REPRINT

General Topology and its Relations to Modern Analysis and Algebra IV

Proceedings of the Fourth
Prague Topological Symposium, 1976

RECENT RESULTS ON SUPEREXTENSIONS

J. VAN MILL Amsterdam

1. INTRODUCTION

If (X,d) is a compact metric space, then λX denotes the space of all maximal linked systems of closed subsets of X (a system of closed subsets of X is called a *linked system* if every two of its members meet; a maximal linked system or mls is a linked system not properly contained in another linked system) topologized by the metric

$$\overline{d}(M,N) = \sup_{S \in M} \min_{T \in N} d_{H}(S,T)$$

(VERBEEK [14]). A closed subbase for λX , which generates the same topology as \overline{d} , is the collection

$$\{\{M \in \lambda X \mid M \in M\} \mid M \in 2^X\}.$$

By induction, it is easy to show that each linked system $L \subset 2^X$ is contained in at least one maximal linked system $L' \subset 2^X$. This implies that the closed subbase, described above, is both *binary* (any of its linked subsystems has a nonvoid intersection) and *normal* (two disjoint subbase elements are separated by disjoint complements of subbase sets).

The spaces λX are called *superextensions* (DE GROOT [9]); in this paper we announce some recent results on superextensions.

2. RECENT RESULTS ON SUPEREXTENSIONS

VERBEEK [14] has shown that λX is a Peano continuum if and only if X is a metrizable continuum; he raised the question of whether λX is an AR if and only if X is a metrizable continuum. Theorem 2.1 answers this question, cf. VAN MILL [10].

2.1. THEOREM: Let X be a metrizable continuum that possesses a closed subbase which is both binary and normal. Then X is an AR.

By a result of VERBEEK [14], the space X in theorem 2.1 is a Peano continuum, and consequently 2^X is an AR, by the theorem of WOJDYSLAWSKI [16] (even $2^X \approx Q$, the Hilbert cube, if X is nondegenerate, cf. CURTIS & SCHORI [7]). We prove that there is a retraction $r: 2^X \to X$, which shows that X is an AR too. Notice that the normality of the subbase is essential, since each compact metric space possesses a binary closed subbase (cf. STROK & SZYMANSKI [13]).

DE GROOT [9] conjectured that λI , the superextension of the closed unit interval I = [-1,1] is homeomorphic to the Hilbert cube Q. This turned out to be the case, cf. VAN MILL [10].

2.2. THEOREM: AI is homeomorphic to the Hilbert cube.

We represent λI as an inverse limit $\varprojlim (X_i,f_i)$ of an inverse sequence (X_i,f_i) of Hilbert cubes such that the bonding maps are cellular. Then, by results of CHAPMAN [5], [6] and BROWN [3] it follows that $\lambda I \approx Q$. The spaces X_i (ieN) are first shown to be compact Q-manifolds; theorem 2.1 implies that they are contractible. Therefore $X_i \approx Q(i \in N)$, since a compact contractible Q-manifold is a Hilbert cube (cf. CHAPMAN [4]).

If X is a compact metric space, then for each A C X define

 $A^{+} := \{ M \in \lambda X \mid \exists M \in M : M \subset A \}.$

It is easy to show that $\{U^+ | X \setminus U \in 2^X \}$ is an open subbase for the topology of λX . We have the following theorem, cf. VAN MILL [12].

2.3. THEOREM: Let X be a compact metric space for which λX is homeomorphic to the Hilbert cube Q. Then for all open $U_i \subset X$ (i $\leq n, n \in \mathbb{N}$) the closure (in λX) of $\cap_{i \leq n} U_i^+$ either is void or is a Hilbert cube.

To prove theorem 2.3, we use a compactification result of WEST [15] and the recent result of EDWARDS [8], that every AR is a Hilbert cube factor;

that is a space whose product with the Hilbert cube is homeomorphic to the Hilbert cube.

If $f:X \to Y$ (X and Y are compact metric) is continuous, then there is a natural extension $\lambda(f):\lambda Y \to \lambda X$ of f (cf. VERBEEK [14]) defined by

$$\lambda(f)(M) := \{f[M] | M \in M\}$$

 $(\lambda(f))$ can considered to be an extension of f since there are natural embeddings $i_X: X \to \lambda X$ and $i_Y: Y \to \lambda Y$ such that the diagram

commutes). We have the following remarkable result:

- 2.4. THEOREM: Let X and Y be metrisable continua and let $f: X \to Y$ be a continuous surjection. Then $\lambda(f): \lambda X \to \lambda Y$ is cellular.
- 2.5. COROLLARY: Let $X \approx \lim_{\leftarrow} (X_{\underline{i}}, f_{\underline{i}})$ where each $f_{\underline{i}} \colon X_{\underline{i+1}} \to X_{\underline{i}}$ is surjective and $\lambda X_{\underline{i}} \approx Q(\underline{i} \in N)$. Then $\lambda X \approx Q$.

Corollary 2.5 implies that the superextension of a space such as $Y = \{(0,y) \mid -1 \le y \le 1\} \cup \{(x, \sin \frac{1}{x}) \mid 0 < x \le 1\} \text{ is homeomorphic to the Hilbert cube.}$

If Y is a closed subset of X then there is a natural embedding $j_{\gamma X}\colon \lambda Y \to \lambda X$ defined by

$$j_{XX}(M) := \{A \in 2^X \mid A \cap Y \in M\}$$

(cf. VERBEEK [14]). We will always identify λY and $j_{\chi\chi}[\lambda Y].$

A closed subset M of a metric space (X,d) is called a Z-set (cf. ANDERSON [1]) provided that for each $\epsilon > 0$ there is a continuous $f_{\epsilon} \colon X \to X \setminus M$ such that $d(f_{\epsilon}, id) < \epsilon$.

- 2.6. THEOREM: Let X be a metrizable continuum and let A \in 2 X . Then
- (i) A⁺ is a Z-set in λX iff A has a void interior in X;
- (ii) if $A \neq X$ then λA is a Z-set in λX .

This theorem can be used to construct capsets of λI . A subset $A \subset Q$ is called a *capset* (cf. ANDERSÓN [2]) if there is an autohomeomorphism $\phi: Q \to Q$ such that $\phi[A] = B(Q) = \{x \in Q \mid \exists \ i \in N \colon |x_i| = 1\}$. An mls $M \in \lambda X$ is said to be *defined* on $A \in 2^X$ if $M \cap A \in M$ for all $M \in M$ (VERBEEK [14]). Define

W := $\{M \in \lambda I \mid M \text{ is defined on some } M \in 2^{I} \setminus \{I\}\}.$

2.7. THEOREM: W is a capset of λI .

The proof is in two steps. First we prove, using theorem 2.2 and theorem 2.6, that

 $V := \{M \in \lambda I \mid M \text{ is defined on some closed set } M \subset (-1,1)\}$

is a capset of λI . By theorem 2.6, W is a countable union of Z-sets of λI . This implies that W is a capset of λI , since the union of a capset and a countable union of Z-sets is again a capset (cf. ANDERSON [2]).

The space $V \subset \lambda I$ defined above was conjectured by VERBEEK [14] to be homeomorphic to ℓ_2 , the separable Hilbert space. This is not true however, since $V \approx B(Q)$ (cf. VAN MILL [11]).

REFERENCES

- [1] ANDERSON, R.D., On topological infinite deficiency, Mich. Math. J., 14 (1967), 365-383.
- [2] ANDERSON, R.D., On sigma-compact subsets of infinite dimensional spaces, Trans. Amer. Math. Soc. (to appear).
- [3] BROWN, M., Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc., 11(1960), 478-483.

- [4] CHAPMAN, T.A., On the structure of Hilbert cube manifolds, Comp. Math., 24(1972), 329-353.
- [5] CHAPMAN, T.A., Cell-like mappings of Hilbert cube manifolds: applications to simple homotopy type, Bull. Amer. Math. Soc., 79(1973), 1286 - 1291.
- [6] CHAPMAN, T.A., Cell-like mappings of Hilbert cube manifolds: solution of a handle problem, Gen. Top. Appl., 5(1975), 123-145.
- [7] CURTIS, D.W. & R.M. SCHORI, 2^X and C(X) are homeomorphic to the Hilbert cube, Bull. Amer. Math. Soc., 80(1974), 927-931.
- [8] EDWARDS, D., In preparation.
 - [9] GROOT, J. DE, Superextensions and supercompactness, Proc. I. Intern. Symp. on extension theory of topological structures and its applications (VEB Deutscher Verlag Wiss., Berlin 1969), 89-90.
- [10] MILL, J. VAN, The superextension of the closed unit interval is homeomorphic to the Hilbert cube, Fund. Math. (to appear).
 - [11] MILL, J. VAN, A pseudo-interior of \(\lambda\)I (to appear).
 - [12] MILL, J. VAN, Some subspaces of λX homeomorphic to the Hilbert cube (to appear).
- [13] STROK, M. & A. SZYMANSKI, Compact metric spaces have binary bases,
 Fund. Math., 89(1975), 81-91.
- [14] VERBEEK, A., Superextensions of topological spaces, MC tract 41,
 Amsterdam (1972).
 - [15] WEST, J.E., The subcontinua of a dendron form a Hilbert cube factor, Proc. Amer. Math. Soc., 36(1972), 603-608.
- [16] WOJDYSLAWSKI, M., Retractes absolus et hyperspaces des continus, Fund.

 Math., 32(1939), 184-192.

a avia lime aw . seem the simple to property the same. We mind I

Department of Mathematics

Free University

De Boelelaan 1081

Amsterdam.