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1 Logic: inferential and expressive power

Logic is usually taken to be the study of reasoning – and the highest rank of nobility for

an assertion or an inference is ‘logical validity’. There are proof-theoretic methods for

describing all validities for a given language, and completeness theorems assure us that

we have found ‘all there is’ to a particular style of reasoning. But in addition to this

inferential power, logic is also about expressive power. Reasoning needs a language

supplying ‘logical forms’, and what determines the choice of these? Logical languages

contain various forms of expression: propositional connectives, quantifiers, or

modalities, whose meanings are analyzed in addition to their inferential behavior. But

what makes these particular notions ‘logical’, as opposed to others? Perhaps the usual

expressive completeness argument reassures us that the Boolean connectives capture all

there is to two-valued propositional reasoning. But no similar result is known for first-

order predicate logic, the major working system of modern logic.

This concern is not part of the basic ‘agenda’ in textbooks, partly because it is seldom

raised, and partly because there is no consensus on an answer. Sol Feferman is one of

the small group of authors who do think about this basic issue (cf. Feferman 1999), and

I am happy to contribute a little piece of my own thinking on these matters. But before

doing so, let me note that not all great logicians would find the effort worthwhile. E.g.

Bernard Bolzano’s system, pioneering in so many ways, did not contain any privileged

set of logical operations. For him, the distinction logical/non-logical is merely one of

methodology. Forms of assertion for a style of reasoning arise by fixing the meanings

of some expressions (these will have  a ‘logic’ then), and letting others vary. But this

distinction can go in more than one way. Granting this liberality, I still would like to find

out what makes the usual ‘logical constants’ tick.

My aims in this are different from Sol’s excellent analysis, who mentions a

‘demarcation’ of logic as a major concern – and first-order logic as a preferred target.  
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I myself feel no need for a principled separation of logic from other territories,

mathematics, linguistics, computer science, psychology, or whatever. And fixing some

target set of expressions, no matter how noble its ancestry, is too conservative for me. I

prefer accounts of logicality which bring to light interesting ‘parameters’ that can be set

in different ways, giving us a handle on analogies with other fields. Note the phrasing

here. ‘Logical constants’ suggests some expressions in general use among logicians,

perhaps a finite set. What intrigues me is not the book-keeping job of capturing these –

but the analysis of their appealing general features. Out of that we get notions of

logicality, that many expressions might have to greater or smaller degrees. Now you

may find this a slippery slope. Soon, someone who thinks like this will also start

doubting our dearest intuitions, and consider even logical validity a matter of degree.

That is exactly what I do think – but enough of this confessional!

2 Logicality: proposals from different stances

There are a few scattered attempts in the literature at elucidating intuitive notions of

logicality. Not surprisingly, these follow the major stances found in logic. First, there

are semantic accounts, in terms of invariance for permutations of objects in the domain

of discourse. What this mathematical condition intends to capture is the intuitive ‘topic-

neutrality’ of logical expressions. They do not depend on any specific individual

features of objects or predicates. This proposal, made by many authors independently

(including Tarski 1986) seems the most succesful account to date, and it will occupy us

in most of this paper. But there are also other semantic aspects of logicality, as we shall

see below (cf. van Benthem 1986). Next, there have been proof-theoretic accounts of

logicality, addressing different intuitions. E.g., one might think of a logical constant as

one supporting a particularly rich set of inference  patterns – or as one playing a crucial

role in the ‘organisation of proof’. The latter is the thrust of the expressive

completeness theorems in Zucker 1978, Zucker & Tragesser 1978. Alternatively,

Hacking 1979 analyzes logical constants in terms of ‘little content’, being those

expressions that are ‘conservative’: when added to a proof calculus, they do not imply

any new consequences in which they do not occur.

A word on ‘stances’. By this I mean general perspectives in a field, which support a

certain methodology – say like ‘algebra’ and ‘geometry’ in mathematics. Most

logicians recognize a semantic stance on validity (“that which transmits truth”), as well

as a proof-theoretic one (“that which follows by natural proof steps”). Are there further

natural stances in logic? I think there are. E.g. the game-theoretic stance goes back to

the appealing intuition that valid arguments are the ones that you can win as a player in a
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debate. This stance, too, carries its view on logicality (Hintikka 1973). In a game-

theoretic setting, basic operations have to do with various choices that players make, or

role switches. (‘Putting yourself in my position’ is an eminently logical operation!)

Thus, on this stance, logicality would have to do with the basic workings of ‘control’.

This paper takes a semantic stance. But we discuss some other approaches at the end.

Finally, another plausible necessary condition for logicality is algorithmic in nature.

Should logical expressions have meanings that are ‘easiest to compute’ in some way?

Or should they rather be the process combinations that make for ‘maximal effective

computing power’? We will discuss this angle, too. I mention these different angles

here in order to show that there are many intuitive aspects to ‘logicality’, and that we

need neither expect, nor desire one simple formal characteristic exhausting the notion.

3 Permutation invariance

In this section, we state the proposal, discuss its known properties, putting it in context.

Our purpose here is not original. We just want to make some basic things common

knowledge – as the subject is rife with re-inventions of wheels and epicycles.

3.1 The proposal   Logical structure is not about individual peculiarities. Intuitively,

'logical' operators do not care about specific objects inside their arguments. Thus,

permuting these should not make a difference to the workings of the operator. Consider

logical negations. A set complement  –A  just returns the outside of A , without

inspecting any particular feature of the objects in A. Likewise, a relational complement

–R  works uniformly on just the structure of  R, the 'arrow pattern' of its ordered pairs.

Similar observations hold for predicate intersection (conjunctions) and projection

(quantifiers). This is in contrast to non-logical predicate operations like 'Dutch' whose

action depends on the content of its arguments. ("Dutch dining" makes one's guests pay

for themselves, "Dutch climbers" overtake their companions just at the summit.) The

common mathematical generalization behind these examples involves invariance under

permutations  π  of the underlying universe of individual objects.

Definition Let  π  be a permutation of the base universe U . This can be lifted to

sets, relations, and all functions in a finite type hierarchy over U in a canonical way. An

object  F  is permutation-invariant if  π(F) = F  for all permutations  π .    n

One should not think of this proposal as falling out of the sky. There is an analogy here

with something we all know, the semantic Isomorphism Lemma for standard logics.
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Think of operations defined by some formula of the logic with free variables for objects,

predicates, etc.  If  π  is an isomorphism between two models  M   and  N of the

appropriate similarity type, then one proves – by induction on formulas – that 

M |= φ  [x, y, .., X, Y, ...] iff  N |= φ  [π(x), π(y), .., π[X], π[Y], ...]

Equivalently, this says that  π  maps the  M-denotation of  φ  to its  N-denotation:

π [ [[ φ]] M ] =  [[φ]] N

which is the obvious cross-model generalization of permutation invariance. This

Isomorphism Invariance is a defining constraint on 'logics' in Abstract Model Theory.

3.2 How it works  In concrete cases, this notion has useful practical equivalents.

E.g., permutation invariance means either of the following for classical set operations: 

π [O (X, Y, ...)] = O (π [X], π [Y], ...)              ('O commutes with π')

x ∈ O (X, Y, ...)   ⇔ π(x) ∈ O (π [X], π [Y], ...)           (' π respects  O')

Many expressions denote permutation-invariant objects. The account lifts from the

standard logical operations in first-order types to other expressions, bringing out

unexpected relationships. In particular, many second-order categories in natural

language contain invariant items. Useful examples include (a) certain generalized

quantifiers, such as "ten A are B", "most A are B", taking two predicates (viewed as

sets) to an assertion, (b) the reflexivizer "self", taking binary verbs  R  to unary ones

λx•Rxx . The viewpoint also carries over from natural to programming languages.

When the objects are computational states, programs denote binary binary transition

relations, and then the standard program constructs such as sequential composition,

guarded choice, or iteration, are permutation invariant ‘logical constants’.

Let us dispel any air of mystery here. These observations have a simple background in

standard logic – since they follow from the above Isomorphism Lemma. Here is why.

The Lemma holds for any well-behaved logical language, not just first-order, but also in

higher types, or with infinitary expressions. Thus, any definable expression is

permutation-invariant. But all examples mentioned so far – and all in the literature that I

am aware of – are definable in such logical languages. E.g., the above program

constructs are operations in Relational Algebra, which have a first-order definition.

Likewise, the best accepted readings of linguistic generalized quantifiers like “most”

have definitions in higher-order logic which are then invariant by their logical form.
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3.3 Classification Even more interestingly, one can also reverse the perspective,

and classify all invariant items in simple types in some format of definition, as has been

done by many authors. Here is a simple illustration (van Benthem 1986):

Fact All invariant set operations must have values,  O(X, Y, ..)  made up

out of exhaustive Boolean combinations of their arguments  X, Y, ...

Proof   If the value set  O (X, Y, ...)  properly overlapped any of the 'minimal zones' in

the Venn Diagram for any arguments  X, Y , one could then permute two objects in such

a zone across the boundary (keeping all other objects fixed), leaving all images  π [X]

equal to X , and yet changing the image set  π [O (X, Y, ...)] . Note: We get  no uniform

Boolean definition: the value of  O  may depend on argument sizes.            n

More complex classifications are found in van Benthem 1989, and 1991, chapter 10.

These are the attractions of the approach when one comes to it first. Permutation

invariance is simple, it covers all standard logical constants and relates them to others

across categories – and complete classifications of invariants may be viewed as

interesting  ‘expressive completeness theorems’ for certain types of expression.

Permutation invariance has been proposed in many places independently, in full type-

theoretic generality by Tarski 1986, Läuchli 1970, van Benthem 1986, and others.

Papers are scattered across logic, linguistics, and computer science (cf. Trakhtenbrot

1987). Philosophers have caught up a bit later, again in relative isolation (McCarthy

1981, Sher 1991, and others). Since the ideas are so simple, one good logic textbook

should do the job of making this 'universal knowledge' into common knowledge.

3.4 Historical background    Dual viewpoints on definability of basic concepts

and their invariance under suitable transformations date back to the mid-19th century. In

the ground-breaking work by Helmholtz on the perceptual foundations of mathematics,

invariants of spatial movement (moving in a straight line, turning around) correspond to

natural primitives for geometrical theories. For instance, my observing that one point lies

in between two others will not change, no matter how I view this constellation across my

natural movements in space. Thus, primitive 'betweenness' emerges out of experience,

not linguistic convention. Movements are given, their invariants force themselves upon

us. Later mathematicians took these ideas further. Klein's 'Erlanger Programm' defines a

mathematical structure by some family of transformations over a given base space,

which then generate the invariants underlying one’s mathematical theory. A major

traditional  habitat of invariance analysis in mathematics is the theory of Lie groups.
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Transformations and their invariants as the source of our primitives are also quite alive

to-day in empirical fields like psychology and computational image processing.

Now think of logical constants as the most robust invariants of all, resistant to every

permutation. The latter are the roughest transformation, leaving no structure intact except

bare distinctions between objects. The dark side of this robustness, of course, is that

logical constants have little to no content. Moreover, as with Klein’s Erlanger turn, the

'transformations' are now in the mind, chosen by us, rather than by Nature. Again, we

see the same move here that we noticed below. Mathematicians sometimes talk about

invariants inside one single structure, and then again across structures. This seems no

big issue, and the two viewpoints have been around from the start. Either way, this is the

appropriate setting for invariance accounts of logicality, as an extreme case in a broader

scientific tradition which is still very much alive.

3.5 General logical results  Permutation invariance has been around before the

1990s, and some of its basic properties deserve to be known more broadly. These

include expressive completeness results, but also some types of result that are less

obvious from the above. First, the Isomorphism Lemma implied that any operation

defined in a logical formalism that does not refer to specific objects (such as first-order

logic with identity, higher-order logic, or finite type theory) will be permutation

invariant. And the observation is more general. By the same reasoning,

Formulas in a language with a non-logical vocabulary  L  define

type-theoretic objects that are invariant for  L-isomorphisms.

Inside one model, these objects are invariant for  L–automorphisms – i.e. those

permutations that leave  L-predicates and operations the same. As for converse results,

the earliest reference I have found so far is Hermann Weyl's 1930s book "Philosophy

of Mathematics and the Natural Sciences" (Weyl 1963), where he observes that all

logically definable geometrical relations, starting from basic primitives such as

'betweenness', are invariant under the usual geometric transformations. Weyl then

mentions the converse question, whether all such invariants are logically definable, and

says that this is a difficult question which will probably never be solved.

Here are some well-known facts, showing that at least some things of interest have been

discovered since. No general equivalence between L-automorphism invariance and  L-

definability can hold for finitary languages, for cardinality reasons. The only <-

automorphism of IN is the identity – and so there are uncountably many invariant
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subsets of natural numbers, which outrun the resources of standard logical languages.

Things get better on special models, witness the following folklore result.

Proposition Invariance Equals First-Order Definability on Finite Models

On finite models, the  L-automorphism invariant predicates

of individuals are exactly the first-order L-definable ones.

Model theory has a more sophisticated result implying this, viz. Svenonius' Theorem:

If a predicate  Q  is invariant for all  L-automorphisms of the

models for some first-order theory  T , then  T implies some

finite disjunction of explicit definitions for  Q  in terms of  L .

The Proposition follows by taking  T  to be the complete first-order theory of the finite

model. If one wants to have the Proposition on all models without restrictions, the

language must adapt, and become infinitary (McGee 1996):

Theorem Invariance Equals Infinitary Definability on All Models

On any model, the  L-automorphism invariant predicates

are those definable in the infinitary language  L∞∞(L, =) .

There are other ways of approaching this match: cf. the use of categories of Boolean-

valued models in Butz & Moerdijk 1998, which does get by with first-order logic.

Going in another direction, one can also lift the analysis to more general linguistic

categories of expressions using finite type theory (van Benthem 1989, 1991):

Theorem Invariance for Type-Theoretic Objects

For all terms  τb  with  n  free variable occurrences of types   a1, ..., an ,  

and all permutations  π  of the individuals, suitably lifted to higher types,

πb ( [[τ (u1, ..., un)]] )   =   [[τ (πa1(u1), ..., πan(un)]] .

Theorem From Invariance to Definability

Over finite base domains, all permutation invariants in their finite type

function hierarchy are explicitly definable in finite type theory.

These results are not all there is to say in this area. Here is a classic result:

Theorem (Laüchli, 1970) Invariants Need Intuitionistic Types

The purely functional types that contain invariant items are just

those whose implicational forms are provable in intuitionistic logic.
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The ‘truth value’ type  t   is read as “true” or “provable” in this setting. Thus, this

explains why there are permutation invariants taking objects to predicates (e.g., the

‘Quiner’ λx• λy• y=x  lives in the functional type  e → (e → t)) ), while there are no

invariant ‘choice functions’ in the type  (e → t) → e : the latter is not a valid formula.

Here is another type of result. Usually, one allows permutations of entities, while

keeping the truth values fixed. As a result every object in the pure  t–type hierarchy over

the base set  {0, 1}  counts as ‘permutation invariant’. Now we know that the operations

of first-order type here are all definable by standard Booleans  ¬, &,  ∨ . Here is an

expressive completeness result for the full hierarchy (van Benthem 1991), extending the

usual reasoning in propositional logic to higher types like  (t → t) → t  :

Theorem All objects in the finite  t–type hierarchy are definable

in the  t–typed lambda calculus with just Boolean  ¬, &,  ∨ .

Thus, at least for ‘truth table objects’, our usual languages do just the job required.

Finally, here is yet another type of question, which has remained open so far:

Find a counting formula for the number of invariant items in a finite type.

Though most of these results are elementary qua proofs, they do show that there is

some technical substance to the notion of invariance, backing up its intuitive appeal.

3.6 Cross-model versions    Next, we consider some ‘cross-model results’ related

to logicality. This time, our purpose is to show that some well-known model-theoretic

results normally not related to invariance are highly related to the above intra-model

versions. After that, we discuss the significance of this perspective. Again, we follow up

on the Isomorphism Lemma with a simple folklore result.

Proposition For finite models  M, N  with tuples of objects  d, e , TFAE:

(a)  there is an  L–isomorphism between  M , N  sending  d  to  e

(b)  d , e  satisfy the same first-order formulas in the vocabulary  L .

This result is often interpreted as a constraint on language design. A good language

matching a structural similarity relation should be invariant, but it should also detect any

pair of 'dissimilar' models by providing some specific definable difference. Thus,

expressive power of a language can be measured, either by its being able to define

enough invariants inside models (our focus in Section 3.4), or by providing enough

distinctions between models. But the technical connection at this level is not tight yet.
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Remark  Specialized to single models, the Proposition does not claim directly that all

automorphism invariants in a model are definable. It only says that, if a predicate  P  is

invariant, each tuple  e  outside of it  will disagree on at least one first-order formula with

each tuple  d  inside  P . In finite models, these formulas can be ‘patched’ to provide a

first-order definition for  P : but in general we need infinitary combinations.

Remark   As a constraint on language design, logicality becomes a ‘holistic’ notion

concerning a whole language, rather than on its separate expressions. This shift would

be in line with folklore views among logicians holding that truly ‘logical’ languages

should satisfy desirable ‘system properties’, such as an interpolation theorem. We will

not pursue this alternative holistic take on logicality here.

But then, something much stronger holds. Here is a generalization to arbitrary models

and the infinitary logic  L∞ω  of Scott’s Theorem, which says that each countable model

has one formula in countably infinitary logic defining its isomorphism class.

Theorem (Barwise 1975)   For every model  M   and tuple of objects  d  there

is a formula  φM(d)  of the infinitary language  L∞ω  such that TFAE:

(a)  N, e |= φM(d) (b)  N, e  is potentially isomorphic to  M ,  d .

Potential isomorphisms are non-empty families of finite partial isomorphisms which

satisfy the usual back-and-forth extension properties. This notion is the set-theoretic

‘absolute’ analogue of isomorphism. It is easy to derive corresponding intra-model

versions for this theorem in terms of invariance for ‘potential automorphisms’.

At another extreme of syntactic resources, these results are related to another well-

known topic in elementary logic, which is not usually considered as doing the job of

analyzing ‘logicality’. Consider the usual analysis of first-order logic in terms of

Ehrenfeucht-Fraïssé games. At least with finite relational vocabularies, we can define

models using single formulas up to Duplicator’s finite winning levels. In a sense then,

the usual Adequacy Theorem is also an invariance characterization of first-order logic!

Theorem For  any two models  M , N  with object tuples  d, e  TFAE

(a)   M , d,  N, e  agree on all first-order formulas up to quantifier depth  k

(b)  Duplicator has a winning strategy in the k-round comparison game

       between the two models M , N  starting from the match  d – e .

This is a combination of two intuitive requirements: (a) invariance plus (b) finiteness.  It

might be worth the philosophers’ while thinking about the plausibility of this.
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Finally, invariance for cross-model relations is also used in analyzing other languages.

E.g. in the lambda calculus, Plotkin has partially captured the set of lambda-definable

items via invariance for ‘logical relations’ that may also identify individuals.

3.7 Digression: invariance and definability in science  Logical theory does not

quite fit invariance thinking in the sciences. Physicists and mathematicians work with

‘symmetries’, invariances inside one model, or ‘transformations’ which may also work

across models. Consider the Galilei or Lorentz transformations in physics. These

coordinate mappings from, say, IR4 to itself preserve relevant 'physical assertions',

including fundamental laws. But the precise languages here are never specified. Indeed,

important results often have a different flavor. E.g., consider the celebrated theorem that

"Causality implies the Lorentz Group" (Zeeman 1964) – a phrase which a well-bred

logician might have trouble parsing… In Minkowski Space, the Lorentz transfor-

mations preserve ‘causal precedence’: the relation which holds between a point and all

points in its future light cone. Zeeman showed that conversely, each automorphism w.r.t.

causal precedence is a composition of Lorentz transformations with a few minor

domestic ones. Notice that there is no explicit role of any language here. Even so, the

result is reminiscent of Robb's logical work on special relativity, showing that the

second-order theory of causal precedence suffices for defining the full metric structure

of Minkowski space. Here is another interesting gap to be bridged. Consider Beth's

Theorem, a classic on logical definability. Its transition from implicit definability (an

invariance property!) to explicit definability seems directly applicable to elementary

geometrical reasoning. We often 'see' that some geometrical object is determined by

others. E.g., the angles of a triangle are fixed once we have the sides. A geometrical rule

of thumb then says one should be able to explicitly ‘define’ the former in terms of the

latter, as is indeed the case for angles and sides. But Beth's Theorem only helps us here

when the problem can be stated in first-order terms (a constraint quite alien to working

scientists), and the ‘determination’ holds in all models of the geometrical theory, not

just 'ordinary space'… It would be of practical interest to analyze more of such concrete

examples, confronting logical theory with invariance practice.

4 Critique

Let us now look at the merits of permutation invariance as an account of logicality.     In

this section, I will state what I dislike and what I like about it. Also, I will briefly discuss

Sol’s verdict in Feferman 1999.
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4.1 Bad points   First, there is a problem of ‘size’: too many items for comfort are

permutation-invariant. For instance, in the type of monadic generalized quantifiers

(denoting properties of sets), already infinitely many items   λX• Q(X)  are definable in

higher order-logic. Related to this is a second problem. Permutation-invariance is local,

and allows wild variations across models: say, a quantifier meaning “some” on

domains of even size and “all” on domains of odd size. Isomorphism invariance does

work across models, but still allows for these variations across different cardinalities.

Third, the over-inclusiveness also involves the following. Arbitrary infinite set

conjunctions and disjunctions, no matter how complex and non-constructive, of invariant

objects are themselves invariant. Now these are all ‘book-keeping objections’: the set of

items that passes is ‘not quite to our taste’. But there are further problems. To begin

with, permutation invariance ignores further semantic aspects of logicality, such as

intuitive features of ‘uniformity’ or ‘finiteness’. But my main objection is what follows.

Permutation invariance is blatantly circular as an account of logicality! And it shares

this feature with any transformation/invariant account of a set of notions. For, to get

going, we must make a number of prior decisions that manipulate the final outcome:

Which objects are taken? And then, which transformations?

E.g., in geometry, affine transformations are supposed to ‘justify’ “betweenness” as a

geometrical primitive. But betweenness is needed to define these transformations in the

first place, when all is said and done. The same holds for logicality. Do we want identity

to come out as a logical notion? Then look at permutations, whose definition

presupposes the notion of identity (surjective functions respecting non-identities). The

case is even more blatant with Boolean truth value operations. These come out as

invariant for the totally trivial reason that type-theoretic permutations leave the truth

values the same. So, they do not effect truth value operations at all. Evidently, this is no

‘explanation’, and permutation invariance is not even a ‘test’ that the Boolean

operations pass. Examples of this are easily multiplied at many places in Section 3.

The prior choice of objects is even more insidious. For instance, geometrical invariance

works on extensionless ‘points’, and therefore only derives primitive relations in

dependence on some prior notion of basic object. But we might want to say, for

instance, that ‘betweenness’ is a primitive notion in spatial reasoning even without

making any commitment as to the underlying objects: extensionless points, primitive

extended regions, etc. More generally, should truly logical notions not be independent

from particular choices of objects over which they are supposed to work? Here is a
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linguistic example. Natural languages tend to have two quantifier systems. One system

works on ‘count nouns’ (“every girl left”, “many boys left”), the other on so-called

‘mass nouns’ (“all wine was spilt”, “much wine was spilled”). The first requires what

linguists call countable objects, the second so-called measurable ones. Now, the ‘same’

logical quantifiers seem involved over both these domains. But how to get this out of

invariance for transformations? And though a unification may be feasible in this

particular case, we will still be left with the worry that we are not really done. We may

have to redo the exercise once we find yet other sorts of object. Thus,

permutation invariance cannot serve as a foundational account of logicality.

As an independent story of logicality, it is about as circular as – to mention one blatant

hoax – the ‘justification’ of first-order axioms by informal soundness arguments which

presuppose all the axioms they are justifying (plus usually a whole lot more).

There, we have said it! But please realize that this is only a knock-down objection if one

had fundamentalist designs in the first place. I myself think that there cannot be absolute

foundations, neither for logical laws nor for logical notions. Therefore the circularity

does not bother me at all, and my story will continue. 

4.2 Feferman’s proposal   Here are some points from the discussion in Feferman

1999. Its main critical points concerning permutation invariance are its (a) ‘making logic

dependent on set theory’, (b) ‘set-theoretic non-absoluteness’ and (c) ‘non-uniformity

across domains’. The former two are of a mathematical nature, more tangential to my

main concerns here. But as for (c), he proposes a stronger version of isomorphism

invariance, which is of immediate interest. It specializes a notion from the Lambda

Calculus (Plotkin 1980), viz. invariance for logical relations:

Not just bijections or isomorphisms, but any binary relation  R  between individuals in

two models   M, N  can be lifted canonically to a relation between objects in all types:

f  Ra•b  g iff projL(f) Ra projL(g)   and   projR(f) Rb projR(g)

f  Ra→b g iff ∀x∈Da
M ∀y∈Da

N,  x Ra y  only if  f(x) Rb g(y)

Now, Plotkin observed that all lambda-terms  F  denote definable functions  FM, FN

which are relation-invariant in the following sense:

if we feed  R-related arguments, then their  F-values are also  R-related.
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An object  F  in one model is called relation-invariant if  F R F for all relations  F .

Conversely, Plotkin proved that all relation-invariant objects are lambda-definable, at

least up to second-order types. The general situation is discussed in Statman 1982.

Variations on this definition have been proposed in van Benthem 1991, chapter 12,

which lifts Boolean monotonic functions and modal bisimulations in the same style,

obtaining richer classes of invariant items. Now here is what Feferman does. He takes

the base relations to be ‘homomorphisms’, viz. relations  x R y  of the special form

y = f(x)  for some surjective function  f  from individuals in  M   to those in  N

This will make the standard operations of negation (N, for short), conjunction (C) and

existential quantification (E) relation-invariant. Then he proves what amounts to an

invariance characterization of first-order logic:

(a)  all items lambda-definable from  N, C, E  are homomorphism-invariant

(b) all homomorphism-invariant monadic quantifiers are lambda-definable 

      from  N, C, E  (in fact, they are definable in monadic first-order logic)

For an assessment of what this achieves, a little technical detail is needed. Here is a

typical case. Consider a monadic quantifier taking sets to truth values. Sol’s criterion

amounts to saying that the same truth value will be assigned in any ‘contraction’ to a

single argument set. It follows immediately that the invariant items, across the board, are

determined by two truth-value assignments: to the empty set, and a non-empty set. Here

is a more general perspective on what is going on (not mentioned in Sol’s paper), which

shows its relation to the above discussion in Sections 3.2, 3.3, 3.6. For operators of the

type  F (x1, .., xk, A1, .., Am)  with object and predicate arguments, the stated invariance

criterion works out very simply to a much more familiar one:

Let  f  be any surjective strong homomorphism between models  M , N

(i.e., this function respects all predicates both ways, except for identity). 

Then  FM (d1, .., dk, A1, .., Am)   iff   FN (f(d1), .., f(dk), f[A 1], .., f[Am])

Thus, we restrict attention to objects that are invariant for strong homomorphisms, not

just for isomorphisms. As we know from model theory, this holds for all notions

definable in any logical language with the shown parameters without using identity. This

fact explains why the above monadic definitions will do (the lambdas are not crucial),

and it also explains why well-foundedness will be ‘logical’ on this account (as

discussed in Sol’s paper). In this light, the monadic case is rather special, as we can
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classify all invariant items. But the same huge variety as before will return with

operators of a binary relational type  F(R) . For, there are many equivalence classes for

binary relations under strong homomorphism: e.g., all ordinals fall into different ones.

And on each of these, the criterion allows us a different identity-free definition.

I conclude that Sol’s account suffers from the same over-generation that permutation

invariance has. And this is to be expected. Any reasonable invariance analysis must

postulate some relevant equivalence relation on models. On each of its invariance

classes, we are free to choose our denotation. Now the relation may be so coarse that

only finitely many equivalence classes remain, and no explosion of variety occurs

among denotations for ‘logical constants’. But then we have given away the game in its

definition. Or, like with most interesting semantic equivalence relations, we have

infinitely many equivalence classes, and then the variety of denotations will explode.

Another critical point is related. Given the equivalence form of the definition of

invariance under transformations/model relations, the following is bound to happen:

all infinitary Boolean combinations of invariants are themselves invariant.

This did not matter in the special monadic case, but it will be a side-effect for whatever

more complex types we try to analyze. Thus,  infinitary Booleans take a ‘free ride’ on

such analyses – and cannot really be considered as having been ‘explained’. Finally, in

the earlier conceptual terms, Sol’s proposal is as ‘circular’ as any. The choice of the

‘homomorphisms’ as the relevant equivalence relation invests precisely the amount of

‘indifference’ needed to engineer the landing in monadic first-order logic.

I conclude that Sol’s account has its merits, but changes nothing in the general

limitations of invariance approaches. But to me, this is not a bug, but a feature!

4.3 Good points   As for permutation invariance in general, all the objections so far

show that it is not a good foundational account of logicality. But then, I do not consider

this a great tragedy. First, invariance accounts have the virtue of tying in logicality with

ways of thinking in other sciences whose utility is beyond doubt – which is a benefit in

itself. Next, even circular accounts of notions can be useful, when they couple ‘free-

floating’ notions in enlightening ways to others. (As David Lewis once remarked about

another ‘logical explication’, a fixed connection between two weak swaying reeds may

be a hard fact.) Invariance can even help pinpoint useful connections. Suppose we find

some ‘non-logical’ item  F  failing the permutation invariance test. The interesting thing
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is not this negative information by itself. Usually, analyzing the counter-example will

point to ‘hidden variables’: additional structure that needs to be preserved by a

transformation to get the expression as an invariant. For instance, prepositions (“in”,

“behind”, “along”) are ubiquitous linguistic expressions that are not quite ‘logical’,

but not quite ‘non-logical’ either. Arbitrary permutations of the objects in space do not

preserve the relations denoted by prepositions, but this very failure suggests a better-

tuned class of automorphisms respecting the right information, e.g., suitable geometrical

transformations of visual scenes (cf. Winter & Zwarts 1997). In other words, the

invariance approach comes with a hierarchy of levels, and hence it is ‘parametrized’ in

the sense we were looking for in Section 1.

5 A procedural viewpoint   

One attraction of the invariance approach are the analogies it offers with other areas

where it is used. In this section, we explore one such analogy, which leads us to a more

computational or dynamic view of ‘logical constants’.

5.1 Bisimulation and modal process invariants   In computer science, notions

of similarity between computation spaces (e.g., labeled transition systems) determine a

notion of process. For instance, taking bisimulation between labeled transition systems

for one’s process equivalence, one gets the usual Process Algebra.

Definition  A bisimulation is a binary relation  ≡  between states in models M, N

satisfying these conditions: (1) Atomic Harmony  If  x≡y , then  M , x |=p  iff  N, y |=p ,

for all proposition letters p . (2)  Action Zigzag  (2.1) If  x≡y  and  xRaz , then there

exists  u  such that  yRau  and  z≡u , and (2.2)  If  x≡y  and  yRau , then there is a  z

such that  xRaz  and  z≡u . For details, cf. van Benthem 1996, Chapters 3–5.          n

Invariant items are then the properties  P  of processes mimicked by the simulation: 

whenever  x≡y ,  then  M , x |=P  iff  N, y |= P

These invariant properties can often be classified in some appropriate language. E.g.,

with bisimulation, the invariants are the items expressible in (infinitary) modal logic. In

this setting, the role of ‘good’ process constructions is this:

they are ‘safe,’ in the sense of being automatically simulated.

More precisely, consider an operation  F(R, S, …) sending binary transition relations to

a new transition relation. Examples are the usual program constructions of composition,
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guarded choice, or iteration. Assume we have any two models with a bisimulation  ≡ 
satisfying the back-and-forth clauses for the arguments  R, S, …

F  is safe if this same  ≡  automatically satisfies the back-and-forth

clauses for the transition relation which is its value  F (R, S, …) .

Examples of safe operations are relational composition ; , union ∪∪∪∪  (finite or infinite),

as well as strong negation  ~ (being the test that the relation has no successor).

Typically non-safe are relational intersection and Boolean complement. Here is an

expressive completeness result from van Benthem 1996, Chapter 5:

Theorem The safe first-order definable relational operations

are precisely those defined by means of {; , ∪∪∪∪, ~} .

Note that these operations are a kind of dynamic counterparts to the usual Booleans.

5.2 Logical constants and simulation  Safety is also implicit for logical

operations in the inductive proof for the Isomorphism Lemma between two models  M,

N . This proof shows how evaluating a formula (a process taking place inside one

model) can be simulated step by step by passing to another model. This, in effect, is

what is achieved by familiar subroutines like:

M , d |= ¬φ   iff   not  M , d |=φ    iff   not  N, f(d) |= φ   iff   N, f(d) |= ¬φ

Also, when evaluating  M, d |= ∃xφ , two routes lead to the same match between object

tuples. We can take a witness  d  for  x  in  M  , and then pass from  M, d, d |= φ  to  N,

f(d), f(d) |= φ . Or we first pass to the other side, observing that  N, f(d) |= ∃xφ  , and

then find the witness in  N . This yields exactly the kind of commutative diagram that we

also had with bisimulation. Thus, in simple arguments like this, logical constants appear

as natural moves in evaluation processes. In a slogan

logical constants are process glue!

Let us apply these ideas to first-order logic. For a process equivalence, take potential

isomorphism between models  M, N , used in the theory of the infinitary logic  L∞ω .

This is a bisimulation between transition systems whose ‘states’ are maps from finite

sets of variables to objects in the models. The relevant transitions are of two kinds:
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testing a fact (while staying in the same state)

picking an object (resetting the value of some existing variable,

 or assigning a value to some fresh variable)

Clearly, these are the only primitive actions in evaluation of first-order formulas, viewed

dynamically. All the rest is indeed ‘process glue’. Correspondingly, matched states in a

potential isomorphism satisfy the same atomic statements, plus the back-and-forth

condition of bisimulation with respect to object-picking moves.

Now, to define invariance as simulation ‘safety’, we need to view first-order formulas as

evaluation processes. But what are the corresponding transition relations? Here we take

a leaf from ‘dynamic predicate logic’ (Groenendijk & Stokhof 1991) which fits very

closely with potential isomorphisms as bisimulations (cf. also Fernando 1994):

Definition Update Conditions for Dynamic Predicate Logic

Atoms are tests

s1 [[Pt]]M   s2 iff s1  =  s2  and  M , s1 |= Pt

Conjunctions are relational compositions

s1 [[φ&ψ]]M   s2  iff for some  s3,  s1 [[φ]]M   s3  and  s3 [[ψ]]M   s2
Existential quantification are random assignments

s1 [[∃xφ]]M   s2 iff for some  s3, s1  =x  s3  and  s3 [[ψ]]M   s2
Negations are strong failure tests

s1 [[~φ]]M   s2     iff s1  =  s2  and for no   s3 , s1 [[φ]]M   s3      n

By the earlier modal analysis, clearly safe operations in this setting are (a) dynamic

conjunction-as-composition, and (b) dynamic negation as impossibility-test. Less clear

is the role of existential quantification. The proper way of viewing its clause is as (c) a

sequential composition of two actions: one of object picking for the prefix  ∃x , and

another of processing the remaining assertion  φ . Thus, on this dynamic analysis,

an existential quantifier is not a logical constant!

It is rather an atomic semantic action, which needs to be ‘glued’ to what follows by a

‘hidden logical constant’, viz. composition. Thus, replacing invariance by safety as an

account of logicality has some surprising aspects, which may look ‘non-standard’. On

the other hand, the reader may also find them innovative.

5.3 Discussion     Saftey effects a drastic reduction in the space of ‘logical items’.

It is very easy to see that safe operations must also be isomorphism-invariant, but the
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converse holds by no means. But this ‘counting’ is not our main concern. Neither is the

circularity, which will rear its head once more, as we only get going by settling on some

prior notion of ‘process equivalence’. In this sense, safety does not change anything

fundamental from earlier sections. More interesting, however, is the question whether

the above dynamic account has some intrinsic plausibility as a view of logicality. To

pursue this, one would need to see whether it generalizes well. A good test case would

be simulations for languages with generalized quantifiers.

But our main concern would be another one. Like permutation invariance, safety does

not really provide an account of the standard Boolean operations! One reason is that the

above transition relations are rather coarse. They only record input-output states of

succesful verifications, without recording the fine-structure of evaluation processes

‘along the way’. But if we look at the latter, Boolean operations do play a crucial role in

the ‘control’ of where to go. This observation illustrates demonstrates a general point,

and at the same time, a further ‘parameter’ for the present analysis. Not just process

equivalences over the same class of structures are a choice point for our invariance

analysis. Process representations themselves may come at various levels of detail. And

the level we pick will determine what ‘invariant’ or ‘safe’ items we can discern, and

hence, what sort of ‘logical items’ we will encounter. This point is related to our

discussion in Section 4.1, and we think this open-endedness is inevitable. More

concretely, we do think the step-by-step fine structure of evaluation is of logical

relevance, and we expect to find a more genuine analysis of the Booleans at that level.

But at the moment, we have nothing more than a vague sense that this requires an

analysis in terms of evaluation games (van Benthem 2000), of which the above

transitions are just the ‘externally visible’ traces. Some logical constants only emerge at

this finer level, as the crucial operations regulating control for the players involved.

The proposals in this section are not the final word. But we hope to have shown at least

how invariance thinking can also offer genuinely new perspectives on logicality.

6 Further semantic aspects

Does logicality have intuitive semantic aspects different from invariance? There is some

evidence for this in the linguistic literature on Generalized Quantifier Theory (Keenan

& Westerståhl 1997). We review some relevant themes, using notions and results from

van Benthem 1986 to show concretely how one can broaden the analysis of logicality.
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6.1 Determiners and quantifiers   This is the study of linguistic determiners.

These are expressions like “all”, “most”, “three”, “enough”, that take common

nouns and verb phrases to form sentences according to the basic pattern 

Det  N VP

Across languages, determiners satisfy some universal semantic constraints, such as

Conservativity, restricting the statement made to objects satisfying the first argument:

Det AB   ⇔   Det A (B∩A)

Next, imposing permutation invariance for special determiners of ‘quantification’ allows

us to represent these 'quantifiers'  Q  numerically, as the set of all couples

(a, b)  for which there exists some pair of sets  A, B 

with Q AB such that  |A–B| = a, |A∩B| = b 

This representation has been used extensively for semantic analysis of quantifier

classes, via the so-called ‘Tree of Numbers’.

6.2 Smoothness and monotonicity   Quantifiers in natural languages are not just

permutation invariant. A semantic feature with much extra bite is their

persistence across related situations

which can be viewed either as a semantic property of smoothness, or as an inferential

one of preservation. Thus, all basic quantifiers are monotone, either upward or

downward, in both their arguments. E.g. “all” satisfies the two patterns:

Q AB  B ⊆ B’ Q AB A’  ⊆ A
-------------------------- ---------------------------

Q AB’ Q A’B

We can use this property to characterize the four classical quantifiers “all”, “some”,

“no”, “not all”. For this we need one extra semantic condition:

Variety If  A is non-empty, there exist  B, B’ with  Q AB, ¬Q AB’ .

Fact The four quantifiers in the Square of Opposition are the only determiners

that satisfy Conservativity, Double Monotonicity, and Variety.
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Proof   Let  Q XY  be any determiner satisfying these three conditions. We do one case,

the others are similar. Suppose Q  has monotonicity type ‘left-down, right-up’.

Claim     Q  is “all”, i.e.,  Q XY   iff  X ⊆ Y   

First, by Variety, we have  Q AB  for some  A, B . Hence we have Q ∅B  ( Q AB  plus

left downward monotonicity) and hence  Q ∅∅  (conservativity) and so  Q ∅Y  (right

upward monotonicity). From right to left.  (a)  If  X  is empty, then we have just shown

Q ∅Y . (b) If  X  is non-empty, then we have  Q XA  (variety),  Q X(Α∩X)

(conservativity), and so  Q XY  (by right upward monotonicity). From left to right.

Suppose  Q XY, but not  X ⊆ Y . By left downward monotonicity,  Q (X–Y)Y , and by

conservativity,  Q (X–Y)∅ . By right upward monotonicity then  Q (X–Y)Z  for all sets

Z , which contradicts variety for the non-empty set  X–Y .                 n

Again, monotonicity is a semantic ‘parameter’ which expressions can have in degrees.

E.g., the non-standard quantifier “most” is still right upward monotone, but it lacks

monotonicity either way for its left argument. Without Variety, more quantifiers make

the grade, including “at least three” or “at most five”. Here is a more complicated

expressive completeness result (van Benthem 1986).

Theorem The 'doubly monotone' quantifiers on finite universes are the four 

classical ones plus all numerical variants "at least n", "at most n", etc.

A nice proof is by geometrical inspection of the number representation for quantifiers.

Right upward monotonicity closes the set  Q  of ordered pairs  (a, b) under rightward

steps  (a+1, b) => (a, b+1) , left upward monotonicity makes  Q  closed under steps  (a,

b) => (a+1, b)  and  (a, b+1) that ‘shift levels’. The geometrical shapes for quantifiers

Q  allowed by these conditions are easily enumerated. Higher-order quantifiers such as

"most" have a more complex, but still regular ‘number geometry’.

Monotonicity is a ubiquitous phenomenon in natural reasoning and semantics. The

basic lexical items in the determiner category are monotone across all languages. Surely,

this is also a key feature of ‘logical’ constants: stable description of situations, and

supporting corresponding inferences.

6.3 Simple computability and semantic automata  Another attractive feature of

basic logical items is their simple uniform computability. For the basic quantifiers, this

involves very simple procedures: so-called semantic automata. E.g., to compute whether
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"all AB"  we just need a finite automaton with two states. This will survey the relevant

set of objects  A  (which suffices by conservativity) in some order, reading in symbols  a

for each object in A–B , and  b  for each object in  A∩B :

a          a

    ⇒
        b          b

We start in a recognizing state, and stay there as long as we read symbols b . As soon as

a symbol  a  is encountered, we move to a second, rejecting state and stay there, whatever

is read afterwards. The general result here is this:

Theorem The first-order definable quantifiers are precisely

those computed by acyclic finite automata.

Again we have a ‘parameter’ now, as we can vary the type of automaton to get further

levels of semantic computability. Arbitrary finite automata add the power of counting

(say, "an odd number of"). The next step would be adding memory storage. Indeed, the

semantic test procedure for the quantifier like "most" needs the unbounded finite

memory of a push-down store automaton. Push-down storage seems the most complex

computational procedure needed for natural language quantifiers. Van Benthem 1986

characterizes the corresponding numerical content as follows:

Theorem The quantifiers computable by push-down automata are precisely those 

whose numerical conditions on the characteristic numbers  a = |A–B| ,

b = |A∩B|  are definable in purely additive ‘Pressburger Arithmetic’.

Pressburger Arithmetic is decidable, and hence many questions about natural language

quantifiers will also be. Thus, the usual Automata Hierarchy now provides fine-structure

levels for logical constants, via their computational requirements.

6.4   What this means    Generalized Quantifier Theory shows how we can zoom in

on the standard quantifiers, amidst all permutation-invariant ones, through various

natural additional semantic and computational properties. Now this harmony may be a

lucky coincidence between a bunch of different notions. This suggests that the core

group of 'logical constants' is best analyzed as an intersection of different natural kinds

of expression: they are clever, attractive, and good cooks into the bargain…
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7 Comparing stances

We have analyzed logicality in a semantic perspective here. But relations to other logical

stances have occurred occasionally: computational (Sections 5, 6.3), game-theoretic

(Section 5), and inferential (Section 6.2). There are certainly independent intuitions

along the latter lines that should be explored. In particular, a sustained analysis of the

proof-theoretic stance on logicality might be very illuminating, throwing also additional

light on semantic invariance analyses. For instance,

why are the core invariant items so rich in valid inferences?

I know of no good reason; but one would want to understand the phenomenon.

Likewise, I would want to couple the semantic and algorithmic aspects more closely. But

to avoid a misunderstanding, on my philosophy, no ‘completeness theorem’ is needed

stating that all these approaches ‘produce the same yield’. Indeed, even in the analysis

of logical consequence, completeness seems often somewhat engineered. And in any

case, it does not show that the logical stances ‘reduce’ to each other.

Of more interest to me would be combinations of perspectives. Intuitively, reasoning

seems to involve two kinds of step. Standard inferences are ‘local’. We investigate

some situation, observe  A , and know for general reasons that  B  ‘follows’ in this same

situation. But often we want to use  A  to derive a statement about some other situation,

perhaps even couched in a different language, provided it is suitably related. The latter

step is closer in spirit to invariance, which allows us to cross models. The two activities

together seem basic to how we reason in practice. To account for this theoretically, a

notion of ‘entailment along a model relation’ was proposed in Barwise & van Benthem

1999 , allowing inference from one model to its submodels, bisimilar models,

homomorphic images, and whatever jump seems relevant.

Likewise, this combined view makes us think about designing inference systems and

languages at the same time, and this joint task may put its own constraints on

‘logicality’. One wants the right ‘balance’ between the vocabulary of a proof system,

and its expressive power on corresponding models. E.g., intuitionistic logic, ignored in

the classical setting of this paper, makes stronger demands on logical consequence,

demanding constructive provability. What are its natural ‘invariants’? (Bisimulations

between Kripke models have been suggested in this connection.) Is there any reason to

assume that the classical ‘logical constants’ are the right language from a constructivist

point of view? Similar issues arise with non-monotonic logics in AI. Their designers

question the laws of classical logic, replacing valid consequence by new schemes like
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“the conclusion only has to be true in all most-preferred models of the premises”. But

they do stick to the language in which the old dogmas were formulated. True radicals

would seek a balance, designing a set of logical constants for non-monotonic reasoning

that reflects the new preference structure up to some suitable invariance.

8 Conclusions

Our discussion of logicality has not produced a demarkation of logic. This is good. The

essence of ‘logic’ does not lie in canonical lists of ‘logical laws’ or ‘logical

expressions’ anyway, but in its general properties and methods. What we did present

were the basic facts about the semantic invariance aspect of logicality. This account is

circular from a foundational point of view, but suggestive and useful all the same.

Moreover, it still has the potential of suggesting new views of logical constants, witness

our dynamic analysis of logicality as safety for semantic process operations. But there

are certainly other aspects to logicality, coming from different stances: proof-theoretic,

or game-theoretic, which eventually deserve an equal opportunity.

Ah, and yes, the basic invariance folklore definitely belongs in logic textbooks!
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