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f-9 Topological Characterizations of Separable
Metrizable Zero-Dimensional Spaces

A spaceX is called zero-dimensional if it is nonempty
and has a base consisting ofclopen sets, i.e., if for every
point x ∈ X and for every neighbourhoodU of x there
exists a clopen subsetC ⊆ X such thatx ∈ C ⊆ U . It
is clear that a nonempty subspace of a zero-dimensional
space is again zero-dimensional and that products of zero-
dimensional spaces are zero-dimensional.

We say that a spaceX is totally disconnected if for all
distinct pointsx, y in X there exists a clopen setC in
X such thatx ∈ C but y /∈ C. It is clear that every zero-
dimensional space is totally disconnected. The question nat-
urally arises whether every totally disconnected space is
zero-dimensional. If this were true then checking whether a
given space is zero-dimensional would be simpler. However,
the answer to this question is in the negative, as was shown
by Sierpínski (cf. [KU, Chapter V, §46.VI, Footnote 2]).

In part 1 of this note, we are interested in theorems that
state nontrivial and useful topological characterizations of
zero-dimensionalseparable metrizable spaces. So it will be
convenient in part 1 to let ‘space’ denote ‘separable metriz-
able space’. In part 2 we briefly mention a few results for
generalTychonoff spaces that are in the same spirit.

1. Separable metrizable spaces

It is easy to see that a zero-dimensional space can be em-
bedded in the real lineR, and that a nonempty subspaceX

of R is zero-dimensional if and only if it does not contain
any nondegenerate interval. For example, thespace of ra-
tional numbers Q, thespace of irrational numbers P, the
productQ × P, etc., are all zero-dimensional.

A zero-dimensional spaceX is strongly homogeneous
provided that all of its nonempty clopen sets are homeomor-
phic. It is easy to see that every strongly homogeneous space
is homogeneous, [5, 1.9.3]. It is tempting to conjecture that
all homogeneous zero-dimensional spaces are strongly ho-
mogeneous. This is not true however, as was shown by van
Douwen.

If P is a topological property then a space is called
nowhere P provided that no nonempty open subset of it has
P . The characterizations theorems that we will mention be-
low are all of the following form: up to homeomorphism,
there is only one zero-dimensional space which hasP but is
nowhereQ. HereP andQ can be quite complex topological
properties. An interesting consequence will be that all non-
empty clopen sets of the spaces considered share the same
properties. This means that all these spaces are strongly ho-
mogeneous and hence homogeneous. So the characterization

theorems give us homogeneity for free. (This phenomenon is
not uncommon in topology.)

The following example of a zero-dimensionalcompact
space is of particular interest. FromI = [0,1] remove the
interval (1/3,

2/3), i.e., the ‘middle-third’ interval. From the
remaining two intervals, again remove their ‘middle-thirds’,
and continue in this way infinitely often. What remains ofI

at the end of this process is called theCantor middle-third
set, C. A space homeomorphic toC is called aCantor set.

It is easy to see thatC is the subspace ofI consisting of
all points that have a triadic expansion in which the digit 1
does not occur, i.e., the set

{
x =

∞∑
i=1

xi

3i
: xi ∈ {0,2} for everyi

}
.

The Cantor set was introduced by Cantor. It is clearly closed
in I, hence is compact. It also has no isolated points and is
zero-dimensional because it does not contain any nontrivial
interval. Interestingly, the mentioned properties topologic-
ally characterizeC: up to homeomorphism,C is the only
zero-dimensional compact space without isolated points.
This is due to Brouwer [5, Theorem 1.5.5]. Observe that
the characterization theorem implies thatC is homeomor-
phic to the Cantor cube{0,1}∞. Hence one can look upon
Brouwer’s Theorem also as a topological characterization of
{0,1}∞.

The Cantor setC topologically surfaces ‘almost every-
where’. By a result of Souslin, every uncountableanalytic
space contains a topological copy ofC [4, Exercise 14.13].
This result was partly generalized by van Douwen: if atopo-
logically complete spaceX contains an uncountable family
of pairwise disjoint homeomorphs of some compact space
K thenX contains a copy of the productC × K [5, Corol-
lary 1.5.15]. Observe that the uncountably many pairwise
disjoint homeomorphs ofK may be irregularly embedded.
Van Douwen’s result shows that they can be replaced by
a Cantor set of ‘regularly’ embedded copies ofK. Since
Souslin’s theorem works for analytic spaces, the question
naturally arises whether van Douwen’s theorem also holds
for analytic spaces. This question was considered by Becker,
van Engelen and van Mill; it is undecidable.

The Cantor set is a universal object for the class of all
zero-dimensional spaces. By a result of Alexandroff and
Urysohn, every compact space is a continuous image ofC
[5, Theorem 1.5.10]. This is also some sort of universal prop-
erty.
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Cantor sets are widely studied in geometric topology. It
is easy to prove that all Cantor sets inR are topologically
equivalent. The same result is also true inR2 but the proof
is more difficult. In R3 there are ‘wild’ Cantor sets how-
ever, the most famous one of which is Antoine’s necklace.
Similar sets can be constructed inRn for n � 3 and in the
Hilbert cube Q. In contrast, in thecountable infinite prod-
uct of lines R∞, all Cantor sets are tame. For details, and
references, see [2, 5].

The rational numbersQ can also be characterized in topo-
logical terms. It is, up to homeomorphism, the only count-
able space without isolated points. This is due to Sierpiński
[5, Theorem 1.9.6]. As is the case with Cantor sets, topolo-
gical copies ofQ surface ‘almost everywhere’. It was shown
for example by Hurewicz that if a spaceX is not aBaire
space thenX contains a closed copy ofQ (the simple proof
of this which was presented in [5, Theorem 1.9.12] is due to
van Douwen).

Alexandroff and Urysohn proved that, up to homeomor-
phism,P is the only zero-dimensional topologically com-
plete space which is nowhere compact [5, Theorem 1.9.8].
This implies for example thatP is homeomorphic toN∞,
whereN is the (discrete) space of natural numbers. They
also proved thatQ × C is up to homeomorphism the onlyσ -
compact zero-dimensional space which is nowhere compact
and nowhere countable. A similar result was obtained by the
author:Q × P is the topologically unique zero-dimensional
space which is a countable union of closed topologically
complete subspaces and which in addition is nowhere to-
pologically complete and nowhereσ -compact. It was sub-
sequently shown by van Engelen [3] that Q∞ is the only
zero-dimensional absoluteFσδ which is first category and
nowhere an absoluteGδσ .

Observe that all the spaces considered so far aretopolo-
gical groups. This is clear forQ, being a subgroup ofR. It is
also clear forC andP since their characterization theorems
imply that they are homeomorphic to the topological groups
{0,1}∞ andZ∞, respectively. Since products of topological
groups are topological groups, we are also done forQ × C,
Q × P andQ∞. These observations prompted van Douwen
to ask whether every zero-dimensional homogeneous space
admits the structure of a topological group. He proved that
there is a (strongly homogeneous) zero-dimensional space
T which is the union of a topologically complete and a
countable subspace, and which is nowhereσ -compact and
nowhere topologically complete. As to be expected,T is
topologically characterized by these properties. Since a to-
pological group containing a dense topologically complete
subspace is topologically complete, we have thatT is not
a topological group. But itis homogeneous, being strongly
homogeneous. The spaceT can easily be visualized. Indeed,
let D be a countable dense subset ofC, and putP = C \ D.
Then the subspace

T = (C × C) \ (D × P)

of C × C andT are homeomorphic. Van Douwen did not live
long enough to publish his results onT. For details, see [3].

So not all homogeneous zero-dimensionalabsolute Borel
sets are topological groups. One could revive van Douwen’s
problem by asking whether every zero-dimensional homo-
geneous absolute Borel set admits atransitive action by a
topological group. It was recently shown by the author that
the answer to this question is in the affirmative.

The difficult problem to topologically characterizeall
zero-dimensional homogeneous absolute Borel sets was
solved by van Engelen in [3]. He used the hierarchy of small
Borel classes in�0

3 to characterize all homogeneous zero-
dimensional absolute Borel sets of ambiguous class 2. How-
ever, when extended to the classes�0

α for α < ω1, this hier-
archy turned out to be too coarse to distinguish between all
zero-dimensional homogeneous absolute Borel sets. Instead,
he used the so-called Wadge hierarchy of Borel sets devel-
oped by Wadge (see [4]) and powerful results of Louveau,
Martin, and Steel. He concluded that there are preciselyω1
homogeneous zero-dimensional absolute Borel sets and that
they can all be topologically characterized. The question
which of those spaces admits the structure of a topological
group is not completely solved. It is known that if a first
category zero-dimensional absolute Borel set is homeomor-
phic to its own square then it is a topological group (van
Engelen). The conjecture is that the converse holds.

Call a spacerigid if the identity is its only homeomor-
phism. It is a natural question related to the results men-
tioned here whether there exist rigid zero-dimensional ab-
solute Borel sets. This question was posed by van Douwen.
The zero-dimensionality is essential for there are simple ex-
amples of rigid continua. Van Engelen, Miller and Steel an-
swered it in the negative, [3]. So any zero-dimensional ab-
solute Borel set admits a nontrivial homeomorphism. As far
as we know, it is unknown whether the same result can be
proved for zero-dimensional analytic spaces.

2. General spaces

There are only a few results known for general topological
spaces that are in the same spirit as the results presented
in Section 1. An important result to be mentioned is the
characterization ofβN \ N by Parovǐcenko, [E, p. 236].
HereβN \ N is the Čech-Stone remainder of the discrete
spaceN. Parovǐcenko’s characterization states that under
the Continuum Hypothesis, βN \ N is the topologically
unique zero-dimensional compactF -space of weight c in
which nonemptyGδ ’s have infinite interior. It is known that
the assumption of the Continuum Hypothesis is essential
in Parovǐcenko’s characterization. There are some alterna-
tive and useful characterizations under weaker axioms, but it
would lead us too far to go into that. The spaceβN \ N was
and is widely studied, see e.g., the articles on ultrafilters and
βX in this volume for more information.

We saw above thatC is ‘co-universal’ for second-count-
able compact spaces. The spaceβN \ N has a similar prop-
erty. It was proved by Parovičenko that every compact space
of weight at mostω1 is a continuous image ofβN \ N, [E,
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p. 236]. Only recently similar results for other classes of
spaces were obtained. For example, Dow and Hart proved
that every continuum of weight at mostω1 is a continuous
image of the spaceβH \ H; hereH = [0,∞).

In part 1, we stated Brouwer’s characterization of the Can-
tor cube{0,1}∞. It is a natural question to ask whether a
similar characterization can be found for Cantor cubes of
larger weight, i.e., for spaces of the form{0,1}κ , whereκ

is some uncountable cardinal. This is indeed the case. Call
a compact spaceX anAbsolute Extensor in dimension 0 if
for each zero-dimensional compactumZ and for each closed
subspaceZ0 of Z, any continuous functionf :Z0 → X can
be extended overZ. Ščepin proved that ifκ > ω then a zero-
dimensional compact spaceX of weightκ is homeomorphic
to {0,1}κ if and only if X is an Absolute Extensor in di-
mension 0 while moreover all points inX have the same
character [1, Theorem 8.1.6]. This result has nice applica-
tions. It can be used for example to prove Sirota’s Theorem
that {0,1}ω1 is homeomorphic to its ownhyperspace. (It is
known that there is no corresponding result for{0,1}ω2.)

There are similar topological characterizations of various
other zero-dimensional spaces. For example, it is possible
to generalize the topological characterization ofP stated in

part 1 to topological characterizations of all spaces of the
form Nκ , whereκ > ω. For this result and others we refer
the reader to Chigogidze [1].
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