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1. Introduction

In 1968 Maarten Maurice was appointed full professor of pure mathematics with spe-

cial emphasis on Topology at the Vrije Universiteit. As Maarten wrote his Ph. D. thesis

on ordered spaces [8], it was only natural that a research group was founded working

in that area. Maarten was a very inspiring teacher of mathematics at all levels. He at-

tracted many students and as a result of that, under his supervision, 7 Doctoral Theses

were prepared at the Vrije Universiteit:

J. van Dalen, Finite products of locally compact ordered spaces (1972)

H. Kok , Connected orderable spaces (1973)

M. J. Faber, Metrizability in generalized ordered spaces (1974)

E. K. van Douwen, Simultaneous extension of continuous functions (1975)

A. E. Brouwer, Treelike spaces and related connected topological spaces (1976)

J. M. van Wouwe, GO-spaces and generalizations of metrizability (1978)

K. P. Hart , Coverings, trees and continua (1984)

In six of these theses the central theme is normality, connectivity and metrizability in

ordered spaces, in the seventh one ordered spaces are merely touched upon. In this

paper we will briefly survey the main results in the theses mentioned.

Maarten was also ‘copromotor’ of Wattel [21] and ‘referent’ of Bruijning [2],

Koetsier [6] and Van der Bijl [15].

2. The doctoral theses

To make the presentation unified we fix some terminology. ALinearly Ordered Topo-

logical Space(LOTS) is a linearly ordered set(X,<) endowed with its order topo-

logy τ(<). A Generalized Ordered space(GO-space) is a triple(X,<, τ), where< is

a linear order onX and whereτ is a topology, finer than the order topology but with a

base of convex sets; it turns out that GO-spaces are precisely the subspaces of LOTS.

Indeed a GO-space may be embedded into a LOTS in an order preserving fashion as a

closed subset or as a dense subset. Finally aweakly ordered spaceis a triple(X,<, τ),
where< is a linear order andτ is a topology that is finer than the order topology.

Linearly ordered spaces enter General Topology at various levels. In a beginner’s

course of General Topology they come right after metric spaces as sources of struc-

tures that come with a ‘natural’ topology. At the research level the classes of LOTS
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and GO-spaces are important because they generally serve as a first place to test hy-

potheses. Indeed, one of the universal counterexamples from topology, the Sorgenfrey

line, is a GO-space.

Generally, the extra structure that one gets from the linear order makes the proofs

go smoother and questions tend to have the ‘correct’ answer. If this ‘correct’ answer

is not forthcoming then this is almost invariably a signal that the original problem

will be quite difficult. A hallmark is Suslin’s problem from 1923 that asks whether

the real line is characterized by being a linearly ordered set without gaps or jumps in

which every pairwise disjoint family of intervals is countable — it was well-known

that having a countable dense set suffices. It turned out that Suslin’s problem was

undecidable — much as Euclid’s fifth postulate is undecidable: neither a positive nor

a negative answer will give rise to contradictions.

Questions concerning orderability of topological spaces and of representing spaces

as continuous images of ordered spaces continue to spur much research; at present a

lot of effort is being spent in trying to determine whether compact monotonically

normal spaces are the continuous images of (compact) ordered spaces.

Needless to say that there was a lot of contact between Maarten’s group and the

other researchers in the field of ordered spaces; H. Herrlich served as referee for

Faber’s thesis and D.J. Lutzer was the referee for the dissertations of Van Wouwe

and Hart.

2.1. The thesis of J. van Dalen

Van Dalen’s thesis [14] can be seen as an attempt to generalize well-known theorems

about Euclidean spaces to products of locally compact ordered spaces, where ‘ordered

space’ means LOTS. The main results are

1. A product ofn connected ordered spaces has large inductive dimensionn, pro-

vided the product itself is normal.

2. Invariance of Domain in the generalized plane (a product of two connected or-

dered spaces without end points).

3. A No-Retraction Theorem for finite products of compact connected ordered

spaces.

There are also some examples that show that not all results about the plane or about

n-space admit generalization. For example, there is no counterpart of the Schoenflies

Theorem which says that a homeomorphism between Jordan curves in the plane can

be extended to a homeomorphism between the respective bounded domains. In a non-

metrizable order-homogeneous and reversible connected ordered space a square and
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a triangle have homeomorphic boundaries but the sets themselves are not homeomor-

phic.

This thesis also contains Question 3.1 which we will come back to in Section 3.

2.2. The thesis of H. Kok

Kok’s thesis [7] deals with connectivity in ordered spaces. In this thesis ‘ordered

space’ means weakly ordered space; LOTS are referred to as ‘strictly ordered’. The

emphasis is onconnectedordered spaces, or rather conditions that ensure that a con-

nected (T1-) space is orderable. In the thesis one finds some 20 necessary conditions

for a space to be orderable, each of which isolates some property of the family of

intervals or of the points in a connected ordered space.

Save for a few questions Kok’s thesis presents a complete picture of the relations

between the properties; this picture is neatly summarized in two diagrams, and a chart

with 50 examples that shows that no other relations exist.

2.3. The thesis of M. J. Faber

Faber’s thesis [4] deals with characterizations of various topological properties of GO-

spaces in terms of the order structure of the space under consideration.

Typical results of this nature are the following:

1. A GO-spaceX = (X,<, τ) is compact if and only ifX has neither gaps nor

pseudo-gaps, except for the two pseudo-end gaps.

2. A GO-spaceX = (X,<, τ) is paracompact if and only if for each gap and each

pseudo-gap(A,B) in X, there exist discrete subsetsL ⊆ A andR ⊆ B which

are, respectively, cofinal inA and coinitial inB

As the title of Faber’s thesis indicates, the central results are the ones related to

metrizability in GO-spaces.

Theorem 2.1. LetX = (X,<, τ) be a GO-space. Then the following statements are

equivalent:

1. X is metrizable.

2. There exists a subsetD in X such that

(a) D is dense inX,

(b) D contains all pseudo-gaps ofX, and

(c) D is σ-discrete (inX).

3. There exists a sequence of open covers{Un}∞n=1 ofX such that
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(a)
⋂∞

n=1 St(p,Un) = {p} for everyp ∈ X, and

(b)
{
St(p,Un)

}∞
n=1

is a local base at allp ∈ X but for aσ-discrete set inX.

Faber also proved that each metrizable GO-spaceX = (X,<, τ) has aσ-discrete

base consisting of convex open sets. One might think that this result can be generalized

to the effect that the base consists of open intervals exclusively. But, interestingly, this

is not the case. Faber presents an example of a LOTS having the property that no

σ-disjoint collection of open intervals covers it.

2.4. The thesis of E. K. van Douwen

E. K. van Douwen started his mathematical career in Delft as a Ph. D. student of J.

M. Aarts. He continued his studies under Maarten Maurice at the Vrije Universiteit,

where he got his Ph. D.

The Van Douwen Thesis does not deal with ordered spaces, so in fact falls outside

the scope of this article. The article would however not be complete without some

lines devoted to the work of Van Douwen and so we leave the world of ordered spaces

for (just) a moment.

Let X be a topological space. As usualC∗(X) denotes the vector space of

bounded real-valued continuous functions onX. If A is a subspace ofX then a

functionΨ: C∗(A) → C∗(X) is called anextenderif for eachf ∈ C∗(A) the func-

tion Ψ(f) extendsf . A spaceX is said to have propertyD∗
c , wherec is a real number

greater than or equal to1, if for every nonempty closed subspaceA of X there is

a linear extenderΨ: C∗(A) → C∗(X) with norm not exceedingc. The Dugundji

Extension Theorem implies that every metrizable space has propertyD∗
1 .

Again, letX be a topological space. It will be convenient to letτX denote the

topology ofX. The spaceX is said to be aKn-space if for every subspaceA of X

there is a functionκ : τA→ τX such that

1. A ∩ κ(U) = U for everyU ∈ τA (i.e. κ extends open subsets ofA to open

subsets ofX),

2. if {Ui}n
i=0 is a family of n + 1 pairwise disjoint open subsets ofA then the

intersection
⋂n

i=0 κ(Ui) is empty.

In his thesis [16], Van Douwen proved that a space with propertyD∗
c is aKn-space,

wheren is the smallest integer larger than12 (c − 1). In addition, for everyn he gave

an example of a first countable cosmic (= continuous image of a separable metrizable

space) spaceHn which is not aKn-space. HenceH∞, the topological sum of the

spacesHn, does not have propertyD∗
c for anyc. This answered a question of E. A.

Michael in the negative. For more information on Van Douwen’s mathematical work,

see [18].
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2.5. The thesis of A. E. Brouwer

Brouwer’s thesis [1] can be considered as a sequel to Kok’s thesis in that it continues

and completes the study begun there. It is shown among other things that the four

question marks in the table of [7, p. 85] should all be minus signs. The thesis also

contains a thorough study of treelike spaces (a space is called treelike if for any two

distinct points in the space there is a third which separates them) and a complete

structural classification of spaces that have the property that the complement of a

connected set can have at most two components.

2.6. The thesis of J. M. van Wouwe

Just as Brouwer’s thesis was a sequel to Kok’s thesis, Van Wouwe’s thesis can be

thought of as continuing the line of research started in Faber’s thesis.

Ever since the first metrization theorems appeared people have been inventing and

studying properties that generalize parts of the necessary and sufficient conditions

for metrizability. In his thesis [20] Van Wouwe studies several of these generalized

metrizability properties in the class of GO-spaces.

LetX = (X,<, τ) be a GO-space. Van Wouwe constructs a natural equivalence

relationGX onX such thatgX = X/GX is a GO-space and moreover is metrizable

if and only if X is a p-space (in the sense of Arhangel′skĭı). He then proceeds to

define an equivalence relationCX onX such thatcX = X/CX is a GO-space and

moreover is metrizable if and only ifX is anM -space (in the sense of Morita). Since

it is clear that the metrizability ofgX implies the metrizability ofcX, Van Wouwe

arrives at the interesting conclusion that every GO-space that is ap-space is also anM -

space. He also proves that every perfectly normal GO-spaces that is aΣ-space is also

anM -space. He defines a third equivalence relationLX onX such thatX/LX is a

GO-space; in addition,X is a Σ-space if and only ifX/LX is metrizable and each

L ∈ LX has aΣ-network. His final results deal with images and pre-images of GO-

spaces under various mappings. He proves, for example, that the familiar Sorgenfrey

line is not the image of a LOTS under an open-and-closed map. Interestingly, Hušek

and Kulpa [?] showed that each GO-space is the open image of a LOTS.

2.7. The thesis of K. P. Hart

Hart’s thesis [5] consists of three parts. The first parts deals with covering proper-

ties that every LOTS and GO-space has and determines their relations outside of the

class of ordered spaces. In the second part the topological structure ofω1-trees is

investigated, with emphasis on covering and separation properties. Finally, the third

part contains a general method for constructing ordered continua with(out) various
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homogeneity properties.

3. Maarten’s questions

Maarten posed several intriguing questions, some of which are still unsolved. We shall

discuss a few of them. The first, already alluded to when we discussed Van Dalen’s

thesis, asks:

Question 3.1. Is Colorado homeomorphic to Utah?

This formulation is after the title of the paper [10] that contains its solution. To

formulate it in a precise manner we consider a compact connected ordered spaceX,

with minimum 0 and maximum1. We choose two points,a and b, in X and we

consider the following subsetU (Utah) ofX ×X:

U =
{
(x, y) : x ≤ a or y ≤ b

}
.

The question asks whetherU is homeomorphic toC = X2 (Colorado). By Van

Dalen’s Invariance of Domain theorem the boundaries ofU andC will have to be

homeomorphic as well. This, plus the fact that one does not want the answer to depend

on the particular pointsa and b, leads one to consider order-homogeneous spaces,

spaces in which every closed interval is similar toX.

In [10] Mills gave a negative answer by showing that ifX is a compact connected

ordered space without separable intervals then the autohomeomorphisms ofX2 have

a particularly simple structure: they are of the formφ × ψ, possibly composed with

the reflection map〈x, y〉 7→ 〈y, x〉.
It is not too hard to show that ifh : C → U were a homeomorphism thenh−1 ◦

(Id × φ) ◦ h would not be of this form, whereφ is a homeomorphism ofX that acts

nontrivially on[a, 1].

A question that generated a lot of research is the following:

Question 3.2. Can one decompose the real line into two mutually homeomorphic

homogeneous subsets?

An positive answer was claimed by J. Menu in a preprint which never appeared.

A second answer was given by J. van Mill in [19].

The simplest example that we are aware of takes a Hamel base forR overQ that

containsπ. The decomposition is then obtained as follows:

A = {r ∈ R : πr ∈ [2n, 2n+ 1) for somen ∈ Z},

whereπr denotes theπth coordinate ofr. The translationx 7→ x + π is a homeo-

morphism betweenA and its complement. The only hard part is to show thatA is
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homogeneous; here one employs the fact thatR is a vector space overQ and an ap-

proximation technique.

A very natural question was:

Question 3.3. Are there paracompact spacesX andY such thatX × Y is normal

but not paracompact?

This question was inspired by the fact that the first examples on nonpreservation of

paracompactness in products all produced nonnormal products. It was finally settled

by Przymusínski in a very strong way, first assumingMA + ¬CH in [11] and later in

ZFC alone in [12]: there is a Lindelöf spaceX with X2 normal but not paracompact.

A good survey on questions (and answers) on normality in products is Przymusiński’s

paper [13].

It is easy to prove that if a GO-spaceX has aσ-discrete dense subset, thenX is

perfectly normal. The converse of this result is not provable inZFC since a Suslin line

is perfectly normal but has noσ-discrete dense subset. So Maarten asked:

Question 3.4. Is there a ‘real’ example of a perfectly normal LOTS which does not

have aσ-discrete dense subset?

This question is still unsolved, despite various attempts. It is closely related to an

older problem posed by Heath: Is there a ‘real’ example of a perfectly normal LOTS

which has a point-countable base and yet is not metrizable?

In his thesis [8] Maarten constructed a family ofω1 pairwise nonhomeomorphic

(infinite) (topologically) homogeneous compact LOTS’s and asked on p. 9:

Question 3.5. Are there are any other (infinite) homogeneous compact LOTS’s?

In [9] he solved this problem by constructing another family consisting ofω1 pair-

wise nonhomeomorphic homogeneous compact LOTS’s. The definitive answer to

Maarten’s question was given by Van Douwen in [17]. He constructed2c such spaces

(this number is best possible).

An interesting feature of Maarten’s examples is that most of them are not sepa-

rable, in fact they have cellularityc. This result motivated Van Douwen to ask the

following now famous problem:

Question 3.6 (Van Douwen’s Problem).Is there a compact homogeneous space with

cellularity greater thanc?

For the first construction of compact rigid LOTS’s, see the paper [3] by Maarten

and his advisor De Groot.
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