#### MATHEMATICS

# COMPACTIFICATIONS IN WHICH THE COLLECTION OF MULTIPLE POINTS IS LINDELÖF SEMI-STRATIFIABLE

BY

#### J. VAN MILL

(Communicated by Prof. W. T. van Est at the meeting of February 28, 1976)

#### ABSTRACT

We show that every compactification of a topological space in which the collection of multiple points is Lindelöf semi-stratifiable is a z-compactification. In particular such a compactification is a Wallman compactification.

#### KEY WORDS AND PHRASES

Wallman compactification, z-compactification, semi-stratifiable,  $\beta X$ .

### 1. INTRODUCTION

Every Tychonoff space X admits Hausdorff compactifications, obtainable as the ultra-filter space of some normal base on X. These compactifications are called Wallman compactifications. Until now the question, raised in [2] and [6], whether all Hausdorff compactifications are Wallman compactifications remains unanswered, although many well known compactifications turned out to be Wallman compactifications ([1], [4], [9], [10], [11], [12]).

In this paper we will show that any Hausdorff compactification of a topological space in which the collection of multiple points is Lindelöf semi-stratifiable is a z-compactification (a compactification obtainable as the ultra-filter space of a normal base consisting of zero-sets of X). This theorem generalizes results obtained by Aarts ([1]), Steiner and Steiner ([9], [11]) and Berney ([4]). Moreover we will show that every Hausdorff compactification of a Lindelöf semi-stratifiable space, in which the collection of multiple points also is Lindelöf semi-stratifiable, is regular Wallman (in the sense of Steiner ([12]); such a space is a Wallman compactification of each dense subspace).

Most of the results in this paper are also to be found (in a preliminary form) in the report [7a].

## 2. WALLMAN COMPACTIFICATIONS

All topological spaces, under discussion, are assumed to be Hausdorff. Let X be a topological space and let  $\mathscr S$  be a collection of subsets of X. We will write  $\vee \cdot \mathscr S$  for the family of finite unions of elements of  $\mathscr S$  and

 $\wedge \mathscr{S}$  for the family of finite intersections of elements of  $\mathscr{S}$ . The family  $\wedge \cdot \vee \cdot \mathscr{S} = \vee \cdot \wedge \cdot \mathscr{S}$  is closed both under finite unions and intersections; it is called the ring generated by  $\mathcal{S}$ . We say that  $\mathcal{S}$  is separating if for each closed subset  $F \subset X$  and for each  $x \in X \setminus F$  there exist  $S_0, S_1 \in \mathscr{S}$ such that  $x \in S_0$ ,  $F \subset S_1$  and  $S_0 \cap S_1 = \emptyset$ . The collection  $\mathscr{S}$  is called normal if for each  $S_0, S_1 \in \mathcal{S}$  with  $S_0 \cap S_1 = \emptyset$  there exist  $T_0, T_1 \in \mathcal{S}$  such that  $S_0 \cap T_1 = \emptyset = T_0 \cap S_1$  and  $T_0 \cup T_1 = X$ . A normal base is a normal separating ring consisting of closed subsets of X. A compactification  $\alpha X$  of X is a Wallman compactification iff  $\alpha X$  possesses a separating family  $\mathscr{F}$ of closed subsets such that for all  $F_i \in \mathcal{F}$   $(i=1, 2, ..., n; n \in N)$  with  $\bigcap_{i=1}^n F_i \neq \emptyset$ , we have  $\bigcap_{i=1}^n F_i \cap X \neq \emptyset$ . (Steiner ([12])). A compactification  $\alpha X$  of X is called a z-compactification if  $\mathcal{F}$  in the above characterization can be chosen in such a way that for all  $F \in \mathcal{F}$  the set  $F \cap X$ is a zero-set in X. A topological space X is called strongly \ compact if for each subset A of X with card (A) > X and for each total order < on A there exists a  $y \in A$  such that for each open neighbourhood U of y both  $U \cap \{x \in A | x < y\}$  and  $U \cap \{x \in A | x > y\}$  are non void. It is very easy to show that each separable metric space is strongly \$1 compact using the fact that such a space admits a countable base. More general Creede ([5]) showed that each Lindelöf semi-stratifiable space is strongly  $X_1$  compact (a topological space X is semi-stratifiable if to each open set  $U \subset X$ , one can assign a sequence  $\{U_n\}_{n=1}^{\infty}$  of closed subsets of X such that (a)  $\bigcup_{n=1}^{\infty} U_n = U$ , (b)  $U_n \subset V_n$  whenever  $U \subset V$  (where  $\{V_n\}_{n=1}^{\infty}$  is the sequence assigned to V)). Moreover strongly \$1 compact spaces are hereditarily seperable and hereditarily Lindelöf (Berney ([3])). E. S. Berney has introduced the concept of strongly & compactness in the theory of Wallman compactifications. His techniques turn out to be very powerfull and will be used in this paper.

Let  $\alpha X$  be a compactification of X and let  $\xi$  denote the unique projection map of  $\beta X$ , the Čech-Stone compactification of X, onto  $\alpha X$  which on X is the identity. We say that a point  $p \in \alpha X \setminus X$  is a multiple point of  $\alpha X$  if  $\xi^{-1}(p)$  consists of more than one point. Let Z(X) denote the ring of zero-sets of X.

Lemma 2.1: Let Y be a subspace of  $\beta X$  such that  $X \subseteq Y \subseteq \beta XIf$ .  $Z_0, Z_1 \in Z(X)$  then  $\operatorname{cl}_Y(Z_0) \cap \operatorname{cl}_Y(Z_1) = \operatorname{cl}_Y(Z_0 \cap Z_1)$ .

Proof:  $\operatorname{cl}_{\beta X}(Z_0) \cap \operatorname{cl}_{\beta X}(Z_1) = \operatorname{cl}_{\beta X}(Z_0 \cap Z_1)$ .

For the remainder of this section, let  $\alpha X$  be a compactification of the topological space X and let M denote the set of mutiple points of  $\alpha X$ .

Lemma 2.2: Let  $Z \in Z(X)$ . If  $\partial \operatorname{cl}_{\alpha X}(Z) \cap M = \emptyset$ , then  $\xi^{-1}(\operatorname{cl}_{\alpha X}(Z)) = \operatorname{cl}_{\beta X}(Z)$ .

PROOF: Assume there exists an

Then  $\xi(x_0) \in \operatorname{cl}_{\alpha X}(Z) \cap M$  and consequently  $\xi(x_0) \in \operatorname{int}_{\alpha X} \operatorname{cl}_{\alpha X}(Z)$  since  $\delta \operatorname{cl}_{\alpha X}(Z) \cap M = \emptyset$ . Therefore

$$x_0 \in \xi^{-1}(\operatorname{int}_{\alpha X} \operatorname{cl}_{\alpha X} (Z)) \subset \operatorname{int}_{\beta X} \xi^{-1}(\operatorname{cl}_{\alpha X} (Z)).$$

Let 0 be an open neighbourhood of  $x_0$  in  $\beta X$ . Then

$$0 \cap \operatorname{int}_{\beta X} \xi^{-1}(\operatorname{cl}_{\alpha X}(Z)) \neq \emptyset$$

so that

$$0 \, \cap \, \operatorname{int}_{\beta X} \, \xi^{-1}(\operatorname{cl}_{\alpha X} \, (Z)) \, \cap \, X \neq \emptyset.$$

As  $\xi$  is the identity on X it follows that  $0 \cap Z \neq \emptyset$ . Therefore  $x_0 \in \text{cl}_{\beta X}(Z)$ , which is a contradiction.  $\square$ 

If  $f \in C(\alpha X, I)$  then we will write  $U(\delta, f)$  instead of  $f^{-1}([0, \delta))$ .

Lemma 2.3: Let  $f \in C(\alpha X, I)$  and assume that M is strongly  $\S_1$  compact. Then card  $\{\delta \in (0, 1) | \operatorname{cl}_{\alpha X} (f^{-1}[0, \delta] \cap X) \cap M \neq \operatorname{cl}_{\alpha X} (U(\delta, f)) \cap M\} \leqslant \S_0$ .

PROOF: Assume to the contrary that

$$\mathrm{card}\ \{\delta\in(0,\ 1)|\mathrm{cl}_{\alpha X}\ (f^{-1}[0,\ \delta]\ \cap\ X)\ \cap\ M\neq\mathrm{cl}_{\alpha X}\ (U(\delta,f))\ \cap\ M\}>\ggg1.$$

If  $\operatorname{cl}_{\alpha X}(U(\delta,f)) \cap M \neq \operatorname{cl}_{\alpha X}(f^{-1}[0,\delta] \cap X) \cap M$  then there exists an

$$a(\delta) \in (\operatorname{cl}_{\alpha X} (f^{-1}[0, \delta] \cap X) \setminus \operatorname{cl}_{\alpha X} (U(\delta, f))) \cap M.$$

Let B be the collection of  $a(\delta)$  chosen in this way. Since  $f(a(\delta)) = \delta$  it follows that  $\delta_1 \neq \delta_2$  implies that  $a(\delta_1) \neq a(\delta_2)$  and therefore B is uncountable. Also, a total order "<" is defined on B by putting  $a(\delta_0) < a(\delta_1) \Leftrightarrow \delta_0 < \delta_1$ . Since  $B \subset M$  and since M is strongly  $\S_1$  compact it follows that B has a limit point  $a(\delta_0)$  from below. Let U be an arbitrary open neighbourhood of  $a(\delta_0)$ . Since  $a(\delta_0)$  is a limit point from below there is an  $a(\delta_1) \in U \cap B$  such that  $a(\delta_1) < a(\delta_0)$ . This shows that  $a(\delta_1) \in U(\delta_0, f) \cap U$  and in particular  $U \cap U(\delta_0, f) \neq \emptyset$ . Hence  $a(\delta_0) \in \operatorname{cl}_{\alpha X}(U(\delta_0, f)) \cap M$ , which is a contradiction.  $\square$ 

Lemma 2.4: Let  $f \in C(\alpha X, I)$  and let U be open in  $\alpha X$ . If  $A \subset \alpha X$  is strongly  $\S_1$  compact then

$$\operatorname{card} \left\{ \delta \in (0, 1) | \operatorname{cl}_{\alpha X} (U) \cap \operatorname{cl}_{\alpha X} (U(\delta, f)) \cap A \neq \operatorname{cl}_{\alpha X} (U \cap U(\delta, f)) \cap A \right\} \leqslant \aleph_0.$$

PROOF: Use the same technique as in lemma 2.3 or see Berney ([4]).

Theorem 2.6: Any compactification of a topological space X in which the collection of mutiple points is strongly  $X_1$  compact is a z-compactification.

COROLLARY 2.7: Any compactification of a topological space in which the collection of multiple points is Lindelöf semi-stratifiable is a z-compactification.

PROOF: Let  $M^*$  denote the closure of M in  $\alpha X$ . Then  $M^*$  is a compactification of M and since M is separable, the weight of  $M^*$  is less than or equal to  $2^{\aleph_0}$ . Let  $\mathscr{B}$  be an open basis for the topology of  $M^*$  such that card  $(\mathscr{B}) \leq 2^{\aleph_0}$  and define

$$\mathscr{C} = \{ (\operatorname{cl}_{\alpha X} (B_0), \operatorname{cl}_{\alpha X} (B_1)) | B_0, B_1 \in \mathscr{B} \text{ and } \operatorname{cl}_{\alpha X} (B_0) \cap \operatorname{cl}_{\alpha X} (B_1) = \emptyset \}.$$

For each  $(\operatorname{cl}_{\alpha X}(B_0), \operatorname{cl}_{\alpha X}(B_1)) \in \mathscr{C}$ , choose an  $f \in C(\alpha X, I)$  such that  $f(\operatorname{cl}_{\alpha X}(B_0)) = 0$  and  $f(\operatorname{cl}_{\alpha X}(B_1)) = 1$ . Let  $\mathscr{F}$  denote the set of mappings obtained in this way and assume that  $\mathscr{F}$  is most economically well-ordered (denote the order by <). Note that  $\operatorname{card}(\mathscr{F}) \leqslant 2^{\aleph_0}$ . By transfinite induction we will construct for each  $f \in \mathscr{F}$  a  $\delta_f \in (0, 1)$  such that

(i)  $\operatorname{cl}_{\alpha X}(f^{-1}[0, \delta_f] \cap X) \cap M = \operatorname{cl}_{\alpha X}(U(\delta_f, f)) \cap M$ ,

(ii)  $\operatorname{cl}_{\alpha X}(U(\delta_f, f)) \cap \operatorname{cl}_{\alpha X}(V) \cap M = \operatorname{cl}_{\alpha X}(U(\delta_f, f) \cap V) \cap M$ , for all  $V \in \land \lor \lor \{U(\delta_g, g) | g < f\}$ .

Let  $f_0$  be the first element of  $\mathscr{F}$ . Choose  $\delta_{f_0} \in (0, 1)$  such that

$$\operatorname{cl}_{\alpha X}(f_0^{-1}[0, \delta_{f_0}] \cap X) \cap M = \operatorname{cl}_{\alpha X}(U(\delta_{f_0}, f_0)) \cap M.$$

Such a choice for  $\delta_{f_0}$  is possible (lemma 2.3). Next, let  $g \in \mathcal{F}$  and assume  $\delta_f$  to be defined for all f < g  $(f \in \mathcal{F})$ . Note that card  $\{\delta_f | f < g\} < 2^{\aleph_0}$ , since "<" is most economical. Define  $\mathscr{V} = \land \cdot \lor \cdot \{U(\delta_f, f) | f < g\}$ . Then if  $V \in \mathscr{V}$ ,

card  $\{\delta \in (0, 1) | \operatorname{cl}_{\alpha X}(U(\delta, g)) \cap \operatorname{cl}_{\alpha X}(V) \cap M \neq \operatorname{cl}_{\alpha X}(U(\delta, g) \cap V) \cap M \} \leqslant \S_0$  by lemma 2.4 and consequently

$$\operatorname{card} \bigcup_{V \in \mathscr{V}} \{ \delta \in (0, 1) | \operatorname{cl}_{\alpha X} (U(\delta, g)) \cap \operatorname{cl}_{\alpha X}(V) \cap M \neq \\ \neq \operatorname{cl}_{\alpha X} (U(\delta, g) \cap V) \cap M \} < 2^{\aleph_0}.$$

From lemma 2.3 it now follows that there exists a  $\delta_0 \in (0, 1)$  such that for all

$$V \in \mathscr{V} : \operatorname{cl}_{\alpha X} (U(\delta_0, g)) \cap \operatorname{cl}_{\alpha X} (V) \cap M = \operatorname{cl}_{\alpha X} (U(\delta_0, g) \cap V) \cap M$$

and  $\operatorname{cl}_{\alpha X}(g^{-1}[0, \delta_0] \cap X) \cap M = \operatorname{cl}_{\alpha X}(U(\delta_0, g)) \cap M$ . Define  $\delta_g = \delta_0$ . This completes the construction of the  $\delta_f(f \in \mathcal{F})$ . Now define for each  $f \in \mathcal{F}$   $H_f = f^{-1}[0, \delta_f] \cap X$ . Notice that  $H_f \in Z(X)$  for all  $f \in \mathcal{F}$ . Finally define  $\mathscr{H} = \{H_f | f \in \mathcal{F}\}$  and

$$\mathscr{L} = \{Z \in Z(X) | \operatorname{cl}_{\alpha X}(Z) \cap M^* = \emptyset \text{ or } M^* \subset \operatorname{int}_{\alpha X} \operatorname{cl}_{\alpha X}(Z)\} \cup \mathscr{H}.$$

Using the compactness of  $\alpha X$  it is easy to show that

$$\wedge \cdot \vee \cdot \{ \operatorname{cl}_{\alpha X} (L) | L \in \mathcal{L} \}$$

is a separating ring. We will show that for each finite number of elements  $L_0, L_1, ..., L_n \in \mathcal{L}$  the equality

(\*) 
$$\operatorname{cl}_{\alpha X} \left( \bigcap_{i=0}^{n} L_{i} \right) = \bigcap_{i=0}^{n} \operatorname{cl}_{\alpha X} \left( L_{i} \right)$$

holds, which then proves our theorem.

If  $L_i \notin \mathcal{H}$  (i=0, 1, ..., n) then apply lemma 2.2 and use the analogous equality

(\*\*) 
$$\operatorname{cl}_{\beta X} \left( \bigcap_{i=0}^{n} L_{i} \right) = \bigcap_{i=0}^{n} \operatorname{cl}_{\beta X} \left( L_{i} \right)$$

in  $\beta X$ . Note that equality (\*\*) holds because  $L_i \in Z(X)$  (i=0, 1, ..., n). So it suffices to prove equality (\*) in case  $L_1, L_2, ..., L_n \in \mathcal{H}$  and  $L_0 \notin \mathcal{H}$  (if all  $L_i \in \mathcal{H}$  then enlarge  $\{L_0, L_1, ..., L_n\}$  with  $L_{n+1} = X$  and renumber them). Suppose that equality (\*) does not hold; then there exists an

$$x_0 \in \bigcap_{i=0}^n \operatorname{cl}_{\alpha X}(L_i) \backslash \operatorname{cl}_{\alpha X}(\bigcap_{i=0}^n L_i).$$

We have to consider two cases: case 1:  $\operatorname{cl}_{\alpha X}(L_0) \cap M^* = \emptyset$ . Since

$$x_0 \in \bigcap_{i=0}^n \operatorname{cl}_{\alpha X}(L_i) \subset \operatorname{cl}_{\alpha X}(L_0)$$

it follows that  $x_0 \notin M^*$ . Let  $Y = \alpha X \setminus M$ . Notice that Y is homeomorphic to  $\xi^{-1}(Y)$ . As

$$x_{0} \in \bigcap_{i=0}^{n} \operatorname{cl}_{\alpha X}(L_{i}) \cap Y = \bigcap_{i=0}^{n} \operatorname{cl}_{Y}(L_{i}) \text{ (lemma 2.1)}$$

$$= \operatorname{cl}_{\alpha X}(\bigcap_{i=0}^{n} L_{i}) \cap Y \subset \operatorname{cl}_{\alpha X}(\bigcap_{i=0}^{n} L_{i}),$$

this is a contradiction.

case 2:  $M^* \subset \operatorname{int}_{\alpha X} \operatorname{cl}_{\alpha X} (L_0)$ .

Let  $L_i = f_i^{-1}[0, \delta_{f_i}] \cap X \ (i = 1, 2, ..., n).$ 

If  $x_0 \notin M$  then use the same technique as in case 1 in order to derive a contradiction. Next, suppose  $x_0 \in M$ ; then

$$x_0 \in \bigcap_{i=1}^n \operatorname{cl}_{\alpha X} (f_{i-1}[0, \delta_{f_i}]) \cap X) \cap \operatorname{cl}_{\alpha X} (L_0) \cap M$$

and consequently ((i))

$$x_{0} \in \bigcap_{i=1}^{n} \operatorname{cl}_{\alpha X} (U(\delta_{f_{i}}, f_{i})) \cap \operatorname{cl}_{\alpha X} (L_{0}) \cap M = \qquad ((ii))$$

$$= \operatorname{cl}_{\alpha X} (\bigcap_{i=1}^{n} U(\delta_{f_{i}}, f_{i})) \cap \operatorname{cl}_{\alpha X} (L_{0}) \cap M =$$

$$= \operatorname{cl}_{\alpha X} (\bigcap_{i=1}^{n} U(\delta_{f_{i}}, f_{i})) \cap \operatorname{int}_{\alpha X} \operatorname{cl}_{\alpha X} (L_{0}) \cap M =$$

$$\subset \operatorname{cl}_{\alpha X} (\bigcap_{i=1}^{n} U(\delta_{f_{i}}, f_{i}) \cap \operatorname{int}_{\alpha X} \operatorname{cl}_{\alpha X} (L_{0})) \cap M =$$

$$= \operatorname{cl}_{\alpha X} (\bigcap_{i=1}^{n} U(\delta_{f_{i}}, f_{i}) \cap \operatorname{int}_{\alpha X} \operatorname{cl}_{\alpha X} (L_{0}) \cap X) \cap M \subset$$

$$\subset \operatorname{cl}_{\alpha X} (\bigcap_{i=0}^{n} L_{i}) \cap M \subset$$

$$\subset \operatorname{cl}_{\alpha X} (\bigcap_{i=0}^{n} L_{i}),$$

which is a contradiction.

Since separable metric spaces and countable spaces are Lindelöf semistratifiable we have the following corollaries:

Corollary 2.8 ([1], [9]): Every metric compactification is a Wallman compactification.

Corollary 2.9 ([11]): Every countable multiple point compactification is a z-compactification.

# 3. REGULAR WALLMAN SPACES

Let X be a topological space which is strongly  $X_1$  compact and let  $\alpha X$  be a compactification of X such that the collection of mutiple points of  $\alpha X$  is also strongly  $X_1$  compact. We will show that X is regular Wallman (a topological space is called regular Wallman if it is compact and possesses a separating ring consisting of regular closed sets. It is known that a regular Wallman space is a Wallman compactification of each dense subspace ([12])). If  $B \subset X$ , let  $\overline{B}$  denote the closure of B in X. We need a simple lemma.

Lemma 3.1: Let U and V be open subsets of  $\alpha X$  such that

- (i)  $\overline{U \cap X} \cap \overline{V \cap X} = \overline{U \cap V \cap X}$
- (ii)  $\operatorname{cl}_{\alpha X}(U) \cap \operatorname{cl}_{\alpha X}(V) \cap M = \operatorname{cl}_{\alpha X}(U \cap V) \cap M$

then also

$$\operatorname{cl}_{\alpha X}(U) \cap \operatorname{cl}_{\alpha X}(V) = \operatorname{cl}_{\alpha X}(U \cap V).$$

PROOF: Suppose to the contrary there exists an

$$x_0 \in (\operatorname{cl}_{\alpha X}(U) \cap \operatorname{cl}_{\alpha X}(V)) \setminus \operatorname{cl}_{\alpha X}(U \cap V)).$$

Let  $Y = \alpha X \setminus M$ . Since X is hereditarily Lindelöf, every closed subset of X is a  $G_{\delta}$  and consequently

$$\operatorname{cl}_{\beta X}\left(\overline{U\cap X}\right) \cap \operatorname{cl}_{\beta X}\left(\overline{V\cap X}\right) = \operatorname{cl}_{\beta X}\left(\overline{U\cap X} \cap \overline{V\cap X}\right) = \operatorname{cl}_{\beta X}\left(\overline{U\cap V\cap X}\right).$$

Hence it follows that

$$\operatorname{cl}_{Y}(U \cap X) \cap \operatorname{cl}_{Y}(V \cap X) = \operatorname{cl}_{Y}(U \cap V \cap X)$$

and therefore  $x_0 \notin Y$ . However it is clear that  $x_0 \notin M$ . Contradiction.  $\square$ 

THEOREM 3.2: Any compactification of a strongly  $\aleph_1$  compact space in which the collection of multiple points is also strongly  $\aleph_1$  compact, is regular Wallman.

COROLLARY 3.3: Any compactification of a Lindelöf semi-stratifiable space in which the collection of multiple points is also Lindelöf semi-stratifiable, is regular Wallman.

PROOF: Since X is separable it follows that the weight of  $\alpha X$  is less than or equal to  $2^{\aleph_0}$ . Let  $\mathscr{B}$  be an open basis for  $\alpha X$  such that card  $(\mathscr{B}) \leqslant \leqslant 2^{\aleph_0}$ . Define

$$\mathscr{C} = \{ (\operatorname{cl}_{\alpha X} (B_0), \operatorname{cl}_{\alpha X} (B_1)) | B_0, B_1 \in \mathscr{B} \text{ and } \operatorname{cl}_{\alpha X} (B_0) \cap \operatorname{cl}_{\alpha X} (B_1) = \emptyset \}.$$

For each  $(\operatorname{cl}_{\alpha X}(B_0), \operatorname{cl}_{\alpha X}(B)) \in \mathscr{C}$  choose an  $f \in C(\alpha X, I)$  such that

$$f(cl_{\alpha X}(B_0)) = 0$$
 and  $f(cl_{\alpha X}(B_1)) = 1$ .

Let  $\mathscr{F}$  denote the set of mappings obtained in this way and assume that  $\mathscr{F}$  is most economically well-ordered (denote the order by <). Note that card  $(\mathscr{F}) < 2^{\aleph_0}$ . By transfinite induction we can construct, in a similar manner as in theorem 2.6, for each  $f \in \mathscr{F}$  a  $\delta_f \in (0, 1)$  such that

(i)  $\operatorname{cl}_{\alpha X}(U(\delta_f, f)) \cap \operatorname{cl}_{\alpha X}(V) \cap M = \operatorname{cl}_{\alpha X}(U(\delta_f, f) \cap V) \cap M$  for all  $V \in \land \lor \lor \{U(\delta_g, g) | g < f\}$ .

(ii)  $\overline{U(\delta_f, f) \cap V \cap X} = \overline{U(\delta_f, f) \cap X} \cap \overline{V \cap X}$ for all  $V \in \land \lor \lor \{U(\delta_g, g) | g < f\}.$ 

Here we use lemma 2.4 in case A = X. From lemma 3.1 we deduce that

$$\wedge \cdot \vee \cdot \{ \operatorname{cl}_{\alpha X} \left( U(\delta_f, f) \right) | f \in \mathscr{F} \}$$

is a separating ring of regular closed sets in  $\alpha X$ .

We want to thank E. S. Berney for sending us his unpublished paper [4]. Much of Berney's technique is used in our paper.

Free University
De Boelelaan 1081
Amsterdam

#### REFERENCES

- Aarts, J. M. Every metric compactification is a Wallman-type compactification, Proc. Int. Symp. on topology and its applications, Herceg-Novi (Yugoslavia) (1968).
- Banachschewski, B. On Wallman's method of compactification, Math. Nachr., 27, 105-114 (1963).
- 3. Berney, E. S. Strongly  $\alpha$  compact spaces, Dissertation, Arizona State University (1970).
- Berney, E. S. On Wallman compactifications, Notices Amer. Math. Soc., 17, 215 (1970).
- Creede, G. G. D. Semi-stratifiable spaces and a factorization theorem due to Bing, Dissertation, Arizona State University (1968).
- Frink, O. Compactifications and semi-normal spaces, Amer. J. Math., 86, 602-607 (1964).
- 7. Mill, J. van A note on Wallman compactifications. (to appear).
- Mill, J. van Wallman-type compactifications, rapport 41, Wiskundig Seminarium der Vrije Universiteit, Amsterdam (1975).
  - 8. Misra, A. K. Some regular Wallman  $\beta X$ , Indag. Math., 35, 237-242 (1973).
- Steiner, A. K. & E. F. Steiner Products of compact metric spaces are regular Wallman, Indag. Math., 30, 428–430 (1968).
- Steiner, A. K. & E. F. Steiner Wallman and z-compactifications, Duke Math. J., 36, 269–275 (1968).
- Steiner, A. K. & E. F. Steiner On countable multiple point compactifications, Fund. Math., 65, 133-137 (1969).
- Steiner, E. F. Wallman spaces and compactifications, Fund. Math., 61, 295-304 (1968).
- Wallman, H. Lattices and topological spaces, Annals of Math., 39, 112-126 (1938).