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ABSTRACT

‘We show that every compactification of a topological space in which the collection
of multiple points is Lindeldf semi-stratifiable is a z-compactification. In particular
such a compactification is a Wallman compactification.
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l. INTRODUCTION

Every Tychonoff space X admits Hausdorff compactifications, ob-
tainable as the ultra-filter space of some normal base on X. These com-
pactifications are called Wallman compactifications. Until now the question,
raised in [2] and [6], whether all Hausdorff compactifications are Wallman
compactifications remains unanswered, although many well known com-
pactifications turned out to be Wallman compactifications ([1], [4], [9],
[10, [11], [12]).

In this paper we will show that any Hausdorff compactification of a
topological space in which the collection of multiple points is Lindelsf
semi-stratifiable is a z-compactification (a compactification obtainable as
the ultra-filter space of a normal base consisting of zero-sets of X). This
theorem generalizes results obtained by Aarts ([1]), Steiner and Steiner
([9], [11]) and Berney ([4]). Moreover we will show that every Hausdorff
compactification of a Lindelof semi-stratifiable space, in which the col-
lection of multiple points also is Lindelof semi-stratifiable, is regular
Wallman (in the sense of Steiner ([12]); such a space is a Wallman com-
pactification of each dense subspace).

Most of the results in this paper are also to be found (in a preliminary
form) in the report [7a].

2. WALLMAN COMPACTIFICATIONS

All topological spaces, under discussion, are assumed to be Hausdorff.
Let X be a topological space and let & be a collection of subsets of X.
We will write V-.% for the family of finite unions of elements of % and
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A& for the family of finite intersections of elements of . The family
AV F=V.N & is closed both under finite unions and intersections; it
is called the ring generated by &. We say that &% is separating if for
each closed subset F C X and for each x € X\F there exist Sy, S1e &
such that 2 € Sp, F C 8; and Sy N Sy =0. The collection & is called normal
if for each 8o, 81 € % with Sg N S;=0 there exist Ty, 71 € & such that
SoNTi=0=TyN 8, and Tow T1=X. A normal base is a normal sepa-
rating ring consisting of closed subsets of X. A compactification «X of
X is a Wallman compactification iff «X possesses a separating family &
of closed subsets such that for all Fye F (i=1,2,...,n;neN) with
Nr, Fi#0, we have Nj_, Fin X#0. (Steiner ([12])). A compactifi-
cation «X of X is called a z-compactification if # in the above charac-
terization can be chosen in such a way that for all ¥ € & the set F N X
is a zero-set in X. A topological space X is called strongly & compact
if for each subset 4 of X with card (4)>¥ and for each total order <
on A there exists a y € A such that for each open neighbourhood U of y
both U N {zxedlz<y} and U N {we Ajz>y} are non void. It is very
easy to show that each separable metric space is strongly §1 compact
using the fact that such a space admits a countable base. More general
Creede ([5]) showed that each Lindelof semi-stratifiable space is strongly
N1 compact (a topological space X is semi-stratifiable if to each open set
U C X, one can assign a sequence {Ua},._, of closed subsets of X such
that (a) |\ US>, Un=U, (b) Un C V, whenever UCV (where {Va};_, is
the sequence assigned to V)). Moreover strongly W1 compact spaces are
hereditarily seperable and hereditarily Lindelof (Berney ([3])). E. S. Berney
has introduced the concept of strongly & compactness in the theory of
Wallman compactifications. His techniques turn out to be very powerfull
and will be used in this paper.

Let X be a compactification of X and let & denote the unique pro-
jection map of 8X, the Cech-Stone compactification of X, onto «X which
on X is the identity. We say that a point p € xX\X is a multiple point
of aX if £1(p) consists of more than one point. Let Z(X) denote the ring
of zero-sets of X.

Levma 2.1: Let Y be a subspace of BX such that X CY C pXIf.
Zy, Zh € Z(X) then cly (Zp) N cly (Zl)=ely (Zo M Z7).

Proor: clgx (Zo) N clpx (Z1)=clgx (Zo N Z41). [
For the remainder of this section, let «X be a compactification of the
topological space X and let M denote the set of mutiple points of xX.

Lemma 2.2: Let Ze Z(X). If dclax (Z) 0 M =0, then & cl.x (Z))=
zclﬁx (Z)
Proor: Assume there exists an

xo € Eclux (Z))\clpx (Z).
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Then &(xo) € clax (Z) N M and consequently &(xg) € intax clax (Z) since
0 clax (Z) N M =@. Therefore

xp € £ (intax clux (Z)) Cintgx & (clux ().
Let 0 be an open neighbourhood of x in gX. Then

0 N intpx £ (clax (Z)) 0
s0 that
0 N intgxy & elax (2)) N X #0.

As £is the identity on X it follows that 0 N Z 0. Therefore xy € clgx (£),

which is a contradiction. []
If feC(aX, ) then we will write U(4, f) instead of f-1{[0, §)).

Lemma 2.3: Let f € C(xX, I) and asswme that M is strongly W1 compact.
Then card {8 € (0, 1)|clax (f1[0, 6] N X) N M #=clax (U8, /)) N M} < No-

Proor: Assume to the contrary that
card {0 € (0, 1)|clax (f1[0, 8] N X) N M #clux (U, f)) N M} =81
If elex (U8, 1)) N M #clax (1[0, 6] N X) N M then there exists an
a(3) € (clax (1[0, 6] N X)\clux (T(8, f))) N M.

Let B be the collection of a(d) chosen in this way. Since f(a(d))=4¢ it
follows that 6; # d2 implies that a(d1) # a(d2) and therefore B is uncountable.
Also, a total order ““<” is defined on B by putting a(d) <a(d1) < do<di.
Since BC M and since M is strongly W1 compact it follows that B has
a limit point a(d) from below. Let U be an arbitrary open neighbourhood
of a(dp). Since a(d) is a limit point from below there is an a(d;) e U N B.
such that a(d1)<a(dp). This shows that a(d) e U(d, /)N U and in par-
ticular U N U(do, f)#0. Hence a(do) € clax (U(do, f)) N M, which is a
contradiction. []

Levma 2.4: Let fe C(aX, I) and let U be open in «X. If A CaX is
strongly W1 compact then

card {8 € (0, 1)[elax (U) N clax (U3, f)) N A #clax (U N UG, ) N A} < No.
Proor: Use the same technique as in lemma 2.3 or see Berney ([4]). [

TueorEM 2.6: Any compactification of a topological space X in which
the collection of mutiple points is strongly ¥ compact is a z-compactification.
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CororrLARY 2.7: Any compactification of a topological space tn which
the collection of multiple points is Lindeldf semi-stratifiable is a z-compacti-
fication.

Proor: Let M* denote the closure of M in «X. Then M* is a com-
pactification of M and since M is separable, the weight of M* is less
than or equal to 2%. Let & be an open basis for the topology of M*
such that card (%)< 2% and define

€ = {(clax (Bo), clax (B1))|Bo, B1 € # and clax (Bo) N clax (B1) =0}

For each (clax (Bo), clax (B1)) €%, choose an fe C(xX,I) such that
flelax (Bo)) =0 and f(clax (B1))=1. Let # denote the set of mappings
obtained in this way and assume that & is most economically well-
ordered (denote the order by <). Note that card (%)< 2%. By transfinite
induction we will construct for each fe % a dre (0, 1) such that

(i) olax (F10, 8] N X) N M =clux (U(Sr, f)) N M,
(i) eclax (TG ) N clax (V) N M =clax (U(S7, f) 0 V) N M, for all
VehV-{U(S, gllg<f}

Let fo be the first clement of #. Choose dy, € (0, 1) such that
clax (fo1[0, 87,1 N X) N M =clax (U(dy,, fo)) N M.

Such a choice for dy, is possible (lemma 2.3). Next, let g € % and assume
dr to be defined for all f<g (f € #). Note that card {sf<g}<2%, since
“<” is most economical. Define ¥"=A-V.{U(d, f)|f<g}. Thenif Ve ¥,

card {8 € (0, 1)|clax (U(8, 9)) N clax (V) N M £clax (UG, ) N V)N MI< No

by lemma 2.4 and consequently

card |J {0€(0, 1)|clax (U(3, ¢)) N clax(V) N M
Ve

~elax (U(5,9) 0 V) N M} < 2%,

From lemma 2.3 it now follows that there exists a dp e (0, 1) such that
for all

Ve? :elux (U, g)) Nelax (V)N M=clax (Uldo,7) " V)N M

and clax (g71[0, do] N X) N M =clax (U(do, g)) N M. Define §,=do. This
completes the construction of the d;(f € ). Now define for each fe %
Hi={10, /] N X. Notice that Hye Z(X) for all fe %. Finally define
H = {Hf|f e F} and

F={ZecZ(X)|clax (Z) " M*=0 or M* Cintsx clax (Z)} U #.
Using the compactness of xX it is easy to show that
A-V-{clax (L)|L € £}
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is a separating ring. We will show that for each finite number of elements
Ly, L, ..., Ly € & the equality

n

e clax ( r"\ L)= (N eclex (L)
i=0

i=0

holds, which then proves our theorem.
If Ly ¢ #° (i=0, 1, ..., n) then apply lemma 2.2 and use the analogous
equality

(+%) dpxl 1) Tap T Slee (Z)

i=0 i=0

in BX. Note that equality (**) holds because L;e Z(X) (=0, 1, ...,n).
So it suffices to prove equality (*) in case Ly, Lo, ..., Ln € # and Lo ¢ #
(if all Ly e #° then enlarge {Lo, Ly, ..., Ly} with Lyu =X and renumber
them). Suppose that equality (*) does not hold; then there exists an

To € ﬁ clax (Lz)\(}lax( [T:] Lr;).

i=0 i=0

We have to consider two cases:
case 1: clux (Lo) N M*=0,
Since

zoe (N clax (L) C clax (Ja)
=0

it follows that xp ¢ M*. Let ¥ =aX\M. Notice that ¥ is homeomorphie
to &F1Y). As

n

Zoe [ clax (L) N Y= () cly (L) (lemma 2.1)

i=0 i=0

Lioler{ Ty LA FCdaa{ (M L,
i=0 i=0

1

thig is a contradiction.

case 2: M* Cint.x clax (Lo).

Let Li=f{‘1{0, (5f‘] NX (’b: 1, 2, Sy ’)’n‘;)

If @0 ¢ M then use the same technique as in case 1 in order to derive
a contradiction. Next, suppose xo € M ; then

X € m clex (frl[O, afi]) N X) N clax (Lo) NnM

=1
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and consequently ((i))

X0 € (% clax (U(0y;, fi)) N elax (Lo) N M = ((ii))

i=1

=clax ( ﬁ U(afi’ fi)} N clax (LU) N M=

=clax ( N U(éfi, f)) N intax elax (Lo) N M =

i=1

C elax ( M U(éfi, ft) N intex clax (Lo)) N M=
i=1

—clax ( () U(ds, fi) N intax elax (Lo) N X) N M C

=1

n

Celax () Ly N M C

=0
CC].a:X( m _Lt),
i=0

which is a contradiction. [J

Since separable metric spaces and countable spaces are Lindeldf semi-
stratifiable we have the following corollaries:

CoroLLary 2.8 ([1], [9]): Every metric compactification is a Wallman
compactification.

CororLARY 2.9 ([11]): Bvery countable multiple point compactification
18 a z-compactification.

3. REGULAR WALLMAN SPACES

Let X be a topological space which is strongly $§; compact and let «X
be a compactification of X such that the collection of mutiple points
of aX is also strongly N: compact. We will show that X is regular Wallman
(a topological space is called regular Wallman if it is compact and possesses
a separating ring consisting of regular closed sets. It is known that a
regular Wallman space is a Wallman compactification of each dense
subspace ([12])). If B C X, let B denote the closure of B in X. We need
a simple lemma.

Lemma 3.1: Let U and V be open subsets of «X such that
i) UNXnNnVnX=UnVniX
(ii) clax (U)Nelx (V)N M=clx (UNnV)NM

then also
clax (U) N clax (V)=Clax (U M V)
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ProoF: Suppose to the contrary there exists an
29 € (clax (U) N clax (M))\clax (U N 7).

Let Y=aX\M. Since X is hereditarily Lindeldf, every closed subset of
X is a G5 and consequently

ex (UNX)nelpx (VO X)=cgx (UNXNVNnX)=chx(UNnVnNIX).
Hence it follows that
cy (UnX)nely (VN X)=cly (UNVNIX)

and therefore xo ¢ ¥. However it is clear that xo ¢ M. Contradiction. []

THEOREM 3.2: Any compactification of a strongly &1 compact space in
which the collection of multiple points is also strongly W1 compact, is regular
Wallman.

CoroLLARY 3.3: Any compactification of a Lindeldf semi-stratifiable
space in which the collection of multiple points is also Lindelof semi-strati-
fiable, is regulor Wallman.

Proor: Since X is separable it follows that the weight of X is less
than or equal to 2%. Let # be an open basis for «X such that card (%)<
< 2%, Define

% = {(clax (Bo), clax (B1))Bo, B1 € # and clax (Bo) N clex (B1) =0}
For each (clax (Bo), clax (B)) € € choose an fe C(aX, I) such that

Let % denote the set of mappings obtained in this way and assume that
& is most economically well-ordered (denote the order by < ). Note that
card (%)< 2%. By transfinite induction we can construct, in a similar
manner as in theorem 2.6, for each fe # a dre (0, 1) such that

(i) clax (U7, f)) Nelex (V) N M=clax (U, H 0 V)" M
for all VeA-V-{U(d, g)lg<f}-

(i UG, NN VNX=U@NNnXnVNnX
for all VeAV-{U(dy, g)lg<f}

Here we use lemma 2.4 in case 4 =X. From lemma 3.1 we deduce that
A-V-{clax (U(ds, ))If € F}

is a separating ring of regular closed sets in «X. []
We want to thank E. S. Berney for sending us his unpublished paper [4].
Much of Berney’s technique is used in our paper.

Free University
De Boelelaan 1081
Amsterdam



356

REFERENCES

i3

10.

1%

12.

13.

Aarts, J. M. — Every metric compactification is a Wallman-type compactifi-
cation, Proc. Int. Symp. on topology and its applications, Herceg-Novi
(Yugoslavia) (1968).

Banachschewski, B. — On Wallman’s method of compaectifieation, Math. Nachr.,
27, 105-114 (1963).

Berney, E. 8. — Strongly & compact spaces, Dissertation, Arizona State Uni-
versity (1970).

Berney, E. 8. - On Wallman compactifications, Notices Amer. Math. Soc.,
17, 215 (1970).

Creede, G. G. D. — Semi-stratifiable spaces and a factorization theorem due to
Bing, Dissertation, Arizona State University (1968).

Frink, O.- Compactifications and semi-normal spaces, Amer. J. Math., 86,
602—-607 (1964).

Mill, J. van — A note on Wallman compactifications. (to appear).

. Mill, J. van — Wallman-type compactifications, rapport 41, Wiskundig Semi-

narium der Vrije Universiteit, Amsterdam (1975).

Misra, A. K. — Some regular Wallman X, Indag. Math., 35, 237-242 (1973).

Steiner, A. K. & E. F. Steiner — Produets of compact metrie spaces are regular
Wallman, Indag. Math., 30, 428-430 (1968).

Steiner, A. K. & BE. F. Steiner — Wallman and z-compactifications, Duke Math.
J., 36, 260-275 (1968).

Steiner, A. K. & E. F. Steiner — On countable multiple point compactifications,
Fund. Math., 65, 133-137 (1969).

Steiner, E. F.-— Wallman spaces and compactifications, Fund. Math., 61,
205-304 (1968).

Wallman, H. — Lattices and topological spaces, Annals of Math., 39, 112-126
(1938).



