Logical Constants: the variable fortunes of an elusive notion

Johan van Benthem, Amsterdam & Stanford

in W. Sieg, R. Sommer, & C. Talcott, eds., 20B2flections on the Foundations of
Mathematics. Essays in Honor of Sol Feferm®&8L Lect. Notes in Logic 15, 426-446.

1 Logic: inferential and expressive power

Logic is usually taken to be the study of reasoning — and the highest naolilas/ for
an assertiomr an inferenceis ‘logical validity’. Thereare proof-theoretiomethodsfor
describing all validities foa given languageand completenestheoremsassureus that
we havefound ‘all thereis’ to a particular style of reasoning.But in additionto this
inferential power, logic is also about expressivepower. Reasoningneedsa language
supplying ‘logical forms’,and what determineghe choiceof thes® Logical languages
contain various forms of expression: propositional connectives, quantifiers, or
modalities,whosemeaningsare analyzedin addition to their inferential behavior.But
what makegheseparticularnotions‘logical’, asopposedo others?Perhapghe usual
expressive completeness argument reassures uhkelizdoleanconnectivesaptureall
there is to two-value@ropositionalreasoningBut no similar resultis known for first-
order predicate logic, the major working system of modern logic.

This concern is not padf the basic‘agenda’in textbooks partly becauset is seldom
raised, and partly becauieereis no consensu®n an answer.Sol Fefermanis one of

the small group of authors who do think about this basic issuedfgfrman1999),and

| am happy to contribute ldtle pieceof my own thinking on thesematters.But before
doing so, let me notethat not all greatlogicianswould find the effort worthwhile. E.g.

Bernard Bolzano’s system, pioneeringsmmanyways,did not containany privileged

setof logical operationsFor him, the distinction logical/non-logicalis merely one of

methodology. Forms of assertifor a style of reasoningariseby fixing the meanings
of someexpressiongthesewill have a‘logic’ then),andletting othersvary. But this

distinction can go in more than one way. Granting this liberality, | still would liiedo
out what makes the usual ‘logical constants’ tick.

My aims in this are different from Sol's excellent analysis, who mentions a
‘demarcation’ oflogic asa major concern— andfirst-orderlogic asa preferredtarget.



| myself feel no need for a principled separationof logic from other territories,
mathematicslinguistics, computerscience psychology,or whatever.And fixing some
target set of expressions, no matter hrakle its ancestryjs too conservativeor me. |

prefer accounts of logicality which bring to light interesting ‘parametbed’canbe set
in differentways, giving us a handleon analogieswith otherfields. Note the phrasing
here.'Logical constants'suggestsomeexpressionsn generaluse amonglogicians,
perhaps a finite set. What intrigues me is notabek-keepingob of capturingthese—
but the analysisof their appealinggeneralfeatures.Out of that we get notions of

logicality, that many expressionsnight haveto greateror smallerdegreesNow you
may find this a slippery slope. Soon, someonewho thinks like this will also start
doubtingour dearesintuitions, and considerevenlogical validity a matter of degree.
That is exactly what | do think — but enough of this confessional!

2 Logicality: proposals from different stances

There are a few scatteredattemptsin the literature at elucidatingintuitive notions of
logicality. Not surprisingly,thesefollow the major stancesfound in logic. First, there
aresemanticaccounts, in terms afivariance for permutationsf objectsin the domain
of discourse. What this mathematical condition intendsafuureis the intuitive ‘topic-
neutrality’ of logical expressionsThey do not dependon any specific individual
featuresof objectsor predicatesThis proposal,madeby many authorsindependently
(including Tarski 1986) seems the most succesful accowattégandit will occupyus
in most of this paper. But there are also og@mnanticaspectof logicality, aswe shall
seebelow (cf. van Benthem1986). Next, there have beenproof-theoreticaccountsof
logicality, addressinglifferent intuitions. E.g., one might think of a logical constantas
one supporting a particularly rich set of inference pattersas one playing a crucial
role in the ‘organisation of proof. The latter is the thrust of the expressive
completenesgheoremsin Zucker 1978, Zucker & Tragesserl978. Alternatively,
Hacking 1979 analyzeslogical constantsin terms of ‘little content’, being those
expressions thare ‘conservative’:whenaddedto a proof calculus,they do not imply
any new consequences in which they do not occur.

A word on ‘stances’.By this | meangeneralperspectivesn a field, which supporta
certain methodology— say like ‘algebra’ and ‘geometry’ in mathematics.Most
logicians recognize a semantic stance on val{dityat which transmitstruth”), aswell
as a proof-theoretic one (“that which follows by natural proof steps”). Are theher
naturalstancesn logic? | think thereare.E.g. the game-theoretistancegoesback to
the appealing intuition that valid arguments are the ones that yeuircas a playem a



debate.This stance,too, carriesits view on logicality (Hintikka 1973). In a game-
theoretic setting, basmperationshaveto do with variouschoicesthat playersmake,or

role switches.(‘Putting yourselfin my position’ is an eminently logical operation!)

Thus, on this stancejogicality would haveto do with the basicworkingsof ‘control’.

This paper takes a semantic stance. But we discuss some other approaches at the end.

Finally, anotherplausiblenecessarycondition for logicality is algorithmic in nature.
Shouldlogical expressionfhiavemeaningshat are ‘easiestto compute’in someway?
Or should they rather be the processcombinationsthat make for ‘maximal effective
computingpower’? We will discussthis angle,too. | mentionthesedifferent angles
herein orderto showthatthereare many intuitive aspectso ‘logicality’, and that we
need neither expect, nor desire one simple formal characteristic exhausting the notion.

3 Permutation invariance

In this section, we state the proposh§cussits known propertiesputting it in context.
Our purposehereis not original. We just want to make some basic things common
knowledge — as the subject is rife with re-inventions of wheels and epicycles.

3.1 The proposal Logical structure is not about individuaéculiarities.Intuitively,

logical' operatorsdo not care about specific objects inside their arguments.Thus,
permuting these should not make a difference to the workihtige operator.Consider
logical negations.A set complement —A just returnsthe outside of A , without

inspectingany particularfeatureof the objectsin A. Likewise, a relationalcomplement
—R works uniformly on just the structuoé R, the 'arrow pattern'of its orderedpairs.
Similar observationshold for predicate intersection (conjunctions) and projection
(quantifiers).This is in contrastto non-logicalpredicateoperationdike 'Dutch’ whose
action depends on the content of its arguments. ("Dutch dining" makegoestspay
for themselves,Dutch climbers” overtaketheir companiongust at the summit.) The

commonmathematicabeneralizatiorbehindtheseexamplesnvolvesinvarianceunder
permutationstt of the underlying universe of individual objects.

Definition Let 1t beapermutationof the baseuniverseU . This can be lifted to
sets, relations, and all functions in a finite typerarchyover U in a canonicalway. An
object F igpermutation-invariantf 1(F) = F for all permutationst. N

One should not think of this proposal as falling out of the sky. Theneasalogyhere
with something we all know, the semariomorphism Lemmfar standard logics.



Think of operations defined by some formula of the logic with free variftesbjects,
predicatesetc. If 711 is anisomorphismbetweentwo models M and N of the
appropriate similarity type, then one proves — by induction on formulas — that

M=o [y, .. X, Y, ..]  iff  N|=@ [F(x), 1(y), .. 1{X], 1{Y], ..]

Equivalently, this says that maps theM-denotation ofg to its N-denotation:
n[[[g]"]= [[¢]"

which is the obvious cross-modelgeneralizationof permutation invariance. This
Isomorphism Invariance is a defining constraint on ‘logics’ in Abstract Model Theory.

3.2 How it works In concretecasesthis notion has useful practical equivalents.
E.g., permutation invariance means either of the following for classical set operations:

n[O (X, Y, ..)] O (m[X], mt[Y], ...) ('O commutes with Tr)
xOO(X,Y,..) o m(x) 0 O (m[X], mt[Y], ...) (' mtrespects O

Many expressionsdenote permutation-invarianobjects. The accountlifts from the

standardlogical operationsin first-order types to other expressionsbringing out

unexpectedrelationships. In particular, many second-ordercategoriesin natural

languagecontain invariant items. Useful examplesinclude (a) certain generalized
guantifiers suchas"ten A are B", "most A are B", taking two predicategviewed as

sets)to an assertion(b) the reflexivizer"self", taking binary verbs R to unary ones
Ax*Rxx . The viewpoint also carries over from naturalto programminglanguages.
When the objectsare computationalstates,programsdenotebinary binary transition

relations,and then the standardprogram constructssuch as sequentialcomposition,
guarded choice, or iteration, are permutation invariant ‘logical constants’.

Let us dispel any aiof mysteryhere.Theseobservationdiavea simple backgroundn
standardogic — sincethey follow from the abovelsomorphismLemma.Hereis why.
The Lemma holds for any well-behaved logical languagejusofirst-order, but alsoin
higher types, or with infinitary expressions.Thus, any definable expressionis
permutation-invariant. But all examples mentioned so far -alirid the literaturethat |
am aware of — are definablein such logical languages.E.g., the above program
constructsare operationsin Relational Algebra, which have a first-order definition.
Likewise, the bestacceptedeadingsof linguistic generalizedquantifierslike “most”
have definitions in higher-order logic which are then invariant by their logical form.



3.3 Classification Even more interestingly,one can also reversethe perspective,
and classify all invariant items in simple types in sdorenat of definition, ashasbeen
done by many authors. Here is a simple illustration (van Benthem 1986):

Fact All invariant set operations must have values, O(X, Y, ..) made up
out of exhaustive Boolean combinations of their arguments X, Y, ...

Proof If the value seO (X, Y, ...) properlyoverlappedany of the 'minimal zones'in
the Venn Diagram for any arguments X, Y , one could then permuteltj@otsin such
a zoneacrossthe boundary(keepingall otherobjectsfixed), leavingall images 1[X]
equal to X, and yet changing the image®s§D (X, Y, ...)] . Note: We get no uniform
Boolean definition: the value of O may depend on argument sizes. |

More complexclassificationsare found in van Benthem1989, and 1991, chapter10.
Theseare the attractionsof the approachwhen one comesto it first. Permutation
invarianceis simple,it coversall standardogical constantsand relatesthem to others
across categories— and complete classificationsof invariants may be viewed as
interesting ‘expressive completeness theorems’ for certain types of expression.

Permutationnvariancehasbeenproposedn many placesindependentlyjn full type-
theoretic generality by Tarski 1986, Lauchli 1970, van Benthem 1986, and others.
Papersare scatteredacrosslogic, linguistics, and computerscience(cf. Trakhtenbrot
1987). Philosophershave caughtup a bit later, againin relative isolation (McCarthy
1981,Sher1991,and others).Sincethe ideasare so simple, one good logic textbook
should do the job of making this ‘universal knowledge' into common knowledge.

3.4 Historical background Dual viewpointson definability of basic concepts
and their invariance under suitable transformations date back to the miceb@ihy.In
the ground-breaking work bilelmholtz on the perceptuafoundationsof mathematics,
invariants of spatiahovemenf{moving in astraightline, turning around)correspondo
natural primitives for geometrical theories. For instance, my observing that onégsoint
in between two others will not change, no matter how | viewcthistellationacrossmy
naturalmovementsn space.Thus, primitive 'betweennesgmergesout of experience,
not linguistic convention.Movementsare given, their invariantsforce themselvesupon
us. Later mathematicians took these ideas further. Klein's 'Erlanger Progtefimesa
mathematicaktructureby some family of transformationsover a given base space,
which then generatethe invariants underlying one’s mathematicaltheory. A major
traditional habitatof invarianceanalysisin mathematicds the theory of Lie groups.



Transformations and theimvariantsas the sourceof our primitives are also quite alive
to-day in empirical fields like psychology and computational image processing.

Now think of logical constantsasthe mostrobustinvariants of all, resistantto every

permutation. The latter are the roughest transformation, leaving no structurexctut
baredistinctionsbetweenobjects.The dark side of this robustnesspf course,is that

logical constantsavelittle to no content.Moreover,aswith Klein’s Erlangerturn, the

'transformationsare now in the mind, chosenby us, ratherthanby Nature. Again, we

seethe samemove herethat we noticed below. Mathematicianssometimegalk about
invariantsinside one single structure,and thenagainacrossstructures.This seemsno

big issue, and the two viewpoints have been around from the start.\izthehis is the

appropriate setting for invariance accounts of logicaigan extremecasein a broader
scientific tradition which is still very much alive.

3.5 General logical results Permutationinvariancehas beenaroundbefore the
1990s,and someof its basic propertiesdeserveto be known more broadly. These
include expressivecompletenessesults,but also some types of result that are less
obviousfrom the above.First, the IsomorphismLemma implied that any operation
defined in a logical formalism that does meter to specificobjects(suchasfirst-order
logic with identity, higher-orderlogic, or finite type theory) will be permutation
invariant. And the observation is more general. By the same reasoning,

Formulas in a language with a non-logical vocabulary L define
type-theoretic objects that darevariant for L-isomorphisms.

Inside one model, these objects are invariant for L—automorphisms- i.e. those
permutationghat leave L-predicatesand operationghe same.As for converseresults,
the earliesteferencd havefound so far is HermannWeyl's 1930sbook "Philosophy
of Mathematicsand the Natural Sciences"(Weyl 1963), where he observesthat all

logically definable geometrical relations, starting from basic primitives such as
'betweennessare invariant under the usual geometric transformations.Weyl then
mentions the converse questiamether all such invariantare logically definable and
says that this is a difficult question which will probably never be solved.

Here are some well-known facts, showing that at least sloimgs of interesthavebeen
discoveredsince.No generalequivalencebetweenL-automorphisminvarianceand L-
definability can hold for finitary languages,for cardinality reasons.The only <-
automorphismof IN is the identity — and so there are uncountablymany invariant



subsetf naturalnumberswhich outrunthe resource®f standardlogical languages.
Things get better on special models, witness the following folklore result.

Proposition Invariance Equals First-Order Definability on Finite Models
On finite models, the L-automorphism invariant predicates
of individuals are exactly the first-order L-definable ones.

Model theory has a more sophisticated result implying thisSwiznonius' Theorem

If a predicate Q is invariant for all L-automorphisms of the
models for some first-order theory T, then T implies some
finite disjunction of explicit definitions for Q interms of L.

The Proposition follows by taking To be the completefirst-ordertheory of the finite
model. If one wantsto havethe Propositionon all models without restrictions,the
language must adapt, and become infinitary (McGee 1996):

Theorem Invariance Equals Infinitary Definability on All Models
On any model, the L-automorphism invariant predicates
are those definable in the infinitary languagg, (L, =) .

Thereare otherways of approachinghis match:cf. the useof categoriesof Boolean-
valued modelsin Butz & Moerdijk 1998, which does get by with first-order logic.
Going in anotherdirection, one can also lift the analysisto more generallinguistic
categories of expressions using finite type theory (van Benthem 1989, 1991):

Theorem Invariance for Type-Theoretic Objects
For all termsty, with n free variable occurrences of typeg .3 &,
and all permutationst of the individuals, suitably lifted to higher types,

T ([T (Ug, - W) = ([T (Mg (Un), -, T (U] -

Theorem From Invariance to Definability
Overfinite base domains, all permutation invariants in their finite type
function hierarchy are explicitly definable in finite type theory.

These results are not all there is to say in this area. Here is a classic result:

Theorem (Lauchli, 1970) Invariants Need Intuitionistic Types
The purely functional types that contain invariant items are just
those whose implicational forms are provablataitionistic logic



The ‘truth value’type t is readas“true” or “provable” in this setting. Thus, this
explainswhy there are permutationinvariants taking objectsto predicates(e.g., the
‘Quiner’ Axe Aye y=x livesin the functionaltype e - (e - t)) ), while thereare no
invariant ‘choice functions’ in the type (et) — e : the latter is not a valid formula.

Here is anothertype of result. Usually, one allows permutationsof entities, while

keeping the truth values fixed. As a result every object in the pyge hierarchyover
the base set {0, 1} counts as ‘permutation invariant’. Now we know thaptrations
of first-ordertype hereareall definableby standardBooleans -, &, [. Hereis an

expressive completeness result for the full hierarchy Bemthem1991), extendingthe

usual reasoning in propositional logic to higher types like {} — t :

Theorem All objects in the finite t—type hierarchy are definable
in the t—typedambda calculusvith just Boolean -, &,[1.

Thus, at leastfor ‘truth table objects’, our usuallanguagesdo just the job required.
Finally, here is yet another type of question, which has remained open so far:

Find acounting formuldor the number of invariant items in a finite type.

Though most of theseresultsare elementaryqua proofs, they do show that thereis
some technical substance to the notion of invariance, backing up its intuitive appeal.

3.6  Cross-model versions Next, weconsidersome‘cross-modelresults’ related
to logicality. This time, our purposeis to showthat somewell-known model-theoretic
resultsnormally not relatedto invarianceare highly relatedto the above intra-model
versions. After that, we discuss the significancthf perspectiveAgain, we follow up

on the Isomorphism Lemma with a simple folklore result.

Proposition For finite modelsM, N with tuples of objectsl, e, TFAE:
(@) thereis an L-isomorphism betwelgh N sendingd to e
(b) d, e satisfy the same first-order formulas in the vocabulary L .

This resultis often interpretedas a constrainton languagedesign.A good language
matching a structural similarity relation should be invariant, lshauldalso detectany
pair of 'dissimilar' models by providing some specific definable difference. Thus,
expressivepower of a languagecan be measuredeither by its being able to define
enoughinvariantsinside models(our focus in Section3.4), or by providing enough
distinctionsbetween models. But the technical connection at this level is not tight yet.



Remark Specializedo single models,the Propositiondoesnot claim directly that all
automorphism invariants in a model are definalblenly saysthat,if a predicate P is
invariant, each tuple outside of it will disagree on at least one first-order fornaitia
each tupled inside P In finite models,theseformulascanbe ‘patched’to providea
first-order definition for P : but in general we need infinitary combinations.

Remark As a constrainton languagedesign,logicality becomesa ‘holistic’ notion
concerninga whole languageratherthanon its separateexpressionsThis shift would
bein line with folklore views amonglogicians holding that truly ‘logical’ languages
should satisfy desirable ‘system properties’, sucardaterpolationtheorem We will
not pursue this alternative holistic take on logicality here.

But then,somethingmuchstrongerholds. Hereis a generalizatiorto arbitrary models
and the infinitary logic L, of Scott'sTheorem which saysthat eachcountablemodel

has one formula in countably infinitary logic defining its isomorphism class.

Theorem (Barwise 1975) For every modiél and tuple of objectsl there
is a formula@”(d) of the infinitary language |, such that TFAE:
(@) N, e|=¢"(d) (b) N, e is potentially isomorphic tiv, d .

Potentialisomorphismsare non-emptyfamilies of finite partial isomorphismswhich

satisfy the usual back-and-forthextensionproperties.This notion is the set-theoretic
‘absolute’ analogueof isomorphism.lt is easyto derive correspondingntra-model
versions for this theorem in terms of invariance for ‘potential automorphisms’.

At anotherextremeof syntacticresourcestheseresults are relatedto anotherwell-
known topic in elementanjogic, which is not usually consideredas doing the job of
analyzing ‘logicality’. Considerthe usual analysisof first-order logic in terms of
Ehrenfeucht-Fraiss§ames At leastwith finite relational vocabularieswe can define
models using singléormulasup to Duplicator’sfinite winning levels.In a sensethen,
the usual Adequacy Theorem is also an invariance characterization of first-order logic!

Theorem For any two modeldM, N with object tuplesd, e TFAE
(@ M,d, N, e agree on all first-order formulas up to quantifier depth k
(b) Duplicator has a winning strategy in the k-round comparison game
between the two modéls, N starting from the matckl —e.

This is a combination of two intuitive requirements: (a) invariance (blufniteness. It
might be worth the philosophers’ while thinking about the plausibility of this.
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Finally, invariancefor cross-modetelationsis alsousedin analyzingotherlanguages.
E.g.in the lambdacalculus Plotkin haspartially capturedthe set of lambda-definable
items via invariance for ‘logical relations’ that may also identify individuals.

3.7 Digression: invariance and definability in science Logical theory doesnot
quite fit invariancethinking in the sciencesPhysicistsand mathematiciansvork with
‘symmetries’, invariances inside one modwl,transformations’'which may alsowork
acrossmodels. Considerthe Galilei or Lorentz transformationsin physics. These
coordinatemappingsfrom, say, IR4 to itself preserverelevant'physical assertions',
including fundamental laws. But theciselanguagedereare neverspecified.Indeed,
important results often have a different flaviérg., considerthe celebratedheoremthat
"Causalityimplies the Lorentz Group" (Zeemanl1964) — a phrasewhich a well-bred
logician might have trouble parsing... In Minkowski Space,the Lorentz transfor-
mations preservieausalprecedence’the relationwhich holds betweena point and all
points in its future light cone. Zeeman showed that conversely, each automonphtsm
causalprecedencas a composition of Lorentz transformationswith a few minor
domesticones.Notice that thereis no explicit role of any languagehere. Even so, the
result is reminiscentof Robb'slogical work on special relativity, showing that the
second-order theory @fausalprecedencasufficesfor defining the full metric structure
of Minkowski space.Here is anotherinterestinggap to be bridged. ConsiderBeth's
Theorem,a classicon logical definability. Its transitionfrom implicit definability (an
invarianceproperty!) to explicit definability seemsdirectly applicableto elementary
geometricalreasoning.We often 'see'that some geometricalobject is determinedby
others. E.g., the angles of a triangle are fixed once wethawides.A geometricakule
of thumb then says one shoudd ableto explicitly ‘define’ the formerin termsof the
latter, as is indeed the case for angles and side®&hs Theoremonly helpsus here
when the problem can be statedinst-order terms(a constraintquite alien to working
scientists) andthe ‘determination’holdsin all modelsof the geometricaltheory, not
just 'ordinary space'... It would be of practical interestrtalyzemore of suchconcrete
examples, confronting logical theory with invariance practice.

4 Critique

Let us now look at the merits of permutation invariance as an account of logicality.
this section, | will state what | dislike and what | like about it. Alsaijll briefly discuss
Sol's verdict in Feferman 1999.
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4.1 Bad points First, there is a problem of ‘sizeébo manyitemsfor comfort are
permutation-invariant For instance,in the type of monadic generalizedquantifiers
(denoting properties of sets), already infinitely many itetse Q(X) aredefinablein
higher order-logic. Related this is a secondproblem.Permutation-invariances local,
and allows wild variations acrossmodels: say, a quantifier meaning “some” on
domains of even sizand“all” on domainsof odd size.lsomorphisminvariancedoes
work acrossmodels,but still allows for thesevariationsacrossdifferent cardinalities.
Third, the over-inclusivenessalso involves the following. Arbitrary infinite set
conjunctions and disjunctions, no matter how complex and non-constructineagint
objects are themselves invariant. Now these are all ‘book-keeping objedterset of
itemsthat passess ‘not quite to our taste’. But there are further problems.To begin
with, permutationinvarianceignores further semanticaspectsof logicality, such as
intuitive features of ‘uniformity’ or ‘finiteness’. But my main objection is what follows.

Permutationinvarianceis blatantly circular asan accountof logicality! And it shares
this featurewith any transformation/invarianaccountof a set of notions. For, to get
going, we must make a number of prior decisions that manipulate the final outcome:

Which objects are taken? And then, which transformations?

E.g., in geometry, affine transformatioae supposedo ‘justify’ “betweenness’asa
geometrical primitive. But betweenndsseededo definethesetransformationsn the
first place, when all is said and done. The same holds for logicalityeleant identity
to come out as a logical notion? Then look at permutations,whose definition
presupposethe notion of identity (surjectivefunctionsrespectingnon-identities).The
caseis even more blatant with Boolean truth value operations.These come out as
invariant for the totally trivial reasonthat type-theoreticpermutationsleave the truth
values the same. So, they do not eftadth value operationsat all. Evidently, this is no
‘explanation’, and permutationinvarianceis not even a ‘test’ that the Boolean

operations pass. Examples of this are easily multiplied at many places in Section 3.

The prior choice of objecis evenmoreinsidious.For instance geometricainvariance
works on extensionlesspoints’, and therefore only derives primitive relations in
dependenceon some prior notion of basic object. But we might want to say, for
instance that ‘betweenness’s a primitive notion in spatial reasoningeven without
making any commitmentas to the underlying objects: extensionlesgoints, primitive
extendedegions,etc. More generally,shouldtruly logical notionsnot be independent
from particular choicesof objectsover which they are supposedo work? Hereis a
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linguistic example. Naturdhnguagegendto havetwo quantifier systemsOne system

works on ‘count nouns’ (“every girl left”, “many boysleft”), the otheron so-called
‘mass nouns’ (“all wine was spilt”, “much wine was spilled”). Tirst requireswhat
linguists call countable objects, the secanecalledmeasurabl®nes.Now, the ‘same’
logical quantifiersseeminvolved over both thesedomains.But how to get this out of
invariancefor transformations?And though a unification may be feasible in this
particular case, weiill still be left with the worry that we are not really done.We may

have to redo the exercise once we find yet other sorts of object. Thus,
permutation invariance cannot serve as a foundational account of logicality.

As an independent story of logicality,is aboutas circular as— to mentionone blatant
hoax — the ‘justification’ of first-order axioms by informedundnessrgumentsvhich
presuppose all the axioms they are justifying (plus usually a whole lot more).

There, we have said it! But please realize that this isaktyock-downobjectionif one
had fundamentalist designs in the first place. | myself think that there carsiosdlate
foundationsneitherfor logical laws nor for logical notions. Thereforethe circularity
does not bother me at all, and my story will continue.

4.2 Feferman’s proposal Herearesomepointsfrom the discussionn Feferman
1999. Its main critical points concerning permutation invariance are its (a) ‘maging
dependent osettheory’, (b) ‘set-theoreticnon-absolutenessind (c) ‘non-uniformity
acrossdomains’. The former two are of a mathematicahature, more tangentialto my
main concernshere.But as for (c), he proposesa strongerversion of isomorphism
invariance,which is of immediateinterest. It specializesa notion from the Lambda
Calculus (Plotkin 1980), viznvariance for logical relations

Not just bijections oisomorphismsbut any binary relation R betweenindividualsin
two models M, N can be lifted canonically to a relation between objects in all types:

f R O iff  proj(f) R, prof-(g) and prof(f) R, proj(g)
fR, ,0 iff OxODM OyOD,Y, xRy only if f(x) R, g(y)

a’’

Now, Plotkin observedthat all lambda-terms F denotedefinablefunctions F", FN
which arerelation-invariantin the following sense:

if we feed R-related arguments, then their F-values are also R-related.
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An object F in onemodelis calledrelation-invarianif F R F for all relations F .
Conversely,Plotkin provedthat all relation-invariantobjects are lambda-definableat
leastup to second-ordettypes The generalsituationis discussedn Statmanl1982.
Variations on this definition have beenproposedin van Benthem 1991, chapter12,
which lifts Booleanmonotonicfunctions and modal bisimulationsin the same style,
obtainingricher classeof invariantitems. Now hereis what Fefermandoes.He takes
the base relations to be ‘homomorphisms’, viz. relations x Ry of the special form

y = f(x) for some surjective function f from individuals M to those inN

This will makethe standardoperationsof negation(N, for short), conjunction(C) and
existentialquantification (E) relation-invariant. Then he proves what amountsto an
invariance characterization of first-order logic:

(@) all items lambda-definable from N, C, E are homomorphism-invariant
(b) all homomaorphism-invariambonadicquantifiersare lambda-definable
from N, C, E (in fact, they are definable in monadic first-order logic)

For anassessmendf what this achievesa little technicaldetail is neededHere is a
typical case.Considera monadicquantifiertaking setsto truth values.Sol’s criterion
amountsto sayingthatthe sametruth valuewill be assignedn any ‘contraction’ to a
single argument set. It follows immediately that the invariant itar®ssthe board,are
determined by two truth-value assignments: to the emptaisg non-emptyset. Here
is a more general perspective on what is going on (not mentiorsad’ spaper),which
shows its relation to the above discussioSéttions3.2, 3.3, 3.6. For operatorsof the
type F(x, .., X, A, .., A,) with objectand predicateargumentsthe statedinvariance
criterion works out very simply to a much more familiar one:

Let f be any surjective strong homomorphism between madelN
(i.e., this function respects all predicates both ways, except for identity).

Then P (d,, ... d, A, .., A) iff FY(fd), .., f(d), AL, ... fA.])

Thus, we restrict attenticio objectsthat are invariant for stronghomomorphismaot
just for isomorphismsAs we know from model theory, this holds for all notions
definable in any logical language with the shown paramedérsut usingidentity. This
fact explainswhy the abovemonadicdefinitionswill do (the lambdasare not crucial),
and it also explains why well-foundednesswill be ‘logical’ on this account(as
discussedn Sol’'s paper).In this light, the monadiccaseis rather special,as we can
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classify all invariant items. But the same huge variety as before will return with
operators of a binary relational tydgR) . For, thereare many equivalenceclassedor
binary relationsunderstronghomomorphisme.g.,all ordinalsfall into different ones.
And on each of these, the criterion allows us a different identity-free definition.

| concludethat Sol’s accountsuffers from the sameover-generatiorthat permutation
invariancehas. And this is to be expected Any reasonablenvariance analysis must
postulatesome relevant equivalencerelation on models. On each of its invariance
classesyve arefree to chooseour denotationNow the relation may be so coarsethat
only finitely many equivalenceclassesremain, and no explosion of variety occurs
among denotations for ‘logical constants’. But then we lyiaen awaythe gamein its
definition. Or, like with most interesting semantic equivalencerelations, we have
infinitely many equivalence classes, and then the variety of denotations will explode.

Another critical point is related. Given the equivalenceform of the definition of
invariance under transformations/model relations, the following is bound to happen:

all infinitary Boolean combinations of invariants are themselves invariant.

This did not matter inhe specialmonadiccasebut it will be a side-effectfor whatever
more complex types/e try to analyze.Thus, infinitary Booleanstake a ‘free ride’ on

such analyses — and cannot reallycbasideredas havingbeen‘explained’. Finally, in

the earlierconceptuaterms,Sol’s proposalis as‘circular’ as any. The choice of the
‘homomorphisms’as the relevantequivalenceelation investspreciselythe amountof

‘indifference’ needed to engineer the landing in monadic first-order logic.

| concludethat Sol's accounthas its merits, but changesnothing in the general
limitations of invariance approaches. But to me, this is not a bug, but a feature!

4.3 Good points As for permutation invariance in geneall,the objectionsso far
show that it is not a goddundationalaccount of logicality. Buthen,| do not consider
this a great tragedyirst, invarianceaccountshavethe virtue of tying in logicality with
ways of thinking in other sciences whose utility is beydadbt— which is a benefitin
itself. Next, evencircular accountsof notions can be useful, when they couple ‘free-
floating’ notions inenlighteningways to others(As David Lewis onceremarkedabout
another ‘logicalexplication’, a fixed connectionbetweentwo weak swayingreedsmay
be a hard fact.)nvariancecan evenhelp pinpoint useful connectionsSupposewe find
some ‘non-logical’ item F failing the permutation invariatest. The interestingthing
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is not this negativeinformation by itself. Usually, analyzingthe counter-examplewill
point to ‘hidden variables’: additional structure that needsto be preservedby a
transformatiornto getthe expressioras an invariant. For instance,prepositions(“in”,
“behind”, “along”) areubiquitouslinguistic expressionghat are not quite ‘logical’,
but not quite ‘non-logical’ either. Arbitrangermutationsof the objectsin spacedo not
preservethe relationsdenotedby prepositions but this very failure suggestsa better-
tuned class of automorphisms respecting the right informatignsuitablegeometrical
transformationsof visual scenes(cf. Winter & Zwarts 1997). In other words, the
invariance approacbomeswith a hierarchyof levels,andhenceit is ‘parametrized’in
the sense we were looking for in Section 1.

5 A procedural viewpoint

Oneattractionof the invarianceapproachare the analogiesit offers with other areas
where it is used. In this section, we explore snehanalogy,which leadsus to a more
computational odynamicview of ‘logical constants’.

5.1 Bisimulation and modal processinvariants In computerscience,notions
of similarity betweencomputationspacege.g.,labeledtransitionsystems)determinea
notion of procesd-or instance taking bisimulationbetweenabeledtransitionsystems
for one’s process equivalence, one gets the usual Process Algebra.

Definition A bisimulationis a binary relation = betweenstatesin models M, N
satisfying these conditions: (1) Atomic Harmony Eyx thenM, x |=p iff N,y |=p,
for all propositionlettersp . (2) Action Zigzag (2.1) If x=y and xRgaz , then there
exists u suchthat y8 and z=u,and(2.2) If x=y and yRau , thenthereis a z
such that xg and zu . For details, cf. van Benthem 1996, Chapters 3-5. W

Invariant items are then the properties P of processes mimicked by the simulation:
whenever gy, thenM, x |=P iff N,y |=P

Theseinvariantpropertiescan often be classifiedin someappropriatelanguage E.g.,
with bisimulation, the invariants athe itemsexpressiblen (infinitary) modallogic. In
this setting, the role of ‘good’ process constructions is this:

they are ‘safe,’ in the sense of bemgomatically simulated

More precisely, consider an operation F(R, S,sendingbinary transitionrelationsto
a new transition relation. Examples are the uptagiramconstructionsof composition,
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guardedchoice,or iteration. Assumewe haveany two modelswith a bisimulation =
satisfying the back-and-forth clauses for the arguments R, S, ...

F issafeif this same= automatically satisfies the back-and-forth
clauses for the transition relation which is its value F (R, S, ...).

Examplesof safeoperationsare relational composition; , union O (finite or infinite),
as well as strong negation ~ (being the test that the relation has no successor).
Typically non-safeare relational intersectionand Boolean complementHere is an
expressive completeness result from van Benthem 1996, Chapter 5:

Theorem The safe first-order definable relational operations
are precisely those defined by means;qfty, ~} .

Note that these operations are a kind of dynamic counterparts to the usual Booleans.

5.2 Logical constants and simulation Safety is also implicit for logical
operations in the inductive proof fire IsomorphismLemmabetweentwo models M,
N . This proof showshow evaluatinga formula (a processtaking place inside one
model) canbe simulatedstepby stepby passingto anothermodel. This, in effect, is
what is achieved by familiar subroutines like:

M,d|=-@ iff notM,d|=p iff notN,f(d)|=¢ iff N,f(d)]|=-o

Also, when evaluatingM, d |= (k@ , two routesleadto the samematchbetweenobject
tuples. We can take a withess d for xMn, and then pass frorvl, d,d |= ¢ to N,
f(d), f(d) |=@. Or wefirst passto the otherside,observingthat N, f(d) |= (x¢ , and
then find the witness ilN . This yields exactly the kind of commutative diagram et
also had with bisimulation. Thus, in simple argumdikésthis, logical constantsappear
as natural moves in evaluation processes. In a slogan

logical constants arprocesglud

Let us apply theseideasto first-orderlogic. For a processequivalencetake potential
isomorphismbetweenmodels M, N , usedin the theoryof theinfinitary logic L, .
This is a bisimulationbetweentransitionsystemswhose'states’ are mapsfrom finite
sets of variables to objects in the models. The relevant transitions are of two kinds:
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testing a fact (while staying in the same state)
picking an object  (resetting the value of some existing variable,
or assigning a value to some fresh variable)

Clearly, these are the only primitive actiansevaluationof first-orderformulas,viewed
dynamically. All the rest is indeed ‘process glugarrespondinglymatchedstatesin a
potential isomorphismsatisfy the same atomic statementsplus the back-and-forth
condition of bisimulation with respect to object-picking moves.

Now, to define invariance as simulation ‘safety’, we need to view first-dodemulasas
evaluation processes. But what #re correspondingransitionrelations?Here we take
a leaf from ‘dynamic predicatelogic’ (Groenendijk& Stokhof 1991) which fits very
closely with potential isomorphisms as bisimulations (cf. also Fernando 1994):

Definition Update Conditions for Dynamic Predicate Logic
Atoms are tests
s [[PIM s iff 5= 9 and M, s |= Pt
Conjunctions are relational compositions
sil[e&YIM & iff  for somess, s [[¢]IM 3 and K[[YIM o
Existential quantification are random assignments
sp [[x@IM s iff  forsomess, 51 = 3 and [[YIM %
Negations are strong failure tests
stl~¢lIM s iff s =g andforno s, s[[¢IM s3 u

By the earlier modal analysis,clearly safe operationsin this settingare (a) dynamic
conjunction-as-compositiomnd (b) dynamicnegationasimpossibility-test.Less clear
is the role ofexistentialquantification.The properway of viewing its clauseis as(c) a
sequentiacompositionof two actions:one of object picking for the prefix [Xx , and
another of processing the remaining assergporThus, on this dynamic analysis,

an existential quantifier is not a logical constant!

It is ratheran atomic semanticaction,which needsto be ‘glued’ to whatfollows by a
‘hidden logical constant’,viz. composition.Thus, replacinginvarianceby safety as an
account of logicalityhassomesurprisingaspectsyhich may look ‘non-standard’.On
the other hand, the reader may also find them innovative.

5.3 Discussion Saftey effecta drasticreductionin the spaceof ‘logical items’.
It is very easyto seethat safeoperationanustalso be isomorphism-invariantbut the
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converse holds by no means. But this ‘counting’ is not our main concern. Ngither
circularity, which will rear its head once more, as we @dgoing by settlingon some
prior notion of ‘processequivalence’ln this sense safety doesnot changeanything
fundamentafrom earliersections.More interesting,however,is the questionwhether
the abovedynamicaccounthas someintrinsic plausibility as a view of logicality. To

pursue this, ongvould needto seewhetherit generalizesvell. A goodtestcasewould

be simulations for languages with generalized quantifiers.

But our main concernwould be anotherone. Like permutationinvariance,safety does
not really provide an account of the standard Boolean operationge@senis that the
abovetransition relationsare rather coarse.They only record input-output statesof
succesfulverifications, without recording the fine-structure of evaluation processes
‘along the way’. But if we look at the latter, Boolean operations doglaycial role in
the ‘control’ of whereto go. This observationllustratesdemonstratea generalpoint,
and at the sametime, a further ‘parameter’for the presentanalysis.Not just process
equivalencesver the sameclassof structuresare a choice point for our invariance
analysis.Procesgepresentationthemselvesnay comeat variouslevels of detail. And
the level we pick will determinewhat ‘invariant’ or ‘safe’ items we can discern,and
hence,what sort of ‘logical items’ we will encounter.This point is relatedto our
discussionin Section 4.1, and we think this open-endedness inevitable. More
concretely,we do think the step-by-stepfine structure of evaluationis of logical
relevanceandwe expectto find a more genuineanalysisof the Booleansat that level.
But at the moment,we have nothing more than a vague sensethat this requiresan
analysisin terms of evaluation games (van Benthem 2000), of which the above
transitions are just the ‘externally visible’ traces. Some logicaktantsonly emergeat
this finer level, as the crucial operations regulating control for the players involved.

The proposals in this section are not the final word vigihopeto haveshownat least
how invariance thinking can also offer genuinely new perspectives on logicality.

6 Further semantic aspects

Does logicality have intuitive semantic aspadifferent from invariance?Thereis some
evidencefor this in the linguistic literatureon GeneralizedQuantifier Theory(Keenan

& Westerstahl 1997). We review somaevantthemesusing notionsand resultsfrom

van Benthem 1986 to show concretely how one can broaden the analysis of logicality.
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6.1 Determiners and quantifiers This is the study of linguistic determiners
Theseare expressiondike “all”, “most”, “three”, “enough”, that take common
nouns and verb phrases to form sentences according to the basic pattern

Det N VP

Across languagesdeterminerssatisfy some universal semanticconstraints,such as
Conservativityrestricting the statement made to objects satisfying the first argument:

DetAB ~ DetA (BnA)

Next, imposing permutation invariance for special determiners of ‘quantificatioms
us to represent these 'quantifiers’ Qnumerically as the set of all couples

(a, b) for which there exists some pair of sets A, B
with Q AB such that |A-B|=a, [MB|=Db

This representatiorhas been used extensively for semanticanalysis of quantifier
classes, via the so-called ‘Tree of Numbers’.

6.2 Smoothness and monotonicity Quantifiersin naturallanguagesare not just
permutation invariant. A semantic feature with much extra bite is their

persistence across related situations

which canbe viewedeitheras a semanticpropertyof smoothnessor as an inferential
one of preservation Thus, all basic quantifiers are monotone, either upward or
downward, in both their arguments. E.g. “all” satisfies the two patterns:

QAB B OB QAB A OA

We canusethis propertyto characterizeéhe four classicalquantifiers“all”, “some”,
“no”, “not all”. For this we need one extra semantic condition:

Variety If Ais non-empty, there exist B, B’ with Q AB, -Q AB’.

Fact The four quantifiers in the Square of Opposition are the only determiners
that satisfy Conservativity, Double Monotonicity, and Variety.
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Proof Let Q XY be any determiner satisfying these three conditéaglo one case,
the others are similar. Suppose Q has monotonicity type ‘left-down, right-up’.

Clam Q is“all",i.e., Q XY iff XOY

First, by Variety, we have Q AB for some A, B . HencehaeeQ (OB ( Q AB plus
left downward monotonicity) and hend® (1[0 (conservativity)Jandso Q OY (right
upward monotonicity). From right to left. (a) X is empty,thenwe havejust shown
Q OY . (b) If X is non-empty,then we have Q XA (variety), Q X(AnX)
(conservativity),andso Q XY (by right upward monotonicity). From left to right.
Suppose Q XY, but noX [0Y . By left downwardmonotonicity, Q (X-Y)Y , andby
conservativity, Q (XYl . By right upwardmonotonicitythen Q (X-Y)Z for all sets
Z , which contradicts variety for the non-empty set X-Y . |

Again, monotonicityis a semanticparameter’'which expressionganhavein degrees.
E.g., the non-standardjuantifier “most” is still right upward monotone,but it lacks
monotonicityeitherway for its left argumentWithout Variety, more quantifiersmake
the grade,including “at leastthree” or “at mostfive”. Hereis a more complicated
expressive completeness result (van Benthem 1986).

Theorem The 'doubly monotone' quantifiers on finite universes are the four

classical ones plus all numerical variants "at least n", "at most n", etc.

A nice proof is by geometricainspectionof the numberrepresentatioffior quantifiers.
Right upwardmonotonicityclosesthe set Q of orderedpairs (a, b) under rightward
steps (a+1, b) => (a, b+1) , left upward monotonicity makeslddedundersteps (a,
b) => (a+1, b)and (a, b+1) that‘shift levels’. The geometricashapedor quantifiers
Q allowed by these conditiomse easily enumeratedHigher-orderquantifierssuchas
"most" have a more complex, but still regular ‘number geometry’.

Monotonicity is a ubiquitousphenomenonn natural reasoningand semantics.The
basic lexical items in the determiner category are monotone acréssgalgesSurely,
this is also a key featureof ‘logical’ constantsstabledescriptionof situations,and
supporting corresponding inferences.

6.3 Simple computability and semanticautomata Another attractivefeatureof
basic logical itemss their simpleuniform computability For the basicquantifiers,this
involves very simple procedures: so-caldemnantic automatde.g., tocomputewhether
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"all AB" we just needa finite automatorwith two states.This will surveythe relevant
set of objects A (which suffices by conservativity) in some order, reading in symbols
for each object in A-B , and b for each object in BA

o#’oQ a

o GG

b b

We start in a recognizing state, and stay there as long as we read symbols b .a%s soon
a symbol a is encountered, we move to a second, rejecting state ahdrstahatever
is read afterwards. The general result here is this:

Theorem The first-order definable quantifiers are precisely
those computed bgcyclic finite automata

Again wehavea ‘parameter’now, as we canvary the type of automatorto get further
levelsof semanticcomputability.Arbitrary finite automataadd the power of counting
(say, "an odd number of"). The next step wdnadchddingmemorystorage Indeed,the
semantictest procedurefor the quantifier like "most" needsthe unboundedfinite
memory of gpush-down store automatdaush-down storage seethe mostcomplex
computationaprocedureneededfor naturallanguagequantifiers.Van Benthem1986
characterizes the corresponding numerical content as follows:

Theorem The quantifiers computable by push-down automata are precisely those
whose numerical conditions on the characteristic numbers a = |A-B|,
b = |AnB| are definable in purely additive ‘Pressburger Arithmetic’.

PressburgeArithmetic is decidableand hencemany questionsaboutnaturallanguage
guantifiers will also be. Thus, the usual Automata Hierarchy mrawidesfine-structure
levels for logical constants, via their computational requirements.

6.4 What this means GeneralizedQuantifier Theory showshow we canzoomin
on the standardquantifiers, amidst all permutation-invariantones, through various
naturaladditionalsemanticand computationapropertiesNow this harmonymay be a
lucky coincidencebetweena bunch of different notions. This suggestghat the core
group of 'logical constants' is bestalyzedas an intersectionof different naturalkinds
of expression: they are clever, attractive, and good cooks into the bargain...



22

7 Comparing stances

We have analyzed logicality in a semantic perspective here. But relatiotiger logical
stanceshave occurred occasionally:computational(Sections5, 6.3), game-theoretic
(Section5), and inferential (Section 6.2). There are certainly independentintuitions
alongthe latter lines that shouldbe explored.In particular,a sustainedanalysisof the
proof-theoretic stance dogicality might be very illuminating, throwing also additional
light on semantic invariance analyses. For instance,

why are the core invariant items so rich in valid inferences?

| know of no good reason;but one would want to understandthe phenomenon.
Likewise, |1 would want to couple the semantic and algorithmic aspects more diigely.
to avoid a misunderstandingyn my philosophy,no ‘completenessheorem’is needed
stating thatall theseapproache&roducethe sameyield’. Indeed,evenin the analysis
of logical consequence;ompletenesseemsoften somewhatengineeredAnd in any
case, it does not show that the logical stances ‘reduce’ to each other.

Of moreinterestto me would be combinationsof perspectivesintuitively, reasoning
seemsto involve two kinds of step. Standardinferencesare ‘local’. We investigate
some situation, observe A, and know for general reasons that B ‘follows’ sathes
situation. But often we want to use t# derive a statementboutsomeother situation,

perhapsevencouchedn a differentlanguageprovidedit is suitablyrelated.The latter

step is closer in spirit to invariance, whialiows us to crossmodels.The two activities

togetherseembasicto how we reasonin practice.To accountfor this theoretically,a

notion of ‘entailment along a model relation’ wa®posedn Barwise& vanBenthem
1999 , allowing inference from one model to its submodels,bisimilar models,
homomorphic images, and whatever jump seems relevant.

Likewise, this combinedview makesus think aboutdesigninginferencesystemsand
languagesat the same timeg and this joint task may put its own constraintson
‘logicality’. Onewantsthe right ‘balance’ betweenthe vocabularyof a proof system,
and itsexpressivgpoweron correspondingnodels.E.g., intuitionistic logic, ignoredin
the classicalsetting of this paper,makes strongerdemandson logical consequence,
demandingconstructiveprovability. What are its natural ‘invariants’? (Bisimulations
between Kripke models have been suggestetis connection.)s thereany reasonto
assume that the classical ‘logical constaats'the right languagefrom a constructivist
point of view? Similar issuesarise with non-monotonidogics in Al. Their designers
guestionthe laws of classicallogic, replacingvalid consequencéy new schemedike
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“the conclusion only has to be true inmibst-preferrednodelsof the premises”.But

they do stick to the languagean which the old dogmaswere formulated. True radicals
would seek a balance, designing aafdbgical constantfor non-monotoniaeasoning
that reflects the new preference structure up to some suitable invariance.

8 Conclusions

Our discussion of logicality has not produced a demarkation of logicisTg®od. The

essenceof ‘logic’ does not lie in canonical lists of ‘logical laws’ or ‘logical

expressionsanyway,but in its generalpropertiesand methods.What we did present
werethe basicfacts aboutthe semantidnvarianceaspectof logicality. This accountis

circular from a foundationalpoint of view, but suggestiveand useful all the same.
Moreover, it still has the potential sfiggestinghew views of logical constantswitness
our dynamicanalysisof logicality as safetyfor semanticprocessoperationsBut there
are certainly otheraspectdo logicality, comingfrom different stancesproof-theoretic,
or game-theoretic, which eventually deserve an equal opportunity.

Ah, and yes, the basic invariance folklore definitely belongs in logic textbooks!
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