always c* -embedded. The 

space E(:IN) cannot be an F-space, since no infinite compact F-space is 

supercompact (cf. corollary 1.1.6). We give an example of a countable 

union of clopen subsets of E(:IN) that is not C*-embedded. 

NEGREPONTIS [90J has shown that the closure of a countable union of 

clopen sets in BlN \:IN is a retract of BlN \IN. The following theorem shows 

that a similar assertion holds in E(lN) for suitable countable unions of 

clopen sets, taken from the "canonical" closed subbase {M + n E (IN) I Me IN}. 

For the remainder of this section, let S = {M + n E (:IN) I M C :N}. 

This subbase is binary and for all S € S the set E(lN) \S is also in S. In 

particular, S is normal. 

2.8.15. THEOREM. Let {A I a € B} be a collection of S-closed sets such a 
that A 

a C A'Y iff a < 'Y. Then cIE(:IN)(Ua€B Aa) equals IS(Ua€B Aa ). In 

particular clE (IN) (Ua€B Aa) is supercompact and is a retract of E (IN). 

PROOF. Clearly cIE(:IN) (UaEB Aa) C IS(UaEB Aa ). Take two distinct points 

MO,M1 € clE (:IN) (UaEB Aa) and assume that there exists a point PEE (:IN) 

such that 
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Take finitely many P~ E P (i!S: n, nE w) such that n,< P: n U D A = 0. • ~_n ~ (lE" (l 
Now suppose that for some ~!S: n we have that P~ i MO and P~ i M1 • Take 

Mi E Mi such that Mi n P~ 0 (i E {o,ll). Clearly P~ n (MOUM1) = 0 and 

also 

However P; n (MOUM1)+ = 0, which is a contradiction since P E IS (MO,M1). 

Therefore each P~ either belongs to MO or belongs to Ml • Define 

(i E {O,ll). 

\ 
+ 

Then n~ECi P~ is a neighborhood of Mi and hence intersects U(lEf3 A(l 

(i E {0,1}). 

+ Choose (li E f3 such that n~EC' P~ n Aai # 0 (i E {0,1}). Without 
~ 

loss of generality assume that (l0 !S: (l1. Then 

{ n P + n P:, AN1 } 
~ECO ~' ~ECl JC ~ 

is a linked system of S-convex sets; consequently, by the fact that S is 

binary 

o , 

which is a contradiction. 

It now follows that clE(ID) (U(lEf3 A(l) is S-convex and hence S-closed, 

by theorem 1.5.7. Therefore clE (ID) (U(lEf3 A(l) = IS (U(lEf3 A(l). Hence 

clE (ID) (U(lEf3 A(l) is supercompact (lemma 0.5) and is a retract of E (ID) 

(theorem 1.5.2). 0 

2.8.16. COROLLARY. Le= Si E S such that Si C Si+l and Si+l \Si t- 0 (i E w). 

Then UiEW Si is not C -embedded in E (N) • 

PROOF. Notice that A = UiEW Si is not pseudocompact, since A is a-compact, 

* hence normal, and not countable compact. Now suppose that A is C -embedded 
v 

in E (IN). Then clE (IN) (A) is equivalent to the Cech-Stone compactification 

f3A of A. Hence, by theorem 2.8.15, f3A is supercompact and consequently 

A is pseudocompact (cf. corollary 1.1.7). Contradiction. 0 

2.8.17. There are still many questions to be asked concerning E(N). For 

example theorem 2.8.11 says that each nonvoid countable intersection of 
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open sets in E (:IN) contains a homeomorph of 8:IN \:IN. Hence such an inter­

section contains many countable subspaces that are c*-embedded. On the 

other hand E(:IN) is supercompact and hence for each countable subspace K 

it follows that at least one cluster point of K is the limit of a non­

trivial convergent sequence in E (N) (cf. theorem 1.1.5). Hence there are 

also many countable subspaces of E (:IN) that are not c*-embedded. This 

suggests the following question: 

* 2.8.18. QUESTION. When is a count:able A c E(:IN) C -embedded? 

Also we have said nothing about normality in E(JN). It is well-known 

that CH implies that 8JN \IN \{p} is not normal for all p E 8JN \:IN (cf. 

COMFORT & NEGREPONTIS [31J, RAJAGOPALAN [95J, WARREN [126J). Hence if for 

each pEE (:IN) there is a copy of 8N \IN in E (IN) containing p, then CH 

also implies that E(:IN) \{p} is not normal. Theorem 2.8.11 suggests that 

such may well be the case. 

2.8.19. QUESTION. Is t:here for each p E E(JN) a homeomorph of 8:IN\JN con­

t:aining p? 

2.8.20. QUESTION. Is it: t:rue t:hat: E(:IN) \{p} is not: normal for all 

pE E(JN)? 

2.8.21. In [91 J, PAROVICENKO characterized 8:IN \:IN in terms of its Boolean 

algebra of clopen subsets. We will show that PAROVICENKO's result allows 

us to give a characterization of E(JN),not in terms of its Boolean algebra 

of clopen subsets but in terms of the Boolean algebra {M + n E (IN) I M C IN}. 

Clearly S = {M+ n E (:IN) I M C :IN} is not a Boolean subalgebra of the 

Boolean algebra of clopen subsets of E(JN). Therefore we define for S new 

Boolean operations and show that, under the Continuum Hypothesis, the 

Boolean algebra thus obtained characterizes E (IN) and hence A (8JN \:IN) . 

PAROVICENKO also uses the Continuum Hypothesis and from an example given 

by VAN DOUWEN [40J it follows that the Continuum Hypothesis is essential 

in this characterization: there is a locally compact, a-compact and 

separable space M for which 8:IN \IN and 8M\M are homeomorphic under CH 

but not under Pte) + iCH. This same example can be used for showing that 

in our characterization CH is essential. The spaces E(M) and E(JN) are 

homeomorphic under CH, but not under pte) + IcH. One might th~nk that 

this immediately follows from VAN DOUWEN's result, using the equalities 
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LON) ~ A (BlN\lN) and L(M) ~ A(BM\M) (cf. theorem 2.8.2). Such is not 

true, however. We will present an example of two compact metric spaces 

X and Y which are not homeomorphic while nevertheless AX and AY are homeo­

morphic. 

PAROVI~ENKO [91] has also, without using the Continuum Hypothesis, 

shown that each compact Hausdorff space of weight at most w1 is a contin­

uous image of BlN\lN. We will show that for L(lN) this is not true, since 

there is a compact Hausdorff space with w1 points which is not the con­

tinuous image of L (IN) . 

2.8.22. Let B <B,O,1,',A,V> be a Boolean algebra. B is called Cantor 

separable if no strictly increasing sequence has a least upper bound, 

i.e. if 

a O < a l < ••. < an < .•. < b, 

then there exists an element c < b such that a < c for all nEW. In 
n 

addition B is called Du Bois-Reymond separable if a strictly increasing 

sequence can be separated from a strictly decreasing sequence dominating 

the increasing one, i.e. if 

then there exists an element c E B such that a < c < b for all nEW. n n 
Finally B is called dense in itself if for all a,c E B with a < c there 

is abE B such that a < b < c. 

2.8.23. PAROVI~ENKO [91] has shown that, under CH, a compact totally 

disconnected Hausdorff space of weight Q which possesses no isolated 

points is homeomorphic to BlN \IN if the Boolean algebra of clopen subsets 

of X is both Cantor and Du Bois-Reymond separable. If fact he showed 

that all Boolean algebras of cardinality Q which are dense in themselves 

and which are both Cantor and Du Bois-Reymond separable are isomorphic 
v 

under CH. We will use PAROVICENKO's result in this form. 

2.8.24. If X is a set and if S is a collection of subsets of X for any 

A c X let WS(A) c X be defined by 

Ws (A) .: = X \ IS (X\A) . 

The set WS(A) is sometimes called the S-interior of A, just as 
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IS (A) = n{s E S I A C S} is called the S-closure of A. 

For technical reasons we will assume for the remainder of this 

section that each closed subbase S for a topological space contains ¢ 

and X. 

2.8,25. THEOREM [CfIJ. Let X be a compact Hausdorff space of weight c. which 

possesses no isolated points. Then X is homeomorphic to E(~) (and hence 

to A (/3 (~) \~») iff X possesses a binary closed subbase S satisfying: 

(i) for all S E S also X\S E S; 

(ii) for all SO,Sl E S also IS (SOUS 1 ) E S; 

(iii) for all SO'Sl E S: IS (SOUS 1 ) = X - So U Sl = X; 

(iv) for all SO'Sl'S2 E S: WS(SOnIS(S1US2» = I S (WS (SOns 1) n WS (SOns2»; 

(v) if Sn E S, Sn :::> Sn+l (n E w) then nnEw Sn contains a nonvoid element 

of S; 

(vi) disjoint countable unions of elements of S have disjoint S-closures. 

PROOF. " ~ ". 

First we remark that E(~) indeed is a compact Hausdorff space of 

weight c. without isolated points; this follows from proposition 2.2.3 and 

theorem 2.8.11. Also, S is a binary subbase for E(lN) which satisf.ies (i). 

In order to show that S also satisfies (ii), (iii) and (iv) we use the 

equalities 

(1) 

(2) 

Let us prove (1) only. 
+ + + 

Clearly IS «MO n E (IN)) U (M1 n E (IN))) C (MOUM 1) n E (IN). Suppose 

that there exists an ME «MOUM 1)+ n E(:N» \IS «M~ n E(lN» U (M~ n E(~»). 
+ + + Choose L C IN such that IS «MO n E (IN)) U (M1 n E (IN))) c L n E (~) and 

M i L+ n E(~). Then M: n E(~) C L+ n E(lN) implies that IM.\LI < w 
~ ~ 

(i E {O,!}) (lemma 2.8.9) and hence that I (MOUM 1)\LI < w, which is a 

contradiction since M E (MOUM 1)+\L+. 

This shows that S satisfies (ii), and also (iii); for take SO,S1 E S 
+ such that I S (SOUS 1 ) = E(~). Let Si = Mi n E(lN) (i E {O,!}). Then 

+ E (IN) = (MOUM1 ) n E (IN) by (1). Hence I ~ \ (MOUM1 ) I < wand consequently 
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+ + 
(MO nEON» U (M1 nEON» = E (IN) (notice that in general I IN \ (MOUM1 ) I < W 

+ + -- 'IN .') need not imply MO U M1 A 

Using (1) and (2) it is easy to see that S satisfies (iv). 

S also satisfies (v), because of lemma 2.8.6 (recall that P(w 1) is 

true in ZFC and hence that we do not use CH or Pte) here). 

Finally S satisfies (vi). Let A = U (M: n E (IN)) and 
iEw 1. 

+ * B = UiEw (Li n E(lN» such that A n B = ~. It now follows that UiEW Mi and 

U. L~ are disjoint subsets of (3lN \IN. As (3JN \IN is an F-space (cf. ° .C) 1.EW 1. 
these two sets have disjoint closures. Therefore we can choose two disjoint 

sets E and F in IN such that U. 
1.EW 

(M: n E(JN» c C+ n E(JN) and UiEW 

lishes (v). 

* * * * M. c E and U. L. c F . Then U. 
1. + 1.EW 1. 1.EW 
(Li n E(JN» c F+ n E(JN), which estab-

II 4= II Define operations /I, v, I on S in the following manner: 

A /I B 

A v B 

A' 

WS(AnB) 

IS (A U B) 

X\A. 

We will show that <S,/I,V,',O,l> is a Boolean algebra, where ° = ~ and 

X. Notice that for all A,B E S we have that A /I B cAn Band 

A U B c A v B. Because of (ii) A v B E S for all A,B E S. Also A /I B E S 
for all A,B E S, because of the equality 

A /I B = (A I v B I ) I • 

To prove this, notice that A /I B U{X\S I S E Sand X\S cAn B} = 

= U{S E sis c AnB} by (i). Now take S E S such that SeA n B. Then 

A' UB' C S' and consequently IS(A ' UB') c Sr. Therefore S c X\IS(A' UB') = 

(A'/lB')'. Since (A'VB')' E S, by (il and (ii) it follows that 

A /I B = (A' vB' ) , • 

Define a relation II ~ II on S by putting A ~ B iff A /I B = A. 

Let us prove that A ~ B iff A c B, for all A,B E S. Indeed, assume that 

A c B. Then A /I B (A' VB')' (A')' = A and therefore A ~ B. Next, 

suppose that A ~ B and that there exists an x E A\B. Then x i A /I Band 

consequently A /I B # A. Contradiction. 

It now follows that the relation "~ II is a partial ordering. Also 

it is clear that for all A,B E S the set A /I B is the greatest lower bound 

of A and B with respect to this ordering and in the same way A v B is the 

least upper bound for A and B. Hence (S,~) is a lattice. Also (S,~) is 
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distributive because of (iv) and clearly it is complemented. Hence 

<S,A,v,',O,l> is a Boolean algebra. 

Let us show that this Boolean algebra is Cantor separable. Take 

An € S (n € w) and B E S such that AO < ..• < An < ••• < B. Define 

Sn := B A A~ (n E W). We will show that Sn F 0 (n E w). For suppose to 

the contrary that for some nO E W we have SnO = O. Then 1 S~O = 

= (BAAnO)' = B' v AnO and hence, by (iii), B' U AnO = X. This is a con­

tradiction, since AnO < B (notice that in fact we have shown that for all 

A,B € S: A n B F ¢ iff A A B F 0). Also An < An+l implies that BA A~+l c 

c B A An (n E w). By (v) there is a nonvoid C E S such that C c nn€w Sn. 

Then AO < Al < ••. < An < .•• < C' < B. 

Let us prove that <S,A,v,',O,l> is dense in itself. Indeed, take 

A,C E S such that A < C. If A = 0, then C F ¢ implies that there are two 

distinct points x and y in C since X contains no isolated points. By the 

fact that S is binary there is an S E S such that XES and y i S. Then 

define B := CAS. Now A < B < C. If A F 0 define D := C A A'. Then D F 0, 

since C n A' F ¢; define B := D' A C. Clearly A < B < C. 

Let us prove that <S,A,V,' ,0,1> is Du Bois-Reymond separable. Suppose 

that AO < ••• < An < .•. < Bn < •.• < BO for some An,Bn E S (n E w). Then 

UnEW An and Un€W B~ are disjoint countable unions of elements of Sand 

hence, by (vi), have disjoint S-closures. Let Co := IS (UnEw An) and 

Cl := IS(U B'). By the binarity of S there now is a DES such that nEW n 
Co c D and D n Cl = ¢. Then clearly An < D and B~ < D' for all n € w. It 

now follows that 

AO < •.. < An < ••• < D < .•• < Bn < •.. < BO· 

The cardinality of S equals Q since X has weight Q and since S is a 

subbase. Now, by PAROVI~ENKO's result the Boolean algebra <S,A,v,',O,l> 

is isomorphic to the Boolean algebra of clopen subsets CO (j3JN \ IN) of 

SJN\JN. Let cr: S ->- CO(SJN\JN) be an isomorphism. Define a function 

cp: X ->- ~ (IN) by 

CP(x) := {M c IN I M* E {cr(S) IXES} }. 

* Recall that M 

homeomorphism. 

= CISJN (M) \M for all M c IN. We will show that cp is a 

CLAIM 1. Take x E X; then S := {S € S I x € S} is a maximal linked system ----- x 
in the Boolean algebra <S,A,v,',O,l>. 



121 

Indeed, take SO,Sl E Sx' Then So n Sl ~ ¢ implies that So A Sl ~ ¢, 

which shows that Sx is a linked system. Also Sx is maximally linked, for 

suppose that there is an A E S such that Sx U {A} is linked but A t Sx' 

Then x t A and consequently x E A'. But A n A' = ¢ implies that AA A' = O. 

Contradiction. 

The Boolean isomorphism a maps Sx onto a maximal linked system in 

CO (i3lN \IN). Now it follows that 

is a maximal linked system in P(lli) and that it is an element of ~ (lli) • 

Also, the fact that a is an isomorphism implies that ~ is one to one and 
-1 + -1 * surjective. Moreover ~ is continuous, since ~ [M n ~ (lli) J = a [M J for all 

M c IN. Therefore ~ is a homeomorphism. 0 

2.8.26. COROLLARY [CHJ. If X is a zero-dimensional noncompact a-compact 

and locally compact space with I C (X) I = e., then ~ (X) and ~ (N) are homeo­

morphic. 

PROOF. It is easy to see that {M+ n ~(X) I M is open and closed in X} 

satisfies all conditions of theorem 2.8.25 (notice that X Lindel5f being 

a-compact implies that for closed sets A,B c X with A n B = ¢ there is an 

open and closed U c X such that A c U and Be X\U). 0 

2.8.27. REMARK. Corollary 2.8.26 also follows directly from PAROVI~ENKOls 
result. For if X is a zero-dimensional noncompact a-compact and locally 

compact space with IC(X) I = e. then there is a homeomorphism ~: i3X\X+i3lN\lN 

by PAROVI~ENKOI s characterization of i3lN \lli. This homeomorphism can be 

extended to a homeomorphism It (~): It (i3X\X) ->- It (i3lN \IN) (theorem 2.3.4) • 

Now theorem 2.8.2 implies that ~(X) is homeomorphic to ~(lli). 

2.8.28. EXAMPLE. A locally compact and a-compact separable space M for 

which ~ (M) and ~ (IN) are homeomorphic under CH but not under P (e.) + iCH. 

As noted in the introduction of this chapter this example is based 

on an example of VAN OOUWEN [40J. 

Let M = lNx {O,Oe.. Then clearly ~(M) and ~(lN) are homeomorphic 

under CH (cf. corollary 2.8.26). Assume that w1 < e. and let K = {0,1}e.. 

-1 I I Let K := {na [{UJ a E w1 , i E {O,l} }. Then {lNxK KE K} is a collec-

tion of w1 clopen subsets of M each infinite subcollection of which has 
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a void interior. As for each a E w1 we have 

for each M E AM there is an i E {O,l} such that IN x n-1[{i}] E M. For 
a 

each M E E(M) let K(M) := {K E K I IN x K EM}. It follows that K(M) is 

uncountable for each M E E ON) and also that {K (M) I M E EON)} has cardin­
w1 

ali ty 2 • Also 

K E K (M)} n E (M) I M E E (M) } 

covers E(M). The collection A has cardinality 2w1 and consists of pairwise 

disjoint sets each an intersection of wI clopen subsets of E(M). 

Let us prove that each A E A has a void interior. Assume there exist 

open and closed CO' ... ,Cn c M such that 

¢ # .Q + E (M) C. n c AO l._n l. 

for some AO E A. Let MO E E (M) such that AO n{ (IN x K) + I K E K (MO) } n E (M) • 

Now the fact that 

implies that for all K E K(MO) there is an iK S n such that Ci\(JNXK) 
+ + is compact; for otherwise niSn Ci n E (M) ¢ (IN xK) n E (M) . 

Hence there is an iO S n such that L = {K E K(MO) I iK = iO} is un­

countable. Also, clearly, CiO is not compact. Choose for every L ELan 

integer i(L) such that ¢ ~ CiO n ({i(L)}XK) c {i(L)} x L (this is possible 

since CiO\(JNXL) is compact!). There is an integer i such that the collec­

tion 

B = {L ELI i(L) = i} 

is infinite, since L is uncountable. But then nB has a nonvoid interior 

in K, since ¢ ~ CiO n ({i}XK) c {i} x nB, which is a contradiction. 

Now suppose that there is a homeomorphism $: E(:IN)-+ E(M). Take 

F E 8JN \:IN and take A E A such that F E cP -1 (A). As A is an intersection 
-1 -1 

of w1 clopen sets, so is cP (A). Also $ (A) has a void interior. However 

pte) + iCH implies that this intersection has a nonvoid interior (lemma 

2.8.6). Contradiction. 0 
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morphic while yet AX and AY are homeomorphic. 
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Let X = I, the closed unit interval and let Y = {(O,y) I -1 ~ y~ 1} u 

u {x,sin!) I 0 ~ x ~ 1}. In chapter 3 (sections 3.4 and 3.2) we will show 
x 

that AX and AY both are homeomorphic to the Hilbert cube Q. 0 

2.8.30. EXAMPLE. A separable compact Hausdorff space with w1 points which 

is not the continuous image of L (IN) . 

In section 1.1 we gave an example of a separable compact Hausdorff 

space with w1 points which is not the continuous image of a supercompact 

Hausdorff space (cf. example 1.1.18). Hence this space is not the contin­

uous image of L (IN) • 0 

2.8.31. QUESTION. Is there a separable supercompact first countable 

Hausdorff space which is. not the continuous image of L (IN)? 

2.9. Another nonsupercompact compact Hausdorff space 

In section 1.1 we gave an example of a compact Hausdorff space which 

is not supercompact but which admits a closed subbase T such that for all 

MeT with nM = ~ there are MO,M1 ,M2 E M such that MO n Ml n M2 = ~. In 

this section we will present another space with this property. The space 

is a subspace of AJN and the subbase with the above property is just the 

restriction of the canonical binary subbase of AJN to the space under 

consideration. This makes the example of independent interest. 

2.9.1. Let S denote the canonical binary subbase of AJN and for each 

A c AJN, let I(A) (as usual) be defined by I(A) := n{s E S I A c S} (cf. 

section 1.1). We start with a simple but useful lemma. 

2.9.2. LEMMA. Let A c AJN. Then for all M E M E I(A) there is an A E A 

such that MEA. 

PROOF. Suppose that MiA for all A E A. Then IN \M belongs to each A in A 

and consequently .A c (IN \M) +. But then I (A) c (IN \1-1) +, which is a contra­

diction since M E I(A). 0 
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2.9:3. EXAMPLE. There is a subspace X of A:N with the following properties: 

(a) X is not supercompact; 

(b) for all M c {s n X I s € S} wi th nM 

such that MO n M1 n M2 ~. 

Indeed, define 

X := {M € AlN I VMO,M1,M2 € M: 

[MOnM 1nM2 = ~ ~ 3i € {O,1,2}: € M.JL 
~ 

Notice that IN c X and therefore, as we will show that X is closed in AlN, 

also SlN c X. 

CLAIM 1. X is compact. 

Indeed, assume that Mix. Then there exist MO,M1 ,M2 € M with 

MO n M1 n M2 = ~ and 1 i Mi (i E {O,1,2}). Then M~ n M; n M; is an open 

neighborhood of M which obviously misses X. Hence X is closed in the 

compact space AlN. 

CLAIM 2. The closed subbase T = {M+ n X I M c IN} has the property that 

for each MeT with nM = ~ there are MO,M1 ,M2 € M such that 

MO n M1 n M2 = ~. 

Let MeT be a subsystem any three members of which meet. We will 

show that nM 1 ~. This suffices to prove the claim. 

We will show, by induction, that M has the finite intersection 

property; then, by claim 1, nM 1 ~. Assume that any n - 1 members of M 

meet. If n = 2 or n = 3 then obviously any n members of M meet. Therefore 

we may assume that n>3. Let M: n X € M (i € {1,2, •.. ,n} and take, for 
~ 

each i € {1,2,3,4} 

Now define 

L. € n 
• j1i 
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Notice that, as {M+ I M c :IN} is binary the set Z is nonvoid. We claim that 

Z c R M+ n X. 
i=l i 

That Z c n~=l M~ is trivial. We proceed to show that Z c X. Suppose there 

were an N € Z with Ni € N (i € {1,2,3}) such that Nl n N2 n N3 = ~ and 

1 t Ni (i € {1,2,3}). We will derive a contradiction. 

Fix i € {1,2,3} and let Ai := {j € {1,2,3,4} I Ni € Lj }. Then 

IAil ;:: 3. Suppose that IAil < 3; then there exist distinct R.,m€ {1,2,3,4}\Ai • 

Then, as N € I({l,LR.,Lm}) and as 1 t Ni , by lemma 2.9.2, we must have that 

either Ni € LR. or Ni € Lm. Contradiction. 

NOW, IAil ;:: 3 for all i € {1,2,3}; therefore 

Take m € Al n A2 n A3 • Then Ni € Lm for all i € {1,2,3} and as Lm € X this 

is a contradiction. 

~ 3. X is not supercompact; it is not even the continuous image of a 

supercompact Hausdorff space. 

Ass~e that T is a binary closed subbase for X. We assume that T is 

closed under arbitrary intersection (cf. lemma 0.5). Let A c p(:IN) \{1}) be 

an uncountable almost disjoint family of infinite sets which satisfies: 

For each uncountable B c A there is a B € B and an 

infinite C c B\{B} such that C n C' c B for all distinct 

C,C' € C. 

There is such an almost disjoint family, cf. 1.1.14 and lemma 1.1.15. 

For each infinite BeN, the set B+ n X is clopen in X and consequent­

ly, since T is closed under arbitrary intersection, there exists a finite 

Fe T such that B+ n X = UF (cf. 0.3). Therefore there exists an T(B) € T 
such that T(B) c B+ n X and T(B) n B is infinite. 

As {T(A) n A I A € A} is an uncountable collection of subsets of 

:N \{ 1} there is an nO € :N \{1} such that Al = {A € A I no € T(A) n A} is 

uncountable. Take an AO € Al and an infinite C c Al such that 

C n C' c AO 

for all distinct C,C' € C. Then 
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{T(e) n ((IN\{1}) \ AO)+ n x ICE C} 

+ is an infinite disjoint collection nonvoid subsets of ((IN\{l})\AO) n X. 

As this latter set is clopen in X, there is a finite F c T such that 

uF = ((IN\{l}\AO)+ n X. Choose aTE F such that T intersects both T(e) 

and T(e') for certain e,e' E C (e Fe'). Then 

L = {T,T(e) ,T(e')} 

is a linked system with a void intersection. That L is indeed linked is 

trivial since nO E T(e) n T(e'). But 

nL T n T(e) n T(e') 

= ¢, 

since ((IN\{1})\AO) n ene' c ((IN\{1})\AO) n AO c (IN\AO) n AO = ¢ and 

neither contains 1. Contradiction. 

The assertion that X is not the continuous image of a supercompact 

space can be shown using the same technique, cf. proposition 1.1.16. 0 

REMARK. The proof of claim 3 of the above example is a simple modification 

of the technique used in the proof of proposition 1.1.16. 

2.9.4. In section 2.8 we defined two subspaces a(lN) and E(lN) of AlN 

which are, in some sense, related to the space X constructed in example 

2.9.3. The spaces a(lN) and E(lN) both have a void intersection with IN, 

but both contain SlN\lN. Therefore a(lN) U IN and E(lN) U IN are closed in 

AlN. This suggests the question whether the spaces a (IN) U IN and E (IN) U IN 

have the same properties as example 2.9.3 (recall that lNc SlN c X!). 

For o· (IN) U IN this is disproved in the next propositioni E (IN) U IN is 

more difficult to treat, however, it can also be shown that it differs in 

compactness type from X. 

2.9.5. PROPOSITION. 

(i) a (IN) and E (IN) are supercompacti 

(ii) a(lN) U IN is supercompacti in fact cr(lN) U IN Flj A(JN) ,H) where 

H = {M C IN I IMI = 1 v IMI = w}; 

(iii) E (IN) U IN is not supercompacti 



(iv) the subbase T := {M+ n (a(lN) U IN) I M c IN} for a(lN) U IN has the 

property that for each n ;:: 3 there is an F c T with I F I = nand 

nF = ~ while n(F\{F}) # ~ for all F € F; 

(v) the subbase V := {M + n (E (:N) U :11') I M c :II'} for E (IN) U IN has the 

same property as T. 
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PROOF. (i) The supercompactness of a (IN) follows from (ii). That E (IN) is 

supercompact was shown in theorem 2.8.2 (iii) .• 

(11) Define a mapping t/l: J..(lN,H)-+J..lN by t/l(M) := M (it is easy to see 

that an mls M cHis also an mls in p(lN». The simple proof that t/l is an 

embedding and that t/l[J..(lN,H)] = a(lN) U IN is left to the reader. 

(iii) This can be proved using the same technique as in example 2.9.3 

claim 3. Under P(C), we will give another proof, which uses theorem 1.1.5. 

Assume that E (IN) U IN were supercompact. Then, by theorem 1.1.5, at most 

countably many points of B:N \IN are not the limit of a nontrivial conver­

gent sequence in E (IN) U IN. As no sequence in :II' converges it follows that 

at most countably many points of BE \IN are not the limit of a nontrivial 

convergent sequence in EON). Under P (C), there are 2C Pc-points in BlN \IN 

(VAN DOUWEN [40]). It is easy to see that a pc-point in BlN\lN is also a 

Pc-point in E(lN). But a pc-point is not the limit of a nontrivial con­

vergent sequence. Hence there are 2c points in BlN \E which are not the 

limit of a nontrivial convergent sequence in E(lN). Contradiction. 

(iv) Fix n ;:: 3 and define F := {({1,2, ••• ,n}\{i})+ liS n}. Then IFI = n 

and nF n (a(lN) U IN) = ~ while n(F\{F}) n (a(lN) \IN) # ~ for all F € F, 

as can easily be seen. 

(v) This can be proved in the same way as in (iv). 0 

2.10. SUbbases, convex sets and hyperspaces 

In this section we will study the operator IS' defined in 1.5.1. We 

do not restrict ourselves to binary normal subbases. For any topological 

space X and for any closed subbase S for X we define 

IS (A) := n{S € S I A c S} 

for all A c X (an empty intersection will represent, by convention, the 

whole space X). The set IS(A) is called the S-closure of A, or, the 

S-convex closure of A. By definition, H(X,S) will denote the space of all 
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nonvoid S-closed sets, endowed with the subspace topology of 2X 

We are interested in compactness properties for the spaces H(X,S) • 

Our main result in this section is that if X is a compact space and if S 

is a normal T1-subbase which is closed under arbitrary intersection, then 

H(X,S) is compact if and only if H(X,S) is a retract of 2X, and also if 
X and only if the map IS: 2 -+ H(X,S) (which sends each closed set A c X 

onto its S-closure) is a retraction. 

We first prove that if S is a binary normal subbase for X then H(X,S) 

is compact though establishing that the closure operator IS is a retrac­

tion. This fact then is used to obtain the general compactness result 

ci ted above. 

The results in this section are taken from VAN MILL & VAN DE VEL [82J. 

We start with the following remarkable result: 

2.10.1. THEOREM. Let S be a binary normal subbase for X. Then the operation 

of intersecting two S-closed sets is continuous. 

PROOF. First notice that X is normal, being compact and Hausdorff (cf. 

2.2.4 (iii». Let 

A c H(X,S) x H(X,S) 

be the subspace of all pairs (A,B) such that A n B ~ ~. We have to show 

tha t the mapping 

n: A -+ H(X,S) 

assigning to (A,B) € A the S-closed set A n B, is continuous. We shall use 

the open subbase of 2X, consisting of all sets of type <0> or <O,X>, 

where 0 c X is open. 

Assume first that (A,B) € A and that 0 c X is an open set such that 

A nBc O. A straightforward argument, using the normality of X, then 

shows that there exists a neighborhood Vo of A and a neighborhood V, of B, 

in 2X, such that (VOXV1) n A is mapped into <0> by the intersection 

operator. 

Assume next that A n B n 0 ~ ~ for some pair (A,B) € A and for some 

open set 0 c X. Let x € A n B n O. Since S is a normal T1-subbase (cf. 0.4) 

there are S1' •.• 'Sn € S such that 

( n s.) c 
i=1 1 

n 
n S1' c O. 

i=1 
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n n 
Hence «ni =l Si'X> x <ni =l Si'X» n A is a neighborhood of (A,B) and for 

each pair (A',B') in this neighborhood the system {A',B"Sl""'Sn} is 

linked. Hence, by binarity of S, also 

n 
n S1.' n A' n B' ~ ¢. 

i=l 

n n 
It follows that A' nB' nO=¢forall (A',B') E «ni =l Si'X>x <ni =l Si'X» nA •. 0 

2.10.2. It can easily been deduced from theorem 2.10.1 (or proved direct­

ly with the above method) that n-fold intersection is also continuous on 

the hyperspace of S-closed sets, associated to a normal binary subbase S. 
The continuity of the 2-fold intersection operator - even in one 

variable at the time - seems to be fairly exceptional in hyperspaces, as 

can be seen from the next example. 

2.10.3. EXAMPLE. Let X be the unit 2-cell. For each t E [O,~J we let 
X it 

Ft E 2 be the line segment joining 0 and e (regarding X as a subspace 

of the complex numbers). The mapping 

sending tonto Ft obviously is continuous. The map 

assigning to Ft the set F~ n Ft , is not continuous, since the image of 

G 0 F consists of the two points {oJ and F of 2X. 0 
~ 

Before passing to general normal subbases, we need one other theOl:·em 

dealing with binary normal subbases. We begin with the following auxiliary 

result (compare lemma 1.5.10). 

2.10.4. LEMMA. Let S be a binary normal subbase for the topological 

space X. For each n ~ 2 the mapping 

tuple (x,x1 ' ••• ,xn ) E xn+1 onto the 

n IS ({X1""'xn }), is continuous. 

f: xn+1 -+ X, which sends an (n+1)­
n 

unique point in ni =l IS(X'Xi ) n 

PROOF. The uniqueness of f(X,x1 , .•• ,xn ) is a consequence of theorem 1.5.2. 
n+1 -1 

To prove the continuity, let S E S and let (x,x1' ... ,xn ) EX \f [sJ. 
Then 
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n 
n IS(X,X;) n I({X1, •.• ,xn}) n S ~, 

i=l • 

and S being binary, we have that either IS(X,xi ) n S = ~ for some i S n, 

or that IS ({X1 ' •.. 'Xn }) n S ~. 

In the first case, using the normality of S, there is an So E S 

such that 

Let TI • xn+1 -+ X denote the pro]·ection mapping onto the ].th coordinate. 
j" 

Then 

is a neighborhood of (x,x1 ' ••• ,xn ) which does not meet f- 1[sJ. For, if 

(y'Y1' •. ·'Yn) E U, then {Y,Yi } C intx(SO) C SO' whence 

In the second case one can proceed in the same way. First, choose 

So E S such that 

IS ({X'X1 ' ••. 'Xn}) c intx(SO) C So C X\S. 

n -1. 
Then, let U := ni =l ni [~ntx(SO)J. This set is a neighborhood of 

(X,X1 ' ••• ,Xn ) not meeting f- 1[SJ. 0 

2.10.5. THEOREM. Let S be a normal binary subbase for the topological 

space X. Then the map IS: 2x -+ H(X,S) is a continuous retraction of 2X 

onto H(X,S) (in particular H(X,S) is compact). 

PROOF. For simplfication of notation, write r = IS. Let us prove that r 

is continuous. Fix an open set 0 C X and assume first that A E r-1[<O>J. 

Then IS(A) C O. Since X is compact and since S is a closed subbase, there 

exists Sij € S (i,j S n, n € 00) such that 

X\O C U n s .. C X\IS(A). 
iSn jSn ~] 

Since S is normal and binary, we have that the collection of S-closed 

also is normal (cf. 0.5). For each i S n, we therefore can choose T. € S 
~ 

such that 



Define Z := nisn Ti • Then Z is S-closed and 

For each A' € <Z> we have that IS(A') c Z c 0, proving that <Z> is a 

neighborhood of A which is mapped by r into .<0>. 

Assume next that A € r- l [<o,x>J. Choose p € IS (A) n O. 

CLAIM 1. {p} = n IS(p,a). a€A 

Indeed, choose z € na€A IS(p,a) such that z ~ p. By the fact that 

S is a normal Tl -subbase (cf. 0.4), there are 50 ,51 € S such that 

z € 50\51, P € 51\50 and So U 51 = X. Now if AnsI = ~ it would follow 

that 
j 

which is a contradiction since p € IS(A). Therefore, there is an 

a O € AnsI. But then 

which also is a contradiction since z t 51. 

By claim 1, and by the compactness of X there exist finitely many 

a i € A (i s n, n € 00) such that 

n IS(p,a~) c O. 
iSn • 

Consequently, using the notation of lemma 2.10.4, 
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By the continuity of f, cf. lemma 2.10.4, there exist open neighborhoods 

Vi of a i (i S n) such that f(p,ao,ai, ••• ,a~) € 0 for all n+l-tuples 

(ao,ai,···,a~) € nisn Vi· Hence, the set <vO'Vl ' ••• 'Vn ,X> is a neighbor­

hood of A € 2X, which is mapped by r into O. For take B € <VO'V1' ••. 'Vn'X> 

and choose b i € B n Vi (i S n). Then 
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since {bO,b1, ... ,bn } c B. In particular, 0 n IS(B) F ¢, or, equivalently, 

r(B) € <O,X>. 

Finally, clearly r(C) 

is a retraction. 0 

C for each S-closed set C, proving that r 

2.10.6. CURTIS & SCHORI [36J have shown that C(X), the space of all sub­

continua of X, is a Hilbert cube factor (that is, a space of which the 

product with the Hilbert cube is homeomorphic to the Hilbert cube) if 

and only if X is a Peano continuum. In particular, this implies that C(X) 

is a retract of 2X. Theorem 2.10.5 implies that for the class of dendra, 

a subclass of the class of all Peano continua, such a retraction can be 

explicitly described. For, the collection of subcontinua of a dendron X 

is a binary normal closed subbase for X (in theorem 1.3.21 it was shown 

that the collection of complements of segments of a compact tree-like 

space is a binary normal subbase. As each connected closed subset A of 

a compact tree-like s~ace X is the intersection of all complements of 

segments containing A, it follows that the collection of subcontinua of 

X is also a binary normal subbase). 

We now can prove the following compactness theorem for normal sub­

bases. 

2.10.7. THEOREM. Let X be a compact space and let S be a normal T1-subbase 

for X which is closed under arbitrary intersection. Then the following 

assertions are equivalent: 

(i) H(X,S) is compact; 

(ii) the map IS is a retraction of 2X onto H(X,S); 

(iii) H(X,S) is a retract of 2X; 

(iv) regarding X as a subspace of its superextension A(X,S), the opera­

tion of intersection with X yields a continuous mapping 

(v) H(X,S) has a closed normal T1-subbase consisting of all sets of type 

<S> n H(X,S), or, <S,X> n H(X,S) (S € S); 

(vi) IS is continuous on the space of all finite subsets of X, and in 

addition a nonempty closed set A c X is S-closed iff for each 

finite F c A also IS(F) c A. 
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The implications (ii) ~ (iii) ~ (i) are obvious, using the fact that 2X is 

compact (cf. MICHAEL [75]). We shall prove the following statements: 

(i) ~ (ii) and (iv); (iv) ~ (i) ~ (v) ~ (iv); (i) ~ (vi). We assume 

throughout that ¢ i S (and hence that ¢ i S+), allowing us to identify S 

with H(X,S) , since S is closed under intersection. 

PROOF. (i) ~ (ii) and (iv). Let g denote the composed mapping 

2x ~ 2" (X,S) IS+· + 
~ H(A(X,S) ,S ), 

where i sends A c X onto A c A(X,S); let h be the restriction of g to 

S = H(X,S). It is easy to see that h[S] c S+ and that h has a two-sided 

inverse, which is the mapping 

·nX: S+-+S 

which sends s+ € S+ onto S = s+ n X € S. By theorem 2.10.5, the map g 

(and hence h) is continuous. Since S is compact and Hausdorff, h is a 

homeomorphism of S onto S+, showing that -nX is continuous. 

For each A € 2X we have that 

n{s+ I A c S € S}, 

and therefore 

This shows that g[2X] = h[H(X,S)], and hence that 

-1 X h g: 2 -+ H(X,S) 

-1 
is a well-defined continuous map; clearly h g IS. 

(iv) ~ (i). Assume that the map 

onX: S+ --+ S 

is continuous. We first prove that S+ is a closed (and hence compact) 

subspace of H(A(X,S),S+). Let C € H(A(X,S),S+)\S+. If C n X = ¢, then 

<A(X,S)\x> is a neighborhood of C which misses S+ (since each S+ € S+ 
satisfies s+ n S Sf ¢). 

Assume next that C n X f ¢, and let C c S+ be such that C nco Then 
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C n X = n{s+ I s+ € C} n X = n{s s+ € C} € S. 

Also, (CnX)+ c C. In fact, if M € (cnx)+\c, then C n X € M and some M € M 
satisfies M+ n C = ¢. Hence 

M+ n C n X M n (CnX) = ¢, 

contradicting that M is linked. Since C i S+, we have that (cnx)+ ~ C, 

and using the above inclusion, there must be some maximal linked system 

N € A(X,S) such that N € c\(Cnx)+. Let N € N be such that N n (CnX) = ¢. 
By the normality of S there exist SO,Sl E S so that 

N c X\SO' C n X n X\Sl and 

Observe that N+ n C ~ ¢ and that N+ C A(X,S)\S;. Then the collection 

is a neighborhood of C which misses S+. In fact, if n € S is such that 

n+ is in the above neighborhood, then 

n n+ n X C «A(X,S)\S;) U (A(X,S)\X» n X = X\S; 

¢ ~ n+ n (A(X,S)\S;) 

and consequently 

which is a contradiction. 

(i) ~ (v). First, notice that for each S € S, 

<X\S,X>; 

and hence that the sets of the form <S>, <S,X>, with S € S, are closed. 

Assume that H(X,S) is compact, let B C H(X,S) be a closed subset, and 

let S € H(X,S)\B. Then for each B E B we have either B ¢ S or that S ¢ B. 

If B ¢ S, then choose x € B\S. By the normality of S there exist 

SB'SC € S such that 

and X. 



In particular, x € B n intX(SB)' and hence it follows that <SB'X> is a 

neighborhood of B which does not contain S. 
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If S ¢ B, then choose y € S\B. Again; there exist SB'SC € S such that 

In particular, <SB> is a neighborhood of B that does not contain S. 

Since B is compact, a finite number of the selected neighborhoods 

of type <SB> or <SB'X> suffices to cover B. Hence it follows that the sets 

of type <A> or <A,X>, A € H(X,S), form a closed subbase for H(X,S). 

This subbase is T1 : assume that A,B € H(X,S) and that A i <B>. Choose 

x € A\B. Since S is a T1-subbase, there is an S € S such that x € Sand 

S n B 

A n B 

~. Hence, A € <S,X> and <S,X> n <B> = ~. If A i <B,X>, then 

~. It follows that A € <A> and <A> n <B,X> = ~. 
Finally we prove that this subbase is normal. Notice that for each 

pair of S-closed sets D1. and D2, 

Hence we are only concerned with the following two cases (C1 ,C2 € H(X,S». 

(a) <C1> n <C2> n Hix,S) = ~. Then C1 n C2 = ~. By the normality of S, 

there exist S1'S2 € S such that C1 n S2 = ~ = S1 n C2 and S1 U S2 = X. 

It easily follows that 

<C1> c <S1'X>\<S2'X>; 

<C2> c <S2'X>\<S1'X>; 

X 
<S1'X> U <S2'X> = 2 , 

yielding the desired result (after intersecting with H(X,S». 

(b) <C1> n <C2,X> n H(X,S) = ~. Then C1 n C2 = ~. Choosing S1,S2 € S as 

above, it can easily be seen that 

(v) ~ (iv). Let f 

see that 

c <S2'X>\<S2>; 

X 
<S2'X> = 2 • 

'nx: S+ -+ S. For each S-closed set C it is easy to 
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f- 1[<c>nSJ = <c+> n S+; 

f- 1[<C,x>nSJ = <C+,A(X,S» n S+. 

Using the fact that the sets of type <S> n H(X,S) or <S,X> n H(X,S), where 

S E H(X,S), form a closed subbase for H(X,S), it follows that f is con tin-

uous. 

(i) ~ (vi). The continuity of the map IS on finite subsets of X follows 

from (i) ~ (ii). Let A E 2X. If A is S-closed, then IS(F) c A for each 

finite F cA. If the latter is true, then A E H(X,S). In fact, let 

<Ol, ••• ,on> be a basic neighborhood of A, where 0l, ••. ,on c X are open. 

For each i $ n fix an ai E A n 0i' and let F = {a1 , ••• ,an }. Then 

and IS(F) n 0i # ¢ for all i $ n, 

and hence <Ol""'On> meets H(X,S). It follows that A is in the closure 

of H(X,S), which equals H(X,S) by compactness. 

(vi) ~ (i). Let A E 2X\H(X,S). Then there is a finite F = {a1 , .•• ,an } c A 

such that IS(F) ¢ A. Fix x E IS(F)\A. By the regularity of X there exist 

disjoint open sets O,P c X such that x E P and A c 0. Since IS is contin­

uous on finite sets, there exist open sets 0i c ° with a i E 0i (i $ n) 

and such that 

for all (ai, ••• ,a~) E ITi$n 0i' 

Then <O'Ol""'On> is a neighborhood of A which does not meet H(X,S). 

In fact, if B E <O'Ol""'On>' then there exist b 1 , ••. ,bn E B such that 

bi E B n 0i for each i $ n, and hence IS ({b1, ... ,bn}) n P # ¢. Also B c 0, 

and hence IS ({b1, ••• ,bn }) ¢ B, proving that B is not S-closed. 

This completes the proof of the theorem. 0 

2.10.8. Theorem 2.10.7 shows that a closed subbase S which (a) is normal 

and T1 ; (b) is closed under arbitrary intersections; and (c) yields a 

compact hyperspace of S-closed sets, must have quite strong properties. 

The most interesting types of examples are the normal binary subbases, 

and the ones described below. It is possible, however, to find other non­

trivial (i.e. different from H(X» examples of such compact subbases. 
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2.10.9. EXAMPLE. Let X be a compact convex subspace of a locally convex 

vectorspace, and let S be the collection of all closed (linearly) convex 

subsets of X. Then S is easily seen to be a T1-subbase for X, which is 

closed under arbitrary intersection. By the HAHN-BANACH theorem (cf. 

RODIN[100J), S is also normal. This subbase is compact, as can be derived 

from an obvious argument on line segments and continuity of the algebraic 

operations in the vectorspace. Hence theorem 2.10.7 implies that the 

hyperspace of all closed convex subsets of X is a retract of 2X. 

OUr next examples illustrate the interference of the conditions (a), 

(b) and (c) listed in 2.10.8. 

2.10.10. EXAMPLE. Let X be a locally connected continuum. Then C(X) (cf. 

2.10.6) is a closed T1-subbase of X which is compact. C(X) is closed under 

arbitrary intersections iff X is hereditarily unicoherent, in which case 

X is a compact tree-like space and C(X) is a normal binary subbase (cf. 

2.10.6 and theorem 1.3.21). 0 

2.10.11. EXAMPLE. Let S1 denote the unit circle, metrized by arc distance. 

The following sets are easily seen to be closed subbases for s1, for each 

real number r with 0 < r ~ 2n: 

S := {C E: C(S1) -diameter of C ~ r}; 
r 

S' := {C E: 
r 

C(S1) diameter of C < rL 

Let E2 denote the unit 2-cell. There is a wellknown homeomorphism (cf. 

CURTIS & SCHORI [37J) 

constructed as follows: h(S1) 0, and for C E: C(S1), C # s1 the image 

h(C) of C is the point of E2 on the line segment joining 0 with the middle 

point of the arc C on a distance 

1 
1 - 2n (diameter of C) 

to the origin. 

Applying this map to the 

that S is compact for each r 
r 

subspaces S ,S' of C(S1), it is easy to see 
r r 

and that S' is non-compact for each r. The 
r 

subbase S (resp. S') is closed under arbitrary intersections iff r < n 
r r 
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(resp. iff r ~ TI). The subbase S is non-normal for each r < TI, and S' is 
r r 

normal iff r > TI. 

None of the above subbases therefore satisfies (a), (b) and (c) 

simultaneously. Notice that, if r < 23TI , then Sand S' even are binary 
r r 

(but not normal). D 

We now present some corollaries of theorem 2.10.5 and of theorem 

2.10.7. 

2.10.12. COROLLARY. Let S be a binary normal subbase for X. Then H(X,S) 

has a binary normal subbase. 

PROOF. Applying theorem 2.10.5 and theorem 2.10.7, we conclude that 

H(X,S) admits a closed normal T1-subbase consisting of all sets of type 

<C> n H(X,S), or <C,X> n H(X,S), 

where C E H(X,S). We claim that this subbase is binary. 

Assume that the collection 

{<C.> n H(X,S) liE I} U {<D.,X> n H(X,S) I j E J} 
J. J 

is linked, where C.,D. E H(X,S) for each i E I and j E J. Then there 
J. J 

exist S-closed sets 

i,i' E I; 

€ <C.> n <D.,X>nH(X,S), 
J. J 

iEI,jEJ. 

Hence, 

implying that for each j E J the collection 

is linked. Choose 

j E J, 



and let A := IS({X j 

j € J, proving that 

This completes the proof of the corollary. 0 
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2.10.13. COROLLARY. Let X be a continuum with a binary normal subbase S. 

Then 

(i) H(X,S) is an acyclic Lefschetz space (cf. WILLARD [129J), and it 

consequently has the fixed point property for continuous mappings; 

(ii) if X is metrizable moreover, then H(X,S) is a metric AR. 

X PROOF. The space 2 is connected (cf. MICHAEL [75J) and so is its retract 

H(X,S). A connected space carrying a normal binary subbase is an acyclic 

Lefschetz space (cf. VAN DE VEL [118J). 

If moreover X is metrizable, then 2X is metrizable too, since X is 

compact and metrizable. Hence H(X,S) is connected and metrizable, there­

fore an AR by corollary 1.5.2. 0 

2.10.14. By a result of WOJDYSLAWSKI [130J, the hyperspace of a Peano 

continuum is an AR (the hyperspace of a nondegenerate Peano continuum 

is even homeomorphic to the Hilbert cube, cf. CURTIS & SCHORI [36J). In 

case a metric compactum is not locally connected, the techniques dis­

cussed in the present section provide a way to construct hyper spaces 

which are AR's and which are rather close to the original space. Let S 

be a normal T1-subbase for the compact metric connected space X. Then 

~(X,S) is metrizable, since it is a quotient of the compact metric space 

~X (cf. theorem 2.3.4 and corollary 2.4.21). Moreover ~(X,S) is connected, 

by theorem 2.5.1. Therefore ~(X,S) is an AR and consequently H(~(X,S) ,S+) 

is an AR too, being a retract of an AR (theorem 2.10.5). 

By a recent result of EDWARDS [45J, every (compact metric) AR is a 

Hilbert cube factor. Consequently all hyperspaces, constructed above, are 

Hilbert cube factors. It is desirable to find conditions on the subbase S 
such that H(~(X,S),S+) is not only a Hilbert cube factor but is homeo­

morphic to the Hilbert cube itself. Also one could ask whether the spaces 

H(~X,(2X) +) are homeomorphic to the Hilbert cube in case X is a nondegenerate 

metrizable continuum. 
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2.11. Notes 

In the present chapter we have dealt with some topological properties 

of superextensions and of some of their subspaces. We expect that this 

treatment is only a first step. There remain many questions unsolved, for 

example the following ones: when is a superextension AX first countable?, 

or, when is a superextension AX hereditarily separable and hereditarily 

Lindelof?, or, when is a superextension AX perfectly normal?, or, when 

is a superextension AX hereditarily normal? At the moment we are not able 

to solve these questions; we can only point out the following information: 

(a) VERBEEK [119J, p.135, has given an example of a first countable compact 

Hausdorff space X such that AX is not first countable; 

(b) A~ is not first countable, not hereditarily separable, not hereditarily 

Lindelof, not perfectly normal and not hereditarily normal. 

Superextensions behave surprisingly nice with respect to connected­

ness, cf. 2.5; whenever a superextension is connected, it is not far from 

being locally connected. Our proof of the connectedness of certain super­

extensions is elementary, but not trivial. It is desirable to find a 

simple proof of our connectedness results. 

The results in sections 2.7 and 2.10 are joint results of M.VANDEVEL 

and the author, cf. VAN MILL & VAN DE VEL [82J, [83J. 

Added: some of the above questions are answered by VAN DOUWEN, see 

section 5.2. 
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CHAPTER III 

INFINITE DIMENSIONAL TOPOLOGY 

In this chapter we concentrate on metrizable superextensions. Our 

main interest lies in infinite dimensipnal problems such as: is the super­

extension of the closed unit interval homeomorphic to the Hilbert cube? In 

section 3.4 we give an affirmative answer to this question, thus proving 

a conjecture of DE GROOT [59]. Recent developments in infinite dimensional 
X topology, such as 2 ~ Q iff X is a nondegenerate Peano continuum (cf. 

SCHORI & WEST [102],[103],[104] and CURTIS & SCHORI [36]) suggest that the 

above question should be attacked using methods from infinite dimensional 

topology. Indeed, such methods turn out to be verY useful in our situation. 

We use near-homeomorphism techniques (cf. BROWN [25], SCHORI & WEST [102], 

[103],[104], CURTIS & SCHORI [36]) and inverse limits of Hilbert cubes. 

The bonding maps in the inverse sequences turn out to be near-homeomorphisms 

by results of CHAPMAN [28],[29]. 

In section 3.1 we derive some preliminary ~esults concerning metriz­

ability and superextensions. Among other things, we prove that each separ­

able metric space which is not totally disconnected, admits a superexten­

sion homeomorphic to the Hilbert cube Q. As a consequence, the closed 

unit interval I = [0,1] has a closed subbase S for which A(I,S) ~ Q. 

Unfortunately the subbase S obtained in this manner cannot be described 

well. Therefore, we describe in section 3.3 another subbase S for which 

A(I,S) ~ Q. This particular superextension is used in section 3.4 as the 

first step in an inverse limit representation of AI. There we show that 

AI can be approximated by superextensions A(I,Sn) ~ Q (n € IN) of I with 

cellular bonding maps. Combining several results in the literature it 

then follows that AI itself is homeomorphic to the Hilbert cube. The con­

struction of the superextensions A(I,Sn) (n € IN) uses much geometry in 

the plane. 

The final sections in this chapter are devoted to the construction of 
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capsets in AI and to the study of some subspaces of superextensions. As 

a consequence of our results we show that the subspace A (~) of AR is comp 
homeomorphic to B(Q) = {x E Q 3i E~: IXil = 1}, thus disproving a 

conjecture of VERBEEK [119J. 

3.1. Metrizability and superextensions 

This section contains some preliminary results concerning metrizabil­

ity of superextensions. Of great importance is VERBEEK's [119J metric for 

AX. This metric allows us to recognize Z-sets in AX, and it reflects the 

nice geometric structure of AX. 

3.1.1. One of the most important results in the theory of superextensions 

is VERBEEK's [119J theorem: AX is metrizable if and only if X is compact 

and metrizable (cf. also corollary 2.4.21). If (X,d) is compact metric then 

there is a metric d for AX such that~: (X,d)~ (AX,d) is an isometry 

(VERBEEK [119J). We will study this metric in detail. Let us start with 

some definitions and some preliminary results. 

If (X,d) is a metric space then for all A c X and E ~ 0 define 

B (A) := {x E X 
E 

d(x,A) ::; e:} 

d (x,A) < e:}. 

For any A,B E 2X the Hausdorff distance dH(A,B) is defined by 

If X is compact then dH is a metric for 2X (cf. ENGELKING [48J). 

One might wonder whether one has to use the axiom of choice to extend 

a linked system L c 2X to a maximal linked system L' c 2X in case X is a 

compact metric space. The following lemma shows that this is possible 

using induction only. 

3.1.2. LEMMA. Let X be a compact metric space. Then each linked system 

L c 2X can be extended to at least one maximal linked system L' c 2X. 

PROOF. Let {u I n E ~} be a countable open basis for X. It is easy to 
n 

see that 
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is a countable closed basis for X which is closed under finite intersec­

tions and finite unions. Suppose that L c 2X is a linked system. Define 

M := {T E T 3L E L: LeT}. 

Enumerate T as {T n E IN}. By induction, for each n E IN define a sub-
n 

collection Mn of T in the following way: 

(i) M1 := M; 

(ii) M := 
n 

(iii) M := 
n 

Define S := 

M n-1 
M n-1 

<Xl 

U n=l 

ifM n-1 U {T } 
n 

u {T } if M 1 n n-

M . Then it is n 

is not linked; 

U {T } 
n is linked. 

easy to see that 

. X 
L' := {A E 2 I Vs E S: A nSF ¢} 

is a maximal linked system that contains L. 0 

3.1.3. In the proof of the above lemma we showed that each mls M E AX, for 

compact metric x, contains a countable pre-mls (recall that a pre-mls 

L c 2X is a linked system contained in at most one mls L' c 2X, cf. defini­

tion 2.3.2). (In general, this is not the case, cf. section 2.8.) The fol­

lowing lemma gives another proof of this fact. 

3.1.4. LEMMA. Let X be a topological space and let M E AX. Then each dense 

subset L c M (dense in uM as subspace of 2X) is a pre-mis for M. In par­

ticular, if X is compact metric, then any countable dense subset of M is 

a pre-mis for M. 

PROOF. Suppose that L c M E AX is dense in M. Suppose that L is also con­

tained in an mls MO E AX distinct from M. Choose M E M, MO E MO such that 

~ n MO ¢. Then <X\MO> is an open neighborhood of M E M; consequently 

there is an L E L such that L E <X\MO>. But then L n MO = ¢, which is a 

contradiction. 0 

3.1.5. REMARK. The converse of lemma 3.1.4 in general is not true. For 

example, define an mls M E AI by 

M := {M E 21 I {O,~} c M or {~,l} c M or {O,l} eM}. 
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1 1 
It is easily seen that M is an mls and also that {{0'2},{2,l},{0,1}} is a 

pre-mls for M. As M has continuously many points it cannot contain a dense 

subset consisting of three points. 

3.1.6. A metric d for a space X is called convex provided that 

for any A E 2X and 00'01 ~ O. It is well known that any Peano continuum 

admits a convex metric. The following lemma is also well known 1 for com­

pleteness sake we include it. The proof was suggested to me by M. VAN DE VEL. 

3.1.7. LEMMA. Let d: X x X --+ [0,00) be a convex metric for the compact 

space X. Then the mapping e: 2X x [0,00) --+ 2X defined by e(A,t) := Bt(A) 

is continuous (e is sometimes called an expansion homotopy, cf. CURTIS & 

SCHORI [37J). 

-1 -1 PROOF. Let 0 c X be open. We claim that e [<O>J and e [<O,X>J are open. 
-1 To prove this, first assume that (A,t) E e [<O,X>J. Then choose 

x E Bt(A) n 0 and choose E > 0 such that BE (x) c O. Also choose a E A 

such that d(x,a) ~ t. We claim that 

Indeed, choose (A',t') E <BE/ 2 (a),x> x (t-~,t+ ~). Fix a'EBE/ 2 (a)nA'. 

Then 

and 

E d(a',x) ~ d(a',a) + d(a,x) ~ d(a,x) + 2 

d(a,x) ~ d(a',a) + d(a',x) 

and therefore 

E d(a',x) ~ d(a,x) - d(a',a) ~ d(a,x) - 2. 

We conclude that 

E E 
d(a' ,x) E [d(a,x) - 2,d(a,x) + 2J. 

As d is a convex metric, there is an x' E X such that d(a',x') = 

max{d(a,x) - ~,O}. Then d(x' ,x) ~ E and consequently x' E Bd(a' ,x') (A') n 

nO c Bt,(A') no. 
-1 -1 . 

To prove that e [<O>J is open, assume that (A,t) E e [<O>J. Then 



Bt(A) cO. As X is compact there is an £ > 0 such that B£(Bt(A» cO. 

Hence B£+t(A) c O. Therefore 

£ 
e[<B £(A» x [0'2 JJ c <0>. 

t+2 

This completes the proof of the lemma. 0 

3.1.8. THEOREM. Let X be a topological space. and let M £ AX. Then M is 

closed as subspace of 2X. If in addition X is a Peano continuum then 

there is a retraction r: 2X -+ M. 

PROOF. Choose A £ 2X such that A f M. Then there is an M £ M such that 

147 

A n M = ¢. Then <X\M> is an open neighborhood of A which misses M. For 

take B € <X\M>. Then B n M = ¢ and consequently B f M since M is a linked 

system. 

Assume that X is a Peano continuum. Let d: X x X -+ [0,(0) be a convex 

metric for X. Choose A E 2X. 

CLAIM 1. The set {£ ~ 0 I B (A) € 
£ 

Indeed, let 0 := inf{£ ~ 0 

M} has a minimum, denoted by t(A). 

Take M € M such that Bo(A) n M = ¢. Choose £ > 0 such that 

Then B£+o(A) n M = ¢ and as 0 inf{£ ~ 0 I B£(A) € M} it follows that 

there is a p £ {£ ~ 0 I B (A) € M} such that 0 < p < £ + o. Then 
£ 

implies that B (A) n M = ¢ and consequently B (A) f M. Contradiction. 
p p 

CLAIM 2. If 5~ An = A (in 2X !) then fi~ t(An ) = t(A). 

Choose £ > O. Then there is an nO € ~ such that dH(An,A) < £ for 

all n ~ nO. Fix arbitrary m ~ n. Now B£(A) ~ Am implies that 

consequently t(A) ~ t(Am) + £, since Bt(~) (~) £ M. 
On the other hand, A c B£ (Am) and there'fore 
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which shows that teAm) s teA) + E, since Bt(Al (A) € M. 

we conclude that~!m teAm) = teA). 

CLAIM 3. The mapping r: 2X -+ M defined by rCA) := Bt(A) (A) is a retrac­

tion. 

The continuity follows from claim 2 and lemma 3.1.7. The fact that 

r is a retraction is trivial. 0 

3.1.9. COROLLARY. Let X be a Peano continuum. Then each mls M € AX is an 

AR, and consequently is a Q-factor. 

X PROOF. Since 2 is an AR (cf. WOJDYSLAWSKI [130]) the result follows from 

theorem 3.1.8 and the observation that each AR is a Q-factor (cf. EDWARDS 

[45]) • 0 

3.1.10. If (X,d) is a compact metric space then there is a natural metric 

d for AX such that i: (X,d) ~ (AX,d) is an isometry. VERBEEK [119] has 

given the following expressions for d; 

(1) d(M,N) = sup min dH(S,T) 
s€M T€N 

(2) = min{E ~ 0 

(3) = min{E ~ 0 

(4) 

VM € M: B (M) € NandVN€ N: B (N) € M} 
E E 

'v'M € M: B (M) € N} 
E 

We need a simple generalization of this result. 

3.1.11. LEMMA. Let (X,d) be a compact metric space and let M be a pre-mls 

for M € AX. Then for each N € AX we have that d(~,N) = min{E ~ 0 I 
VM € M: B (M) € N}. 

E 

PROOF. Let 6 := inf{E ~ 0 I VM € M: BE(M) € N}. Assume that B6 (M) t N for 

some M € M. Take E > 0 and N € N such that 
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This is a contradiction, since 0+£ E {£ ~ 0 I VM E M: B (M) EN}. We con­
£ 

clude that the set {£ ~ 0 I VM E M: B (M) E N} has a minimum, denoted by o. 
£ 

Obviously 0 ~ d(M,N) (cf. 3.1.10 expression 3). Let us assume that 

o < d(M,N). We will derive a contradiction. It follows that Bo (M) EN for all 

M E M and that Bo(N) i M for some N E N. As M is a pre-mls for M there is 

an M E M such that 

Since Bo(M) E N there is a point x E N n Bo(M). Choose y E M such that 

d(x,y) ~ o. Then y E Bo(N) n M, which is a contradiction. 0 

3.1.12. The distance between two maps f and g: X -+ Y, where (y,d) is 

compact metric is defined by d(f,g) = su~ d(f(x),g(x». The identity map-
XE 

ping on X is denoted by idx . A mapping f: (X,d) -+ (Y,p) is called a 

contraction provided that p(f(x),f(y» ~ d(x,y) for all x,y E X. 

3.1.13. THEOREM. Let (X,d) be a compact metric space and let M c 2X be a 

linked system. Then there is a retraction r: AX -+ n{M+ I M E M} satis­

fying: 

(i) r is a contraction; 

(ii) d(N,r(N» d(N,n{M+ I M EM}) for all N E AX; 

(iii) d(r,idAX ) ~ ~~M dH(X,M). 

PROOF. Define r as in theorem 1.5.2. It follows from the definition of r 

that for all N E AX the collection 

P (N) = {N E N INn M # ¢ (VM E M)} u M 

is a pre-mls for r(N). 

CLAIM 1. r is a contraction. 

Indeed, choose L,P E AX and let £ := d(L,P). Choose A E peL). If 

A E M then clearly B (A) E reP). On the other hand if A E L then B (A) E P 
£ £ 

(cf. 3.1.10 expression 3) and consequently B£(A) E pcP) c reP) since 

B£(A) intersects all members from M. From lemma 3.1.11 it now follows that 

d(r(L),r(P» ~ £ d(L,P). 

CLAIM 2. d(N,r(N» = d(N,n{M+ I ME M}) for all N E AX. 
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Choose N € AX and take L € n{M + I M € M} such that 

d(N,L) < d(N,r(N». 

Let £ := d(N,L). It then follows that B (N) € L for all N € N. But 
£ 

L € n{M+ I M € M} implies that each element L € L intersects all members 

from M. Consequently B (N) € peN) c r(N) for all N € N. From lemma 3.1.11 
£ 

it now follows that 

d(N,r(N» $ £ 

which is a contradiction. 

Choose N € AX and consider peN). By lemma 3.1.11 we have 

d(N,r(N» = min{£ ~ 0 I VA € peN): B (A) € N}. 
£ 

Let 0 := ~~ij dH(X,M). Notice that 0 < +00. Choose A € peN). If A € M then 

Bo(A) = X € N, since N is a maximal linked system. On the other hand if 

AiM then A € N and then also Bo(A) € N. It now follows that 

d(N,r(N» $ 0 = sUp'd (X,M). 
M€M H 

o 

3.1.14. If Y is a closed subset of the normal space X then there is a 

natural embedding jyx of AY in AX (cf. VERBEEK [119J) defined by 

j (M):= M(= {G c X I G € 2X and G n Y € M}) 
YX -

(that jyx is an embedding also follows from theorem 2.3.4). We will always 

identify AY and jyx[AYJ. 

3.1.15. LEMMA. Let Y be a closed subset of the normal space X. Then M € AX 

is an element of AY if and only if {M n Y I M € M} is linked. 

PROOF. Choose M € AX. If M € AY then {M n Y M € M} is a maximal linked 

system in Y and if {M n Y I M € M} is linked, then it is easy to see that 

it is also maximal linked (in Y) and that jYX({M n Y I M € M}) = M. 0 

3.1.16. A closed subset B of a metric space (X,d) is called a Z-set (cf. 

ANDERSON [4J) provided that for each £ > 0 there is a continuous f£: X+X\B 

such that d(f£,idx) < £. Z-sets are very important in infinite dimensional 
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topology and for later use we will give some classes of Z-sets in AX. The 

following result is an application of theorem 3.1.13. 

3.1.17. THEOREM. Let (X,d) be a metric continuum and let A € 2X. Then 

(i) A+ is a Z-set in AX iff A has a void interior in X; 

(ii) if A # X then AA is a Z-set in AX. 

PROOF. (i) If A has not a void interior in X then A+ also has a nonvoid 

interior in AX. Consequently A+ is not a Z-set. 

Assume that A has a void interior in X. Choose E > 0 and choose a 

finite subset F c X, disjoint from A, such that dH(F,X) < E. Let 

f : AX -+ F+ be the retraction of theorem 3.1.13. Then d(fE,idAx ) < E and 
E + + + 

as F n A ~, we have that fE[AxJ c AX\A . 

(ii) Choose E > 0 and choose two disjoint finite sets GO and G1 in X such 

that dH(Gi,X) < E (i € {O,l}). Let p € X\A and define 

(i € {O,!}). 

Let f E: AX -+ F;nF; be the retraction of theorem 3.1.13. Then 

and moreover 

(i € {O,!}) 

N i AY. 0 

+ + 
fE[AxJ n AA =~. For take N € fE[AxJ = FOnF1 • Then Fi € N 

and (FOnY) n (F1nY) = ~. Consequently, by lemma 3.1.5, 

3.1.18. Examples of Z-sets in the Hilbert cube Q are compact subsets of 

(_1,1)00 and also closed subsets of Q which project onto a point in infinit­

ely many coordinates (cf. ANDERSON [4J). In fact we have the following 

characterization: a closed subset B of Q is a Z-set iff there is an auto­

homeomorphism of Q which maps B onto a set which projects onto a point in 

infinitely many coordinates (cf. ANDERSON [4J). Also, a closed countable 

union of Z-sets is again a Z-set. Combining these two results it follows 

that in any case each convergent sequence in Q is a Z-set. This observa­

tion will be used in the proof of the following theorem. 

We will also use ANDERSON's [4J homeomorphism extension theorem: any 

homeomorphism between two Z-sets in Q can be extended to an autohomeo­

morphism of Q. In particular, the Hilbert cube Q is homogeneous. 
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3.1.19. THEOREM. For every separable metric not totally disconnected 

topological space X, there exists a normal closed T 1-subbase S such that 

A(X,S) is homeomorphic to the Hilbert cube Q. 

PROOF. Assume that X is embedded in Q and let C be a nontrivial component 

of X. Choose a convergent sequence B in C. Furthermore, define a sequence 

{Yn}:=O in Q by 

for i 

It 

(Yn) . 
~ 

1,2, ••. ,. 

is clear 

lim 
n-+<» 

that 

I if i l- n 

1 -1 if i n, 

Moreover define z € Q by zi = 0 (i = 1,2, ••• ). Then 

E = {y I n € :IN} U {z} 
n 

is a convergent sequence and therefore is homeomorphic to B. Since B and 
I 

E are both Z-sets in Q (cf. remark 3.1.18) there is an autohomeomorphism 

of Q which maps B onto E (cf. remark 3.1.18). This procedure shows that we 

may assume that X is embedded in Q in such a way that E c C. 

Let T= {A C Q I 3x € [-l,lJ: A=IT- 1[-1,xJ v A=IT-1[x,1] (n€:IN)} be 
n n, 

the canonical binary normal subbase for Q. We claim that for all TO,T1 € T 
with TO n T1 I- ~ also TO n T1 n X I- ~. To show this, choose TO,T1 € T with 

TO n T1 I- ¢. We need only consider the following 4 cases: 

-1 
CASE 1. TO = ITn [-l,x]; T1 

o 

-1 
n [y,lJ 

nO 
(x ~ y; nO € :IN) • 

Since z € TO and yo € T1 and C is connected, it follows that 

~ I- TO n T1 n C C TO n T1 n X. 

-1 -1 
CASE 2. TO = nn [-1,x]; T1 = IT [y,l] 

o n 1 

CASE 3. T = n-1[_1 x], T1 o nO ' , 

Then z € TO n T1 n X. 

-1 n [-l,y]. 
n 1 
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-1 -1 
CASE 4. TO = IT [x,lJ; T1 = IT [y,lJ. 
---- nO n1 

Then YO E TO n T1 n X. 

Theorem 2.2.5 now implies that A(x,Tnx) is homeomorphic to Q. That 

T n X is a normal T1-subbase is straightforward and is left to the reader. 0 

3.1.20. Since the proof of theorem 3.1.19 uses the homeomorphism extension 

theorem the subbases derived from. it are difficult to describe. For simple 

spaces however, such as the closed unit interval I or the n-spheres Sn 

there are subbases of easy description for which the corresponding super­

extensions are homeomorphic to the Hilbert cube; cf. VAN MILL & SCHRIJVER 

[80J. 

3.1.21. The final results in this section are devoted to mapping theorems. 

First let us give some definitions. A continuous surjection f: (X,d) -+ (X,d) 

is called a near-homeomorphism (cf. BROWN [25J) if for each £ > 0 there is 

an autohomeomorphism $: X + X such that d($,f) < £. Near-homeomorphisms 

are very useful in infinite dimensional topology. Let (X,d) and (Y,p) be 

metric spaces. A collection of functions F c C(X,Y) is called equi-uniform­

ly continuous provided that for each £ > 0 there is a 0 > 0 such that for 

all x,y € X with d(x,y) < 0 we have that p(f(x),f(y)) < £ for all f € F. 
We need a simple lemma. 

3.1.22. LEMMA. Let Y be a normal space and let f: X + Y be a continuous 

closed surjection. Then there is a continuous surjection A(f): AX -+ AY, 

defined by A(f) (M) := {f[MJ I M EM}, which is an extension of f. 

PROOF. A(f) is just the mapping described in theorem 2.3.4. It is clear 

that, by the fact that f is closed, {f[MJ I M € M} is a pre-mls for f(M) 
(f defined as in the proof of theorem 2.3.4) for all M € AX. Hence we need 

only show that A(f) (M) is an mls. Indeed, assume that for some M € AX we 

have that A(f) (M) were not an mls. Choose A € 2Y such that A(f) (M) U {A} 

is linked but Ai A(f) (M). Then f- 1[AJ i M, since f[f- 1[AJJ = A, and 

consequently there is an M € M such that f- 1[AJ n M = ¢. But this is a 

contradiction since f[MJ E A(f) (M) and A n f[MJ ¢. o 

We now have the following theorem. 

3.1.23. THEOREM. Let X and Y be compact metric spaces and let F c C(X,Y) be 
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a collection of surjections of X onto Y. Then 

(i) if f E F is a near-homeomorphism, then so is A(f); 

(ii) if F is equi-uniformly continuous, then so is {A(f) I f E F}. 

PROOF. (i) Identify X and Y and let d be a metric for X. Choose E > 0 and 

choose a homeomorphism $: X + X such that d($,f) ~ E. From lemma 3.1.22 

and theorem 2.3.4 it follows that A($): AX -+ AX is a homeomorphism too. 

We will show that d(A($),A(f» ~E. 

For this, take M E AX and let 

o := d(A ($) (M) ,A (f) (14») 

min{E ;:: 0 I '1M E A($)(M): B (M) E A(f)(M)}. 
E 

Assume that there is an MEA ($) (M) ,such that B (M) i A (f) (M). Let 
E 

M = $[A], with A E M (lemma 3.1.22). Choose N E A (f)(M) such that N n B (M) 
E 

=~. Assume that N = feB], with B E M (lemma 3.1.22). As M is a linked 

system, there is an x € A n B. It now follows that 

and 

f(x) € N 

$(x) € M c B (M) 
E 

and BE(M) n N =~. But then d($(x),f(x» > E, which is a contradiction. 

(ii) This can be proved in the same way. 0 

3.1.24. REMARK. In theorem 3.1.23 (i) we showed that each near-homeo­

morphism f: X + X extends to a near-homeomorphism A(f): AX -+ AX. The 

fact that f is a near-homeomorphism is not a necessary condition for A(f) 

to be a near-homeomorphism. From results derived in 3.2 and 3.4 it follows 

that each continuous surjection f: I + I extends to a near-homeomorphism 

A(f): AI -+ AI. 

3.2. Cell-like mappings and inverse limits 

This section contains an approximation theorem for inverse limits 

of superextensions. We use corollary 1.5.20 to show that each continuous 

surjection f from a metrizable continuum X onto a metrizable continuum Y 

extends to a cell-like mapping A(f): AX -+ AY. Then, applying results of 
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CHAPMAN [28J,[29J and BROWN [25J we get an approximation theorem for in­

verse limits of superextensions. 

We first give an important consequence of corollary 1.5.21. 

3.2.1. THEOREM. Let X be a metrizable continuum and let S be a normal T 1-

subbase for X. Then A(X,S) is an AR. In particular, AX is an AR if and 

only iff X is a metrizable continuum. 

PROOF. As AX is metrizable, so is· A(X,S), being a Hausdorff quotient of a 

compact metric space (cf. VERBEEK [119J; also theorem 2.3.4). Moreover 

A(X,S) is connected (cf. VERBEEK [119J; also theorem 2.5.1). The result 

now follows from corollary 1.5.21 since the subbase {s+ I S E S} for A(X,S) 

is both binary and. normal. 

The second part of the present theorem follows from theorem 2.5.1. 0 

3.2.2. The above theorem answers a question of VERBEEK [119J affirmatively. 

The second part of the above theorem was proved in [79J. There we asked 

whether every AR admits a binary normal subbase. This question was answer­

ed negatively by SZYMANSKI [117J who showed that BORSUK's two dimensional 

AR having the singularity of MAZURKIEWICZ (cf. BORSUK [20J) is a counter­

example. 

If X and Yare locally compact, then a map f: X + Y is called proper 

if the inverses of compact subsets of Yare compact in X. A proper map f 

is called cell-like or cellular (CE), if f is onto and point inverses have 

trivial shape (for the notion "shape of a compactum" see BORSUK [21J,[22J) • 

We now can prove the following result, which is fundamental and im­

portant in the theory of superextensions. 

3.2.3. THEOREM. Let S be a normal T1-subbase for the metrizable continuum 

X, let T be a normal T1-subbase for Y and let f: X + Y be a continuous sur­

jection. If {f-I[TJ I TEn c S then the extension f: A(X,S) -+- A(y,T) of 

f described in theorem 2.3.4 has the property that each point inverse is 

an AR. In particular, f is cellular. 

PROOF. Let us use the notation of the proof of theorem 2.3.4. Take 

MEA(Y,T). 



156 

By theorem 1.5.3 we only need to show that i- 1[{M}] is S+-convex. To 

show this, take LO,L1 E i-1[{M}] and choose 

P E I S+(Lo,L1). 

Assume that P i i-1[{M}]. We will derive a contradiction. As f(P) ~ f(L O) 

there are TO,T1 E T such that 

and 

and 

-1 -1 -1 -1 
Take VO'V1 E T such that f [TO] n f [V1] = ~ = f [Va] n f [T1] and 

-1 -1 
f [Va] U f [V1] X. This is possible since T is normal and f is sur-

jective. Since L1 is a maximal linked system, either f- 1[VO] E L1 or 
-1 -1 

f [V1] E L1• If f [Va] E L1 then 

Vo E P~l c f(L 1) = M, 

and since Vo n T1 ~ this is a contradiction. On the other hand, if 
-1 -1 

f [V1] E Ll then f [V1] is an element both of LO and L1. Consequently 

-1 + 
I S+(LO,L1) c f [V 1], 

-1 and since P E I S+(LO,L1) it follows that f [V1J E P. However, this is 
-1 -1 

also a contradiction since f [TOJ n f [V1] = ~. 
By corollary 1.5.12 (a) it now follows that i-1[{M}J is a retract 

of A(X,S) and as A(X,S) is an AR (theorem 3.2.1) the fiber f- 1[{M}] is 

an AR too. 

This completes the proof of the theorem. 0 

3.2.4. COROLLARY. Let X and Y be metrizable continua and let f: X + Y be 

a continuous surjection. Then A(f): AX -+ AY (cf. lemma 3.1.22) is cellular. 

3.2.5. This corollary explicates a fundamental difference between 2X and 

AX. For all compact metric spaces X and Y and for each continuous function 

f: X + Y there is natural extension 2f: 2X -+ 2Y of f defined by 

The mappings 2f are not cellular in general. For example, let X [O,lJ 



and let Y be the space obtained from X by identifying 0 and 1. Let 

f: X + Y be the quotient mapping. Then 

which is not connected. 

3.2.6. A Q-manifold is a separable metric space modelled on Q, i.e. 
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a space which admits an open covering by sets homeomorphic to open subsets 

of the Hilbert cube Q. CHAPMAN [30J has shown that the class of Q-manifolds 

coincides with the class of spaces of the form KX Q, where K is a locally 

finite polyhedron. Moreover CHAPMAN showed that each cell-like mapping 

between Q-manifolds is a near-homeomorphism. This is a consequence of his 

papers [28J and [29J. This powerful result will be very important for us. 

If (Xi,fi ) is an inverse sequence, then the inverse limit ~(Xi,fi) 

is the subspace {x e: n.X. I f. (x. 1) = x. (i e: N)} of n.X .• BROWN [25J 
~ ~ ~ ~+ ~ ~ ~ 

has shown that the inverse limit lim(X.,f.) of compact metric spaces X.' 
+--- ~ ~ • 

all homeomorphic to a given space X, such that each bonding map fi is a 

near-homeomorphism is homeomorphic to X. 

Combining the results of CHAPMAN and BROWN it follows that the inverse 

limit of a sequence of Hilbert cubes with cellular bonding maps is again a 

Hilbert cube. 

This observation yields the following: 

3.2.7. THEOREM. Let X be homeomorphic to ~(Xi,fi) where the bonding maps 

fi are surjective. IfAX i F:::I Q (i e: IN) then AX F:::I Q. 

PROOF. Identify X and :j.im(Xi,fi ) and let 1Ii : X + Xi (i e: IN) be the pro­

jections. Since 1Ii is a continuous surjection, for each i e: lN, there is 

an extension 

A (11 . ): AX -4 AX .. 
~ ~ 

It is easily seen that A(fi )oA(1I i +1) 

and consequently the mapping 

e: AX -4 lim(AX.,A(f.») 
+--- ~ ~ 

defined by e(M). = A(1I.) (M) is a continuous surjection. We claim that e 
~ ~ 

is one to one. For this, choose M,N e: AX such that M ~ N. Also, choose 
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disjoint M E M and N E N. By the compactness of the spaces 

(cf. corollary 2.5.4) there is an ia E N such that 1f, [M] 
~a 

Then, clearly 

A (1f, ) (M) t- A (1f, ) (N) , 
~a ~a 

Xi (i E IN) 

n 1f, [N] = ¢. 
~a 

since 1f iO[M] E A (1fia) (M) and 1fia[N] E A (1fia) (N). It follows that e(M)ia t­
e(N)ia and consequently e is one to one. 

We conclude that AX is homeomorphic to ~(AXi'A(fi»' Since AXi ~ Q 

(i E :N) the spaces Xi are metrizable continua (cf. corollary 2.5.4); 

corollary 3.2.4 implies that the mappings A(fi ) are cellular. It now fol­

lows that ~(AXi,A(fi» ~ Q (cf. 3.2.6). Therefore AX ~ Q. 0 

3.2.8. In section 3.4 we will show that AI is homeomorphic to the Hilbert 

cube Q. Therefore, theorem 3.2.7 implies that a space such as 

y= {(a,y).1 -l~y~1} u {(x,sin!) 
x 

a<x~1} 

has the property that its superextension is homeomorphic to the Hilbert 

cube. This is of interest since 2Y is not homeomorphic to the Hilbert cube, 

not being locally connected. 

3.3. Some A(I,S) is a Hilbert cube 

In this section we construct an easy to describe subbase S for 

I = [a,l] with the property that A(I,S) is homeomorphic to the Hilbert 

cube Q. The space A(I,S) will be the first step in an inverse limit repres­

entation of AI, the superextension of the closed unit interval. 

3.3.1. We start with a general method in order to construct superextensions 

of I as subspaces of I2. For this, let T denote the canonical binary subbase 

for I2, i.e. 

T = {A c I2 I A = 1f~l[a,x] vA = 1f~l[x,l] (iE {a,1}); XE I}. 
~ ~ 

Assume that I is imbedded in I2, preserving arc-length, as indicated in 

the following figure: 
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o o 

Figure 9. 

We are interested in A(I,TO)' where TO is the restriction of T to I, i.e. 

TO = {T n I I T € n. 

(Here I denotes the embedded copy of I in I2.) 

It is easy to se8 that TO is a supernormal T1-subbase (cf. 2.2.1). We 

assert that A(I,TO) is homeomorphic to the space X indicated in figure 10 

X 

o 

Figure 10. 

To prove this, define an interval structure (cf. definition 1.3.2) Ix on 

X by 

IX(X'Y) := n{T € T I x,y € T} n X. 

The verification that IX indeed is an interval structure is routine and 

follows immediately from figure 10, since for all x,y,z € X we have 
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IT(X,y) n IT(X,Z) n IT(y,z) C X. 

Consequently, each element of T n X = {T n X I T € T} is Ix-convex. We 

conclude that T n X is a binary subbase for X (cf. theorem 1.3.3). It is 

easily seen that for all AO,A1 € T n X with AO n Al # ~ also AO n Al n I 

~ ~, due to the special choice of x. Theorem 2.2.5 now implies that 

>"(I,Tnr) R:I X. 

If we consider the proof of theorem 2.2.5 we see that the homeo­

morphism between >"(I,TnI) and X is very "direct". For instance the point p 

in figure 11 represents the T n I mls M for which 

{[O,e],[e,I],[a,b] U [c,d],[O,a] U [b,c] U [d,I]} 

is a pre-mls. 

! 

o 
o 

Figure 11. 

3.3.2. We will now construct the announced subbase S for I. Define 

E := {_2.3k I k € {0,1,2, ... }}. 

For each n € E let I be embedded in 12, preserving arc-length, as indicated 

in the following figure. 
+-- 1fl 

1 

~ -n-l 
-n 

4 
-n 

3 
-n 

2 
-n Figure 12. 

-n 
o 

o 



All angles are !~ except the one at (4,0) which is !~. Define A by 
n 

A := {T n I I TEn. 
n 
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Then, using the same technique as in 3.3.1, it follows that A(I,An ) is the 

convex-hull of the embedded copy of I in 12. 

Notice that A (n E E) is a supernormal subbase for I and hence that 
n 

A(I,U E A ) can be embedded in n E A(I,A ) in a very canonical way; cf. nE n nE n 
theorem 2.3.13 and lemma 2.3.14. We will make two identifications. First 

we consider A(I,UnEE A ) to be a subspace of n E A(I,A ). Second, we 
n 2 nE n 

identify A(I,A ) and the subspace of I indicated in figure 12 (n E E). 
n 

3.3.3. PROPOSITION. A(I,UiEE Ai) is a (linearly) convex subspace of 

niEE A(I,Ai )· 

PROOF. Suppose that A(I,UiEE Ai) is not a convex subspace of niEE A(I,Ai ). 

Then there exist x,y E A(I,U. E A.) and a,i3 E lR with a+ i3 = 1, a '" 0, 
. ].E ]. 

i3 '" 0 such that 

ax + i3y i A(I,U. EA.). 
].E ]. 

Since for all i E E the point aXi + i3Yi belongs to A(I,Ai ) it follows that 

the system UiEE(axi+i3Yi) is not linked (cf. lemma 2.3.14). Notice that we 

identify axi+i3Yi and the mls which is represented by axi +i3Yi (i E E). 

Choose two indices iO and il such that 

is not linked. Hence there exists an ME (axi +i3Yi ) and an N E (ax].. +j3Yi ) o 0 1 1 
such that M n N = ¢. 

If in the copy of 12 corresponding to iO we draw a horizontal line 

through Xi and determine its intersection PO with the embedded copy of I, 

and we do ~e same in the copy of 12 corresponding to i 1 , thus obtaining 

Pl' then Po and Pl are derived from the same point of Ii for if not, then 

it is easy to see that X· u ].0 

horizontal lines through Yi o 
the embedded copies of I and 

x· is not linked. In the same way, straight ].1 
and Yi 1 also must determine the same point on 

consequently the same is true for horizontal 

lines through aXi + i3Yi and ax].. + i3y].. because of the specially chosen o 0 1 1 
embeddings of I. Hence it follows that the situation drawn in the following 

figure is the only possibility (except for interchanging iO and i 1). 
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ax. +l3y. 
10 0 

o 

Figure 13. 

o 

A(I,Si ) 
1 

N 

REMARKS. 

(i) M meets any set of the form 
-1 1 

110 (axi1+I3Yi1) 110 [2'x] n I with x <': 

the point 0 of the embedo~d copy of I. 
-1 

x ~ 1IO(axiO+I3YiO) (ii) N meets any set of the form 110 [x,1] n I with 

the point ~ of the embedded copy of I. 

(iii) It is possible that an element of aXiO + I3YiO containing M, and 

element ofaxi + I3Yi ' containing N, have a void intersection. 
1 1 

In that case of course the sets M and N also have a void intersection. 

in 

in 

an 

(iv) In figure 13 we have drawn the points xiO' YiO' xiI and Yil in such 

a way that 110 xiO < 110 YiO and 110 xiI < 110 Yi 1 " This is done because 

in the cases 110 XiO = 110 YiO or 110 XiI = 110 Yi 1 or (110 xiO < 110 YiO 

and 110 xiI> 110 Yil) or (11 0 xiO > 110 YiO and 110 xiI < 110 Yi 1) it is 

easy to see that M and N intersect, as the reader can easily verify. 

Without loss of generality we may assume that 110 Yi 
-1 -1 1 

- 110 xiO· It then follows that 110 [110 Xil,l] n I c 110 (110 

N c I\M and since 1IO(axil+I3Yil) - 110 xi1 ~ 1IO(axiO+I3YiO) 

this is a contradiction since xiO U xi1 is linked. 0 

3.3.4. PROPOSITION. A(I,Ui€E Ai) is infinite dimensional. 

- 110 xiI ~ 110 YiO 
XiO,I] n I since 

- 110 XiO· However, 

PROOF. We will show that A{I.U, E A.~ contains a copy of the Hilbert cube . 
.h€ .. 

For each n € E let I be defined by 
n 
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I := [~ + 1 ,~ + 2 
n 312 • -n 312 • 

Notice that for each i € E the point (~(x»i is an element of A(I,Ai ) for 

all x € ni€E Ii. Furthermore it is obvious that ~ is an embedding. 

It suffices to show that the image of ni€E Ii is contained in 

A(I,Ui€E Ai) and for this it suffices to show that 

U (~(x». 
i€E 1 

is linked for all x € ni€E Ii (cf. lemma 2.3.14). Assume to the contrary 

that for some x € ni€E Ii the system Ui€E (~(x»i were not linked. Then 

there exist indices nO and n1 such that 

(~(x» u (~(x»n 
nO 1 

is not linked. Choose M € (~(x»nO and N € (~(x»nl with a void inter­

section. Then there are two possibilities drawn in figure 14 and figure 15. 

Without loss of generality we may assume that n1 < nO. 

o 1 o 

Figure 14. 

A(I,Sn ) 
1 

-1 1 -1 1 
This shows that ~O [2'~O(~(x»nOJ n I c ~O [2'~O(~(X»nl) n I. Since 
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n 1 < nO it follows that 

and therefore 

= 1 = 1) Y2(TIO(~(X))nl - 2) < Y2(TIO(~(x))nO - 2 

which shows that the component containing 0 of TI~l[~'TIo(~(X))noJ n I 
-1[1 J be contained in the component containing 0 of TIO 2,TIO(~(x))nl n I. 

is a contradiction. 

1.------------------------. 
[BJ 

o 

A(I,Sn ) 
o 

Figure 15. 

o 

A (I,Sn ) 
1 

cannot 

This 

Now, TI~l[TIo(~(X))no,lJ n I c TI~l(TIo(~(X))no,lJ n I. Since -nO < -n1 it 

follows that the component containing ~ of TI~l[TIo(~(X))no,lJ n I cannot 

be contained in the component containing ~ of TI~l(TIO(~(X))nl'lJ n I. This 

is a contradiction. 0 

Proposition 3.3.3 and proposition 3.3.4 now give the desired result. 

3.3.5. THEOREM. A(I,U. A.) is homeomorphic to the Hilbert cube. 
u:E 1. 

PROOF. According to a theorem of KELLER [68J each infinite dimensional 

(linearly) convex compact subspace of the separable Hilbert space is 

homeomorphic to the Hilbert cube. 0 



3.4. The superextension of the closed unit interval is 

homeomorphic to the Hilbert cube 
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In this section we show that the superextension of the closed unit 

interval AI is homeomorphic to the Hilbert cube. We represent AI as the 

inverse limit of a sequence of Hilbert cubes with cellular bonding maps. 

It then follows that AI itself is a Hilbert cube. 

3.4.1. For the closed unit interval I, define 

S := {G C I I G is the union of finitely many closed 

intervals with rational endpoints}. 

It is clear that S separates the closed subsets of I and hence it follows 

that AI and A(I,S) are homeomorphic (cf. theorem 2.4.2). Define 

Clearly F is countable; we enumerate F using a bijection of F onto ~\{1}. 

If (SO,S1) E F, then £ = d(SO,S1) > 0 and also 0 = !£1:2 > O. Consider the 

following embedding, depending on (SO,S1)' of I preserving arc-length in 12. 

o 

1 

0 1 

a b 

Figure 16. 

All angles are !11 except the one at <! ,0) which is !11. Also b - a = 0 and 
-1 -1 

So C 110 [O,a] n I and Sl C 110 [b,l] n I. Since So and Sl are finite unions 
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of closed intervals, such an embedding is always possible. 

As in section 3.3 define 

T:= {A C 12 I A = 1I"~1[O,X]VA = 1I"~1[x,1] (i € {O,O), x € I}. 
~ ~ 

Then A(I,TnI) is the space designed in figure 17 (cf. 3.3.1). 

. 11" 

..- 1 

A(I,TnI) 

o 

Figure 17. 

If (SO,S1) is the nth element of F, let 

A(I,S ) 
n 

be the superextension of I as indicated in figure 17. In addition put 

where the A. 's are defined as in section 3.3 (cf. 3.3.2). 
~ 

The hardest part of our program is to show that for each n E IN the 
n 

superextension A(I,Ui =1 Si) is a Q-manifold, the proof of which will be 

postponed till the end of this section. Notice that for each n E IN the 

subbase U~=1 Si is supernormal (cf. 2.2.1 (iv» and hence that we can apply 

the results derived in 2.3.10- 2.3.15. 
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n 
3.4.2. PROPOSITION. For each n € IN the superextension A(I,Ui =1 Si) is a 

compact Q-manifold. 

Now an interesting result of CHAPMAN [27] is applicable to show that 
n 

A(I,Ui =1 Si) is even a Hilbert cube. 

n 3.4.3. LEMMA. For each n € IN the superextension A(I,Ui =1 Si) is a Hilbert 

cube. 

n 
PROOF. The normality of Ui =1 Si (cf. theorem 2.3.13) implies that 

A(I,U~=1 Si) is an AR (cf. theorem 3.2.1). In particular A(I,U~=1 Si) is 

contractible. Therefore A(I,U~=1 Si) is a contractible compact Q-manifold 

by proposition 3.4.2. However, CHAPMAN [27] has shown that a compact 

contractible Q-manifold is a Hilbert cube, which proofs the lemma. 0 

3.4.4. Consider the following inverse limit system 

where the bonding maps gn are defined by 

n 
g (M) := M nUS 

n i=1 i 

(n € IN). These mappings are well-defined, cf. corollary 2.3.12. 

3.4.5. LEMMA. AI is homeomorphic to !im(A(I,U~=1 Si),gi). 

n PROOF. For each n € IN define a mapping ~n: AI -+ A(I,Ui =1 Si) by 

n 
~ (M) := M n U SJ.'. 

n ~1 

This mapping is well-defined, cf. corollary 2.3.12. We claim that for each 

n , 2 the dia,ram ~'(I'U~_1 S,' 

"~ j'n 
n-l~ n-1 

~A(I,Ui=1 Si) 

commutes. 

Indeed, take M € AI. Then 
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g (I; (M») 
n n 

Consequently, the mapping e: AI -+ tim(A(I,U~ 1 S,),g ) defined by 
~= ~ n 

e(M)n := I;n(M) (n € IN) is a continuous closed surjection. It remains to 

show that e is one to one. Choose distinct M,N € AI and choose M € M and 

N € N such that M n N = ¢. Since S separates the closed subsets of I there 

are SO'S1 € S with MesO and N c S1 and So n S1 = ¢. Now, (SO,S1) € F, 
say the nth element, and therefore So and S1 are separated by elements of 

S It follows that I;n(M) t- I;n(N) , since S 
n S, • This now c Ui =1 proves n n ~ 

that e is one to one; consequently e is a homeomorphism. 0 

3.4.6. This lemma completes the proof of the fact AI ~ Q, since the 

theorem 3.2.3 implies that the bonding maps in the inverse sequence are 

cellular. They are even cellular in a very strong way: in [79] we showed 

that each point inverse of gn (n € :IN) either is a point or is homeo­

morphic to an interval. We will not give the argument here, since there 

is no use fot it. But it is a nice fact. 

We did not check whether the bonding maps are strictly-cellular, i.e. 

have the additional property that the point inverses are Z-sets. Probably 

this is the case. 

3.4.7. THEOREM. The superextension of the closed unit interval is homeo­

morphic to the Hilbert cube. 

PROOF. As indicated above, the bonding maps gn (n € :IN) are cellular. 

Hence AI ~ ~(A(I,U~=1 Si),gn) ~ Q (cf. lemma 3.4.3, lemma 3.4.5 and 

3.2.6). 0 

3.4.8. PROOF OF PROPOSITION 3.4.2. Choose 

Let {Pi I i € E} U {Pi I i € {2, ••• ,n}} denote the projection maps of the 
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latter product. For each i E {2,3, ..• ,n} the projection of A(I,Si) onto 

the first coordinate axis of 12 is an interval, say [c?,c~J. Assume that 
~ ~ 0 1 

for each i E {2,3, ••. ,q} where q ~ n, the projection ~Ox. E (c.,c.) and o 1 ~ ~ ~ 
that for i E {q+1,q+2, •.• ,n} we have ~Oxi i (ci,ci ). Define 

Let A := {2,3, .•. ,n}. If i E A and M E xi define 

* M := cl I intI(M) 

(here I refers to the copy of [O,lJ embedded in A(I,S.) c 12). Also, for 
~ 

i E A, put 

F {M* I -1[ J -1[ J (xi) := (M= ~O O'"OXj n I or M= ~O ~OXj,l n I) 

* M 

(j E A\{i}) and 

Notice that F(x.) is finite. If i E {2,3, ••. ,q} then choose a subinterval 
o ~1 

(ai,bi ) of (ci,ci ) (an interval is non-degenerate in our terminology) such 

that 

(i) 

(H) 

(Hi) 

(iv) 

(v) 

Ifi 

(i) 

(H) 

(Hi) 

(iv) 

~OX~ € (a. ,b.); 
• 0 ~ ~ 1 

a. - c. > !E and c. - b. > lE; 
~1 ~ ~ ~ 

~O [ai,biJ n A(I,Si) consists of two closed convex subspaces 
o . 1 0_ J 1 
D~1and Di such that ~ODi - [ai'"Oxi and "ODi = ["Oxi,biJ; 

"0 [ai,biJ n UF(xi ) = ¢; 

for each subinterval [e 1 ,e2J of [ai,"Oxi ) and 

[dl,~J of ("Oxi,biJ we have that "01[e 1,e2J 

both have no isolated points. 

E A\{2,3, •.. ,q} then choose a subinterval 
-1 

~O [ai,biJ n A(I,Si) is 

x. is an interior point 
:!:1 

"0 [ai,biJ n UF(xi ) = ¢; 

has no isolated points; 

for each subinterval 
-1 n I and "0 [d1 ,d2J n I 

(one should convince oneself that in all cases suitable ai,bi do indeed 

exist:). 
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We will show that the closed neighborhood 

of x is a Q-manifold, which will establish the proof of proposition 3.4.2 

(there is an open U in A(I,U~=1 Si) such that x ~ U c B(x) and as B(x) is 

a compact Q-manifold, there is also an open 0 in A(I,U~=1 Si) such that 

x ~ 0 cUe B(x) and 0 is homeomorphic to an open subset of Q) . 

Let us first anatomize B(x). Consider F = {0,U{2,3, •.. ,q} and for 

each a = (a i ) i ~ F define 

~ 1 a. n -1 -1 - l. X(a) := i=2 Pi [Di ] n 
i=Q+1 Pi [1T O [ai,bi ] n 

It then is clear that 

B(x). 

n 
CLAIM 1. For each a ~ F the set X(a) is closed and convex in A(I,Ui =1 Si). 

Indeed, assume to the contrary that for some a ~ F the set x(a) were 

not convex. Then there exist y,z ~ X(a) and a,S ~ R with a > 0, S > 0 and 

a + S = 1 such that ay + Sz r/. X (a). We claim that 

n 
is not linked, for else it would follow that ay+ Sz ~ A (I,Ui =1 Si) (cf. 

lemma 2.3.14), and as (ay+Sz)i = aYi + SZi for each i, it is easily seen 

that even ay+ Sz E x(a). Therefore there exist two indices iO,jO such that 

(ay+Sz). u (ay+Sz). 
l.0 J O 

is not linked and consequently there exists an M ~ (ay+Sz)iO and an 

N E (ay+sz)jo such that M nN ~. Now, if iO and jo are both elements 

of E u {q+1,q+2, .•• ,n} then, using the same technique as in proposition 

3.3.3, it follows that M and N must intersect, for we have chosen the 
-1 

intervals [ai,bi ] (i E {q+1,q+2, ••. ,n}) is such a way that 1TO [e 1,e2] n I 

has no isolated points for every subinterval [e 1,e2] of [ai,bi ]. 
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Therefore, let us assume that iO € {2,3, ••• ,q}. Since straight 

horizontal lines through (ay+Bz)iO and (ay+Bz)jo must intersect the em­

bedded copies of I in the same point (cf. the proof of proposition 3.3.3), 

the situation sketched in figure 18 is the only possibility (except for 

an interchange of the indices iO and jo' which induces a similar situation). 

• y. • 
JO 

I L..._._._._._ ._. ._._._._._.-._-
M N 

Figure 18. 

REMARKS. 

(i) It is possible that an element of (ay+Bz)iO,containing M, and an 

element of (ay+Bz)jo' containing N, have a void intersection. 

In that case the sets M and N of course also have a void intersection. 

(ii) In figure 18 we have drawn the points YiO' ziO' xiO' Yjo' Zjo and 

Xjo in such a way that uOYiO < uOZiO < uoxiO and uOYjO < UOZjO < 

< UOXjO' This is not the only possible configuration. More generally, 

we may assume that either (UOYiO < uOziO S uOxiO and uOYjo < UOZjO S 

S UOXjO) or (uOXiO S uOYiO < uOziO and UOXjo S uOYjo < UOZjO) (these 

two cases are similar), for in all other cases it is easy to see that 

(ay+Bz)iO u (ay+Bz)jo is linked. The lack of generality in our diagram 

will cause no trouble, as will appear from the proof. 

We distinguish two subcases: 

(a) uoz, - uoy· S uOz. - uOYJ'o' 10 10 JO 
-1 

Since M c Uo (uO(aY+BZ)jo,lJ n I, it follows that 

-1 -1 
Uo [UOYiO ,lJ n I c Uo (UOY. ,1J, 

J O 

-1 
since Uo [uO YiO,lJ n I has no isolated points and since 
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However, this is a contradiction since y. u y. is linked. 
1.0 J O 

n I, we conclude that 

-1 
since 1I0 (lly+Bz)jo - 1I0YjO S 1I0 (lly+Bz)iO - 1I0Yi O• Therefore, if 110 1I0Zjon I 

-1 
contains no isolated points of 110 [0,1I0Zj ] n I, then this is a contra-

o -1 
diction by the linkedness of zi U Zj • If 110 1I0Zj n I contains an isolat-

. -1 0 0 0 
ed p01.nt of 110 [0,1I0Z J. ] n I, then 1I0Zj = 1I0Xj , for if not, then 

-1 0 0 0 
110 [0,1I0ZjO] n I is not perfect, which is a contradiction. 

Now, since 

it follows that also 1I0Yi O = lIOXjO' for if not, then YiO U Yjo is not 

linked. However, this implies that also 1I0 (IlY+BZ)jo = lIOXjO and consequent­

ly N € ZjO. This is a contradiction, since ziO U Zjo is linked. 

It now follows that the neighborhood B(x) of x is a finite union of 

closed (and hence compact) convex subspaces. By a theorem of QUINN & WONG 

([94], theorem 3.4) it follows that B(x) is a Q-manifold provided that 

for all nonvoid subsets FO of F the set n X(O) either is void or is a 
O€FO 

Hilbert cube. 

~ 2. Let FO be a nonvoid subset of F. Then n X(O) either is void 
O€FO 

or is a Hilbert cube. 

Assume that n F X(o) were nonvoid. It suffices to show that 
O€ 0 

n F X(o) is infinite dimensional, for an infinite dimensional compact 
O€ 0 

convex subset of the separable Hilbert space is a Hilbert cube (cf. KELLER 

[68]). We will show that n F X(O) contains a copy of the Hilbert cube. 
O€ 0 

Choose Y € n F X(O). We again distinguish two subcases: 
O€ 0 



(a) 
o 1 For each i € {2,3, ••• ,n} the point ROYi is an element of (ci,ci ). 
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Assume that Y is such that for every coordinate Y i (i € E U {2,3, ••• ,n}) 

a straight horizontal line through Yi doesnot intersect I in 0 or 1 (this 

assumption is justified by the fact that if y= 0 or y= 1, then n F X(o) 
O€ 0 

is the intersection of a finite number of sets, each of which intersects I 

in a neighborhood of y). This intersection, say f, must be the same point 

for every coordinate. Define 

o 
60 := min{/y.-c. / 

~ ~ 

1 6 1 := min{/y.-c. / 
~ ~ 

and choose nO € E such that 

i € {2,3, ••• ,n}}, 

i € {2,3, ••• ,n}} 

For all j € E, let I. be defined as in proposition 3.3.4. It is easy to 
J 

show, using the same technique as in the proof of proposition 3.3.4, that 

for all j € E with j :S nO and for each point d € I j x {12} we have that 

is linked (notice that indeed I. x 
J 

Now, by induction, for each k 

f 
{J.i'2} c A (I,A.» . 

I J 
€ {m € E I nO :S m} 

a point ~ € A(I,~) with the following property: 

we will construct 

*) for all j € E with j :S nO there exists a (nondegenerate) subinterval 
k k k f 

I j of I j such that for every point d j € I j x {72} the system 

n 

i~b Yi U j~E 
k:Sj 

is linked. 

f 
For each j € E with j :S nO let a j be the middle of the interval Ijx {7:2}. 

Then the linked system 
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is contained in at least one maximal linked system go € A(I,U~=l Silo 

Define h_2 := (gO)-2. The intervals Ij2 (j ~ nO) now can be found in the 

following way: 

(i) -2 
I j if 'lTOh_2 € I, := I_2; 

J.2 
(ii) I, := [! ,'lTOaj ] n I, if 'lTOh_2 € 

J.2 J 
(iii) I, := ['lTOa j ,l] n I j if 'lTOh_2 € J 

U,'lToaj]\I j ; 

['lTOa j ,l]\I j • 

-2 It is easy to verify that the intervals I j (j ~ nO)' defined in this way, 

satisfy our requirements. 

Let all points ~ be defined for all k ~ R. (R.,k € {mE E I nO ~ m}). 
-R. R. f 

For each j € E with j ~ nO let a j be the middle of the interval Ijx {Ii}. 

Then the linked system 

n 
i~r Yi u j~E h j U 

R.Sj 

is contained in at least one maximal linked system PO € A(I,U~=l Silo 
3R. 1 

Define h3R. := (PO)3R.· The intervals I j (j ~ nO) now can be found in the 

following way: 

(i) I 3R. R. 'f h I j := Ij 1 'ITO 3R. € 3R.; 
3R. [1 -R.] R. [1 -R.] (H) I j := 2,'lTOa j n I, if 'lTOh3R. € 2,'lTOa, \I,; 

(1'1'i) 3R. [-R. 1] ~ [ -R. J]\ J I j := 'lTOa j ,2 n I j if 'lTOh3R. € 'lTOa j ,l I j • 

Again, it is easy to verify that the intervals I~R. (j S nO)' defined in 

this way satisfy our requirements. 
no/3 

Now, it is obvious that nO€FO X(o) contains a copy of "j€E I j , 

which shows that n F X(o) is infinite dimensional. JSnO 
O€ 0 

o 1 (b) There exists a coordinate iO € {2,3, ••• ,n} such that 'lTOY' t (c, ,c, ). 
10 10 10 

We will construct a point g € n F X(o) such 
O€ 0 

all i € {2,3, ••• ,n}. Then case (a) is applicable to 

is infinite dimensional. 

Without loss of generality we may assume that 

n -1 n 
n p, [5,] n A(I,U1'=1 S1')' i=2 1 1 

o 1 
that 'lTogi € (ci'Ci ) for 

show that n F X(o) 
O€ 0 

where each 5i (2 ~ i S n) is convex in A(I,S,), while, moreover, for each 
-1 1 

i > q we have that 5i = 'ITO [Hi] n A(I,Si) for some (nondegenerate!) inter-

val Hi. As in case (a), we may assume that a straight horizontal line 



through Yi does not intersect I in 0 or 1. Let this intersection be f. 

Define 

V := {i E {2,3, ... ,n} I .Oy. i Ic~,c~)}. 
l. l. l. 
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Clearly V c {q+1,q+2, ..• ,n}. Now, for every i E V there is a subinterval 
f 

AII,Si)' L. of Hi such that .0Yi E L. and Li x {72} c Let 6. denote the 
l. 

length of 
l. 

this interval Ii E V) • 

6 := min{6. liE V}. 
l. 

Moreover define 

and 

l. 

Let 

i E {2,3, ••• ,n}\V; j E {0,1}} 

f 
Choose for each i E V a point gi E Li x {72} C AII,Si) such that 

Recall that A {2,3, ••• ,n}. We will show that 

n 
is linked; consequently each mls g E AII,U i =1 S.) which comtains L is a 

l. 

point of n F Xla) such that .og. E Ic9,c~) 
aE 0 l. l. l. 

for all i E {2,3, •.• ,n}. 

Assume that L were not linked. We again distinguish two subcases: 

CASE 1. There exist two indices iO,jO E V such that gi
O 

u g. 
J O 

linked. 

is not 

Choose M E giO and N E gjo such that M n N 

cases: 

¢. There are two sub-

Ii) One of the sets M,N contains the corresponding projection of y, say 

Yi E N. 
o r'-'-'-'-'-

. I ·0 
I + 

_._._._., 

I 
g .• 

l.°l 

y. 
JO 

L._._._._._ 
M N 

Figure 19. 
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-1 
Since N c TIO [O,TIOgi ) n I 

-1 0 
follows that TIO [O,TIOYj J n I c 

-1 0 
tradiction since TIO [O,TIoYjOJ n 

(ii) None of the sets M,N contains the corresponding projection of y. 

_._._._._ . ., ._._._._._ . .., 
I 

I 

g. f 
~O 

g. • 
J O I 

I 
_._._ ._._ . ...1 .~.-.-.-.-.-I 

M 

Figure 20. 

-1 
It now follows that, for example, M C TIO (TIOgjo,lJ n 

is a contradiction since M contains a component of length 

I. However, this 

at least ~pl2 
-1 

while all components of TIO (TIOgjO,lJ n I have length less than or equal to 
2 r::: -1 
4pv2 since TIO [HjOJ n I contains no isolated points and the same is true 

for each subinterval of H· • 
JO 

CASE 2. There exist indices iO € V and jo € A\V such that giO U YjO is 

not linked. 

This can be treated in the same way as case 1 (ii). 

This completes the proof of the proposition. 0 

3.4.9. REMARK. As announced it now follows from theorem 3.4.7, corollary 

3.2.4 and the remarks in 3.2.6 that each continuous surjection f: I -+ I 

extends to a near-homeomorphism A(f): AI -+ AI. 

3.5. Pseudo-interiors of superextensions 

In this section we concentrate on pseudo-interiors and capsets of 

superextensions. For any metrizable continuum X we define 



A (X):= {M E AX I M is defined on some M E 2X\{X}}. 
cap 
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We show that if X has a binary normal subbase then A (X) is a B(Q) factor, 
cap 

i.e. A (X) x Q ~ B(Q). From results derived in the previous chapter it 
cap 

follows that A (I) ~ B(Q) and also that A (JR), the subspace of AJR 
cap comp 

consisting of those mIs's M E AJR which are defined on some compact subset 

of JR, is homeomorphic to B(Q). As a consequence a conjecture of VERBEEK 

[119J turns out to be false. 

3.5.1. A subset M of the Hilbert cube Q is called a capset (cf. ANDERSON 

[sJ) if M can be written as M = U:=1 Mi , where Mi is a Z-set in Q, with 

Mi c Mi +1 (i E N) while in addition the following absorption property 

holds: for each E > 0 and i E IN and for every Z-set K c Q there exists 

a j > i and an embedding h: K --+ M. such that h f (KnM.) = idK M and 
J 1 n i 

d(h,idK) < E. It is known that every capset of Q is equivalent to B(Q) 

= {x E Q 3i E IN: Ix. I = 1} the pseudo-boundary of Q, under an autohomeo-
1 . 

morphism of Q (cf. ANDERSON [sJ). The complement of a capset is called a 

pseudo-interior of Q and is homeomorphic to ~2' the separable Hilbert 

space (cf. ANDERSON [SJ). 

Recall that an mls M E AX is said to be defined on A E 2X if 

M n A E M for all M E M. For any space X the space A (X) is the sub-
comp 

space of AX consisting of those mIs's which are defined on some compact 

subset of X (cf. VERBEEK [119J (cf. also 2.7.10). 

3.5.2. LEMMA. If X is locally compact and a-compact then A (X) is 
comp 

a-compact. 

PROOF. Write X = U:=1 Xn ' where Xn c Xn+1 (n E IN) and each Xn is compact 

(n E IN), while in addition each compact C c X is contained in some Xn . 

CLAIM. A (X) 
comp 

(Notice that X, being Linde15f, is normal and hence that for each A E 2X 

the superextension AA can be embedded in a natural way in AX (cf. lemma 

3.1.15». 

Indeed, choose MEA (X) and let C c X be a compact defining set 
comp 

for M. Choose n E IN such that C eX. Then lemma 3.1.15 implies that 
n 

M E AXn • Therefore M E U:=1 AXn • 

On the other hand choose M E U'" AX. Let n E IN be such that ME AX . 
n=1 n n 
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It now is easily seen that X is a (compact) defining set for M, i.e. 
n 

MEA (X) • 0 
comp 

3.5.3. For any topological space X, define 

A (X):= {M E AX I M is defined on some A E 2X\{X}}. cap 

3.5.4. LEMMA. If X is a compact metric space, then A (X) is a-compact. 
cap 

If moreover X is connected then A (X) is a countable union of Z-sets . cap 
in AX. 

PROOF. Let {Bn n E :N} be a countable closed basis for X, such that 

Bn # X for all n E IN. With the same technique as in lemma 3.5.2 it now 

follows that 

A (X) 
cap 

showing that A (X) is a-compact. 
cap 

If moreover X is connected then AB 
n 

(cf. theorem 3.1.17). Hence A (X) is a 
cap 

is a Z-set in AX for each n E lN 

countable union of Z-sets. 0 

In [71J KROONENBERG gave an alternative characterization of capsets 

in Q and we will use this characterization to show that A (X) is a 
cap 

B(Q)-factor in case X is a metrizable continuum with a binary normal sub-

base. 

3.5.5. LEMMA ([71J). Suppose M is a a-compact subset of Q such that 

(i) for every £ > 0, there exists a map h: Q + Q\M such that 

family of compact subsets Ml c M2 c ... such that 

of Q and Mi is a Z-set in Mi+1 (i E IN) , and such 

each 

that 

d(h,idQ) < £; 

(ii) M contains a 

Mi .is a copy 

for each £ > 0 there exists an integer i E :N and a map h: Q + M. 
~ 

such that d(h,idQ) < £. 

Then M is a capset for Q. 

We need some simple results. 

3.5.6. LEMMA. Let (X,d) be compact metric and let f: X + X be continuous. 

Then d(f,i~) = d(A(f),idAX ). 



PROOF. Since A(f) : AX -+ AX is an extension of f and since i: X ~ AX 

is an isometry (cf. VERBEEK [119J) we find that 
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Assume that d(f,idx ) < d(A(f),idAx ). Let e := d(f,idx). Then there is an 

M € AX such that 

d:(M,A(f) (M») > e. 

Choose M € M such that B (M) i A(f) (M) (cf. lemma 3.1.11). Also take 
e 

MO € M with Be(M) n f[MOJ = ¢ (cf. lemma 3.1.22). As M is a linked system 

there is an x € M n MO. Then f(x) € f[MOJ and consequently 

d(x,f(x») > e, 

which is a contradiction. 0 

3.5.7. THEOREM. Let (X,d) be a non-degenerate metrizable continuum which 

admits a binary normal subbase. Then there is a sequence Ml c M2 c 

of subcontinua of X such that: 

(i) Mi is a proper subcontinuum of Mi +1 (i € :IN); 

(ii) for each e > 0 there exists an i € :IN and a retraction r: X -+- M. 
1. 

such that d(r,idx ) < e. 

PROOF. Let S be a binary normal subbase for X. Then H(X,S), the hyperspace 

of S-closed sets (cf. section 2.10), is a compact densely ordered (by in­

clusion) subspace of 2X (cf. theorem 2.10.5 and theorem 1.5.22). Fix a 

point p € X and let J be a maximal chain in H(X,S) containing {pl. Then 

J is homeomorphic to the closed unit interval [O,lJ since 2X is metrizable 

(cf. WARD [124J). Let 

be a sequence which converges to X and which is indexed in such a way that 

Mn is properly contained in ~ if and only if n < k. It is clear that this 

is possible. 

We claim that the sequence {M.}~ 1 defined above satisfies (i) and 
1. 1.= 

(ii). The claim that each Mi is a proper subcontinuum of X is trivial since 

each S-closed subset A c X is a retract of X (cf. corollary 1.5.12 (a». 
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This proves (i). 

To prove (ii) choose £ > O. Let F c X be a finite set, say 

F {x1 , ••• ,xn } satisfying 

x 

Choose a finite refinement {A1, ••• ,Am}, consisting of S-closed sets with 

nonempty interior, of {U i (x.) I 1 ~ i ~ n} (that this is possible is an 
2£ ~ 

easy consequence of the fact that S is a normal T1-closed subbase for the 

compact space X). Let 0 > 0 be such that for each i ~ j ~ m there is an 

Yj € Aj with 

cA .• 
J 

Choose i € ~ such that dH(Mi,X) < !o. Then Mi intersects all members 

from the covering {A1, ••• ,A }. Now let r: X + M. be the retraction of 
. m ~ 

theorem 1.5.2, in formula 

{r(x)} 

We claim that r moves the points less than £. Indeed, take x € X. Choose 

1 ~ k ~ n such that x € ~. Since ~ intersects Mi , there is a z € ~ n Mi. 

Then 

{r (x) } 

consequently x and r(x) both belong to ~. Since ~ is contained in 

U!£(x~) for some 1 s ~ ~ n we conclude that 

This completes the proof of the theorem. 0 

We now prove the main result in this section. 

3.5.8. THEOREM. Let (X,d) be a metrizable continuum. If there is a 

sequence Ml c M2 c ••• of subcontinua of X satisfy,ing: 

(i) Mi is a proper subcontinuum of Mi+l (i € :IN); 

(ii) for each £ > 0 there is an i € ~ and a map h: X + Mi with 

d (h, id ) < £, then A (X) x Q is a capset for AX x Q. In particular, 
-X cap 



A (X) is a B(Q)-factor. cap 

PROOF. First notice that the spaces AX and AMi (i € IN) are AR's (cf. 

theorem 3.2.1) and hence that they are Q-factors (cf. EDWARDS [45J). 

Therefore 

AMl x Q c AM2 x Q C ••• 
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is a sequence of Hilbert cubes. Moreover AMi x Q is a Z-set in AMi +l x 'Q 

(i € IN) by theorem 3.1.17 (ii). Let P be a metric for X. Then PO' defined 

by 

is a metric for AX x Q. 

We claim that the family {AM, x Q I i € IN} satisfies the conditions 
~ 

of lemma 3.5.5. To prove 3.5.5 (i) choose E > O. Also choose two disjoint 

finite FO,F l C X such that dH(Fi,X) < !E (i € {O,l}). By induction for 

each i € IN choose a point Pi € Mi +l \Mi such that P = {Pi I i € IN} has 

a void intersection with FO U Fl. It is clear that this is possible. 

Now define a linked system M = {Nk I k > 1} on P by 

if k is even 

and 

if k is odd. 

It is clear that M is a linked system and also that 

for all k > 1. Define for all k > 1 sets Gk by 

if k is even 

and 

if k is odd. 

Then {Gk k > 1} is a linked system of finite subsets of X and hence 

there is a retraction r: AX -+ nk>l G; defined by 

{r(L)} := n{L+ I L€ Land Ln Gk t-!II (k> 1)} n nk >l G; 

(cf. theorem 1.5.2 and theorem 3.1.13). Then 
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(cf. theorem 3.1.13) and moreover 

00 

r[AX] n i~1 AMi ~. 

For choose L € r[AX] and k € IN. Then Gk and Gk+1 both belong to L. Also 

Gk n Gk+1 n ~ {Pk+1} n ~ = ~, since P n (FOUF 1) = ~. Now, lemma 3.1.15 

implies that L t A~. This completes the proof of 3.5.5 (ii, since 

clearly is a retraction which moves the points less than E and whose image 

is disjoint from U~=1 (A~ x Q) • 

To prove 3.5.5 (ii) choose E > O. Then there is, by assumption, an 

i € lN and a map h: X -- Mi with d(h,idx) < E. Then A(h): AX -- AMi and 

also d(A(h),idAX ) < E by lemma 3.5.6. Therefore 

is the desired mapping. 0 

3.5.9. COROLLARY. Let X be a metrizable continuum with a binary normal 

subbase. Then A (X) x Q is a capset for AX x Q. In particular, A (X) cap cap 
is a B(Q)-factor. 

PROOF. This follows from theorem 3.5.7 and theorem 3.5.8. 0 

3.5.10. The metrizable continua Witll a binary normal subbase are not the 

only compacta with a sequence of subcontinua as described in theorem 3.5.8, 

for it is easy to see that a space such as 

Y = {(O,y) I -1::;y::;1} U {(x,sinl ) 10<x::;1} 
x 

also has such a sequence (notice that Y does not possess a binary normal 

subbase since Y is not locally connected; cf. corollary 1.5.8 (iii». 

The technique used in the proof of theorem 3.5.8 can also be used to 

obtain the following results. 



3.5.11. THEOREM. 

(i) A (0,1) is a capset for AI; 
comp 

(ii) A (I) is a capset for AI. 
cap 

PROOF. Define M. = 
~ 

as in the proof of 

(theorem 3.4.7). 

[0 + L 1 - ~J (i > 2) and then use the same technique 
~ ~ 

theorem 3.5.8 and the fact that AMi ~ Q (i > 2) 

o 

3.5.12. COROLLARY. AI\A (I) is.horneomorphic to ~2' 0 cap 
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As noted in the introduction of this section theorem 3.5.11 (i) dis­

proves a conjecture of VERBEEK [119J. 

We conjecture the following: 

3.5.13. CONJECTURE. A (X) is homeomorphic to B(Q) for any metrizable cap 
continuum with a binary normal subbase. 

In connection with this conjecture we also have the following 

question: 

3.5.14. QUESTION. Let X be the 1-sphere S1' Is A (X) homeomorphic to cap 
B(Q)? Or is it a capset of AX (if AX ~ Q)? Is A (X) x Q a capset of cap 
AX x Q? 

3.6. Some subspaces of AX homeomorphic to the Hilbert cube 

We show that in case AX is homeomorphic to the Hilbert cube the open 

basis {n. < I X\U. E 2X; n E :N} of AX has the property that the closure 
~_n ~ 

of a nonvoid element of it is again homeomorphic to the Hilbert cube. 

3.6.1. In this section we assume that (X,d) is a compact metric space such 

that the space AX is homeomorphic to the Hilbert cube. From results of 

VERBEEK [119J (cf. also corollary 2.5.4) it then follows that X is a non­

degenerate metrizable continuum. 

For simplicity of notation we will write A for the closure of the 

subset A of the topological space Y. 

3.6.2. ~. Let {u1, .•. ,Un } be a finite linked system of open subsets 
+ - - + 

in X. Then (ni~n Ui ) equals ni~n (Ui ) • 
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+ - + PROOF. Clearly n isn Ui C nisn(Ui ) so that in any case 

- + 
Choose a point M € nisn(Ui ) \(nisn 
O. (j S m) in X such that M € n.< 

J J-m 

+ 
n OJ' n 

jSm 
!II. 

U:)-. Choose 
3. 

0+ and 
j 

finitely many open sets 

Then {O. I j s m} 
+J + 

U {Ui liS n} is not a linked system for otherwise 

n j < O. n n.< u. 
_m J 3._n 3. 

t- !II (see VERBEEK [119J). Hence, since clearly {O. I j s m} 
J 

is linked, there are jo S m and iO S n such that 

+ - + 
Then Ojo n UiO !II a:d ~ons~qu:ntlY Ojo n (UiO) 

diction, since M € Ojo n (UiO)' 0 

!II. This is a contra-

3.6.3. COROLLARY. Let {U1 ' ••• ,Un } be a finite linked system of open sets 
+ -

in X. Then (n isn Ui ) is a Hilbert cube factor. 

+ -PROOF. By lemma 3.6.2 (nisn Ui ) is a retract of AX (cf. theorem 3.1.13) 

and consequently it is an AR. Now the EDWARDS [45J theorem gives the 

desired result. 0 

As in section 2.7 the subspace {n{M+ I M € M} I Me 2X is a linked 

system of 2AX} will be denoted by K(AX). An element S € K(AX) is called 

convex for short (theorem 3.1.13 motivates this terminology). We need 

a simple lemma. 

3.6.4. LEMMA. Let Sl""'Sn be a finite collection of convex sets in AX 

such that nisn Si t- !II. Then UiSn Si is an AR. 

PROOF. We will prove the lemma by induction on n. The lemma is true for 

n = 1 (cf. theorem 3.1.13). 

Suppose that the lemma is true for unions of n - 1 convex sets. Let 

Si C AX (i s n) be convex such that nisn Si t- !II. Write Uisn Si = 

= (Uisn- 1 Si) USn· Then Uisn- 1 Si is an AR by induction hypothesis. 

Also Sn is an AR. As (Uisn- 1 Si) n Sn = Uisn- 1 (SinSn) and as the inter-
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section of two convex sets again is convex, the intersection 

(Ui $n-1 Si) n Sn also is an AR by induction hypothesis. But then Ui$n Si 

is the union of two AR's the intersection of which also is an AR. By a 

theorem of BORSUK [20J it now follows that Ui$n Si is an AR too. 0 

We need the following compactification result of WEST [127J. 

3.6.5. THEOREM. Suppose that X is a compactification of a Q-manifold M 

such that 

(i) X is a Q-factor; 

(ii) X\M is a Q-factor; 

(iii) X\M is a Z-set in X. 

Then X is a Hilbert cube. 

This theorem is the basic tool in proving the main result in this 

section. 

3.6.6. THEOREM. Let (X,d) be a compact metric for which AX is homeomorphic 

to the Hilbert cube Q. Then for each finite linked system {U1, •.• ,Un} of 

open sets in X the closure (in AX) of n.< U: is homeomorphic to the 
~_n ~ 

Hilbert cube. 

PROOF. Let {U1 ' •.. ,U } be a finite linked system of open sets in X. Fix a 
----- n 
point p € X and define Vi := Ui\{p} (i $ n). Then, since X is connected 

{V1 ' •.• ,Vn } is again a linked system. Hence 

( n V:) 
i$n ~ 

( n u:)-, 
i$n ~ 

+ - - + - + + -
since (ni$n Vi) = ni$n (Vi) = ni$n (Ui ) = (ni$n Ui ) by lemma 3.6.2. 

We will show that (ni$n V;)- is a Hilbert cube. Without loss of generality 

we may assume that V~ ¢ V~ for all i,j $ n. Define 
~ J 

A := (n V:)\- \ n V: 
i$n ~ i$n ~ 

+ Indeed, assume that M € A. Then M i n.< v. and hence there is an iO $ n 
+ ~-~ ~ 

such that M i Vi • But then M € (X\Vi) (cf. proposition 2.2.3 (v)). 
o + 0 +_ 

Consequently M € U.< ((X\V.) n (n.< V.) ). 
J-n J ~_n+ ~ + _ 

On the other hand, if M E (X\VJ.) n (n.< V~) for some jo $ n o ~_n ~ 
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+ then clearly M t Vjo and consequently M € A. 

The linked system {X\Vj I j s n} u {v: i S n} is contained in at 

least one maximal linked system 

M € n «X\Vj )+ n n (V:)+). 
jSn iSn 

Now lemma 3.6.2 establishes claim 2. 

Lemma 3.6.2 also implies that A is a finite union of convex sets; 

hence, by claim 2 and by lemma 3.6.4, A is an AR. 

+ -CLAIM 3. A is a Z-set in (nisn Vi) • 

For each i,j S n choose a point Pij = Pji € Vi n Vj • 

P. := {p .. I j S n}. Then {Po liS n} is a finite linked 
~ ~J . ~ 

subsets of X such that Pi C Vi for all i S n. 

Define 

system of finite 

Fix E > 0 and for each i S n choose a finite Fi C Vi such that 

dH(Fi'V~) < iE. Define Li := Fi U Pi (i S n). Let 

r: AX -+ n L+ 
iSn 

+ be the retraction onto niSn Li of theorem 3.1.13. Let fE be the restric-
+ - + - + 

tion of r to (niSn Vi) Notice that fE[(nisn Vi) ] C nisn Vi. We Wi!l_ 

show that f moves the points less than E. Indeed, choose M€ (ni < V.) • 
E _n ~ 

Then 

pM = {M € M I Vi S n: M n Li ~ ~} U {Li liS n} 

is a pre-mls for reM) = fE(M) (cf. the proof of theorem 3.1.13; see also 

theorem 1.5.2). Also 

d(M,f (M» = min{a ~ a I V5 € pM: B (5) € M} 
E a 

(cf. lemma 3.1.11). Therefore d(M,f (M» < E. Indeed, choose 5 € pM: if 
E 

5 € M then also B1E (5) € M since 5 C BiE (5); if 5 € {Li liS n}, say 

5 = Lia' then via C BiE (5) and consequently BiE (5) € M since via € M by 

lemma 3.6.2. This yields in any case 

d(M,f (M» S iE < E. 
E 



187 

By corollary 3.6.3 m. < V:-) - is a Hilbert cube factor which is a compac·· 
1._n 1. 

tification of the Q-manifold ni~n V; such that the remainder A is an AR 

(and hence a Q-factor) which is a Z-set. in mi~n V;) - (claim 2 and claim 3). 
+ -Therefore (ni~n Vi) RS Q by theorem 3.6.5. 0 

3.7. Notes 

The techniques derived in the previous chapter to show that the super­

extension of the closed unit interval is homeomorphic to the Hilbert cube 

are not applicable to show that the superextension of any non-degenerate 

metrizable continuum is homeomorphic to the Hilbert cube. We can show that 

the superextension of any finite tree is the Hilbert cube and, more general­

ly, using the approximation result in section 3.2, that the superextension 

of any dendron is homeomorphic to the Hilbert cube (it is easily seen that 

any dendron is the inverse limit of a sequence of finite trees with element­

ary collapses as bonding maps). Also, if X is the topological sum of finit­

ely many dendra, then AX is a Q-manifold; in fact it is a topological sum 

of finitely many Hilbert cubes. 

Recently we have shown that the superextension of any finite connected 

graph is the Hilbert cube. Unfortunately this result could not be included 

in the previous chapter. 

Theorem 3.1.19 is taken from VAN MILL & SCHRIJVER [80J. 





CHAPTER IV 

COMPACTIFICATION THEORY 

In this chapter we deal with the following two questions: 

a) Is every Hausdorff compactification of a Tychonoff space a wallman 

compactification? 
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b) Is every Hausdorff compactification of a Tychonoff space a GA compac­

tification? 

Question a) was posed by FRINK [51J, who used Wallman-type compactifica­

tions (cf. also SHANIN [106aJ) to obtain an internal characterization of 

complete regularity. It is unsolved until now, although many partial 

results suggest that the question can be answered affirmatively (cf. AARTS 

[lJ, STEINER & STEINER [109J,[111J,[112J,[113J, HAMBURGER [62J, MISRA [85J, 

NJASTAD [89J, VAN MILL [77J). *) 

DE GROOT & AARTS [57J generalized FRINK's technique and considerably 

strengthened his characterization of complete regularity. They also used 

a compactification method, which is related to the Wallman compactifica­

tion technique and which is now known as the "GA compactification method" 

(cf. HURSCH [65J, DE GROOT, HURSCH & JENSEN [58J). A.B. PAALMAN-DE MIRANDA 

posed question b) (cf. VERBEEK [119J question V.3.9). It remains as yet 

unsolved (however, see 4.7). 

In 4.1 we will derive some preliminary results on Wallman compactifi­

cations, results which are all known but which are included for completeness 

sake. The next section contains the main result of this chapter; we show 

that every Hausdorff compactification of a Tychonoff space in which the 

collection of multiple points is Linde16f semi-stratifiable is a z-compac­

tification ( a compactification obtainable as the ultrafilter space of a 

normal base consisting of zero-sets). Sections 4.3, 4.4 and the last part 

of section 4.2 deal with regular Wallman spaces. Among other things we 

show that every Hausdorff compactification of a locally compact metrizable 

*) 
There is a rumour going that Uljanov and Shapiro have constructed a 
counterexample. 
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space with zero-dimensional remainder is regular Wallman (cf. also 

BAAYEN & VAN MILL [llJ). Closely related to regular Wallman spaces are 

regular supercompact superextensions; they are considered in section 4.5. 

The sections 4.6 and 4.7 deal with GA compactifications. We will 

characterize the class of GA compactifications of a given topological 

space and from an analogous characterization of Wallman compactifications 

(cf. STEINER [114J) it follows that any Wallman compactification is a GA 

compactification. This implies that the questions a) and b) are related. 

Finally we show, using the characterization announced above, that any 

compact Hausdorff space of weight at most e is a GA compactification of 

each dense subspace. 

4.1. Wallman compactifications; some preliminaries 

This section contains some preliminary results concerning Wallman 

compactifications. Most of the results are taken from STEINER [114J. 

4.1.1. Let S be a T1-subbase (cf. definition 2.2.1) for the topological 

space X. Define 

w(X,S) := {A c S I A is maximally centered}. 

For each S € S define 

S* := {A € w(X,S) I S € A} 

and define a topology on W(X,S) by taking 

* * I S := {S S € S} 

as a closed subbase. With this topology W(X,S) is called the Wallman 

compactification of X relative S. If S is the collection of all closed 

sets in X then w(X,S) is denoted by wX and is called the Wallman compac­

tification of X (cf. WALLMAN [121J). That w(X,S) is a compactification 

of X is shown in STEINER [114J. We mention the following result (recall 

that A.V.S is the ring generated by S, cf. O.A): 

4.1.2. THEOREM. Let S be a T1-subbase for the topological space X. Then 

w(X,S) is compact and is homeomorphic to w(X,A.V.S). Moreover the mapping 
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i: X -+ w(X,S) defined by ~(x) := {S € S I x € S} is an embedding. D 

4.1.3. In case the subbase S is a separating ring (cf. O.A) and is normal 

(cf. 2.2.1) it is called a normal base. Notice that a base may very well 

be a normal subbase without being a normal base. The best known example 

of a normal base is the ring of zero-sets Z(X) of a Tychonoff space X. 

The following result is also taken from STEINER [114J. 

4.1.4. THEOREM. Let S be a T1-subbase for X. Then w(X,S) is Hausdorff if 

S is normal. Moreover w(X,S) is Hausdorff if and only if A.V.S is a normal 

base. D 

4.1.5. A compactification aX of a topological space X is called a Wallman 

compactification if it is equivalent to a compactification w(X,S) for some 

T1-subbase S for X. 

Let X be a space and let Y be a subspace of X. A family T of closed 

subsets of X has the trace property with respect to Y (cf. STEINER [114J) 

provided that for any finite F c T with nF ~ ¢ also nF n Y ~ ¢. STEINER 

[114J gives the following useful characterization of Wallman compactifi­

cations. 

4.1.6. THEOREM. A compactification aX of X is a wallman compactification 

if and only if aX possesses a separating family of closed sets with the 

trace property with respect to X. D 

Many compactifications are Wallman compactifications, for example, 

this is true for all metric compactifications (cf. AARTS [lJ and STEINER 

& STEINER [109J). 

4.1.7. In the above characterization of Wallman compactifications the 

separating family F of closed sets in aX with the trace property with 

respect to X can be chosen in such a way that {F n X I F € F} c Z(X) then 

we say that aX is a z-compactification. Many compactifications are 

z-compactifications, cf. STEINER & STEINER [112J and HAMBURGER [62J. 

4.1.8. Let aX be a compactification of X and let ~ denote the unique 
v 

projection mapping of SX, the Cech-Stone compactification of X, onto aX 

which on X is the identity. We say that a point p € aX\X is a multiple 

point of aX (cf. NJASTAD [89J) if ~-1(p) consists of more than one point. 
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Every compactification in which the set of multiple points is countable 

(this is usually called a countable multiple point compactification) is a 

z-compactification (cf. STEINER & STEINER [112J). This result is strengthen­

ed in section 4.2. 

4.1.9. A compact topological space X is called regular Wallman if it pos­

sesses a separating ring consisting of regular closed sets (cf. STEINER 

[114J). From theorem 4.1.6 it follows that a regular Wallman space is 

Wallman compactification of each· dense subspace. Many compact Hausdorff 

spaces are regular Wallman, for example all compact metric spaces (cf. 

STEINER & STEINER [109J). The first example of a compact Hausdorff space 

which is not regular Wallman was obtained by SOLOMON [107J. 

4.1.10. Let K > W be any uncountable cardinal. A topological space X is 

called strongly K compact if for each subset A of X with IAI ~ K and for 

each total order < on A there exists a y € A such that for each open 

neighborhood U of y both U n {x € A I x < y} and U n {x € A I x,> y} are 

nonvoid. It is very easy to show that a space of weight K is strongly K+ 

compact. Hence each separable metric space is strongly w1 compact. 

The following theorem is due to BERNEY [15J. For completeness sake 

we will include its proof. 

4.1.11. THEOREM. A strongly Wi compact space is hereditarily strongly 

w1 compact. Moreover it is hereditarily separable and hereditarily 

Linde15f. 

~. Let X be a strongly w1 compact space. That X is hereditarily 

strongly wl compact is trivial. Hence we only need to show that X is both 

separable and Lindelof. 

If X is not separable then there is a sequence P = {xa I a € W1 } of 

elements of X such that for each a € WI the point xa is not in the closure 

of {xe I e < a}. Choose a O € WI such that xaO is limit point from below 

of P. But xaO is not in the closure of {xe I e < a O}' which is a contra­

diction. 

If X is not Lindelof then there is a sequence U 
open subsets of X such that for all a € w1 

is nonvoid. For each a € w1 choose xa € Ua \ e~a Ue and define 
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Choose aO € w1 such that UaO n {xS I aO < S} 1 ¢. Then there is a So € w1 

such that a o < So and xSO € UaO ' This is a contradiction. o 

4.1.12. A topological space X is called semi-stratifiable if to each open 

subset U of X, one can assign a sequence {U }oo 1 of closed subsets of X 
n n= 

such that 

(a) U:=1 Un = U; 

(b) if U c V and {Vn }:=1 is the sequence assigned to V, then 

U c V for all n € ~. 
n n 

It is easily seen that each metric space (X,d) is semi-stratifiable; for 

each open subset V c X and each n € :IN let V n be defined by 

n 

In [33J CREEDE showed that each Lindelof semi-stratifiable space is strong­

ly w1 compact. Hence we have the following implications: 

separable metric - Lindelof semi-stratifiable - strongly w1 compact ~ 

- hereditarily separable and hereditarily Lindelof. 

Since CREEDE's theorem is very important for us, cf. section 4.2, we will 

include a proof of it. The proof presented here was suggested to me by 

J.M. VAN WOUWE. 

4.1.13. THEOREM. A Lindelof semi-stratifiable space .is strongly w1 compact. 

PROOF. Let X be a Lindelof semi-stratifiable space and assume there exist 

a totally ordered subset A of X such that IAI ~ w1 and such that for each 

x € A there exists an open neighborhood Ux such that either 

Ux n {a € A I a < x} = ¢ or Ux n {a € A I a > x} = ¢. Since IAI ~ w1, 

we may assume, without loss of generality, that for each x € A we have 

U n {a € A I a > x} = ¢. 
x 

For each x € A and for each n € ~ define 

On : = U \ (U U) . 
x x a<x a n 
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It is clear that On is an open neighborhood of x such that 
x 

On n {a EO A I a > x} = ~ for all n EO IN. Since a Lindelc5f semi-stratifiable 
x 

space is hereditarily Lindelc5f (cf. CREEDE [34]), for each n EO ~ the 

covering 

o = {On I x EO A} 
n x 

of A has a countable subcover {on I i EO ~}. Define x(i,n) 

F := {x (i,n) I n EO lN, i EO ~}. 

* * As F is countable there is an a € A\F. Since a EO Ub~a* Ub , there is an 

nO EO ~ such that 

a* EO ( U 
b~a* 

Consider the sequence {x(i,nO) I i EO ~}. Since a* EO A\F it follows that 

* * a "x(i,nO) for all i EO IN. Now fix i EO IN. If x(i,nO) < a then 

a*.J nO 
" a ( . x i,nO) 

If x(i,nO) > a*, then 

c uno 0 \f U * U) . 
x(l.,nO) ~~a b nO 

* nO Hence it again follows that a ;. a (0 ). 
x 1.,nO 

It now follows that OnO is not a covering of A, which is a contra-

diction. 0 

4.1.14. E.S. BERNEY [16] has introduced the concept of strongly K compact­

ness in the theory of Wallman compactifications. His techniques turn out 

to be very powerful and will be used in section 4.2 and section 4.7. 



4.2. Compactifications in which the collection of multiple points is 

Lindelof semi-stratifiable 
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In this section we show that any compactification ax of a Tychonoff 

space X in which the collection of multiple points is Lindelof semi­

stratifiable is a z-compactification. If in addition X is also Lindelof 

semi-stratifiable then aX is regular Wallman. In particular, ex is 

regular Wallman if X is Lindelof semi-stratifiable (cf. BERNEY [16J). 

4.2.1. In this section we assume that aX is a compactification of the 

Tychonoff space X. The set of multiple points of aX is denoted by M. 

We start with some simple results. 

4.2.2. LEMMA. Let Y be a subspace of eX such that X eye ex. If 

ZO,Zl € Z(X) then cly(ZO) n cly (Zl) = cly (ZOnZ 1). 

Let ~: ex -+ aX be the unique projection which extends idx ' 

-1 
4.2.3. LEMMA. Let Z € Z(X). If <lclax(Z) n M= ¢, then ~ [clax(Z) J 

clex(Z), 

PROOF. Assume there exists an 

Then ~(xO) € clax(Z) n M and consequently ~(xO) € intax clax(Z) since 

<lclax(Z) n M = ¢. Therefore 

Let 0 be any open neighborhood of Xo in ex. Then clearly 

As ~ is the identity on X it follows that 0 n Z ~ ¢. We conclude that 

Xo € clex(Z). This is a contradiction. 0 

If f € C(aX,I) then we will write U(o,f) in stead of f- 1[0,0) 

(o€ (O,lJ). 
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4.2.4. LEMMA. Let f € C(aX,I) and assume that M is strongly w1 compact. 
-1 

Then {o € (0,1) I cl (f [O,oJ n X) n M t- cl x(U(o,f» n M} is countable. 
aX a 

PROOF. Assume to the contrary that it were uncountable. If for some O€ (0,1) 
-- -1 
we have that clax(f [O,oJnX) n M t- clax(U(o,f» n M then there is an 

a(o) € (cl (f-1[0,oJ n X) \ cl x(U(O,f») n M. aX a 

Let B be the set of a(o) chosen. in this way. Since f(a(o» = ° for all 

a(o) € B it follows that 01 t- 02 implies that a(ol) t- a(02) and therefore 

B is uncountable. Also, a total order < is defined on B by putting 

Since B c M and since M is strongly w1 compact it follows that B has a 

limit point a(oO) from below. 

Let U be any open neighborhood of a(oO). Since a(oO) is limit point 

from below there is an a(ol) € U n B such that a(ol) < a(oO). This shows 

that a(ol) € U(OO,f) n U and in particular U(OO,f) nut- ¢. Hence 

a(oO) € clax(U(OO,f» n M, which is a contradiction. 0 

The following lemma is due to BERNEY [16J; for completeness sake we 

will include its proof. 

4.2.5. LEMMA. Let f € C(aX,I) and let U be open in aX. If A c aX is strong­

ly w1 compact, then 

{o € (0,1) I cl X(U) n cl x(U(o,f» nAt- cl (UnU(o,f» nA} a a aX 

is countable. 

PROOF. Assume that it were uncountable. If for some ° € (0,1) we have that 

then there is an a(o) € «clax(U) n Clax(U(o,f») \ claX(Un U(o,f») n A. 

Let B be the set of a(o) chosen in this way. Clearly f(a(o» = ° for all 

a(o) € B which implies that B is uncountable and also that the order < 

on B defined by 

is a total ordering. Since B c A and since A is strongly w1 compact, 



there is an a(oO) in B which is a limit point from below. Let 0 be any 

open neighborhood of a(oO). Then there is an a(ol) € 0 with 01 < 00. 

Then a(ol) € U(OO,f) n 0 and consequently ~ ~ U(OO,f) non U 

On (U(OO,f) n U), since a(ol) € clax(U). It now follows that 

a(oO) € clax(UnU(OO,f» n A, which is a contradiction. 0 

We now can prove the main result in this chapter. 
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4.2.6. THEOREM. Any compactification of a topological space X in which the 

collection of multiple points is strongly w1 compact is a z-compactification. 

4.2.7. COROLLARY. Any compactification of a topological space X in which the 

collection of multiple points is Lindelof semi-stratifiable is a z-compac­

tification. 

* * PROOF. Let M denote the closure of M in aX. Then M is a compactification 

* of M and since M is separable we have that the weight of M is at most Q. 

Let B be an open base for the topology of M* which is closed under finite 

intersections and finite unions and which contains at most Q members. 

Define 

For each (clax(BO),clax(Bl» € C, choose an f € C(ax,I) such that 

f[clax(BO)] = 0 and f[clax (B 1)] = 1. Let F denote the set of mappings 

obtained in this way. Write F {f I K € Q}. 
K 

By transfinite induction we will construct for each K E Q a 0KE (0,1) 

such that 

(i) -1 
clax(fK [O,OK) n X) n M = clax(U(OK,fK» n M; 

(ii) clax(U(OK,fK» n clax(V) n M = clax(U(oK,fK) nV) n M, 

Let K E Q and assume that Os is defined for all S < K. If K 

choose ° E (0,1) such that 

o then 

Such a choice for 0 is possible (cf. lemma 4.2.4). Define OK := 0. If 

K ~ 0, let V := A.V.{U(oS,fS) I s < d. Then if V € V we have that 
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I{OE (0,1) I cl X(U(o,f » n cl x(V) nM t- cl X(U(o,f ) nV) nM}1 ";w, a K a a K 

by lemma 4.2.5 and consequently 

I UV{ 0 E (0,1) I cl X (U (0, f » n cl x··(V) n M t- cl~v (U (0, f ) n V) n M} I < e. 
VE a K a "'" K 

From lemma 4.2.4 it now follows that there exists a 0 E (0,1) such that for 

all V E V we have that cl x(U(o,f» n cl (V) n M = clax(U(o,fK ) nv) nM 
-1 a K aX 

and also that clax(f K [O,oJ n Xl n M = clax(U (o,fK » n M. Now define 

0 := o. This completes the inductive construction. 
K 

-1 
Now, for each a E e define H := fa [O,oa J n X. Notice that H E Z (X) 

a a 
for all a E e. Finally define H := {H 

a I a E e} and 

¢ or M* c int cl x(Z)} U H. 
aX a 

Using the compactness of aX it is easy to show that 

is a separating ring. We will show that for each finite number of elements 

LO,Ll , ..• ,Ln E L the equality 

cl x(.Q L.) =.Q clax (L1·) a 1_n 1 1_n 

holds, which then proves the theorem (cf. theorem 4.1.6). 

If Li t H (i ,,; n) then apply lemma 4.2.3 and use the analogous 

equality 

in 8X. Notice that equality (**) holds because Li E Z(X) (i,,; n). So it 

suffices to prove equality (*) in case L1 ,L2 , •.. ,Ln E H and La t H (if 

all Li E H then enlarge {LO,L1 , •.• ,Ln } with Ln+l = X and renumber them). 

SUppose that equality (*) does not hold; then there exists an 

We have to consider two cases: 

* CASE 1. clax(LO) n M ¢. 

Since Xo E ni,,;n clax(Li ) c clax(LO) it follows that Xo t M*. Let 

Y := aX\M. Notice that Y is homeomorphic to ~-l[YJ. Then 
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(lemma 4.2.2) 

this is a contradiction. 

* CASE 2. M c intax clax(LO)' 

-1 
Let L. = fK [O,OK.J n X (i E {1,2, .•• ,n}). If Xo i M then use the 

~ i ~ 

same technique as in case 1 in 
n 

suppose Xo E M; then Xo E ni =1 

order to derive a contradiction. Next, 
-1 

ClaX(fKi[o,oK.Jnx) n clax(LO) nM and con-
~ 

sequently (i) 

( (H) ) 

Clax(i~1 U(OKi,fKi )) n clax(LO) n M 

claxCB1 U(OKi,fKi )) n intax clax(LO) n M 

c cl (n L4) n M 
aX i~n • 

C cl (n L4)' aX i~n • 

which is a contradiction. This completes the proof of the theorem. 0 

Since separable metric spaces and countable spaces are Lindelof semi­

stratifiable we have the following corollaries: 

4.2.8. COROLLARY (cf. [1J,[109J). Every metric compactification is a 

Wallman compactification. 

4.2.9. COROLLARY (cf. [112J). Every countable multiple point compactifi-

cation is a z-compactification. 

4.2.10. We will now prove that certain compactifications of strongly w1 

compact spaces are regular Wallman. For this, we assume for the remainder 

of this section that X is a strongly w1 compact space and that aX is a 

compactification of X. As before M denotes the set of multiple points 
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of aX. If B c X then B denotes the closure of B in X. 

We need a simple lemma. 

4.2.11. LEMMA. Let U and V be open subsets of ax such that 

(i) (UnX) n (Vnx) (unvnx) -; 

(ii) clax(U) n clax(V) n M = clax(UnV) n M; then 

clax(U) n clax(V) = clax(UnV). 

PROOF. Suppose to the contrary that there exists an 

Let Y := aX\M. Since X is Linde15f (cf. theorem 4.1.10) X is normal and 

consequently 

clSX «UnVnX) 

= clSx(UnVnx). 

Hence it follows that cly(UnX) n cly(VnX) = cly(UnVnx) and therefore 

xo i y. It is also clear that Xo i M. Contradiction. 0 

This lemma implies the following theorem. 

4.2.12. THEOREM. Any compactification of a strongly w1 compact space in 

which the collection of multiple points is also strongly wI compact, is 

regular Wallman. 

4.2.13. COROLLARY. Any compactification of a Lindelof semi-stratifiable 

space in which the collection of multiple points is also Lindelof semi­

stratifiable, is regular Wallman. 

PROOF. Since X is separable it follows that the weight of aX is at most c. 

Let B an open basis for aX, closed under finite intersections and finite 

unions, which has at most C members. Define 

C := {clax(BO),clax(B1» BO/B1 E B 

and clax(BO) n clax(B1) ¢}. 
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For each (clax(BO),claX(B1» € C choose an f € C(aX,I) such that 

Let F denote the set of mappings obtained in this way; write F = {f IKE c.}. 
K 

By transfinite induction we can construct, in a similar manner as in the 

proof of theorem 4.2.6, for each K € C. a OK € (0,1) such that 

(i) clax(U(OK,fK» n clax(V) n M = clax(U(OK,fK) n V) n M 

for all V E A.V.{U(Oa,fa ) I a < K}; 

(H) (U(OK,fK) n V n X) = (U(OK,fK) n X) n (VnX) 

for all V E A.V.{U(Oa,fa ) I a < K}. 

Here we use lemma 4.2.5 in case A = X. From lemma 4.2.11 we deduce that 

A.v.{cl x(U(O ,f » IKE c.} is a ring of regular closed sets in aX. 0 
a K K 

4.2.14. COROLLARY (cf. [16J). ax is regular Wallman if X is regular 

Lindelof semi-stratifiable. 

4.2.15. COROLLARY to COROLLARY (cf. [85J). ax is regular Wallman if X is 

separable metric. 

4.3. Compactifications of locally compact spaces with zero-dimensional 

remainder 

For a locally compact space X we give a necessary and sufficient con­

dition for every compactification aX of X with zero-dimensional remainder 

to be regular Wallman. As an application it follows that the Freudenthal 

compactification of a locally compact metrizable space is regular Wallman. 

The results in this section are taken from BAAYEN & VAN MILL [11J. 

4.3.1. For shortness, from now on a separating ring of regular closed sets 

of a topological space X will be called an s-ring. 

4.3.2. PROPOSITION. Any open subspace of a regular Wallman space possesses 

an s-ring. 

PROOF. Let U be an open subspace of the regular Wallman space X and let 

F be an s-ring for X. Then it is easy to see that S := {F n U F € F} 

is an s-ring in U. 0 
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4.3.2. Notice that a closed subspace of a regular Wallman space need not 

have an s-ring, for SOLOMON's [107J example can be embedded in a product 

of closed unit segments and each product of closed unit segments is 

regular Wallman (cf. STEINER & STEINER [109J) . 

4.3.3. When A and B are open subsets of the topological space X and 

A n B = lII, we will write A + B instead of A U B. If X is a locally compact 

space and F is an s-ring in X then we will write 

F* := {F € F I F is compact or (X\F) is relatively compact}. 

Clearly F* is an s-ring. In addition, if aX is any compactification of X, 

we define a collection aF of subsets of X in the following manner: 

S € aF: ~ there are F € F*, compact K c X and open subsets V1 ,V2 

of ax such that: 

(i) F n K = lII, 
(ii) aX\K = V1 +V2 and S 

4.3.4. LEMMA. Let X be a locally compact space, aX a compactification of 

X, and F an s-ring in X. Then aF is closed under finite intersections, 

and v.aF is again an s-ring. 

PROOF. First notice that aF consists of regular closed sets. Secondly we 

show that aF is closed under finite intersections. Take SO'Sl € aF. Then 

for i € {0,1} there exist Fi € F*, compact Ki c X and open Ui'Vi c aX such 

that aX\Ki = Ui +Vi and Fi n Ki = III and Si Fi n Ui • Then So n Sl = 
(FOnF1) n (UOnU1). Since KO U K1 is compact, (FOnF1) n (KOUK1) = lII, and 

it follows that So n Sl € aF. 

Trivially F* c aF and hence aF is separating if F* is. To prove the 

latter, let x € X and let G be a closed set in X such that x i G. Take an 

open U c X such that x € U c clx(U) and clx(U) n G = lII, while moreover 

clx(U) is compact. This is possible since X is locally compact. Now, F is 
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separating and therefore there exist FO,F1 E F such that x E FO' X\U c F1 

* * and FO n F1 = ¢. Evidently FO,F1 E F and hence F is separating. 

Since the union of finitely many regular closed sets is again regular 

closed it now follows that v.aF = A.v.aF is an s-ring. D 

4.3.5. THEOREM. Let X be a locally compact space. Then the following 

assertions are equivalent: 

(i) X possesses an s-ring; 

(ii) any compactification aX of X with zero-dimensional remainder 

pX = ax\X is regular Wallman. 

PROOF. (ii) - (i). This follows from proposition 4.3.2. 

(i) - (ii). Let F be an s-ring in X and let S := {clax(S) I S E aF}. We 

will show that v.S is an s-ring in aX, which implies that aX is regular 

Wallman. 

Let F E F* and let K be a compact subset of X such that ax\K V 0 + Vi 

and F n K = ¢; we put Si F n V. (i E {O,!}). 
~ 

Indeed, if F is compact, then also Si is compact; consequently clax(Si) =Si. 

If X\F is relatively compact, then clax(F) = F U pX and consequently 

Since clax (SOUS 1) n pX = pX and clax(SO) n clax (Sl) 

clax(Si) = Si U (pxnvi ) (i E {O,!}). 

¢ it follows that 

If So or Sl is compact, then this is a triviality. Therefore suppose 

neither is compact. For i E {O,l} let Ki be a compact subset of X, 

* Fi E F and ui,Vi open subsets of aX such that Si Fi n Vi' while 

aX\Ki Vi +Ui and Fi n Ki = ¢. Then 
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Suppose that there exists an x € (clax(SO) n clax (Sl»\clax (SOnS1). Then 

x € Vo n V1• Now, as clax (FOnF1) n pX = pX, it follows (cf. the proof of 

lemma 4.3.4) that 

which is a contradiction. 

It now follows that T := v.S is a ring consisting of regular closed 

sets. 

CLAIM 3. T is separating. 

Let xo € aX and let G be a closed set of aX such that Xo t G. If Xo € X, 

then the existence of TO,T 1 € T such that Xo € TO and GeT 1 and TO n T 1 = III 
is evident. So, we may assume that Xo € pX. Since pX is zero-dimensional 

it possesses a base of open and closed sets. Let C be an open and closed 

set of pX such that Xo € C and C n G = Ill. Define Co = pX\C. Then C and Co 

are disjoint closed subsets in aX such that Co U C pX. As aX is normal, 

there exist open UO'U1 c aX such that Co U G c UO' C c U1 and Uo n U1 = Ill. 
Then K = ax\(uOUU1) is a compact subset of X such that K n G = Ill. Choose 

a relatively compact open 0 in X such that K c 0 c clx(O) and 

clx(O) n (GnX) Ill. As F* is separating we conclude that 

X\O = n{F € F* I X\O c F} 

,and consequently, by the compactness of K, there exists an F € F* such 

that X\O c F and F n K = Ill. Define So := F n Uo and Sl := F nUl. From 

claim 1 it now follows that Xo € clax (Sl) and G c clax(SO) and 

clax(SO) n Clax (Sl) = Ill. 
This completes the proof of the theorem. 0 

4.3.6. COROLLARY. Let X be a topological space and let aX be a compacti­

fication of X such that the set M of multiple points is compact and zero­

dimensional. If aX is regular Wallman, then also aX is regular Wallman. 

~. By proposition 4.3.2 aX\M possesses an s-ring and hence, as aX is 

a compactification ofaX\M, the space aX is regular Wallman (cf. theorem 

4.3.5). 0 
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4.3.7. In [85] MISRA showed that 8(I. I X.) is regular Wallman if 8X. is 
~€ ~ ~ 

regular Wallman for all i € I. It is well known that any locally compact 

metrizable space is a topological sum of locally compact separable metric 

spaces. As 8X is regular Wallman if X is separable metric (cf. MISRA [85], 

also corollary 4.2.15) this implies that 8X is regular Wallman if X is 

locally compact and metrizable. This yields the following: 

4.3.8. COROLLARY. Let X be a locally compact metrizable space. Then each 

bouding system compactification of Gould, all finite and countable com­

pactifications, all finite multiple point compactifications and the 

Freudenthal compactification are regular Wallman. 

PROOF. Bounding system compactifications of Gould have only one multiple 

point (cf. NJASTAD [88]) and the Freudenthal compactification has zero­

dimensional remainder. D 

4.3.9. In [85] MISRA also showed that 8X is regular Wallman in case X is 

normal and homeomorphic to a finite product of locally compact ordered 

spaces. Thus the above corollaries also hold for these spaces. 

4.4. Tree-like spaces and Wallman compactifications 

v 
We show that the Cech-Stone compactification 8X of a peripherally 

compact tree-like space X, which has at most e closed subsets, is regular 

Wallman. 

4.4.1. Let X be a peripherally compact tree-like space (cf. 1.3.16). For 

all distinct a,b € X define 

S(a,b) := {x € X I x separates a and b} u {a,b}. 

It is well known that S(a,b) is an orderable connected subspace of X with 

two endpoints (cf. PROIZVOLOV [92]; also KOK [70]) and therefore S(a,b) is 

compact (cf. KELLEY [69]). 

In [93] PROIZVOLOV proved that any two diSjoint closed sets A and B 

are separated by a closed discrete set C = {x I a € K}; that is X\C is 
a 

the union of two disjoint open sets Uo and U1 such that A c Uo and B c U1. 

The set C is not uniquely determined. In fact, each xa is a point arbitrarily 
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chosen from Sea ,b )\{a ,b } for certain a,b € X (a € K). Hence it a a a a a a 
follows that for each x there are at least C different choices. 

a 
This observation will be used in the proof of the following theorem. 

4.4.2. THEOREM. Let X be a peripherally compact tree-like space. Suppose 

X has at most C closed subsets. Then ax is regular Wallman. 

PROOF. Let B the collection of closed subsets of X. Define 

A := {(A,B) I A,B € B and A n B = ~}. 

Write A = {(A ,B ) I a € C}. For each a € C we will construct an open sub­a a 
set U of X such that: 

a 

(i) Aa C Ua C clx(Ua ) C X\Ba; 

(ii) au is discrete; 
a 

(iii) a < a implies that aUa n aUa = ~. 

Suppose that all Ua are defined for a < a. If a = 0, choose an open 0 in 

X with discrete boundary such that AO C 0 C clx(O) C X\BO and define 

Uo := O. If a ~ 0, then define 

H := A.V,{Ua I a < aL 

It is clear that H is a family of less than C open sets with discrete 

boundary. Let C = {Xi i € I} be a discrete set separating Aa and Ba' 

and, for each i € I, let S(ai,bi ) be selected in such a way that 

xi € S(ai,bi)\{ai,bi } while, moreover, for any choice of 

Yi € S(ai,bi)\{ai,bi } (i € I) the set D = {Yi I i € I} is again a closed 

discrete set separating Aa and Ba (cf. 4.4.1). Since S(ai,bi ) is compact 

we have that 

for all H € H and consequently 

I U (aH n S(a.,bi » I < c. 
H€H ~ 

For each i € I choose xi € S(ai,bi)\{ai,bi } such that xi t UH€H(aHnS(ai,bi »· 
It is clear that such a choice is possible. Define C' = {xi I i € I}. Let 

o be an open subset of X such that Aa C 0 C clx(O) C 0 U C' C X\Ba and 

define Ua := O. This completes the transfinite construction. 
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Finally define V := A.V.{U I a € C}. As the intersection of two 
a 

regular closed sets with disjoint boundaries, is again regular closed it 

immediately follows that {clx(V) I V € V} is a ring consisting of regular 

closed sets of X, while moreover it separates (in the sense of 2.3.1) the 

closed subsets of X. Since X is normal, ax is regular Wallman (cf. MISRA 

[85J, theorem 3.4) • 0 

4.4.3. The proof of the previous theorem is a modification of the proof 

of theorem 1.4.8. There we showed that a compact tree-like space of 

weight at most C is regular supercompact, hence, in pa1"ticular, is regular 

Wallman. This suggests the following question. 

4.4.4. QUESTION. Are all compact tree-like spaces regular Wallman? 

4.5. Regular supercompact super extensions 

In section 1.4 we defined a space X to be regular .supercompact 

provided that X possesses a binary subbase T such that A.v.T is a ring 

consisting of regular closed sets. Since superextensions are supercompact 

in a canonical way, it is natural to ask in what cases spaces AX are 

regular supercompact. We will prove that in case ax is regular Wallman, 

A(X,Z(X» is regular supercompact. Hence for a normal space X it follows 

that .AX is regular super compact if ax is regular Wallman. 

4.5.1. LEMMA. Let X be a topological space and let f be a separating ring 

of regular closed subsets of X. If M = {F1 , ••• ,Fn } c f is a finite linked 

system then there is a finite linked system M' = {Fi, ..• ,F~} c f such that 

Fi c intx(Fi ) for all i $ n. 

PROOF. For i,j $ n choose Fij Fji € f such that Fij c intx(FinFj ) and 

Fij ~ ~. This is possible since f is separating and is a ring consisting 

of regular closed sets and M is linked. Define 

F' 
i 

for all i $ n. It is clear that M' 
properties. 0 
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2.5.2. THEOREM. Let X be regular Wallman and Hausdorff. Then AX is regular 

superoompact (and hence regular Wallman). 

~. Let f be a separating ring of regular closed subsets of X. Then f 

separates the closed subsets of X (cf. O.A) and consequently AX and A(X,f) 

are equivalent (cf. theorem 2.4.2). Hence it suffices to show that A(X,f) 

is regular supercompact. 

- + 
CLAIM 1. Choose F € f. Then (intx(F» is open in A(X,f). 

Indeed, let M € (intx(F»+. Choose MO € M such that MO c intx(F). As f 

separates the closed subsets of X there is an FO € f such that 

X\(intx(F» C FO and FO n MO = ~. Therefore M € (X\FO)+ C (intx(F»+. 

~ 2. {(intx(F»+ I F € f} is an open subbase for A(X,f). 

Choose M € n., U: with X\U. € f (i S n). Fix i S n and choose M € M 
1.:.n 1 1 

such that M CUi. By normality of X there is an open subset 0 C X such 

that 

M € 
+ + + n (intx(Fi » C n Fi C n Ui iSn iSn iSn 

CLAIM 3. A.V.{F+ I F € f} is a regular ring. 

+ It suffices to prove that nisn Fi (n € 00) is regular closed in A(X,f) for 

arbitrary Fi € f (i s n). Let M € n.< F: and let U be any open neighbor-
1_n 1 

hood of M. Without loss of generality, by claim 2, 

U = n (intx(Tj »+ 
jSm 

where T. € 
J 

f (j S m). Clearly 

M € 
+ n + n Tj n Fi jSm iSn 

and consequently {T j I j S m} U {Fi liS n} is linked. By lemma 2.11.1 

there are Tj € f (j S m) and Fi € f (i S n) such that 



T' c int (T ) 
j X j 

and (j ";m, i ";n); 

{T~ 
J 

j ,,; m} U {F ~ 
1. 

i ,,; n} is linked. 

Choose L E A(X,F) such 

L E n,< (intx(TJ,))+ n 
J-m 

+ that L E n,< T~ n 
J-m J 

n,< F~+. Then 
l.-n l. 

n,< (int (F,))+. l._n -x l. In particular 

It follows that nl.'<_n F~ is the closure (in A(X,F)) of n,< (intx(F,))+; l. l._n l. 
consequently ni,,;n F: is regular closed. 0 

4.5.3. COROLLARY. 

(i) If ex is regular Wallman then A(X,Z(X)) is regular supercompact; 
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(ii) AX is regular supercompact if X is a regular Lindelof semi-stratifi-

able space; 

(iii) AX is regular supercompact if X is normal and homeomorphic to a 

finite product of locally compact ordered spaces. 

PROOF. (i) This follows from corollary 2.2.6 and theorem 2.5.2. 

(ii) This follows from corollary 4.2.14. (iii) MISRA [85] showed that 

ex is regular Wallman if X is normal and homeomorphic to a finite product 

of locally compact ordered spaces. 0 

Finally we prove that a regular supercompact space is a superexten­

sion of each of its dense subspaces. 

4.5.4. THEOREM. A regular supercompact space is a superextension of each 

dense subspace. 

PROOF. This immediately follows from the definition of regular super­

compactness and from theorem 2.2.5. 0 

4.6. GA compactifications; some preliminaries 

This section contains some preliminary results concerning GA compac­

tifications. These results will be used in section 4.7 to show that each 

compact Hausdorff space of weight at most C is GA compactification of 
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each dense subspace. 

4.6.1. As noted in section 2.2, the GA compactification S(X,S) of the 

topological space X relative the closed Tl -subbase S is the closure of X 

in the superextension A(X,S). One of the basic properties of the GA com­

pactification S(X,S) is that it is Hausdorff in case S is weakly normal 

(cf. 2.2.1 (ii» (cf. DE GROOT & AARTS [57J).As mentioned earlier DE GROOT 

& AARTS [57J used this fact to obtain a new intrinsic characterization of 

complete regularity: a topological space is completely regular if and 

only if it possesses a weakly normal closed T 1-SUbbase. This result con­

siderably strengthened FRINK's [51J result and it motivates the interest 

in GA compactifications. It is unknown whether there exists a direct 

proof of the above characterization, i.e. a proof without using compactifi­

cations. For FRINK's [51J result there are several direct proofs (cf. 

STEINER [115J, VAN MILL & WATTEL [84J). 

4.6.2. LEMMA. Let S be a closed T l -subbase for the topological space X. 

Then the following assertions are equivalent: 

(i) S(X,S) is Hausdorff; 

(ii) S is weakly normal; 

(iii) {s+ n A(X,S) I S E S} is weakly normal. 

PROOF. (i) - (ii). Assume that S(X,S) is Hausdorff and take SO'Sl E S 
+ + 

such that So n Sl = ~. Then (SO n S(X,S» n (Sl n S(X,S» = ~ and hence 

there exist open disjoint Ui C S(X,S) such that 

S: n S(X,S) c u. 
~ ~ 

(i E {O,!}). 

Then S(X,S)\Ui is closed in S(X,S) and as S(X,S) is closed in A(X,S) it 

is closed in A(X,S) too (i E {O,l}). Since S+ is a closed subbase for the 

compact space A(X,S) there exist Tij E S and Tij E S (i,j Sn, nEW) such 

that 

(i) S(X,S)\UO c UiSn n. T: .; S(X,S)\U l c UiSn n.< T!:; 
JSn ~J J-n ~J 

(ii) UiSn njsn T:. + = ~ = Uisn n.< T!: + n So n Sl· 
~J J-n ~J 

(Notice that a finite intersection of finite unions of subbase elements 

also can be represented as a finite union of finite intersections of sub­

base elements.) As S+ is binary, for each i S n there is a jO(i) S n such 



that T;jO(i) n S~ = ¢ and a j1 (i) ~ n such that Ti;l(i) 

writing Ti for TijO(i) and Ti for Tij1(i) we find that 

(i) 8(X,S)\UO c Ui~n T;; 8(X,S)\U1 c Ui~n Ti+; 

(ii) Ui~n T; n S~ = ¢ = Ui~n Ti+ n S~. 

Then 

8(X,S) u + u T:+. X c c T. U 
i~n 1. i~n 1. 

and consequently 

X = LJ (T:nX) u U (T:+nX) 
i~n 1. i~n 1. 

Moreover it is obvious that Ui~n Ti n So 

that S is weakly normal. 

u 
i~n 

T. U U 
1. i~n 
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¢; 

T' . 
i 

(ii) • (i). See DE GROOT & AARTS [57, lemma 9J or VERBEEK [119, Theorem 

11.2.3J. 

(ii) • (iii). 
+ + + + + 

Choose SO'Sl E S such that So n Sl 

there exist T. 
1. 

E S and T: E S (i ~ n) such that 

(ii) Ui~n Ti U 

Then it follows 

X c 8(X,S) c 

and consequently 8(X,S) 

1. 

= ¢ 

U 
i~n 

+ 
T. , 

1. 

(iii) • (ii). This can be proved in a similar way. 0 

¢, 

4.6.3. THEOREM. A Hausdorff compactification aX of X is a GA compactifi­

cation if and only if aX possesses a weakly normal closed T 1-subbase T 
such that for all TO,T1 E T with TO n Tl ~ ¢ we have TO n T1 n X ~ ¢. 

PROOF. (.). This follows from lemma 4.5.2 and from the trivial observa­

tion that if aX = 8(X,S), then {s+ n 8(X,S) I S E S} is a closed T1-Sub­

base for 8 (X ,S) • 

(~). Suppose that aX possesses a weakly normal closed T1-subbase T such 

that for all TO,T1 E T with TO n T1 ~ ¢ we have that TO n Tl n X ~ ¢. 
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Define 

T fX = {T n x I T E T}. 

We will show that aX is equivalent to S (X, T f X) 

For all x E aX define M(x) := {T n X I T E T and x E T}. 

CLAIM 1. M (x) is a maximal linked system (in T f Xj . 

That M(x) is a linked system is evident. Assume that there is aTE T 
such that M (x) u {T n X} is linked and x iT. Then there is a TO E T 

such that x E TO and TO n T = \lS, since T is a T1-subbase. Now TOnXEM(x) 

and (TOnX) n (TnX) = \lS, which is a contradiction. 

Define a mapping f: aX -+ ;,(X,T fX) by f(x) := M(x). 

CLAIM 2. f is one to one and continuous and is the identity on X. 

Choose distinct x,y E X. Choose disjoint TO,T1 E T such that x E TO and 

YETi. Then TO n X E M(X), Tl n X E M(y) and (TOnX) n (T1nX) = \lS; 

consequently M(x) ~ M(y). 

X E 

The continuity of f follows from the following observation: 

f- 1[(TnX)+] .. f(x) E (TnX)+" (TnX) E M(x) .. x E T. 

Finally, choose x E X. Then f(x) = M(x) = {TnX I TET and xET}=x, 

which shows that f is the identity on X. 

CLAIM 3. f is a closed mapping. 

As f is one to one, we need only show that f[T] is closed in ;, (X, T f X) 

for all T E T. This however is a triviality, since it is easy to show 

that f[T] (TnX) + n S (X, T f X) for all T E T. 

Since f is the identity on X we conclude that f: aX -+ S (X, T ~ X) is 

a homeomorphism. D 

We conclude this section with a sufficient condition for extending 

continuous functions over GA compactifications. (We refer to 2.3.1 for 

the definition of the relation C between closed subbases.) 

4.6.4. THEOREM. Let S be a T 1-subbase for X and let T be a weakly normal 

T1-subbase for Y and let f: X + Y be a continuous map such that 
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Then f can be extended to a continuous map f: B(X,S) -+ B(Y,T). Moreover, 

if f is onto then f is onto. 

If f is 1 - 1 and {f[SJ I s € S} L T then f is an embedding. 

PROOF. The proof is almost the same as the proof of theorem 2.3.4, except 

for some replacements of two elements covers by finite covers. 0 

In a similar manner one obtains an analogue of corollary 2.3.5. 

4.6.5. COROLLARY. Let S be a separating ring of closed subsets of X, and 

let T be a weakly normal Tl-subbase for Y and let f: X + Y be a continuous 

surjection. Then the following assertions are equivalent: 

(i) there is a continuous surjection f: B(x,S)-+ B(Y,T) such that 

f ~ X = f; 
(ii) {f-l[TJ I T € T} L S. 0 

4.7. Every compactification of a separable space is a GA compactification 

In this section we show that any compact space of weight at most C 

is a GA compactification of each dense subspace. First we show that any 

compact space of weight at most C is a GA compactification of each dense 

open subspace. Then using a technique of SAPIRO [lOlaJ (cf. also UNLfi 

[117aJ, STEINER & STEINER [113J) we derive the above result. 

4.7.1. For technical reasons we need to define a new class of compactifi­

cations. 

DEF'INITION. Let X be a topological space and let aX be a compactification 

* of X. Then aX is called a GA compactification of X provided that aX pos-

sesses a family T of closed sets satisfying: 

(i) for every pair of disjoint closed sets AO,Al c aX there are disjoint 

TO,Tl € T with Ai c T1 (i € {O,o) (Le. 2ax L T, cf. 2.3.1) ; 

(ii) for all TO,Tl € T with TO n Tl t- ¢ we have that TO n Tl n X t- ¢. 

4.7.2. LEMMA. Each Wallman compactification is a GA* compactification and 

* each GA compactification is a GA compactification. 
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* PROOF. That every Wallman compactification is a GA compactification fol-

lows from theorem 4.1.4 and theorem 4.1.6. 

Let aX be a compactification of X and let T be a family of closed 

sets of aX satisfying (i) and (ii) of definition 4.7.1. Clearly T is a 

closed base which is T1 . We will show that T is normal, which suffices to 

prove the lemma (cf. 4.6.3). Choose disjoint TO,T1 € T and let Uo and U1 

be disjoint neighborhoods of TO and T1 respectively. Then, by 4.7.1 (i) 

there are To,Ti € T such that aX\Ui C Ti and Ti n Ti = ¢ (i € {0,1}). 

Consequently T is normal. 0 

The following proposition was the main result in VAN MILL [78J. 

4.7.3. PROPOSITION. Let aX be a compactification of a locally compact 

* space X such that weight (aX) ~ C. Then aX is a GA compactification of X. 

PROOF. Let B be an open basis for aX such that IBI ~ C. Without loss of 

generality we may assume that B is closed under finite intersections and 

finite unions. Define 

For each pair (Clax(BO) ,clax (B 1» € C choose an f € C(aX,I) such that 

f[clax(BO)J = 0 and f[clax (B1)J = 1. Let F denote the set of mappings ob­

tained in this way; write F = {f I y € C}. For each y € C we will con-
y 

struct a 0 € (0,1) such that 
y 

for all p < y. 

Let f € F and define M := {f-1 (p) \X I p € f [aX\XJ} u {{x} I x € X} 
y y y 

and let a (X) be the decomposition space of M. It is easily seen that 
y 

a (X) is Hausdorff; consequently a (X) is a compactification of X with 
Y Y 

f [aX\XJ is a remainder. Let P denote the projection map. Then P is the 
y y -1 Y 

identity on X. Finally define h : a (X) --r I by h foP. Then h is 
y Y Y Y Y 

continuous and the diagram 



conunutes. 

p 
y 

aX ------------------~ 

I 

h 
Y 

a (X) 
y 

Define 00 := ! and assume that all 0p have been defined for p < y 

(y € c) such that (*) is satisfied. If B c a (X), then B denotes the 
y 
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closure of B in a (X). As in the proof of theorem 4.2.6 there is a ° € (0,1) 
y 

such that 

f- 1[0,0 ) n X n h -1[0,0) n (a (X) \X) 
p p y y 

for all p < y (notice that a (X)\X is homeomorphic to a closed subset of 
y 

the real line and hence is strongly w1 compact). Define 0y := 0. We claim 

that (*) is satisfied. Take p < y and assume that cl x(f- 1[0,0 » n 
-1 a y y 

cl x(f [0,0» # ¢. Then a p p 

since it is easily seen that P (cl x(U» 
Therefore y a 

u-n:K for each open U c aX. 

Now assume that h-1[0,0 ) n f- 1[0,0 ) nx n X 
y Y P P 

¢. It then follows that 

h-1[0,0 ) n f-1[0,0 ) nX n (a (X)\X) 
y y p p y 
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-1 -1 
and consequently h [0,0) n f [0,0) n X # ~, which is a contradiction. 

_:--_--'-X X p P 
-1 -1 

Therefore h [0,15) n f [0,0) nX n X # ~. Let 
X X P P 

X E h-l[O,o ) n f-l[O,o ) nx n X; 
X X P P 

then x E cl x(f-1[0,0 » n Clax(f-l[O,D » n X. Thus (*) holds indeed for 
a X X P P 

of the a (X E e). 
X 

X E e}. It is easy to see that A 
OX; this completes the construction 

Define A := {cl x(f-l[O,O i) I 
a X X 

separates the closed subsets of aX; consequently aX is a GA* compactifi-

cation of X. 0 

The following lemma is straightforward generalization of a lemma 

due to UNLfi ([117a]; cf. also STEINER & STEINER [113]) . 

4.7.4. LEMMA. Let aOxO and a l X1 be compactifications of Xo and Xl' respect­

ively. Let f: aOxO -.. 'a l Xl be a continuous surjection such that f[XO] = Xl' 

and f ~ (aOXO\XO) is one to one. If aoxo is a GA* compactification of Xo 

then alx l is a GA* compactification of Xl. 

~. Let T be a family of closed sets in aOxO satisfying (i) and (ii) 

of definition 4.7.1. Define S := {f[T] I T E T}. We will show that S satis­

fies the conditions of definition 4.7.1. Indeed, take disjoint closed sets 

AO,Al c a l x1 and take disjoint open neighborhoods UO,U l of them. By 
-1 -1 

4.7.1 (i) there are TO,Tl E T such that f [Ai] C Ti C f [Ui ] (i E {O,l}). 

Then Ai C f[Ti ] CUi (i E {O,l}). Clearly S consists of closed subsets of 

alx l • 
Take TO,T1 E T such that f[TO] n f[T l ] # ~. Suppose that 

f[TO] n f[T l ] n Xl =~. Then there is ayE f[To] n f[T1] n (alxl\x l ). 

Choose Xi E Ti such that f(xi ) = y (i E {o,o). Clearly Xi i Xo (i E {O,ll) 

since f[XO] = Xl so that Xo = Xl' since f ~ (aOXO\XO) is one to one. We 

conclude that TO n Tl # ~ and consequently TO n Tl n X # ~. Therefore 

f[TO] n f[T l ] n f[XO] = f[TO] n f[T 1] n Xl # ~, which is a contradiction. 0 

The next lemma is a straightforward generalization of a lemma due 

to SAPIRO [lOla]. 

4.7.5. LEMMA. Suppose that X = Y U Z and that aX is a compactification 

* of X. If clax(Y) and clax(Z) both are GA compactifications of Y and Z, 
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* then aX is a GA compactification of X. 

PROOF. Let S and T be families of closed sets of clax(Yl and of clax(Zl, 

satisfying 4.7.1 (il (iil. Let W := clax(Yl n clax(Zl. Define 

F := {S UTI S € S, T € T and S n weT}. 

We will show that F satisfies 4.7.1 (il (iil. 

Indeed, choose disjoint closed sets AO,A1 c aX. Choose disjoint 

SO,Sl € S such that Ai n clax(Y) c 

disjoint TO,Tl € T such that (A. n 
~ 

Si (i € {0,1}). In addition, choose 

cl x(Z» U (S. n W) c T. (i € {O,O). 
a ~ ~ 

Then S. 
~ 

(SOUTO) 

U Ti € F while 

n (SlUT1) = ¢. 

moreover Ai C Si U Ti (i € {O,l}l and 

Let F. = S. U T. € F (i € {O, 1}) such that FO n Fl 'f ¢. If So n TO 'f ¢ 
~ ~ ~ 

or TO n Tl 'f ¢ then clearly FO n Fl n X 'f ¢. Therefore assume that 

So n Tl 'f ¢. Then (SOnWl n Tl 'f ¢ and consequently, by definition, also 

TO n Tl 'f {Il. The case Sl n TO 'f {Il can be treated analogously. D 

We now can prove the main result in this section. The technique of 

proof is again due to SAPIRO [101aJ. 

4.7.6. THEOREM. Every compact Hausdorff space of weight at most C is a 

GA* compactification of each dense subspace. 

PROOF. Let X be a compact Hausdorff space of weight at most C and let Y 

be a dense subspace of X. Let D be the set of isolated points of Y. 

Define E := Y\cly(D). Then E is an open subspace of Y without isolated 

points. 

CLAIM. cl (El is a GA* compactification of E. 
-- X 

Indeed, let Z := clx(E) and let A be a dense subspace of E of cardinality 

at most c. Topologize B := (zx{O}) 1I (Ax{l}) by taking as an open base 

the collection 

V := {(a,l) I a € A}u {(U x {O}) U «UnA)\(a,l» I U open in 

Z and a € UnA} 

(cf. ENGELKING [49J). Clearly B is a compact Hausdorff space of weight at 

most C. Also A x {1} is dense in B, since E has no isolated points. Now, 

by proposition 4.7.3 B is a GA* compactification of AX {1}. Define a 
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mapping f: B ~ Z by 

{f«X'O)) 

f( (e,l)) 

= x (x E Z) 

= e (e E E). 

Then f clearly is continuous. By lemma 4.7.4 it now follows that Z is a 

* GA compactification of A. By an obvious argument it now follows that Z 

* is a GA compactification of E too. 

* By proposition 4.7.3 it also follows that clx(D) is a GA compacti-

* fication of D. Thus, lemma 4.7.5 implies that X is a GA compactification 

* of DUE. By an obvious argument it now follows that X is a GA compacti-

fication of Y. 0 

4.7.7. COROLLARY. Let X be a separable space. Then all compactifications 

of X are GA* compactifications. 0 

* 4.7.8. QUESTION. Is there a GA compactification which is not a GA com-

pactification? 

4.7.9. REMARK. Using the same technique as above it can be shown that 

* every compactification is a GA compactification if and only if every 

* compactification of a discrete space is a GA compactification. 

4.8. Notes 

In the present chapter we have given partial answers to questions 

posed by FRINK and PAALMAN-DE MIRANDA. Interesting is the connection 

between Wallman compactifications and GA compactifications. Our technical 

but natural proof of proposition 4.7.3 unfortunately only "works" for 

GA compactifications. 

As noted before, some of the techniques used in the present chapter 

are inspired on ideas of BERNEY [16J. 

The results in section 4.3 were taken from BAAYEN & VAN MILL [llJ. 
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CHAPTER V 

A SURVEY OF RECENT RESULTS 

In this final chapter we give a survey of recent results; moreover we 

mention some important results on superextensions which were proved by 

VERBEEK [119J. References are to be found at the end of this chapter; they 

are not included in the list of references for the first 4 chapters. 

5.1. Cardinal functions on superextensions (cf. VERBEEK [lOJ, VAN MILL [4J). 

Let X be a topological space. The definitions of the following cardin­

al functions on X can be found in JUHASZ [67J; let 

d(X) denote the density of X; 

t(X) denote the tightness of X; 

c(X) denote the cellularity of X; 

w(X) denote the weight of X; 

X(X) denote the character of X. 

5.1.1. THEOREM (a) (cf. VERBEEK [lOJ). Let X be a topological space. Then 

(i) d(AX) S d(X); 

(ii) if X is compact and Hausdorff then w(X) = W(AX); 

(iii) if X is an infinite Hausdorff space then 

c(X) S C (AX) = sup{c(Xn ) I n E IN} = c(Xw). 

(b) (cf. VAN MILL [4J).Let X be a normal topological space. Then 

(i) t(AX) = X(AX); 

(ii) if X has a binary normal subbase then 

X (X) S d (X) • t (X) • 

5.2. Metrizability in superextensions (cf. VAN DOUWEN [3J) 

The following theorem answers some questions posed in 2.11. 
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5.2.1. THEOREM. Let X be a normal topological space. Then the following 

assertions are equivalent: 

(i) X is compact and metrizab1e; 

(ii) AX is metrizab1e; 

(iii) AX is perfectly normal; 

(iv) SX is a Go in AX; 

(v) AX is hereditarily normal. 

5.2.2. THEOREM. Let X be a normal topological space for which AX is first 

countable. Then X is compact, hereditarily separable and perfectly normal. 

5.3. The compactness number of a compact topological space (cf. BELL & 

VAN MILL [2J) 

BELL & VAN MILL [2J define the compactness number cmpn(X) of a 

compact Hausdorff space·X in the following manner: 

cmpn(X) $ k (k € IN) provided that X admits an open subbase U 

cmpn(X) 

cmpn(X) 

such that each covering of X with elements of U contains 

a subcovering of at most k elements of U; 
k if cmpn(X) $ k and cmpn(X) ~ k; 

if cmpn(X) 1 n for all n € IN. 

5.3.1. THEOREM. (a) Let X be a non-pseudocompact space. If Y is a compact 

Hausdorff space which can be mapped continuously onto SX, then cmpn(Y) 

(b) For each k € IN there is a compact Hausdorff space Xk for which 

cmpn(xk ) = k. 

5.3.2. THEOREM. There is a non-compact, locally compact and o-compact 

topological space X all compactifications of which have infinite compact­

ness number. 

5.4. A cellular constraint in super compact Hausdorff spaces (cf. BELL [lJ) 

The following result is quite unexpected. 

5.4.1. THEOREM. Let X be a compact Hausdorff space which is a neighborhood 

retract of a supercompact Hausdorff space. If D is any dense subspace of X 

then c(X\D) $ weD). 
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Notice that the above theorem implies that if yIN is a supercompact 

compactification of IN then yIN\IN satisfies the countable chain condition. 

8m 8m\m 5.4.2. THEOREM. 2 and 2 are not supercompact. 

5.5. An external characterization of spaces which admit binary normal 

subbases (cf. VAN MILL & WATTEL [7J) 

5.5.1. THEOREM. Let S be a normal T 1-subbase for the topological space X. 

Let p,q be distinct elements of X. Then there is a function f: X + [O,lJ 

such that f(p) = 0 and f(q) = 1 while for every t E [O,lJ the sets f- 1[0,tJ 
-1 

and f [t,lJ are countable intersections of members from S. 

This theorem is used to give an unexpected characterization of spaces 

which admit binary normal subbases. First we give a definition. If 

x,y,z E I = [O,lJ then let m(x,y,z) be the unique point in 

[x,yJ n [y,zJ n [x,zJ. We call a subset X in a product of unit segments IA 

triple convex provided that for all x,y,z E X the point p of IA defined by 

(a E A) 

also belongs to X. We now get the following characterization of spaces 

which admit a binary normal subbase. 

5.5.2. THEOREM. A compact space X admits a binary normal subbase if and 

only if it can be embedded as a triple-convex set in a product of closed 

unit segments. 

5.6. Some elementary proofs in fixed point theory (cf. VAN DE VEL [9J) 

Let X be a space with a binary normal subbase S. A mapping f: X + X 

is called convexity preserving (cp map) (cf. VAN MILL & WATTEL [7J) provid­

ed that f- 1 (S) E H(X,S) for all S E S. 

As noted in chapter 1, each connected space with a binary normal sub­

base has the fixed point property for continuous functions. This was proved 

by VAN DE VEL [118J using methods from algebraic topology. Recently 

VAN DE VEL has found an elementary proof of a special case of the above 

theorem. 

5.6.1. THEOREM. Let X be a normally supercompact connected space. Then 
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each cp map f: X + X has a fixed point. 

5.7. Reductions of the generalized De Groot conjecture (cf. VAN MILL & 

VAN DE VEL [6]) 

The generalized De Groot conjecture states that AX ~ Q iff X is a 

nondegenerate metrizable continuum. We have two reductions. 

5.7.1. THEOREM. The following assertions are equivalent: 

(i) the generalized De Groot conjecture; 

(ii) AP ~ Q for all nondegenerate compact connected polyhedra. 

5.7.2. THEOREM. The following assertions are equivalent: 

(i) the generalized De Groot conjecture; 

(ii) for each compact connected polyhedron P and for each continuous sur­

jection f: P + P the Jensen extension A(f): AP -+ AP is a near­

homeomorphism. 

5.8. More about convexity (cf. VAN DE VEL [8]) 

VAN DE VEL has proved the following remarkable result. 

5.8.1. THEOREM. Let X be a space with a binary normal subbase S. Let 0 be 

an open subset of X. Then the following properties are equivalent: 

(i) for each pair x,y € 0: IS(X,y) c o. 

(ii) for each closed set D c 0: IS(D) c O. 

By an example it is demonstrated that the restriction to open sub­

sets of X is essential. 

5.9. Convexity preserving mappings in subbase convexity theory 

(cf. VAN MILL & VAN DE VEL [5]) 

Convexity preserving mappings are very important in the theory of 

normally supercompact spaces. Examples of cp maps are the nearest point 

mappings. 

5.9.1. THEOREM. tet Sand T be normal T 1-subbases for the spaces X and Y, 

respectively, and let f: X + Y be a mapping such that f-1 (T) € S for each 

T € T. Then the induced Jensen mapping 



A(f) = A(f;S,T>: A(X,S) --+- A(Y,T> 

is a cp mapping extending f. Moreover, if f is surjective, then A(f) is 

the unique surjective cp mapping which extends f. 
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Due to the fact that a space X is usually not dense in A(X,S) (e.g. 

if X is compact and if S is not binary), there may as well exist more than 

one continuous extension of the map f. Within the category of surjective 

cp mappings, the extension is unique. Hence, superextension theory can be 

regarded as an extension of "ordinary compactification theory" to the 

appropriate category. 
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