
Extensive Games as Process Models

Johan van Benthem
University of Amsterdam & Stanford University

December 7, 2001

Abstract. We analyze extensive games as interactive process models, using modal
languages plus matching notions of bisimulation as varieties of game equivalences.
Our technical results show how to fit existing modal notions into this new setting.
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1. Games as interactive processes: actions and outcomes

1.1. Games as process models

An extensive game is a mathematical tree decorated as follows:

M = (NODES, MOVES, PLAYERS, turn, end, VAL)

where non-final nodes are turns for unique players, with outgoing tran-
sitions as moves for that player. Final nodes have no outgoing moves.
Technically, such structures are models for a poly-modal logic, with
the nodes as states, moves as binary transition relations, and special
proposition letters turni marking turns for player i , and end marking
final points. The valuation VAL may also interpret other relevant game-
internal predicates at nodes, such as utility values for players or more
external properties of game states. Thus, games are processes with two
or more interacting agents - and analogies are worth exploring between
game theory and process logics. In this paper, we discuss issues of
’description level’. What are appropriate formal languages for games,
and in tandem with this: what are appropriate semantic simulations -
answering the fundamental question

When are two games the same?

In looking at these issues, we shall mostly deal with finite two-player
games only. But we are more liberal in another sense. Most results that
follow hold for arbitrary graphs, not just trees. This makes sense. There
are two intuitive ways of interpreting the usual game diagrams. One is
as a tree of all possible histories for the game, the other as an abstract
state automaton telling us what states and transitions are possible. On
the latter view, we can liberalize the definition of a game, allowing
cycles that generate infinite runs in the tree of all real plays.
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1.2. Game equivalence: action and power levels

As a warm-up example, consider the following two games:
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Are these the same? The answer depends on our level of interest:

a) If we focus on turns and moves, then the games are not equivalent.

For they differ in ’protocol’ (who gets to play first) and in choice
structure. This is indeed a natural level for looking at game, involving
local actions and choices. Later on, modal bisimulations will be used
to define this comparison more precisely.

But one might also want to call these games equivalent in another
sense - if only, because they represent evaluation games for the two
sides of the valid logical law

p ∧ (q∨r) ↔ (p∧q) ∨ (p∧r) Distribution

The proper sense of equivalence then looks at achievable outcomes only:

b) If we focus on outcomes only, then the games are equivalent.

The reason is players can force the same sets of outcomes across games:

A can force the game to end in the sets {p},{q, r}
E can force the game to end in the sets {p, q},{p, r}

Here ’forcing’ refers to sets of outcomes (’powers’) guaranteed by strate-
gies. In the left-hand tree, A has 2 strategies, and so does E , yielding
the listed sets. In the right-hand tree, E has again 2 strategies, while A
has 4 : LL, LR, RL and RR. Of these, LL yields the outcome set {p}, and
RR yields {q, r}. But LR, RL guarantee only supersets {p, r}, {q, p}
of {p} : i.e., weaker powers. Thus the same ’control’ results in both
games. More generally, at an input-output level, Distribution switches
the scheduling of a game without affecting players’ powers.

Thus, game equivalences come in varieties depending on one’s level
of interest: coarser or finer - illustrating that universal philosophical
insight first enunciated clearly during the Lewinsky hearings:
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Clinton’s Principle It all depends on what you mean by ’is’.

1.3. Process logics and process equivalence

The same ladder of perspectives is known from process theories, run-
ning from purely observational equivalence to more internal simula-
tions. Here is a well-known example. Consider the following machine
pictures - or if you wish, two rather simple games with just one player:
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Do these machines represent the same process?

Both produce the same observable finite traces: {ab, ac}, even though
the first machine starts deterministically, and the other with an internal
choice. If one cares for input-output behaviour only, then, the two
machines are the same under finite trace equivalence. But normally,
one is also interested in some internal workings of a machine, including
the choices ’en route’. This is measured by a finer structural comparison
called bisimulation - and indeed, the two machines are not bisimilar.

Thus there is a hierarchy of process equivalences, from coarser ones
like finite trace equivalence to finer ones such as bisimulation, to be
defined below. Moreover, the ladder has a syntactic counterpart: the
finer the structural equivalence, the more expressive the associated
logical language. We will address such definability issues for games in
this paper, disregarding logical issues of axiomatization or complexity.

There is much more to games and processes than this (vBenthem00).
Many process calculi coexist in computer science, including Hoare-
Dijkstra calculus, modal and dynamic logic, process algebra, temporal
logic, and linear logic. More toward AI, logics for multi-agent systems
introduce knowledge, belief, intentions and desires of agents. All this
additional structure is relevant to extensive games, where players de-
liberate, plan and interact over time. We will discuss two more realistic
topics of this kind as they affect language design and game equivalence:
imperfect information, and preferences/expectations. These involve en-
richments of the above models to combined modal logics of various

"Extensive games as process models".tex; 7/12/2001; 23:23; p.3



4

sorts. One challenging further test for the approach would be infinite
games, which suggest a switch from a modal to a temporal logic making
branches of game trees primary objects in their own right.

2. The action level: modal and dynamic logic

At the action level, extensive games can be described by standard
modal languages, making modal bisimulation the preferred game equiv-
alence. Thus, modal and dynamic logics as they stand are already
interesting calculi of games and strategies! We will demonstrate this
role with a sequence of examples.

2.1. Modal-dynamic properties of games

Consider a simple 2-step game like the following, with players A, E.
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Player E clearly has a strategy making sure that a state is reached
where p holds. This can be expressed by the following modal formula
which is true at the root:

[a∪b] <c∪d> p

indicating that for every execution of the choice action a∪b, there exists
an execution of the choice action c∪d ending in a p-state. Thus, modal
operator sequences can state the existence of strategies. But the lan-
guage can also deal with strategies more explicitly. The latter may be
viewed as partial transition functions defined on players’ turns, given
via a bunch of conditional instructions of the form

”if she plays this, then I play that”.

More generally, strategies are partial transition relations. The latter
involve basic moves, tests for conditions, plus some compounding - and
hence they are definable in a dynamic logic over these models which
starts with the basic moves, and adds the relational operations of

composition ;, choice ∪, iteration *, and test (φ)?

"Extensive games as process models".tex; 7/12/2001; 23:23; p.4



5

Thus, a strategy is like a program, which has to act at turn nodes for
the relevant player. For instance, in this language, we can state that the
final state in a 2-player game reached by playing strategies σ, τ against
each other has some property p:

[((turnE)? ; σ) ∪ (turnA)? ; τ))*] (end →p)

In other words, dynamic logic encodes explicit reasoning about strate-
gies and their final effects. This can even be extended. First, we can
equally well describe effects at intermediate nodes of strategies, drop-
ping the antecedent end →. Next, the relational setting is a plus.
A standard game-theoretic strategy was a function giving a unique
response at every turn for its player. But in actual deliberation about
actions, total recipes are scarce. We usually have some vaguer plan,
which may present us at our turns with more alternatives, placing only
some constraint on our actions. Realistic opponents play such plans
against each other, resulting in a set of possible outcome states: re-
stricted, but not uniquely defined by their plans. This broader situation
is covered automatically by the above formulas and their logic.

2.2. Dynamic logic as strategy calculus

Dynamic modal logic can also talk about strategies running over only
part of the game tree, and their combination. Thus one gets a calculus
of strategies for free! The following modal operator describes the effect
of partial strategy σ for player E running until the first game states
where it is no longer defined:

{σ, E}φ [((turnE)? ; σ) ∪ (turnA)? ; A))*]φ

Here A is the union of all available moves for player j . Likewise, in
what follows, E is the union of all moves for player i .

A basic operation on strategies is union, allowing all possible moves
according to both. Union plays two roles. On the one hand, it merges
two ’plans’ constraining players’ moves into a common weakening. Then
we can do plan calculus like program calculus in dynamic logic, includ-
ing reasoning about effects.
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Here are two examples:

{σ, E}φ ∧ {σ, E}φ → {σ, E} (φ ∧ ψ) is valid
{σ, E}φ ∧ {τ , E}ψ → {σ ∪ τ , E}φ is invalid.

But union also has another guise: as sequential composition of suc-
cessive strategies - at least, if we make the assumption that

σ, τ are disjoint : never defined at the same turns.

Then the following principle of strategy calculus becomes valid:

{σ, E}{τ , E}φ → {σ ∪ τ , E}φ
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2.3. Fixed-point languages for equilibrium notions

A good test for proposed languages checks their expressive power for
rendering proofs of significant results. Recall the following basic result:

Zermelo’s Theorem Every finite zero-sum game is determined.

I.e., one of the two players in such a finite game always has a winning
strategy. Here is the heart of the matter. Starting from atomic pred-
icates wini at end nodes indicating which player has won, we define
predicates WINi (’player i has a winning strategy at the current node’)
through the following recursion:

WINi ↔ (end ∧ wini ) ∨ (turni ∧ <E>WINi ) ∨ (turnj ∧ [A]WINi )

Note that the given schema amounts to an inductive definition for the
predicate WINi , obtained by a smallest fixed-point schema

WINi = µp• (end ∧ wini ) ∨ (turni ∧ <E>p) ∨ (turnj ∧ [A]p)

The right-hand side is not a formula of dynamic logic proper, but it
does belong to the modal µ-calculus which allows fixed-point definitions
- provided the defining schema only has syntactically positive occur-
rences of the atomic predicate p. Thus, the µ-calculus is a good game
logic, too. Using it, one can vary on the above recursive schema. E.g.,
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{i}φ = µp• (end ∧ φ) ∨ (turni ∧ <E>p) ∨ (turnj ∧ [A]p)

defines the existence of a strategy for i guaranteeing a set of outcomes
where the proposition φ holds. And the following recursion

COOP φ ↔ µp• (end ∧ φ) ∨ (turni ∧ <E>p) ∨ (turnj ∧ <A>p)

would define the existence of a cooperative outcome φ. The latter can
still be defined explicitly inside dynamic logic, using the formula

<((turni)? ; E ) ∪ (turnj)? ; A))*> (end ∧ φ)

Modal fixed-point definitions reflect the equilibrium character of many
game-theoretic notions, reached through some process of iteration.

Thus the basic principles of dynamic logic provide a formalization of
an elementary part of game theory, namely, the pure theory of game
forms, actions and strategies.

2.4. Bisimulation as game equivalence

A language represents a level of detail for talking about properties
of structures. Modal languages discuss games locally, at the level of
individual actions and progression through successive states. But one
can also look at such levels in more structural terms, looking for a
notion of invariance between different presentations of the same game -
just as different ’machines’ can be implementations of the same process.
The crucial equivalence for the modal language is as follows:

definition A bisimulation is any binary relation Z between states of
two graphs M, N with labeled edges (i.e., binary transition relations
Ra), such that, whenever xZy, then we have (1) atomic harmony, and
(2) zigzag clauses for all a:

(1) x, y verify the same proposition letters

(2a) if xRaz, then there exists u in N s.t. yRau and zZu

(2b) vice versa.
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Bisimulation is the typical ’action-similarity’ for processes taking care
of equivalent local properties as well as options available to the process
at any stage. It can be used to contract given machines to smallest ones
implementing the same process, but also to unravel a given diagram to
the full tree of possible execution sequences.

Bisimulation preserves the truth of modal and dynamic formulas, up
to the full µ-calculus - and there are converses, too. Three key results
establish the link (vBenthem96; vBenthem97; Barwise et al. 97):

theorem For all graphs M, N with nodes s, t, condition (a) implies
condition (b):

(a) there is a bisimulation Z between M, N with sZt

(b) M, s and N, t satisfy the same formulas of the µ-calculus

In particular, this implies invariance of modal or dynamic formulas
under bisimulations.

theorem For finite M, N and nodes s,t, the following are equivalent:

(a) M, s and N, t satisfy the same modal formulas

(b) there is a bisimulation Z between M, N with sZt

This partial converse says that the basic modal language and the simi-
larity relation match on finite models. The third result says that at the
same level of description, the dynamic language even provides complete
descriptions for any finite graph:

theorem For each finite graph M and state s, there exists a dynamic
logic formula βM,s s.t. the following are equivalent for all graphs N, t :

(a) N, t |= βM,s

(b) N, t is bisimilar to M, s

proof Any finite model M, s falls into a number of maximal zones
of states satisfying the same modal formulas in our base language. The
resulting partition is definable:

claim 1 There exists a finite set of modal formulas φi (1≤ i ≤k) s.t.

(a) each state satisfies one and only one of them,
(b) states satisfying the same formula φi agree on all modal formulas.
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To see this, take any state s in the model. For any state t which does
not satisfy the same modal formulas take a ’difference formula δs,t true
in s and false in t. The conjunction of all δs,t is a formula φi true only in
s and states with the same modal theory. Without loss of generality, we
assume the φi list all information about the proposition letters that are
true and false throughout their partition zone. We also make a quick
useful observation about action links between these zones:

# If any state satisfying φi is Ra-linked to a state satisfying φj ,
then all states satisfying φi also satisfy <a> φj

Next take the following description βM,s of M, s:

(a) all propositional literals true at s plus the unique φi true at M, s
(b) the ’universal modality’ [(E∪A)*] prefixed to the conjunction

of

(b1) the disjunction of all φi , plus all ¬(φi ∧ φj ) (i 6=j )
(b2) all implications φi →<a> φj for which situation # occurs
(b3) all implications φi → [a] ∨ φj where the disjunction runs

over all situations listed in the previous clause.

claim 2 M, s |= βM,s

claim 3 If N, t |= βM,s, then there is a bisimulation between the
models N, t and M, s.

Let N, t be any model for βM,s. The φi partition N into disjoint zones
of states satisfying them. Link all states in such a zone to all states
satisfying φi in M. In particular, t gets connected to s. We check that
this is a bisimulation. The atomic clause is clear. The zigzag clauses
follow from the given description. (a) Any Ra-successor step in M has
been encoded in a formula φi →<a> φj which holds everywhere in N,
producing the required successor there. (b) Conversely, if there is no
Ra-successor in M, this shows up in the limitative formula φi → [a]∨φj ,
which also holds in N, preventing ’excess’ successors there. �

The second and third theorems hold for arbitrary graphs provided one
increases the expressive power of the basic modal language drastically,
allowing the formation of arbitrary infinite conjunctions and disjunc-
tions in its construction rules.

On trees, bisimulations identify very little, and are close to graph iso-
morphism. But our analysis works just as well for the broader notion
of games as graph automata.
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2.5. Further modal languages

The preceding results are typical of a genre. Similar definability and
expressiveness theorems can be proved for many notions of process
equivalence with richer modal languages (vBenthem96) - and the same
is true for game equivalences. Thus, game structure can be described
either via suitable semantic equivalences between representations, or
more syntactically, in terms of defining ’game formulas’ in correspond-
ing formal languages (Bonanno93; vBenthem99).

In particular, it is useful to extend modal languages with past operators,
looking back at the history of the game prior to the current state. Most
generally, take the

relational converse A∪

on all complex actions A so far, and go back in the tree by inverted
moves. Iterating, this yields modal operators with universal access to
any node in the tree, reachable from the current state by backing up
and then moving down. This allows for counterfactual reasoning about
nodes that never occurred. Bisimulations for this language simply add
zigzag clauses for incoming moves at a state to the earlier ones for out-
going moves. The above results go through with the same proofs. Here
is an additional observation about expressive power (Rodenhäuser01).

fact All strategies are definable in a deterministic finite game tree
using the dynamic modal language with converse operators on actions.

proof If moves are deterministic partial functions, this language
can define every node s in a game tree uniquely by a formula δs enu-
merating all moves in its unique history from the root. Then, every
transition in the tree of type Ra from a node s to a node t can be
defined as follows in the dynamic language:

(δs)? ; a

Any relation is definable by some finite union of these. In particular,
then, any strategy for players becomes definable in our language. �

Defining strategies via backward-looking node definitions, makes them
dependent only on the history of the game so far. But the earlier
’backward induction’ strategies defined their moves by looking at the
future of the current node. This takes us back to the preceding sections.
Consider the bisimulation contraction of a finite game model, i.e., the
smallest graph bisimilar to it. Our original forward-looking language is
fully expressive for strategies in such game models:
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fact In finite bisimulation contractions of a game, every strategy
can be defined in the dynamic modal language as it stands.

proof It is well-known that every state in such a contraction is
uniquely definable by some standard modal formula (Blackburn et al.
01). Now, just enumerate all state transitions in the strategy, using a
finite union of modal action expressions

(φ)? ; a ; (ψ)?

where φ identifies the start of the move, and ψ its end point. �

Adding past operators to our language is a more ambitious way of
talking about the same games. But the above approach also works
when we change the games themselves. A case in point would be the
modal study of games with simultaneous moves with turns defining
active groups of players.

3. The power level: games as input-output relations

Much coarser levels of game description can be important, too. E.g.,
strategic forms in game theory just list all possible strategies and out-
comes for strategy pairs in a matrix. For the two games of Section 1.2,
e.g., these matrices are as follows:

@@E
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AL R LL LR RL RR
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This only records global actions and outcomes. A more economic de-
scription looks directly at players’ powers for forcing the game to end in
a certain set of outcomes. We will define this, find some basic properties,
and show how generalized modal languages can deal with this game
level, including an appropriate bisimulation.

3.1. Forcing and powers

We define the following forcing relations:
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ρi
G s, X player i has a strategy for playing game G from

state s onward whose resulting states are always
in the set X

Forcing relations at the root of a game encode players’ powers for
determining the outcomes against arbitrary counterplay by their part-
ners. Mathematically, they are generalized accessibility relations in an
interactive process, relating states to sets of states: leaving the state-to-
state transition relations of the above game models. We will work with
this input-output view of game structure henceforth. Powers forced by
strategies are easy to compute, witness the example in Section 1.2.

3.2. A simple representation of powers

Though not strictly necessary for what follows, the following will help
understand the current game level. For simplicity, consider games be-
tween two players A, E. Here are some constraints. Power relations are
evidently closed under supersets:

C1 if ρi
G s, Y and Y ⊆ Z, then ρi

G s, Z

Another obvious constraint is consistency. Players cannot force the
game into disjoint sets of outcomes, or a contradiction would result:

C2 if ρA
G s, Y and ρE

G s, Z, then Y, Z overlap

Moreover, Zermelo’s Theorem said that all finite 2-player games are
determined : for any winning convention, one of the two players must
have a winning strategy. This is really a condition of completeness. Let
S be the total set of outcome states:

C3 if not ρA
G s, Y, then ρE

G s, S-Z;
and the same holds for E vis-á-vis A

Conversely, these conditions are also all that must hold, witness the
following result:

proposition Any two families F1, F2 of subsets of a set S satisfying
conditions C1, C2, C3 are the root powers in some two-step game.

proof Start with player A and let him choose between successors
corresponding to the sets in F1. At these nodes, player E gets to move,
and can pick any member of that set. Clearly, player A has the powers
specified in F1. Now for player E. In the game just defined, she can
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force any set of outcomes that overlaps with each set in F1. But by C2,
C3, these are precisely the sets in her initial family F2. E.g., if outcome
set U overlaps with all sets in F1, its complement S -U cannot be in
that family, and so U itself must have been in F2 by Completeness. �

With these constraints, in a two-player game, powers for one player
automatically determine those for the other by C2, C3. Our result
gives an outcome-level normal form for games, related (though not
identical) to their usual strategic form. It has two moves, and it does
not matter which player begins. This is like the distributive normal form
of standard propositional logic. Indeed, the major Boolean operations
form a logical calculus of game equivalence (vBenthem01c) allowing us
to reverse the order of players, and suppress repeated moves by them.

The above conditions on two families of sets collapse into the standard
set-theoretic notion of an ultrafilter when we identify the two families,
and have just one player. This limit behaviour shows we have a natural
notion. The game-theoretic setting is an arena for systematic general-
ization of classical logical notions. One is now free to make separate
stipulations for players, and relate these in various ways.

3.3. A modal forcing language

There still is a matching modal language for games at this level, with
proposition letters, Boolean operators, and this time, modal operators:

M, s |= {G, i} φ iff there exists a set X with ρi
G s, X

and ∀s ∈X M, s |= φ

In the context of a fixed game, we need not encode the first argument
in the modality - writing just {i}φ. This is the so-called neighbourhood
semantics for modal logic, taking states to sets of states. Its universal
validities are all principles of the minimal modal logic except for distri-
bution of {i}φ over disjunctions. In particular, the above C1, C2, C3
return as principles of the logic:

if |= φ → ψ, then |= {G, i}φ → {G, i}ψ upward monotonicity

{G,A}φ ↔ ¬{G,E}¬φ consistency + determinacy

Failure of distribution means that the following is not valid:

{G, i}(φ ∨ ψ) → {G, i}φ ∨ {G, i}ψ

This is precisely the point of forcing. Other players’ powers may keep
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us from determining outcomes uniquely. E.g., in the game of Section
1.2, player A can force {q, r} , but neither {q} nor {r} - as E has the
decisive say in this.

3.4. Bisimulation, invariance and definability

Consider any game model M plus forcing relations as defined above.
Here is the appropriate generalization of standard modal bisimulation.

definition A power bisimulation between game models M, N is a
relation Z between game states satisfying the following two conditions:

(1) if xZy, then x, y satisfy the same proposition letters.

(2a) for each i , if xZy and ρi
M x, U, then there exists

a set V with ρi
N y, V and ∀v ∈ V ∃u ∈ U: uZv

(2b) vice versa.

This notion is natural. It has been proposed independently in con-
current dynamic logic (vBenthem et al. 94), topological modal logics
(Aiello et al. 01), game logics for players’ strategic powers (Parikh85;
Pauly01), and co-algebra (Baltag00). All results of Section 2 generalize:

theorem Formulas in the modal forcing language are invariant for
power bisimulation.

proof The inductive step for the forcing operator explains the above
zigzag clauses. Consider two game models M, N. Suppose M, s |= {i}φ
and sZt. By the truth definition, there is a set U with ρi

M s, U and for
all u∈U : M, u |= φ. Now by the zigzag clause (2), there is a set V in
N with ρi

N t, V and ∀v∈V ∃u∈U : uZv. Thus, every v∈V is Z-related
to some u∈U, and by the inductive hypothesis: N, v |= φ. But then,
N, t |= {i}φ. �

theorem Finite models M, x and N, y satisfying the same forcing
formulas have a power bisimulation Z between them with xZy.

proof Define a relation Z between states in the models as follows:

uZv iff M, u and N, v satisfy the same modal forcing formulas.

claim Z is a power bisimulation.
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The atomic clause is clear from the definition. Now, suppose that sRt,
while also, for some subset U of M, ρi

M s, U. We need to find V with

ρi
N t, V and ∀v∈V ∃u∈U : uZv

Suppose that no such set exists. That is, for every set V in N with
ρi
N t, V, there is a state vV ∈V which is not Z-related to any u∈U.

Let us analyze the latter statement. By the definition of the relation
Z, for each u∈U, vV disagrees with u on some forcing formula ψu: say,
it is true in u, and false in vV. But then, the disjunction ΨV of all these
formulas is true in every member of U, and still false in vV. Now let
Ψ be the conjunction of all the latter formulas, where V runs over the
sets satisfying ρi

N t, V. Evidently, we have

M, s |= Ψ for each u∈U

and hence

M, t |={i}Ψ

But then, by the above definition of Z, also N, t |={i}Ψ. This means
there is a set V with ρi

N t, V all of whose members satisfy formula Ψ.
This contradicts the construction of Ψ, as vV certainly does not satisfy
its conjunct ΨV. �

We can even find true ’strategy invariants’ for any game, namely, infini-
tary forcing formulas defining the class of all games that have a forcing
bisimulation with them. These results also hold over general process
models, not necessarily game trees.

theorem For each finite graph M, s, there is a modal forcing formula
βM,s such that the following are equivalent for all graphs N, t :

(a) N, t |= βM,s

(b) N, t is power similar to M, s.

proof We only indicate the change needed in the proof of the sim-
ilar result that was already given in Section 2. This time, whenever
ρi
M t, U holds in the model, in the global description formula βM,s, we

put a conjunct of the form

φt → {i}
∨

u∈U φu
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whereas, if ρi
M t, U does not hold, we put

φt → ¬ {i}
∨

u∈U φu

The argument that truth of the resulting formula guarantees a power
bisimulation with the original model is essentially similar to the one
given in Section 2.4. �

3.5. Connections with modal action languages

The above forcing modality was already shown definable inside the
modal µ-calculus in Section 2. The same implication holds at the level
of simulations:

fact If there exists an action bisimulation between two models,
linking s to t, then there is also a power bisimulation doing the same.

Action and power perspectives on games co-exist. One example are
first-order evaluation games as treated in van (vBenthem01a), Ch.
7, where truth of a first-order sentence φ (a modal action assertion
about a model viewed as a ’game-board’) amounts to the existence
of a winning strategy for Verifier: i.e., a power for a player in the φ-
game on that board. Another example are graph games, with players
picking successors according to some protocol. Here winning strategies
are associated with modal action properties of the graph itself. Another
connection is a much more speculative issue of game language design.1

4. Intermediate levels of game structure

Modal action bisimulation and power bisimulation are two extremes of a
spectrum. For games, there are also attractive intermediate possibilities

1 Two-sorted modal decomposition
One can also use standard modal languages to re-design the forcing language. The
forcing modality {i}φ combines two logical quantifiers, being of the form

there exists a strategy such that all its outcomes have property φ

This is a two-sorted modal combination <1>[2], with an existential modality <1>
ranging over available strategies at the current state, and the universal [2] over the
reachable outcome states of the former. This requires two-sorted models with a do-
main of states, and one of strategies - which have their own two-sorted bisimulations.
This is more elegant, as we can state properties of strategies per se, and reason about
the available strategies of a game in a less implicit way.
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that do not correspond directly to known process equivalences. We
discuss two ways to go.

4.1. Forcing intermediate positions

Powers tell us what players can achieve in the end. But sometimes we
want to describe their powers at intermediate stages. E.g., the local
dynamics of the two power-equivalent Distribution games in Section
1.2 is quite different. On the left, player A can hand player E a choice
between achieving q and r - but this is impossible on the right. This
property might be expressed in a simple notation:

{{A}}({{E}}q ∧ {{E}}r),

true in the left root, false in the right one. This is a new forcing modality

{{E}}φ Player E has the power to take the game to a set
of states, final or intermediate, all of which verify
proposition φ

This new level in the simulation/language spectrum does not keep track
of specific actions (as bisimulation does), but it does care about the
internal dynamics. Again, the new modality also has a simple recursive
definition in our action language:

{{E}}φ ↔ φ ∨ (turnE ∧ <E>{{E}}φ) ∨ (turnA ∧ [A]{{E}}φ

Given this new language, one can look for a corresponding bisimulation.
In this case, a simple variant on that of Section 3 suffices:

just drop the requirement that all sets forced consist of end nodes.

Invariance and definability results remain as before. Universal validities
are also similar to forcing logic. But one gets the following two inter-
esting new properties:

{{E}}{{E}}φ → {{E}}φ successive strategies compose
[A]{{E}}φ → {{E}}φ a bunch of strategies answering

any move by the opponent can
be patched to one whole strategy

But not all is routine generalization here. One interesting open question
is whether intermediate forcing bisimulation can also be defined in a
way that is closer to ordinary modal bisimulation. One can reformulate
it in terms of barriers through a game that can be forced by players,
asking for similar barriers on the other side. This notion is natural in
a graph-theoretic perspective (Wagner70).
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Here is another attempt, closer to standard bisimulation at the action
level - in the form of a

Digression Player-dependent bisimulations
Ordinary bisimulation does not care about players’ turns. But what if
we use the latter to make a new distinction to get the following refined
notion? Call a relation Z a game bisimulation if it satisfies the following
zigzag clause:

(a) whenever xZy, and the same player is to move in both, require
the usual zigzag clauses;

(b) but when, say, E is to move at x and A at y, then, whenever
xRaz, then zZu for all successors of y - and vice versa in the
other direction.

Thus, when E can move at x starting some strategy, she has a similar
response after any move made by A on the other side. This does not
quite match intermediate power bisimulation, witness our Distribution
example of Section 1.2. On the left, A can move to a state where E can
force either q or r: but there is no such state on the right, so any recipe
for linking successor states must go wrong. But the above notion seems
interesting in its own right. In particular, it can be shown it matches a
modal language allowing only modalities of the forms

(turnE ∧ <E> φ) ∨ (turnA ∧ [A]φ)

and similarly for the other player. We are not totally happy with this,
but leave improvements to the reader.

4.2. Alternating bisimulation

Another intermediate game simulation starts from standard process
equivalences, mixing output views (finite trace equivalence) with choice
awareness (bisimulation). Combining both again takes advantage of the
fact that we can make independent stipulations for the two players.
Intuitively, we do not care about the choices one player makes inside
her own ’zone of control’, but we do when control switches from one
player to another. This shows in the common idea that, without loss of
generality, extensive games should have an alternating schedule where
players switch after one move.
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Consider an example adapted from Section 1:
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In terms of what can be achieved, options for player E are the same
in both games, even though there is no modal bisimulation, only finite
trace equivalence. But if player A gets to choose the second move,
strategic effects are quite different!
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E controls the outcome to the right, while A does on the left. The two
game pairs may be distinguished as follows. First, define a maximal
move for a player i as

a finite sequence of moves along succesive turns for i , ending in
either an end point, or a state where it is the other player’s turn.

Now, define an alternating bisimulation like an ordinary modal bisim-
ulation, but

with zigzag conditions only with respect to maximal moves.

Again, this intermediate game comparison is more discerning than the
coarse one of Section 3:

fact Game models with an alternating bisimulation also have a
power bisimulation.

proof This follows by tracing steps on both sides. Any strategy can
be described in chunks that correspond to those in the above definition:
playing maximal finite sequences of one’s moves, against such sequences
coming from one’s opponent. �
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The converse is not true, witness - as ever - the two non-alternating-
bisimilar Distribution games in Section 1.2, which do have equal powers
for both players.

This is a converse case of 4.1. We start with a plausible game simulation
- and look for a characteristic language. The answer is again a fragment
of the full modal action language. Let switch be the generic name of
compound actions, and MOVEi the union of all moves for player i :

((turni )? ; MOVEi )* ; (end)?
((turni )? ; MOVEi )* ; (turnj )? with j the other player

Using modalities <switch> with respect to just these ’switch rela-
tions’, we can match alternating bisimulation qua expressive power,
obtaining results like before.

5. Imperfect information

All results so far concern just action-outcome structure of games (’game
forms’). What happens to this approach when confronted with richer,
more realistic features of real games? The following sections address
two such challenges. First, consider games with imperfect information,
whose players need not know exactly where they are in a game tree.
This happens in card games, electronic communication, and real life
involving bounds on our memory, or powers of observation. Games like
this are a good test for our framework (vBenthem01a).

5.1. Actions and knowledge in dynamic-epistemic logic

A typical game tree in this sense extends the example of Section 2.1
with a dotted line indicating player E’s uncertainty about her position
when her turn comes. Thus, she does not know the move played by
player A, for whatever reason:

a b

c d c d
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EE

1 2 3 4

@
@@R

�
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���

A
AAU

A
AAU
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���

E...............

p p

Structures like this are game models of the earlier kind, but now with
additional uncertainty relations
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vi

for each player i . In the standard sense of epistemic logic, we then have
at any game state s,

Kiφ player i knows those assertions φ that are true
at every state vi -indistinguishable from s

Thus, we have models for a combined dynamic-epistemic language. E.g.,
after A plays move c in the root, in both middle states, E knows that
playing a or b will give her p - as the disjunction <a>p ∨ <b>p is true
at both middle states:

KE(<a>p ∨ <b>p)

On the other hand, there is no specific move of which E knows that it
guarantees a p-outcome - which shows in the truth of the formula

¬KE <a>p ∧ ¬KE <b>p

Thus, E knows de dicto that she has a strategy which guarantees p, but
she does not know, de re, of any specific strategy that it guarantees p.
Such fine distinctions are typical for a language with both actions and
knowledge for agents. Another new aspect of the above game is its non-
determinacy. E’s playing ’the opposite direction from that chosen by
player A’ was a strategy guaranteeing outcome p in the original game -
but it is unusable now. For, E cannot tell if the condition holds! Game
theorists only accept uniform strategies here, prescribing the same move
at indistinguishable nodes. But then no player has a winning strategy,
when we interpret ’p’ as the statement that player E wins (and hence
¬p as a win for player A). Player A did not have one to begin with,
while E has now lost hers.

5.2. Powers, knowledge, and uniform strategies

One can also look at these games more coarsely, from an outcome point
of view. For instance, in terms of available uniform strategies, our game
is outcome-equivalent to one that interchanges the two players plus
some outcomes:
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The right language for the action level is the dynamic-epistemic one.
As it is a sum of two standard modal languages, its characteristic
bisimulation is predictable:

one just adds the zigzag conditions for both types of relation:
action moves, and uncertainty jumps.

With powers the situation is more subtle (vBenthem01a). One can let
forcing modalities refer to them via uniform strategies, and get results
like those of Section 3. But there are further interesting options. E.g.,
one would like to say that uniform strategies are those ordinary strate-
gies whose players know that they have the outcomes they have. One
very natural formalism would combine the ordinary strategy modalities
of Section 3 with epistemic operators, allowing us to express

Ki{i}φ i knows that she has a strategy guaranteeing φ
{i}Kiφ i has a strategy making her know that φ

At this level, we can express special epistemic varieties of game playing.
A nice example is the following version of Perfect Recall :

Ki{i}φ→{i}Kiφ If I know I have a strategy achieving φ, then
I have a strategy making me know that φ

Good bisimulations for this language must mix ideas from Sections
3 for powers and Section 2 for actions, viz. ’uncertainty jumps’. Their
formulation is obvious, and so are invariance and expressiveness results
w.r.t. the preceding language.

5.3. Defining uniform strategies

Here is another interesting epistemic feature of uniform strategies. In-
tuitively, down at the action level, they are those recipes for moves
that should work despite players’ ignorance of their precise position.
In terms of plans, this involves a change in syntax for conditions of
actions. The following instruction is no longer good enough:

If condition C holds, then play a

But the following is usable even to players with uncertainties:

If you know that C holds, then play a

as we are never in doubt about our knowledge or ignorance - at least in
the usual S5-type epistemic game models. Call conditions of this special
sort epistemically secure. Here is a counterpart to the earlier definability
of strategies in finite games, provided we work with a two-sided modal
language also looking at the past:
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fact The uniform strategies in a finite imperfect information game
are precisely those that can be defined in a dynamic-epistemic language
with past operators, using only epistemically secure conditions.

proof Any strategy was definable with this language in such finite
games. Now just note that, for uniform strategies, a uniform move
’at’ some maximal set X of vi -related nodes involves a condition of
the form Ki δX, with δX the disjunction of the unique definitions for
all nodes in X. As in Section 2.5, a similar analysis works for the pure
modal language alone in bisimulation contractions, taken this time with
respect to both actions and uncertainty jumps. �

Thus, imperfect information does not invalidate modal logic and bisim-
ulation perspectives - but it does raise additional issues of its own.

6. Preferences and expectations

The real drama of game theory only enters when players attach values
to outcomes, and strive for maximal utility, or other things related to
evaluation of game states. To some extent, the debate is still on how
to best model this richer setting in logic (Osborne et al. 94; Battigalli
et al. 99; Board01). The simplest way is adding a bunch of atomic
propositions for value assertions at end points, encoding everything in
the modal-dynamic language of Section 2. But this bleak approach does
not high-light the doings of intelligent agents, who have preferences
between states, and expectations about the future course of the game.

6.1. Plausibility and expectation, first version

Perhaps the more striking item are the expectations - which play a
decisive role in understanding behaviour of players. Pay-offs and values
are important in the background, as rational players will have their
expectations in harmony with assumptions about maximizing values,
in competitive or cooperative mode. Expectations are coded by binary
relations of relative plausibility for each player i :

s≤i t i considers state t at least as plausible as state s

In general counterfactual logic, these relations are ternary, with relative
plausibility depending on the current state as one’s vantage point of
comparison x : s≤i,x t. One can then define operators like conditional
belief of a proposition φ given that ψ:
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M, x |= Bi (φ|ψ) φ is true in all most ≤i,x -plausible ψ-states

Note that this is a maximality principle, reflecting the typical use
of maximizing utilities in game theory. For illustrative purposes, we
consider a simpler case here, of expectations about the next move. In
that case, the relation ≤i orders the daughters of the current node, and
we can say that i believes that φ if

M, x |= Biφ φ is true in all most ≤i,x -plausible successors of x

Beliefs about the further future can be described using iterations of this
one-step belief modality. More in detail, (deBruin00) shows how one
can define Backward Induction paths in a framework like this, derived
from common belief of rationality. Thus, game-theoretical models of
this sort naturally support languages of belief and conditionals, whose
properties are reasonably well-understood.

This new language still admits of bisimulation analysis. Consider the
existential belief modality with respect to next moves (given by, say, a
relation NEXT):

M, s |=<i> φ there is a t with s NEXT t and M, s |= φ
while for no u with t<iu, M, u |= φ

This is a two-quantifier condition - which shows in the zigzag clause of
the matching bisimulation:

* Start from any link xZy. Given a NEXT successor z of x, there
must be a matching one u for y which is maximal. That is, still
in the same simulation step - any more i -plausible state u ′ than u
must be Z-linked to some state z ′ more i -plausible than z.

Alternatively, we can separate the two steps, and take a slightly richer
language dealing with the successor steps and ’plausibility jumps’ via
separate modalities

<NEXT> a standard action modality
< <i > a modality for plausibility: ’at some better state’

Thus, simple notions of plausibility and belief can be handled by com-
bining two unary modal languages and their bisimulations as before.
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6.2. Plausibility and expectation, language redesign

Things get more complicated with truly ternary relations of relative
plausibility. E.g., take an existential modality of the counterfactual sort:

M, s |=<>(φ, ψ) there is a t with M, t |= φ and M, t |= ψ
and for no u with u<st, M, u |= φ

Finding characteristic bisimulations for languages with maximality op-
erators like this is not routine, as we are mixing binary and ternary
relations. An analogous challenge were bisimulations for temporal lan-
guages with an UNTIL operator (Kurtonina et al. 97). These things are
often best handled by redesigning one’s language to fit more standard
bisimulations. One possible approach is a two-dimensional one, using
bisimulations that relate single states, but also pairs of states. See
(vBenthem96) on the analogous case of richer, temporal languages,
and finite-variable fragments of first-order logic. But one can also pick
a more workable binary modality. E.g., the following slight variant on
the preceding one behaves reasonably well:

M, s |= U(φ, ψ) there is a t with M, t |= φ and for
every u with u<st, M, u |= ψ

This modality has pleasant features, such as distributivity in the left-
hand argument, and monotonicity in the right-hand argument:

U(φ1 ∨ φ2, ψ) ↔ U(φ1, ψ) ∨ U(φ2, ψ)
U(φ, ψ) → U(φ, ψ ∨ ξ)

It defines the above <> via U(φ∧ψ,¬φ). Notice also that this language
can define a global existential modality:

U(φ, T) φ is true at some point

The notion of bisimulation for this language reads exactly like (*)
in Section 6.1, but now choosing the more plausible successors in the
second stage as seen from the original vantage point.
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One can reason with such notions as before.

proposition The following are equivalent for finite game models
M, x and N, y :

(a) M, x and N, y satisfy the same formulas

(b) there is a bisimulation between M and N linking x to y

proof (b) ⇒ (a) is a routine induction on modal formulas. For
(a) ⇒ (b), as usual, the required bisimulation is the relation of modal
equivalence w.r.t. the language. Consider any link xZy of the latter
sort. Let z be any point in M. Suppose there is no matching point u
in N satisfying our two-stage zigzag condition. This can be, for any u
in N, for one of two reasons:

(a) z, u do not satisfy the same modal formulas,
(b) there is a point v with v<yu in N which has no matching point

w with w<xz in M

In case (a), there is a formula φu true in z but false in u. Thus, the
conjunction φ of all these formulas holds in z. In case (b), every w with
w<xz in M satisfies some formula ψw which is false in v. Thus, the
disjunction ΨV of the latter formulas holds in all w with w<xz in M.
Let Ψ be the conjunction of all these formulas for all v exemplifying an
occurrence of case (b). Putting these two things together, the following
formula of our language is true at x in M:

U(Φ, Ψ)

Since y satisfies the same formulas as x, U(Φ, Ψ) also holds in N, y .
Thus, there is some u in N satisfying Φ such that all v<yu satisfy Ψ.
But this is a contradiction! First, such a point u cannot exemplify case
(a): otherwise, its difference formula with z would have been on the Φ-
list. But it cannot exemplify the second case either, as its more plausible
worlds all satisfy Ψ - and this excludes a difference of type (b). �

Thus preference structure in games, and the maximality principles of
game theory based upon it, do make for more complex modal log-
ics - but bisimulation analysis still applies, especially when we allow
ourselves some freedom of language design.
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7. Conclusion

Our analysis suggests two main claims. First, extensive games are natu-
ral process models, which support many familiar modal logics without
the need for exotic new formalisms. Moreover, bisimulation analysis,
the hall-mark of logical process theories, applies to many varieties of
game structure, and seems to provide just the right tool for studying the
varieties of game equivalence. We have shown this for finite two-player
games here - but infinite games are within reach (vBenthem00; vBen-
them01b). Having come this far, one may draw contemporary game
theory and process logics together in other ways as well. Our account
has been mainly restricted to game forms with moves and strategies,
with some propositional annotation of game states. But many further
aspects of the interaction between rational agents make equal sense
in both fields, too - including such features as coalitions (Pauly01),
mechanism design, and the evolution of behaviour.
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