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Chapter 1

Introduction

1.1 Ultracold gases

During the past decades the �eld of ultracold gases has experienced a tremendous growth.
The large interest in ultracold gases comes from the fact that when a gas is cooled to a
temperature close to zero the quantum nature of the atomic motion starts to play a dom-
inant role. This is quanti�ed by the size of an atomic wavepacket, given by the thermal de
Broglie wavelength, becoming of the order of the interparticle spacing. When these two
length scales are comparable the wavefunction of neighboring particles overlap and the
system has to be described by many-body wavefunctions. For bosonic atoms (atoms with
integer spin) the appearance of the quantum nature is associated with the occurrence of
Bose-Einstein Condensation (BEC). For fermionic atoms (atoms with half-integer spin)
the appearance of the quantum nature is not associated with a phase-transition but with
a gradual suppression of atoms occupying low energy states due to the phenomenon of
Pauli-blocking. Initially the studies of ultracold gases were mainly aimed towards bosonic
systems due to the possibility to achieve Bose-Einstein Condensation. The �rst theoretical
prediction for a quantum gas was for the groundstate of spin-polarized hydrogen [1, 2]. By
means of quantum Monte-Carlo calculations it was shown that spin-polarized hydrogen
was expected to remain a gas even at 0 K. This prediction was con�rmed in 1980 by
stabilizing spin-polarized hydrogen [3]. However, the achievement of Bose-Einstein Con-
densation was realized in the alkali-metals rubidium [4] and sodium [5] in 1995.
The �eld of ultracold fermionic gases naturally emerged out of the research performed on
ultracold bosonic gases. Shortly after spin-polarized hydrogen was stabilized, the fermionic
gas of spin-polarized deuterium was also stabilized in 1980 [6]. Quantum degeneracy in
an ultracold fermionic gas was achieved in 1999 with the alkali-metal potassium [7]. The
realization of fermi-degeneracy has shown to be the starting point for many fascinating
experiments on fermionic systems. In recent years ultracold fermionic gases have shown to
exhibit remarkable unexpected phenomena. In particular the stability of fermionic systems
for strong interaction [8, 9] was unexpected and has led to the possibility to use ultracold
gases to study strongly-interacting fermionic systems.
The realization of a strongly-interacting fermionic system was achieved by tuning the
interaction strength using a so-called Feshbach resonance. This phenomenon was �rst
pointed out in the context of ultracold gases in 1976 [10], observed in 1986 [11] and
theoretically described in the beginning of the 90's [12, 13]. The spectacular possibilities
in the �eld of fermionic quantum gases were only realized in 2003 with the observation of
long lived molecules consisting of two fermionic atoms [8, 14].

1.2 This thesis

This thesis project, to study a system of heteronuclear mass-imbalanced Fermi gases, was
started shortly after the discovery of the strongly interacting homonuclear Fermi gas. At
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that time very little was known about the properties of a mixture of 6Li and 40K. Only few
theoretical studies had been performed and from the experimental point of view it was
unclear if the mixture could be cooled to degeneracy. Additionally, it had become clear
that Feshbach resonances are essential to study ultracold fermionic gases. However, for the
6Li-40K system it was unknown what the Feshbach resonance structure was and if there
was a Feshbach resonance suitable to perform studies on a strongly-interacting system of
6Li-40K. At that time quantum degenerate gases of only 6Li and 40K had been realized.
Additionally, 6Li and 40K are the only two stable fermionic alkali atoms, which allows
relatively easy laser-cooling. Therefore, the obvious system to realize a mass-imbalanced
heteronuclear Fermi-Fermi system was the 6Li-40K mixture.

This thesis describes the experimental realization of the ultracold 6Li-40K system and
pioneering experiments on the scattering properties. A priori it was unknown if it would
be possible to realize an ultracold mixture of 6Li and 40K, and this thesis describes the
approach we have taken. From the experimental side four major developments are pre-
sented. First, the development of a novel source for cold 6Li is presented. It was expected
the principle of a two-dimensional magneto-optical trap (2D MOT) would not work e�-
ciently for a light atom as 6Li. The source has proven to generate a high-�ux cold beam,
comparable to the common solution of a Zeeman slower. Second, an optically plugged
magnetic trap has been realized. Prior to this thesis it had only been realized for sodium
[5, 15] and it was not expected to work for a light atom like 6Li. Third, the sympathetic
cooling of lithium 6Li by a large bath of multiple spin states of 40K has been demonstrated.
Fourth, the optical transport of an ultracold sample. This had previously been realized
[16], however it was considered to be an involved and unstable approach. The reasons why
our approach has turned out to work easily and reliably are explained in Sect. 3.4.4. From
the theoretical side a model has been developed allowing to completely map the Feshbach
resonance structure in any system. The model has been applied to 6Li-40K to theoretically
assign observed loss features [17] and to �nd the resonance most suitable to study the
strongly-interacting mixture [18]. This resonance is experimentally characterized, which
allows to de�ne experimental conditions for studying strongly interacting 6Li-40K.

During the coarse of this thesis the topic of fermionic mixtures with a mass imbalance has
tremendously gained in interest. Two other experiments on 6Li-40K were started nearly
simultaneously in Munich and Innsbruck and at the moment of writing two more are
being set up at the ENS in Paris and at MIT in Boston. From the theoretical side a vast
number of publications have appeared on unequal mass fermionic systems (see e.g. Ref.
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and references therin), many of them assume
a Feshbach resonance broad enough to exhibit universal behavior. By using the Feshbach
resonance presented in this thesis many of these theories can be tested.

1.3 Strongly interacting systems

A key topic of present-day physics is the understanding of strongly interacting systems.
Many fascinating phenomena observed in nature appear to �nd their origin in strongly
interacting systems. These systems range from the �elds of condensed-matter to high-
energy physics. For example the phenomena of high-temperature superconductivity [31]
and nuclear matter [32] are systems where strongly interacting fermions play a key role.
However, the theoretical understanding of these phenomena is not complete. In the study
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of strongly-interacting fermions, the �eld of ultracold gases has come to play a special
role. Not only does it provide an elegant way to study fundamental aspects of quantum
mechanics, but it has also proven to be a powerful tool to simulate other quantum systems.
The extraordinary degree of tunability of the con�ning potential and interaction strength
are key features of quantum gases which allow to accurately model quantum many-body
systems. In particular the realization of a stable strongly-interacting fermionic system
[33, 8] provided the possibility to draw analogies to other strongly interacting systems.

An ultracold gas is not by de�nition strongly interacting. However, due to the ability to
change the interaction strength it can be tuned to become strongly interacting. Already
in 1992 [12], before the realization of the �rst BEC, it was realized that the two-body
interaction parameter, the scattering length a, could be modi�ed in favor of the exper-
iment by an external magnetic �eld. The theory used to describe these resonant phe-
nomena [13] is strongly based on Feshbach's theory describing nuclear reactions [34, 35],
hence these resonances are called Feshbach resonances. The application of Feshbach reso-
nances in ultracold atom experiments has allowed to create and study strongly interacting
fermionic systems with very large versatility. The interaction strength can be changed in-
situ, therefore the interaction can be tuned to be attractive, repulsive, non-interacting or
strongly interacting in a continuous manner during the coarse of an experiment. There
are two other realizations of strongly-interacting systems. First, reduced dimensionality
can enhance the e�ect of interactions leading to strongly correlated quantum system, in
particular the Tonks-Girardeau [36, 37] gas is an example of such a system. Second, the
use of optical lattices in ultracold gases [38] provide the possibility to achieve a strongly
correlated system in the form of Mott insulator. In this thesis we will discuss only strongly
interacting systems related to Feshbach resonances.

For a long time the work on ultracold fermionic gases has been limited to homonuclear
systems. Quantum degeneracy has been achieved for four di�erent fermionic elements:
3He∗ [39], 6Li [40, 41], 40K [7] and 173Yb [42]. The addition of a second fermionic element
to create a fermionic heteronuclear system tremendously enriches the system and adds
more degrees of tunability. In particular a mass-imbalance between two species allows to
mimic a whole new class of quantum systems. For example, the 6Li-40K system is expected
to exhibit long-lived p-wave trimers [30]. Furthermore, exotic forms of super�uidity are
expected due to interaction between 40K atoms mediated by 6Li atoms. Another prospect
for this system is to create ground state molecules [43, 44]. These molecules will be bosonic
and exhibit a large dipole-moment [45, 46]. Finally, a novel analogy to condensed matter
systems can be made by applying a lattice potential selectively to one species and have
the other move freely through the arti�cially created crystal. These few examples of novel
quantum systems illustrate the richness of studies which can be performed using the
6Li-40K system.

1.4 Universality

In order to use ultracold gases to model strongly-interacting fermions, it is required that
experiments can be generalized to a generic system of strongly-interacting fermions. If a
system of ultracold fermions is prepared as such, it is called to exhibit universal behavior.
This implies that the behavior of the system is determined entirely by the fermionic
nature of the particles and their interaction strength. The possibility of achieving universal
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behavior with ultracold fermions strongly depends on the properties of the Feshbach
resonance used to tune the interaction. For ultracold fermions universal behavior has
only been achieved in spin mixtures of 6Li or spin mixtures of 40K. Both atomic species
exhibit Feshbach resonances with properties favorable to achieve universal behavior, i.e.
the resonances are strong.
Knowledge about Feshbach resonances is thus of great importance to be able to study
universal behavior. However, for any system other than hydrogen the potentials describing
the interaction between two atoms cannot be calculated a-priori with su�cient accuracy
to predict Feshbach resonances. Therefore, without experimental input it is unknown if
universal behavior can be achieved in a certain system. For the homonuclear systems of
6Li and 40K the scattering properties have been studied in great detail [47, 48, 49, 50].
At the start of this project the Feshbach resonance structure of a heteronuclear mixture
of 6Li and 40K was unknown. A careful study of the resonances occurring in the 6Li-40K
system is presented in this thesis. We show that the 6Li-40K system exhibits Feshbach
resonances suitable to study universal behavior in a mass-imbalanced fermionic mixture.

1.5 Outline

This thesis describes the study of Feshbach resonances in the 6Li-40K mixture both from
the experimental and theoretical point of view. Chapter 2 provides a brief summary of
theoretical concepts used throughout this thesis. However, the largest part of the research
for this thesis consists of the development of a state-of-the-art machine to study an ultra-
cold mixture 6Li with 40K, which is presented in Chapter 3. In addition to the technical
aspects and novel approaches as have been discussed above, the realization of a quantum
degenerate spin mixture of 40K and an ultracold mixture of 6Li and 40K are described. A
signi�cant innovation in the techniques used for ultracold gases is performed by develop-
ing the �rst 2D MOT source for lithium. It is presented in Chapter 4, and it yields a very
large cold �ux of 6Li atoms. On the theoretical side a computationally simple, intuitive
model has been developed to accurately describe all Feshbach resonance positions and
widths in a system. The model is presented in Chapter 5. Using this model all possible
Feshbach resonances of the 6Li-40K system are examined and the resonance most suitable
to study universal behavior is selected. Furthermore, all these e�orts have been combined
in Chapter 6 by experimentally characterizing the selected resonance. These results show
that the 6Li-40K systems can be used to realize a strongly interacting Fermi-Fermi mix-
ture in the universal limit, opening a wide area of research for studying mass-imbalanced
Fermi-Fermi systems.



Chapter 2

Theoretical Background

2.1 Introduction

This chapter provides a background of the theoretical concepts used in this thesis. This
chapter is by no means a review of the discussed subjects, it is rather a description of the
di�erent approaches as compared to common treatments, a description of the approxima-
tions which have been made and an introduction of notations. The �eld of ultracold gases
is tremendously active and many up-to-date reviews are available, covering a very large
part of the �eld. Here I will summarize some of the review articles which have shown to be
very useful. An extensive description of optical trapping is given in Ref. [51] and for mag-
netic trapping in Ref. [52, 53, 54, 55]. Evaporative cooling, in particular in magnetic traps,
is described in Ref. [56, 57] and the description of trapped ultracold Fermi gases is well
covered in Ref. [58, 59]. Basic experimental techniques for experiments on ultracold gases
can be found in [55, 60, 61, 58]. An extensive description of Feshbach resonances is given
in Ref. [62], and in particular the square well problem, which o�ers a very good insight in
the basic properties of Feshbach resonances, is discussed in various places [63, 58, 64]. Fi-
nally, many PhD theses o�ering very detailed descriptions of ultracold gases experiments
have been written, see e.g. [65, 66, 67]
Three aspects of the theoretical background for this thesis require a bit of extra atten-
tion. First, the quantum statistics of particles are of great importance in experiments with
ultracold gases, this will be addressed in Sect. 2.2. Second, the experimental and theo-
retical results presented in this thesis are in many aspects based on ultracold scattering
theory. In Sect. 2.3 a brief description of ultracold scattering and in particular resonant
scattering is given. Third, both magnetic and optical traps are used in the experiments
presented in this thesis. A clear introduction on what assumptions are made to analyze
and model the trapping is given in Sect. 2.4.

2.2 Cooling of fermions

Experiments with ultracold fermionic gases are in many aspects similar to experiments
with ultracold bosonic gases, however there are a few distinct di�erences. For two indistin-
guishable particles the wavefunction describing both particles ψ(r1, r2) can be constructed
from the two single-particle wavefunctions ψ1(r1) and ψ2(r2) in two manners

ψ±(r1, r2) = C [ψ1(r1)ψ2(r2)± ψ1(r2)ψ2(r1)]

where C is a normalization factor. The + sign yields a two-particle wavefunction which
is symmetric under exchange of particle 1 and 2 and the − sign yield an anti-symmetric
wavefunction under exchange of the two particles. The former type of particles are called
bosons and the latter fermions. The anti-symmetry of the fermionic wavefunction is
called the Pauli exclusion principle and implies that two fermions cannot occupy the
same internal state ψ1 = ψ2, because ψ−(r1, r2) = C [ψ1(r1)ψ1(r2)− ψ1(r2)ψ1(r1)] = 0.
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Figure 2.1: The di�erent behavior of bosons and fermions at zero temperature: bosons
pile up in the ground state, and fermions �ll up all states up to the Fermi energy EF .

Additionally, two fermions cannot be at the same spatial position r1 = r2, since
ψ−(r1, r1) = C [ψ1(r1)ψ2(r1)− ψ1(r1)ψ2(r1)] = 0. These two properties of fermions have
dramatic consequences for experiments with ultracold atoms. The �rst aspect concerning
the internal states is depicted in Fig. 2.1 for both types of particles in a harmonic trap.
For T = 0 the bosons pile up in the ground state resulting in a macroscopic occupation of
the ground state, a so-called Bose-Einstein condensate. The fermions cannot occupy the
same state, therefore they will �ll up each state up to a certain energy referred to as the
Fermi-Energy EF .

The second property of fermions, that they cannot exist at the same spatial position
r1 = r2 has di�erent consequences. The wavefunction of the two bosons is symmetric
under exchange of the two particles, therefore, the total probability density |ψ+(r1, r2)|2
has a �nite value for r1 = r2. The fermionic two particle wavefunction has to be anti-
symmetric under exchange of the particles, resulting in the fact that the total probability
density |ψ−(r1, r2)|2 will vanish for r1 = r2. This has the important consequence that two
indistinguishable fermions will not collide for T → 0.

To achieve quantum degeneracy in ultracold gases only one method has been demon-
strated to be successful, namely, evaporative cooling [56, 57]. To achieve an increase in
phase-space density by means of evaporative cooling, rethermalizing collisions are essential
down to T → 0. Three fundamentally di�erent pre-cooling steps have been successfully
employed to achieve ultracold samples, laser-cooling [4], cooling by contact with a cryo-
genic surface [68] and very recently bu�er gas cooling [69]. However, the �nal step to
achieve quantum degeneracy has always been evaporative cooling, therefore collisions are
essential for ultracold gases experiments. This has an important consequence for experi-
ments with fermionic gases, namely, that at least two distinguishable species are required
to obtain rethermalizing collisions and allow to perform evaporative cooling.

The second species next to the fermion can be another internal (spin)state of the same
atomic species, a di�erent bosonic species, or a di�erent fermionic species. The �rst quan-
tum degenerate Fermi gas was obtained by a spin mixture of two internal hyper�ne states
of 40K [7]. Surprisingly, this method was proven to be very e�cient, however, this ap-
proach has never been repeated until this thesis project. In the past decade many other
combinations of species have been used to cool fermions to quantum degeneracy. Cooling
by means of rethermalization with a boson has been used to achieve quantum degeneracy
in 6Li by cooling with 7Li [40, 41], 23Na [70] or 87Rb [71], for degeneracy in 40K by cooling
with 87Rb [72], and for degeneracy in 3He∗ by cooling with 4He∗ [39] and for 173Yb by
cooling with 174Yb [73]. The method using a homonuclear spin mixture to assure rether-
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malizing collisions has been used for 40K in two spin states [7], for 6Li in two spin states
[74] and for 173Yb in six spin states [42].
Cooling fermionic atoms to quantum degeneracy by rethermalizing collisions with other
fermions had not been performed prior to this thesis. Very recently in experiments per-
formed in Innsbruck, simultaneous to the experiments presented in this thesis, quantum
degeneracy has been achieved in 40K by cooling with two spin states of 6Li [75]. In this
thesis the �rst results on cooling 6Li by rethermalizing collisions with a 40K spin-mixture
are presented. The Fermi-Fermi mixture is cooled close to quantum degeneracy limited
by technical aspects of the optical dipole trap. Cooling of two di�erent fermionic species
both in a single spin state by means of forced evaporation on both species has not been
achieved at the moment this thesis is being written.
The cooling of 6Li with 40K or vice-versa has an additional problem of the mass-imbalance
between the two species. To achieve rethermalization of a sample, not only collisions are
required, but also momentum transfer has to occur. If the mass imbalance is very large,
many collisions are required to achieve rethermalization. It can be easily shown [64] that
for two particles with massm1 andm2 the thermalization time τth is related to the collision
rate τ−1

c by

τ−1
th =

ξ

2(γ + 3/2)
τ−1
c

where ξ = 4m1m2/(m1 +m2)
2 is the mass-imbalance factor and γ is the trap parameter,

γ = 3/2 for a harmonic trap and γ = 3 for a linear trap. For the 6Li-40K system ξ ' 0.455
therefore rethermalization of the 6Li-40K mixture takes about twice as long compared to
a homonuclear system only due to the e�ect of the mass di�erence.

2.3 Ultracold scattering

Atomic scattering theory has been treated extensively in literature, see e.g. [76, 64]. In
this section we will summarize the background required for Chapters 5 and 6. We will
start in Sect. 2.3.1 with the Hamiltonian describing two body scattering. Subsequently,
we will treat resonance scattering at T = 0 (Sect. 2.3.2) and at �nite temperature (Sect
2.3.3). We will conclude the chapter with a brief description of the accumulated phase
method in Sect. 2.3.4.

2.3.1 Two body hamiltonian

The two-body Hamiltonian of two interacting atoms can be written as:

H = Hrel + Hint,

where Hrel is the Hamiltonian of the relative motion and Hint is the internal energy of
the two atoms, given by

Hrel =
p2

2µ
+ V, (2.1)

Hint = Hhf
α + Hhf

β (2.2)
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Figure 2.2: The single atom hyper�ne energies as a function of the magnetic �eld B for
the electronic groundstates of 6Li and 40K. The states are labeled with their zero-�eld
quantum numbers |fmf 〉. Note the inverted hyper�ne structure for 40K and the relatively
small hype�ne �eld Bhf of 6Li.

where p2/2µ is the relative kinetic energy operator, V is the e�ective interaction among
the atoms, and Hhf

α and Hhf
β are the single-atom hyper�ne hamiltonian for both atoms,

labelled with α and β. The single-atom internal Hamiltonian is given by the sum of the
hyper�ne interaction and the Zeeman interaction

Hhf =
ahf

~2
i · s + (γes− γii) ·B, (2.3)

where ahf is the hyper�ne constant, γe ≡ gsµB/~ and γi ≡ giµB/~1 are the electronic
and nuclear gyromagnetic factors, B is the magnetic �eld and i and s are the nuclear and
electronic spin operators with the respective quantum numbers mi and ms. The hyper�ne
structure of the ground state of 6Li and 40K play a central role throughout this thesis.
In Fig. 2.2 the eigenvalues Ehf of Eq. 2.3 are plotted as a function of the magnetic �eld
dependence of the various hyper�ne states of 6Li and 40K. Both atoms have an electron
spin of s = 1/2, 6Li has a nuclear spin of i = 1 and 40K has a nuclear spin of i = 4 (see
Appendix A for more details on potassium). The hyper�ne constants for 6Li and 40K are
ahf

Li/h = 152.1368407(20) MHz and ahf
K /h = −285.7308(24) MHz respectively [77]. The

states are labeled with the low-�eld quantum numbers |fmf〉 where f = i + s is the total
spin operator with the corresponding quantum numbers f and mf . Note that for �nite
magnetic �eld Hhf is not diagonal in the |fmf〉 basis.

Relative Hamiltonian

The Hamiltonian of the relative motion, given by Eq. 2.1, describes the interaction of
two particles with an e�ective interaction V and a relative kinetic energy p2/2m. The
e�ective interaction V can be written as the central Coulomb interaction V cen(r) of the
two atoms, where r is the internuclear distance. The central interaction is a function of

1Note that the common reference for gi, Ref. [77], uses a di�erent sign convention. We use the conven-
tion [78] where the magnetic moment is parallel to the nuclear spin: µ=giµBi, i.e. gi of the proton and
6Li is positive and gi of

40K is negative.
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the internuclear distance and depends on the total spin S = sα +sβ. It can be decomposed
as

V cen(r) =
∑

S

|S〉VS(r)〈S| (2.4)

where VS(r) is the interaction potential for total electron spin quantum number S. For
spin 1/2 atoms the total electron spin has a singlet (S = 0) or triplet (S = 1) symmetry.
The singlet and triplet potentials are then given by Vs(r) and Vt(r) respectively and Eq.
2.4 can be rewritten as:

V cen(r) = VD(r) + J(r)sα · sβ (2.5)

where VD(r) = 1
4
(Vs(r) + 3Vt(r)) is called the direct interaction and J(r) = Vt(r)− Vs(r)

the exchange interaction. Asymptotically VD(r) corresponds to the van der Waals tail2:

VD(r) = −C6

r6
(2.6)

The characteristic length of this potential can be expressed in the so called van der Waals
range

r0 =
1

2

(
2µC6

~2

)1/4

(2.7)

The exchange term in Eq. 2.5 can be well described by [79]

J(r) = J(γα, γβ, r)r
2

γα
+ 2

γβ
− 1

γα+γβ
−1
e−(γα+γβ)r (2.8)

where −γ2
α/2 and −γ2

β/2 are the ionization energies of both atoms and J(γα, γβ, r) is a
normalization function, which reduces to a constant for homonuclear systems, (γα = γβ).
For heteronuclear systems, γα 6= γβ, a parameterization of J(γα, γβ, r) can be found in Ref.
[79], the values for the LiK system are given in Appendix B. Knowledge about the energy
scales of the direct and exchange interactions are required to perform accumulated-phase
calculations as described below in Sect. 2.3.4.

Scattering in a central potential The elastic scattering properties can be obtained
by solving the one-dimensional radial Schrödinger equation [80][

~2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)
+ V l

S(r)

]
R(r) = ER(r) (2.9)

where V l
S(r) = VS(r) + ~2l(l + 1)/2µr2 and correspondingly, V 0

S (r) = VS(r). For E < 0
the solutions correspond to the vibrational levels of the V l

S(r) potential and for E ↓ 0
and l = 0 the in�uence of the scattering potential VS(r) on the scattered wavefunction at
r → ∞ can be expressed in the so-called s-wave phase-shift η0 [76]. This phase shift is
related to the s-wave scattering length a by

a = − lim
k→0

tan η0

k
(2.10)

2For a more accurate description of the direct term Eq. 2.6 can be easily extended with the −C8/r8

and −C10/r10 dispersive terms.
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We de�ne as and at as the s-wave scattering lengths for the V0(r) and V1(r) potentials. In
the case of resonant scattering (η0 → π/2) the scattering length diverges, this is referred
to as a potential resonance due to the resonance being induced by the scattering potential
V cen(r).

Internal Hamiltonian

The internal Hamiltonian, given by Eq. 2.2, can be rewritten in a more convenient form

Hint = Hhf
α + Hhf

β ≡ Hint
+ + Hint

−

where

Hint
+ =

1

2~2
(ahf

α iα + ahf
β iβ) · S + (γeS−γi,αiα − γi,βiβ) ·B

Hint
− =

1

2~2
(ahf

α iα − ahf
β iβ) · (sα − sβ)

where Hint
+ (= Hhf

+ for B = 0) contains all terms which conserve the total electron spin
and Hint

− (≡ Hhf
− ) gives rise to the coupling between di�erent S, additionally we have set

γe,α = γe,β ≡ γe. We de�ne the total spin of the two-body system as F = S + iα + iβ. For
distinguishable atomic species the nuclear spin does not need to be symmetrized and we
take the basis |SMSiαµαiβµβ〉 = |SMSµαµβ〉, where we omit the total nuclear spin iα and
iβ of both atoms to simplify the notation. For indistinguishable atoms one has to de�ne
the total nuclear spin I = iα + iβ with its associated quantum number I and projection
MI , allowing to use the symmetrized basis |SMSIMI〉. We have neglected dipole-dipole
coupling and second-order spin-orbit interaction, therefore, the relative Hamiltonian Hrel

conserves the total spin and only acts on the spatial part of the wavefunction. In contrast,
Hint only acts on the spin states and not on the spatial wavefunction.

Inelastic Scattering

The relative Hamiltonian (Eq. 2.1) conserves the total spin F and its projection MF .
However, the exchange term of the central interaction (Eq. 2.5), sα ·sβ, couples the electron
spins of both atoms and can couple di�erent hyper�ne states while conserving the total
electron spin S. These collisions, which change the hyper�ne state of a colliding atom pair,
are called spin-exchange collisions. Only certain combinations of hyper�ne channels are
allowed due to conservation of total angular momentum and energy. For spin 1/2 atoms
we can rewrite the exchange term of Eq. 2.5 as

sα · sβ =
1

2

(
S2 − s2

α − s2
β

)
=

1

2
S2 − 3

4
(2.11)

The spin-exchange rate K2 of a certain inelastic collision channel is given by [60]

K2 = 4π(at − as)
2vf |〈f ′αm′

f,αf
′
βm

′
f,β|sα · sβ|fαmf,αfβmf,β〉|2 (2.12)

where |fαmf,αfβmf,β〉 and |f ′αm′
f,αf

′
βm

′
f,β〉 are the initial and �nal hyper�ne states respec-

tively and vf is the relative velocity of the two atoms in the �nal state, given by
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vf =

√
2

µ

(
Ekin + Ehf

α + Ehf
β − Ehf ′

α − Ehf ′
β

)
.

Here Ehf
α and Ehf

β are the hyper�ne energies of the initial states with kinetic energy Ekin

and Ehf ′
α and Ehf ′

β are the hyper�ne energies of the �nal states. Note that the hyper�ne
energies depend on the magnetic �eld value. The value of vf re�ects the amount of phase-
space available for the �nal scattering states: a large energy di�erence between the initial
and �nal state will result in a large inelastic collision rate. To obtain a numerical value for
the spin-exchange rate for a certain magnetic �eld B and temperature T (see Sect. 3.6)
we perform a basis transformation from the |fαmfαfβmfβ

〉 basis to the total spin basis
|SmSµαµβ〉, this allows us to calculate the coupling term given in Eq. 2.11.

2.3.2 Feshbach resonances

For a collision of two atoms the scattering properties are determined by the scatter-
ing potential V cen(r) (see Sect. 2.3.1). The properties of the scattering potential V cen(r)
determine the s-wave scattering length a for k → 0. However, the value of a can be dras-
tically in�uenced due to resonant coupling to a two-body bound state, referred to as a
closed channel. Since this closed channel can have a di�erent hyper�ne structure than
the open channel the presence of an external magnetic �eld can modify the position of
the closed-channel bound state with respect to the open channel. This phenomenon is
depicted in Fig. 2.3. The hyper�ne energy of the two colliding atoms at large separation
(r → 0) de�nes the total energy of the initial atom pair. Since the s-wave scattering is
energetically allowed in this channel, even at T → 0, this channel is called the open chan-
nel. Any scattering potential with a higher asymptotic energy is referred to as a closed
channel (see Fig. 2.3a) Since the hyper�ne energy of di�erent channels vary di�erent due
to the in�uence of an external magnetic �eld, the closed channel shifts with respect to
the open channel (see Fig. 2.3b). If the closed channel has a bound state with binding
energy εS, it can become resonant with the asymptotic energy of the open channel for
a certain magnetic �eld B0. If a coupling between the open and closed channel exists
the scattering length can de dramatically altered due to resonant coupling to the bound
state. On this resonance the scattering length diverges (see Fig 2.3b). This phenomenon
is known as a Feshbach resonance. [34, 35].Occasionally these resonances are referred to
as Fano-Feshbach resonances referring to the work of Fano in 1961 [81]. However, the res-
onances in the context of ultracold atoms di�er signi�cantly from the original Feshbach
and Fano resonances. In the �eld of ultracold atoms the resonance occurs due to tuning
of the internal structure of the collision partners even down to zero kinetic energy. Fano
and Feshbach resonances occur due to the variation of energy of the collision partners,
and not their internal structure.
In the context of ultracold atoms it was �rst pointed out in 1976 [10] that these resonances
can result in losses for certain magnetic �elds. The �rst observation of such losses due
to coupling to a closed channel was done in 1986 [11]. Only in 1992 Tiesinga, et al [12]
showed these resonances can be used in a positive manner to tune the scattering length
to any favorable value.
In the presence of only one closed channel the scattering length can be written as:

a(B) = abg + ares(B)



12 Theoretical Background

open channel

closed channel

interatomic separation

e
n
e
rg

y
binding energy eS

magnetic field

e
n
e
rg

y

B0

a) b)

a

0

c)

Figure 2.3: Principle of a Feshbach resonance. a) a pair of atoms is prepared in a hyper-
�ne state collides through an energetically open channel. A energetically closed channel
has a bound state with binding energy εS . b) due to the hyper�ne structure both the open
and closed channel shift as a function of the externally applied magnetic �eld. For a certain
magnetic �eld B0 the open channel asymptote becomes resonant with the bound state in
the closed channel. c) at B0 the scattering length diverges and around the resonance all
values of a can be accessed.

where abg is the scattering length in the open channel, the so-called background scattering
length and ares(B) is the magnetically induced scattering length due to the presence of
the closed channel. This resonance term is commonly denoted as

ares(B) = −abg
∆B

B −B0

(2.13)

where B0 is the resonance position and ∆B is the resonance width de�ned as the di�erence
between the magnetic �eld resonance B0 and the magnetic �eld where a(B) = 0, hence,
∆B is a function of abg itself. By introducing ∆µ = µo − µc as the di�erence in magnetic
moment between the open and closed channel3 we can write

a(B) = abg −
abg∆B∆µ

∆µ(B −B0)

where the numerator of the second term abg∆B∆µ ≡ C corresponds to the coupling
strength between the open and closed channel and is always positive [82]. Figure 2.4 shows
the possible con�gurations of the scattering length divergence. A Feshbach resonance
width is fully characterized by the three parameters abg, ∆B and ∆µ, and the position
solely by B0. In the literature various expressions are used to describe the resonance width
for k → 0. The length scale R∗ [83] and the width Γ are commonly used and are related
by

R∗ ≡ ~2

2µabg∆B∆µ
, Γ ≡ ~2k

µR∗
= 2Ck

Additionally the dimensionless parameter sres = R∗/r0 [62] is a convenient measure to
describe the resonance strength.

3Note that µ = −∂E/∂B
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Figure 2.4: The scattering length (solid red) is plotted as a function of magnetic �eld
for the four possible symmetries of the divergence around a Feshbach resonance. The red
dotted line indicates the abg and the black dashed line indicates ∆µ.

2.3.3 Ultracold scattering at �nite energy

Up till now we have considered scattering at T = 0. However, even at ultracold tempera-
tures the �nite temperature plays a signi�cant role. In this section we discuss the s-wave
scattering properties in the presence of a Feshbach resonance. We do this in the context
of the scattering amplitude f0 given by

f0 =
1

k cot η0 − ik
(2.14)

where η0 is the s-wave phase-shift as de�ned in 2.3.1. The cross-section of s-wave collisions
for distinguishable particles is given by

σ(k) = 4π|f0|2 = 4π
1

k2 cot2 η0 + k2
(2.15)

where the σ(k) has an energy dependence re�ected in the unitarity-limit term k2 in the
denominator and in η0. The s-wave phase shift is given by

η0(E) = ηbg(E) + ηres(E) (2.16)

where the resonant term is expressed as

tan ηres(E) = −k abg∆B∆µ

~2k2/2µ−∆µ(B −B0)
(2.17)

where E = ~2k2/2µ, this equation reduces to equation 2.13 for k → 0. Generally, the
�nite energy behavior is described in terms of the e�ective range expansion. This method
expands the cot η0 in terms of −ka. However, due to the resonant structure of a we choose
to not perform this expansion, instead we calculate the energy dependent cross section
by assuming a non-resonance background scattering length (tan kabg ' kabg). We readily
obtain
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σ(k) =
4π

k2

(Γ/2− kabgδ)
2(

1 + k2a2
bg

)
(δ2 + (Γ/2)2)

(2.18)

where δ = ∆µ(B − B0) − E represents the detuning from the resonance. In the absence
of a resonance (Γ = 0) this expression reduces to the familiar form

σ(k) = 4π
abg

2

1 + k2a2
bg

(2.19)

The cross-section has an asymmetric shape around the Feshbach resonance, this shape is
called the Fano-pro�le. In the absence of a background scattering length Eq. 2.18 reduces
to

σ(k) =
4π

k2

(Γ/2)2

δ2 + (Γ/2)2

which has a symmetric Lorentz-shape and is the familiar Breit-Wigner resonance [84].
To obtain a thermally averaged cross-section we need to average over all possible k-vectors.
In particular we want to study the collision rate Γ = n〈σv〉, where n is the density
and v = ~k/µ is the relative velocity of a collision pair. The distribution in position
and momentum space is given by f(r,p) = exp(−H(r,p)/kBT ), where the single-atom
Hamiltonian H(r,p) describes the system at position r with momentum p, and is given
by

H(r,p) =
p2

2m
+ U(r) (2.20)

where U(r) is the trapping potential. Using p = ~k and the fact that 〈σv〉 is independent
of r we obtain

〈σv〉 =

∫ ~k
µ
σ(k)e−H(r,k)/kBTdkdr∫
e−H(r,k)/kBTdkdr

(2.21)

=
23/2

√
πµ(kBT )3/2

∫ ∞

0

σ(E)Ee−E/kBTdE (2.22)

In particular a �nite energy collision k > 0 results in a shift of the resonance position and
of the zero-crossing. Additionally, the on-resonance scattering cross section is reduced due
to the unitarity limited term 1/k2. For a thermal sample with a distribution of k-values
this results in a washing out of the zero crossing of the scattering length. This is depicted
in �gure 2.5: the �nite temperature of the sample results in a shift of the maximum cross
section.

2.3.4 Accumulated phase method

The Asymptotic Bound-state Model as described in Chapter 5 utilizes the Accumulated
phase method [85]. Recently, an extensively discussion of this method with additional
extension is presented in Ref. [86]. The accumulated phase method enables to neglect
details of the inner part of the potential, i.e. for a internuclear separation of r < rin.
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Figure 2.5: The scattering cross section σ(k) and the thermally averaged rate constant
〈σv〉, both normalized to a background value of 1. The solid red and dashed green curves
shows Eq. 2.18 for k = 0 and k > 0. The dash-dotted blue curve shows the thermally
averaged rate constant 〈σv〉 given by Eq. 2.22. Note the shift of the maxima for �nite
temperatures.

At the distance rin a boundary condition is imposed on the wavefunction in the form
of a phase. This phase represents the accumulated phase behavior of the wavefunction
for r < rin. A proper choice of rin allows the inner potential to be neglected and a very
good approximation of the wavefunctions near the scattering threshold can be made. In
particular to describe Feshbach resonances, originating from near-threshold bound states,
this tool has proven to be very powerful as demonstrated on the 40K87Rb system in
Chapter 5. The idea is to expand the radial wavefunctions in a singlet and triplet basis,
if this is possible, knowledge about the singlet and triplet radial wavefunctions su�ce to
describe any superposition occurring due to hyper�ne mixing by Hhf

− of the singlet and
triplet potentials.

Three conditions on rin have to be ful�lled to use the accumulated phase method. First,
the accumulated phase radius rin has to be small enough that the exchange energy is
larger than the hyper�ne energy. If this is the case the hyper�ne coupling term Hhf

− can
be neglected and the singlet-triplet basis is a good basis for the radial wavefunctions.
Second, rin should be large enough that the singlet-and triplet potentials are known. This
condition can be ful�lled if the exchange energy is smaller than the van der Waals energy
and the potentials are well described by the van der Waals tail. Finally, the energy and
angular momentum scales should be small enough that varying the energy or angular
momentum l does not signi�cantly alter the accumulated phase at rin

4.

The conditions given above are depicted in Fig. 2.6 for the 6Li40K system. The �rst
condition is ful�lled for r . 22 a0, the second for r & 14 a0, therefore taking rin = 18 a0

yields a good choice for the accumulated phase method. The third condition is always
satis�ed in the calculations presented in this thesis, for more detail on this condition we
refer the reader to Ref. [86].

4If this condition can not be ful�lled a �rst order correction can be made to allow the phase to vary
proportional to E or l(l + 1) [86].



16 Theoretical Background

10 20 30 40 50 60
0.01

1

100

104

rHa0L

E
�h
HG

H
zL
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hf ) and the blue dash-dotted line is the exchange energy (Eq. 2.8).

Figure 2.7 illustrates an application of accumulated phase method where the �rst bound
state E1 of the 6Li40K triplet potential is calculated from the triplet scattering length
at = 63.5 a0 [17]. First, the accumulated phase at r = rin is obtained by solving the
radial Schrödinger equation (Eq. 2.9) for E = kB × 1 nK using as a boundary condition
at r →∞ the s-wave phase shift obtained with equation 2.10. The obtained wavefunction
is depicted as the blue solid curve in Fig. 2.7. Subsequently, the triplet binding energy is
obtained by varying E using as boundary conditions the phase at rin and ψ′, ψ → 0 for
r → ∞. The obtained binding energy is E1 = h × 434 MHz, well in agreement with full
coupled channel calculations yielding E1 = h×427.44 MHz [17]. The procedure can also be
applied in a reversed manner to relate the binding energy to the scattering length. Using
E1 = h × 427.44 MHz as input parameter we obtain a scattering length of at = 63.9 a0,
well in agreement with the coupled-channel calculation value (at = 63.5 a0).

The accumulated phase method is very useful for Feshbach resonance studies due to its
accurate description of near-threshold states. For example calculating the Franck-Condon
factors of singlet and triplet wavefunctions can be performed very accurately with the
accumulated phase method. These Franck-Condon factors are essential for the generalized
version of the ABM presented in Chapter 5.

In Fig. 2.8 another illustration of the accumulated phase method is given. The grey line is
the triplet potential of 6Li40K, and the solid blue line depicts the radial wavefunction of the
least bound state with binding energy E1 = h×427.44 MHz. Two other wavefunctions are
plotted, �rst the red dashed line represents the wavefunction with the accumulated phase
method up to rin = 18 a0. This wavefunction is obtained by solving Eq. 2.9 using V l

S(r) =
VvdW (r) = −C6/r

6 and as a boundary condition χ(r) → 0 for r →∞, where χ(r) = rR(r).
We will refer to such a state as an asymptotic-bound state since the probability density
of the wavefunction extends far outside the range of the potential. The inner part of
the wavefunction, i.e. for r < rin, contains less than 1% of the probability density of
the wavefunction. Therefore, summarizing the short-range behavior in the phase of the
wavefunction yields a good approximation. As a comparison the wavefunction where the
least bound state is treated as a halo state is plotted (green dash-dotted curve). For a
halo state the potential is approximated by a contact potential with a bound state at an
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Figure 2.7: Relating the triplet scattering length for 6Li40K to the binding energy E1

by making use of the accumulated phase method. The solid blue line is the scattering
wave function at E = kB × 1nK, the red dashed curve is the wavefunction of the bound
state and the dotted black line is the asymptotic behavior of the scattering wavefunction,
yielding the scattering length.

energy E1. The radial wavefunction is given by χ(r) =
√

2κe−κr, where κ =
√

2µE1/~2.
It is clear that for this case the halo state is a too crude approximation to describe the
radial wavefunction. The asymptotic-bound state, however, yields a good approximation.

2.4 Trapping of ultracold atoms

In this section the principles of trapping will be brie�y resumed, in particular a background
is given for the aspects special to our experimental setup which is presented in Chapter 3.
In Sect. 2.4.1 optical trapping is discussed, followed by Sect. 2.4.2 on magnetic trapping.
Finally, density distributions of thermal and degenerate gases are discussed in Sect. 2.4.3.

2.4.1 Optical dipole potentials

Optical dipole potentials for neutral atoms are based on the AC Stark e�ect. An intense
laser beam is far-detuned from an optical transition, inducing an electric transition dipole-
moment on the atom. The induced dipole moment in the external driving �eld results in
a potential energy proportional to the driving intensity[87]. An extensive discussion of
optical dipole potentials for neutral atoms can be found in Ref. [51]. Here we consider the
approximations required to describe the optical potentials used in our setup.

An optical potential formed by a far detuned laser beam with an intensity I(r) interacting
with a two-level system is given by [51]

U(r) = −3πc2

2ω3
0

(
Γ

ω0 − ωL

+
Γ

ω0 + ωL

)
I(r), (2.23)

where ω0 = 2πc/λ0 and ωL = 2πc/λL are the angular frequency of the atomic transition
and of the laser respectively and Γ is the spontaneous decay rate of the excited state. For
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Figure 2.8: Various approximations for the radial wavefunction of 6Li40K in the triplet
potential. The grey curve depicts the potential, the solid blue curve the wavefunction for
the complete potential, the red dashed curve for only the VvdW (r) potential and the green
dash-dotted for a contact potential.

laser beams tuned relatively close to resonance ωL/ω0 ≈ 1 the rotating wave approxima-
tion (RWA) is generally made. This approximation assumes ω0 + ωL � ω0 − ωL, however
for lithium in a trap with λL ' 1µm the counter-rotating term Γ/(ω0 + ωL) has a con-
tribution of 19% to the trapping potential, therefore we do not perform the RWA. For
alkali atoms the excited state of the D-lines has an orbital angular momentum of l = 1
which results in a �ne-structure splitting in the D1 and D2 lines. The optical transition
can still be approximated by a two-level (ground state/exited state) model if the detun-
ing of the laser from the atomic resonance, ∆ ≡ ω0 − ωL, is much larger than the �ne
structure splitting, ∆EFS, of the excited state. We take the atomic transition frequency
ω0 at the average of the D1 and D2 lines. For all dipole potentials considered in this thesis
∆ � ∆EFS and we can use the two-level model.

The intensity pro�le of a focused Gaussian beam is described by the cylindrically sym-
metric intensity distribution [88]:

I(ρ, z) = I0
e−2(ρ/w(z))2

1 + (z/zR)2
(2.24)

where w(z) = w0

√
1 + z/zR is the beam waist as a function of z, w0 is the focal waist,

zR = w2
0π/λL is the Rayleigh range, λL is the wavelength of the far o� resonant laser

beam and I0 = 2P/(πw2
0) is the peak intensity for a total laser power P . Substituting Eq.

2.24 into 2.23 we obtain the total trapping potential, with a peak value U0 given by

U0 =
6Pc2

w2
0ω

2
0

(
Γ

ω2
L − ω2

0

)
.

This results in an attractive potential for a red-detuned laser (ωL < ω0) or a repulsive
potential for a blue detuned laser (ωL > ω0).
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Repulsive potentials

For a laser blue detuned with respect to the ns 2S → np 2P transition, it is red detuned
with respect to all ns 2S → (n + i)p 2P (i > 0) transitions. Summing over all these
attractive terms potentially attenuates the repulsive potential originating from the lowest
transition. The total trapping potential Utotal is given by the sum over the contributions
of all possible 2S → 2P transitions up to the ionization threshold [51]:

Utotal =
∑

i

Ui

where ωi and Γi are the angular frequency and decay rate of the ns → (n + i)p optical
transition. Since the linewidths of the higher excited states Γi become increasingly smaller
for larger i, the e�ective detuning becomes much larger. As an example we consider a blue
detuned laser beam with λL = 532 nm. For potassium the i = 1 transition (4s2S1/2 →
5p2P3/2) has a wavelength of λ1 = 404.4 nm and a decay rate of Γ1 = 2π × 0.2 MHz [89],
therefore U1 = 7× 10−3U0. Summing over all transitions results in an attenuation of the
potential by 0.7% for potassium and 0.4% for lithium, therefore we can safely consider it
as a two-level system, also for far-o�-resonance blue-detuned laser beams.

Attractive Potentials

For a red detuned laser ωL < ω0, the optical dipole potential is attractive (U0 < 0) and
can be used as a trap for an ultracold atomic sample, with the shape given by

U(ρ, z) = U0
e−2(ρ/w(z))2

1 + (z/zR)2
(2.25)

The bottom can be well approximated by a harmonic potential with trapping frequencies
in radial (ωr) and axial (ωz) directions of:

ωr =

√
4U0

mw2
0

, ωz =

√
2U0

m

λ

w2
0π

(2.26)

where m is the mass of the trapped atom.

2.4.2 Magnetic potentials

Magnetic trapping of neutral atoms is based on the Zeeman e�ect: an atom in an externally
applied magnetic �eld experiences an energy shift proportional to the magnetic �eld value.
For an extensive discussion of magnetic trapping of neutral atoms see e.g. [60, 55, 90],
here we will brie�y introduce the concepts required to describe the magnetic trap used in
our setup. Atoms in di�erent hyper�ne ground-states experience a di�erent Zeeman e�ect
and therefore a di�erent trapping potential. The internal energy of a ground state (l = 0)
atom in an externally applied magnetic �eld is given by Eq. 2.3. The hyper�ne interaction
couples the nuclear and electronic spin to a total angular momentum f = i + s, therefore,
we take the appropriate |fmf〉 basis.
In the case of s = 1/2 Eq. 2.3 can be diagonalized resulting in an analytic expression for
the hyper�ne energies, called the Breit-Rabi formula [91]
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Ehf (B) = −a
hf

4
+ giµBmfB ±

ahf (i+ 1/2)

2

(
1 +

4mfx

2i+ 1
+ x2

)1/2

(2.27)

where µB = 9.27400915 × 10−24 JT−1 is the Bohr-magneton, x = (gs − gi)µBB/(a
hf (i +

1/2)) and the sign corresponds to the manifolds with f = i ± s. Figure 2.2 shows the
hyper�ne diagrams for 6Li and 40K respectively. For low magnetic �elds the atomic energy
shift is well described by the linear Zeeman e�ect. For typical magnetic �elds achieved in
our magnetic trap this assumption can be made for 40K, however for 6Li at relatively high
temperatures the quadratic Zeeman e�ect cannot be neglected as will be discussed in Sect.
3.4.3. In this section we will consider clouds cold enough (TLi � 0.6 mK, TK � 4 mK)
that the linear Zeeman e�ect yields a good description.
For an atom in the hyper�ne state mf of the f = i + s manifold the energy shift due to
the magnetic �eld is given by:

U(B) = −µ ·B = mfgfµB|B|

where gf is the Landé g-factor of the hyper�ne manifold (see e.g. [55]). The mag-
netic �eld generating our trap is created by a pair of coils mounted in approximately
an anti-Helmholtz con�guration. This results in a three-dimensional quadrupole �eld,
where the �eld-gradient along the symmetry axis of the coil is twice the gradient in
the two orthogonal directions. The absolute value of the magnetic �eld is given by
B(x, y, z) = αB

2

√
x2 + y2 + 4z2, where αB is the magnetic �eld gradient and z is the

symmetry axis of the coils (see Fig. 3.10). This magnetic �eld results in a potential given
by:

U(x, y, z) = mfgfµB
αB

2

√
x2 + y2 + 4z2 (2.28)

which results in a magnetic trap for low-�eld seeking states (mfgf > 0) simultaneously
expelling high-�eld seeking states (mfgf < 0). In the origin of the coordinate system
the magnetic �eld vanishes and di�erent mf states within a f -manifold are degenerate,
therefore, transitions from trapped to untrapped states can occur, resulting in trap loss.
This process is known as Majorana loss and limits the densities which can be achieved in
quadrupole traps5.

Optically plugged magnetic trap

The linear trap o�ers very tight con�nement and is therefore attractive to experiments
with ultracold gases. Evaporative cooling in such a trap can be performed more e�cient
than in e.g. harmonic con�nement. Therefore, it is favorable to use a linear trap which
is stable against Majorana spin �ips, rather than a harmonic con�nement6. Trap losses
due to Majorana spin �ips can be suppressed, without sacri�cing the linear con�nement,
by applying a strong repulsive potential at the trap origin. This method has been �rst
demonstrated in 1995 at MIT allowing to reach Bose-Einstein condensation in sodium
[5]. The method was abandoned mainly because of the complex shape of the combined
trap, making analytic descriptions of the trapped BEC's complicated. In 2005 D. Naik et
al [15] reintroduced the method demonstrating it as an e�cient pre-cooling stage before

5For an experimental demonstration see Sect. 3.6.1 or e.g. Ref. [92].
6For an extensive discussion on evaporative cooling in power-law traps see e.g. [57, 56].
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loading an optical dipole trap. In both references [5, 15] the magnetic �eld gradient had to
be decreased during the evaporative cooling to minimize three-body losses. This requires
low stray �elds to avoid the magnetic �eld zero to move with respect to the plug position
while reducing the �eld gradient. In the presented experiments the gradient is constant
during the evaporative cooling process, and therefore the setup is insensitive to even large
(though constant) stray �elds generated by the environment.

2.4.3 Properties of trapped gases

Fermi Energy

We start by discussing the Fermi energy EF which is de�ned as the energy of the highest
occupied single particle state in a Fermi gas at T = 0 (see Fig. 2.1). This is related to
the Fermi-temperature TF = EF/kB. To obtain the Fermi energy we need to consider
the density of states ρ(ε). The density of states describes the number of classical states
with energy ε per unit phase-space. The density of states for an ideal gas, con�ned in a
trapping potential U(r), is given by

ρ(ε) =
1

(2π~)3

∫
δ

(
ε− p2

2m
− U(r)

)
drdp (2.29)

For a harmonic trap, given by

U(x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.30)

we can obtain the density of states by evaluating the integral in Eq. 2.29. This results in
ρ(ε) = (1/~ω̄)3ε2/2, where ω̄ = (ωxωyωz)

1/3. To obtain the Fermi energy we integrate the
density of states, ρ(ε), up to the Fermi energy EF . By de�nition of EF we know that this
equals the total number of atoms ∫ EF

0

dε ρ(ε) ≡ N (2.31)

For the harmonic con�nement evaluating the integral 2.31 yields

kBTF = ~ω̄(6N)1/3 (2.32)

For the pancake shaped linear trap, described by Eq. 2.28, we obtain the density of states
by evaluating the integral

ρ(ε) =
128

√
2

105π

( √
m

µBαB~

)3

ε7/2 (2.33)

And for the Fermi energy in a linear trap we substitute Eq. 2.33 into Eq. 2.31. and obtain:

kBTF ' 1.5961N2/9
(
µBαB~/

√
m
)2/3

.

depending even weaker on the atom number than for the case of the harmonic trap.
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Density distributions

In the classical limit, i.e. the temperature T is much larger than TF , the statistical nature
of the particles is irrelevant and the probability distribution for an atom with energy ε is
given by the Maxwell-Boltzmann distribution

f(ε) = e−ε/kBT

For a non-interacting ideal gas the energy is given by the one-body Hamiltonian ε =
H(r,p), given by Eq. 2.20. The density distribution is obtained by integrating the Boltz-
mann distribution over all possible momenta

nth(r) =

∫
dpe−H(r,p)/kBT (2.34)

For a harmonic con�nement solving the integral yields a Gaussian density distribution
given by

nth(r) = n0e
−m(ω2

xx2+ω2
yy2+ω2

zz2)/2kBT

n0 = N

(
mω̄2

2πkBT

)3/2

where n0 is the peak density and ω̄ = (ωxωyωz)
1/3.

Degenerate density distributions For the quantum-degenerate gas we take a dif-
ferent approach. We assume the thermal energy kBT is much larger than the quantum
mechanical level spacing ~ω, this allows us to calculate the density distribution nFD(r) of
a trapped fermionic gas by using the semi-classical approximation

nFD(r) =
1

(2π~)3

∫
dp

1

e(H(r,p)−µ)/kBT + 1
(2.35)

where the integrand is the Fermi-Dirac distribution function. To calculate the density
distribution of a Fermi-degenerate cloud at a �nite temperature, T < TF , we evaluate the
integral 2.35. This results in the expression

n(r) = −
(
mkBT

2π~2

)3/2

Li3/2

(
−ζe−U(r)/kBT

)
where Lin(z) ≡

∑∞
k=1 z

k/kn is the polylogarithm function and ζ ≡ exp(µ/kBT ) is the
fugacity.

In typical experiments the density distribution is analyzed by absorption imaging. This
method projects the three-dimensional density distributions onto a two-dimensional op-
tical density distribution (see Sect. 3.5.3). We can calculate this two-dimensional density
pro�le for a harmonic potential (Eq. 2.30) by integrating over the y-dimension. Addition-
ally, we integrate over the z-dimension to obtain the one-dimensional density pro�le and
once more over the x-dimension to obtain the total atom number. We readily obtain
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n2D(x, z) = − 1

~3

m (kBT )2

2πωy

Li2

(
−ζe−m(ω2

xx2+ω2
zz2)/(2kBT )

)
(2.36)

n1D(x) = − 1

~3

√
m

2π

(kBT )5/2

ωyωz

Li5/2(−ζe−m(ω2
xx2)/(2kBT )) (2.37)

N = −
(
kBT

~ω̄

)3

Li3(−ζ) (2.38)

The fugacity ζ can be related to the degeneracy parameter T/TF by combining Eq. 2.38
and 2.32

T

TF

= (−6Li3(−ζ))−1/3 (2.39)

In the case of a time-of-�ight experiment the gas is released from the trap and starts
ballistically expanding. For a harmonic con�nement the single particle Hamiltonian 2.20
is quadratic in momentum and in position space. Therefore, in the semiclassical approxi-
mation the time-of-�ight distribution can be related to the spatial distribution by simply
rescaling the coordinates

ωi →
ωi√

1 + ω2
i t

2

where ωi is ωx, ωy or ωz. A quantum mechanical treatment of this problem yields the
same result [93].
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Chapter 3

Experimental Setup

3.1 Introduction

This chapter describes the experimental setup developed for this thesis. A brief discussion
of the design considerations will be made followed by an extensive description of all
techniques required to achieve the ultracold mixture of 6Li-40K. At the time of the start
of this thesis no experiment regarding mass-imbalanced Fermi-Fermi mixtures existed.
However, next to our experiment two others were started, one by F. Schreck and R.
Grimm in Innsbruck and another one in Munich by K. Dieckmann. Interestingly, all three
experiments took the 6Li-40K system, but di�erent technical approaches were chosen to
achieve the ultracold Fermi-Fermi mixture. In all three experiments collisions between
di�erent species provide the rethermalization of the ultracold mixture required for e�cient
evaporative cooling. The Innsbruck group took an all-optical approach [94], trapping a
large amount of lithium in two hyper�ne states and a small amount of potassium in a
pure hyper�ne state. Rethermalizing collisions occur by intra-species collisions of the two
lithium hyper�ne states where the collision cross-section is enhanced by the broad 6Li
Feshbach resonance [95]. Inter -species collisions between the potassium and any of the
two lithium hyper�ne states yields the rethermalization of the potassium. At the start of
this experiment the s-wave scattering lengths between 6Li-40K were not known and yielded
an uncertainty in the possibility to succeed in cooling the mixture. It was unclear which
approach would be the best: using a large amount of both spin-polarized 6Li and 40K
and only relying on inter-species collisions or sympathetic cooling of a small amount of
spin-polarized 6Li with a large spin mixture of 40K or vice-versa. The Munich group took
a di�erent approach to circumvent this uncertainty, namely by adding a third element,
the bosonic 87Rb, as a coolant. A large amount of 87Rb is evaporatively cooled relying on
intra-species collisions and small amounts of the 6Li and 40K are sympathetically cooled
along relying on inter-species collisions of 6Li-87Rb and 40K-87Rb. The choice of 87Rb as a
third species was obvious since both the scattering lengths of 6Li-87Rb [71] and 40K-87Rb
[96, 97] were known and sympathetic cooling of both fermions to quantum degeneracy by
sympathetic cooling with 87Rb had been achieved [71, 72].

Our approach is somewhat in between the two other approaches. We use only the two
fermionic species, and use a combination of magnetic and optical traps. A big advantage of
magnetic traps is the large trapping volume yielding large atom numbers and in the case
of a linear quadrupole trap also the tight con�nement. The largest quantum-degenerate
atomic gases have been obtained in magnetic traps [98, 99]. The initial design was to
prepare both the 6Li and the 40K atoms in the fully stretched hyper�ne states which
are stable against spin-exchange losses. Rethermalization only occurs due to inter-species
collisions and forced evaporative cooling is performed on both species simultaneously. To
be able to perform this approach two high �ux cold atom sources have been developed,
capable of loading 2 × 109 40K atoms simultaneous with 3 × 109 6Li atoms. During the
coarse of the experiment we discovered in a collaboration with the Innsbruck group [17]
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that the singlet and triplet scattering lengths of 6Li-40K collisions are nearly identical,
as = 52.1(3) a0 and at = 63.5(1) a0, yielding a suppression of the spin exchange losses.
Therefore, we found that sympathetic cooling of a small amount of 6Li in a large bath of
three hyper�ne states of 40K is more e�cient than the initial approach of using a large
amount of both atoms in their doubly polarized states.

Additionally, two design considerations have been made which are emphasized here. First,
we have used an optically plugged magnetic quadrupole trap rather than the commonly
used Io�e-Pritchard type of magnetic traps. This trap was originally used at MIT to
achieve BEC, but was abandoned because of the non-harmonic con�nement in the trap
bottom which complicates analysis of the trapped clouds. However, since most research on
ultracold fermions is performed in optical dipole traps the optically plugged quadrupole
trap is an excellent option for pre-cooling close to quantum degeneracy. The combination
of simple coil design, good optical access, large trapping volume and tight con�nement
provides a fast manner to achieve large ultracold atomic samples.

Second, the design incorporates an optical transport of the ultracold sample to an ap-
pendix of the vacuum system, which will be referred to as the science cell. The choice
of transporting a sample close to degeneracy rather than a relatively hot cloud, as it is
done by using a magnetic transport [100], was made to have no equipment around the
science cell required to cool the sample and only equipment to perform experiments on the
degenerate cloud. This allows a very small science cell with superb optical access to the
sample, for example high-resolution imaging can be performed with standard microscope
objectives as will be discussed in section 3.5.3.

This chapter is ordered as follows. Sect. 3.2 describes the vacuum system, followed by the
description of the laser systems for both species in Sect. 3.3. Subsequently, the various
trapping and pre-cooling methods are discussed in Sect. 3.4 and in Sect. 3.5 the methods
used for manipulating and diagnosing the samples are explained. The chapter concludes in
Sect. 3.6 with the experimental results on the ultracold 6Li-40K mixture and the quantum
degenerate spin mixture of 40K-40K.

3.2 Vacuum

The vacuum system consists of four chambers, a source chamber for a two-dimensional
magneto-optical trap (2D MOT) for each atomic species, a main trapping and cooling
chamber and a science cell as depicted in �gure 3.1 and 3.2.

The potassium 2D MOT chamber is a glass cell (Technical Glass Inc.) as depicted in �gure
3.1, 3.3 and 3.9. It consists of a four way cross of optical quality windows (� = 30 mm)
to provide access for two pairs of 2D MOT beams. Along the long side of the cell there
is on one side a glass to metal seal connecting to a CF40 �ange. This �ange connects
the chamber to the main vacuum system through a di�erential pumping tube of 23 mm
length and 2 mm diameter. A gold mirror with in its center a 2 mm diameter ori�ce
is mounted in front of the di�erential pumping tube, keeping a 1 mm distance between
the mirror and the di�erential pumping tube to facilitate pumping between the surfaces.
This mirror can be used for a 1D optical molasses or for re�ecting a probe beam. On the
other side there is an optical quality window for an axial cooling beam or push beam.
On the side of the cell a 13 mm glass tube is connected by a T-piece to a break-seal
ampule containing enriched potassium-40 and a glass to metal seal connecting through a
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bellows to a CF16 �ange. This �ange is connected to a valve for pumping of the source
chamber. During the coarse of the research performed for this thesis the valve has never
been opened for pumping. The source cell has been baked while mounted on the main
vacuum without the di�erential pumping section. Subsequently, the di�erential pumping
tube was mounted under a protective atmosphere of Argon. Finally, the source cell has
been evacuated through the di�erential pumping tube by the main vacuum pumps. As
a source for 40K we use KCl enriched to an abundance of 6% 40K purchased from Trace
Science International and distilled into a break-seal ampule by Technical Glass Inc. This
break-seal ampule circumvents the use of home-built potassium dispensers [101]1. The
required vapor pressure for e�cient operation of the 2D MOT is achieved by heating the
source chamber. During the baking the temperature of the ampule has been kept below
100 ◦C to avoid the potassium reacting and avoid pressure building up in the ampule
which could potentially break the seal.
The lithium 2D MOT chamber is described in detail in Chapter 4. We will brie�y resume
the design of the vacuum chamber here. It has a con�guration similar to the potassium
2D MOT chamber, consisting of stainless steel rather than glass. Lithium is chemically
reactive with glass, therefore the design is such that there is no direct line of sight from
the oven to any window. The lithium source chamber is connected to the main vacuum
by a di�erential pumping tube of 23 mm length and 2 mm diameter. A gold mirror with a
2 mm diameter ori�ce, identical to the one in the potassium setup, is mounted in front of
the di�erential pumping tube. The source is connected to a four way cross which connects
to a titanium sublimation pump (Leybold V150) and a 40 l/s ion pump (Vacion Plus
40 Starcell). The ion pump is valved o� by an all-metal valve (VAT MAV-150-V). The
titanium sublimation pump is only used once after closing the vacuum. As a source for
lithium we use a combination of 6 g of enriched 6Li (95% purity from Sigma Aldrich) with
2 g of bosonic 7Li from natural abundance lithium for possible future use. The lithium
is shipped as chunks in oil to protect reaction with water vapor in the air, additionally,
the lithium contains a large amount of LiH. To clean out the lithium and obtain an oven
with pure metallic lithium we degassed the lithium oven for about 2 h at a temperature
of 670 ◦C on a separate vacuum system. During this procedure the oven was connected
through a liquid nitrogen cold trap to a turbo pump. About 25% of the lithium was lost
during this process. Subsequently, the oven was mounted under a protective atmosphere of
argon onto the main vacuum chamber. When the oven is operated, no gas load is observed
on the 40 l/s ion pump, indicating that the lithium is properly degassed. Additionally,
during the coarse of the experiment the lithium sticking on the vacuum system acts as
a getter itself. The lithium oven is connected with a nickel gasket (Caburn MDC) to the
source chamber.
The main chamber is built around a spherical octagon (Kimball Physics Inc. MCF800-
SO2000800-A). The lithium source is connected by a gate-valve (Leybold UHV 28699)
and a close-coupler (Kimball Physics Inc. MCF275-CC200-700-A) to port no. 1 of the
CF-40 ports (numbered clockwise from the top as in �gure 3.1). The potassium source is
connected without a gate valve directly to the opposing port (no. 5). On the port next
to the potassium source (no. 6) a four way cross connects a titanium sublimation pump
(Leybold V150) and a 55 l/s ion pump (Vacion Plus 55 Starcell) by a 60 cm long 2 1/2"
tube. The ion pump is valved o� by an all-metal valve (Varian 951-5027). On the top

1At the time of writing this thesis enriched potassium dispensers have become commercially available
from Alvatec.
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Figure 3.1: A schematic top view of the vacuum system. The following parts are shown:
a) potassium 2D MOT source chamber, b) lithium 2D MOT source chamber, c) main
UHV chamber, d) science cell, e) to 55 l/s ion pump, f) to 40 l/s ion pump, g/h) titanium
sublimation pumps (mounted upwards), i) viewing direction of �gure 3.10, j) gate valve

and bottom of the octagon two re-entry �anges provides space for magnetic �eld coils
to be mounted close to the atomic sample. Each re-entry �ange consists of an uncoated
quartz window (� = 113 mm) connected to a CF-150 re-entry �ange with a non-magnetic
glass-to-metal seal (VACOM). The port numbers 2,4,6,7 and 8 have uncoated optical
quality vacuum windows. Port no. 3 connects the science cell. The science cell consists
of a 12.7 × 12.7 × 42 mm square cell of uncoated quartz (Technical Glass Inc.) which is
connected by a glass to metal seal to a CF40 �ange. The end facet of the science cell
extends to 23 cm out of the center of the main vacuum.

The vacuum is baked to a temperature of 180◦ C (limited by the glass-to-metal seals)
for four days. The potassium cell is baked out separately before mounting the di�erential
pumping tube. The vacuum operates at a pressure below the reading of the 55 l/s ion
pump (< 0.1 µA = 5 × 10−10 mbar) and the complete system is leak tested to a level
of 10−10 mbar× l/s. The system is continuously pumped by the two ion pumps. About
twice a year the 55 l/s ion pump has to be regenerated due to saturation, most likely by
argon leaking from the potassium 2D MOT chamber. At these events the ion pump is
baked to a temperature of 350 ◦C for a few hours, followed by running a current of 50 A
for 1 minute through one of the titanium sublimation �laments. The gas load generated
by the ion pump bake and the titanium sublimation pulse is dumped on a turbo pump
connected to the back end of the ion pump. The saturation of the ion-pump within a few
months suggests a pump with a larger pumping speed would elongate the time between
the regeneration events and might elongate the lifetime of the ultracold sample.
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Figure 3.2: Photograph of the vacuum system, the parts indicated with a) to j) are
explained in the caption of Fig. 3.1.
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Figure 3.3: Photographs of the 2D MOT source chambers. The lithium 2D MOT (left) is
described in detail in Chapter 4. Due to the perspective are the dimensions only a rough
indication. The �anges on the lithium source chamber are CF40-�anges (� = 70 mm),
the glass cross on the potassium source chamber has windows with � = 38 mm.



30 Experimental Setup

2
P3/2

2
S1/2

2
P1/2

766.701 nm

770.108 nm

F=9/2 (-571.462 MHz)

F=7/2 (714.328 MHz)

F=9/2 (-69.0 MHz)

F=7/2 (86.3 MHz)

F'=11/2 (-46.4 MHz)

F'=9/2 (-2.3 MHz)

F'=7/2 (31.0 MHz)
F'=5/2 (55.2 MHz)

1285.79 MHz

tr
a

p

re
p

u
m

p
e

r

im
a

g
in

g

o
p

ti
c
a

l 
p

u
m

p
in

g

p
u

s
h

40
K

Figure 3.4: Optical transitions of the D1 and D2-lines of 40K and the transitions used for
trapping, cooling and diagnostics. Numerical values are taken from [102] and [77]. Note
the inverted hyper�ne structure.

3.3 Laser Systems

3.3.1 Potassium

We use the D2-line transitions for trapping and cooling of potassium-40, where we will
refer to the 2S1/2|F = 9/2〉 → 2P3/2|F ′ = 11/2〉 transition as the trap transition and to
the 2S1/2|F = 7/2〉 → 2P3/2|F ′ = 9/2〉 transition as the repump transition (see �gure
3.4). The potassium-40 isotope has a hyper�ne splitting of the 2S1/2 level of 1285.79 MHz
(see Appendix A), therefore it is possible to derive the repump light from the trap light
by making use of an acousto-optical modulator (AOM). Figure 3.5 depicts the potassium
laser setup. One master laser is used as a stable frequency reference and two tapered-
ampli�er (TA) chips as ampli�cation stages, a number of AOMs are used to shift the
laser frequencies. For low frequencies (< 300 MHz) ISOMET AOMs are used, and for the
hyper�ne frequency of 1.3 GHz a Brimrose AOM (GPF-1240-200-.766) is used. Optical
�bers are employed to distribute the light and to provide an accurate reference point
for the beam alignment between certain parts of the experiment. The �bers used are
the Schäfter + Kirchho� PMC-630 models and homebuilt Thorlabs PM630-HP �bers.
Schäfter + Kirchho� �ber couplers (60FC-4-A6,2S-02) are used for in- and out-coupling
of the �ber.

Master Laser and locking A Toptica DLX 110 is employed as a stable frequency
source (see �gure 3.5). The laser is operated at an output power of 350 mW which is
distributed over �ve beams. Two beams are used for injecting the tapered ampli�ers,
one beam is used for low-�eld absorption imaging, one beam as a push beam for the 2D
MOT and one for high-�eld absorption imaging. The laser is locked based on polarization
Zeeman spectroscopy. Here we brie�y describe the con�guration. A linear polarized beam
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is passed through a natural abundance potassium vapor cell heated to ∼ 40◦ C. Ten
percent of the beam is retro-re�ected as a probe beam, detecting a doppler-free saturated
absorption spectrum. A quarter waveplate combined with a cube splits the beam in its
σ+ and σ− components. A homogeneous magnetic �eld of a few Gauss e�ectively shifts
both signals in opposite directions due to the di�erence in Clebsch-Gordan coe�cients for
the mF + q and mF − q transitions, where q = ±1 for σ± polarized light. The intensity of
these beams are measured by two OPT 101 photodiodes. The two signals are electronically
subtracted to create a dispersive signal used for locking. The laser is locked by two separate
feedback loops: one slow integrator stage (∼ 1 Hz) to the piëzo and one fast (∼ 4 kHz)
integrator feedback to the laser current. The former tunes the piëzo over a range of ±15 V
to compensate slow thermal drifts. The latter provides short term stability, additionally it
is limited in amplitude by the frequency span of the locking feature. This combination of
amplitude-limited fast-feedback and large-range slow feedback eliminates the possibility
of 'hopping' to another line due to electrical or acoustical noise spikes, common reasons
for 'breaking lock'. The long term stability of this spectroscopic method was characterized
by spectroscopy on the MOT and found to �uctuate over less than 1 MHz over the coarse
of a few years. The lockpoint chosen is the spectral line of the 39K 2S1/2 F = 1 to the
unresolved 2P3/2 transitions (see Fig. 3.8).

Tapered Ampli�ers We use two Eagleyard (EYP-TPA-0765-01500-3006-CMT03-
0000) Tapered Ampli�er chips as optical ampli�cation stages. The chips are mounted
in a homebuilt housing designed for optimum position stability of the chip, the mount
is described in detail in Ref. [103]. The chip is mounted on a copper cross which tem-
perature is actively stabilized by two Peltier elements (Eureca Messtechnik GmbH TEC
1H-30-30-44/80-BS). The cross itself is mounted by four spring loads and PEEK mount-
ing studs to an aluminium base. The PEEK mounting studs provide electrical isolation
of the diode and the spring loads keep the cross in place but allow it to marginally rotate
around the diode laser center. Thermal expansion of the copper will therefore result in a
rotation of the diode rather than a displacement. The collimation lenses are mounted in a
PEEK holder, machined slightly too big for the aluminium housing such that longitudinal
alignment can be done very accurately. During the operation period of a year we did not
see any decay in the output power of both Tapered Ampli�er chips, nor did the in- or
out-coupling need any realignment.
The trap TA is operated by a Sacher Pilot 2000 temperature and current controller and
is run at a temperature of 25◦ C and a current of 2.0 A. Its typical input (output) powers
are 46(766) mW. The repumper TA is temperature stabilized by a Thorlabs TED 200C
temperature controller at a temperature of 31◦ C and it runs a current of 1.7A, provided by
a homebuilt power supply around a Thorlabs LD3000 module. Its typical input (output)
powers are 8(200) mW.

3.3.2 Lithium

The D-lines of lithium have a wavelength of 671 nm (see �gure 3.6). For a long time
high power narrow band laser light at 671 nm has been an issue for experiments on
ultracold lithium. At the time of the writing of this thesis, various options are commercially
available, these include tapered ampli�ers from Toptica, dye lasers (see e.g. Radiant Dyes
Laser), diode lasers (Mitshubishi ML101J27) and broad area diode lasers from Eagleyard.
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Figure 3.5: Optical setup of the potassium laser system. The Toptica DLX 110 provides
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Figure 3.6: Optical transitions of the D1 and D2-lines of 6Li and the transitions used for
trapping, cooling and diagnostics. Numerical values are taken from [104] and [77]. Note
the unresolved and inverted hyper�ne structure in the 2P3/2 excited state.

When this project was started neither the tapered ampli�ers, nor the high power diode
lasers were available. Therefore we started with a Coherent 699 dye laser pumped with 5W
at 532nm from a Verdi V10, using LD688 laser dye dissolved in Dowanol EPH. However
due to its lack of stability we developed an injection locked dye laser, where an external
low power diode laser was made narrowband by optical feedback from the dye cavity. The
dye cavity itself was a compact bow-tie cavity consisting of four mirrors and the dye jet as
optical elements. The concept of placing the bandwidth narrowing parts out of the cavity
greatly improved the power output and stability of the system. At that time however the
high power diode lasers had become available and to characterize the lithium 2D MOT
behavior we needed independent control of the four frequencies for the 2D and 3D MOT
beams. Therefore the ease of use of diode lasers and remaining instabilities due to the dye
jet made us switch to the diode laser system as it is used now in the experiment. Two
master lasers and four slave lasers provide ample power for the conducted experiments
(see �gure 3.7).

Master Lasers As stable frequency sources we operate two external cavity diode lasers
(ECDL), similar to Ref. [105], operating a 120 mW wavelength selected diode (Mitshubishi
ML101J27). One laser is locked on the D1-line and used for optical pumping, the other
laser is locked on the D2-line and used for imaging beams, the push beam and injection
locking of the slave lasers. The grating-mount and diode are temperature stabilized to T =
70◦ C (Thorlabs TED 200C temperature controller) to tune the free running wavelength
close to 671 nm. By tuning the grating, the laser can be tuned mode-hop free over a
spectral range of 3 GHz. The current of the laser is provided by homebuilt power supplies
based on the design of Libbrecht, et al. [106], providing a current stability on the timescale
of hours of ∼ 10−5 on a current of up to 300 mA. Frequency stabilization of the master
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Figure 3.7: Schematic of the lithium laser setup. For a legend see �gure 3.5. The ECDL
is locked to a saturated absorption spectroscopy and distributed over 5 beams which can
independently be shifted in frequency. Four beams are used for injecting slave lasers. The
push beam is derived from the 3D-repumper. The intensity of the 3D-trap light can be
controlled by the EOM and the intensity of the 3D repumper by an AOM. Additional
mirrors, beam shaping telescopes and shutters are not shown.

laser is performed identical to the method used for the potassium. Saturated absorption
spectroscopy in a heat pipe oven [107] yields a dispersive signal for locking (see Fig. 3.8).
The heat pipe consists of a stainless steel tube of 40cm length, 1.6cm inner diameter and
two CF16 windows on each side mounted under 5◦ to avoid interference e�ects. Three
layers of stainless steel mesh (wire � = 0.112 mm, mesh opening 0.142 mm) over a
distance of 15cm around the center of the heatpipe improve the mobility of the lithium by
capillary action. The central part is heated to a temperature of ∼ 300◦ C adjusted to have
∼ 30% absorption on the D2 resonance, where the Lamb dip of the F=3/2 transition is 7%
of the total signal. Water cooling is applied 5 cm from the windows to prevent overheating
of the optics and distillation of the lithium towards the windows. A bu�er gas pressure of
0.1 mbar of argon2 prevents contamination of the windows by the lithium vapor. A 6 mm
tube close to one of the windows connects to a Swagelok valve and is used for evacuating
and the argon inlet.

Slave Lasers The four slave lasers are operating the same diodes as the master lasers
(Mitshubishi ML101J27). The diodes are mounted in homebuilt housings optimized for
operating at elevated temperatures. A small aluminium block (12 × 12 × 12 mm) which
houses the diode laser, a 10 kΩ thermistor, a thermal switch (AIRPAX - 67F070) and a
collimation lens (Thorlabs C230TM-B), is clamped on a Peltier element (Melcor CP1.0-
127-05L). The small thermal mass yields a fast response time and combined with an
airtight housing the lasers have proven to be very stable and reliable. Injection locking of
the lasers is performed by feeding in ∼ 0.5 mW of frequency shifted light originating from
the master laser. Using this design concept four 120 mW beams of independently tunable
frequencies are fully available for the 2D/3D MOT operation and characterization.

2The actual bu�er gas pressure in the heat-pipe oven is likely to be higher due to the presence of
hydrogen outgassing from the lithium.
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lithium-6 (enriched)potassium (natural abundance)

Figure 3.8: Spectroscopic signals obtained from the di�erence of the two photodiodes
detecting the σ+ and σ− saturated absorption signal. The spectroscopic features are
labeled by the quantum number of the hyper�ne groundstate. For both species the excited
states are unresolved. Positive frequency refers to blue detuning. The current locking range
is limited to ±50 MHz for the potassium and ±25 MHz for the lithium (see text). The
potassium is locked to the 39K F=1 line and the lithium to the crossover feature.

3.4 Trapping and Cooling

This section describes the various techniques used for trapping and cooling of both species.
As sources for lithium and potassium we use two 2D MOTs. The lithium 2D MOT is
described in detail in Chapter 4. In Sect. 3.4.1 the potassium 2DMOT is described followed
by the double 3D MOT in Sect. 3.4.2. In Sect. 3.4.3 the optically plugged magnetic trap
is described. This is the �rst realization of such a trap for lithium. The chapter concludes
in Sect. 3.4.4 with a description of the optical trap and the optical transport.

3.4.1 2D MOTs

Two-dimensional magneto-optical traps have become a widely used method to obtain a
high �ux cold atom source. Although the largest �uxes up to date have been achieved
with designs incorporating Zeeman slowers, alternative sources like the 2D MOT are very
popular due to their compactness, the absence of hot �ux in the main vacuum chamber and
the little engineering required to set them up. The 2D MOT is formed by a combination
of a 2D quadrupole magnetic �eld and two pairs of orthogonal trapping laser beams (see
Fig. 3.9b), detuned to the red of the atomic resonance line. As in a standard 3D MOT
[55], counter-propagating lasers have σ+/σ− polarization, so that the Zeeman shift relative
to the two opposing lasers is opposite. As a result, a cold atom that moves toward one
side of the trap �nds that the Zeeman shift places it closer to resonance with the laser
whose propagation direction points toward the trap center. Thus cold atoms will tend to
be pushed toward a line that coincides with the zero of the quadrupole magnetic �eld.
Since there is no con�nement in the axial direction, atoms are free to leave the trapping
region along this axis, and cooled, trapped atoms stream out of the trapping region along
this line. Furthermore, due to the negative detuning of the trapping lasers, the atoms are
cooled in the radial directions, producing a well collimated beam. We distinguish two types
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parameter value

trap laser detuning −3Γ
repump laser detuning −2Γ

beam waist 15 mm
trap power per beam 120 mW

repump power per beam 40 mW
�eld gradient 20 G/cm

Table 3.1: The optimal parameters for operating the potassium 2D MOT. Note that the
2D MOT is operated in a retro-re�ected con�guration.

of two-dimensional cooling. First, axially-loaded 2D MOTs like, for example, the original
atom funnel [108] to which we will refer as beam brighteners since a beam source is needed
to load this type of 2D MOT. Second, isotropically or radially-loaded 2D MOTs operated
as a beam source, to which we shall refer as 2D MOTs. Isotropically loaded 2D MOTs are
widely used for rubidium [109, 110, 111], cesium [112, 113] and also potassium [114, 115].
Our setup employs two 2D MOTs, for lithium and potassium. The lithium 2D MOT is the
�rst 2D MOT for a light species like lithium, additionally it is the �rst 2D MOT radially
loaded from an e�usive source, therefore the setup and requires an extensive description
to which we refer the reader to Chapter 4. The isotropically loaded potassium 2D MOT
is described below. For both species a separate source chamber is used to have fully
independent control over the vapor pressures and optical setup of the sources. Lithium is
chemically reactive with glass and various groups working with potassium MOTs reported
the potassium adsorbing on the stainless steel vacuum chamber. To avoid these problems
we developed a stainless steel chamber for the lithium and a separate glass vacuum cell
for the potassium.

Potassium 2D MOT Figure 3.9 depicts the setup of the potassium 2D MOT. A break-
seal ampule containing enriched potassium (Technical Glass Inc.) is connected to the
vacuum cell. A glass-encapsulated magnet is placed in the tube of the break-seal, and after
the bake the magnet is hit against the break-seal to open the enriched potassium ampule.
The complete vacuum cell is heated to a temperature of T ' 50◦ C to achieve a vapor
pressure optimal for the 2D MOT operation. Two circularly polarized beams are retro-
re�ected with additional quarter-waveplates to obtain two pairs of counter-propagating
cooling and trapping beams. The magnetic quadrupole �eld required for the trapping is
provided by two sets of Nd2 Fe14B magnets (Eclipse magnets N750-RB) with a measured
magnetization of 8.8(1) × 105 A/m. Each set consists of two 25 × 10 × 3 mm magnet
bars separated by 12 mm to make an e�ective dipole bar of 62 mm total length. The
magnets are displaced from the symmetry axis by 35 mm, resulting in a two-dimensional
quadrupole �eld with a gradient of 20 G/cm along the optical axes. The 2D MOT is
operated at the parameters as shown in table 3.1. For these parameters a 3D MOT
loading rate of 3 × 108 s−1 is obtained, nearly two orders of magnitude more than the
previously reported 40K 2D MOT [115, 116]. During the writing of this thesis a 2D+ MOT
for 40K, employing additional axial cooling, has been realized at the ENS in Paris yielding
a 3D MOT loading rate of up to 2× 109 s−1 [117].
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3.4.2 3D MOTs

Setup

Single species three-dimensional Magneto Optical Traps (3D MOTs) for lithium [118, 119]
and potassium [120, 121, 122] have been extensively described elsewhere. This section
describes the double-species 3D MOT and for which conditions it operates optimally. In
contrast to other groups, the largest atom numbers for the potassium 3D MOT have been
obtained by applying a very low power dark MOT operating close to resonance.
The trapping and cooling beams of the 3D MOT are formed by three orthogonal pairs
of counter-propagating beams (see �gure 3.10). Each beam consists of four colors: trap
and repump light for the lithium, trap light for the potassium and (optional) bright
repump light for the potassium. The six beams are clipped at roughly the 1/e diameter
of � = 18 mm, and are derived from one single beam by making use of polarization
cubes and dichroic waveplates. We use � = 18 mm dichroic quarter waveplates (Casix
custom 670 + 767 nm) for the circularly polarized light of the MOT beams. The lithium
trap (repump) light has a power of P = 10 mW (11 mW) per beam corresponding
to a peak-intensity of I = 1.8Is (2.0Is). The trapping light is red-detuned from the
F = 3/2 → F ′ = 5/2 D2 transition by δt = −6Γ, and the repump light by δr = −4.5Γ
from the F = 1/2 → F ′ = 3/2. The potassium trapping (bright repumper) beams have
P = 10 mW (1.5 mW) per beam corresponding to I = 2.7Is (0.4Is). The trapping light
is red-detuned from the F = 9/2 → F ′ = 11/2 D2 transition by δt = −3Γ, and both the
bright and dark repump beams are detuned by δr = −2Γ from the F = 7/2 → F ′ = 9/2
transition, signi�cantly closer to resonance compared to other 40K 3DMOTs [123, 115]. We
use a separate dark repumper beam for the MOT loading stage to achieve a high atom
number and corresponding density. The dark repumper beams consist of two counter-
propagating beams with both the same dark spot imaged on the MOT position. At the
position of the MOT the dark spot has a diameter of 3 mm and an extinction ratio of
1 : 50 corresponding to the surrounding repump light. Both beams have 1.4 mW per
beam (' 0.4Is). The magnetic quadrupole �eld for the MOT is formed by the magnetic
trap coils and operates at a gradient of 14 G/cm. The double species 3D MOT is loaded
simultaneously from the two 2D MOT sources in a continuous (non-pulsed) manner. The
potassium MOT is typically loaded for 20 s, and the lithium MOT is loaded for the
�rst few seconds of the potassium loading time. Depending on the experiment which is
performed the atom number in the lithium MOT can be well controlled by means of the
oven temperature and loading time. During the loading of the 3D MOTs the three trim
coils apply a �eld of a few Gauss at the trap center to optimize the trapped atom number.
We load simultaneously up to 2× 109 40K atoms with 3× 109 6Li atoms, where the MOT
�eld gradient and beam alignment is optimized for maximum potassium atom number.
The potassium MOT temperature is 190 µK, colder MOTs have been achieved for di�erent
MOT parameters resulting in a smaller number of trapped atoms. The lithium MOT
temperature is 1.6 mK. In an optimized single species lithium MOT we can load up to
1010 6Li atoms (see chapter 4).

Compressed MOT and Optical Pumping

After loading of the double species MOT we apply a short modi�cation of the MOT
parameters to increase the phase-space density of both clouds before loading the mixture
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forms 1 : 1 telescopes with m) to collimate MOT beams and n) to image the ultracold
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into the magnetic trap. During this compressed MOT stage the magnetic �eld gradient is
linearly increased to B′ = 44 G/cm in 25 ms and the position of the �eld zero is shifted
to optimize the transfer to the magnetic trap. During the last 3 ms of the compression
the lithium 3D trap(repump) laser intensity is reduced to 1% (2%) of the original power
and the trap(repump) detuning is decreased to −1.5Γ(−2Γ). This reduces the lithium
temperature to TLi = 0.6 mK, increases the density to n0,Li = 3×1010 cm−3 and increases
the degeneracy parameter by almost a factor 40 to D = n0Λ

3 ' 7 × 10−7, where Λ =√
2π~2/mkBT is the thermal de Broglie wavelength.

After the compression and cooling the mixture is optically pumped towards low �eld
seeking states in the F = 9/2 and F = 3/2 manifolds for the potassium and lithium
respectively. The potassium is optically pumped by a 60 µs �ash of intensity 1.4Isat

resonant with the F = 9/2 → F ′ = 9/2 transition, simultaneously the bright repumper is
switched on to avoid leaking to the F = 7/2 manifold. The transfer e�ciency of total atom
number is ∼ 60% optimized for a spin mixture in the F = 9/2,mF = +5/2, +7/2, and
+9/2 states. Transfer e�ciencies of up to 80% can be achieved, however this results in an
excess of atoms in the fully stretched state which is unfavorable for rethermalization in the
magnetic trap. The lithium is optically pumped by a 150 µs �ash on the D1-line. The pulse
consists of two colors with intensities I = 1.0Isat resonant with the F = 3/2 → F ′ = 3/2
transition and I = 2.4Isat resonant with the F = 1/2 → F ′ = 3/2 transition. These
parameters are optimized to achieve a maximum number of lithium atoms in the fully
stretched state. We obtain a transfer e�ciency of ∼ 80% in magnetically trapped states.
A 3.6 G homogeneous �eld is pulsed on during the optical pumping pulses to provide a
quantization �eld for the hyper�ne states.

Light induced collisions

Figure 3.11a and 3.11b show the �uorescence decay curves of the single species lithium
and potassium dark-spot MOT's respectively. The curves are �tted to a decay model

dN

dt
= −1

τ
N − β

∫
n2dV (3.1)

where τ is the background lifetime of the MOT and β is the loss coe�cient due to
homonuclear light induced collisions. The density distributions n of the lithium and
potassium clouds are obtained by absorption imaging. The lithium has an optimal �t
for τLi = 65 s and βLi,Li = 5 × 10−13 cm3s−1. For the potassium the optimal �t values
yield τK = 166 s and βK,K = 2 × 10−12 cm3s−1, for a bright MOT we obtain a loss co-
e�cient of βK,K = 7× 10−12 cm3s−1. The discrepancy of the background lifetimes of the
lithium and potassium MOTs is most likely due to an imbalance of the lithium MOT
beams since these measurements are performed in a MOT optimized for the potassium.
The low value of βLi,Li is attributed due to the trap depth of the lithium MOT being
larger than the �ne structure splitting of lithium [124]. The large trap depth allows atoms
to stay trapped after having undergone a �ne-structure changing collision from the 2P3/2

to the 2P1/2 excited state, picking up a kinetic energy of E = kB × 0.48 K. Our obtained
value for the 6Li loss parameter agrees the values from Ref. [124] and [119] for 7Li.

Figure 3.11c shows the �uorescence of the single MOTs and of the double MOT. We
observe very low losses in the double MOT due to the interspecies light induced collisions,
this can be attributed to the dark spot of the potassium. To obtain the heteronuclear loss
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Figure 3.11: a) decay curve of a single 6Li MOT and b) decay curve of a single 40K
MOT, the lithium MOT is less lossy due to the small �ne structure splitting [124]. The
black lines are the �uorescence signals of the MOTs and the red lines are �ts to Eq. 3.1.
c) loading curves of the double MOT of 6Li and 40K, the losses for the double MOT are
suppressed due to the dark spot in the repump light (see text).

coe�cient βLi,K we use the following rate equation

dNLi

dt
= LLi −

1

τ
NLi − βLi,Li

∫
n2

LidV − βLi,K

∫
nLinKdV (3.2)

In the case of the steady state, dNLi/dt = 0, we can obtain the heteronuclear loss coe�-
cient from Eq. 3.2. We obtain a value of βLi,K = 4× 10−12 cm3s−1. Similarly we obtain a
value of βK,Li = 5× 10−12 cm3s−1. We attribute these low losses due to the suppression of
light-induced collisions by the potassium dark-spot. Due to the dark spot in the repump
light most of the 40K atoms in the high density region are in the F = 7/2 manifold. Since
the trap light is blue detuned with respect to the 2S1/2|F = 7/2〉 → 2P3/2 levels it will
not couple to any molecular bound states in the K(4p)+Li(2s) excited state potentials
which could lead to photo-association losses. Molecular bound states in the K(4s)+Li(2p)
excited state potentials extend to a maximum of 15.5 a0 [125], much smaller than the in-
terparticle spacing of atoms in a MOT. These properties suppress light induced collisions
resulting in the relatively low values of βK,Li and βLi,K .

3.4.3 Optically Plugged Magnetic Trap

After spin preparation of the laser cooled sample, the mixture is transferred into an opti-
cally plugged quadrupole trap [5, 15]. The quadrupole �eld is formed by a pair of commer-
cially available foil-wound coils (Canatron). The foil has a cross-section of 25× 0.25 mm
with on both sides 50 µm Kapton isolation foil. Each coil has 76 windings yielding a coil
with an inner radius of 17.5 mm and an outer radius of 45 mm. The coil is mounted on
a copper, water cooled plate, where the largest thermal resistance occurs at the 0.2 mm
electrical isolation between the coil and the copper plate. A current of 100 A (correspond-
ing to an axial magnetic �eld gradient of 180 G/cm) results in a temperature rise of 35◦ C
with a time-constant of 2 minutes. During a typical experimental cycle the temperature of
the coils varies by about 8◦ C. The current for the coils is provided by a Delta Elektronica
power supply (model SM 15-200 D/P104). The current switching electronics is homebuilt
inspired by the design of Ref. [126]. Four IGBT's (Semikron SKM100GB123D) in parallel
with 2 × 15 transient voltage suppressors (ST Microelectronics SM15T39A) are capable
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of switching 100 A o� in 100 µs. A high voltage stage can switch the current on from 0
to 100 A in 120 µs. Two industrial relays (Stancor part no. 586-914) can be switched to
reverse the current in one coil and provide the possibility of applying a homogeneous �eld
up to 850 G for a current of 200 A.

At the zero point of the magnetic �eld Majorana spin-�ips can occur which lead to heating
and a limited lifetime of the sample. To prevent this depolarization we apply an `optical
plug' as a repulsive barrier to the atoms approaching the zero in magnetic �eld [5]. As an
optical plug we use 532 nm light, which is far detuned from any 2S → P transition of a
lithium or potassium atom.

The optical plug is generated by a Verdi V10 (532 nm), of which 7 W is focused to a
waist of w0 = 16 µm. This creates a repulsive barrier for the lithium and potassium both
of ∼ 1 mK and a magnetic �eld in the trap bottom of B0 ' 260 mG (490 mG) along
the weak (tight) axis of the quadrupole �eld. The optical plug can be switched by an
Isomet 1205C-2 AOM. The plug position is monitored in real time with a CCD camera
(see �g 3.14). From a Gaussian �t to the image we obtain the center position. We �nd
the jitter during the experiment to be ∼ 0.5 µm along both transverse directions, well
below the beam diameter. We have operated the plug on a daily basis for a month without
having to realign it. The plug beam is combined with the optical dipole trap on a dichroic
beamsplitter (CVI laser BSR-15-1940), where the dipole trap is re�ected and the plug
beam is transmitted. This imposes an astigmatism on the plug beam which displaces
the focal positions along the x and y axes by about 2.2 mm. Majorana losses only occur
around the center of the magnetic trap, over an axial distance much smaller than the
Rayleigh range of the plug beam. Therefore the astigmatism yields a tunability of the
aspect ratio of the plugged volume from rx/ry ≈ 0.3 to 3, where y is the tight axis of the
quadrupole �eld. A slight increase of the aspect ratio to match the magnetic �eld aspect
ratio is found to yield similar results as a circular plug. An aspect ratio in the range of
1 . rx/ry . 2 yields comparable results in the performance of the plug. Figure 3.12 shows
an image of a potassium cloud with in the optically plugged trap after a time of �ight of
1 ms. The plug is kept on during the time of �ight to magnify the hole size.

Four of the six spin states of lithium are trapped in an optically plugged quadrupole trap.
The |3/2,+3/2〉 and |3/2,+1/2〉 states are trapped for all magnetic �elds, and for an
energy kBT . 310 µK the |1/2,−1/2〉 and |3/2,−1/2〉 states are trapped as well, the
former in the trap center and the latter in a hollow pancake around the trap center due
to the low hyper�ne �eld of lithium (see Fig. 2.2). For a typical magnetic �eld gradient of
180 G/cm the |3/2,−1/2〉 forms a pancake with a radius of about 1.5 mm along the tight
quadrupole axis, additionally the pancake trap forms a stable trap without any �eld zeroes
for T . 310 µK. The hyper�ne �eld of the potassium is Bhf,K = 357 G (see appendix
A), the potentials for the various spin states are thus well described by the linear Zeeman
shift.

Magnetic �eld trim coils

Four magnetic �eld coils of 80 windings each allow trimming of the magnetic �eld in
the main chamber. Two coils generate a vertical �eld and two orthogonal coils generate
horizontal �elds (see �gure 3.10), all create a homogeneous �eld up to ∼ 10 G. The coils
are controlled by Delta Elektronica power supplies (model ES030-5) and the current can
be quickly switched between a coil and a dummy load by means of a set of MOSFETs.
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Figure 3.12: The e�ect of the optical plug for a 40K cloud, evaporatively cooled to
T ' 20 µK. a) optical density of an image taken after 1 ms of time-of-�ight where the
plug beam has been kept on to visualize the hole. This simpli�es the alignment of the
plug beam tremendously. b) horizontal cut through the density distribution c) the same
but with the plug o�, the absence of the plug clearly suppresses a high density in the trap
center.

3.4.4 Optical Trapping and Optical Transport

After pre-cooling in the plugged trap we transfer the mixture in a far-o�- resonance dipole
trap (FORT) as described in section 2.4.1. The optical trap is formed by focusing up to
2 W of 1070 nm light (IPG Photonics YLD-5-LP) to a waist of w0 = 19 µm yielding
a maximum trap depth for the potassium (lithium) of 360 µK (160 µK). The position
of the focus is displaced by ∼ 50 µm from the plug position in the horizontal plane.
The harmonic trapping frequencies at maximum laser power are ωr,K = 2π × 4.72 kHz,
ωz,K = 2π×59 Hz and ωr,Li = 2π×8.11 kHz, ωz,Li = 2π×101 Hz. The trap depth can be
controlled by modifying the beam power by means of an AOM (Crystal Technology Inc.
3080-197).

The optical trapping beam is focused down to the w0 = 19 µm waist by an achromatic
lens (f = 100 mm), mounted on a linear air bearing stage (Leuven Air Bearings LAB-
LS). The translation stage is connected to a geared DC motor (Maxon Motor part no.
118751 equipped with a 111:1 gearbox) by means of a rubber belt to minimize vibrations
transmitted from the motor to the stage. A motion controller (Maxon Epos 24/5) in
combination with an encoder (HEDL 5540 part no. 110512) controls the stage movement.
The stage can displace the lens over a distance of 22 cm and after each transport the
absolute position of the stage is re-calibrated on a laser beam focused on a razorblade.
The focus is translated onto the atoms by a 1 : 1 telescope to maintain the numerical
aperture and maintain constant trapping frequencies during the transport. The optical
trap light is combined with the optical plug by means of a dichroic beamsplitter (CVI
laser BSR-15-1940).

Due to the large Rayleigh range of a typical optical dipole trap the requirements on the
longitudinal reproducibility are far less stringent than on the transverse reproducibility.
A simple tachometer on the DC motor and an optical switch consisting of a focused laser
beam and a razorblade are su�cient to achieve the required longitudinal accuracy. After
adiabatic loading of the dipole trap in 250 ms the trap focus is shifted by a sinusoidal
pro�le to its end position in the science cell. The position of the trap focus in the main
chamber is monitored by a CCD camera collecting the light transmitted (� 1%) by the
beamsplitter. The transverse position reproducibility over 20 transports is σ⊥ = 1 µm.



3.5 Manipulation and Diagnostics 43

DC motor,

gearbox

and tacho

homing PD

ODT lens

razorblade

air bearings

granite table

rubber band

optical

breadboard

gear wheel

from AOM to 1:1 telescope

10 cm

calibration laser

Figure 3.13: A schematic drawing of the optical transport stage. The ODT lens focuses
the optical trap beam in free space. A 1 : 1 telescope translates this focus onto the atoms,
while preserving the numerical aperture and the trap shape. A razorblade is mounted on
the stage to have an absolute calibration point after each transport.

The longitudinal reproducibility is measured by placing the CCD camera out of focus and
monitoring the reproducibility of the focal waist on the CCD camera. The longitudinal
reproducibility is σq = 40 µm, much smaller than the typical cloud size (2rz ≈ 1 mm).
Future experiments will incorporate a crossed dipole trap. In that geometry the alignment
of the crossing beam will de�ne the �nal longitudinal position of the ultracold sample and
the reproducibility achieved with this encoding system.
In the original demonstration of the optical transport of ultracold atoms a degenerate
cloud was transported [16]. Here we transport only thermal clouds and we have not
observed signi�cant losses or heating due to the higher temperature and trapping fre-
quencies during the transport. The lowest trapping frequencies in our trap are nearly
an order of magnitude higher compared to Ref. [16] (ωr = 4.72 kHz/ωz = 59 Hz vs
ωr = 440 Hz/ωz = 4 Hz).

3.5 Manipulation and Diagnostics

3.5.1 Computer Control

The experiment is controlled by one main computer, this computer runs Windows XP
as operating system and controls all digital and analog output lines and the cameras. A
second Windows XP computer is used for visualizing CCD camera's to monitor the plug
or optical trap beams, magnetic �eld sensors and to control the optical transport system.
The third computer is running a Fedora Core 6 Linux distribution and is used for real-
time analysis of the measurements. The experimental system is running on a Windows
XP machine because of the vast availability of drivers for any type of hardware and of
the Control system described below. The choice to perform the data analysis on a Linux
machine and to use open-source software has been made because of the high compatibility
and portability for future experiments. Additionally the general properties of the Linux
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Figure 3.14: A schematic drawing of the push and optical transport optics. The optical
trap is focused in free space and translated by a 1:1 atom on the ultracold atoms. The
focusing lens is moved by a linear air bearing stage (see text) to transport the ultracold
sample to the science cell. After each transport the stage is recalibrated on a laser beam
focused onto a razorblade. The plug is focused onto the atoms through a dichroic beam-
splitter combining it with the optical trap light. A small amount of the plug and optical
trap beams which are re�ected and transmitted respectively is imaged on a CCD camera
to monitor the focal positions.

operating systems simplify batch processing and remote processing of data.

Hardware

The hardware used to control the experiment is built around the Control system developed
by Todd Meyrath and Florian Schreck [127]. This system uses a 25-bit bus system to
program various types of devices. At the moment of writing of this thesis the modules
available include: digital outputs, analog outputs, analog inputs, an RF synthesizer and
RF ampli�er. In our setup only digital output and analog output modules have been
implemented. Additionally a module to interface DDS evaluation boards on the bus system
has been developed (see section 3.5.2), the design concept is a simple variant of the digital
output boards. The bus operates with 16-data bits, 8 address bits and 1 strobe bit, running
at a clock speed of 300 kHz. Each analog output is programmed by a 16-bit DA-converter
occupying one of the 256 available addresses. The analog output can be programmed
from -10 to +10V and is capable of driving a current of 250 mA. For the digital output,
one address is occupied by every 16 digital output. The outputs are TTL-compatible and
capable of driving 50Ω loads. For our experiment 80 digital output lines and 40 analog
output lines have been implemented. The controlling PC is connected to the bus system
by means of a 32-bit National Instruments Digital I/O card (NI6533). The system is very
cost-e�ective and has proven to be very reliable.

Additional devices are programmed by the same computer through various protocols,
including RS232 (for the �ber laser and the Feshbach coil power supply), USB (for the
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AD9956 DDS's and an Apogee U13 CCD camera), GPIB (for a Fluke PM3394B oscil-
loscope and a Tulby Thandar Instruments 1906 multimeter) and Firewire (for the Sony
X710 and SX90 CCD cameras).

Software

The software controlling the experiment is based on the Control software as developed in
combination with the hardware described above, a detailed description can be found in
Ref. [127]. The Control software is interfaced by a set of Visual C++ functions in which all
outputs can be accessed. Variables can be de�ned which are accessible by a graphical user
interface and which can be automatically scanned to perform measurements. The code is
executed once to prepare the order of which digital/analog output lines have to be executed
and peripheral devices can be pre-programmed. Subsequently the code is executed for a
second time actually switching the digital/analog outputs and synchronized command
are sent to peripheral devices. The digital/analog output commands are executed with a
timing resolution of 3 µs. The free availability of this system in combination with its ease of
use make it a good choice for ultracold atom experiments. In particular the programming
of waveforms on any channel simultaneously can be done without any e�ort.

Some modi�cations to the software had to be made to adapt it to our setup. The main
modi�cation is that only the Control software is used, and not the data acquisition part
Vision. We have developed image acquisition software capable of interfacing with the
Control software while running on the same computer. The Firewire cameras are interfaced
through a Visual C++ program exploiting the open-source driver 1394Camera [128]. The
Apogee U13 Camera is controlled by a Visual C++ program exploiting the Apogee Alta
driver, and is permanently running in the background. At the beginning of an experimental
sequence the Apogee program is armed and for each Firewire camera an instance of the
Firewire program is started. The exact triggers for all cameras are given by hardware
triggers from a digital output. Images are acquired and saved in a Portable Gray Map
format (PGM) to a local harddrive. All acquired images and experimental parameters are
copied to a network drive from where the data analysis software analyzes the images. This
con�guration allows data acquisition to continue when network delays occur. The program
to control the Maxon motor controller for the optical transport is written in Visual Basic
6.0 and is running on a separate computer. The program initializes the controller and
programs the endpoints and sinusoidal trajectory of the transport. Triggers to start the
transport and the homing sequence are provided by digital outputs of the main computer
connected to the Maxon controller.

All on-line data analysis software is written in GNU C++ running on the Linux computer.
The routines for �tting various 1D and 2D distributions to PGM images are compiled into
a dynamic library. This library is accessed from command line programs to perform man-
ual batch �tting to images, or from the graphical user interface. The graphical interface is
written in Python 2.5.1 and uses the wxPython library for interfacing to the X-Windows
environment and the cTypes library for interfacing the GNU C++ �tting library. The
�tting program displays the absorption image, an optical density image, basic �t informa-
tion like atom number and cloud sizes and an x and y-integrated 1D-pro�le to compare
the �t result to the data. An instance of this program is run for each camera separately.
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3.5.2 Radio-frequency and microwave sources

Due to the hyper�ne structure of the alkali atoms being in the range of MHz-GHz en-
ergy scales, many radio-frequency (RF) and microwave (MW) have to be employed in
experiments to manipulate the atoms. The RF and MW sources can be divided into two
categories: sources used related to optical transitions and sources related to ground state
hyper�ne transitions. The former are used to shift the frequency of light by means of
AOM's or EOM's and require frequency stability on the sub-MHz level (smaller than
the natural linewidth). For this purpose voltage controlled oscillators (VCO's) are being
used. These oscillators are cheap and easy to setup. The hyper�ne states do not expe-
rience spontaneous decay and therefore the linewidth of the transition is determined by
the coupling strength of the RF or microwave. This requires high frequency and power
stability of the sources to drive coherent transitions between the hyper�ne levels. For this
purpose we employ Direct Digital Synthesis (DDS) technology.
Most AOMs in our setup are being controlled by VCO's from the ZOS series by Mini-
Circuits. The only exception to this scheme is the Brimrose AOM (see �gure 3.5), which
shifts the light by the frequency corresponding to the potassium hyper�ne splitting of
about 1.2 GHz. A VCO with sub-MHZ drift would require a long term stability of the
tuning voltage of the order of 1 mV. To avoid drifts we use a DDS as a frequency source
for this AOM.

Analog Devices AD9956 DDS

Three AD9956 DDS's from Analog Devices are used in our setup. The DDS's are mounted
on standard evaluation boards containing the circuitry for a VCO and a loop �lter. These
evaluation boards o�er USB programming and the possibility of phase-locking a VCO
to the DDS. All three boards are mounted with Crystek Microwave VCO's, two have a
CV55BE1000-1500 for frequencies from 0.9 − 1.35 GHz and one has a CV55CL225-425
for frequencies ranging from 200 − 350 MHz. Each evaluation board is equipped with a
loop �lter adapted for the used frequency range, and con�gured in a manner as depicted
in �gure 3.15a. The devices are programmed through USB and to assure time-critical
control over the frequencies, the I/O update and Pro�le Select lines are rewired to digital
output ports of the main control system. Reprogramming of all three DDS boards are
performed through the USB bus, synchronized with the experimental sequence. Triggers
for frequency updating are subsequently given by a digital output line.

Analog Devices AD9858 DDS

During the coarse of the experiment the setup was extended with four additional DDS
sources. We chose for an alternative to the AD9956 to have a more �exible control over
the frequencies as compared to the USB programmed AD9956's. Four Analog Devices
AD9858 DDS evaluation boards are used in our setup. These DDS's are parallel pro-
grammed through the bus system, facilitating the change of DDS frequency to its full
32-bit frequency accuracy every �ve clockcycles (15 µs). An interface to the bus system
has been developed based on the design of the 16-bit digital output card, with the ad-
dition of a demultiplexer stage to allow control over all 18 bits of the evaluation board
with a single 16-bit bus module. One of the DDS boards is equipped with a CV55BE1000-
1500 VCO to access the 1.0-1.3 GHz frequency range. This VCO is phase-locked to the
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Figure 3.15: The two DDS setups. a) the setup of the USB programmed AD9956 set up
in a fractional divider loop, the divider /R divides by 4 for the 1.0-1.3 GHz boards and
is bypassed for the 200-400 MHz board. b) the parallel programmed AD9858 is set up in
a direct upconversion scheme. The dotted box in b) is only present for the 1.0-1.3 GHz
output.

application Manufacturer model P (W)

AOM f<150 MHz MiniCircuits ZHL-3a-S 1
AOM f>150 MHz MiniCircuits ZHL-2-S 1
Brimrose AOM Hughes 700-1400MHz 2W 15
K hyper�ne MiniCircuits/RSE ZHL-2-12/PA 15-23 15
Li hyper�ne MiniCircuits ZHL-20W-13 20
Zeeman levels MiniCircuits TIA-1000-1R8 4

Table 3.2: The RF and microwave ampli�ers used in the setup. The various AOMs are
described in Sect. 3.3.1, the potassium and lithium hyper�ne manipulation in Sect. 3.5.2
and state preparation on the Zeeman levels for potassium and hyper�ne for lithium in
Sect. 3.5.4.

DDS according to �gure 3.15b. All four boards use a 2 GHz clock provided by an Analog
Devices AD9516 clock generator evaluation board.

The clock generator is running with an external 20 MHz clock as a reference. This clock is
provided by a temperature compensated voltage controlled crystal oscillator (TXVCXO)
from IQD Frequency Products (LF PTXO000006), which has a long term stability of
±1 ppm. Both the AD9956 and AD9858 DDS's with the phase locked VCO's have a mea-
sured linewidth smaller than 100 Hz, more than su�cient for the experiments performed
in this thesis.

RF and MW ampli�cation

The amplitude of the RF and MW from the frequency sources is controlled by various
combinations of ampli�ers, voltage controlled attenuators and switches. Table 3.2 lists
the ampli�ers used for the di�erent applications. The power of the RF signals are con-
trolled by MiniCircuits voltage-variable attenuators (ZX73-2500+) and switches (ZASWA-
2-500R+).
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coil frequency range position z (mm) n r (mm) � (mm)

K hyper�ne 1.1-1.3 GHz main 34 1 19 0.54 (RG316)
Li hyper�ne 200-400 MHz main 34 1 10 0.5
Zeeman levels 0-10 MHz main 34 7 10 0.5

Field calibration 1.0-2.0 GHz appendix 15 1 6.5 0.5

Table 3.3: The antennas used to manipulate the hyper�ne states of the potassium and
lithium. The listed properties are the frequency range for operation, the position on the
vacuum system, the distance from the sample z, the number of windings n, the coil radius
r and wire diameter �.

RF and MW antennas

The generated RF and MW frequencies used to manipulate the ground state properties
of the atoms are ampli�ed and subsequently radiated by means of simple antennas. Four
antennas are integrated in the setup (see table 3.3): one at the science cell to perform �eld
calibration of the Feshbach �eld on the potassium hyper�ne splitting (∼ 1 GHz) and three
in the main chamber: one for the potassium hyper�ne splitting (1.0−1.3 GHz), one for the
lithium hyper�ne splitting (200− 400 MHz) and one for the Zeeman splitting at low �eld
(0−10 MHz). The 1.2 GHz coil for the potassium in the main chamber consists of a BNC
cable of which the shielding is stripped and the core makes a loop of 19 mm radius (≈ λ/2
circumference). The coil radiates more than 50% of the power over the frequency range of
1.1 − 1.3 GHz, however, there are strong resonances yielding a non-linear response. The
coil is tuned to resonance with a triple-stub tuner to achieve a �at frequency response over
the range 1.1− 1.3 GHz. The �eld calibration antenna is directly connected to the VCO
output of the AD9956 evaluation board. For the �eld calibration and the Li hyper�ne
antennas three-port circulators (SIAM CT3.002 and McManus Microwave model 253) are
connected to attenuate microwaves re�ected from the antenna and protect the VCO and
ampli�er respectively.

3.5.3 Imaging

Three methods of imaging have been performed for the experiments described in this
thesis, low �eld and high �eld absorption imaging and �uorescence imaging. In all cases
(near)resonant light is scattered by the atomic sample. For absorption imaging light is
scattered from a laser beam hitting the camera and the signal consists of the missing
scattered photons. For �uorescence imaging the light is scattered from a laser beam not
hitting the camera and the signal consists of the scattered photons which are collected by
the camera. Fluorescence imaging is used for the lithium-beam measurements as presented
in Chapter 4 and for MOT-recapture measurements. An atomic sample trapped in a MOT
scatters many photons per atom without changing the number of trapped atoms, therefore
the integration time for collecting �uorescent light can be very long yielding a good
signal to noise ratio. Absorption images are generally taken on ballistically expanding
or ultracold samples. This yields a short interaction time for the imaging pulse with
the sample and few photons can be scattered per atom, thus a smaller signal to noise
ratio is achieved as compared to �uorescence imaging in a MOT. In our experimental
setup �uorescence imaging is only possible in the MOT area, therefore we have used
this to characterize the MOT and magnetic trap. Obtaining absolute atom numbers from
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�uorescence data is involved, the �uorescence signal of a MOT depends for example on the
excited state fraction, ratio's of trap and repumper light and the solid angle of captured
light. Therefore �uorescence imaging was only used to perform relative measurements and
absolute atom numbers have always been obtained by absorption imaging.

Near-resonant imaging light for both species is obtained by means of double-pass AOM's
(see �gure 3.5 and 3.7). Each color is divided over two beams by half waveplates and
polarizing cubes, recombined on bichromatic beamsplitters and coupled into polarization
maintaining �bers (Schäfter + Kirchho� PMC-630-4.5-NA011-3-APC-150-S). With this
setup we have two �bers, one for imaging along the horizontal axis and one for the vertical
axis, containing both colors controllable by the AOM's. The �ber for vertical imaging can
be connected to either of two collimators for vertical imaging in the main chamber or
in the science cell. Imaging along the horizontal axis is performed with linear polarized
light and along the vertical axis with circular polarized (σ+) light in both cases. During
the imaging pulse a light pulse resonant with the repump transition is also applied to
prevent leaking to dark states. These beams are under 45◦ with the imaging path, where
the beams are retro-re�ected to avoid a force being exerted on the atoms by the repump
light.

During the imaging pulse the atoms absorb photons along the propagation axis of the
imaging pulse and re-scatter photons in random directions. The former causes an accel-
eration which shifts the atoms out of resonance and the latter causes a random walk
of the atoms during the imaging pulse which leads to blurring of the image [129, 61].
For a low saturation parameter s0 � 1 the number of photons scattered o� an on res-
onance light pulse is given by: Np = (s0/2)Γ ∆t, with Γ the natural linewidth and ∆t
the duration of the imaging pulse. The longitudinal Doppler shift of an atom due to this
pulse is ωD = vrNpk where vr = ~k/m is the recoil velocity and k the wavevector of
the imaging light. The transverse displacement is given by: rrms =

√
Np/3vr∆t. Typical

parameters in our experiment are a saturation parameter of s0 = 0.1 (0.07) and a pulse
duration of ∆t = 40 (100) µs for the lithium(potassium), this results in a blurring of
rrms = 19 (9) µm and a shift out of resonance by ωD/Γ = 1.8 (0.4). During the imaging
pulses for each species two counter-propagating beams of repump light are applied under
45◦ with the imaging path. This creates an one-dimensional optical molasses for atoms in
the F = 1/2 and F = 7/2 hyper�ne states for lithium and potassium respectively. Due
to the unresolved hyper�ne structure of the 2P3/2 hyper�ne state of lithium the lithium
atoms spend a signi�cant amount of time in the lower hyper�ne state, resulting of a cool-
ing of the atoms due to the counter-propagating repump beams. We have veri�ed that
for the lithium cloud the obtained atom number is insensitive to the imaging pulselength
∆t, indicating that the repumper e�ectively cools the heat imposed by the imaging pulse
and suppresses the shift out of resonance ωD. Concluding, although the lithium imaging
su�ers strongly from the blurring e�ects the atom number can be reliably obtained in
this manner. For analysis of the lithium density-pro�les on the order of the rrms a shorter
pulselength or lower intensity should be used. The experiments presented in this thesis
on lithium clouds do not require spatial analysis on the order of rrms.

Images are analyzed by the conventional method where an absorption image is taken Iabs,
subsequently a reference image Iref of the optical �eld and a background image Ibg are
taken without any imaging pulse. The signal is obtained as: I/I0 = (Iabs−Ibg)/(Iref−Ibg).
For the Sony camera's Ibg was found to be negligible, therefore this image is omitted in
the analysis of the Sony data. For low saturation parameters the column-density of the
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atomic distribution is obtained by evaluating the Lambert-Beer law:

I(x, y)

I0(x, y)
= e−OD,

where OD = σn(x, y) is the optical density, n(x, y) =
∫
dz n(x, y, z) is the column density

along the propagation axis of the imaging beam and σ is the optical scattering cross section
of the imaging pulse with the atoms, given by

σ = κ
3λ2

2π

1

1 + (2δ/Γ)2
,

where κ accounts for the Clebsch-Gordan coe�cients of the possible transitions, κLi = 1/2
and κK = 2/5 for linearly polarized light and κ = 1 for circular polarized light, for the
lithium F = 3/2 → F ′ = 5/2 and potassium F = 9/2 → F ′ = 11/2 transitions. We
have cross-checked the absolute atom number calibration by comparing the atom number
of vertical imaging with horizontal imaging. The e�ective pixel-size of the horizontal
cameras have been calibrated by measuring the free fall of an ultracold potassium cloud
from the optical trap. The resulting vertical position scales according to: y(t) = g/2 t2

where g = 9.8 m/s is the gravitational acceleration. The e�ective pixel sizes of the vertical
camera's have been calibrated on a 1951 USAF Resolution Target. For the Sony SX90
camera with a 1 : 1 telescope on the science cell(main chamber) we �nd an e�ective pixel
size of 3.60 µm(3.67 µm) and for the Apogee with a ×4 objective we obtain 3.94 µm.
The absorption and reference image are taken within 500 ms with the Sony camera's,
limited by readout time. The Apogee U13 camera is used in a fast kinetics mode. This
method exposes only part of the CCD array which is shifted to a masked area before the
next exposure is performed. This method allows fast consecutive image to be taken before
the slow electronic readout is performed. The Apogee U13 camera is capable of shifting
CCD-lines at a rate of 45 µs/line. For a 512-line kinetics image this results in a minimum
of 25 ms between the absorption and reference image. For an optically trapped cloud
after typical time of �ights only 65 pixels are require to to image the complete cloud. This
results in 3 ms between the absorption and reference image.
Four cameras are used to perform imaging of the ultracold sample. Two Sony SX90
Firewire cameras are imaging along the optical trap axis, where �ippable mirror mounts
allow to change between imaging in the main chamber and imaging in the science cell (see
�gure 3.16). Vertical images are taken in the main chamber by a Sony X710 camera and
in the science cell by an Apogee Alta U13 camera.

High resolution imaging

The small dimensions of the science cell allow to image the ultracold sample with a
high numerical aperture, resulting in a high optical resolution without the need of special
optics. To test the high-resolution possibilities we have mounted a Sony SX90 camera with
a standard DIN x4 microscope objective (Edmund Optics NT36-131) directly imaging
the ultracold sample in the science cell without any additional optics. Using the ×4
magni�cation the SX90 camera has an e�ective pixel size of 0.94 µm. Using the USAF
test target we clearly resolve (> 40% contrast) the smallest elements, spaced at 4.4 µm.
Taking this spacing to be the minimum resolved according to the Rayleigh criterion [130]
we can obtain an upper limit for the imaging resolution. This corresponds to an imaging
resolution of ∼ 3 µm (1/e2 radius) of a single point source.
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Figure 3.16: Imaging optics for imaging in a) the main chamber and b) the science cell.
All f = 250mm and f = 200mm lenses are mounted on �ippable mounts. This allows
fast and reproducible switching between the two imaging setups. The vertical imaging in
the science cell is done by directly imaging with a standard ×4 microscope objective. The
position of the vacuum system is shown in light grey.
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3.5.4 Spin state preparation and puri�cation

Control and characterization of spin states is an essential tool to perform experiments
on ultracold gases. In particular systems involving a species with a high nuclear spin like
40K require additional care since many spin states can be magnetically trapped. In this
section a few methods will be discussed to manipulate the spin mixture of an ultracold
potassium cloud.

Stern-Gerlach analysis The composition of spin states is measured by means of a
Stern-Gerlach experiment. During the expansion of the ultracold sample a �eld gradient
of B′ = 110 G/cm is pulsed for the �rst 4 ms followed by a free expansion for 3 ms. The
gradient is applied by pulsing on the quadrupole trap and the vertical shim coil generating
a homogeneous �eld of 28 G. This method yields a gradient of B′ = 110 G/cm with an
absolute value of B = 28 G therefore the linear Zeeman e�ect dominates the separation
of the spin states. Figure 3.19 shows typical Stern-Gerlach measurements. To perform a
Stern-Gerlach experiment the atomic sample has to expand slower than the separation
takes place. Due to the relatively small waist of the optical trap Stern-Gerlach analysis
could only be performed on a cloud which was evaporatively cooled in the optical trap
and had su�ciently low trapping frequencies. The measurements in �gure 3.19 were taken
with a radial trapping frequency of ωr = 2π×560 Hz and at a temperature of T = 450 nK.

State puri�cation: microwave cleaning in the magnetic trap The optical plug
induces an e�ective B0 in the trap along the weak axis of the quadrupole �eld (see section
3.4.3) of 250 mG. Evaporation at the plug (inner) side of the cloud can be performed to
selectively remove undesired spin states. Figure 3.17a and b show the truncation parameter
η = U0/kBT and the density as a function of the frequency f0 to drive the |F = 9/2,mF 〉
state to an untrapped |F = 7/2,mF − 1〉 state. These curves are calculated for a plug
size(height) of 16 µm(670 µK) and a cloud of T = 20 µK. Evaporating from high frequency
down spills spin states with preferably small mF , purely selective spin addressing is only
possible for temperatures of . 1 µK.

State puri�cation: axial spilling After pre-cooling the ultracold sample in the mag-
netic trap it is transferred into the optical trap (see section 3.4.4). This transfer is per-
formed by adiabatically ramping up the optical trap power followed by adiabatically
ramping down the magnetic �eld. For the method considered here we consider the case
that the optical trap is ramped on and the magnetic �eld is still at its full compression.
At this moment the con�nement of the ultracold cloud is radially determined by the opti-
cal trap and axially by the magnetic trap. Applying a homogeneous magnetic �eld shifts
the magnetic trap center away and applies an o�set �eld over the extent of the ultracold
cloud. This o�set �eld enables to drive the |F = 9/2,mF 〉 atoms to a |F = 7/2,mF − 1〉
high �eld seeking state, therefore high �eld seeking states can be selectively evaporated
along the axial dimension of the optical trap. Figure 3.18b shows the axial and radial trap
shapes for a shifting �eld of 10.4 G and a trap depth of U0 = 150 µK. A microwave sweep
for 100 ms over a frequency span of 200 kHz is performed to evaporate the magnetically
trapped states. Figure 3.18a shows the loss spectrum of a T = 20 µK cloud as a function
of the starting microwave frequency. The features are well resolved therefore this method
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Figure 3.17: Microwave cleaning of the potassium spin states in the optically plugged
quadrupole trap. a) The optically plugged quadrupole trap. Due to the plug a minimum
magnetic �eld B0 is experienced by the atoms. b) The calculated η parameter of various
spin states as function of the microwave frequency for T = 20µK. For �nite T the peaks
overlap, for T → 0 the peaks become isolated and selective addressing of the spin states
is possible. c) Normalized density for each spin state. The spacing between the peaks is
determined mainly by the plug parameters and the cloud temperature determines the
wings towards the left (lower frequencies). d) A measurement of the atom number left
after a microwave sweep from 1285.79 MHz down to a �nal frequency f0 for a cloud of
T ' 20µK.
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Figure 3.18: Selective axial spilling in a combined optical and magnetic trap. a) loss
spectrum of a trapped spin mixture of 40K, the various loss features are labeled. b) axial
(radial) trap shape in the upper (lower) panel, the dash-dotted (dotted) line shows the
combined optical and magnetic trapping potential for the |9/2,+9/2〉 (|7/2,+7/2〉) state
and the solid line shows the optical potential. The magnetic trap is shifted radially by
applying a homogeneous magnetic �eld, hardly a�ecting the radial potential but creating
an axially anti-trapping potential for high �eld seeking states.

allows to selectively address each spin state and does not heat the sample, a disadvantage
is that the method is only applicable to low �eld seeking states.

State puri�cation: low �eld microwave + optical puri�cation In an optically
trapped sample with a homogeneous magnetic �eld the F = 9/2 hyper�ne states can
selectively be transferred to the F = 7/2 manifolds by means of an adiabatic microwave
sweep. Subsequently the complete F = 7/2 manifold can be cleaned by an optical light
pulse on the 2S1/2 →2 P3/2 transition. For this experiment the ultracold sample is evap-
oratively cooled in the optical trap by ramping down the laser power to 2% of its initial
value to enable a Stern-Gerlach analysis. Figure 3.19 shows the various stages of the
cleaning process. Figure 3.19a shows the 40K spin mixture in the optical trap after load-
ing from the magnetic trap and evaporative cooling in the optical trap. Figure 3.19b
is after an adiabatic sweep transferring the high mF values on the low mF values fol-
lowed by the optical trap evaporation. The sweep is performed at a magnetic �eld of
B = 9.4 G and the frequency is swept linearly from 3.0 MHz to 2.7 MHz in 10 ms.
For �gure 3.19c the optical trap evaporation is followed by a linear microwave sweep
from fs = 1302 MHz to fs = 1304 MHz in 60 ms during which light resonant with the
2S1/2|F = 7/2〉 → 2P3/2|F ′ = 9/2〉 transition is switched on. This method selectively
removes the mF = −7/2 state, however due to optical pumping it populates the other
mF states. This optical pumping can be circumvented by applying the optical pulse on
the 2S1/2|F = 7/2〉 → 2P3/2|F ′ = 5/2〉 transition since the F ′ = 5/2 excited state can
only decay to the F = 7/2 groundstate.
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Figure 3.19: Puri�cation of a spin mixture of 40K. a) original spin mixture of high mF

states, b) after the adiabatic sweep transferring to the low mF states, c) after the two-
photon removal of the mF = −7/2 state. d) level scheme at a magnetic �eld of B = 9.3G
where this state puri�cation is performed.

State puri�cation: high �eld optical puri�cation For high magnetic �elds the
Zeeman energy is much larger than the hyper�ne energy. For the lithium (potassium)
groundstate the hyper�ne �eld corresponds to Bhf,Li = 27 G (Bhf,K = 357 G), see Fig.
2.2. For magnetic �elds B � Bhf , the nuclear spin decouples from the electronic spin
and a good basis to describe the hyper�ne states is the |mI ,mJ〉 basis, where I is the
nuclear spin and J = L + S is the total electronic angular momentum: the sum of the
orbital angular momentum and the electronic spin. An optical transition can couple a
mJ = +1/2 groundstate to a mJ = +3/2 excited state. This state can only decay back to
its originating mJ = +1/2 state. Therefore such a transition is a cycling transition and
will e�ciently exert a force on only one spin state. For intermediate �elds the nuclear and
electron spin are not completely decoupled, therefore, optical pumping of the potassium to
di�erent groundstates will occur. This method is therefore e�cient to empty one speci�c
spin state, however it will populate others if the magnetic �eld is not su�ciently high.
We have used this method in the Feshbach width measurement (see chapter 6) to remove
possible impurities from the potassium |9/2,+3/2〉 state, which due to a nearby Feshbach
resonance could cause signi�cant losses.

Adiabatic sweep state preparation To manipulate the potassium spin states we
apply a homogeneous magnetic �eld of 9.3 G and sweep an RF frequency from fs =
3.0 MHz downwards in 10 ms to a variable end frequency 2.7 < fe < 3.0 MHz. The end
frequency determines the �nal spin composition of the mixture. Figure 3.19b shows the
spin mixture after a sweep to fe = 2.7 MHz showing a nearly complete transfer of the
spin mixture before the sweep (see �gure 3.19a) to the negative mF values.

Lithium state preparation is performed by applying a �xed microwave frequency and
sweeping the magnetic �eld. This method yields a smoother sweep and results in a higher
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transfer e�ciency as compared to sweeping the frequency for a �xed magnetic �eld value.
Lithium in the state |F = 3/2,mF = +3/2〉 is transferred to the |F = 1/2,mF = +1/2〉
state with ∼ 50% e�ciency.

3.5.5 Feshbach Coils

The �eld of ultracold gases has been tremendously enriched by the ability to tune in-
teractions by means of Feshbach resonances. To be able to control the scattering length
accurately one needs to have a good control over the magnetic �eld applied to the ultra-
cold sample. This requires a high stability, reproducibility, calibration and homogeneity
of the magnetic �eld over the sample size. Since the properties of Feshbach resonances
are very diverse in terms of positions and widths magnetic �eld coils have to be designed
according to the needs for a speci�c system. We have chosen for a design with high �eld
homogeneity and stability.

Mechanical Construction

Figures 3.20 and 3.21 show the design of the Feshbach coils as used in our setup. The
concept of high �eld homogeneity and stability is achieved by having a Helmholtz con-
�guration and many windings running a relatively small current to achieve a high and
uniform current density with a square cross section. Additionally, the coils are wound
anti-symmetrically; i.e., with opposing helicity, around the center. Therefore, the current-
density of the coil system is also anti-symmetric around the origin

~j(~r) = −~j(−~r) (3.3)

The total magnetic �eld in the origin is the sum of the magnetic �eld vectors generated by
each coil. Expanding the total magnetic �eld in the origin in powers of r will only contain
even terms due to Eq. 3.3. Any �eld inhomogeneity occurring from the �nite size of wire
bends or lead wires is cancelled to �rst order due to this con�guration. The coil mount is
chosen to be made from brass for the best compromise of high thermal conductivity and
good mechanical properties3. The brass housing is cut to avoid creating an inductance
loop and the brass volume is impoverished to reduce the volume where eddy-currents can
occur.
Each coil contains of 126 windings wound as a continuous helix to avoid strong �eld
inhomogeneities which would be caused by stepwise going to the next winding. The inho-
mogeneities caused by these types of steps would also be compensated by the second coil
due to Eq. 3.3, however, it is very sensitive to the exact placement of the steps, therefore
this method is much more sensitive to the winding procedure compared to a helix-wound
coil. Additionally, with a helix-wound each layer can be easily �lled up with an integer
number of windings. To o�set the thread at each layer, CNC machined glass-�ber (G10)
spacers are included at the start of each layer. The step needed to lift the wire from
one layer to the next layer is also performed in a gradual manner: the wire is lifted by
its thickness over one complete circumference, this is also aided by including glass-�ber

3An interesting alternative are thermally conductive plastics, like the D5506 Thermally Conductive
Liquid Crystalline Polymer from CoolPolymers. This polymer is electrically insulating and has a thermal
conductivity of 10 Wm−1K−1. We have performed preliminary tests on using this material for a coil
mount, which yield good results.
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Figure 3.20: A schematic of the Feshbach coil (left) depicts the various sets of coils. a)
main coils, b) trim coils, c) sweep coils, d) ultracold sample and e) thermistor location (see
text). The grey indicates the brass, blue indicates the water cooling and red the coils. All
coils create a magnetic �eld along the z-axis. A �nite element calculation of the thermal
distribution in the coil (right) depicts the maximum equilibrium temperature achieved in
the coil while running I = 28.5A to obtain a �eld of B = 500G.
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Figure 3.21: CAD drawing (left) and photograph (right) of the Feshbach coils. The
monolithic brass mount (beige) ensures exact placing of the coil windings at the Helmholtz
distance. The sweep coil is positioned also at the Helmholtz distance by a PEEK holder
(light grey). To avoid eddy current the amount of brass is minimized and the mount is
cut in two and rejoined with a glass-�ber spacer (green).
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spacers. Rectangular 3× 2 mm copper wire (Romal BV) is used to wind the coil, yielding
a high copper �lling fraction. While winding the coil, Stycast 1266 epoxy is applied to
�x the positions of the windings and avoid air-pockets between the windings. Although
epoxies with larger thermal conductivity coe�cients are available the low viscosity of Sty-
cast 1266 ensures a very thin �lm between the windings thus the heat conduction in the
coil assembly is limited by the electrical isolation layer of the wires. During the winding
procedure the wire is kept at a continuous tension of ∼ 20 MPa to assure compression of
the epoxy up to the maximum allowed operation temperature of ∆T ' 30◦ C above room
temperature.

Two smaller coils (sweep coils) are mounted inside the large coils to provide the ability to
do fast magnetic �eld sweeps. Figures 3.20 and 3.21 show the placement of the sweep coils
with respect to the science cell. The mutual inductance between the coils is minimized to
avoid crosstalk between the power supplies of the two pairs of coils. Each sweep coil has
a diameter of 21 mm and consists of 10 windings of Laminax B-series foil (Alphacore).
This copper foil has dimensions of 3.175× 0.254 mm an a 25.4 µm thick Kapton isolation
layer bonded on one side. The coil is wound on a PEEK holder which is mounted in the
main coil mount. Water cooling of the sweep coil is applied from the outside by clamping
a water cooled copper strip around the last layer. During the winding procedure Stycast
1266 epoxy is continuously applied to keep the windings in place and facilitate thermal
conductivity. Just as the main coil set, this set of coils has an anti-symmetric current
density with respect to the origin to cancel out �nite size e�ects of the windings.

Furthermore two simple coils (trim coils) are placed at a spacing larger than the Helmholtz
distance to allow trimming of reminiscent magnetic �eld gradients or curvatures. These
coils have a radius of r = 37 mm and consist each of 15 windings of copper wire (�1 mm)
�xed in place 5 cm from the �eld center by Araldite epoxy. No water cooling is applied to
these coils since only small currents are required for trimming of the �eld. The coils yield
a gradient of 43 mG/mm/A when running currents in opposite direction.

Field homogeneity

We characterized the magnetic �eld pro�le using a XEN-1200 (Xensor Integration) �eld
probe, which has a digital resolution of 3.3 mG up to an absolute �eld value of 100 G.
Figure 3.22a shows the measured axial �eld of the main coils where the environmental �eld
gradient of 6 mG/cm has been subtracted, the red line indicates the design value without
any �t performed. To characterize the remaining inhomogeneities we �t the magnetic
�eld pro�le to a polynomial in the axial position z. An ideal Helmholtz coil would follow
the form B(z) = B0 − B′′′′z4 + O(z6), however to quantify the �eld inhomogeneities
we include the �rst two orders of correction terms proportional to z and z2: B(z) =
B0−B′z−B′′z2−B′′′′z4. The �tted values of the main coil are B′/B0 = 1.5×10−6 mm−1,
B′′/B0 = 6 × 10−6 mm−2 and B′′′′/B0 = 5 × 10−8 mm−4. Figure 3.22b shows the same
characterization for the sweep coil, here the red line indicates the �tted curve with the
�t parameters B′/B0 = 4 × 10−4 mm−1, B′′/B0 = 9 × 10−6 mm−2 and B′′′′/B0 = 4 ×
10−6 mm−4. Clearly the magnetic �eld of the sweep coil is less homogeneous than that
of the main coil due to its smaller size and less windings. However, the sweep coil is only
used for a magnetic �eld of a few Gauss around the o�set �eld generated by the main
coil, therefore the absolute homogeneity is comparable for the two coils.

At the position of the ultracold sample magnetizable objects from the rest of the setup
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Figure 3.22: homegeneity measurements of the main coil (a) and of the sweep coils (b).
The red curve in a) shows the design value, and the red curve in b) shows a �t (see text).
The error bars in b) indicate the probe resolution (negligible in a))

generate a small gradient. The main source of this gradient originates from the remi-
niscent magnetization of the (non-magnetic) optical table, placing it higher above the
table signi�cantly reduces the gradient. Using a current density through both trim coils
of ~jtr = 0.005×~jm, where ~jm is the current density through the main coil, the gradient is
reduced again to ∼ 10−6 mm−1.

Thermal properties

A �nite element calculation has been performed by the UvA mechanical design o�ce [131]
to quantify the thermal and mechanical aspects of the coil design. The e�ective thermal
conductivity of the wires �lled with Stycast and the G10 �llings have been calculated
separately. The radial(axial) thermal conductivity coe�cient is κr = 2.5 Wm−1 K−1 (κz =
3.7 Wm−1K−1 ) for the Stycast �lled windings and κr ' κz = 1 Wm−1K−1 for the �rst
and last winding of each layer �lled with the G10-spacer. The thermal conductivity of
brass is 109 Wm−1K−1 therefore it su�ces to apply water cooling only at one side of
the coil. As can be seen in �gure 3.20b the thick mass of the brass is chosen such that
the coil is e�ectively cooled from three sides. The water cooling has a pressure of 2 bar.
Figure 3.20b shows the calculated temperature for a current of I = 28.5 A, generating a
�eld of B0 = 500 G, at this �eld the maximum and average temperature of the coil are
Tmax = 28◦ C (Tav = 20◦ C). For a �eld of 500 G the average temperature of the coil
is measured by monitoring the change in resistivity of the copper coil wire, it increases
to 23◦ C with an exponential time constant of ∼ 4 min. During a run of the Feshbach
resonance measurements the coil temperature is monitored at its hottest point with a
thermistor (see Fig. 3.20) . The maximum temperature is found to be constant to within
0.1 ◦C for a period of two hours, limited by the temperature drift of the lab cooling water.
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Current source and switching

The use of a brass coil mount with two 126-turn coils raises the question how fast the coil
can be switched. Eddy currents which are induced due to switching the magnetic �eld
and the large number of windings could slow down the rate at which the �eld can be
controlled. We have characterized the switching speed of the coil by using the switching
electronics of the magnetic trap (see section 3.4.3). The current is measured by means of a
Hall probe, and switched o� from a typical Feshbach �eld of 110 G. The current switches
o� with an initial slope of 849 G/ms. Although our coil design was not optimized for
fast switching the coil turns out to be capable of switching at speeds comparable to
reported from other Feshbach resonance experiments [44, 132]. A Danfysik Model 858
power supply is used as a high stability current supply for the Feshbach coils. The supply
is speci�ed to achieve a current stability of ±1ppm (30 min) and ±3ppm (8 hours).
The power supply is programmed through RS232 and regulates the current at a constant
speed of 2 A/s (=35 G/s). To allow fast switching of the magnetic �eld the current can
be switched between the coil and a resistance-matched dummy load by means of two
BUZ344 MOSFETs, protected with transient voltage suppressors to dissipate the voltage
spike induced by the switch o� of the MOSFET. The current is programmed to its set
value at the beginning of an experimental cycle, running through the dummy load and
switched to the coils at the start of the Feshbach experiment. The power supply adjusts
to the change of the load to below the 5 × 10−5 detection level of the �eld probe within
a few hundred milliseconds. Fast �eld sweeps or switching is performed by the sweep
coil, which is operated by a Delta Elektronica ES075-2 power supply optionally equipped
with a homebuilt transistor regulation to achieve linear �eld sweeps of up to 40 G/ms
maintaining a current stability of < 10−4 and a typical corresponding �eld stability of
better than 10−5 during the sweep.

Field calibration

We have calibrated the absolute value of the magnetic �eld by driving transitions between
hyper�ne states of 40K atoms. We prepare a spin mixture of potassium containing the
|F = 9/2,mF = +9/2〉 state in the science and apply a very weak microwave pulse
connecting the |9/2,+9/2〉 and |7/2,+7/2〉 states for a period of 1 second. Subsequently
the �eld is switched o� and the number of atoms with F = 9/2 are detected in zero �eld
on the F = 9/2 → F ′ = 11/2 transition by absorption imaging. The loss signal has a
width of 15 kHz corresponding to �eld noise or a �eld inhomogeneity of 6 mG around an
o�set �eld of 110 G. The �eld is calibrated for a few points between 110 and 120 G and
found to be linear with respect to the power supply set current within the 6 mG accuracy.
In future experiments a crossed dipole trap will be employed resulting in a sample with a
much smaller volume. This will easily rule out if the 6 mG width is caused by �eld noise or
�eld inhomogeneity. The most common source of �eld noise is low-frequency 50 Hz noise,
therefore a higher accuracy can most likely be obtained by triggering the experimental
sequence on the 50 Hz line.
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Figure 3.23: Forced evaporative cooling in the magnetic trap. The �lled (open) squares
are with (without) the plug beam. The plug allows density buildup during the evaporative
cooling process. a) number of atoms, b) temperature as measured by time-of-�ight, c) the
peak density calculated numerically based on the plug and magnetic trap parameters. For
low temperatures this value is sensitive to the exact plug shape, therefore the data points
with the largest density should be considered as an order of magnitude estimate.

3.6 Ultracold Fermionic Mixtures

3.6.1 Quantum degenerate 40K spin mixture

The �rst quantum degenerate Fermi gas in the �eld of ultracold atoms was created in
1999 by the group of D. Jin at JILA [7]. To achieve quantum degeneracy a spin-mixture
of two hyper�ne states |9/2,+9/2〉 and |9/2,+7/2〉 of 40K was cooled by means of forced
evaporation. Interspecies collisions between the mF = +9/2 and mF = +7/2 ensured
rethermalization of the atom sample during the process of evaporative cooling. Since
the achievement of quantum degeneracy many other groups have achieved quantum de-
generacy of 40K, however always by making use of 87Rb as a bosonic species to ensure
rethermalization. In this section I will describe the achievement of quantum degeneracy
of a spin-mixture of 40K atoms, much like the original approach of the JILA group.
We start our sequence by loading ∼ 109 40K atoms in the 3D MOT, subsequently we opti-
cally pump the sample such that a mixture of hyper�ne states is created. The mixture of
spin states is optimized to have a high rethermalization rate in the magnetically trapped
sample, this is performed by optimizing the atomic density after an initial stage of evapo-
rative cooling in the magnetic trap. The transfer yields a total e�ciency of ∼ 50% yielding
a trapped atom number of about 5×108, distributed over the |9/2,+5/2〉, |9/2,+7/2〉 and
|9/2,+9/2〉 hyper�ne states. The optically pumped sample is captured in the magnetic
trap at a gradient of 90 G/cm and compressed to the full gradient of 180 G/cm in 300 ms.
The sample is cooled for 23 seconds by forced evaporation on the microwave transitions
of K |9/2,+9/2〉 → |7/2,+7/2〉, |9/2,+7/2〉 → |7/2,+5/2〉, etc.. Figure 3.23 shows the
process of evaporative cooling with and without the optical plug. The cooling procedure
is clearly improved by the presence of the optical plug, yielding a lower temperature and
a higher phase-space density. For subsequent experiments the evaporative cooling process
is stopped at a temperature of the potassium cloud of T ' 12 µK.
After pre-cooling in the optically plugged magnetic trap we transfer the spin mixture to
the optical dipole trap (see section 3.4.4). The optical dipole trap is linearly ramped on to
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a depth of U0/kB = 140 µK during the last 1 s of evaporative cooling in the magnetic trap.
This method transfers ∼ 106 atoms into the optical trap at a temperature of T ' 9 µK
(T/TF ' 1.8), corresponding to a peak density of n0,K = 6× 1013 cm−3. The optical trap
has a much tighter con�nement than the magnetic trap, however, the temperature after
the transfer into the optical trap is comparable to the temperature of the magnetically
trapped cloud due to the rethermalizing collisions of the optically trapped atoms with the
surrounding magnetically trapped cloud during the last stage of the evaporative cooling.
This dimple-loading [133, 134] yields a strong increase in phase-space density compared
to an adiabatic loading of the dipole trap.

Proof of quantum degeneracy is achieved by evaporative cooling in the optical trap. This
experiment is performed in the main chamber. The optical trap power is exponentially
ramped down in 3 s to a preselected �nal trap depth. The cloud is imaged along the optical
trap axis after a variable time of �ight, which is adjusted to achieve an optical density
of 0.4− 0.6 for each image to reduce systematic errors obtained from �tting. The data is
analyzed by a two-dimensional �t to the density pro�le and by a one-dimensional �t over
an azimuthal average of the cloud distribution. The �t is performed to Eq. 2.36, where
the fugacity, the cloud radius and maximum optical density are the �t parameters. The
degeneracy parameter T/TF is subsequently obtained from the fugacity by Eq. 2.39. Figure
3.24a shows the degeneracy obtained as a function of the �nal trap depth. For various
points the consistency of the method to obtain the quantum degeneracy is veri�ed by
independent imaging along the vertical axis and performing a two-dimensional �t to the
anisotropic cloud. Degeneracy parameters obtained from vertical and horizontal imaging
are consistent within the scatter of the data. The spin mixture is analyzed by means of
a Stern-Gerlach experiment (see section 3.5.4) and found to consist of 43% |9/2,+9/2〉,
36% |9/2,+7/2〉 and 21% |9/2,+9/2〉. Due to the comparable atom numbers in the various
spin states and the weak dependence of the degeneracy parameter on the number of
atoms (T/TF ∼ N1/6) �tting the cloud to a single species Fermi distribution is a good
approximation. This approximation has been veri�ed by performing the �tting procedure
on a numerically generated density pro�le of a spin mixture.

Figure 3.24b shows a large degenerate cloud after evaporating to a trap depth of U0/kB =
5 µK and 6 ms of time of �ight. This measurement originates from a di�erent dataset
than the data in 3.24a. The data of Fig. 3.24b has been taken a few months after the
dataset of Fig. 3.24a, with an optimized procedure resulting in a larger atom number and
deeper degenerate clouds.

Prospects for 40K spin mixtures

Due to the inverted hyper�ne structure of 40K, it exhibits peculiar properties with respect
to spin-exchange collisions. Any mixture of two spin components in adjacent hyper�ne
states (mF,1−mF,2 = 1, wheremF,1 > mF,2) in the F = 9/2 manifold will be stable against
spin-exchange collisions due to the endothermic nature of the spin-exchange channels:
|mF,1〉+ |mF,2〉 → |mF,1 +∆m〉+ |mF,2−∆m〉, for ∆m ≥ 1. Figure 3.25 shows the thermal
activation temperature Tac required to drive the possible spin-exchange transitions for
adjacent hyper�ne states for ∆m = 1, for channels with larger ∆m the thermal activation
temperature is even larger. Ultracold samples with T = 1 µK are collisionally stable
for magnetic �elds of B & 10 G. Additionally, spin mixtures of two hyper�ne states
separated by two angular momenta (mF,1−mF,2 = 2) are also collisionally stable because
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N=5x10
T/TF=0.2

5

Figure 3.24: Quantum degeneracy of a 40K spin mixture. (left) Degeneracy parameter
T/TF as a function of the �nal trap depth after evaporation. Two independent �tting pro-
cedures have been performed (see text). (right) Azimuthal average of the optical density
of a degenerate cloud for an optimized sequence. This cloud consists of three spin states.

|-7/2,-5/2>       |-9/2,-3/2>

|+5/2,+7/2>       |+3/2,+9/2>

m

Figure 3.25: Thermal activation temperature Tac required to drive a spin-exchange pro-
cess for two adjacent states as a function of the magnetic �eld B. The curves correspond
to spin exchange transitions involving exchange of one unit of angular momentum.

Pauli blocking suppresses the spin-exchange channel where both outgoing spin states are
identical (mF,1− 1 = mF,2 +1). A consequence of the above is that spin mixtures of three
adjacent hyper�ne states in the F = 9/2 manifold are also collisionally stable.

An additional feature of 40K is its relatively large nuclear spin, therefore many Feshbach
resonances can occur in these spin mixtures. These properties make 40K a promising and
very rich system to perform studies on three strongly interacting fermions, in contrast to
lithium where only one triple spin mixture and corresponding set of resonances is available
[135]. In exploring experiments we have observed spin mixtures of three adjacent states
to be stable for a period of many seconds (hundreds of collisions). We note that at high
densities or near a Feshbach resonance dipolar relaxation may limit the stability of such
systems.
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3.6.2 Ultracold 6Li-40K mixture

To achieve an ultracold mixture of 6Li and 40K various approaches can be taken. One
approach is to prepare large atom numbers of both species in their fully-stretched states,
namely 6Li |F = 3/2,mF = +3/2〉 and 40K |F = 9/2,mF = +9/2〉. This mixture is the
only combination which is stable against spin-exchange collisions. Due to the fermionic
nature of both species rethermalizing collisions will occur by inter -species collisions only,
therefore evaporative cooling has to be performed on both species simultaneously. Evapo-
rating on one species only will initially cool the sample but will quickly become ine�cient
since the evaporated species will become a minority. As pointed out in section 2.2 the
energy transfer per 6Li-40K collision is suppressed by a factor ξ and the time to rether-
malize will be longer by 1/ξ as compared to collisions with equal mass. The 6Li-40K
collisions in the fully stretched state collide through the triplet channel and therefore
have a s-wave scattering length of a = 64.41 a0 [136], and a collision cross-section of
σK,Li = 1.5 × 10−10 m2. Additionally the temperature of the 6Li MOT is much higher
than that of the 40K MOT, therefore large volumes of 6Li will pose a signi�cant heat load
on the 40K resulting in a heating of the 40K.
We have employed a more e�cient procedure to achieve an ultracold mixture of 6Li and
40K. This is done by adding more hyper�ne states of 40K and load only a small amount
of 6Li. In this approach we use a spin mixture as described in section 3.6.1 with the
F = 9/2,mF = +9/2, mF = +7/2 and mF = +5/2 hyper�ne states and 6Li prepared in
the |F = 3/2,mF = +3/2〉 hyper�ne state. This method has the various advantages over
the fully-stretched approach. First the 40K will mainly rethermalize due to intra-species
collisions of the various hyper�ne states and the 6Li rethermalizes due to inter -species
collisions. For typical magnetic �elds in the magnetic trap 40K scattering will mainly
occur through the triplet channel. Therefore the scattering length between the various
species will be (in the absence of Feshbach resonances) a ' 170 a0 [137], resulting in an
intra-species collision cross section of σK,K = 1.0×10−9 m2, almost an order of magnitude
larger than the inter -species collision cross section σK,Li. Additionally the use of a small
lithium cloud in combination with the low MOT temperature of the potassium avoids
the large heat load as it is present in the fully-stretched method. Rethermalization and
cooling of the 40K will fast and e�cient. Rethermalizing collisions of the 6Li with the 40K
will sympathetically cool the 6Li.

Spin-exchange collisions

In contrast to the method with both lithium and potassium in the fully stretched states
spin-exchange collisions can depolarize the 6Li sample resulting in lithium atoms in un-
trapped states. Table 3.4 lists the possible spin-exchange channels with their respective
decay rate coe�cients K2 obtained from Eq. 2.12. The rate coe�cients are low due to the
relatively small di�erence between the singlet as and triplet at scattering lengths. These
collisions polarize the potassium sample, depolarize the lithium sample towards untrapped
states and heat the ensemble.
Figure 3.26 depicts the cooling process towards an ultracold mixture of 6Li and 40K, the
trajectory was optimized to achieve the maximum phase-space density of the mixture
at T ' 10 µK where the optical dipole trap can be e�ciently loaded. The potassium
density is kept below 2× 1012 cm−3 during the cooling process, yielding a lifetime due to
spin-exchange losses of τse,Li ' 15− 35 s, comparable to the vacuum-limited lifetime. For
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Li+K initial |αβ〉 Li+K �nal |α′β′〉 K2 (cm
3/s)

|3/2,+3/2〉+ |9/2,+7/2〉 |3/2,+1/2〉+ |9/2,+9/2〉 1.4× 10−14

|3/2,+3/2〉+ |9/2,+5/2〉 |3/2,+1/2〉+ |9/2,+7/2〉 2.4× 10−14

|3/2,+1/2〉+ |9/2,+7/2〉 |3/2,−1/2〉+ |9/2,+9/2〉 1.9× 10−14

|3/2,+1/2〉+ |9/2,+5/2〉 |3/2,−1/2〉+ |9/2,+7/2〉 3.3× 10−14

Table 3.4: Spin-exchange rates for various 6Li-40K channels calculated at T = 10 µK
and B = 1 G

higher potassium densities we observe rapid loss of the 6Li sample.
At truncation energies below ∼ 50 µK the number of atoms in the mixture drops to
< 104, too little to perform reliable measurements on the temperature. The mixture is
transferred to the optical trap after evaporating to εt = 64 µK, yielding a mixture of 105

atoms for each species and a temperature of T = 10 µK. During the adiabatic loading of
the optical trap the trap volume for a T = 10 µK cloud shrinks by nearly two orders of
magnitude, corresponding to a strong decrease in the 6Li lifetime due to spin exchange.
After switch-o� of the magnetic trap, the cloud expands axially by about a factor 10,
decreasing the spin-exchange losses again, however this still results in a lifetime too short
to perform experiments. Figure 3.27 shows an optically trapped sample of NLi ' 105 and
NK ' 105, at a temperature of T ' 20 µK,where the potassium consists of various spin
states.
To achieve a heteronuclear mixture stable against spin-exchange collisions, we clean the
potassium spin mixture before transferring it into the optical trap. This cleaning is per-
formed by a microwave sweep at the inner (plug) side of the trap (see section 3.5.4).
This method results in a loss of about 70% of the total number of 40K atoms and is not
purely state selective, however the lifetime of the mixture in the optical trap is increased
to τ ' 15 s. Removing remaining 40K spin impurities by driving an optical transition in
a high magnetic �eld (see Sect. 3.5.4) results in a mixture with the lifetime limited by
background vapor (τ ' 25 s at the time of these experiments).
A strong improvement and simpli�cation to the cooling scheme can be achieved by employ-
ing a higher power optical dipole trap. With a proper choice of parameters the ultracold
sample can be transferred to a less tight, but as deep optical trap yielding not as strong
an increase of the density. Subsequently the spin mixture can be completely puri�ed in
the optical trap before compressing it to the �nal high density sample.
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Figure 3.26: Sympathetic cooling of 6Li by rethermalization with a 40K spin mixture.
The black squares is the potassium and the blue triangles the lithium. The trajectory
is experimentally optimized and shows the density of the potassium levelling around
1012cm−3 minimizing spin exchange collisions of the 6Li-40K sample. As a comparison
the red circles are for the same trajectory with potassium only.
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Figure 3.27: An optically trapped mixture of 6Li in a pure hyper�ne state and 40K in
a mixture of spin states. The color scale indicated the optical density of the sample. The
temperature of the mixture is T ' 20µK ' 2.5TF .



Chapter 4

Lithium 2D MOT

We demonstrate a novel 2D MOT beam source for cold 6Li atoms.
The source is side-loaded from an oven operated at temperatures in
the range 600 . T . 700 K. The performance is analyzed by loading
the atoms into a 3D MOT located 220 mm downstream from the
source. The maximum recapture rate of ∼ 109 s−1 is obtained for
T ≈ 700 K and results in a total of up to 1010 trapped atoms. The
recaptured fraction is estimated to be 30± 10% and limited by beam
divergence. The most-probable velocity in the beam (αz) is varied
from 18 to 70 m/s by increasing the intensity of a push beam. The
source is quite monochromatic with a full-width at half maximum
velocity spread of 11 m/s at αz = 36 m/s, demonstrating that side-
loading completely eliminates beam contamination by hot vapor from
the oven. We identify depletion of the low-velocity tail of the oven �ux
as the limiting loss mechanism. Our approach is suitable for other
atomic species.
This chapter has been published in Ref. [138] Physical Review A 80

(2009) 013409

4.1 Introduction

Since the �rst demonstration of a laser-cooled atomic beam by Phillips and Metcalf [139]
the development and improvement of cold atom sources has evolved into an essential
activity in atomic physics laboratories. In particular sources for cold Rb, K and Cs received
a lot of attention and became compact and familiar standard devices [140]. However, for
most other atomic and all molecular species the situation is less favorable and considerable
time as well as resources remain necessary for the development of a source. Aside from
optical cooling schemes many other cooling principles have been explored, we mention
cryogenic cooling by surfaces [3] or bu�er gas [141], �ltering by magnetic [142, 143] or
electric funnels [144] and Stark deceleration of molecules [145] as well as Rydberg atoms
[146]. In spite of the success of these sources in speci�c cases, optical cooling is the preferred
option whenever an appropriate optical transition is available.
The highest optically cooled atom �uxes to date have been produced from Zeeman-slowed
atomic beams [147, 148, 149, 99]. Zeeman slowers have the additional advantage of a wide
applicability. Unfortunately, their use adds a substantial engineering e�ort to system
design and construction, in particular if beam-brightening and recycling principles are
involved [150, 148]. The magnetic �eld inside the Zeeman slower must be very smooth and
satisfy a particular pro�le in order to optimize the slowing. In addition, as the acceptance
angle is small, the source oven has to be positioned on the beam axis and operated under
high �ux conditions. In typical applications this gives rise to a high background of hot
atoms and results in maintenance because the oven has to be reloaded regularly.
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An important simpli�cation of cold atom sources was realized when Monroe et. al. [151]
demonstrated that in a room-temperature vapor a fraction of the atoms can be optically
captured and cooled into a magneto-optical trap (MOT) and subsequently loaded into
a magnetic trap. The primary drawback of this vapor-cell MOT (VCMOT) is that the
lifetime of the magnetically trapped atoms is limited by collisions with hot atoms from
the vapor, thus limiting the time available for experiment. One approach to overcome this
limitation is pulsed loading, starting from an alkali getter dispenser [152] or by ultraviolet
light induced desorption [153, 154]. All other solutions involve a dual chamber arrangement
in which a source chamber, containing some variation of the VCMOT source, is separated
by a di�erential pumping channel from an ultra-high-vacuum (UHV) chamber in which
the atoms are recaptured in a secondary MOT in preparation for experiments under UHV
conditions .

Three basic types of VCMOT sources are used in the dual MOT con�gurations. In the
�rst type a pulsed VCMOT serves to load the recapture MOT by a sequence of cold atom
bunches, transferred with the aid of a push beam [155]. The second type is known as the
LVIS (low-velocity intense source) [156]. In this case the VCMOT and the push beam
are operated continuously, giving rise to a steady beam of cold atoms in the direction of
the push beam. In the third type the standard three-dimensional (3D) MOT arrangement
in the source chamber is replaced by a two-dimensional (2D) MOT con�guration, with
(2D+-MOT) or without (2D MOT) push and cooling beams along the symmetry axis
[109, 157, 158]. This has the important advantage that the source MOT can be optimized
for capture because, with con�nement in only two directions, the residence time and
collisional losses are intrinsically low.

VCMOT sources work most conveniently for elements like Cs, Rb, and K, having a vapor
pressure of ∼ 10−7 mbar around room temperature [159]. Elements such as Li, Yb, Cr and
the alkaline earths must be loaded from atomic beams since their vapor pressures are only
signi�cant at temperatures far above the maximum baking temperature of a conventional
UHV system [159, 149, 160, 161]. In the case of elements which are chemically reactive
with glass, such as Li, a vapor cell is additionally impractical.

In this paper we present a novel 2D MOT source for cold lithium. It yields a cold �ux
comparable to the maximum achieved with lithium Zeeman slowers [162]. Contrary to
previously realized 2D MOT systems our source is transversely loaded with a beam from
an e�usive oven, rather than longitudinally like in beam brighteners or isotropically like
in vapor cells. This demonstrates the possibility to use 2D MOT sources in applica-
tions where a vapor cell cannot be used and avoids the background of hot atoms in the
beam. An important a priori uncertainty of this arrangement is the risk of depletion of
the low-velocity tail of capturable atoms by the onset of nozzling as occurred in the fa-
mous Zacharias fountain experiment [163, 164]. Our work shows that large cold atomic
�uxes can be realized without this depletion becoming inhibitive. Recently this was also
demonstrated with a Li oven loaded 3D MOT [165]. Another novelty of our source is the
application of the 2D MOT concept to a light atom like lithium. Magneto-optical trapping
of light species requires a high gradient for e�cient capture. As this also compresses the
cold atoms into a cloud of small volume, in particular in the 3D con�guration trap losses
are substantial even for small atom numbers. We demonstrate that in our dual MOT ar-
rangement, the 2D MOT can be optimized for capture with a large gradient and without
considerable losses, whereas the 3D recapture MOT can be optimized with a di�erent
gradient for maximum total atom number.
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In the following sections we describe our experimental apparatus (section 4.2) and our
results (section 4.4). In section 4.3 we present a simple model for the loading of the 2D
MOT. The performance of our system and loss mechanisms are discussed in section 4.5
and in section 4.6 we summarize our �ndings and comment on the suitability of our
approach for other atomic species.

4.2 Experimental

4.2.1 Vacuum system

The experimental setup of the lithium 2D MOT source is sketched in Fig. 4.1. The vacuum
system consists of a stainless steel six-way cross of 40 mm tubing of which two CF40
ports de�ne the horizontal symmetry axis of the source. The other four CF40 ports are
con�gured under 45◦ and sealed with standard vacuum windows providing the optical
access for the retrore�ected 2D MOT beams with a waist (1/e2 radius) w = 9 mm. A
lithium oven is mounted with a CF16 �ange onto the bottom of a water-cooled tube with
inner radius a = 8 mm and connected along the vertical axis into the center of the cross.
The source is connected horizontally onto the main UHV chamber, separated by a gate
valve. Between the main vacuum and the source a 23 mm long di�erential pumping (DP)
channel of 2 mm diameter can maintain a maximum pressure ratio of 10−3 between the
main UHV chamber and the source. There is no direct line of sight from the oven to the
main UHV chamber nor to the windows. When the oven is operated and the 2D MOT
lasers are o�, no lithium was detected in the main UHV chamber. Also no measurable gas
load is observed on the main vacuum while the source is operated.

4.2.2 Lithium oven

The oven consists of a stainless steel lithium reservoir, 25 mm high and 50 mm in diameter,
attached to a CF16 �ange by a 15 mm long tube of 16 mm inner diameter. The oven is
embedded in a simple heat shield of glass wool and aluminium foil and is connected to the
vacuum system using a nickel gasket. The reservoir was loaded with ∼ 6 g of 6Li and ∼ 2
g of 7Li under an inert gas (argon) atmosphere. As commercial lithium contains a large
fraction of LiH it has to be degassed by dissociating the hydride. For this purpose we baked
the oven under vacuum in a separate setup for two hours at a temperature of ∼ 943 K.
Some 25% of the lithium was lost in this process. To protect the employed turbopump
from alkali contamination a liquid nitrogen cold trap was used in this procedure.

Under typical conditions the oven is operated at T = 623(12) K (350 C), well above the
melting point of lithium at 454 K. All data presented in this paper, except those pre-
sented in Fig. 4.8, were obtained at this temperature. The oven temperature is calibrated
by Doppler thermometry of the emerging Li �ux using a probe beam under 50◦ with
the vertical axis (see Fig. 4.1). Temperature stabilization is done with a thermocouple
reference. Starting from room temperature the oven reaches the regulated value of 623 K
in ∼ 15 minutes. The 6Li abundance was measured to be a6 = 0.74(5) using absorption
spectroscopy on the 6Li D1 (2S1/2 →2 P1/2) line and the 7Li D2 (2S1/2 →2 P3/2) line.
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Figure 4.1: (Color online) Schematic drawing of the 2D MOT system. The oven tube is
welded into the center of a six way cross as described in the text. Upper drawing : vertical
cross section through the oven viewing along the beam axis; lower drawing : vertical cross
section through the oven and through the DP-channel viewing the beam from the side.
The Doppler probe is under 50 degrees with the vertical (y) axis and is used to calibrate
the oven temperature. The �ux probe is used to measure the hot �ux emitted by the
oven; a gold-plated mirror is included for this purpose. The plug beam is used to interupt
the atomic beam for time-of-�ight measurements. The two-dimensional quadrupole �eld
required for the 2D MOT is provided by two permanent-magnet bars.
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4.2.3 The 2D MOT con�guration

As sketched in Fig. 4.1 the 2D MOT consists of a 2D quadrupole magnetic �eld in combi-
nation with two orthogonal pairs of retrore�ected laser beams of opposite circular polar-
ization, at a power of up to 50 mW per beam in a waist of 9 mm and red-detuned with
respect to the optical resonance near 671 nm. Like in a standard 3D MOT [140], a cold
atom moving in the crossed laser �eld is optically pumped to a state for which the Zeeman
shift places it closer to resonance with a laser opposing the motion of the atom. Thus the
atoms are trapped and cooled in the radial direction and collect along the symmetry axis
of the 2D quadrupole �eld but are free to move in the axial direction. As a result only
atoms with a su�ciently low axial velocity can be radially trapped; atoms with a residence
time of less then 0.5 ms in the optical trapping region leave the 2D MOT before they are
signi�cantly cooled. Only the radially cooled atoms give rise to a su�ciently collimated
beam to pass through the DP-channel and be recaptured by a 3D MOT in the middle of
the UHV chamber.

For best performance the atoms are accelerated out of the source by a push beam, aligned
along the symmetry axis and with a waist of 1.2 mm passing through the DP-channel.
The detuning and intensity of the push laser determine the velocity of the atoms emerging
from the source. This velocity is chosen below the capture limit of the recapture MOT
but is su�ciently fast to assure that the atoms do not fall below the recapture region as a
result of gravity. For this reason the push beam is essential for horizontal con�gurations
but optional in vertical arrangements. In all arrangements the push beam acceleration
increases the output �ux because it reduces the residence time in the 2D MOT and
therefore background-induced losses. In the literature on the 2D+ MOT [109, 157, 158]
and the LVIS [156] control over the axial velocity is reported by using a pair of counter-
propagating axial cooling beams over the entire trap but this method is not employed
here.

The magnetic quadrupole �eld is provided by two sets of Nd2Fe14B magnets (Eclipse
magnets N750-RB) with a measured magnetization of 8.8(1)×105 A m−1. Each set consists
of two stacks of three 25×10×3 mm magnet bars separated by 12 mm to make an e�ective
dipole bar of 62 mm total length. The optimum position of the centers of the dipole bars
was experimentally found to be x = ±42 mm from the symmetry axis in the horizontal
plane as sketched in Fig. 4.1. For this distance we calculate a �eld gradient of 0.50 T/m,
constant within 2% along the 2D MOT symmetry axis over a total length of 20 mm. The
use of permanent magnets simpli�es the application of the high �eld gradients needed for
light species. It combines a simple construction with convenient alignment and occupies
much less space than the more traditional racetrack coils. The quadrupole �eld falls o�
over short distances along the symmetry axis. At the position of the recapture MOT,
23 cm downstream from the center of the 2D MOT, only a small gradient of 210 µT/m
remains.

4.2.4 Hyper�ne structure of 6Li levels

Laser cooling of 6Li di�ers from the familiar case of 87Rb, in which a spectrally-well-
resolved cycling transition on the D2 line can be strongly driven to cool and trap the
atoms while a weak repumping beam is su�cient to compensate for parasitic leakage to
the dark state manifold. In the case of 6Li the hyper�ne splitting of the 22P3/2 excited
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Figure 4.2: (Color online) Level structure of 6Li. Note that the hyper�ne splitting
of the 2P3/2 levels is smaller than the natural linewidth Γ/2π = 5.9 MHz of the D2(
2S1/2 →2 P3/2

)
transition.

state is of the order of the natural linewidth, Γ/2π = 5.9 MHz and all D2 transitions
from the F = 3/2 manifold, |22S1/2;F = 3/2〉 → |22P3/2;F

′ = 1/2, 3/2, 5/2〉 are excited
simultaneously (see Fig. 4.2) [104]. Hence, there is no closed transition suitable for cool-
ing and trapping and strong optical pumping to the |22S1/2;F = 1/2〉 level cannot be
avoided. As a consequence the `trapping' and `repumping' beams have to be of compa-
rable intensities, which means that both beams contribute to the cooling and mutually
serve for repumping. Also the detunings will have a strong in�uence in this respect [166].
In spite of these di�erences we stick to the conventional terminology, referring to the
transition |2S1/2;F = 3/2〉 → |2P3/2;F

′ = 1/2, 3/2, 5/2〉 as the `trapping' transition and
to |2S1/2;F = 1/2〉 → |2P3/2;F

′ = 1/2, 3/2〉 as the `repumping' transition.

4.2.5 Laser system

A laser system for wavelength λL = 671 nm was developed to serve the 2D (source)
MOT and the 3D (recapture) MOT as well as to provide laser beams for 6Li diagnostics.
The laser system consists of a single master oscillator and four injection-locked slave
lasers, all operating a 120 mW Mitshubishi ML101J27 diode heated to 70 C. The master
oscillator is a home-built external-cavity diode laser (ECDL) [167], frequency stabilized
using saturated absorption spectroscopy in a 6Li heat pipe [107]. The power from the
master laser is distributed over six beams, which can be independently shifted in frequency
using ISOMET 1205-C acousto-optic modulators (AOM's). Of these six beams four are
ampli�ed by injection-locking of the slave lasers and of these four beams one pair is used
for the retrore�ected trapping and repumping beams of the 2D MOT while the other
pair is equally distributed over six beams and similarly employed for the 3D MOT. The
remaining two frequency-shifted ECDL beams serve as pushing beam, as probing beam
or as plug beam in various diagnostic applications.
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4.3 Source model

4.3.1 Oven �ux

To establish the principle of our source and to enable comparison with experiment we
present a semi-empirical kinetic model in which the oven is replaced by an emittance of
area A = πa2 ≈ 2 cm2 at the saturated vapor pressure of lithium. Around T = 623 K the
saturated vapor pressure is given by ps = pa exp(−L0/kBT ) where pa = 1.15(5)× 1010 Pa
and L0/kB = 18474 K is the latent heat of vaporization [159]. As ps is only accurate to
within 5% we neglect the small dependence on the isotopic composition. The total atomic
�ux Φtot emitted by the oven may be estimated by the detailed balance expression for the
total �ux onto and from the emittance under thermal equilibrium conditions,

Φtot =
1

4
nsv̄ A, (4.1)

where ns is the atomic density and v̄ = [8kBT/πm]1/2 the mean thermal speed, with kB

the Boltzmann constant and m the mass of the Li atoms. For T = 623(12) K we have ps =
1.5+1.1

−0.7×10−3 Pa, corresponding to a density ns = 1.8+1.2
−0.8×1017 m−3. With these numbers

the total �ux from the source is found to be Φtot ≈ 1.3 × 1016 s−1 ≈ 1.3 × 10−10 kg s−1.
With 8 gram of Li this corresponds to ∼ 17000 hours running time.
The �ux of 6Li atoms captured by a 2D MOT at a distance of L = 100 mm above the
oven can be written as an integral over the velocity distribution

Φc = a6nsA

∫ Ωc

0

dΩ
cos θ

4π

1

N

∫ vc

0

v3e−(v/α)2dv, (4.2)

where a6 = 0.74(5) is the 6Li abundance, Ωc = Ac/L
2 = 2×10−2 the solid angle of capture

(with Ac the capture surface), dΩ = 2π sin θdθ with θ the emission angle with respect to

the oven axis, vc the capture velocity, α = [2kBT0/m]1/2 = 1.31 × 103 m/s the most-

probable atomic speed in the oven and N =
∫
v2e−(v/α)2dv = π1/2α3/4 the normalization

factor of the speed distribution. Note that by integrating Eq. (4.2) over a hemisphere we
regain Eq. (4.1) in the limit (a6 → 1; vc →∞). Because the solid angle of capture is small
we have cos θ ' 1 and the �ux Φs emitted by the oven within the solid angle of capture
is given by

Φs ' nsv̄ A
Ωc

4π
. (4.3)

For T = 623(12) K we calculate a total �ux density of Φs/Ac = 4+3.2
−1.6 × 1013 s−1cm−2

at L = 100 mm above the oven. Presuming the capture speed to be small, vc � α, the
captured �ux Φc may be approximated by

Φc '
1

2
a6nsv̄ A

(vc

α

)4 Ωc

4π
=

1

2
a6

(vc

α

)4

Φs (4.4)

This expression represents the theoretical maximum �ux that can be extracted from the
2D MOT source.

4.3.2 Capture and cooling

To discuss the capture and cooling behavior in the 2D MOT we distinguish two coaxial
spatial regions, crossing-over at r = rd de�ned by δZ(rd) + δL = 0, i.e. the surface where
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the Zeeman shift in the radial gradient of the quadrupole �eld, ~δZ (r) = µB (∂B/∂r) r,
is compensated by the detuning of the laser, δL = ωL−ω0 < 0, i.e., to the red side of the
cooling transition at angular frequency ω0 in zero �eld.
In the outer region (r > rd), the 2D MOT functions much like a Zeeman slower, while
in the inner region (r < rd) the motion of the atoms can be described by a damped
harmonic oscillator model [140]. First we discuss the outer region. An atom with velocity
v at distance r from the symmetry axis will be at resonance with the cooling laser if the
di�erence of the Zeeman shift and the laser detuning equals the Doppler shift,

δZ − δL = −k · v. (4.5)

Here k = |k| = 2π/λL is the wavevector of the cooling laser. In view of the angle of 135◦

between the directions of the hot lithium beam and the opposing laser cooling beams the
positive Doppler shift is reduced by a factor −cos(k,v) =

√
1/2 with respect to the fully

counter-propagating con�guration. Accordingly, the maximum available slowing distance
is larger, rmax =

√
2w, where w = 9 mm is the waist of the cooling beams. Substituting

rmax in the expression for the Zeeman shift we rewrite Eq. (4.5) in the form of an expression
for the highest atomic speed vmax for which the resonance condition is satis�ed

vmax = λL

√
2

2π

[
µB

~
∂B

∂r
rmax − δL

]
. (4.6)

Note that with the left-circular (ε+) and right-circular (ε−) polarizations of the 2D MOT
beams as indicated in Fig. 4.1 the atoms are σ+ optically pumped into a fully stretched
state with the magnetic �eld being orthogonal to the propagation direction of the hot
�ux. In the simplest 1D model for capture process (in which only the trajectory along the
symmetry axis of the oven is considered) rmax represents the capture radius (rc) and vmax

the capture velocity (vc) of the 2D MOT provided the resonant photon scattering force
(mdv/dt = ~kΓ/2) is large enough to keep the atom in resonance with the cooling laser,
~dδZ/dt = −µB (∂B/∂r) vmax. The resulting condition

vmax ≤
√

1/8 (~k)2

mµB (∂B/∂r)
Γ (4.7)

is satis�ed in our experiment. Combining Eqs. (4.6) and (4.7) we obtain an equation
quadratic in (∂B/∂r), which reduces for δZ � δL to

∂B

∂r
≤ (~k)3/2

2µB (mrmax)
1/2

Γ1/2. (4.8)

This expression shows that the optimal gradient for capture scales like m−1/2, which
is important for comparing the performance of the source for di�erent atomic species.
Substituting the optimal gradient into Eq. (4.7) we obtain

vmax = (amaxrmax)
1/2 , (4.9)

where amax = ~kΓ/2m is the maximum attainable deceleration by the scattering force.
In spite of the insight it o�ers the 1D model is far too simple to justify the use vc = vmax for
reliable estimates of the captured �ux. Therefore, we decided to estimate vc experimentally
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by measuring the loading rate of the 3D MOT as a function of the mean velocity in the
cold beam and Eq. (4.6) is only used for scaling between the conditions of the 3D MOT
and the 2D MOT. This procedure is discussed in section 4.5.

In the inner region (r < rd) of the trap the atomic motion is described by an overdamped
harmonic oscillator model with a spring constant κ and damping coe�cient β [140]. The
atoms approach the axis with the cooling time constant τ ' β/κ. For our 2D MOT
parameters τ ≈ 0.5 ms. Atoms entering the 2D MOT with velocity v < vc only contribute
to the cold lithium beam if τ is less than the residence time τres in the trapping beams
(τ < τres). In the absence of collisions with background gas τres is determined by the
velocity component |vz| . vca/L of the trapable lithium atoms along the symmetry axis
of the 2D MOT and the entry point in the optical �eld. If even the atoms with the shortest
residence time can still be cooled, i.e. for

|vc| .
w

a

L

τ + τZ
' L

τ
(4.10)

essentially all captured atoms contribute to the cold beam. For L = 100 mm we calculate
with τ = 1 ms that this condition is satis�ed for vc . 100 m/s, including the experimental
value vc ≈ 85 m/s (see section 4.5).

4.4 Experimental results

4.4.1 Oven �ux

To evaluate the merits of the 2D MOT it is essential to have a reliable estimate of the in-
put �ux from the lithium oven. For this purpose the oven �ux was measured at T = 623 K
by observing - in the absence of the Nd2Fe14B magnets - the Doppler pro�le of the hot
lithium beam using a horizontal probe beam with a waist of 1 mm running parallel to
the 2D MOT axis and back-re�ected by a gold-plated mirror (spring-mounted at the en-
trance of the DP-channel) as indicated in Fig. 4.1. To avoid optical pumping to dark states
the probe intensity was kept at the low value of ∼ 0.018 Isat. With a thermal velocity of
v̄th = 1500 m/s the interaction time is 1.3 µs and the scattering rate is estimated to be 0.4
photons per atom. The e�ect of small �uctuations in the intensity of the probe laser was
suppressed by measuring the intensity of the probe beam relative to that of a reference
beam originating from the same laser diode. Both the probe beam and the reference beam
were measured with Texas Instruments OPT101 photodiodes. The observed Doppler pro-
�le is shown in Fig. 4.3. The solid line represents a �t of the calculated Doppler pro�le for
the oven temperature T = 623 K and presuming the measured 6Li-abundance. The solid
line is the sum of six overlapping Doppler broadened lines (dotted lines). The unusual line-
shapes re�ect the clipping pro�le of the oven tube. The two large peaks at 0 and 228 MHz
correspond to the trapping and repumping transitions in 6Li, respectively. Analogously
the other four peaks at 199, 291, 1002 and 1094 MHz are for the F = 2 → F ′ = 1, 2 and
F = 1 → F ′ = 1, 2 transitions of the D1 line of 7Li [104]. The best �t is obtained for
Φs = 8(3) × 1013 s−1, where the error re�ects our estimate of systematic uncertainties.
This result overlaps with the value Φs = 8+6.4

−3.2 × 1013 s−1 calculated with Eq. (4.3) of the
semi-empirical model starting from the oven temperature.
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Figure 4.3: (Color online) The transverse Doppler pro�le of the hot lithium �ux emerging
from the oven as measured with the horizontal probe beam indicated in Fig. 4.1. The
calculated pro�le (solid line) is the sum of six overlapping Doppler broadened transitions
(dotted lines), two of which have a maximum outside the frequency range shown (see
text). Only the amplitude has been �tted presuming the measured oven temperature
T = 623 K and 6Li-abundance of 74%.
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Figure 4.4: (Color online) a.) Typical �uorescence decay curve as a function of the
probe delay time. The solid line is a �tted error function. Each datapoint represents the
average over 200 cycles taken over a period of 6.7 s. b.) Derivative of the same data. The
dashed line represents the true TOF-distribution (normalized to the same peak height)
as calculated with the model presented in the text. The inset shows a TOF distribution
as measured with a pulsed push beam.
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4.4.2 Fluorescence detection - TOF distribution

We probe the intensity of the cold 6Li beam in the middle of the main vacuum chamber
by measuring the �uorescence after �ashing a sheet of resonant laser light (knife-edge
de�ned: d = 1 mm thick and h = 5 mm high) propagating horizontally through the
middle of the UHV chamber orthogonal to the beam axis at position z = La = 220 mm
downstream from the entry point of the DP-channel. The �uorescence �ash is imaged
vertically as a stripe onto a CCD camera. The length of the stripe provides information
about the divergence of the beam. To remove stray-light �uctuations the integrated signal
from the pixel area containing the stripe image is divided by the background signal from
a reference area. For the probe beam we use 0.5 ms �ashes of 0.3 W cm−2 in a ratio of
1 : 1.5 trap/repump light at zero detuning. The beam is retrore�ected to prevent the
atoms from being pushed out of resonance.
Velocity characterization of the cold 6Li beam is done with a time-of-�ight (TOF) method.
For this purpose the beam is periodically interrupted at typically 30 Hz repetition rate
with a resonant 0.6 W cm−2 `plug' laser (2 : 1 trap/repump light) de�ecting the atoms
near the entrance of the DP-channel. From the decay of the �uorescence signal φfl as a
function time (see Fig. 4.4) we obtain the apparent TOF-distribution, which is propor-
tional to dφfl/dτ and can be transformed into the axial velocity distribution using the
�ight distance of 220 mm. In a typical measurement we average over 200 cycles to reach
a proper signal/noise ratio also for small �uxes traversing the light sheet at high velocity.
The procedure is illustrated in Fig. 4.4 for a push-beam intensity of Ip = 37 mW cm−2

and a detuning δp = −3.5 Γ. Note that the derivative of φfl can be nicely described by the
gaussian function

dφfl/dτ = (π1/2∆τ)−1 exp[−(τ − τ0)
2/∆τ 2], (4.11)

where τ0 = 5.83 ms is the mean apparent arrival time and 1.67 ∆τ = 1.9 ms is the
full width at half maximum (FWHM). The absence of arrival times shorter than 3 ms
re�ects the absence of atoms with velocities vz & 70 m/s. This absence of `hot' �ux was
veri�ed up to 4 km/s and was anticipated because the cold beam is pushed horizontally
out of the 2D MOT, i.e. orthogonally to the hot �ux from the oven. The observed relative
spread ∆τ/τ0 ≈ 0.2 is insensitive to the push-beam intensity and comparable to the
instrumental resolution for the shortest �ight times investigated (τ0 = 3 ms). The value
of τ0 is entirely determined by the properties of the push beam and insensitive to other
2D MOT parameters. This behavior was previously also observed in other 2D MOT
systems [158, 157]. Since optical pumping to di�erent hyper�ne states takes only a few
optical cycles in 6Li and La/τ0 = 38 m/s corresponds to ∼ 380 photon recoils, the atoms
must have been accelerated to their �nal velocity still within reach of the repump light,
i.e. inside 2D MOT (the push beam does not contain repumper light). This limits the
acceleration to a well-de�ned duration of time, which is consistent with the observed
relatively narrow velocity distribution. The absence of slow atoms is not caused by gravity
because for the lowest velocities measured (La/τ0 = 22 m/s) the gravitational drop is only
0.5 mm, less than half the height (h/2 = 2.5 mm) of the light sheet.
To relate the �uorescence signal φfl to the velocity distribution in the atomic beam we
have to account for the detection e�ciency, which is inversely proportional to the velocity
of the atoms and depends on the divergence of the beam. For this purpose we approximate
the beam spot at the position of the light sheet (z = La) by a gaussian pro�le with 1/e-
radius R. The fraction χfl of the beam giving rise to �uorescence is obtained by integrating



78 Lithium 2D MOT

0 50 100 150 200
0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

r

m
os

t-p
ro

ba
bl

e 
ve

lo
ci

ty
 (m

/s
)

push beam intensity (mW/cm2)

z

p = 3.5 T
oven

= 623 K

 

 re
ca

pt
ur

ed
 fl

ux
 (1

08 s-1
)

 

Figure 4.5: (Color online) Recapture rate into the 3D MOT (solid squares - left scale)
and the most probable axial velocity (αz) of the cold atomic beam (open circles - right
scale) both as a function of the push beam intensity. The drawn lines provide a guide to
the eye.

the normalized gaussian beam pro�le in horizontal and vertical direction over the surface
area of the light sheet,

χfl = erf(h/2R) erf(S0/R), (4.12)

where S0 = 4.5 mm is the radius of the optical �eld of view. Here we neglected some
clipping by the DP-channel. Note that the divergence angle ζ of the cold beam equals the
ratio of transverse to axial velocity of the atoms, ζ = R/La = vt/vz. The length of the
�uorescence stripe was found to vary only slightly with the intensity of the push beam.
This sets a lower bound on the beam divergence, S0/R . 1 for vz = 70 m/s and on the
characteristic transverse velocity, vt & 1.4 m/s. Since h/2R� S0/R . 1 for all velocities
studied Eq. (4.12) can be written in the form

χfl(vz/vt) ' γvz/vt erf (ηvz/vt) , (4.13)

where η = S0/La = 0.02 is the view angle and γ = h/2La = 0.011 the vertical acceptance
angle.
The �uorescence decay signal φfl can be expressed in the form

φfl(τ) ∼
∫ La/τ

0

χfl(vz/vt)

vz

φ0 (vz, αz) dvz, (4.14)

where φ0 (vz, αz) is the normalized axial velocity distribution with αz representing the
most-probable velocity in the beam, and La/τ the velocity of the fastest atoms still arriving
at the detector after delay time τ . Hence, the transformation between the beam property
φ0 (vz, αz) and the observed �uorescence decay is given by

φTOF (τ) = φ0 (La/τ) ∝ − (τ/χfl) dφfl/dτ. (4.15)

Here φTOF (τ) represents the distribution of �ight times in the beam. For ∆τ/τ � 1
the prefactor (τ/χfl) causes the distribution dφfl/dτ to shift to larger delay times but its
shape remains well-described by a gaussian. In our case the shift is 5% (τmax ' 1.05 τ0)
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as indicated by the dotted line in Fig. 4.4. Hence, the most-probable velocity in the beam
is given by αz ' 0.95La/τ0. For the example of Fig. 4.4 we calculate αz = 36 m/s with a
FWHM of 11 m/s. We have observed a ten-fold increase in φTOF (τ) at constant average
�ux by pulsing the push beam (see inset in Fig. 4.4). This indicates that the 2D MOT is not
limited by its density when the push beam is continuously on. The most-probable velocity
αz was found to be the same for pulsed and continuous operation. The experimental results
for αz as a function of the push beam intensity are shown as the open circles in Fig. 4.5.
Varying the push-beam intensity Ip over the range 5 − 180 mW cm−2 we found αz to
increase from 18− 70 m/s.

4.4.3 Beam �ux - dependence on push beam

The �ux of the cold atomic beam is investigated as a function of the push-beam intensity
(Ip) by recapture into the 3D MOT. The results are shown as the solid squares in Fig. 4.5.
First of all we note that in the absence of the push beam the �ux arriving at the recapture
MOT is very small. Under these conditions the 2D MOT performance is very sensitive to
the alignment of the quadrupole �eld, the MOT beams and the repumper. This low �ux is
attributed to the horizontal orientation of the beam axis, orthogonal to the direction of the
hot �ux from the oven. In view of this symmetry the trapped atoms have an axial velocity
distribution centered around zero. Only the atoms with axial velocity vz & 5 m/s will
reach the capture volume of the 3D MOT. Slower atoms drop below the trapping region
as a result of gravity. High-�eld-seeking atoms will be de�ected away from the recapture
MOT by the quadrupole �eld outside the 2D MOT for axial velocities vz . 10 m/s. Atoms
with axial velocity vz & 0.1 vc ≈ 8.5 m/s are absent due to clipping by the oven tube (vc

is the capture velocity of the 2D MOT).

As an aside we point out that by inclining the axis of the oven tube toward the beam
axis direction it should be possible to realize a high �ux cold beam with an axial velocity
proportional to the inclination angle and without any (near)resonant light co-propagating
with the atomic beam into the UHV chamber. In a more practical solution this may be
realized by not retrore�ecting the 2D MOT beams but tilting them so that the average
k-vector points along the cold beam axis.

Measuring the loading rate Φr in the 3D MOT we obtain the `useful' �ux of the cold
6Li beam. The rate is obtained from the leading slope of the loading curve, observing
the 3D MOT �uorescence as a function of time using a CCD camera. This �uorescence is
calibrated against an absorption image taken immediately after switching-o� the 3DMOT.
The measured rate Φr represents a lower limit for the �ux emerging from the 2D MOT.
Fig. 4.5 shows that Φr increases steeply until it reaches a maximum at Ip ≈ 34 mWcm−2.
Further increase of the push-beam intensity causes the loading rate to decrease. This is
attributed to the �nite capture velocity of the 3D MOT (see section 4.5). For the data
shown in Fig. 4.5 we used for the 3D MOT a magnetic �eld gradient of 0.19 T/m, 10 mW
trapping light per beam at a detuning of −6 Γ and 11 mW repumping light per beam at
a detuning of −3.5 Γ. Both colors are distributed over six beams clipped at their beam
waist of 9 mm, thus de�ning the acceptance radius Ra = 9 mm of the 3D MOT.
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4.4.4 Beam �ux - dependence on 2D MOT

We have optimized the total �ux by varying both the trap and the repump detuning.
For these measurements the laser power of the trap and repump lasers were set to their
maximum values of 100 mW and 94 mW, respectively. The results are shown as a contour
diagram in Fig. 4.6. The maximum �ux is observed when the trap laser is far detuned
(δt = −7.5Γ) and the repump laser is close to resonance (δr = −1Γ). We observe a
small local maximum in �ux if the trap laser is tuned close to resonance (δt = −1Γ).
We attribute this to better beam collimation because the 2D MOT is expected to be
transversely colder when operated close to resonance [168, 166]. Apparently the advantage
of better collimation cannot compensate loss in 2D MOT capture e�ciency.

With optimized detunings we measured Φr as a function of the available optical power
in the 2D MOT trap (Pt) and repump (Pr) beams. For this purpose either the trapping
power is kept constant at Pt ≈ 50 mW per beam and Pr is varied or the repumping power
is kept constant at Pr ≈ 48 mW per beam and Pt is varied. As is shown in Fig. 4.7 the
loading rate increases linearly with Pt for Pt & 8 mW, whereas Φr increases linearly with
Pr for Pr & 2 mW until it levels o� for Pr & 18 mW. The experimental parameters for
optimal source performance are collected in Table 4.1. The output �ux was reproducible
to within 30% depending on the 2D MOT alignment.

4.4.5 Beam �ux - dependence on oven temperature

Fig. 4.8 shows the loading rate as a function of the oven temperature. At low temperatures
the loading rate increases exponentially with the oven temperature. This re�ects the
exponential increase of the e�usive �ux from the oven. Above T ≈ 650 K a loss mechanism
sets in. This limits further increase of the �ux until at T ≈ 700 K the cold atomic �ux
reaches its maximum value, corresponding to a loading rate of Φr = 8(3)×108 s−1 into the
3D MOT. The error re�ects our best estimate of systematic uncertainties. As will be will
be discussed in section 4.5 the losses are attributed to knock-out collisions in the e�usive
beam emerging from the oven. The dotted line shows the fraction of atoms surviving the
loss mechanism.

Table 4.1: Experimental parameters for optimal performance of the Li 2D MOT.

parameter trap repump push

detuning δ -7.5 Γ -1 Γ -3.5 Γ
power per beam 50 mW 48 mW 0.8 mW

waist (1/e2 radius) 9 9 1.2
gradient 0.5 T/m

oven temperature 623 K
most-probable velocity 36 m/s

FWHM of velocity distribution 11 m/s
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Figure 4.8: (Color online) The 3D MOT loading rate as a function of oven temperature
(solid squares - left scale). The solid line shows a �t of the model presented in section 4.5.
The loading rate reaches a maximum of 8 × 108 s−1 at T ≈ 700 K as a result of beam
attenuation by hot background vapor. The calculated attenuation factor is shown as the
dashed line (right scale).

4.5 Discussion

4.5.1 Recapture in the 3D MOT

To analyze the performance of the 2D MOT source we de�ne the overall e�ciency pa-
rameter χ as the ratio of the 3D MOT loading rate Φr and the maximum capturable �ux
Φc from the oven,

Φr = χΦc.

This e�ciency is determined by the capture e�ciencies of the 2D and 3D MOT as well as
the transfer e�ciency χt related to the divergence of the atomic beam. To determine χt

as well as the capture velocity vc we replotted the data of Fig. 4.5 in the form of Fig. 4.9,
showing the capture rate Φr in the 3D MOT as a function of the most-probable axial
velocity αz in the cold atomic beam. Like in subsection 4.4.2 we approximate the atomic
beam pro�le at the position of the 3D MOT (z = La = 220 mm) by the gaussian pro�le
with 1/e-radius R. The transfer e�ciency is obtained by integrating the normalized pro�le
from r = 0 on the beam axis to the acceptance radius r = Ra = 9 mm of the 3D MOT,

χt(xa) ' 2

∫ xa

0

(1− x/x0) e
−x2

xdx. (4.16)

Here x = r/R, xa = Ra/R and x0 = R0/R. The factor (1− x/x0) represents the conical
approximation to the trapezoidal clipping pro�le imposed by the DP-channel, where R0 =
19 mm marks the edge of the dark shadow. De�ning the 3D MOT acceptance angle
α = Ra/La and velocity ratio ṽz ≡ vz/vt = 1/ζ we write compactly xa = αṽz. Similarly
we de�ne the clipping angle β = R0/La and write x0 = βṽz. Substituting the expressions
for xa and x0 into Eq. (4.16) and evaluating the integral we obtain for the transfer e�ciency

χt(ṽz) = 1− (1− α/β)e−(αṽz)2 − 1

2βṽz

√
π erf (αṽz) . (4.17)
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Figure 4.9: (Color online) Loading rate 3D MOT as a function of the most-probable
velocity αz in the beam (black squares - left scale). The drawn line represents the best �t
to the data of the recapture model described in the text for vc = 45.5 m/s (right scale).
The result for zero beam divergence is shown as the dotted line, scaled down with a factor
0.36 for convenience of comparison.

The velocity-averaged transfer e�ciency (recaptured fraction) into the 3D MOT is given
by

χ̄t(αz, vc) =

∫ vc

0

χt(vz/vt)φ0 (vz, αz) dvz, (4.18)

where φ0 (vz, αz) is the normalized axial velocity distribution de�ned by Eq. (4.15). The
solid line in Fig. 4.9 is a plot of χ̄t(αz, vc) for a �xed value of vc. The position of the
maximum is insensitive for the beam divergence and the best �t is obtained for a capture
velocity of vc = 45.5 m/s. In contrast the peak height χ̄max depends strongly on the beam
divergence. Using the lower limit for the characteristic transverse velocity (vt & 1.4 m/s)
we calculate an upper limit for the recaptured fraction χ̄max . 0.4. For comparison also
the result for zero beam divergence is shown in the plot (dotted line).
For the conditions used in experiment, ∂B/∂r = 0.19 T/m and δL = −6Γ, we calculate
with Eq. (4.6) vc = 32 + 5.6 |δL/Γ| ≈ 66 m/s for rc =

√
2Ra = 12.7 mm. Apparently

the simple 1D model overestimates the capture velocity by some 50%. Because both the
2D MOT and the 3D MOT are con�gured in the 135◦ con�guration with respect to the
input beam and also rc = 12.7 mm in both cases we presume a similar overestimate for
the capture velocity of the 2D MOT. In the latter case we have ∂B/∂r = 0.50 T/m
and δL = −7.5Γ and calculate with Eq. (4.6) vc = 85 + 5.6 |δL/Γ| ≈ 127 m/s. Presuming
somewhat arbitrarily that also this value overestimates the actual capture velocity by 50%
we obtain vc ≈ 85 m/s as a reasonable estimate.
Starting from Φs = 8(3)× 1013 s−1 we obtain with Eq. (4.4) for the theoretical maximum
�ux Φc = 5(2) × 108 s−1. With the measured value Φr = 1.8(6) × 108 s−1 the overall
e�ciency χ = Φr/Φc is estimated to be 0.2 . χ . 0.5. This set a lower limit on the
recaptured fraction, 0.2 . χ̄max . 0.4, and (using our model) also an upper limit for the
characteristic transverse velocity, vt . 2.5 m/s. As the upper and lower limits more or
less coincide our best estimate is vt ≈ 2 m/s, which corresponds to a transverse 2D MOT
temperature of T⊥ = 1.4 mK. The corresponding beam divergence at optimal recapture
for oven temperature T = 623(12) K is ζ ≈ 0.05. For these conditions the brightness of
the beam emerging from the 2D MOT is calculated to be ∼ 2× 1011 sr−1s−1.
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4.5.2 Loss mechanisms

Because Φc ≪ Φs the output from the oven is well characterized by a small cold �ux
of capturable atoms overtaken by the hot �ux of the full emittance. Once the hot �ux
exceeds a critical value we expect the cold �ux to be attenuated by `knock-out' collisions.
This depletion of the low velocity class of atoms is a well-known phenomenon in close-
to-e�usive beam sources [163]. Comparing the total �ux per unit area just above the
emitting surface, Φtot/A ≈ 6.5× 1015 s−1cm−2, with the �ux per unit area in the capture
region Φs/A ≈ 4× 1013 s−1cm−2, we expect these knock-out collisions to occur primarily
in the �rst few centimeters of the expanding beam. Once the atoms enter the 2D MOT
the cross section increases because optically excited atoms interact resonantly with the
hot background �ux [169].
To model the attenuation we calculate the collision rate of an atom moving at velocity vc

along the symmetry axis at position l above the oven exit ori�ce with atoms from the hot
background �ux moving at typically the average velocity v̄ � vc,

Φ̇/Φ = 1
2
σ6ns

∫ θ0(l)

0

vr sin θdθ. (4.19)

Here θ is the emission angle of the fast moving atoms with respect to the symmetry axis,
tan θ0 = a/l, σ6 is the knock-out cross section and vr = (v̄2 + v2

c − 2vcv̄ cos θ)1/2 ' v̄ is the
relative velocity of the colliding atoms [163]. Using the substitution dl = vcdt we can solve
the di�erential equation under the boundary condition Φ(l) = Φc at l = 0 and obtain

Φ(L) ' Φc exp[−1
2
σ6ns (v̄/vc)

∫ L

0

(1− cos θ0)dl], (4.20)

where cos θ0 = l/(l2 +a2)1/2. In this model the density in the oven is taken to be uniform.
Because for l � a the collision probability vanishes we may freely extend the integral to
in�nity,

∫∞
0

(1− cos θ0)dl = a. Hence, at the entrance of the 2D MOT the attenuated �ux
is given by

Φin = lim
L→∞

Φ(L) ' Φc exp(−σ6nsv̄τ6), (4.21)

where τ6 = a/2vc ≈ 47 µs is the characteristic duration of the attenuation process.
To estimate σ6 we take the approach of ref. [170] and consider a slow atom moving at the
capture velocity vc along the symmetry-axis from the oven towards the capture region.
Fast atoms �ying-by with the thermal velocity v̄ will give rise to momentum transfer
as a result of Van der Waals interaction. As this happens most frequently close to the
oven even a small momentum transfer ∆p . 0.1mvc su�ces to kick the atoms out of the
capture cone Ωc. Because v̄ � vc the trajectory of the fast atom is hardly a�ected and
the momentum transfer to the cold atom can be calculated by integrating the transverse
component of the Van der Waals force over time, ∆p = 1

2

∫∞
−∞ F⊥(t)dt. Here F (r) = 6C6/r

7

with r the radial distance between the colliding atoms and C6 = 1389 a6
0Eh the Van der

Waals coe�cient [171] with a0 ≈ 0.529×10−10 m the Bohr radius and Eh ≈ 4.36×10−18 J
the Hartree energy. Changing from the time variable t to the angular variable θ using
tan θ = v̄t/b, where b is the distance of closest approach, we obtain using F⊥ = F cos θ
and cos θ = b/r,

∆p =
6Cc

2v̄b6

∫ π/2

−π/2

cos6 θdθ =
C6

v̄b6
15π

16
. (4.22)
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The critical distance of closest approach for which the atoms are just scattered outside
the capture cone Ωc is given by

b6 ' 1.8 (C6/mvcv̄)
1/6 . (4.23)

Note that this quantity depends only very weakly on the precise values of vc and v̄. For
vc ≈ 85 m/s and temperatures in the range 600 . T . 700 K we calculate for the
knock-out cross section σ6 = πb26 ≈ 4.4× 10−14 cm2. Note that, in contrast to `knock-out'
collisions, `knock-in' collisions are rare. The steep dependence of ∆p on b implies that
most of the atoms scattered outside the acceptance cone scatter over much larger angles
than the minimum angle required for knock-out. Thus scattered atoms typically hit the
wall of the oven tube and stick, rather than giving rise to knock-in.
Along the same lines we estimate the momentum transfer by resonant collisions inside the
2D MOT. As the relative velocities are large and the typical collision time is much shorter
than the lifetime of the atoms in the excited state we may use again the classical scat-
tering model discussed above. In the present case the critical distance of closest approach
corresponds to momentum transfer just exceeding the escape value from the 2D MOT,
mv & mvc [170]. Neglecting the direction of the transition dipole the resonant-dipole force
can be approximated by F (r) = 3C3/r

4, where the C3 coe�cient is de�ned as [169, 172]

C3 = e2a2
0D

2
eg/4πε0 = 3.7× 10−48 J m3. (4.24)

Here e ≈ 1.60 × 10−19 C is the elementary charge, ε0 ≈ 8.85 × 10−12 Fm−1 the electric
constant and Deg = 2.4 a.u.the transition dipole moment for the 2s→ 2p transition in Li
[140]. The corresponding critical distance of closest approach is in this case

b3 ' 1.6 (C3/mvcv̄)
1/3 . (4.25)

For vc ≈ 85 m/s and temperatures in the range 600 . T . 700 K we calculate for
the resonant cross section σ3 = πb23 ≈ 1.6 × 10−13 cm2. Accounting for the knock-out
probability of trapped atoms the loading rate into the 3D MOT can be written as

Φr = χ̄tΦin exp[−σ3τresΦs/Ac]. (4.26)

Combining Eqs. (4.3) and (4.4) with the C6 and C3 loss exponents of Eqs. (4.21) and
(4.26) and introducing the characteristic attenuation time τ3 = Aτres/4πL

2 we obtain the
following expression for the 3D MOT loading rate

Φr ' χ̄ta6nsv̄ A
(vc

α

)4 Ωc

8π
exp[−nsv̄ (σ6τ6 + σ3τ3)], (4.27)

Using τres = 1 ms we have τ3 ≈ 1.6 µs. Note that only α, v̄ and ns are sensitive for the
oven temperature. A best �t of Eq. (4.27) to the data using χ̄t and ns (at T = 623 K)
as free parameters is shown as the solid line in Fig. 4.8. The �t shown is obtained for
χ̄t = 0.33 and ns = 1.5× 1017 m−3 at T = 623 K, which are both within the error limits
given for these quantities. Thus also the position of the maximum con�rms our model.
As the result obtained for χ̄t strongly anti-correlates with the value presumed for vc we
cannot improve upon the estimate χmax = 30± 10% already given in subsection 4.5.1.
Interestingly, comparing the two loss mechanisms we �nd σ3τ3/σ6τ6 ≈ 0.1, which shows
that the resonance mechanism, dominating the background losses in the VCMOT [170,
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109], is of minor importance in the present case. Since the output �ux scales like (vc/α)4

an obvious way to increase the output of MOT sources is to increase the capture velocity.
Doubling the waist of the 2D MOT beams in the xy plane (see Fig. 1) in order to increase
the capture radius we �nd with Eq. (4.9) that the capture velocity increases by

√
2 and the

output by a factor 4. In addition, since τ6 scales like 1/vc the beam attenuation decreases
slightly.

4.5.3 Comparison with Zeeman slowers

In several respects the 2D MOT source demonstrated in this paper represents an inter-
esting alternative for the Zeeman slower. First of all the source yields a large controllable
output �ux of up to 3× 109 s−1, comparable to �uxes typically achieved in lithium Zee-
man slowers. The transverse temperature of the source is low (1.4 mK) which makes it
possible to recapture as much as 30% in a 3D MOT 220 mm downstream from the source.
In contrast to Zeeman slowers, the 2D MOT source yields a clean and monochromatic
cold atomic beam of which the most probable velocity can be varied over a wide range
of velocities with the aid of a push beam. Permanent magnets for the creation of the
quadrupole �eld add to the simplicity of the design. The resulting source is more compact
than a typical Zeeman slower and is still capable of loading 1010 atoms in a 3D MOT.

Importantly, the 2D MOT principle works equally well with light atoms as with more
heavy atoms like K, Rb and Cs. This shows that, like the Zeeman slower, also the 2D MOT
beam source has a wide applicability. In cases with a sizable vapor pressure at room
temperature the source will act as a VCMOT. As an example of a system for which
a 2D MOT has not yet been realized we brie�y discuss the case of Na. In this case the
gradient of the quadrupole �eld should be scaled down proportional to m1/2 in accordance
with Eq. (4.8) to obtain the optimum value ∂B/∂r ≈ 0.25 T/m. In view of Eq. (4.9) the
capture velocity scales down with the same factor. Using Eq. (4.27) we calculate for Na
a maximum total output �ux of 4 × 109 s−1 for an oven temperature T ≈ 471 K. This
output is lower than realized with Zeeman slowers but the oven is operated at much lower
temperature [173, 149, 99].

Unlike the output of the Zeeman slower the output of the 2D MOT source is limited by a
fundamental loss mechanism. As described in subsection 4.5.2 this is caused by Van der
Waals forces between atoms leaving the oven and (to a lesser extent) by resonant-dipole
forces between optically excited atoms in the 2D MOT and the hot background �ux from
the oven. These losses are quanti�ed by the exponent in Eq. (4.27), which is shown as
the dashed line in Fig. 8. Note that near maximum output at T ≈ 700 K the attenuation
factor is already as small as ∼ 0.3. Therefore, the source is best operated at temperatures
below 650 K, where the �ux may be slightly smaller but the depletion time of the oven is
comfortably long. Alternatively, one could incorporate a recycling principle [150, 148].

4.6 Summary and conclusion

We developed a novel beam source for cold 6Li atoms. The source is based on the 2D MOT
principle and yields a controllable output �ux of up to 3 × 109 s−1, comparable to �uxes
typically achieved in lithium Zeeman slowers. Some 30% of the atoms are recaptured
into a 3D MOT 220 mm downstream from the source. The source is side-loaded from
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an oven and a push beam assures that only capturable atoms enter the main vacuum
chamber. This yields a clean and quite monochromatic cold atomic beam of which the
most-probable axial velocity αz can be varied over the range 18 . αz . 70 m/s by
varying the intensity of the push beam. The 2D MOT can be fully optimized for capture
because the push beam assures that the density of trapped atoms is intrinsically low. The
push beam also drastically simpli�es the alignment of the 2D MOT. Permanent magnets
simplify the implementation of the quadrupole �eld. The resulting source is compact and
enables us to load up to 1010 atoms into a 3D MOT, which is su�cient as a starting point
for most experiments with quantum gases. The output �ux increases exponentially with
the oven temperature until at T ≈ 700 K a loss mechanism limits the �ux. We identify
knock-out collisions near the oven exit as a result of Van der Waals forces between the
atoms as the limiting mechanism. At maximum output the beam attenuation factor is
∼ 0.35. Therefore, the source is more e�ciently operated at a lower oven temperature.
For T = 623 K we measured a loading rate of Φr = 1.8(6) × 108 s−1 in the 3D MOT.
At this temperature the uninterrupted running time on 8 g of lithium is ∼ 17000 hrs.
With our work we demonstrate that the 2D MOT principle works equally well with light
atoms as with more heavy atoms and is likely to be suitable for any atomic system with
an optical cooling transition.
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Chapter 5

Asymptotic Bound-state Model

In this chapter we present an Asymptotic Bound-state Model which
can be used to accurately describe all Feshbach resonance positions
and widths in a two-body system. With this model we determine the
coupled bound states of a particular two-body system. The model is
based on analytic properties of the two-body Hamiltonian, and on
asymptotic properties of uncoupled bound states in the interaction
potentials. In its most simple version, the only necessary parameters
are the least bound state energies and actual potentials are not used.
The complexity of the model can be stepwise increased by introducing
threshold e�ects, multiple vibrational levels and additional potential
parameters. The model is extensively tested on the 6Li-40K system
and additional calculations on the 40K-87Rb and 3He∗ - 4He∗ systems
are presented.
This chapter will be submitted to Physical Review A. Parts of the
model have been published in Ref. [18] and in Ref. [17] Physical Re-
view Letters 100 053201 (2008)

5.1 Introduction

The �eld of ultracold atomic gases has been rapidly growing during the past decades.
One of the main sources of growth is the large degree of tunability to employ ultracold
gases as model quantum systems [95, 174]. In particular the strength of the two-body
interaction parameter, captured by the scattering-length a, can be tuned over many orders
of magnitude. A quantum system can be made repulsive (a > 0), attractive (a < 0), non-
interacting (a = 0) or strongly interacting (|a| → ∞) in a continuous manner by means
of Feshbach resonances. Feshbach resonances are induced by external �elds: magnetically
induced Feshbach resonances are conveniently used for alkali-metal atoms, while optically
induced Feshbach resonances seem more promising for e.g. alkaline-earth atoms [62]. In
this paper we consider magnetically induced resonances only.
Feshbach resonances depend crucially on the existence of an internal atomic structure,
which can be modi�ed by external �elds. For alkali-metal atoms, this structure is initiated
by the hyper�ne interaction, which can be energetically modi�ed by a magnetic �eld
via the Zeeman interaction. For a given initial spin state, its collision threshold and its
two-body bound states depend in general di�erently on the magnetic �eld. A Feshbach
resonance occurs when the threshold becomes degenerate with a bound state. Accurate
knowledge of the Feshbach resonance structure is crucial for experiments
The two-body system has to be solved to obtain the bound state solutions. Since the
interactions have both orbital and spin degrees of freedom, this results in a set of radi-
ally coupled Schrödinger equations in the spin basis. The set of equations is referred to
as Coupled Channels equations [175], and can be solved numerically. Quite often it is
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far from trivial to obtain reliable predictions for the two-body problem, due to several
reasons: the ab-initio interaction potentials are usually not accurate enough to describe
ultracold collisions. Therefore these potentials have to be modelled by adding and mod-
ifying potential parameters. A full calculation for all spin combinations and all potential
variations is very time-consuming. Moreover, one can easily overlook some features of the
bound state spectrum due to numerical issues such as grid sizes and numerical accuracy.
This is also due to a lack of insight of the general resonance structure, which is often not
obvious from the numerical results.

Given the above, there is certainly a need for fast and simple models to predict and
describe Feshbach resonances, which allow for a detailed insight in the resonance structure.
In the last decade various simple models have been developed for ultracold collisions [47,
176, 177], which vary signi�cantly in terms of complexity, accuracy and applicability. In all
these models the radial equation plays a central role in �nding the Feshbach resonances.
In this paper we present in detail the Asymptotic Bound-state Model (ABM). This model,
brie�y introduced in Ref. [17], was successfully applied to the Fermi-Fermi mixture of 6Li
and 40K. Here the observed loss features where assigned to 13 Feshbach resonances with
high accuracy, and the obtained parameters served as an input to a full coupled channels
analysis. The ABM builds on an earlier model by Moerdijk et al. [82] for homonuclear
systems, which was also applied by Stan et al. [178] for heteronuclear systems. This
model neglects the mixing of singlet and triplet states, therefore allowing the use of
uncoupled orbital and spin states. In ABM we make use of the radial singlet and triplet
eigenstates and include the coupling between them. This crucial improvement makes the
whole approach in principle exact, and it allows for a high degree of accuracy given a
limited number of parameters.

We show how we can systematically extend the most simple version of ABM to predict the
width of the Feshbach resonances by including threshold behavior. Additionally we allow
for the inclusion of multiple vibrational levels and parameter for the spatial wavefunction
overlap. The fact that ABM is computationally light provides the possibility to map out
the available Feshbach resonance positions and widths for a certain system, as has been
shown in [18]. Throughout the paper we will use the 6Li-40K mixture as a model system to
illustrate all introduced aspects. Additionally, we present ABM calculations on the 40K-
87Rb mixture to demonstrate its validity on a more complex system, comparing it with
accurate coupled channel calculations [179]. Finally, we make predictions for Feshbach
resonances in the heteronuclear metastable helium (3He∗-4He∗) mixture.

In the following we describe the ABM model (Sec. 5.2) and various methods to obtain the
required input parameters. In Sec. 5.3 the ABM is applied to the three physical systems
and in Sec. 5.4 we introduce the coupling to the open channel to predict the width of
Feshbach resonances. In section 5.5 we summarize our �ndings and comment on further
extensions of the model.

5.2 Asymptotic Bound-state Model

We assume that the two colliding atoms both are initially prepared in a hyper�ne state
|fmf〉, where f is the total spin and mf its projection along the magnetic �eld axis. The
two-body tensor product formed by the hyper�ne states of the two atoms is called the
entrance channel. To predict the position of a Feshbach resonance we calculate the energy
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of the entrance channel and that of a coupled bound state as a function of the magnetic
�eld. We expect Feshbach resonances at magnetic �eld values where the entrance channel
energy equals the energy of the molecular state. In this section we will show how the ABM
can be used to determine the energy of the entrance channel and of the coupled bound
states.
The e�ective Hamiltonian describing the collision of two ground-state alkali atoms in the
center of mass frame is given by [12]

H =
p2

2µ
+Hint + V , (5.1)

where the �rst term is the relative kinetic energy with µ the reduced mass, Hint the
internal energy of the two atoms and V the e�ective interaction between the atoms. We
use the bound eigenstates |ψσ〉 of the relative Hamiltonian Hrel = p2

2µ
+ V as a basis for

the secular equation

det
∣∣(εσ − E)δσ,σ′ +

〈
ψσ

∣∣Hint
∣∣ψσ′

〉∣∣ = 0, (5.2)

where the eigenvalues εσ are the binding energies of the uncoupled bound states of the
relative Hamiltonian and σ is a label for all orbital and spin degrees of freedom. The
solutions of the secular equation yield the energies of the coupled bound states as a
function of magnetic �eld. Next we will specify the internal degrees of freedom of the
two atoms, followed by a more detailed discussion of the relative Hamiltonian, the free
parameters of the model and a description of asymptotic bound states.

5.2.1 Internal energy

The single atom internal Hamiltonian consists of hyper�ne and Zeeman interactions

Hhf =
ahf

~2
i · s + (γes− γii) ·B, (5.3)

where s and i are the electron and nuclear spins respectively, γe and γi are their respective
gyromagnetic ratios, ahf is the hyper�ne energy and B is the externally applied magnetic
�eld. The hyper�ne interaction couples the electron and nuclear spin which add to a total
angular momentum f = s + i. In Fig. 5.1 the well known hyper�ne diagrams of 6Li and
40K are shown, the curves correspond to the eigenvalues of Hhf . The one-atom hyper�ne
states are labeled |fmf〉, although f is only a good quantum number in the absence of
an external magnetic �eld. By labelling the colliding atoms with α and β, the interaction
process can be described in the basis of the two-body internal states |fαmfα , fβmfβ

〉.
Since the e�ective interactions V can be neglected asymptotically, the threshold energy
for two interacting atoms is completely determined by the two-body internal Hamiltonian
Hint = Hhf

α +Hhf
β . Consequently, the threshold energy (Ethr) for a certain spin con�guration

(i.e. entrance channel) is the sum of the single atom internal energies. For a certain total
energy E the threshold energy determines if a channel is open (E > Ethr) or closed
(E > Ethr).

5.2.2 Relative Hamiltonian

The bound eigenstates of Hrel are crucial to determine the coupled bound states responsi-
ble for the Feshbach resonances. The relative Hamiltonian consists of e�ective interactions
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Figure 5.1: The single atom hyper�ne diagrams for 6Li and 40K. The curves correspond
to the eigenvalues of Hhf and are labeled by the zero �eld quantum numbers |fmf 〉.

V resulting from all Coulomb interactions between the nuclei and electrons of both atoms
1. These central interactions depend only on the quantum number S associated with the
magnitude of the total electron spin S = sα + sβ, therefore they can be decomposed as
V =

∑
S |S〉VS〈S| where the potential VS is either the singlet (S = 0) or triplet (S = 1)

potential. Note that for central interactions the two-body solutions will depend on or-
bital quantum number l, but not on its projection ml. Both these quantum numbers are
conserved.

We specify the ABM basis states |ψσ〉 as |ψν,l
S 〉|SmSµαµβ〉. Here we de�ne the spin basis

states |SmSµαµβ〉 via spin quantum number S and the magnetic quantum numbers mS,
µα, and µβ of the S, iα and iβ operators respectively. The sum mF = mS + µα + µβ is
conserved, therefore limiting the number of spin states involved. The bound states for the
singlet and triplet potentials, characterized by the vibrational and orbital quantum num-
bers ν and l, satisfy the eigenvalue equation for the relative motion, where we projected
Hrel on a speci�c S and l state:

[
− ~2

2µ

d2

dr2
+ V l

S(r)

]
ψν,l

S (r) = εν,l
S ψ

ν,l
S (r). (5.4)

Here ψν,l
S (r) = 〈r|ψν,l

S 〉 is the relative reduced wavefunction, r the interatomic separation,
and V l

S(r) ≡ l(l + 1)~2/(2µr2) + VS(r). The corresponding binding energies are given by
εν,l
S . In this paper we focus on heteronuclear systems, however, the ABM works equally
well for homonuclear systems. In the latter case one would rather use a symmetrized spin
basis |SmsImI〉, where I is the total nuclear spin andmI is the magnetic quantum number
for I as described in Ref. [82].

Now that we have de�ned a complete basis, the internal Hamiltonian can be written as
Hint = H+

int +H−
int, where the H+

int part gives rise to hyper�ne coupling within the separate
singlet and triplet subspaces, while H−

int takes care of the coupling between the singlet
and triplet manifolds. The latter term was neglected in the models of Refs. [82, 178].

For central interactions the orbital angular momentum is conserved, therefore we can solve
Eq. (5.2) separately for every l-subspace:

1The much weaker magnetic dipole-dipole interactions are neglected.
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det |ν,l〈SmSµαµβ|
(
εν,l
S +H+

int − E
)
δν,ν′

+ην,ν′

S,S′H−
int|S ′m′

Sµ
′
αµ

′
β〉ν′,l| = 0. (5.5)

Here ην,ν′

S,S′ = 〈ψν,l
S |ψ

ν′,l
S′ 〉 is the Franck-Condon factor which value generally is in the range

0 ≤ |ην,ν′

S,S′| ≤ 1, while only bound states within the same potential V l
S(r) are exactly

orthonormal: 〈ψν,l
S |ψ

ν′,l
S 〉 = δν,ν′ .

5.2.3 Free parameters

The free parameters of the ABM are the binding energies εν,l
S and the Franck-Condon

factors ην,ν′

S,S′ describing the relative motion. These parameters can be obtained in a variety
of manners. Here we discuss three methods which will be demonstrated in Sect. 5.3.
First, if the scattering potentials V l

S(r) are very well known, the bound state wavefunctions
of the vibrational levels can be obtained by solving equation (5.4) for εν,l

S < 0. Numerical
values of the Franck-Condon factors follow from the obtained eigenstates. This method
is very accurate and can be extended to deeply bound levels, however accurate model
potentials are only available for a limited number of systems.
A second method to obtain the free parameters is useful when the potentials are not
very well or only partially known. For large interatomic distances the potentials can be
parameterized by the asymptotically correct dispersion potential

V (r) = −C6

r6
, (5.6)

however, at short range this expression is no longer correct. Therefore we account for
the inaccurate inner part of the potential by a boundary condition based on the accumu-
lated phase method [86]. This boundary condition has a one-to-one relationship to the
interspecies s-wave singlet and triplet scattering lengths. This method would then require
only three input parameters: the van der Waals C6 coe�cient and the singlet (aS) and
triplet (aT ) scattering lengths. For an accurate description involving deeper bound states
the accumulated phase boundary condition needs more parameters than only a scattering
length.
The last method to obtain the free parameters is by comparing predicted positions of
Feshbach resonances directly to experimental cold collision data, for instance by comparing
it to atom loss. A loss feature spectrum can be obtained by holding an ultracold sample
for a given time period at a particular magnetic �eld. The binding energies and Franck-
Condon factors are obtained by �tting the calculated threshold crossings,which are the
positions of the Feshbach resonances to the loss features. We used this method in Ref. [17],
where it has proven to be very powerful due to the small computational time required to
solve the eigenvalue equation.
The number of �t parameters is determined by the number of bound states which have
to be considered. Depending on the atomic species and the magnetic �eld, a selected
number of vibrational levels εν,l

S have to be taken into account. This number can be
estimated by considering the maximum energy range involved. An upper bound results
from comparing the maximum dissociation energy of the least bound vibrational level D∗
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with the maximum internal energy of the atom pair Eint,max. Using the dissociation energy
of the Nν-th vibrational level from [180] we obtain:

Nν ' ζ

√
µC

1/6
6

h
E

1/3
int,max (5.7)

where h is Planck's constant and ζ is a numerical constant. Eint,max is given by the sum
of four terms; the hyper�ne splitting of each of the two atoms at zero �eld, the maximum
Zeeman energy for the free atom pair and the maximum Zeeman energy for the molecule.
The constant ζ can be evaluated semi classically, yielding ζ = 1.8294 [180], or numerically
using the accumulated phase method, yielding ζ = 1.643, in the following we will use the
latter.

5.2.4 Asymptotic bound states

The most crucial parameters for ABM are the binding energies εν,l
S , however, for accurate

predictions of the Feshbach resonance positions, one also needs a rather accurate value for
the Franck-Condon factors. For weakly bound states these factors are mainly determined
by the binding energy di�erence between the bound states, rather than the potential
shape. Therefore good approximations can be made with little knowledge of the scattering
potential. For bound states with rc � r0, where rc is the classical turning point and

r0 =
1

2

(
2µC6

~2

)1/4

(5.8)

is the van der Waals range of the interaction potential, most of the probability density is at
internuclear distances where the potential shape is unimportant. These bound states are
commonly denoted as halo states [181]. The wavefunction is well described by ψ(r) ∼ e−κr,
where κ =

√
−2µε/~2 is the wavevector corresponding to a bound state with binding

energy ε. The Franck-Condon factor of two weakly bound states with wavevectors κ0 and
κ1 is given by

〈ψ0|ψ1〉 =
2
√
κ0κ1

κ0 + κ1

. (5.9)

This approximation is valid for states with rc � r0, i.e., for binding energies of |ε| � C6/r
6
0.

The calculation of the Franck-Condon factors can be extended to deeper bound states
by including the dispersive van der Waals tail. For r � rX where rX is the radius where
the van der Waals interaction equals the exchange interaction, the potential is well de-
scribed by −C6/r

6.The Franck-Condon factors can be calculated by numerically solving
the Schrödinger equation (5.4) in the −C6/r

6 potential for rX < r < ∞ [182]. This
method can be used for much deeper bound states, where rc � rX . We will de�ne asymp-
totic bound states as states for which rc > rX . If even deeper bound states, with rc < rX ,
have to be taken into account, the potential can be extended by including the exchange
interaction [79], or by using full model potentials.
To illustrate the validity of describing Feshbach resonances by asymptotic bound states we
calculate the Franck-Condon factor for a contact potential (halo states), a van der Waals
potential (asymptotic bound states) and a full model potential including short range be-
havior. Figure 5.2 shows the Franck-Condon factor η11

01 for 6Li-40K calculated numerically
for the model potential, van der Waals potential, and analytically using equation (5.9).
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The van der Waals coe�cient used is C6 = 2322Eha
6
0, where Eh = 4.35974× 10−18J and

a0 = 0.05291772nm [183]. The η11
01 has been plotted as a function of the triplet bind-

ing energy ε1 for three di�erent values of the singlet binding energy ε0. It is clear that
the contact potential is only applicable for ε/h . 100MHz, hence only for systems with
resonant scattering in the singlet and triplet channels. The approximation based on the
C6 potential yields good agreement down to binding energies of ε . h × 40GHz, which
is much more than the maximum possible vibrational level splitting of the least bound
states (D∗ = h× 8.2GHz). The black circle indicates the actual Franck-Condon factor for
the least bound state of 6Li-40K. For the contact, van der Waals and model potentials we
�nd η11

01 = 0.991, η11
01 = 0.981 and η11

01 = 0.979 respectively.

5.3 Application to various systems

In this section we demonstrate the versatility of the ABM by applying it to three di�erent
systems using the three di�erent approaches as discussed in Sect. 5.2.3.

5.3.1 6Li−40K

Both 6Li and 40K have electron spin s = 1/2, therefore the total electron spin can be
singlet S = 0 or triplet S = 1. We intend to describe all loss features observed in Ref.
[17]. Since all these features where observed for magnetic �elds below 300G we �nd that,
by use of Eq. (5.7), it is su�cient to take only the least bound state (ν = 1) of the
singlet and triplet potential into account. This reduces the number of �t parameters to
ε0,l
1 and ε1,l

1 . Subsequently, we parameterize the l > 0 bound state energies by making
use of model potentials as described by [184, 46] 2. This allows us to reduce the number
of binding energies to be considered to only two: ε1,0

0 ≡ ε0 and ε1,0
1 ≡ ε1. We now turn

to the Franck-Condon factor η11
01 of the two bound states. As discussed in Sect. 5.2.4 its

value is η11
01 = 0.979 and can be taken along in the calculation or approximated as unity.

We �rst consider the case of η11
01 ≡ 1, this reduces the total number of �t parameters to

only two. We �t the positions of the threshold crossings to the 13 observed loss features
reported in Ref. [17] by minimizing the χ2 value while varying ε0 and ε1. We obtain
optimal values of ε0/h = 716(15)MHz and ε1/h = 425(5)MHz, where the error bars
indicate one standard deviation. In Fig. 5.3, the threshold and spectrum of coupled bound
states with mF = +3(−3) is shown for positive (negative) magnetic �eld values. The
color scheme indicates the admixture of singlet and triplet contributions in the bound
states. Feshbach resonances will occur at magnetic �elds where the energy of the coupled
bound state and the scattering threshold match. The strong admixture of singlet and
triplet contributions at the threshold crossings emphasizes the importance of including the
singlet-triplet mixing term H−

int in the Hamiltonian. All 13 calculated resonance positions
have good agreement with the coupled channel calculations as described in Ref. [17],
verifying that the ABM yields a good description of the threshold behavior of the 6Li−40K
system for the studied �eld values.
We repeat the χ2 �tting procedure now including the numerical value of the overlap. The
η11

01 for both the s-wave and p-wave bound states are calculated numerically while varying

2Note that this procedure can also be applied with only a C6 coe�cient by utilizing the accumulated
phase method
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Figure 5.2: The Franck-Condon factor η11
01 for the

6Li-40K system calculated as a function
of the triplet binding energy ε1 for three di�erent values of ε0/h = 7.16 MHz, ε0/h = 716
MHz and ε0/h = 7.16× 104 MHz. η11

01 is calculated for a model potential (dashed blue), a
−C6/r6 potential (solid red) and a contact potential, equation (5.9) (dash-dotted green).
The black circle indicates the actual value for the least bound state of 6Li-40K (ε0/h =
716MHz and ε1/h = 425MHz). The nodes in η11

01 correspond to deeper lying vibrational
states.

Figure 5.3: Here we have calculated the energies of all the coupled bound states
for 6Li-40K with total spin mF = ±3. The black solid line indicates the thresh-
old energy of the entrance channel |{1/2,+1/2}Li; {9/2,+5/2}K〉 for B < 0 and
|{1/2,+1/2}Li; {9/2,−7/2}K〉 for B > 0. The grey area represents the scattering con-
tinuum and the (colored) lines indicate the coupled bound states. Feshbach resonances
occur when a bound state crosses the threshold energy. The color scheme indicates the
admixture of singlet and triplet contributions in the bound states. The strong admixture
near the threshold crossings at B ' 150G demonstrate the importance of the singlet-
triplet mixing in describing Feshbach resonance positions accurately. Since in the ABM
the coupled bound states are not coupled to the entrance channel, they exist even for
E > Ethr.
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ε0 and ε1. This �t results in a slightly larger χ
2 value with corresponding increased discrep-

ancies in the resonance positions. However, all of the calculated resonance positions are
within the experimental widths of the loss features. Therefore, the analysis with η11

01 ≡ 1
and η11

01 = 0.979 can be safely considered to yield the same results within the experimental
accuracy.

5.3.2 40K-87Rb

We now turn to the 40K-87Rb mixture to demonstrate the application of the ABM model
to a system including multiple vibrational levels and multiple non-trivial values for the
overlap. Although accurate K-Rb scattering potentials are known [185], we choose to
use the accumulated phase method as discussed in Sect. 5.2.3 using only three input
parameters to demonstrate the accuracy of the ABM for a complex system like 40K-87Rb.
We solve the radial Schrödinger equation (5.4) for V l

S(r) = −C6/r
6 and εν,l

S = ~2k2/2µ
where k → 0. We obtain the accumulated phase at rin = 18a0 by imposing a boundary
condition at r → ∞ using the s-wave phase shift δ0 = arctan(−ka), where a the s-wave
scattering length. Subsequently we obtain binding energies for the three last bound states
of the singlet and triplet potential by solving the same equation (5.4) but now with the
accumulated phase at r = rin and ψ(r →∞) = 0 as boundary conditions. We numerically
calculate the Franck-Condon factors by normalizing the wavefunctions for r > rin, thereby
neglecting the part of the wavefunction in the inner part of the potential (r < rin). This
assumption becomes less valid for more deeply bound states. We use as input parameters
C6 = 4274Eha

6
0 [183], aS = −111.5a0 and aT = −215.6a0 [185]. Figure 5.4 shows the

spectrum of bound states with respect to the threshold energy for the mixture of 40K
|f = 9/2,mf = −9/2 > and 87Rb |f = 1,mf = +1 > states. The red curves indicate the
result of the ABM model and the blue curves are full coupled channel calculations [186].
The agreement between the two models is satisfactory, especially for the weakest bound
states close to the threshold. The large negative scattering lengths indicates the presence
of virtual bound states in both the singlet and triplet potentials. However, taking only the
bound states into account already yields a good result. A conceptually di�erent analysis
of the K-Rb system using only three input parameters has been performed by Hanna, et
al. [177].

5.3.3 3He∗ - 4He∗

In this section we brie�y turn to the application of the ABM to a system of two two-
electron atoms, namely the Fermi-Bose mixture of metastable helium-3 and helium-4.
This system has recently been experimentally realized [39] and magnetic �eld tuning of
the interaction parameters are of great interest. Up to now no �eld induced resonances have
been reported experimentally nor theoretically. Based on potentials known from literature
we calculate the binding energies of the least bound states and their corresponding Franck-
Condon factors. Using these values as input parameters for the ABM we are able to predict
Feshbach resonance positions. We use the adiabatic potential curves for the singlet (11Σ+

g )
and triplet (13Σ+

u ) potentials reported by Ref. [187] and the quintet (15Σ+
g ) potential we

obtain from Ref. [188]. We obtain various Feshbach resonances at low magnetic �eld values.
Two resonances of speci�c interest are at B = 12.9G in the 3He∗ |f = 3/2,mf = −1/2〉
4He∗ |mJ = −1〉 spin channel and at B = 8.7G in the 3He∗ |f = 3/2,mf = +3/2〉
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Figure 5.4: The bound state spectrum for 40K-87Rb for mF = −7/2 plotted with respect
to the threshold energy Ethr of the 40K |f = 9/2,mf = −9/2 > + 87Rb |f = 1,mf =
+1 > hyper�ne mixture. Red lines are ABM calculations and the blue lines are numerical
coupled channels calculations. Good agreement between the two calculations is found in
particular for the weakest bound levels.

4He∗ |mJ = 0〉 spin channel. Both resonance positions are mainly determined by the
accurately known quintet potential, and negligibly by the less accurately known triplet
potentials. For temperatures in the ultracold regime, penning ionization collisions in the
triplet potential are expected to be suppressed [189]. Spin exchange collisions of the 3He∗

|f = 3/2,mf = −1/2〉+4He∗ |mJ = −1〉 →3He∗ |f = 3/2,mf = −3/2〉+4He∗ |mJ = 0〉
type are suppressed for ultracold samples at B = 12.9G because a thermal activation
of ∼ 580µK is required to drive the channel. Concluding, the B = 12.9G resonance is a
promising candidate for manipulating interspecies interactions in the 3He∗ - 4He∗ mixture.
However, due to the large background scattering length of the 3He∗ - 4He∗ system, the
resonances are expected to be broad. Since the resonance position shifts by an amount
of the order of the resonance width (see below) the actual resonance positions might be
signi�cantly di�erent from the stated values.

5.4 Coupling to the open channel

The model, as introduced in section 5.2, has so far been used to determine the position
of the Feshbach resonances. However, a Feshbach resonance is not only characterized by
its position, but also by its width. The resonance width is for a collision process inversely
proportional to the lifetime of the resonance. Its value plays an important role to deter-
mine whether a Feshbach resonance can be used to explore regimes of universal physics
for strongly interacting quantum gases. Wide s-wave resonances give rise to universal be-
havior and can be described by the scattering length only, while narrow resonances need
additional parameters such as the E�ective Range parameter to describe the interactions
properly. For practical experimental considerations, a resonance should be su�ciently
wide to allow for an accurate control over the interaction strength.
The width of a resonance is determined by the coupling between the open collision thresh-
old channel, and the closed-channel bound state which gives rise to the Feshbach resonance
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[34, 35]. This coupling is contained in the AMB, however, to make it explicit in terms of a
useful matrix element, it is crucial to partition the total Hilbert space, which describes the
spin and spatial degrees of freedom, into two orthogonal subspaces P and Q. The open
channels are located in P space, and the closed channels in Q space. Within the ABM
approach we obtain the coupling between the open and closed channels without the actual
use of continuum states. In Sect. 5.4.1 we present the Feshbach theory tailored to suit the
ABM, we give a mathematical description of the resonant coupling, and we demonstrate
from a two-channel model how the ABM bound state compares to the associated P-space
bound state, and to the dressed molecular state from which one can deduce the resonance
width. In Sect. 5.4.2 we summarize the results such that the width of the Feshbach reso-
nances can be obtained for the general multi-channel case by performing two simple basis
transformations. For a more thorough treatment of the Feshbach formalism we refer the
reader to [34, 35] and for its application to cold atom scattering e.g. [82].

5.4.1 Tailored Feshbach theory

By introducing the projector operators P and Q, which project onto the subspaces P
and Q, respectively, the two-body Schrödinger equation can be split into a set of coupled
equations [82]

(E −HPP )|ΨP 〉 = HPQ|ΨQ〉, (5.10)

(E −HQQ)|ΨQ〉 = HQP |ΨP 〉, (5.11)

where |ΨP 〉 ≡ P |Ψ〉, |ΨQ〉 ≡ Q|Ψ〉, HPP ≡ PHP , HPQ ≡ PHQ, etc. Within Q space the
Hamiltonian HQQ is diagonal with eigenstates |φQ〉 corresponding to the two-body bound
state with eigenvalues εQ. The energy E = ~2k2/2µ is de�ned with respect to the open
channel dissociation threshold.
We consider one open channel and assume that near a resonance it couples to a single
closed channel. This allows us to write the S matrix of the e�ective problem in P space
as [82]

S(k) = SP (k)

(
1− 2πi

|〈φQ|HQP |Ψ+
P 〉|2

E − εQ −A(E)

)
, (5.12)

where |Ψ+
P 〉 are scattering eigenstates of HPP , SP (k) is the direct scattering matrix de-

scribing the scattering process in P space in the absence of coupling to Q space.
The complex energy shift A(E) describes the dressing of the bare bound state |φQ〉 by
the coupling to the P space and is represented by

A(E) = 〈φQ|HQP
1

E+ −HPP

HPQ|φQ〉, (5.13)

where E+ = E + iδ with δ approaching zero from positive values. Usually the open
channel propagator [E+ − HPP ]−1 is expanded to a complete set of eigenstates of HPP ,
where the dominant contribution comes from scattering states. To circumvent the use of
scattering states we expand the propagator to Gamow resonance states, which leads to a
Mittag-Le�er expansion [190]

1

E+ −HPP

=
µ

~2

∞∑
n=1

|Ωn〉〈ΩD
n |

kn(k − kn)
, (5.14)
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where n runs over all poles of the SP matrix. The Gamow state |Ωn〉 is an eigenstate of
HPP with eigenvalue εPn = ~2k2

n/(2µ). Correspondingly, the dual state |ΩD
n 〉 ≡ |Ωn〉∗, is

an eigenstate of H†
PP with eigenvalue (εPn)∗. Using these dual states, the Gamow states

form a biorthogonal set such that 〈ΩD
n |Ωn′〉 = δnn′ . For bound-state poles kn = iκn, where

κn > 0, Gamow states correspond to properly normalized bound states.
We assume the scattering in the open channel is dominated by a single bound state
(kn = iκP ). This allows us to write the direct scattering matrix in Eq. (5.12) as

SP (k) = e−2ikabg = e−2ikaP
bg
κP − ik

κP + ik
(5.15)

where abg is the open channel scattering length, and the P -channel background scattering
length aP

bg is on the order of the range of the interaction potential aP
bg ≈ r0. Since we

only have to consider one bound state pole (with energy εP = −~2κ2
P/2µ) in P space,

the Mittag-Le�er series Eq. (5.14) is reduced to only one term. Therefore, the complex
energy shift Eq. (5.13) reduces to

A(E) =
µ

~2

−iA
κP (k − iκP )

. (5.16)

where A ≡ 〈φQ|HQP |ΩP 〉〈ΩD
P |HPQ|φQ〉 is a positive constant. The coupling matrix element

between open-channel bound state and the closed-channel bound state responsible for the
Feshbach resonance is related to A.
The complex energy shift can be decomposed into a real and imaginary part such that
A(E) = ∆res(E) − i

2
Γ(E). For energies E > 0 the unperturbed bound state becomes a

quasi-bound state: its energy undergoes a shift ∆res and acquires a �nite width Γ. For
energies below the open-channel threshold, i.e. E < 0, A(E) is purely real and Γ(E) = 0.
In the low-energy limit, k → 0, Eq. (5.16) reduces to

A(E) = ∆− iCk, (5.17)

where C is a constant characterizing the coupling strength between P and Q space [82],
given by C = A(2κP |εP |)−1 and ∆ = A(2|εP |)−1. Note that if the direct interaction is
resonant, |abg| � r0, the energy dependence of the complex energy shift is given by [191]
A(E) = ∆ − iCk(1 + ikaP )−1 where aP = κ−1

P , yielding an energy dependence of the
resonance shift.
Since we consider one open channel, the (elastic) S-matrix element can be written as
e2iδ(k), where δ(k) is the scattering phase shift. The scattering length, de�ned as the limit
a ≡ − tan δ(k)/k, (k → 0), is found to be

a(B) = abg

(
1− ∆B

B −B0

)
, (5.18)

which shows the well known dispersive behavior. The direct scattering process is de-
scribed by the scattering length abg = aP

bg + aP . At magnetic �eld value B0, where the
dressed molecular state crosses the P -threshold, the scattering length has a singularity.
Near threshold, the shifted energy of the uncoupled molecular state, εQ + ∆, can be ap-
proximated by ∆µ(B − B0). The �eld width of the resonance is found to be equal to
∆B = C(abg∆µ)−1, where ∆µ is the magnetic moment di�erence of the molecular state
and the P -channel atoms.
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Figure 5.5: Di�erent types of bound states, derived from a two-channel ABM model. The
unperturbed molecularQ space bound state (dot-dashed red) is dressed by the coupling to
P space, where εP is the uncoupled P space bound state (dot-dashed blue). Near threshold
of the open channel (solid blue) the energy curve of the dressed molecular Feshbach state
(solid black) will bend quadratically as a function of B and will cross the threshold at B0.
The uncoupled Q space bound state crosses the threshold at B̃0. For the original ABM
bound state (gray) no threshold e�ects are seen and the coupled bound state crosses at
B′

0.

The dressed state can be considered as a (quasi-) bound state of the total scattering
system. The energy of these states is obtained by �nding the poles of the total S matrix
Eq. (5.12). This results in solving

(k − iκP ) (E − εQ −A(E)) = 0, (5.19)

for k. Due to the underlying assumptions, this equation is only valid for energies around
threshold where the open and closed channel poles dominate.

We apply the above Feshbach theory to a (�ctitious) two-channel version of ABM, and
the results are shown in Fig. 5.5. This two-channel system is represented by a 2 × 2
Hamiltonian matrix, where there is only one open and one closed channel. The open and
closed channel binding energies εP resp. εQ are given by the diagonal matrix elements,
while the coupling is represented by the (identical) o�-diagonal matrix elements. The
closed channel bound state is made linearly dependent on the magnetic �eld, while the
coupling is taken constant. In addition to εP and εQ, we plot the corresponding ABM
solution, which in this case is equivalent to a typical two-level avoided crossing solution.
The �gure now nicely illustrates the evolution from ABM to the dressed ABM approach,
where the latter solutions are found from the two physical solutions of Eq. (5.19), which
are also plotted. Since the dressed ABM solutions account for threshold e�ects, they show
the characteristic quadratic bending towards threshold as a function of magnetic �eld.
From this curvature the resonance width can be deduced.



102 Asymptotic Bound-state Model

5.4.2 The dressed Asymptotic Bound state Model

To illustrate the presented model for a realistic case, we will discuss the 6Li-40K system
prepared in the |fLimfLi

, fKmfK
〉 = |1/2,+1/2, 9/2,−7/2〉 two-body hyper�ne state as an

example throughout this section. This particular mixture is the energetically lowest spin
combination of the mF = −3 manifold, allowing to consider only one open channel. We
note that the model can be utilized to cases containing more open channels.
In order to calculate the width of a Feshbach resonance using the method presented in
Sect. 5.4.1 three quantities are required: the binding energy of the open channel εP , of the
closed channel responsible for the Feshbach resonance εQ, and the coupling term between
the two channels HPQ. In the following we will describe how to obtain these quantities
from the ABM by two simple basis transformations.
For ultracold collisions the hyper�ne and Zeeman interactions determine the threshold
of the various channels and thus the partitioning of the Hilbert space into subspaces P
and Q, and therefore a natural basis for our tailored Feshbach formalism consists of the
eigenstates of Hint. Experimentally a system is prepared in an eigenstate of the internal
Hamiltonian Hint. This channel will be referred to as the entrance channel. Performing
a basis transformation from the |SmSµαµβ〉 states to the eigenstates of Hint allows us
to identify the open and closed channel subspace. The open channel has the same spin-
structure as the entrance channel.
We now perform a second basis transformation which diagonalizes within Q space without
a�ecting P space. We obtain the eigenstates of HQQ and are able to identify the bound
state responsible for a particular Feshbach resonance. The bare bound states ofQ space are
de�ned as {|φQ1〉, |φQ2〉, . . .} with binding energies {εQ1 , εQ2 , . . .}. For the one dimensional
P space, which is unaltered by this transformation, the bare bound state |ΩP 〉 of HPP

is readily identi�ed with binding energy εP . In the basis of eigenstates of HPP and HQQ

we easily �nd the coupling matrix elements between the i-th Q space bound state and
the open channel bound state 〈φQi

|HQP |ΩP 〉. This gives the coupling constant Ai =
〈φQi

|HQP |ΩP 〉〈ΩP |HPQ|φQi
〉 that determines the resonance �eld B0 by solving Eq. (5.19)

at threshold, which is for E = 0:

εQi
εP =

Ai

2
. (5.20)

The �eld width of this Feshbach resonance is proportional to the magnetic �eld di�er-
ence between the crossings of the dressed (B0) and uncoupled Q bound states (B̃0) with
threshold since

∆B =
aP

abg

(B0 − B̃0) =
aP

abg

Ai

2|εP |∆µ
. (5.21)

We illustrate the dressed ABM for Li-K in Figs. 5.6 and 5.7, formF = −3. To demonstrate
the e�ect of HPQ, we plotted for comparison both the uncoupled and dressed bound states
3. Details of near-threshold behavior (gray shaded area in Fig. 5.6) are shown in Fig. 5.7
together with the obtained scattering length. We solved the pole equation of the total
S-matrix Eq. (5.19) for each Q-state and plotted only the physical solutions which cause
Feshbach resonances. The dressed bound states show the characteristic quadratic bending
near the threshold. We have used C6 to determine r0 (≈ aP

bg) from Eq. 5.8.
Table 5.1 summarizes the results of the dressed ABM for the Li-K mixture. Note that the
position of the Feshbach resonances will be slightly di�erent compared to the results from

3For clarity only one of the two physical solutions is shown.
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Table 5.1: The positions of experimentally observed s-wave Feshbach resonances of
6Li−40K. Column 2 gives the 6Li (mfLi

) and 40K (mfK
) hyper�ne states. For all resonances

fLi = 1/2 and fK = 9/2. Note that the experimental width of the loss feature ∆Bexp is not
the same as the �eld width ∆B of the scattering length singularity. Feshbach resonance
positions B0 and widths ∆B for 6Li-40K as obtained by the dressed ABM, obtained by
minimizing χ2. The last two columns show the results of full coupled channels (CC)
calculations. All magnetic �elds are given in (G). The experimental and CC values for
mF < 0 and mF > 0 are taken from Ref. [17] and [18] respectively.

Experiment dressed ABM CC
mF mfLi

,mfK
B0 ∆Bexp B0 ∆B B0 ∆B

-5 −1
2
, −9

2
215.6 1.7 216.2 0.16 215.6 0.25

-4 +1
2
, −9

2
157.6 1.7 157.6 0.08 158.2 0.15

-4 +1
2
, −9

2
168.2 1.2 168.5 0.08 168.2 0.10

-3 +1
2
, −7

2
149.2 1.2 149.1 0.12 150.2 0.28

-3 +1
2
, −7

2
159.5 1.7 159.7 0.31 159.6 0.45

-3 +1
2
, −7

2
165.9 0.6 165.9 0.0002 165.9 0.001

-2 +1
2
, −5

2
141.7 1.4 141.4 0.12 143.0 0.36

-2 +1
2
, −5

2
154.9 2.0 154.8 0.50 155.1 0.81

-2 +1
2
, −5

2
162.7 1.7 162.6 0.07 162.9 0.60

+5 +1
2
, +9

2
114.47(5) 1.5(5) 115.9 0.91 114.78 1.82

the regular ABM, for equal values of εν,0
S . Therefore, we have again preformed a χ2 analysis

and we found new values of the binding energies ε0 = 713[MHz] and ε1 = 425[MHz], which
yields a lower χ2 minimum as compared to the ABM calculation.
The obtained value of ∆B generally underestimates the �eld width of a resonance. This
originates from the fact that only the dominant bound state pole corresponding to aP

has been taken into account. By including the pole of the dominant virtual state in the
Mittag-Le�er expansion, ∆B will increase, and the value of abg will become more accurate.

5.5 Summary and Conclusion

We developed a novel method to describe Feshbach resonances. The model allows for fast
and accurate prediction of resonance positions and widths with very little experimen-
tal input. The combination of the ABM with the accumulated phase allows to describe
Feshbach resonances for a very large number of systems. We have demonstrated the ap-
plication on three very di�erent systems. The model underestimates the resonance width
because we have neglected the dominant virtual state contribution in the Mittag-Le�er
expansion. A further improvement of the model would be to take the virtual states into
account. With this work we demonstrate that by performing simple matrix operations
Feshbach resonances can be accurately described, allowing for a broad application for
experiments working with ultracold gases.
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Figure 5.6: Dressed molecular states for Li-K for mF = −3 (black lines, see also Table
5.1). The uncoupled Q and P bound states (HPQ = 0) are represented by the dot-dashed
lines (red and blue respectively), indicating the e�ect of the HPQ coupling.
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Figure 5.7: The dressed molecular states are shown near threshold (black). The �eld
width of a resonance is related to the magnetic �eld di�erence of where the dressed and
uncoupled Q bound state cross the threshold.



Chapter 6

Feshbach resonances in Li-K

We explore the widths of interspecies Feshbach resonances in a mix-
ture of the fermionic quantum gases 6Li and 40K. Experimentally, we
obtain the asymmetric lineshape of the interspecies elastic cross sec-
tion by measuring the distillation rate of 6Li atoms from an optically-
trapped 6Li/40Kmixture as a function of magnetic �eld. This provides
us with the �rst experimental determination of the width of a reso-
nance in this mixture, ∆B = 1.5(5) G, being one of the broadest. We
present an extended version of the Asymptotic Bound-state Model
and show that this model o�ers a convenient method to estimate the
width and position of a large number of Feshbach resonances. Our re-
sults o�er good perspectives for the observation of universal crossover
physics in this mixture.
This chapter has been submitted to PRL [18]

6.1 Introduction

A decade of experiments with degenerate fermionic quantum gases has delivered major
scienti�c advances as well as a whole new class of quantum many-body systems [7, 59,
95]. Feshbach resonances [192] played a central role in this development as they o�er
exceptional control over the interatomic interactions at low-temperatures [62]. In gases
with the appropriate spin mixture the sign and magnitude of the s-wave scattering length
a can be tuned to any positive or negative value by choosing the proper magnetic �eld in
the vicinity of a resonance. In the case of fermionic atoms the role of Feshbach resonances is
especially remarkable because Pauli exclusion dramatically suppresses three-body losses
to deeply bound molecular states [193, 29]. The tunability has been used with great
success in two-component Fermi gases of 6Li and of 40K to study and control pairing
mechanisms, both of the Cooper type on the attractive side of the resonance (a < 0) [194]
and of the molecular type on the repulsive side (a > 0) [195]. In particular the universal
crossover from the super�uidity of a molecular Bose-Einstein condensate (BEC) towards
the Bardeen, Cooper, Schrie�er (BCS) limit received a lot of attention [196].
Recently the study of heteronuclear fermionic mixtures, in particular the 6Li/40K mix-
ture, has strongly gained in interest due to its additional mass imbalance. Experimentally
unexplored properties of these mixtures include: super�uidity [20], phase separation [21],
crystalline phases [197], exotic pairing mechanisms [198] and long-lived trimers [30]. In
combination with spectroscopic measurements, precision measurements of Feshbach res-
onances can push the accuracy of the intermolecular potentials beyond the limitations
of the Born-Oppenheimer approximation [136]. In the �rst experiment with the 6Li/40K
mixture quantum degeneracy was reported by the Munich group, using a BEC of 87Rb
as a third species to assure thermalization of the fermions [199]. The basic interaction
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properties of the 6Li/40K system were established in experiments by the Innsbruck group
[17], in which the loss features of 13 Feshbach resonances were observed and assigned with
the computationally-light Asymptotic Bound-state Model (ABM) as well as with a full
coupled-channels analysis. The �rst 6Li40K molecules were recently reported from Munich
[44].

In this Letter we report the �rst observation of the asymmetric lineshape (Fano pro�le)
of the inter-species elastic cross section in the K-rich 6Li/40K mixture near a Feshbach
resonance. Very recently, also the Li-rich mixture was studied [75]. Using a variation on the
evaporation method [200], we measure the rate of distillation (preferential evaporation)
of 6Li atoms from a K-rich 6Li/40K mixture con�ned in an optical dipole trap. The line
shape provides for this mixture the �rst precision determination of a resonance position
as well as the �rst measurement of a resonance width. Extending the ABM approach we
estimate the widths of all s-wave Feshbach resonances in stable two-component 6Li/40K
mixtures below 500 G. The experimentally characterized resonance is one of the broadest
of the 6Li/40K system.

6.2 Experimental procedure

The ultracold mixture of 6Li and 40K is created starting from two independent two-
dimensional magneto-optical traps (2D MOTs) as beam sources for cold atoms [201].
From the cold beams we recapture about 109 K atoms and 106 Li atoms in a two-
species 3D MOT. After optical pumping we transfer up to 80% of the 6Li and 60%
of the 40K into an optically plugged magnetic quadrupole trap [5]. This trap is formed
by a quadrupole �eld with a gradient of 180 G/cm along the tight vertical axis, plugged
along the horizontal axis with a 7 W blue-detuned laser beam (532 nm) focused to a
waist of 16 µm. The transfer is optimized to create a spin-polarized sample of 6Li in the
|f,mf〉 = |3/2,+3/2〉 hyper�ne state and a three-component mixture of 40K in the hyper-
�ne states |9/2,+5/2〉, |9/2,+7/2〉 and |9/2,+9/2〉. The three-components assure e�ective
thermalization of the potassium by intra-species collisions. The lithium thermalizes sym-
pathetically by inter-species collisions with the potassium. The 6Li/40K mixture is cooled
for 23 seconds by forced evaporation (from high �eld down) in the plugged trap on the mi-
crowave transitions of K (|9/2,mf〉 → |7/2,mf − 1〉) and Li (|3/2,+3/2〉 → |1/2,+1/2〉)
simultaneously. Just before inter-species spin-exchange losses become prohibitive the evap-
oration is stopped to remove the non-stretched potassium states (mf < +9/2) by a mi-
crowave spin-cleaning sweep (from zero �eld up), removing the undesired atoms in the
plug-region of the trap. After cleaning, the remaining 30% of the 40K is transferred to-
gether with the 6Li into an optical dipole trap with a well depth of U0 = 360 µK for K
(U0 = 160 µK for Li). The trap is created using a 5 W �ber laser (λ = 1.07 µm) focused
to a waist of 19 µm and serving as an optical tweezer.

With an additional stage of forced evaporative cooling in the optical trap we reached - in
pure 40K - a quantum degenerate spin mixture at temperature T ' 0.2TF , where TF is the
Fermi temperature. To prepare the 6Li/40K mixture we apply a holding �eld of ∼ 10 G and
succeed in transferring up to 50% of the 6Li atoms to the |1/2,+1/2〉 state by adiabatic
fast passage on the microwave transition using a �eld sweep downwards across the resonant
�eld chosen at ∼ 9 G. The residual population of the f = 3/2 manifold is removed by a
resonant light pulse on the 2S1/2 → 2P3/2 transition. For the Feshbach measurements the
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resulting clean mixture is optically transported without substantial losses by moving the
optical tweezer in 3.5 s over a distance of 21.5 cm to a 12.7 × 12.7 × 42 mm quartz cell
extending from the main vacuum chamber. The transport is realized by moving a lens
mounted on a precision linear air-bearing translation stage. In the Feshbach cell we can
apply homogeneous �elds (< 10 ppm/mm) of up to 500 G. At this point we have prepared
a |1/2,+1/2〉Li−|9/2,+9/2〉K mixture consisting of 4×103 lithium and 2×104 potassium
atoms at temperature T ≈ 21(2) µK.

6.3 Extended ABM

In search for broad and accessible Feshbach resonances we analyzed the 6Li/40K two-
body system with an extended version of the ABM [17]. We start from the two-body
Hamiltonian for the relative motion

H = p2/2µ+ V +Hint = Hrel +Hint, (6.1)

containing the relative kinetic energy with µ the reduced mass, the electron spin dependent
central interatomic interaction V , and the internal energy Hint of the two atoms. Here
we restrict Hint to the hyper�ne and Zeeman terms and consider s-wave interactions
only. Instead of solving coupled radial Schrödinger equations, the ABM approach relies
on knowledge of the binding energies of the highest bound states in the two-body system,
which is su�cient to determine the scattering properties, and, in particular, the position
of Feshbach resonances. For 6Li/40K only the least bound levels of Hrel are relevant and
can be obtained using the eigenvalues ES of the least bound states in the electron-spin
singlet (S = 0) and triplet (S = 1) potentials as free parameters; here we adapt E0 and
E1 from Ref. [17].
The mixture is prepared in one of the two-body hyper�ne eigenstates of Hint at magnetic
�eld B, referred to as the P -channel or open channel; for B = 0 denoted via the hyper�ne
quantum numbers as |fα,mfα ; fβ,mfβ

〉. The corresponding energy of two free atoms at rest
in the mixture de�nes the B-dependent threshold between the scattering states (E > 0)
and the bound states (E < 0) of H. In the following we de�ne H relative to this threshold
energy. A complete basis for the spin properties is de�ned via the quantum numbers S,
its projection MS, and the projection of the nuclear spins µα and µβ, while demanding
that the total projection MS + µα + µβ = mfα + mfβ

= MF is �xed. By diagonalizing
H starting from this `singlet-triplet' basis we �nd the energies of the bound states, and
the Feshbach resonances are localized at the magnetic �elds where they intersect with the
energy of the threshold.
Threshold e�ects cause the approximately linear magnetic �eld dependence of the bound-
state energies to change to quadratic behavior close to the �eld of resonance [95, 62].
This provides information about the width of a Feshbach resonance. The ABM, as dis-
cussed thus far, does not show these threshold e�ects, which is not surprising because the
threshold is not explicitly build into the theory; it is merely added as a reference value
for comparison with the ABM eigenvalues.
However, the ABM contains all ingredients to obtain also the resonance width. Here we
give a brief description [202]. The width depends on the coupling between the open channel
and the various closed channels, which is determined in two steps. First we separate the
open channel P , as de�ned above, from all other channels: the closed channels Q [82]. This
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is realized with a basis rotation from the singlet-triplet basis to the basis of the eigenstates
of Hint at �eld B. Next we diagonalize the closed-channel subspace, leaving the open-
channel una�ected. We refer to the diagonal sub-spaces as HPP , a single matrix element
that we identify with the (bare) open-channel bound-state energy εP = −~2κ2

P/2µ, and as
HQQ, a matrix containing the (bare) closed-channel bound-state energies εQ. The coupling
between the open and the resonant closed channel is referred to as HPQ.
The bare bound states (in both open and closed channel) are `dressed' by HPQ. This is
nicely treated in Feshbach's resonance theory [203, 204]: a closed-channel bound state
acquires a �nite width Γ and its energy undergoes a shift ∆res. If the binding energy of
a certain Q-channel bound state |φQ〉 is su�ciently close to the threshold the complex
energy shift is given by [204]

A(E) = ∆res(E)− i

2
Γ(E) =

µ

~2

−iA
κP (k − iκP )

, (6.2)

where A = |〈φQ|HQP |φP 〉|2 is the coupling strength to the P -channel bound state |φP 〉.
For k → 0 the expression Γ ≡ ~2k/µR∗ de�nes the characteristic length R∗ [83]. The
negative energy E = ~2k2/2µ of the dressed bound state follows by solving the pole
equation E − εQ − A(E) = 0. From the energy dependence of the dressed bound state
we obtain an expression for the magnetic �eld width ∆B of the corresponding Feshbach
resonance as de�ned by the dispersive formula for the �eld dependence of the scattering
length,

a(B) = abg

(
1− ∆B

B −B0

)
. (6.3)

The resonance width ∆B is given by

µrel∆B =
aP

abg

A

2εP
. (6.4)

Here µrel = ∂εQ/∂B|B=B0 is the magnetic moment of the bare Q channel relative to the
open channel threshold. Note that R∗ = −~2εP/(µa

P A) = ~2/(2µabgµrel∆B). The o�-
resonance scattering is described by the background scattering length abg = aP

bg + aP ,

where aP
bg ≈ r0 and a

P = κ−1
P . Here r0 ≡ (µC6/8~2)1/4 ' 41 a0 is the inter-species Van der

Waals range, with C6 the Van der Waals coe�cient and a0 the Bohr radius.
The results for all s-wave resonances in stable two-component 6Li/40K mixtures below
500 G are shown in Fig. 6.1. The widest resonances for the 6Li/40K mixture are found
to be of the order of 1 Gauss. For the experiment we selected a resonance in the fully-
stretched (MF = 5) manifold |1/2,+1/2〉Li ⊗ |9/2,+9/2〉K with the predicted position of
B0 = 114.7 G as obtained with the ABM parameters E0,1 from Ref. [17]. The predicted
width is ∆B = 0.9 G. This value is known to slightly underestimate the actual width
[202, 205].

6.4 Feshbach resonance width measurement

To observe the resonance we �rst ramp the �eld up to 107.112 G where any remaining
potassium spin impurities are selectively removed by resonant light pulses. The Fano
pro�le of the resonance is observed by measuring the distillation rate of the Li from the
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Figure 6.1: ABM calculated widths of all s-wave Feshbach resonances in stable two-
component 6Li/40K mixtures below 500 G. The lines are a guide to the eye. The point
at MF = −5 corresponds to the |1/2,−1/2〉Li−|9/2,−9/2〉K mixture. All other mixtures
contain the 6Li ground state |1/2,+1/2〉Li. Solid black dot: width measurement reported
in this work. The mixtures with −MF = 5, 4, 3, 2 (gray squares) where studied in Ref. [17].
The resonance used in Ref. [44] for molecule formation is indicated with an arrow.
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line indicates the best �t obtained for B0 = 114.47(5) G and ∆B = 1.5(5) G. The gray
shaded area indicates the combined error in B0 and ∆B.
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potassium-rich Li-K mixture in the optical trap as a function of magnetic �eld. To initiate
this process we decrease the depth of the dipole trap in 10 ms to U/U0 ≈ 0.15. Aside from a
small spilling loss of the 6Li this decompresses the mixture with a factor (U/U0)

3/4 ≈ 0.24
in the adiabatic limit and reduces the temperature accordingly by a factor (U/U0)

1/2 ≈
0.39. The truncation parameter for evaporation, η = U/kBT , drops for both species by
the same amount η/η0 ≈ 0.39. After decompression the central density of the potassium
is nK ≈ 2 × 1011 cm−3 (nLi ≈ 9 × 109 cm−3 for Li) and the temperature of the mixture
is T = 9(1) µK. As the truncation parameter of the lithium (ηLi ≈ 2.7) is much smaller
than that of potassium (ηK ≈ 6.2) the Li preferentially evaporates at a rate proportional
to the inter-species elastic cross section. As the lithium is the minority component this
distillation process proceeds at an approximately constant rate. We have veri�ed that a
pure lithium cloud experiences no rethermalization by itself. The �nal trap depth U was
determined from the total laser power and the measured trap frequency for the potassium,
ωr/2π = 1.775(6) kHz. In Fig. 6.2 we plot the atom number after various holding times
and as a function of magnetic �eld. We analyze our data by modelling the distillation
rate. Before decompression (ηLi ≈ 7) we observe a loss of 30% for 1s holding time on
resonance. As the decompression reduces the density by a factor 4 the three-body losses
can be neglected in the decompressed trap. The distillation of the lithium as a function of
time t is described by N(t) = N0 e

−t/τeve−t/τbg , where N0 ≈ 3× 103 is the initial number
of lithium atoms, τbg = 25 s the vacuum limited lifetime and τ−1

ev ' nK〈σ (k) ~k/µ〉e−ηLi

the thermally-averaged evaporation rate. Here is

σ(k) = 4π
a2(k)

1 + k2a2(k)
(6.5)

the elastic cross section with

a(k) = abg +
abgµrel∆B

~2k2/2µ− µrel (B −B0)
(6.6)

the `Doppler shifted' scattering length, with abg = 56.6 a0 at the resonance position B0,
and µrel = 1.57µB. Note that for kR

∗ � 1 Eqs. (6.6) and (6.3) yield the same result for
the cross section (6.5).

The solid lines in Fig. 6.2 show the best simultaneous �t of the thermally-averaged Eq. (6.5)
to the four sub-�gures, accounting for 25% variation in N0 from one day to the next.
The best �t is obtained for B0 = 114.47(5) G and ∆B = 1.5(5) G (R∗ ≈ 100 nm),
where B0 is mostly determined by the data of Fig. 6.2a and ∆B by those of Fig. 6.2d.
Uncertainties in T and nK can result in broadening of the loss features but the di�erence
in asymmetries between Fig. 6.2a-d can only originate from the asymmetry of the elastic
cross section around the resonance. The zero crossing of a(k), prominently visible in
systems with a resonantly enhanced abg like 6Li [206] and 40K [207], remains within the
noise band of our distillation measurements because in the 6Li/40K system abg is non-
resonant (σbg = 1× 10−12cm−2). Close to the expected zero crossing a narrow MF = +2
Feshbach resonance occurs at 115.6 G in the |1/2,+1/2〉Li ⊗ |9/2,+3/2〉K manifold. We
have observed this resonance in impure spin mixtures.
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6.5 Conclusion

The chosen resonance o�ers good perspectives to meet the conditions for universal
crossover physics in this mixture: EF , µrel |B −B0| � Γ/2, where EF ≡ ~2k2

F/2µ is
the characteristic relative energy of a colliding pair of atoms at their Fermi energy.
The former condition corresponds to kFR

∗ � 1 and is satis�ed for Fermi energies
EF � E∗ ≡ ~2/2µR∗2 ∼ 5 µK; the latter condition corresponds to kFa � 1 and is
satis�ed for µrel |B −B0| /E∗ < kFR

∗ � 1 ⇔ |B −B0| � 43 mG.
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Chapter A

Potassium Properties

A.1 Introduction

This section is meant to provide an overview of the properties of atomic potassium to be
used in ultracold gases experiments. A very thorough review of the properties of lithium
has been given in the thesis of Michael Gehm [208, 209]. The properties of potassium are
well discussed in the thesis of Robert Sylvester Williamson III [120], and a lot of properties
in this appendix are obtained from it. For the other alkali atoms extended reviews have
been given for Na, Rb and Cs by Daniel Steck [210].

A.2 General Properties

Potassium is an alkali-metal occurring with the symbol K and atomic number 19. It has
been discovered in 1807 by deriving it from potassium hydroxide KOH. Being an alkali
atom it has only one electron in the outermost shell and the charge of the nucleus is being
shielded by the core electrons. This makes the element very chemically reactive due to the
relatively low ionization energy of the outermost electron. The basic physical properties
of potassium are listed in Table A.1. Potassium has a vapor pressure given in mbar by
[159]:

(solid) log p = 7.9667− 4646

T
298 K < T < Tm. (A.1)

(liquid) log p = 7.4077− 4453

T
Tm < T < 600 K

Figure A.1 depicts the vapor pressure over the valid range of Eq. A.1.

Potassium has a chemical weight of 39.0983(1) [212] and appears naturally in three iso-
topes, 39K, 40K and 41K which are listed in Table A.2. The fermionic isotope 40K has

Melting point 63.65◦C (336.8 K) [211]
Boiling point 774.0◦C (1047.15 K) [211]

Density at 293 K 0.862 g/cm3 [211]

Ionization energy 418.8 kJ mol−1 [211]
4.34066345 eV [89]

Vapor pressure at 293 K 1.3× 10−8 mbar [159]
Electronic structure 1s22s2p63s2p64s1

Table A.1: General properties of potassium
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Figure A.1: Vapor pressure of potassium taken from [159]. The green dashed line indi-
cates the melting point of T = 336.8◦C.
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Isotope A Neutrons N Abundance (%)[212] m (u)[214] τ [120] I[120]
39 20 93.2581(44) 38.96370668(20) stable 3/2
40 21 0.0117(1) 39.96399848(21) 1.28× 109 y 4
41 22 6.7302(44) 40.96182576(21) stable 3/2

Table A.2: Naturally occurring isotopes of potassium. The atomic number of potassium
is Z = 19. The given properties are the atomic number A, the number of neutrons in the
nucleus N , the abundance, the atomic mass m, the lifetime τ and the nuclear spin I.

two radioactive decay channels. In 89% of the cases it decays through a β− decay of
1.311MeV resulting in the stable 40Ar. In the remaining 11% it decays through electron
capture (K-capture) to 40Ca [213]. The former decay channel is commonly used for dating
of rocks.

A.3 Optical properties

The most strong lines of the ground state potassium atom are the D1 (2S → 2P1/2)
and D2 (2S → 2P3/2) lines. The most recent high precision measurements of the optical
transition frequencies of potassium have been published by Falke et al. [102]. Table A.3
and A.4 list the properties of the D1 and D2 lines respectively. The natural lifetime τ of
an excited state is related to the linewidth of the associated transition by

Γ =
1

τ
(A.2)

where Γ is the natural linewidth. A temperature can be related to this linewidth, which
is referred to as the Doppler temperature

kBTD =
~Γ

2

where kB is the Boltzmann constant. The wavenumber k and frequency ν of a transition
are related to the wavelength λ by

k =
2π

λ
, ν =

c

λ
(A.3)

When an atom emits or absorbs a photon the momentum of the photon is transferred to
the atom by the simple relation

mvrec = ~k (A.4)

wherem is the mass of the atom, vrec is the recoil velocity obtained (lost) by the absorption
(emission) process and ~ = h/2π is the reduced Planck constant. A temperature can be
associated to this velocity, which is referred to as the recoil temperature

kBTrec =
1

2
mv2

rec (A.5)

Finally, we can de�ne a saturation intensity for a transition. This intensity is de�ned as the
intensity where the optical Rabi-frequency equals the spontaneous decay rate. The optical
Rabi-frequency depends on the transition. For the cycling transition F = 9/2 → F = 11/2
it is given by



116 Potassium Properties

Property symbol value reference

Frequency ν 389.286184353 THz [102]
Wavelength λ 770.108136507 nm
Wavenumber k/2π 12985.1893857 cm−1

Lifetime τ 26.37(5) ns [215]
Natural linewidth Γ/2π 6.03(1) MHz
Recoil velocity vrec 1.2965411 cm/s

Recoil Temperature Trec 0.40399576 µK
Doppler Temperature TD 145 µK

Table A.3: Optical properties of the 40K D1-line.

Property symbol value reference

Frequency ν 391.016296050 THz [102]
Wavelength λ 766.700674699 nm
Wavenumber k/2π 13042.8997000 cm−1

Lifetime τ 26.37(5) ns [215]
Natural linewidth Γ/2π 6.03(1) MHz
Recoil velocity vrec 1.3023033 cm/s

Recoil Temperature Trec 0.40759471 µK
Doppler Temperature TD 145 µK
Saturation intensity Is 1.75 mW/cm2

Table A.4: Optical properties of the 40K D2-line.

Is =
πhc

3λ3τ

A.4 Fine structure, Hyper�ne structure and the Zee-

man e�ect

The �ne structure interaction originates from the coupling of the orbital angular momen-
tum L of the valence electron and its spin S with corresponding quantum numbers L and
S respectively. The total electronic angular momentum is given by:

J = L + S

and the quantum number J associated with the operator J is in the range of |L − S| ≤
J ≤ L+S. The electronic ground state of 40K is the 42S1/2 level, with L = 0 and S = 1/2,
therefore J = 1/2. For the �rst excited state L = 1 and S = 1/2 therefore J = 1/2 or
J = 3/2 corresponding to the states 42P1/2 and 42P3/2 respectively. The �ne structure
interaction lifts the degeneracy of the 42P1/2 and 42P3/2 levels, splitting the spectral lines
in the D1 line (4

2S1/2 → 42P1/2) and the D2 line (4
2S1/2 → 42P3/2).
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770.108 nm

F=9/2 (-571.462 MHz)

F=7/2 (714.328 MHz)

F=9/2 (-69.0 MHz)

F=7/2 (86.3 MHz)

F'=11/2 (-46.4 MHz)

F'=9/2 (-2.3 MHz)

F'=7/2 (31.0 MHz)
F'=5/2 (55.2 MHz)

1285.79 MHz

40
K

Figure A.2: Optical transitions of the D1 and D2-lines of 40K and the transitions used
for trapping, cooling and diagnostics. Numerical values are taken from [102] and [77].
Note the inverted hyper�ne structure.

The hyper�ne interaction originates from the coupling of the nuclear spin I with the total
electronic angular momentum

F = J + I

where the quantum number F associated with the operator F is in the range of |J − I| ≤
F ≤ J + I, where I is the quantum number corresponding to the operator I. For 40K
the �ne-structure splitting is ∆EFS ' h × 1.7 THz, therefore the two excited states can
be considered separately when considering smaller perturbations like the hyper�ne or
Zeeman interaction which are on the order of a few GHz or less.
The Hamiltonian describing the hyper�ne structure for the two excited states described
above is given by [77, 78]

Hhf =
ahf

~2
I · J+

bhf

~2

3(I · J)2 + 3
2
(I · J)− I2J2

2I(2I − 1)J(2J − 1)
,

where ahf and bhf are the magnetic dipole and electric quadrupole constants respectively.
The dot product is given by

I · J =
1

2
(F2 − I2 − J2)

In the presence of an external magnetic �eld the Zeeman interaction has to be taken into
account

HZ = (gJJ− gII) ·B,
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B =357Ghf,K

F=9/2

F=7/2

m =-9/2F

m =+9/2F

m =+7/2F

m =-7/2F

m =+7/2F

Figure A.3: The hyper�ne structure of the 2S1/2 groundstate of 40K. The states are
labeled with their low-�eld quantum numbers |F,mF 〉. Note the inverted hyper�ne struc-
ture.

Property symbol value Ref.

4p2S1/2 Magnetic dipole constant ahf h×−285.7308(24) MHz [77]
4p2P1/2 Magnetic dipole constant ahf h×−34.523(25) MHz [102]
4p2P3/2 Magnetic dipole constant ahf h×−7.585(10) MHz [102]

4p2P3/2 Electric quadrupole constant bhf h×−3.445(90) MHz [102]

Table A.5: Hyper�ne structure coe�cients for the ground state and the �rst exited state.

where gJ is the Landé g-factor of the electron and gI the nuclear gyromagnetic factor,
with the sign convention such that µ=gIµBi. The factor gJ can be written as

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
,

where gS ' 2.002319 is the electron g-factor, gL is the gyromagnetic factor of the orbital,
given by gL = 1−me/mn, where me is the electron mass and mn is the nuclear mass. The
total hyper�ne interaction in the presence of an external magnetic �eld is now given by
the internal hamiltonian

Hint = Hhf + HZ (A.6)

Figures A.3 and A.4 show the eigenvalues of Eq. A.6 for the 2S1/2 ground state and the
2P1/2 and

2P3/2 excited states respectively.

A.5 Scattering properties

The scattering properties of ultracold atoms are essential for the evaporative cooling
processes and most experiments performed with ultracold gases. At typical densities tem-
peratures the scattering reduces to s-wave scattering For ultracold scattering only lower
partial waves play a role and the scattering properties are determined by the positions of
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Figure A.4: Hyper�ne structure of the 2P1/2 (D1) and the 2P3/2 (D2) levels of 40K.

Property symbol value reference

Total nuclear g-factor gI −0.000176490(34) [77]
Total electronic g-factor gJ(4p

2S1/2) 2.00229421(24) [77]
Total electronic g-factor gJ(4p

2P1/2) 2/3
Total electronic g-factor gJ(4p

2P3/2) 4/3

Table A.6: Electronic and nuclear gyromagnetic factors. Experimental values for the gJ

values are not available, therefore, we use the Russel-Saunders values which agree within
the error margins for all other alkali atoms [77]. An experimental value for gJ can be
obtained by �tting to the data of Ref. [137].
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isotope as at

39/39 138.49(12) −33.48(18)
39/40 −2.84(10) −1985(69)
39/41 113.07(12) 177.10(27)
40/40 104.41(9) 169.67(24)
40/41 −54.28(21) 97.39(9)
41/41 85.53(6) 60.54(6)

Table A.7: s-wave scattering lengths for the various isotope-combinations of potassium,
values are taken from Ref. [137]

value units

C6 3925.9 Eha
6
0

C8 4.224× 105 Eha
8
0

C10 4.938× 107 Eha
10
0

r0 (
39K) 64.61 a0

r0 (
40K) 65.02 a0

r0 (
41K) 65.42 a0

Table A.8: Van der Waals properties of the scattering potential of potassium. Vvdw(r) =
−C6/r6 − C8/r8 − C8/r8.

only the last few bound states of the potentials. The scattering can be described by the
radial Schrödinger equation[

− ~2

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2

)
+ V (r)

]
R(r) = εR(r), (A.7)

where R(r) is the radial wavefunction, l is the angular momentum quantum number and
V (r) is the scattering potential. As has been pointed out in Chapter 5 many ultracold
scattering properties with su�cient accuracy for general use in the lab can be obtained by
only using the accumulated phase method and V (r) = −C6/r

6. However, for Potassium
accurate potentials have been published by Falke, et al. [137]. Because potassium has
S = 1/2 the total spin of the potassium dimer can be either singlet (S = 0) or triplet
(S = 1). Figure A.5 shows the Born-Oppenheimer potentials for the singlet X1Σ and
triplet a3Σ potentials. Solving Eq. A.7 for ε ↓ 0 one can obtain the scattering length.
Table A.7 lists the s-wave scattering lengths of the various potassium isotopes [137].

To qualitatively described the scattering for 40K we compare the scattering lengths to the
the van der Waals range. The van der Waals range is a measure for the typical range of
the potential for an atomic species and is given by [62]

mf1 , mf2 s/p B0 (G) ∆B (G) Ref.

-9/2 + -7/2 s 202.10± 0.07 7.8± 0.6 [65, 50, 216]
-9/2 + -5/2 s 224.21± 0.05 9.7± 0.6 [65, 217]
-9/2 + -5/2 p ∼ 198.8 [65, 50, 218]

Table A.9: All resonances are between spin states in the F = 9/2 manifold. This table
has been adapted from Ref. [65]
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X
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S

Figure A.5: Born-Oppenheimer potentials VS(r) for the singlet S = 0, X1Σ and the
triplet S = 1, a3Σ states.

Figure A.6: Wavefunctions of the least bound states of 40K for the singlet (left) and
triplet (right) potentials. The dashed curve indicates the potential and the solid curve the
radial wavefunction of the least-bound vibrational levels. Note the horizontal logarithmic
scale and the asymptotic character of the wavefunctions.

r0 =
1

2

(
2µC6

~2

)1/4

Using the van der Waals coe�cient of C6 = 3925.9 Eha
6
0 [137] for

40K we obtain a van der
Waals range of r0 ' 65 a0. The scattering lengths of both the singlet and triplet potentials
are much larger than r0 indicating resonant scattering due to the presence of a weakly
bound state in both the singlet and triplet scattering potentials. Figure A.6 shows the
wavefunctions of the least bound states in the singlet and triplet potentials for 40K. Note
the horizontal logarithmic scale. The wavefunctions extend far into the asymptotic van
der Waals tail of the potentials.
As has been pointed out often throughout this thesis the use of Feshbach resonances
are essential for the study of ultracold gases. Due to the resonant scattering in the open
channels (i.e. a large background scattering length) the Feshbach resonances of 40K are
considered broad resonances. In 40K two experimentally characterized s-wave Feshbach



122 Potassium Properties

resonances and one p-wave resonance have been published. The resonances are summarized
in Table A.9.



Chapter B

Li-K properties

B.1 General properties

In this appendix some properties of the Li-K system are tabulated. Table B.1 lists general
properties of the 6Li-40K system. Table B.2 lists the scattering lengths of the various
combination of isotopes.
Accurate scattering potentials for the Li-K system are described in Ref. [136]. To use
the accumulated phase method in its most simple form the complete potentials are not
required, but only the van der Waals tail su�ces. This is given by

VvdW (r) = −C6

r6
− C8

r8
− C10

r10

where the C8 and C10 terms can be omitted to obtain an even simpler form. Table B.3
lists the van der Waals coe�cients for the 6Li-40K system. To obtain a more accurate
potential the exchange interaction can be included in the potential, where the singlet and
triplet potentials are given

VS(r) = VvdW (r)∓ 1

2
J(r)

where the minus sign corresponds to the singlet (S = 0) potential and the plus sign to
the triplet (S = 1) potential. The exchange interaction is given by [79]

J(r) = J(γα, γβ, r)r
2

γα
+ 2

γβ
− 1

γα+γβ
−1
e−(γα+γβ)r

where

J(γα, γβ, r) = J0 + r(β − α)J1 +
1

2
r2(β − α)2J2

where the parameters are given in Table B.3
In experiments with 40K87Rb the Ramsauer-Townsend minimum at T ' 630 µK plays a
signi�cant role during the sympathetic cooling process [219]. During evaporative cooling

isotope as [17] Ref.

mLi6 6.015122795(16) u [214]
mK40 39.96399848(21) u [214]

mLi6/mK40 6.64392
µ 5.22821 u
D 3.510(5) D [45, 46]

Table B.1: General properties of the 6Li-40K system. The atomic masses and reduced
mass µ are given, additionally, the dipole moment D of the vibrational ground state of
the singlet potential is given.
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isotope as [17] at [17] as[136] at[136] r0 (Eq.2.7)

6/39 64.4 67.7 64.93 68.59 40.75
6/40 52.1 63.5 52.61 64.41 40.78
6/41 42.3 59.9 42.75 60.77 40.81
7/39 29.1 81.2 29.83 81.99 42.11
7/40 13.9 74.5 14.88 75.27 42.15
7/41 −7.92 69.1 −6.375 69.76 42.19

Table B.2: s-wave scattering lengths and van der Waals ranges r0 in units of a0 for the
various isotope-combinations of lithium-potassium mixtures. Values in the second and
third column are calculated based on the model potentials used in Ref. [17], using mass
scaling between the isotopes. The last two columns are taken from Ref. [136]

symbol value

C6 2322 Eha
6
0

C8 1.95× 105 Eha
8
0

C10 2.646× 107 Eha
10
0

symbol value

α 0.630
β 0.567
J0 1.26× 10−2

J1 5.4× 10−4

J2 1.44× 10−3

Table B.3: Parameters for the van der Waals and exchange potential of Li-K. The C6,
C8 and C10 values are taken from Ref. [136] and other values from Ref. [79]. Units are
atomic units.

described in this thesis 6Li-40K collisions occur mostly in the triplet channel. For the
triplet potential the �rst Ramsauer-Townsend minimum occurs at T ' 57 mK. Due to the
comparable scattering lengths for the singlet and triplet potentials no di�erent behavior
is expected for hyper�ne mixtures scattering through a superposition of the singlet and
triplet channels. Therefore, the Ramsauer-Townsend minima plays no role during the
evaporative cooling process.

B.2 Feshbach resonances

Table B.4 lists all s-wave Feshbach resonances in 6Li-40K below B = 500 G and their
widths. The data is based on a binding energy of E0/h = 715.5 MHz and E1/h =
422.0 MHz for the singlet and triplet potentials respectively. These values are obtained
from a least-squares �tting procedure to the experimental data of Ref. [17] and the reso-
nance measured in Chapter 6.
The Feshbach resonance optimal for studies in the lab is chosen to the the resonance
at B0 ∼ 115 G in the |1/2,+1/2〉Li + |9/2,+9/2〉K mixture. This resonance is only 20%
narrower than the broadest available in 6Li-40K mixtures stable against spin-exchange
collisions. The potassium mF = +9/2 hyper�ne level has the advantage of having an
optical cycling transition to the |11/2,+11/2〉 excited state which facilitates absorption
imaging at intermediate magnetic �elds where these resonances occur (see Appendix A).
This optimal resonance is indicated with an arrow in Fig. B.1. Detailed ABM calcula-
tions for this resonance are shown in Fig. B.2. For B − B0 < 5 mG and EF < 100 nK
the dressed bound state is well described by the universal quadratic behavior. Since the
ABM underestimates the width of a resonance the real physical case will be slightly more
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MF B0 (G) ∆B (G) Ref.

−5 216.2 0.16 [17]
−4 157.4 0.08 [17]
−4 168.4 0.08 [17]
−3 148.8 0.12 [17]
−3 159.6 0.32 [17]
−3 165.9 4× 10−5 [17]
−2 141.0 0.12 [17]
−2 154.7 0.51 [17, 44]
−2 162.5 0.08 [17]
−1 133.6 0.11
−1 149.3 0.57
−1 158.5 0.27
0 126.7 0.10
0 143.5 0.56
0 153.9 0.52
1 120.2 0.08

MF B0 (G) ∆B (G) Ref.
1 137.2 0.50
1 148.6 0.77
2 114.2 0.06
2 130.5 0.41
2 142.5 1.00
2 476.1 3.6× 10−5

3 108.9 0.04
3 123.6 0.30
3 135.3 1.13
3 367.5 4.7× 10−5

4 104.4 0.02
4 116.6 0.18
4 126.5 1.11
5 101.3 0.01
5 115.4 0.92 [18]

Table B.4: s-wave Feshbach resonances for B < 500 G in the 6Li-40K mixture for hyper-
�ne states stable against spin-exchange. Values are calculated using the extended ABM
as presented in Chapter 5. References are to the experimental observation of the speci�c
resonance. The MF = −5 resonance is for the mixture: |9/2,−9/2〉K + |1/2,−1/2〉Li, all
other resonances are in systems with lithium in the absolute groundstate (|1/2,+1/2〉Li)
and potassium in another hyper�ne state in the F = 9/2 manifold.
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Figure B.1: All s-wave Feshbach resonances in the 6Li-40K system below B0 = 3 kG.
Plotted is the absolute value of the resonance width |∆B| versus the resonance position
B0. The arrow indicates the optimal resonance discussed in the text.

favorable.
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Figure B.2: ABM calculations for the resonance characterized in Chapter 6, occurring
in the channel |1/2,+1/2〉Li + |9/2,+9/2〉K. a) The scattering length behavior of the two
resonances in this channel b) the bound state behavior below threshold, the solid black
line shows the dressed state and the dashed red line the uncoupled bound state inQ-space.
c) a zoom around the broadest resonance, the solid line is the dressed state calculation,
the dashed red line is the quadratic universal behavior near threshold and the dotted line
indicates a typical Fermi energy of EF = 100 nK.
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Summary

This thesis describes the study of two atomic gases close to the absolute zero of tem-
perature. At these ultralow temperatures the quantum nature of the atomic species is
essential for an accurate description of the gases. Many systems which occur in nature,
but which have not been understood completely, consist of strongly interacting fermions.
These systems are often hard to describe theoretically or to study experimentally. Ultra-
cold gases o�er a large degree of tunability and this makes such systems suited to study
quantummechanical phenomena in various regimes. In particular the interaction strength
between the two particles can be tuned by means of Feshbach resonances, which allows
to study the regime of strongly interacting fermions. For certain experimental conditions
universal behavior can be achieved, i.e. details of the 6Li-40K interactions are irrelevant
and the only relevant interaction parameter is the scattering length a.

The atomic species chosen for the work presented in this thesis are the two fermionic alkali
metals 6Li and 40K. Such a mixture of fermions with unequal mass is suited to study a
large variety of novel quantum phenomena. The mass imbalance allows to study mediated
interactions, which, for the 6Li/40K system in particular, can be used to study long-lived
p-wave trimers. Additionally, 6Li40K molecules in the groundstate of the singlet potential
have a large dipole moment, which is essential to study dipolar bosonic quantum gases.

This thesis provides a description of the realization and study of a 6Li/40K mixture. In
Chapter 1 an introduction of the �eld of ultracold gases is given from the point of view
of the performed experiments, followed by the theoretical background of the presented
work in Chapter 2. Chapter 3 gives a detailed description of the state-of-the-art machine
which has been developed to study the 6Li/40K mixture in the strongly interacting regime.
The machine incorporates a variety of novel techniques and experimental approaches to
cool an ultracold gas to degeneracy. As a point of experimental innovation in the �eld of
ultracold atoms a novel high-�ux source for cold lithium has been developed. The source
operates according to a two-dimensional magneto-optical trap (2D MOT) principle, is
bright and monochromatic. Compared to the conventional source for cold lithium, the
Zeeman slower, it yields a comparable �ux, however, its design is strongly simpli�ed.
Additionally, due to transverse loading from the hot beam, the source beam contains only
cold, capturable, atoms and has no hot background. Furthermore, the realization of a 2D
MOT loaded from an e�usive oven and the use of a light species as lithium demonstrates
the wide applicability of the 2D MOT principle.

The ability to tune the interaction strength between 6Li and 40K is crucial to perform
studies on such a system. This tunability can be realized by using Feshbach resonances.
Such resonances occur due to resonant coupling with a lithium-potassium molecular bound
state, and allow to change the interaction strength from zero to in�nity being repulsive
or attractive. The molecular bound state can have a di�erent magnetic moment than the
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free atoms, therefore resonances can occur as a function of the external magnetic �elds.
Knowledge about the magnetic �eld spectrum of these Feshbach resonances is essential to
reach the strongly interacting regime and possibly study universal behavior of the 6Li/40K
system. To describe the Feshbach resonances in the 6Li/40K system a novel theoretical
model has been developed. In Chapter 5 the model is explained in detail. The model is
intuitive and can be stepwise extended to become more complete. This allows the degree
of complexity and the corresponding accuracy to be chosen to suit the atomic species
being studied. Using two experimental input parameters the model can be used to predict
the positions and widths of all Feshbach resonances in a certain system. This possibility
has allowed us to select the optimal resonance to perform studies in the 6Li/40K system.
Chapter 6 presents a precision measurement of the position and the width of this optimal
resonance. This is performed by measuring the distillation of a weakly con�ned 6Li sample
by rethermalizing collisions with a bath of 40K. The distillation rate is a measure of the
elastic cross section and provides the observation of the asymmetric Fano-pro�le. To
this pro�le a model is �tted, yielding both the position and the width of the resonance.
The identi�cation and characterization of the optimal Feshbach resonance in the 6Li/40K
system paves the way to perform future studies on mass-imbalanced fermionic quantum
gases in the universal regime.



Samenvatting

Dit proefschrift beschrijft de studie van een mengsel van twee ultrakoude gassen. Ul-
trakoud betekent dat de atomen waaruit het gas bestaat zo koud zijn dat de quantum
mechanische aspecten van belang zijn om het gas te kunnen beschrijven. Volgens de quan-
tummechanica is een deeltje (bijvoorbeeld een atoom) niet een puntdeeltje, maar een golf
die beschreven wordt met een gol�unctie. Alle deeltjes zijn onder te verdelen in twee
soorten: bosonen en fermionen. Deze twee typen gedragen zich fundamenteel verschillend:
twee identieke bosonen kunnen wél dicht bij elkaar komen en twee identieke fermionen
níet. Veel systemen die in de natuur voorkomen, maar die nog niet goed begrepen zijn,
blijken te bestaan uit fermionen die onderling sterke interactie hebben. Deze systemen
zijn moeilijk te beschrijven en vaak experimenteel moeilijk te bestuderen.

Ultrakoude gassen zijn bijzondere systemen omdat de eigenschappen van het gas experi-
menteel heel goed gecontroleerd kunnen worden. Dit maakt ultrakoude gassen tot ideale
systemen om quantummechanische fenomenen in gassen te bestuderen. In het bijzonder
kan de interactiesterkte van twee atomen veranderd worden met behulp van zogeheten
Feshbach resonanties. Rond een resonantie kan de interactiesterkte afgestemd worden
van nul tot oneindig positief én negatief. Zo kunnen ultrakoude gassen van fermionische
atomen met een geschikte Feshbach resonantie gebruikt worden om sterk wisselwerkende
fermionen te bestuderen.

Het systeem dat beschreven wordt in dit proefschrift is een ultrakoud mengsel van de twee
isotopen lithium-6 en kalium-40, beide fermionische atomen. Het gebruik van fermionische
atomen met verschillende massa voegt een extra dimensie aan het systeem toe, die de
studie van een nieuwe klasse quantum-mechanische systemen mogelijk maakt. Voordat
het onderzoek voor dit proefschrift begon was dit systeem nog nooit gerealiseerd. Op
dit moment zijn er wereldwijd drie experimenten operationeel die het 6Li-40K systeem
bestuderen, waarvan de opstelling aan de Universiteit van Amsterdam er een is. In dit
proefschrift wordt de experimentele realisatie van dit ultrakoude mengsel beschreven.
Daarnaast wordt een uitgebreide studie van de Feshbach resonanties in het 6Li-40K systeem
gegeven, zowel vanuit theoretisch als experimenteel perspectief.

Hoofdstuk 1 geeft een algemene introductie over ultrakoude gassen in de context van het
proefschrift. Hoofdstuk 2 geeft de theoretische achtergrond van de concepten die gebruikt
worden in het proefschrift. Hoofdstuk 3 beschrijft in detail de experimentele opstelling die
gebouwd is om het 6Li-40K systeem te realiseren. Er wordt ingegaan op de verschillende
experimentele methoden en technieken die gebruikt worden. Hierna volgen drie hoofd-
stukken die als publicaties verschenen zijn of zullen verschijnen. Hoofdstuk 4 geeft een
uitgebreide karakterisatie van de lithium 2D MOT, een bron ontwikkeld voor dit onder-
zoek die een koude atomaire bundel genereert. Deze bundel heeft een hoge intensiteit en
is erg schoon. In vergelijking met de conventionele bron die voor lithium gebruikt wordt
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is de intensiteit hetzelfde, daarentegen is de bundel erg schoon doordat de koude van de
hete atomen worden gescheiden. Hoofdstuk 5 geeft een beschrijving van het Asymptotic
Bound-state Model. Dit theoretische model hebben we ontwikkeld om de Feshbach res-
onanties in een nieuw systeem als 6Li-40K te kunnen beschrijven. Dit model maakt het
mogelijk om de eigenschappen van alle Feshbach resonanties te berekenen. Deze informatie
kan gebruikt worden om de optimale resonantie van ons systeem te selecteren. Hoofdstuk
6 beschrijft tenslotte de experimentele karakterisatie van de optimale Feshbach resonantie.
Het resultaat toont aan dat met deze resonantie het mogelijk is om vervolg experimenten
te generaliseren naar algemene systemen van fermionen met verschillende massa.
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