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Chapter 1
Introduction

The wave-particle duality is deeply embedded in quantum mechanics. It attributes wave
character to every particle and vice-versa. For particles, this is enshrined in the famous
relation named after Louis de Broglie, who proposed that the quantum wavelength λ asso-
ciated to an object with momentum p is given by λ = h/p, where h is Planck’s constant.
It becomes shorter as mass and velocity get larger. This is the reason why we usually
do not experience quantum mechanical effects in everyday life. We are used to massive
objects being exactly located in space and time and moving along well-described trajec-
tories. This changes however when small objects or even single atoms at low energies are
studied. Under appropriate conditions, atoms can then no longer be regarded as local-
ized particles. Instead, they can be described in terms of waves whose amplitude contains
information about the probability of an atom being at a certain position. Typical wave
phenomena such as interference and diffraction can then be observed with matter.

A further consequence of the quantum mechanical character of nature is exhibited when a
thermal ensemble of identical particles is cooled to sufficiently low temperatures. One can
associate a characteristic quantum wavelength, the thermal de Broglie wavelength, with
the temperature. One can think of this wavelength as the distance around the notional
position of the object where its quantum behavior may be observed. Quantum phenomena
now dominate when the thermal de Broglie wavelength becomes larger than the average
inter-particle distance. The indistinguishability of the particles becomes essential and they
can no longer be described individually. Instead, collective behavior emerges with often
very peculiar properties, that persists at the macroscopic scale and in the presence of
(even strong) interactions. Examples of such macroscopic quantum phenomena are the
superfluid flow of liquid helium, and superconductivity in certain solid-state materials.
These are dramatic illustrations of the role of quantum mechanics in objects with a scale
that is visible with the naked human eye. Over the last two decades, quantum gases
have emerged as profound new systems in which macroscopic quantum phenomena can
be observed.

1.1 Quantum gases

The most basic form of a macroscopic quantum phenomenon was predicted by A. Einstein
in 1924/25 [1, 2, 3]. Inspired by the work of S.N. Bose on the quantum statistics of light [4],
Einstein considered a somewhat different system, namely that of a gas of indistinguishable
massive particles where the number of particles is conserved. Einstein found that when
such a gas is cooled below a certain critical temperature, there is a sudden change in
behavior, where a large (macroscopic) fraction of the atoms occupies the single particle
ground state. This fraction can then be considered as a single, macroscopically occupied
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matter wave. This behavior, which is now known as Bose-Einstein condensation (BEC)
is typical for bosons, particles with integer spin. It is at the heart of the phenomena of
superfluidity and superconductivity. However, it had not been realized in its most pure
form (in an ultra-cold gas) until 1995, when advances in laser cooling and evaporative
cooling as well as magnetic and optical trapping of neutral atoms allowed for the first
experimental realization of BEC [5, 6, 7]. Since these first experiments the field of ultra
cold atomic physics or quantum gases has made overwhelming progress. The preparation
of degenerate quantum gases has become a standard procedure in hundreds of laboratories
throughout the world [8, 9].

After the basic properties of these systems were studied, the field has developed in many
directions: The cooling techniques that led to BEC were also applied to fermions, neutral
atoms with half-integer spin obeying Fermi-Dirac statistics, forbidding two identical par-
ticles to be in the same quantum state. This led to the realization of degenerate Fermi
gases [10] and ultra-cold mixtures of bosons and fermions [11, 12, 13, 14, 15, 16].

Nowadays, quantum gases are increasingly used as model systems for interacting many-
body systems. An important mechanism to tune interactions, that is extensively used,
is employing a so-called Feshbach resonance [17]. Modifying the strength of interatomic
interactions and even changing between attractive and repulsive interactions, is achieved
by simply adjusting the magnitude of the background magnetic field. This has led to e.g.
the observation of the BEC-BCS crossover between a BEC of strongly paired fermions
forming composite bosonic molecules to weakly paired fermions obeying BCS theory [18,
19, 20]. Long-range dipolar (anisotropic) interactions are studied in systems of degenerate
atoms with high magnetic dipole moments, in particular chromium [21, 22] and cold
Rydberg atoms [23, 24]. Spinor quantum gases, where atoms are in a superposition of
internal quantum states, offer the opportunity to study the interplay between internal
(spin) and external (motion) degrees of freedom [25, 26, 27, 28, 29, 30, 31, 32, 33].

Advances in optical and magnetic trapping of ultra-cold gases have played an essential role
in opening up novel avenues in quantum many-body physics by providing experimental
access to new physical regimes [8]. In particular, one-dimensional (1D) quantum gases,
can be created by restricting the motion in the two transverse directions using optical
lattices or atom chips (see following section). Such 1D gases exhibit a surprisingly rich
variety of regimes not present in 2D or 3D [34, 35, 36, 37, 38, 39, 40, 41, 42]. For example,
a 1D Bose gas becomes more strongly interacting as the density decreases. Furthermore,
the many-body eigenstates and thermodynamic properties of these 1D systems can often
be described using exact Bethe Ansatz methods [43, 44, 45, 46, 47], and direct comparisons
between theory and experiment are possible [38, 48, 40, 41, 30, 33]. Adding the possibility
to dynamically control the strength of atomic interactions, for example via Feshbach
resonances [30, 49, 50, 17], there is now a strong impetus to extend these experimental
and theoretical studies to non-equilibrium dynamics [51, 30, 52].

As sketched above, experiments on ultra-cold gases offer unparalleled opportunities to
explore quantum many-body physics, with excellent control over key parameters including
temperature, density, interactions and even dimensionality.

Besides the fundamental research along the directions contoured above, there is a growing
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number of applications for quantum gases. Neutral atoms are a promising candidate for
quantum information processing (QIP). Their weak interactions with the environment
and among themselves result in long lived internal and external states, required for the
storage and manipulation of quantum information [53, 54, 55, 24, 56]. The coherence
property of BECs can be utilized to build highly sensitive sensors for interferometrically
measuring magnetic fields and inertia [57, 58]. The latter, sensing local gravitation is
for instance helpful in oil resource development, while sensing rotation with gyroscopes
based on quantum gases [59] could improve inertial navigation in aircraft. Furthermore,
ultra-cold gases employed in atomic clocks offer increased accuracy. The International
System of Units (SI) has defined the second based on a microwave transition frequency
in Cesium. Standard atomic clocks are based on measuring this frequency. Using higher
frequency optical transitions in an ultra-cold gas of atoms one can substantially increase
accuracy and reduce Doppler shifts as well as collisional shifts [60]. Recently, the noise of
such clocks has been reduced to below the standard quantum limit by using spin-squeezed
states [61, 62]. Improved atomic clocks installed in navigation satellites would lead to a
greatly enhanced positioning precision.

1.2 Toolbox for atom manipulation

The main tools for manipulating ultra-cold atoms are optical (laser) fields and (DC and
AC) magnetic fields. Both can be used to generate low-dimensional quantum gases and
create state-dependent potentials.

Optical fields shift the energy of the electronic ground state via the AC Stark effect. In
particular, standing waves of coherent light are used to generate optical lattices: one-,
two- or three-dimensional periodic potentials for neutral atoms [63]. With this technique
key properties of quantum systems like the superfluid to Mott-insulator transition became
measurable for the first time [64, 65]. Likewise, the high degree of control and the ab-
sence of impurities make these systems ideal simulators for solid state systems. A prime
example for this is research undertaken [66] to help understand the transition from the an-
tiferromagnetic to the superconducting phase in cuprate (CuO) compounds by mimicking
this system with two-component Fermi-mixtures loaded into optical lattices, potentially
shedding light on high-Tc superconductivity. Furthermore, state-dependent optical lattice
potentials have previously found use for spin-dependent transport and entanglement of
atoms [67, 68] and are promising candidates for the implementation of quantum gates in
QIP [69]. Generally, the use of optical traps allows freedom in the choice of the magnetic
field, and hence permits the use of Feshbach resonances. The main limitation is then that
only a single control parameter (the magnetic field strength) is available and a suitable
Feshbach resonance needs to be available for the atomic system under study.

Another approach to manipulating ultra-cold atoms is based on micro-fabricated wire
and/or permanent magnet patterns [70, 71, 72]. With these so-called atom chips, atoms
can be trapped in strong magnetic gradients at a distance of a few to a few hundred
µm from the chip surface. Employing multiple layers of wires, almost arbitrary potential
landscapes can be realized, including conveyor belts for atoms [73], on-chip single atom
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detectors [74] and interferometers [75, 76].

In addition to magnetostatic potentials, alternating electrical currents can be applied to
the wires of an atom chip, to produce strong radio-frequency (RF) or microwave (MW)
near-fields. Coupling the Zeeman levels of trapped atoms by means of a RF magnetic
field, results in a modified potential.

This is implicitly used in RF-induced evaporative cooling in magnetic traps [77, 78].Its
use for modifying the trap minimum was investigated by Zobay and Garraway [79] with
a spatially homogenous RF field. Later, a full description of these adiabatic RF induced
potentials taking into account the full vector nature of the electromagnetic field was
worked out [80]. By using RF induced potentials in a pioneering experiment, for the
first time a coherent on-chip beam splitter for neutral atoms was demonstrated [81].
Another useful property of RF potentials is their inherent state-dependence. The coupling
of the atomic state depends on the ellipticity of the RF polarization through the sign of
the g-factor. Recently, state-dependent microwave dressing was used to generate spin
squeezing in 3D Bose-Einstein condensates by varying the wavefunction overlap for two
hyperfine states to control collisions [82, 61], and state-dependent potentials created by
combining an optical trap with a magnetic field gradient were used to obtain record low
spin temperatures via spin gradient demagnetization cooling of a quantum gas [83].

1.3 This thesis

In this work, we study the (thermo)dynamics of a two-component Bose gas in one dimen-
sion. For generating the one-dimensional magnetic trap we employ an atom chip. As ex-
perimental system we chose the two magnetically trappable clock states in 87Rb [27, 29], in
part because they experience equal trapping potentials and have nearly spin-independent
interactions [84, 85, 86]. The drawback of this choice is that no convenient Feshbach reso-
nances are available for these states, preventing precise control of the three relevant (inter
and intra-state) interaction strengths. We show how this limitation is overcome by use of
the aforementioned state-dependent RF potentials.

As a main result we show a new way to tune interactions in one-dimensional quantum
gases using state-dependent dressed potentials, enabling control over non-equilibrium spin
motion in a two-component gas of 87Rb. The accessible range includes the point of spin-
independent interactions where exact quantum many-body solutions are available via the
Bethe Ansatz and the point where spin motion is frozen. This versatility opens a new route
to experiments on spin waves and the relation between superfluidity and magnetism in
low-dimensional quantum gases.

This thesis is organized as follows: Chapter 2 summarizes the theory needed to ex-
plain and model the experiments described in this thesis. After a brief discussion of the
theory of trapping ultra-cold atoms in static magnetic potentials, the focus is shifted to
radio-frequency adiabatic potentials and their state-dependent character. Next, potential-
dependent effective interaction parameters and a formalism of coupled Gross-Pitaevskii
(GP) equations for one-dimensional Bose gases are introduced to show a new way to tune
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interatomic interactions using state-dependent RF potentials. To characterize the behav-
ior of a 1D two-component gas, the concept of a spin velocity is developed, leading to a
diagram identifying different regimes for the system studied.

In chapter 3, the apparatus used to perform the experiments described in this thesis is
detailed. After a brief discussion of the vacuum system, the laser system, the atom chip
and RF generation, the generation and application of microwave radiation is described in
detail. Furthermore, an optical system for imaging along the 1D axis and a superimposed
optical lattice are characterized. The chapter ends with a summary of the experimental
sequence used to attain a 1D two-component Bose gas.

Chapter 4 presents a series of experiments performed to produce a one-dimensional two-
component gas in thermal equilibrium. The experimental data is characterized employing
models based on the solutions from Bethe Ansatz theories.

Chapter 5 presents the main results of this work. Spin motion in a 1D gas after a sudden
change in internal states is shown to lead to a focus in the density of one component. After
a characterization of state-dependent RF potentials, two situations are emphasized for the
changes in the spin evolution. These situations correspond to equal interactions between
the atoms and equal effective potentials. The coupled one-dimensional GP equations are
shown to model the experiments with excellent accuracy. The chapter concludes with an
outlook.

A design of a novel atom-chip based apparatus for experiments with Bose-Fermi (and
Bose-Bose) mixtures (namely 87Rb and 40K) is described in chapter 6.

Appendix A provides detailed information about the experimental sequence used to
generate the two-component quantum gases, studied in this thesis. Special emphasis is
given to the technical details on creating RF induced state-dependent potentials and
state-selective imaging.
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Chapter 2
Theoretical background

2.1 Introduction

This chapter provides the theoretical background relevant to the experiments described in
subsequent chapters, in particular chapter 5. After a brief discussion of magnetic trapping
of neutral atoms in section 2.2, radio-frequency (RF)-dressed potentials are introduced
with a focus on state-dependent potentials in section 2.3. In section 2.4 we show how
the effective interatomic interactions in a Bose gas change when the trapping potential is
reduced to one dimension. This description is extended in section 2.5 to a two-component
system, enabling us to treat two different internal states in a 1D situation. Section 2.6
combines the previous sections to show how RF-dressing causes modified potentials which
enable tuning of the interatomic interactions in one dimension (section 2.7).

2.2 Trapping of ultra-cold atoms

The Zeeman shift can be utilized to trap neutral atoms. The internal energy of atoms
depends on the interaction of the magnetic moments µ with an external magnetic field
B. An atom with total electronic angular momentum J and nuclear spin I has total spin
F = I + J with values for F from |I − J | to I + J . For weak magnetic fields, specific
Zeeman states are conveniently labeled by F and mF , the projection of F on the direction
of the magnetic field B, where the magnetic quantum number mF ranges from −F, ..., F .

Experiments described in this thesis were exclusively performed with the electronic ground
state of 87Rb (J = 1/2, I = 3/2), so that F = 1 or F = 2. The Zeeman level structure of
these states is schematically indicated in figure 2.1. For modest field strengths, where the
hyperfine splitting of the ground state (h× 6.83468 GHz) is much larger than the Zeeman
energy, the Zeeman shifts are approximately linear in |B| and the interaction energies
become

Umag(r) = −µ ·B = gFmFµB|B(r)|, (2.1)

with gF and µB denoting the Landé g-factor for a specific F and the Bohr magneton,
respectively. Zeeman states for which the interaction energy increases with the magni-
tude of the magnetic field are called “low-field seeking states”. They can be trapped in a
magnetic field minimum. For 87Rb these states are |F,mF 〉 = |2, 2〉, |2, 1〉 and |1,−1〉.

A magnetic field with a local minimum to trap neutral atoms is most easily realized by
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Figure 2.1: Level diagram (not to scale) of the 5S1/2 electronic ground state of 87Rb.
The degeneracy of the magnetic sublevels is lifted by a magnetic field of 3.23 G. States
|1〉 = |F =1,mF =−1〉 and |2〉 = |F =2,mF =1〉 are highlighted in red and blue, respec-
tively. These states constitute the two-component system being of central importance to
this work. They are coupled via a two-photon microwave/radio frequency transition (see
chapter 3.2), as indicated by the grey arrows.

two coils in anti-Helmholtz configuration. The resulting spherical quadrupole trap has a
central point where the fields exactly cancel to zero and from where the modulus of the
field increases linearly in all directions. Strictly speaking, equation (2.1) only holds if the
magnetic quantum number is a constant of motion, i.e. when the spin adiabatically follows
the direction of B. If, however, an atom enters a region where the magnetic field is small
(|B(r)| ' 0) and its Larmor frequency

ωL = |gFµBB|/~ (2.2)

is small compared to the rate of change of the magnetic field as seen from the rest frame
of the atom, there is a high probability for the atom to undergo a spin-flip transition to
an untrapped state. To prevent these so-called Majorana losses the adiabaticity condition

ωL � |
d

dt
B|/|B| (2.3)

has to hold at all times. One way of achieving this is enhancing the quadrupole potential
to a Ioffe-Pritchard(IP) potential, which has a non-zero minimum in |B|.

This type of potential has first been devised by Ioffe for plasma trapping [87] and later
adapted by Pritchard for neutral atoms [88]. The trap consists of a two-dimensional
quadrupole field in the radial direction (ρ =

√
y2 + z2) with gradient α = (∂B⊥/∂ρ)x=x0

and a harmonic potential with curvature β = (∂2Bx(0, 0, x)/∂x2)x=x0 plus a constant field
B0 along the axial direction (x). In polar coordinates, the magnetic field can be expressed
as [89]
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B⊥(ρ, φ, x) = αρ sin(2φ)− 1
2
βρ(x− x0),

Bφ(ρ, φ, x) = αρ cos(2φ),
B‖(ρ, φ, x) = B0 + 1

2
β(x− x0)2 − 1

4
βρ2.

(2.4)

Depending on the temperature of the atoms, this trap shows two different regimes: Hot
atoms with a temperature T � µBB0/kB experience a linear potential in the radial
direction and a harmonic potential in the axial direction. On the other hand, cold atoms
with T � µBB0/kB (positioned at the very bottom of the potential), are exposed to an
anisotropic potential which is approximately harmonic in all directions. The harmonic
approximation of such a potential is

U(x, y, z) ≈ U0 +
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (2.5)

where m is the atomic mass and ωi are the single-particle oscillator frequencies or trap
frequencies. From this, together with equations (2.1) and (2.4), the axial and radial trap
frequencies are found to be

ω‖ =

√
gFmFµB

m
β, (2.6)

ω⊥ =

√
gFmFµB

m
(
α2

B0

− β

2
). (2.7)

I
1

Bbias

I3
Iz

I1

1D gas

Figure 2.2: Schematic of an atom chip based magnetic trap (adapted from [90]). The
circular field generated by current Iz superimposed with the homogeneous external field
Bbias results in a linear quadrupole field at a certain height above the wire. The currents
I1 and I3 provide longitudinal trapping along Iz.
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One-dimensional microtraps on atomchips

Throughout this work, microtraps created by “atom chips” (see figure 2.2) are used to gen-
erate Ioffe-Pritchard potentials for trapping. The benefit of such traps becomes apparent
when one looks at the gradient generated by a single wire

α =
µ0I

2πr2
. (2.8)

Reducing the dimensions of the field-generating element and trapping atoms only microm-
eters away from it results in very steep potentials. This facilitates evaporative cooling and,
by providing extremely anisotropic confinement, atom chips are naturally suited to study
quantum gases in (quasi) 1D geometries.

For instance, the condition for being thermally in the 1D regime is kBT < ~ω⊥, which is
easier to achieve when ω⊥ is high. Typically, in our experiments, we have ω⊥ ≈ 2π ·2 kHz,
which translates to a 3D-1D crossover temperature of ~ω⊥/kB = 100 nK.

2.3 State-dependent RF-dressed potentials

Evaporative cooling [78, 77], the technique that made possible the last step in phase
space density from a cold gas to a Bose-Einstein condensate (BEC), is now commonly
used in experiments involving ultracold gases. It relies on coupling hot atoms in trapped
states to untrapped states. In magnetic traps this is typically done by means of radio-
frequency (RF) or less frequently microwave (MW) transitions. In this manner hot atoms
are selectively removed from the trap. The remaining atoms rethermalize via collisions,
resulting in cooling.

In 2001, radio-frequency coupling was also proposed for the generation of two-dimensional
trapping geometries [79]. In this context one speaks of RF-dressed potentials, refering to
the dressed-atom picture developed by Cohen-Tannoudji [91, 92]. Figure 2.3 describes
how the coupling of a (quantized) radiation field to an atom with quantized internal
states leads to new, so-called dressed states. While the quantized nature of radiation is
not needed for our purposes, the dressed atom description remains relevant. RF-dressed
potentials have been used in a number of experiments, most prominently to create double-
well potentials for matter-wave interference [81]. A detailed theoretical treatment of RF-
dressed potentials can be found in references [80, 93].

In a situation with only a static magnetic field present, virtually no changes of the inter-
nal state occur as the atom moves in the trap, as long as the adiabaticity condition (2.3)
holds throughout the motion. This changes when an oscillating radio-frequency field with
a frequency ωrf close to the Larmor frequency couples the Zeeman states. Given a linear
Zeeman shift, there is only one resonance frequency which couples all levels within a ma-
nifold. For a linearly polarized RF-field with a single frequency ωrf , the dressed potential
depends on the detuning ∆ = ωrf − ωL from the Larmor frequency and the strength of
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the coupling, characterized by the Rabi frequency

Ωlin =
|gf |µB

2~
|brf ×B|
|B|

, (2.9)

with brf the vector field of the magnetic part of the RF-field. Equation (2.9) indicates that
only the part of brf which is perpendicular to the local direction of the static magnetic
field B contributes to the dressing. This fact can be utilized to engineer rather counter-
intuitive trap shapes [94], which cannot be realized by static magnetic trapping alone.

z-wireA B

y

z

BA BB

RF RF

Figure 2.3: Cross section of the atom chip used for generating RF-dressed potentials.
The magnetic quadrupole field, indicated by green arrows, is provided by the z-wire and
an external bias field (see figure 2.2). We attach the outer chip wires A and B to a RF
source. The RF polarization in the y-z-plane is indicated by orange and purple arrows. It
results from a superposition of the two fields involved. By varying the relative phase or
the amplitudes of the RF currents through the individual wires, the polarization can be
set arbitrarily.

In the experiments described in this thesis, the RF field originates from two parallel wires
on the atom chip (see figure 2.3). The local magnetic field consists of a static and an
oscillating part

B(r) = Bstatic(r) + Brf (r). (2.10)

The static field is generated by running a constant current through the center z-shaped
wire, while the RF field is a superposition of the fields radiated by the neighboring wires
which are labeled A and B

Brf (r) = BA(r) cos(ωt+ φA) + BB(r) cos(ωt+ φB). (2.11)

In complex notation, equation (2.11) becomes

Brf (r) = brf (r)e
iωt + b∗rf (r)e

−iωt, (2.12)
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with brf a complex-valued vector. This can be decomposed into a sum of right-circular
and left-circular RF fields, where the circularity is defined with respect to the direction
of Bstatic

brf = b+ê+ + b−ê−, (2.13)

with b± two complex-valued amplitudes. Taking a local coordinate system with x̂ along
Bstatic, the circular unit vectors ê+ and ê− can be written as

ê± =
1√
2

(ŷ ∓ iẑ). (2.14)

The amplitudes of the right- and left-circular components of the RF field can now be
obtained by projection onto the unit vectors:

b±(r) = ê∗±(r) · brf (r). (2.15)

We now consider magnetically trapped atoms in the states i = {1, 2} corresponding to
|1〉 = |F = 1,mF = −1〉 and |2〉 = |F = 2,mF = 1〉 of 87Rb. Since the states have opposite
g-factors gF,1 = −1/2 and gF,2 = +1/2, they couple differently to the RF field. The Rabi-
frequency Ω1 depends on the projection of the negative circular polarization component
of the RF field on the direction of the local static field (assumed to be along z), whereas
Ω2 depends on the positive circular component. The corresponding Rabi-frequencies are

Ω1,2 = |gF |µB|b+,−|/~. (2.16)

This leads to state-dependent RF-dressed potentials

Ui = m̃f

√
(~ωL − ~ωrf )2 + ~2Ω2

i , (2.17)

where ωL denotes the Larmor frequency and ωrf is the radio frequency used for dressing
the atomic states.

2.4 Effective interactions in 1D

The properties of quantum gases change drastically with dimensionality. In the three-
dimensional (3D) case, a gas of weakly interacting bosons at zero temperature can be
described by a mean-field theory where the local chemical potential becomes µ(r) = n(r)g,
with 3D density n and interaction parameter

g3D =
4π~2a
m

. (2.18)
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Here, a denotes the s-wave scattering length. The global ground state of the system is
described by the time independent Gross-Pitaevskii (GP) equation [95, 96] for the mean
field wavefunction Ψ(r)

[
− ~2

2m
∇2 + Uext(r) + g3D|ψ(r)|2

]
Ψ(r) = µΨ(r), (2.19)

where Uext is the external confining potential, and µ is now the global chemical potential.

The Bogoliubov approximation is used to find the basic excitations of this system. Here,
the wave function is modeled as the sum of the equilibrium wavefunction and a small
perturbation (Ψ = Ψ0 + δΨ). Substituting this into equation (2.19) yields the excitation
spectrum of a BEC

~ω =

√
~2k2
2m

(
~2k2
2m

+ 2g3Dn

)
. (2.20)

For large momentum k, the spectrum resembles the quadratic spectrum of a free particle,
while it is linear for small k. In the latter case (for T ≈ 0), the sound velocity within the
condensate can be written as

c3D =

√
ng3D
m

. (2.21)

One speaks of a one-dimensional (1D) quantum gas, if the confinement is strongly in-
creased along two spatial dimensions and the temperature as well as the chemical potential
fulfill the condition

µ, kBT � ~ω⊥. (2.22)

In this case, the radial motion of the atoms is frozen and only the ground state of the
radial potential is populated. A detailed overview the different regimes of 1D gases can
be found in [35]. A peculiar difference of a 1D system when compared to a 3D system is
that in the 1D case, interactions increase with decreasing density [43, 34]. Therefore to
describe a 1D gas as weakly interacting, the density needs to be sufficiently high. Then the
atomic wave functions can, like in the 3D case, be represented by a mean-field approach.

In the regime where the 1D conditions (2.22) are met, the effective 1D interaction param-
eter was found by Olshanii [34] to be

g1D =
2~2a
ml2⊥

(
1− C a√

2l⊥

)−1
, (2.23)

with the transverse oscillator length l⊥ =
√

~/mω⊥ and a constant C = 1.4603. For a�
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l⊥, the second term in equation (2.23) becomes negligible and the interaction parameter
can be approximated by

g1D ≈
2~2a
ml2⊥

= 2~ω⊥a. (2.24)

This expression can also be obtained by averaging the 3D interactions over the radial
density profile [97]. The approximation a� l⊥ is justified for our experiments with 87Rb,
since the scattering length is a = 5.24 nm, while the transverse oscillator length is of the
order of a µm for realistic transverse trapping frequencies ω⊥ of a few kHz. Equation (2.24)
is central to this work, as it shows that the effective interactions between atoms in a 1D
Bose gas can be controlled by changing the transverse confinement.

2.5 Coupled 1D Gross-Pitaevskii equations

The above approach can be extended to a two-component Bose gas. We begin with the
two-component coupled Gross-Pitaevskii equations (GPEs) in three dimensions. Following
Mertes et al. [85] and Egorov et al. [98] they can be written as

i~
∂Ψ1

∂t
=

[
−~2∇2

2m
+ U1 + g11|Ψ1|2 + g12|Ψ2|2 − iΓ1

]
Ψ1

i~
∂Ψ2

∂t
=

[
−~2∇2

2m
+ U2 + g22|Ψ2|2 + g12|Ψ1|2 − iΓ2

]
Ψ2.

(2.25)

where gij = 4π~2aij/m are the 3D coupling constants in terms of the scattering lengths
aij for elastic interactions between atoms in states i and j. The dominant decay rates for
our states |1〉 and |2〉 in 87Rb Γ1 = ~

2
(γ111|Ψ1|4+γ12|Ψ2|2) and Γ2 = ~

2
(γ12|Ψ1|2+γ22|Ψ2|2).

The values for the three-body decay constant γ111 and the two-body decay constants γ12
and γ22 are taken from [98].

We reduce this set of equations to the one-dimensional form by substituting the trans-
verse ground state (gaussian) wavefunction and integrating over the radial directions [99].
Assuming direction- and state-dependent transverse trapping potentials ωi(y,z) we find a
coupled set of 1D GPEs for the longitudinal wavefunctions ψi = ψi(x)

i~
∂ψ1

∂t
=

[
−~2∇2

2m
+ V1(x) + u11|ψ1|2 + u12|ψ2|2 − iK1

]
ψ1

i~
∂ψ2

∂t
=

[
−~2∇2

2m
+ V2(x) + u22|ψ2|2 + u12|ψ1|2 − iK2

]
ψ2

(2.26)
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where Vi(x) is the longitudinal dependence of the external potential and the resulting 1D
interaction constants are

u11 = 2~√ω1yω1za11

u22 = 2~√ω2yω2za22

u12 = 4~
√

ω1yω2yω1zω2z

(ω1y + ω2y)(ω1z + ω2z)
a12. (2.27)

The one-dimensional loss ratesK1 = ~
2
(k111|ψ1|4+k12|ψ2|2) andK2 = ~

2
(k12|ψ1|2+k22|ψ2|2)

involve corresponding coefficients

k111 =
m2

3π2~2
ω1yω1zγ111

k12 =
m

π~

√
ω1yω2yω1zω2z

(ω1y + ω2y)(ω1z + ω2z)
γ12

k22 =
m

2π~
√
ω2yω2zγ22. (2.28)

2.6 Tuning scattering properties in 1D

In experiments with ultra-cold gases, Feshbach resonances (see [17] for a comprehensive
review) are most commonly used for changing inter-atomic interactions. In the vicinity of
a such a resonance, the s-wave scattering length a can typically be tuned over orders of
magnitude and also between positive and negative values simply by changing a magnetic
field. This makes Feshbach resonances a versatile tool that has been used for example to
create a BEC of bosonic molecules from a Fermi gas [100].

Feshbach resonances have been predicted and found for most alkali atoms [101]. However,
in 87Rb no practical Feshbach resonances exist in the magnetically trappable states. At
high magnetic fields, resonances do exist in the optically trappable |1, 1〉 state [102].
Furthermore, a mixed-spin-channel resonance involving high field seeking states |1, 1〉 and
|2,−1〉 at a magnetic field as low as 9 Gauss has been reported [103].

A key point of this thesis is that state-dependent potentials offer an attractive alternative
to Feshbach resonances for achieving tunability of the relevant interaction parameters.
The intra- and interstate scattering lengths for states |1〉 and |2〉 in 87Rb, as indicated in
figure 2.1, are a11 = 100.4 · a0, a22 = 95.44 · a0 and a12 = 98.006 · a0 [98], where a0 is the
Bohr radius. The near-equality of these values is a unique feature of 87Rb. This is highly
advantageous for our purposes, since we primarily aim at investigating around the point
where all three scattering lengths are equal. The main point here is that the RF-based
method described above allows us to tune the interactions over an interesting range.

To elaborate, as explained in section 2.4, in one dimension the collisional interaction
strength depends both on the scattering length and the transverse confinement frequency.
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Figure 2.4: 1D interaction parameters for 87Rb and fixed ω1. The intra- and interstate
interaction parameters u11,u22 and u12, according to equation (2.27), are indicated in
red, blue and green, respectively. The inset shows a zoom on the point where the three
interaction parameters differ the least. The dashed vertical line indicates the unmodified
case.

As the additional RF field modifies the external potential in a state-dependent way, it is
therefore possible to precisely tune atomic interactions in this system via the parameters
of the RF field. In general, both the modification to the external (longitudinal) potential
and the change in interaction strengths need to be taken into account. Figure 2.4 shows
the 1D interaction parameters as a function of the ratio of the transverse trapping fre-
quencies of both states for radially symmetric trapping ωiy = ωiz = ωi. At ω2/ω1 = 1.057,
these parameters are equal to within 0.09 % (see inset in figure 2.4). This corresponds
to a reduction of differences between the interaction parameters by a factor of 30, when
compared to the unmodified case. Demonstrating this novel way of tuning the interactions
much closer to the point of equality is the main accomplishment reported in this thesis
(see chapter 5).

In equations (2.27) and (2.28), the trap frequencies ωi depend on the dressing parameters
δi. The modified trap frequencies are

ω̃2
i = δiω

2
i ,where δi = ∆/

√
Ω2
i + ∆2, (2.29)

with detuning ∆ = ωL − ωrf and ωL being the Larmor frequency.

2.7 Spin motion

A very useful way to characterize the properties of the two coupled GP equations, and
to analyze their stability, is to study small perturbations around a steady state. Using
this approach, one finds two dispersion relations, for two different excitation modes. For
long wavelengths, the dispersion relations are linear, and the corresponding propagation
velocities are given by [104]
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c2± =
(c21 + c22)±

√
(c21 − c22)2 + 4α12c21c

2
2

2
, (2.30)

with α12 = u212/(u11u22), the sound velocities cj =
√
njujj/m (see equation (2.21)) and

j = 1, 2.

Close to the point of equal interactions (u11 ≈ u12 ≈ u22), the excitations take on the
character of (i) variations in the total density, with velocity c+, and (ii) variations in the
difference in density n1 − n2, with velocity c−. The density difference can be regarded as
a spin polarization, hence we refer to the latter velocity as the spin velocity.

We are particularly interested in the parameter region around α12 ≈ 1. In this region,
equation (2.30) can be rewritten as

c2± =

(
c21 + c22

2

)(
1±

√
1 + 4α(α12 − 1)

)
, (2.31)

with the shorthand α = (c21c
2
2)/(c

2
1 + c22)

2. Note that 0 ≤ α ≤ 1. For instance, equa-
tion (2.31) shows directly that c2− = 0 and c2+ = c21 + c22 for α12 = 1. More generally, for
α12≈ 1 or more precisely for |α12 − 1|α � 1, we can expand the root in equation (2.31)
to yield the lowest-order expressions in α(α12 − 1)

c2+ ≈ c21 + c22
c2− ≈ (c21 + c22)α(1− α12) ≈ c2+α(1− α12).

(2.32)

If α12 > 1, corresponding to u212 > u11u22, the inter-species repulsion is sufficiently strong
for the mixture to be unstable, and c2− is negative. For 0 < α12 < 1 the mixture is stable.
Figure 2.5 shows the “phase diagram” for the scaled effective interaction.

In this diagram, another aspect is highlighted beyond that of the miscibility discussed
above, namely that of buoyancy. In an external potential, such as the magnetic trap
in our experiments, this is an important aspect that needs consideration. Buoyancy is
the lowering of the total energy by the denser component sitting at the bottom of the
potential. It is what makes ice float on water. For our 1D system of two-component bosons,
this implies that even if the two components are miscible in terms of their interactions,
the component with the smallest intra-species scattering length will predominate in the
center of the trap. Because of the smaller scattering length, this component tends to
have a higher density in equilibrium. To minimize the total energy the other (less dense)
component will then be pushed towards the edges of the trap.

To illustrate this, we show the numerically calculated [105] ground state of the two-
component Gross-Pitaevskii equations (2.26) in figure 2.6. For this figure, typical param-
eters were used, namely rubidium atom numbersN1 = N2 = 1800 in a trap with transverse
trapping frequencies ωx,y/2π = 1.9 kHz and axial trapping frequency ωx = 26 Hz. For this
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Figure 2.5: Diagram indicating different regimes of the two-component 1D Bose gas.
The effective intrastate interactions u11 and u22 are scaled to the interstate interaction
u12. Exact solutions based on a Bethe Ansatz exist only for the point of equal interactions
(u12 = u11 = u22). The purple curve indicates the accessible experimental range without
Rf-dressing. Each of the ratios marked a,b,c,d,e corresponds to the accordingly named
subfigure in figure 2.6, showing the respective calculated ground state densities.

illustration, the trapping was kept state-independent, the inter-species scattering length
was set to a12 = 100a0 and the intra-species scattering lengths were varied to sample
representative points in the (u22/u12, u11/u12) parameter space (see labeled points in dia-
gram 2.5).
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Figure 2.6: Ground state densities of the two-component 1D GPE. Densities of states
|1〉 and |2〉 are indicated in red and blue, respectively. The total density is depicted by
dashed purple lines. Subfigures (a,c,b,d,e) correspond to different ratios of the effective
intra-species interactions, labeled accordingly in figure 2.5.
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Chapter 3
Experimental setup & methods

3.1 The CELSIUS experiment

This chapter describes the scientific apparatus and the methods used to perform exper-
iments with two-component 1D quantum gases of 87Rb. There are several approaches
to making one-dimensional gases. Crossed optical lattices were used to create arrays of
equidistant elongated potentials, leading to a multitude of 1D gases. This was used in
some of the ground-breaking experiments in the groups of D. S. Weiss [38], I. Bloch [39]
and W. D. Phillips [106]. The crossover from the 3D to the 1D regime has been studied
in early work with atom chips [107, 108, 109] and atom chips were proposed to create
Tonks-Girardeau gases [110]. Coherence lifetimes of internal states in excess of 1 sec have
been shown to be independent of the atom-surface distance, which makes this technique
interesting for atomic clock applications [111]. In late 2002 our group started designing
an atom chip-based experiment, mainly with the aim of reaching the strongly interacting
regime but also to access phase and density fluctuations of individual realizations of a
1D gas. This is in contrast to experiments based on optical lattices, where averaging over
many lattice sites is hard to avoid [112]. In 2006, our group succeeded in reaching the
Bose-Einstein phase transition and also entered the 1D regime.

A detailed description of the pre-existing setup can be found in [90, 113]. Here, we sketch
the basics of the experimental apparatus to have a self-contained description. In the next
sections, we focus on the changes and additions made in the course of this PhD work, and
in particular on the features required to study the two-component 1D Bose gas. The outline
is as follows. First, a summary is given of the basic features of the vacuum system, the
laser system, the atom chip and the RF-generation, mentioning also the relevant changes
made since the previous PhD thesis [113]. Subsequently, the main additions we made
to the CELSIUS (Chip Experiment for Low-dimensional, Strongly Interacting Ultracold
Systems) experiment, namely the subsystem for microwave generation (section 3.2), a
secondary imaging system for imaging along the 1D-axis (section 3.3) and a super-imposed
optical lattice along the 1D-axis (section 3.4) are described and characterized in some
detail.

3.1.1 Vacuum system

The vacuum system to generate ultra-high vacuum (UHV) conditions for experiments with
ultra-cold gases is built around the science chamber (see figure 3.1). This science chamber
is custom-made from stainless steel and has an octagonal cross-section. It holds six anti-
reflection (AR) coated CF40 viewports and one uncoated CF100 viewport which provide
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optical access for MOT-, pump- and probe-light. Two additional CF16 viewports are used
for monitoring the loading of the MOT by means of small infrared sensitive cameras. The
atom chip including its electrical feedthroughs and water cooling is inserted into the top
port of the science chamber via a 4 + 1-way cross-piece. The bottom port connects the
pump section, consisting of an demountable turbo-molecular pump, an ion getter pump
and a titanium-sublimation pump. For maintenance purposes, the pump section can be
separated from the science chamber with a gate valve. After pump down and a bake out
at 180◦C an ionization gauge indicates a residual pressure of ≈ 10−11 mbar.

Z

XY

13

4

2

(a) (b)

Figure 3.1: Main vacuum chamber (“science chamber”) surrounded by magnetic field
coils. (a) Schematic (adapted from [90]). (1) Compensation coils, (2) Science chamber,
(3) MOT coils, (4) Y-Bias coils, providing a homogeneous field along the Y-direction for
tight waveguide potentials. (b) Photo of the vacuum chamber surrounded by coils, optics,
electrical connections and water cooling (blue tubes). The atom chip mount is visible on
top of the chamber.

The science chamber is surrounded by three sets of coils (indicated in figure 3.1(a)), which
provide the magnetic fields for magneto-optical trapping, the compensation of fields in
arbitrary direction and the tight confinement needed for the generation of 1D gases. All
coils are powered by programmable analog current supplies (Kepco / BOP 20-10M, BOP
20-20M, BOP 36-12M and BOP 20-5M) and switched (except for the four compensation
coils at 45◦ angles) using home-built MOSFET switches to enable rapid switching.

We also connected the Rubidium dispenser to such a switch to allow digital switch off
as an additional safety measure. Two of these dispensers are mounted inside the vacuum
chamber slightly below the atom chip. One of them emits away from the atom chip, the
other one towards it. We started operating with the dispenser emitting towards the chip
in April 2008, after the previously used dispenser showed signs of depletion.

3.1.2 Laser system

Two commercial semiconductor diode lasers in an external cavity setup (Toptica DL100)
provide light with a wavelength of 780 nm. One of these lasers serves as the master laser
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for cooling, pumping and imaging atoms (for a detailed description see [90]). The other
laser is used for re-pumping atoms that have fallen into a dark state out of the cooling
cycle (see [113]). Both lasers are frequency-locked to atomic transitions in 87Rb with
a frequency modulation technique [114]. Acousto-optical modulators (AOMs) are used
to shift the frequency of the light for different applications. Mechanical shutters and
electro-optical modulators (EOMs) switch laser light on and off before it is coupled into
polarization-maintaining single mode optical fibers guiding it to the optical components
surrounding the science chamber.

The original optical setup was extended by a second imaging system (see section 3.3),
enabling simultaneous imaging along the x- and y-axes. Furthermore, we added an optical
lattice along the x-axis, which is described in Sec.3.4. Due to limited optical access,
only one of these two additions to the experiment can be used at a time. The optical
lattice caused a need for more laser power. Therefore the injection locked high-power
laser described in [90] was replaced by a tapered amplifier. The amplifier is mounted in
a custom-made housing [115] and yields an output power of 290 mW at current of 0.9 A
and 25 mW seeding power.

3.1.3 Atom chip

At the heart of our experiment is the atom chip. The atom chip is a micro-fabricated
gold wire pattern (see figure 3.2) on a silicon substrate. In combination with two layers of
three macroscopic wires each under the atom chip itself and the external field coils, the
on-chip wires serve to generate the extremely steep and elongated potentials necessary for
experiments with 1D gases. The characteristics and functions of the individual chip wires
numbered 1-8 are listed in table 3.1. The chip is mounted upside-down on a water-cooled
copper block at the center of science chamber. Apart from dissipating the heat caused
by ohmic heating of the wires, the mount provides electrical vacuum feedthroughs which
serve to connect the chip wires to their current sources.

For the experiments presented in this thesis, the following chip wires were used: Wire 5 for
trapping, wires 3 and 6 for radio-frequency dressing and wire 4 for RF-induced evaporative
cooling. Before the measurements presented in chapter 5, an electrical short between wire
7 and 8 occurred due to an accident involving too much current because of a mistaken
connection. This is evident by a resistance measurement between all chip wires, displayed
in table 3.2.

3.1.4 Radio-frequency generation

The various radio-frequency (RF) fields for evaporative cooling, coherent transfer between
different Zeeman states and dressing atoms in our experiment originate form four direct
digital synthesis (DDS) evaluation boards (Analog Devices / AD9854). The boards are
housed in a custom-made rack, which provides them with power, interfacing to the control
computer and a reference frequency. The RF generation is treated in great detail in [113].
The 10 MHz reference frequency is derived from a frequency standard (see 3.2) and routed
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Figure 3.2: Atom chip wire pattern. The characteristics of the individual wires are given
in table 3.1. The length of the black scale bar is 500µm. The wires are defined by 5µm
wide trenches in the 1.8µm thick gold layer.

wire w (µm) R (Ω) function
1 10 3.15 double box structure
2 5 3.70 wiggle test wire
3 50 1.47 Z wire, radio-frequency field
4 10 3.89 1.00 mm box
5 125 0.72 Z wire, initial trapping
6 10 2.42 0.20 mm box, RF evaporation
7 30 2.06 Z wire, radio-frequency field
8 20 2.30 0.90 mm box

Table 3.1: Characteristics of the wires on the atom chip. Widths w and resistances R of
the wires are listed along with their functions for experiments (see [113]).

1 2 3 4 5 6 7
2 16.4
3 31.0 19.2
4 35.0 26.0 21.0
5 34.6 26.1 25.1 5.7
6 42.0 33.4 23.9 12.5 6.6
7 46.3 37.6 33.1 16.3 11.6 7.2
8 46.3 37.6 33.0 16.3 11.6 7.2 0.004

Table 3.2: Cross-resistance between the chip wires in kΩ measured after completion
of the experiments presented in this thesis. The low resistance between wires 7 and 8
indicates an electrical short.
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to all four evaluation boards. We found that this common reference is sufficient to keep
the output of the evaluation boards in phase lock. The output of DDS board 1 is directly
connected to chip wire 4 (see figure 3.2) for evaporative cooling. The outputs of boards 2
and 3 are amplified by 28.5 dB before they are connected to chip wires 3 and 6, respectively.

3.2 Microwave generation

We use a two-photon transition to create coherent mixtures of internal states of 87Rb.
The hyperfine splitting of the electronic ground state in 87Rb corresponds to a frequency
of ωhf = Ehf/~ = 2π · 6.834682 GHz (see figure 2.1). Furthermore, driving the transition
from |F = 1,mf = −1〉 to |F = 2,mf = 1〉 requires ∆mf = 2, therefore a two-photon
transition is needed. In practice, this can be conveniently achieved by combining a mi-
crowave (MW) signal of ωhf ≈ 2π · 6.834682 GHz with a RF signal of a few MHz [84]. To
provide the MW signal with a sufficient amplitude at the position of the trapped atoms
and computer-controlled tunability of the frequency, we enhanced the experiment by a
microwave subsystem which is shown schematically in figure 3.3 and described below.

synthesized CW generator
Hewlett Packard
P 8671B (2.0 - 18.0 GHz)

MW power ampli�er
Accelonix
RF67006900-10

MW switch (pin attenuator)
General Microwave
M186B

MW circulator
AerTech Industries
ASC-8040

termination

cantenna

Rb standard

RF DDS

ref.

PLL

TTL pulsectr.

computer

ref.
ctr.

10MHz

10MHz

ftop

fout

Figure 3.3: Schematic of the microwave subsystem. Blue arrows indicate control signals
and reference frequencies, the red arrow indicates the part of the MW signal reflected by
the antenna and green arrows denote the actual MW signal with frequency fout.
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A rubidium standard (Symmetricom/Model 8040), based on an atomic clock, provides our
lab and the neighboring permanent-magnetic atom-chip experiment [116] with a highly
stable (Allan deviation averaged over 1 sec less than 3 · 10−11) 10 MHz signal. This is used
as a reference for both the RF generation by means of direct digital synthesis (DDS)
(see section 3.1.4) and a continuous-wave MW synthesizer. The MW synthesizer output
frequency fout can be tuned by an external RF signal with frequency ftop ≈ 20 MHz
derived from the DDS generator. To achieve this, the RF signal is fed into one of the four
phase locked loops (PLL) controlling the synthesizer output frequency [117]. The output
frequency then is related to the input frequency by

fout = 6830 MHz + (2 · (30 MHz− ftop)− 10 MHz). (3.1)

The synthesizer’s output signal with a power of −7.5 dBm then enters a pin modulator
which is used to rapidly switch on and off the MW signal. The modulator is switched by a
TTL pulse originating from the experiment control computer. In this way, the frequency
(via ftop) and the on/off status of the MW pulse are set by the computer, while the
amplitude is fixed.

Due to the re-programming of the DDS boards at the beginning of each experimental
cycle, ftop cannot be set at all times. Since the synthesizer needs a time of ≈ 5 ms to
lock onto a frequency, a low amplitude fixed 20 MHz signal originating from a frequency
generator (not shown in figure 3.3) is mixed with the higher amplitude ftop signal. In this
way, the synthesizer is kept from unlocking.

The resulting MW pulse is amplified by a solid state MW amplifier. Finally, the output
of the amplifier is connected via a circulator to a tube-shaped antenna, popularly known
as cantenna (see below). The circulator’s reverse port is terminated with a 50 Ω dummy
load. This deflects back reflections off the cantenna due to impedance mismatches and
prevents damage to the amplifier by the reflected signal. The cantenna is placed directly
outside the CF100 window of the vacuum chamber (see figure 3.4(b)), aiming at the region
below the atom chip. On the opposite side of the science chamber, a pickup pin antenna
of length λout/4 ≈ 11 mm is installed to monitor the timing and the amplitude of the MW
pulses. The orientation of the pin antenna is perpendicular to the plane of the atom chip.

Cantenna design

Since no appropriate directional antenna for 6.8 GHz was readily available, we decided to
adapt a design widely used for WiFi-communication (≈ 2.4 GHz). It is based on a metallic
tube with an open and a closed end. Therefore this design is often referred to as cantenna.
The signal carrying cable is connected to a metal pin antenna inside a conducting cylinder
(see figure 3.4(a)).

According to [118], four parameters are crucial for good operation of the cantenna. First,
and most important is the diameter of tube. The mode with the lowest cut-off frequency
is the so-called H11 mode, in which the electric field lines are mainly perpendicular to the
tube cross section with a concentration in the center. The cut-off frequency for this mode
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Figure 3.4: (a) Schematic of the cantenna (adapted from [118]). The coax cable ends in
a metal pin antenna of length λ0/4 and distance λG/4 from the back plane of a metal
cylinder. While the cylinder’s back side is closed to reflect the incoupled mode, the front
is open to emit it. The colors give an impression of the mode profile inside the cylinder.
(b) Photo of the cantenna in the experiment. The position of the cantenna is indicated
by a white rectangle. The cylinder is covered with black paper to avoid laser reflections.

is fc = c/(1.71 ·d), where c is the speed of light and d is the inner diameter of the tube. We
chose a brass tube with d = 32 mm such that only the H11 mode is excited. The cut-off
frequency for the next mode is at 7.15 GHz for our choice of the diameter. Second, the
length of the pin should be λ0/4 = 11 mm, where λ0 is the wavelength of the radiation to
be transmitted in free space. Third, the distance of the pin from the back plane should be
chosen such that the back-reflected wave interferes constructively with the direct wave.
This is the case when the distance is equal to λG/4 = 18.4 mm with λG = c/

√
f 2
out − f 2

c

the wavelength of the mode excited inside the tube. Finally, the overall length of the
tube should be such that reflections from the transition from the tube to free space are
suppressed. According to [118] the optimal length to achieve this is 5/8λG + nλG/2 with
n = 0, 1, 2, . . . . Out of space considerations, we chose for n = 1 and therefore the total
tube length is 64.3 mm. For tunability of the distance between pin and back plane, the
back plane was made of a massive copper cylinder, which tightly fits into the tube, but
can still be moved in and out.

3.3 Dual imaging

In addition to the experiments performed with two-component Bose gases, described
in chapters 5 and 4, we used radio-frequency dressed potentials to create double-well
potentials. These result in two elongated clouds separated by a couple of microns. By
changing the relative amplitude or phase of the two RF signals making up the double-well
potential, the angle between the two ensembles in the y-z-plane can be tuned to arbitrary
values between 0 and 2π. Only in the case where the clouds are separated along the z-axis
(vertically) can they be imaged separately and can their in-trap distance be determined.
We release the atoms from the double-well potential to investigate the coherence between
the split clouds. After some time of flight, they overlap due to expansion and we record
the interference patterns.

In a typical experimental setup, elongated ultra-cold gases are probed with light perpen-
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dicular to their long axis (according to our definition the x-axis). In this manner, the
physics governing the atomic density and motion along the x-axis can be studied. To
study the atom clouds along the x-and the y-axis and to fully characterize RF potentials,
we added a second imaging system, which is used to take absorption images along the
x-axis.

λ/4 λ/4

λ/2

2nd
CCD

2nd imaging

x

y

MOT

1st
CCD

vacuum

1st imaging

PBSPBS

Figure 3.5: Schematic of the dual imaging setup. The laser beams used for the first and
the second imaging setup are indicated by dashed green and full blue lines, respectively.
The laser beam for magneto-optical trapping are colored red.
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Figure 3.6: Absorption images of interfering atoms. The images were taken simultane-
ously with the first (indicated by the blue bar) and second (red bar) imaging system. The
right figure shows the integrated optical density in arbitrary units for imaging along the
y-axis and the x-axis in blue and in red, respectively.

Figure 3.5 schematically depicts the changes made to the optical setup to enable dual
imaging. To gain optical access to the x-axis, which is otherwise occupied by two counter-
propagating MOT laser beams, we inserted two polarizing beam cube splitters (PBS) to
overlap the imaging laser with the MOT beams. Due to the geometry of the chamber and
the fact that the first imaging lens of the second imaging system has to be placed behind
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the beam splitter, the distance atoms-lens, which mainly determines the characteristics
of the imaging system, is 20 cm, as compared to 10 cm for the first imaging system.
This difference translates to a measured effective pixel size in the object plane of px =
4.07µm/pixel, whereas it is py = 2.15µm/pixel for the first imaging system. We chose
an achromat with f1 = 200 mm focal length as first lens, followed by a second lens with
f2 = 350 mm focal. This results in a theoretical magnification of 1.75, compared to a
magnification of ≈ 3 for the imaging along the y-axis. The CCD camera used for the
second imaging system, is a newer version (Roper Scientific / Coolsnap EZ) of the camera
in the first imaging system (Roper Scientific / Coolsnap ES). A TTL signal originating
from the experiment control computer triggers the camera and a LabView program, which
is processing incoming images. This program runs on an independent computer, which is
identical to the experiment control computer.

An example of simultaneously taken images is given in figure 3.6. For this, the atoms
have been prepared in an elongated trap and coherently split in the vertical/y-direction
by means of radio-frequency dressed potentials. After being released from the double-well
potential, the two coherent ensembles expand and overlap. Absorption images, taken after
14 ms time-of-flight, clearly feature horizontal interference patterns.

While the probe light is linearly polarized in the first imaging setup, due to the λ/4-phase
plates needed for the MOT beams it is circularly polarized in the second imaging system.
This causes detection efficiency differences. These differences can not be explained by the
differing cross-sections alone. Also optical pumping plays a role and is different depending
on polarization and the axes. To characterize the system, we probed all combinations
of imaging directions and quantization field directions for sequential and simultaneous
imaging. The resulting calibration factors are shown in table 3.3. The higher numbers in
the case of simultaneous imaging correspond to reduced absorption due to cross-talk.

sequential
imaging

simultaneous
imaging

quantization axis
y x y x

imaging
axis

y 1.00 2.77 1.39 2.88
x 2.42 1.26 2.94 1.64

Table 3.3: Observed calibration factors from absorption to relative atom numbers. The
factors were measured for either sequential or simultaneous horizontal (along the y-axis)
and longitudinal (along the x-axis) imaging with a quantization field aligned along the x-
or y-axis. The table is scaled to the case of the upper left corner.

3.4 1D optical lattice

A periodic potential along the elongated direction of atoms confined to one dimension
opens new possibilities for their manipulation. A deep lattice will result in a string of small
ensembles or even single atoms. Such a system is well-suited to freeze and subsequently
study fluctuations of one-dimensional ensembles. If on the opposite, a shallow lattice
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is superimposed, this can change the interatomic interactions to the point where the
strongly interacting regime is entered [39, 65]. To get access to these promising features,
we implemented an optical lattice into the CELSIUS setup. This is the focus of ongoing
experiments. Since this work is covered in detail in a master thesis [119], I will only provide
a brief description of the changes made to the setup and first results obtained with the
optical lattice.

Two counter-propagating laser beams form a standing wave. To avoid scattering light off
the atoms, the light frequency is chosen such that it is detuned from the optical transition
of the atoms by ∆. Atoms in the standing wave experience a spatially periodic Stark shift.
For blue-detuned light (∆ > 0) they are repelled by the maxima of the standing wave,
for red-detuned light (∆ < 0) they are attracted.

If the periodic potential is switched on for a time shorter than an oscillation period of
an atom in the optical potential, the atoms do not equilibrate, i.e. they do not gather in
potential minima or maxima. In this case the standing wave acts as an optical diffraction
grating and we observe diffraction of atoms from a “light crystal”. In momentum space,
the process can also be regarded as simulated Raman diffraction between two momentum
states. An atom absorbs a photon from one laser mode and is stimulated to emit a photon
into the counter-propagating mode. In this way the atom changes its momentum in units
of 2~k, where k is the wave number of the light.

For the generation of the laser light for the optical lattice, a home-built external-cavity
diode laser (ECDL) is amplified by a tampered amplifier [115]. The light is split equally
by a non-polarizing beam cube splitter and coupled into polarization-maintaining single
mode fibers, guiding it to the optical setup around the science chamber. Acousto-optical
modulators are inserted before the fiber couplers for rapid switching of the light. Doppler-
free saturation spectroscopy provides a signal to lock the laser on a spectral feature of
87Rb.

Figure 3.7 shows the setup around the science chamber adapted for the optical lattice.
The x-axis is already occupied by MOT lasers and the optical lattice beams have to be
linearly polarized. This is why we replaced the previously used (see figure 3.5) polarizing
beam cube splitters (PBS) by non-PBS and moved the quarter wave plates in the MOT
beams to positions before the cubes. In this way, half of the power of the MOT lasers and
the lattice lasers is lost to the “wrong” port of the NPBS. This is compensated by more
laser power which made necessary the insertion of tapered amplifier in the MOT- and the
lattice laser system.

To prevent heating of the atoms due to a shaking optical lattice, the right lattice beam in
figure 3.7 can be phase-locked to the left beam. Therefore the two beams are overlapped
to interfere on a fast photodiode (PD). The photodiode signal is connected to a PID
controller and fed back to a piezo crystal with a mirror mounted on it. In this manner,
the optical path length and therefore the phase of the right lattice beam is adjusted the
left beam and a stable standing wave is formed.

In a first proof-of-principle experiment we flashed the 3 mm wide, unfocussed lattice beams
on a small falling Bose-Einstein condensate for 6µs after 3 ms time-of-flight (TOF). The
resulting absorption image, recorded after a total of 14 ms TOF, is displayed in figure 3.8.
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Figure 3.7: Schematic of the optics used to generate an optical lattice. The lasers for the
optical lattice are drawn in blue. They counter-propagate in the vacuum chamber, forming
the lattice and interfere on the photodiode. The piezo crystal controls the optical path
length of the right lattice beam. The laser beams used for imaging and magneto-optical
trapping are indicated by green and red lines, respectively.

It clearly shows the first diffraction orders to the left and the right of the central zero
momentum cloud.

Figure 3.8: Absorption image of diffracted Bose-Einstein condensate. The three clouds
correspond to px = −2~k, 0, 2~k.
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Chapter 4
Thermodynamics of a one-dimensional
two-component Bose gas

4.1 Introduction

Ultracold gases trapped on atom chips offer unique opportunities to study fundamental
problems in quantum (many-body) physics, as may have already become evident from the
previous chapters. The one-dimensional (1D), single-component Bose gas with repulsive
interactions has emerged as a paradigm system because exact solutions are available from
the Lieb-Liniger model [43] for the ground- and excited quantum many-body states for
any interaction strength. Furthermore, the thermodynamics can also be exactly calculated
from the Yang-Yang equations [44] for this system.

As was already alluded to in chapter 2, it is interesting to extend the experimental stud-
ies to the multicomponent case. Here, we are interested in the case of the two-component
Bose gas. As mentioned, this system has three natural interaction parameters (scattering
lengths), and exact eigenstates can be calculated via the Bethe Ansatz if (and only if)
these three parameters are all equal. For this specific case also results from the Thermo-
dynamic Bethe Ansatz (TBA) have recently been obtained [47]. It was found that the
polarization (the difference in population of the two states) shows some remarkable fea-
tures, in particular in the polarization at low (but finite) temperatures. Motivated by these
predictions, we have investigated the opportunities for experiments with a two-component
gas of 87Rb trapped on an atom chip.

We start from a single-component gas at relatively high temperature (in the non-
degenerate regime), create a two-component cloud with a transfer pulse, and then proceed
with evaporative cooling. The aim is to achieve a one-dimensional two-component gas at
thermal equilibrium and finite temperature, and compare to predictions such as those of
ref. [47]. Although conceptually very similar to the experiments of chapter 5, it turns out
that there are a number of challenges to overcome, and we will describe these below.

The outline of this chapter is as follows. In section 4.2 we describe the experimental
procedure that was used. We discuss some of the difficulties that were encountered, such as
the (re)population of undesired additional states, and how these were circumvented and/or
mitigated. In section 4.3 we present the key experimental results, consisting of density
profiles of the trapped two-component Bose gas near thermal equilibrium. Section 4.4
discusses the results and to what extent these can be compared to existing theories.
Finally, we also present an outlook on desirable future experiments.
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4.2 Experimental procedure

The experimental sequence from initial cooling and trapping of atoms to evaporative
cooling and finally reaching degeneracy has been described in detail in [90]. We will begin
this section with a summary of this sequence. This will be followed by a description of
the experimental procedure used to produce a two-component one-dimensional Bose gas.

We begin by pulsing a 87Rb-dispenser first at 20 A for 350 ms and then at 11 A for 850 ms.
This releases rubidium atoms into the vacuum chamber. This is followed by switching on
two pairs of counter-propagating, red-detuned (with respect to the cycling transition of
the D2 line) laser beams. Together with a magnetic field gradient of 15 G/cm generated
by the MOT coils, the lasers create a magneto-optical trap (MOT) below the atom chip
surface. One pair of laser beams is reflected off the gold-coated chip surface at an angle of
45◦, resulting in a mirror-MOT configuration [120]. All laser beams are overlapped with
repumping laser beams, which serve to optically pump atoms from a dark state back into
the cooling cycle. After a short compressed MOT phase, the atoms are optically pumped
into the |F =2,mf =2〉 state. At this point, all lasers as well as the MOT coils are switched
off and the cloud is trapped magnetically using the mini-wires underneath the atom chip.
After a transfer from this wire trap to the chip trap, generated by atom chip wire 5, the
trap is drastically compressed, increasing the inter-atomic collision rate. This a perfect
starting point for forced evaporative cooling, which we perform by applying a RF-ramp to
chip wire 4. At this point, cooling to degeneracy with an RF ramp down to ≈ 2.27 MHz
leads to an almost pure condensate of 4.5 × 104 atoms. The overall experimental cycle
time is 10 s.

For the experiments described in this chapter, we interrupt the evaporative cooling at
2.4 MHz when the gas can still be considered non-degenerate. The atom are confined in a
trap with trap frequencies ω⊥/2π = 1.9 kHz and ω‖/2π = 26 Hz. We then create a mixture
of atoms in two clock states of 87Rb, |1〉= |F =1,mf =−1〉 and |2〉= |F =2,mf =1〉, and
finally continue evaporative cooling, reaching degeneracy.

In order to create the mixture of states |1〉 and |2〉 we use the following sequence. As a
first step after the initial evaporative cooling, we apply a short (8µs) RF pulse, resonant
with the level splitting between mF -states, thereby transferring half of the atoms from
|F =2,mf =2〉 to |2〉. Next, a coherent superposition of states |1〉 and |2〉 is prepared using
a resonant two-photon RF and microwave (MW) coupling [84, 111] as shown in figure 2.1.
The microwave frequency is introduced via an external antenna (see section 3.2) while
the RF-field is applied directly to the atom chip wires.

To increase the collision rate and thereby also the efficiency of evaporative cooling, the
magnetic potential is tightened prior to the final cooling stage. Since state |2〉 decays
faster than state |1〉 we chose to start evaporation after making an uneven mixture of the
two states with an excess of atoms in state |2〉. This compensates for higher collisional
losses experienced by state |2〉 during evaporative cooling and ensures an even mixture
afterwards. For the same reason, the overall time of the final evaporation stage needed to
be as short as 350 ms.

Initially, we employed a radio-frequency sweep alongside a constant microwave pulse to
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expel the unwanted remaining population of |F = 2,mF = 2〉 atoms from the trap.
This two-photon scheme led to enhanced losses of both states |1〉 and |2〉 at the evapora-
tion frequency 2.3 MHz, possibly due to an unintentional cross-resonance between radio-
frequency- and the microwave sweeps. It was therefore replaced by a microwave sweep
from 7.6 GHz to 6.75 GHz directly coupling the |F = 2,mF = 2〉 to the untrapped
|F = 1,mF = 1〉 state. Furthermore, we found that the purity of the system benefits
from an additional 15 ms microwave sweep from 6.75 GHz to 7.2 GHz at the end of this
procedure.

The release from the trap and sequential state-selective imaging are performed as de-
scribed in detail in Appendix A and in section 5.2, with the only difference being a
shorter time-of-flight (1 ms). The experimental procedure detailed above was created to
ensure the purity of the system and the absence of oscillations in position or shape. It
results in a degenerate Bose gas with two components which we expect to be close to
thermal equilibrium.

4.3 Results and analysis

Following the procedure of the previous section, we obtained absorption images of the two-
component Bose gas close to thermal equilibrium (figure 4.1). While taking these images
naturally sums over the atomic density in the z-direction, we integrate the resulting 2D
density maps along the y-axis to obtain the 1D density profile along the x-axis. The
peak densities (see figure 4.2) do not exceed 100 atoms/µm. For our trap parameters, this
means that we can treat the clouds as 1D gases, similar to what was done for the single-
component case [41, 121]. In figure 4.2, we show the measured 1D density profiles of the
states |1〉 and |2〉 for six frequency values of the final evaporative cooling, illustrating the
transition from the non-degenerate to the degenerate regime. A complication that arose
in these experiments was that upon cooling to degeneracy, the experimental 1D profiles in
figure 4.2 show strong fluctuations in the number of atoms and in the relative populations
of the clock states.

We now want to compare our experimental data to the results from the thermody-
namic Bethe Ansatz (TBA) calculations of ref. [47]. This is computationally intensive
and requires searching in a multidimensional parameter space. Therefore we first cal-
culate approximate parameters using a computationally simpler scheme, based on the
single-component TBA (Yang-Yang) equations [41]. We now first describe this model.
This will also be useful for the extension to the two-component case that we introduce
subsequently.

The starting point is the numerically obtained equation-of-state in the form nY Y (µ, T )
for the 1D density as a function of chemical potential µ and temperature T . For later
reference, it is useful to point out here that convenient scaled units can be obtained as
follows [122]. For a 1D coupling strength g, the relevant energy scale is

Eg =
mg2

2~2
, (4.1)
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Figure 4.1: Absorption images of the density distribution of the two-component Bose
gas near thermal equilibrium. For the profiles shown in this figure fifty density images,
recorded under identical conditions along the z-axis, were averaged for each state. Sub-
figures (a) and (b) show the atomic density of states |1〉 and |2〉, respectively.

and the relevant length scale is

lg =
~2

mg
. (4.2)

Temperature and chemical potential are then most conveniently expressed in units of Eg,
while 1D density nY Y is in units of 1/lg. For instance the famous Lieb-Liniger parameter
is given by

γ =
1

nY Y lg
. (4.3)

The thermodynamic relation nY Y (µ, T ) can be combined with the local-density approx-
imation (LDA) to obtain the in-trap density distribution via a local chemical potential
µ(x) = µ(0)−V (x). An important practical extension is that we also need to account for
population in radially excited states, since our temperatures are on the order of the radial
level splitting ~ω⊥. This is done by treating each radially excited state (radial quantum
number j, degeneracy j + 1) as an independent ideal 1D Bose gas in thermal equilibrium
with the radial ground state, at the same temperature T ,

µj = µ(x)− j~ω⊥. (4.4)

The total linear density nl is then given by

nl(µ(x), T ) = nY Y (µ(x), T ) +
∑
j=1

(j + 1)ne(µ(x), T ). (4.5)

For the radially excited states we use the result of the LDA for the 1D ideal Bose gas,

ne(µ(x), T ) =
1

ΛT

g1/2(exp(µ/kBT )) (4.6)

where g1/2 is a Bose function and ΛT is the thermal de Broglie wavelength

ΛT =

√
2π~2
mkBT

. (4.7)
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As a first step, we fit the expression (4.5) to the experimental density distributions of each
component separately. This neglects the interaction between the two states, and hence
is not justified. Nevertheless, we expect that this will yield reasonably good values for
the temperature, as we elaborate below, and reasonable starting values for the chemical
potentials of the two components. The resulting best fits are shown in figure 4.2 as dashed
curves. These fits are surprisingly good, considering the fact that this model ignores the
interspecies interactions. The temperatures and chemical potentials extracted from these
fits are shown in figure 4.3. The reason we expect the extracted temperatures to be reliable,
is that these are dominated by the tails of the distribution, where effects of degeneracy and
interaction become small. In that regime, neglecting the interspecies interaction should be
justified. Indeed, for each RF value, the temperatures extracted from the two components
are in good agreement. Based on the fitted parameters, we then proceed to obtain fit
parameters from the two-component model.

For the TBA solution of the homogeneous two-component 1D Bose gas, the relevant pa-
rameters are the coupling strength g (required to be state-independent), the temperature
and the two chemical potentials µmaj and µmin. We have used the TBA code kindly
provided by the authors of [47]. This code takes the scaled values of temperature

t =
kBT

Eg
(4.8)

the average chemical potential
µ̃ =

µmaj + µmin
2Eg

, (4.9)

and the difference in chemical potential

Ω =
µmaj − µmin

2Eg
. (4.10)

To obtain density curves that can be compared to the experiment, again the LDA is
used, and the radially excited states are accounted for in the same way as in (4.5), with
a separate peak chemical potential for the two components µmaj and µmin. We fix the
temperature to the average of the two values obtained from the single-component fits
(except for the data of figure 4.2(a), where the temperature of the majority component
dominates). Next, we vary µmaj and µmin to be close to the peak (central) density of each
component. The resulting density profiles are shown as solid curves in figure 4.2, while
the used temperatures and resulting chemical potentials are shown in figure 4.3.

4.4 Discussion and outlook

The obtained fitted density distributions are in reasonable agreement with the experi-
mental data. Before discussing possible reasons for the discrepancies, we first make a few
more general remarks.

First, it should be pointed out that the usual bimodal description of partially condensed
clouds does not work in 1D, as elaborated upon in ref. [41]. The main reason for this is that
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Figure 4.2: Averaged density distribution of two-component Bose gas near thermal equi-
librium as a function of the final evaporation frequency. The densities of states |1〉 and |2〉
are colored red and blue, respectively. The overall density is colored green. The experi-
mental data is represented by dots. To obtain the profiles, for each state 50 density images
were recorded under identical conditions and averaged. The plots show the atomic density
summed along the z-direction, i.e. the 1D-density. A single component fit to the data is
indicated by dashed lines, while the solid lines represent a fit based on the thermodynamic
Bethe-Ansatz (TBA) according to [47].
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Figure 4.3: Temperature (a) and chemical potential (b) of the two-component 1D Bose
gas as function of the final evaporation frequency. Fits based single-component calcula-
tions are shown as dashed lines. States |1〉 and |2〉 are colored red and blue, respectively.
The solid purple line in (a) represents the temperature values used for the two-component
TBA calculations, that yield chemical potentials shown as solid curves in (b).
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the 1D ideal Bose gas exhibits a diverging density as the chemical potential approaches
zero from below, so that the crossover from ideal-gas to (quasi-)condensate can not be
properly described. The same argument holds for the two-component case, so that the
two-component TBA solutions are an important tool in describing our data.

Second, the obtained chemical potentials for the two-component case are different from
the separate chemical potentials from the single-component fits. This is to be expected
from the results of ref. [47], which show that at low temperatures, the gas favors a strong
polarization (difference in densities of the two components) even for small differences in
chemical potential between the two components. This shows up in figure 4.3(b) as a much
reduced difference in chemical potential for the two-component TBA fit, as compared to
the two chemical potentials from the single-component TBA fits. In the experiments, the
atom number is set (within experimental limitations). Hence, for a near-equal mixture, the
required difference in chemical potentials in the two-component TBA rapidly diminishes
as degeneracy is reached.

The main message of this work is that the two-component TBA calculations are very useful
for our experimental results. There are, however, also several reasons why discrepancies
are to be expected. First, as detailed in chapter 2, the interactions are not strictly state-
independent because of the slight differences in scattering lengths among the two clock
states of 87Rb. For relatively high temperatures (kBT > n∆g) one might expect these
small differences to be of minor relevance. For our densities of order 50 per micron, the
relevant energy scale is n∆g/kB = 1 nK. Our temperatures are higher than this scale (see
figure 4.3(a)), so that this may not be a limiting factor. On the other hand, as we will
see in the next chapter, these small energy differences can lead to significant dynamics at
long time scales (≈ 100 ms). This is comparable to the time of evaporative cooling used
here.

Another, harder to address, issue is the coherence between the two states. The goal has
been to eliminate this coherence by the losses and dissipation of the evaporative cooling
process. It is, however, hard to test to what extent this leads to complete decoherence.

For a completely coherent mixture, one would actually expect the single-component de-
scription to work for the total density. For the fully decoherent mixture the two-component
TBA description should be applicable. Our experimental data shows similar agreement
to best fits for both models, so that we are unable at this point to decide on the achieved
(de)coherence based on this comparison.

Generally, the visibility of effects associated with the two-component gas and the com-
parison to TBA theory would benefit from a strong increase in interaction strength. For a
more strict adherence to the condition of state-independent interactions (allowing a more
detailed comparison to TBA theory) it would be desirable to extend the experiments of
this chapter by combining this approach with the techniques of the following chapter.
Namely, a next step would be to try and obtain thermal equilibrium in a two-component
Bose gas via evaporative cooling, while tuning the one-dimensional interaction parameters
to the point of integrability (via state-dependent potentials). While this natural combi-
nation of ideas has not escaped our attention, it is beyond the scope of the present thesis.
Pursuing further investigations along these lines is left as a challenge for others.



Chapter 5
Controlling one-dimensional spin
motion with state-dependent potentials

5.1 Introduction

In this chapter, we present the main results of this thesis. These results have also been
submitted for publication [123]. We show that radio-frequency-dressed potentials on atom
chips offer a new way to tune the effective interactions in 1D and to control spin motion.
We make use of the fact that, for elliptical RF polarizations, different hyperfine states
experience different dressed potentials, allowing for state-dependent manipulation [124].
Here we exploit the dependence of the 1D coupling strength on the transverse confinement
frequency ω⊥ [34]. By tuning the transverse confinement for the two states independently
through the RF polarization and amplitude, we show that it is possible to control the inter-
actions in a state- and time-dependent manner. Suddenly changing interactions, combined
with the state dependence of the axial trapping then results in dynamical evolution in the
spin degree of freedom. In particular, we are able to tune to (i) the point where the spin
motion is frozen, and (ii) the point where the 1D interactions become spin-independent.

5.2 Experimental procedure

We first discuss our results on the one-dimensional non-equilibrium dynamics for state-
independent potentials, highlighting the importance of small differences in interaction
parameters. The experimental procedure of the experiments detailed in this chapter is
similar to the one used for the experiments of chapter 4. In fact, the individual steps
of the two procedures are identical up to an intermediate step in a series of evaporative
cooling stages. Whereas in chapter 4 we first mixed the states |1〉 and |2〉 when the
gas could still be considered non-degenerate and then continued evaporative cooling to
degeneracy, here all cooling is performed prior to creating a two-component system. We
provide a documented example of the program code used to generate a two-component
1D Bose gas in Appendix A.

The starting point of our experiments is a nearly-pure 1D quasi-condensate in the |1〉=
|F = 1,mf =−1〉 state of 87Rb in a highly elongated magnetic trap created by an atom
chip. To prepare this state, initial evaporative cooling to 120 kHz above the trap bottom
is performed (see chapter 4.2), leading to a cold, non-degenerate gas. After this, we apply
a short RF pulse with a frequency of 2.22 MHz. This serves to transfer atoms from |F =
2,mf =2〉 to |2〉 = |F =2,mf =1〉, as described in chapter 4.2.



42 Controlling one-dimensional spin motion with state-dependent potentials

Then, we drive a two-photon transition by applying a combined RF (1 MHz)- and MW
(6.83 GHz) field. For a pulse time of 0.5 ms, the atomic population is transferred from
|2〉 to |1〉 = |F = 1,mf =−1〉 with nearly 100% transfer efficiency. The single transitions
are detuned by 1.26 MHz from the intermediate |F = 2,mf = 0〉 level to avoid transfer
to this untrapped state. Subsequently, the trap is tightened by ramping up the current
in chip wire 5 and the coils responsible for the bias field within 60 ms. This creates a
highly elongated Ioffe-Pritchard microtrap with trap frequencies of ω⊥/2π = 1.9 kHz and
ω‖/2π = 26 Hz.

In the following step, we perform a second and final RF evaporation sweep to ≈ 25 kHz
above the trap bottom in order to achieve quantum degeneracy of state |1〉. This sweep
is accompanied by a MW pulse to remove the still populated fully stretched state |F =
2,mf = 2〉 by coupling to the untrapped |F = 1,mf = 1〉 state. The peak linear atomic
density is n1 . 100 µm−1. In this system, both the temperature and chemical potential
are small compared to the radial excitation energy (µ, kBT < ~ω⊥) and the dynamics are
restricted to the axial dimension (1D regime).

From this clean starting point, in which only state |1〉 has a noticeable population, we
induce a sudden transition to a coherent superposition of the |1〉 and |2〉= |F =2,mf =1〉
hyperfine states via a second two-photon pulse, effectively creating a spin-1/2 system
[84, 111]. We recorded Rabi oscillations between the two coupled states by varying the
two-photon pulse duration and determining the number of atoms per state. An example of
the oscillations, recorded under slightly different conditions, is shown in figure 5.1. From
a sine fit to this data we deduce a two-photon Rabi frequency of 1.8 kHz.
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Figure 5.1: Rabi oscillations between states |1〉 and |2〉 driven by coherent two-photon
transition. The number of atoms in states |1〉 and |2〉 is indicated red and blue, respec-
tively. Sine fits to the data yield a Rabi frequency of 1.8 kHz.

The two-photon Rabi frequency for the experiments described here is determined as
1.14 kHz, corresponding to a π/2-pulse duration of 0.22 ms. This is fast compared to
the timescale for axial dynamics, but sufficiently slow to prevent radial excitations. Co-
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herence times in excess of 1 s have been measured in this setup via Ramsey spectroscopy
of dilute thermal clouds.

After performing a π/2-pulse, which leads to an equal mixture of atoms in states |1〉
and |2〉, the resulting non-equilibrium situation is allowed to evolve. The time evolution
of the spin distribution is measured by varying the hold time and subsequent sequential
state-dependent absorption imaging.

After a short time-of-flight of typically 1 ms, we image the longitudinal distributions,
and obtain the linear densities n1 and n2 of the two states along the length of the trap
by integrating along the radial direction. Atoms in state |2〉 are imaged directly using
absorption on the F = 2, F ′ = 3 transition with an exposure time of 30µs and an optical
resolution of 4.2µm. Due to an extra repumping step we find a 20% lower detection
efficiency for state |1〉 and a poorer resolution of ∼ 8µm due to photon recoil, visible in
figure 5.8.

5.3 Spin motion

In figure 5.2 we present measurements of the evolution of spin polarization (n1− n2) and
the total linear density (n1 + n2) as a function of hold time. The spin pattern shows
clear dynamical evolution [figure 5.2(a)] whereas the total density remains approximately
constant with no significant dynamics [figure 5.2(b)]. The spin dynamics can be inter-
preted as a “focusing” of state |2〉 in the presence of state |1〉, resulting in a negative spin
polarization (n2 > n1) toward the center of the trap.

We find good agreement with the experimental data using the coupled 1D Gross-Pitaevskii
equations (1D-GPE) with solutions also shown in figure 5.2(c,d). The 1D-GPE is obtained
by integrating the full 3D-GPE over the transverse ground-state wavefunctions (see equa-
tions (2.26)), with interaction parameters derived from the intra- and interstate scattering
lengths taken from ref. [98]: a11 = 100.4 · a0, a22 = 95.44 · a0 and a12 = 98.006 · a0, where
a0 is the Bohr radius. Generalizing for state-dependent harmonic confinement (as will be
relevant below) we obtain for the 1D interaction parameters uij (equations (2.27) with
ωiy = ωiz):

u11 = 2~ω⊥,1a11,
u22 = 2~ω⊥,2a22,

u12 = 4~
ω⊥,1ω⊥,2

(ω⊥,1 + ω⊥,2)
a12, (5.1)

with ω⊥,j the transverse trap frequency for state |j〉. Similarly we use values for the scaled
rate constants for inelastic two-body and three-body losses derived (see equations (2.28))
from the 3D values in ref. [98]. The 1D-GPE simulations reproduce the features of the
experiment, i.e. absence of dynamics in the total density and the overall structure of
the spin dynamics including the time of maximum state separation around t ≈ 75 ms.
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Figure 5.2: One-dimensional spin dynamics and total density after a sudden transfer
of internal-state population, for the case of state-independent trapping potentials. Shown
are spin polarization (n1−n2, left) and total linear density (n1+n2, right), as a function of
axial position and time after the transfer. Top: experiments, bottom: corresponding sim-
ulations resulting from integration of two coupled 1D Gross-Pitaevskii equations (GPE).
The spin polarization data clearly shows how n2 is focused towards the center (blue), while
n1 moves towards the sides (red); the total density shows little dynamics. Differences be-
tween experiment and simulation can be explained by the limited optical resolution of
our imaging system and a small tilt of the trap, leading to a slight spatial asymmetry in
the experiments.
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The decay in atom number on a & 100 ms timescale is dominated by two-body losses in
intrastate interactions and between |2〉 atoms (γ12 and γ22) [98].

The rate of spin focusing/defocusing is critically dependent on the precise differences in
1D interaction strengths for the respective internal states, a fact that is readily confirmed
by changing these differences in the simulations. The observed general behavior can be
understood as follows: in the initial state (an interacting trapped quantum gas in a single
internal state in equilibrium) the repulsive interactions balance the external confining
potential. Suddenly transferring a fraction of the population to a second internal state
with weaker intra- and interstate interactions results in a net contracting force (a confining
effective curvature, c2 > 0 in equations (5.3) below) on the population in this second state
that dominates the dynamics in the spin polarization. Because the spin-dependent part
of the interactions is relatively small, the dynamics in the total density are dominated by
the (relatively large) average scattering length which remains nearly constant. Hence the
total density shows only weak dynamics; the focusing in n2 is accommodated by “pushing”
n1 to the sides (red in figure 5.2).

5.4 Controlling spin motion in a 1D Bose gas

We now describe the state-dependent radio-frequency-dressed potentials that we use to
control the spin motion. We consider near-resonant coupling (~ωrf . gFµB|B|) of the RF-
field with tuneable polarization determined by the relative phase of two independently
controlled RF-fields. A cross section of the wire geometry used is shown in figure 5.3(a).
The fields originate from direct digital synthesis (DDS) supplied currents in two wires
neighboring the Z-shaped trapping wire [125]. With these two fields we can readily control
the ellipticity of the total RF-field at the trap position by controlling the relative phase
φ of the RF currents in the two wires. This includes linear (horizontal and vertical) and
circular (σ±) polarizations.

The corresponding dressed-state potential for state |j〉 (with j = 1, 2) has the form
Vj(x, y, z) = ((V0(x, y, z)− ~ωrf )2 + ~2Ω2

j)
1/2 where V0(x, y, z) is the bare magnetic (har-

monic) potential. The state-dependent part of the potential enters through the coupling
Rabi frequency Ωj [126, 94] (see equation 2.9), which acts to weaken the overall confine-
ment near the trap bottom by an amount given by the dressing parameter δj. Taking the
second derivative of the potential Vj around the origin yields new trap frequencies,

ω̃2
⊥,‖ = δjω

2
⊥,‖,where δj = ∆/

√
Ω2
j + ∆2, (5.2)

with detuning ∆ = ωL − ωrf and Larmor frequency ωL.

The state-dependent RF potential is characterized using dressed-state RF spectroscopy
with a weak additional RF probe [127, 128]. The potential energy at the trap bottom is
characterized by the onset of loss as a function of probe frequency which we fit to extract
Vj(0, 0, 0). Figure 5.3(b) shows the measured trap bottom as a function of the dressing
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Figure 5.3: State-dependent potentials. (a) wire geometry used for state-dependent
radio-frequency-dressed traps (as in fig. 2.3). The static quadrupole magnetic field and
the two RF-fields are indicated by green, orange and purple arrows respectively. The di-
rection of the bias Ioffe field which defines the quantization axis is into the plane of the
figure. (b) Trap bottom determined via dressed state RF spectroscopy as a function of
φ. Data points correspond to the measured trap bottom for state |1〉 (red) and state |2〉
(blue). Solid and dashed curves are fits to the data. The dash-dotted green line indicates
the fitted trap Larmor frequency ωL/2π = 2.25 MHz.

phase φ, for ωrf = 2π × 2.20 MHz. The trap bottom varies with RF phase between
2250 kHz and 2700 kHz corresponding to a maximum Rabi frequency of Ωj/2π = 450 kHz.
For φ = 0.31π and φ = 1.68π the potential is maximally state-dependent, corresponding
to the pure circular polarizations σ− and σ+ respectively (dressing only state |1〉 and
only state |2〉, respectively). The potentials are state-independent for linear polarization
at φ = 0, π (equal dressing of state |1〉 and |2〉). The deviation from a simple sin2(φ)
behavior is due to the wire geometry, as the two RF-fields are not quite orthogonal at the
trap position.

A fit to the data (solid and dashed curves) taking into account the wire geometry results
in an accurate calibration of the key experimental parameters, in particular the Larmor
frequency ωL = 2.25 MHz, RF-field amplitudes b1 = b2 = 0.53 G from the two RF wires
and the trap-surface distance of 80 µm.

To control the spin motion we turn on the state-dependent dressing directly after preparing
the equal superposition of |1〉 and |2〉. This is done by ramping up the RF currents through
chip wires 3 and 6 within 2 ms. The radio-frequency, ωrf = 2π×2.20 MHz, is chosen slightly
below the trap bottom to prevent the formation of a double-well potential. The ramp time
is slow compared to the inverse Larmor frequency and the inverse radial trap frequency,
but sudden with respect to any axial motion. We use the two circular RF polarizations and
various RF amplitudes, corresponding to 0.8 < δ1 < 1, δ2 = 1 and 0.8 < δ2 < 1, δ1 = 1.
For each time step we extract the widths of the axial distributions in both states.

Results for the full range of dressing parameters are depicted in figure 5.6. Figure 5.6(a)
shows the calculated interaction strengths taken from equation (5.1) as a function of δ1
and δ2. We have compared the measured widths of the distributions as a function of time
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Figure 5.4: 1D density profiles at hold time t = 44 ms for (a) no RF dressing, (b) dressing
of state |1〉 alone (φ = 0.31π, δ1 = 0.904) and (c) dressing state |2〉 alone (φ = 1.68π,
δ2=0.968). States |1〉 and |2〉 are indicated in red and blue, respectively. The experimental
data is represented by dots, gaussian fits by thin dashed lines and the profiles resulting
from the corresponding coupled 1D-GP simulation are represented by solid lines.
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Figure 5.5: Number of atoms in states |1〉 (red) and |2〉 (blue) as function of the hold time
in the magnetic trap for three different RF dressing parameters. Subfigure (a) corresponds
to no RF dressing, (b) to dressing of state |1〉 alone (φ = 0.31π, δ1=0.904) and (c) shows
the data for dressing state |2〉 alone (φ = 1.68π, δ2 = 0.968). The solid lines are the
corresponding decay curves obtained from the GP simulations.
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Figure 5.6: Overview of the possibilities of the state-dependent potentials, as a function
of the dressing parameters (left: varying δ2, with δ1 = 1; right: varying δ1 with δ2 = 1).
(a): 1D interaction strengths, uij normalised by the bare transverse trap frequency ω⊥,0.
(b) Widths of the distribution at t = 44 ms and (c) scaled effective curvature cj/c0 at
t = 0. Red indicates state |1〉 (and u11) and blue state |2〉 (and u22) and in (a) u12 is
indicated in green. The widths in (b) are obtained by a fit to the experimentally measured
density profiles (dots) and to GPE simulation (shaded regions). The shaded areas in (b)
represent the effect of shot-to-shot atom number fluctuations in the experiment.
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with solutions of the coupled 1D-GPE. An example of Gaussian fits to the experimental
data taken at t = 44 ms including the corresponding 1D density profiles resulting from the
1D-GPE simulations is shown in figure 5.4. The evolution of the number of trapped atoms
with hold time is given in figure 5.5. The observed decay of the atom numbers matches the
simulation based on the numbers in ref. [98]. The widths and the corresponding simulations
for one fixed hold time of 44 ms are shown in figure 5.6(b). The measured widths follow the
1D-GPE simulations closely (taking into account the finite optical resolution), with the
biggest uncertainties originating from atom number fluctuations which cause the peak
linear density to vary between 70µm−1 and 100 µm−1 throughout the entire data set
(systematic uncertainty shown by shaded regions). The solid vertical line at δ1 = 0.904
indicates the point where the difference in interaction strengths is minimized [figure 5.6(a)]
with u11, u22 and u12 differing by less than 0.09% (30 times reduction in differences when
compared to the unmodified interactions). These conditions are of interest for comparing
to Bethe Ansatz solutions which require spin-independent interactions [27, 47].

In the two-component (“spin-1/2”) 1D Bose gas, the presence of spin-independent (sym-
metric) interactions is of particular interest. For all interaction strengths (weak and strong)
the dispersion relation of spin waves is quadratic here [104, 27], and the low-energy spin
velocity vanishes. As a consequence the usual Luttinger-liquid description [129, 30, 130, 40]
cannot be applied. However, it is precisely the point where exact Bethe Ansatz methods
can be used [27, 47]. Furthermore, it is the point where buoyancy effects vanish and in the
weakly interacting (mean-field) regime it also lies on the border that separates miscible
and immiscible regimes of binary superfluids [104], see figure 2.5.

5.5 Effective potentials

To explain the data we have to consider both the effect of RF-dressing on the collisional
interaction strengths as well as the state-dependent modification to the axial potential. A
simple analytical description can be obtained using a Thomas-Fermi description near the
cloud center where the cloud shape is an inverted parabola. The combination of the state-
dependence of the axial trapping frequency and of the interactions can then be expressed
as a net harmonic potential characterised by an effective state-dependent curvature cj.
We solve for the effective curvatures (figure 5.6c) for t & 0 in our experiments in terms of
δj, and find

c1
c0

= δ1 − (1− β)
√
δ1 −

a12
a11

2β
√
δ1δ2√

δ1 +
√
δ2

c2
c0

= δ2 − β
a22
a11

√
δ2 −

a12
a11

2(1− β)
√
δ1δ2√

δ1 +
√
δ2

(5.3)

Here the first term on the right-hand side reflects the modification to the external axial
potential and the second and third terms deal with the modified interactions uij. The
axial curvature of the bare potential is c0 = ω2

‖/2 and β corresponds to the fraction of the
population transferred to state |2〉 (β ≈ 1/2 for our experiments).
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The dashed line at δ2 = 0.968 in figure 5.6 indicates the point where the difference in
interactions is compensated by the state-dependent longitudinal potential and c1 = c2.
This point is characterized by small equal curvatures of the effective potentials (including
interaction energy) for both states [figure 5.6(c)], which result in frozen spin dynamics.
These conditions are important for applications with on-chip atomic clocks, to minimize
inhomogeneous broadening due to mean field shifts. For δ2 < 0.968 the difference in
interaction strengths is further enhanced and the time evolution of the spin dynamics
becomes inverted, with focusing of state |1〉 while state |2〉 is pushed outward, as is visible
in figure 5.6(b).

Figure 5.7 shows the full time evolution of the spin polarization for two selected RF-
dressing parameters. The selected cases are: dressing of state |1〉 alone (φ = 0.31π, δ1 =
0.904) [figure 5.7(a)] and dressing state |2〉 alone (φ = 1.68π, δ2 = 0.968) [figure 5.7(b)],
corresponding to the intersection points in figure 5.6(a) and (c), respectively. Qualitatively
state |2〉 focuses faster with RF-dressing applied to state |1〉, when compared to the case of
state independent potentials [figure 5.2(a)]. Generally, the simulated density profiles reveal
a rich and dynamic nonlinear evolution of the spin polarization, reminiscent of filament
propagation in optical systems with competing nonlinearities [131]. This is clearly visible
in figure 5.7(c) for example. This detailed structure depends sensitively on the precise
values of the dressing. The development and propagation of this fine structure in the spin
polarization is partially observed in the experimental data, but is not fully resolved due
to the finite imaging resolution. Convolving the simulated profiles with the point-spread
function of our imaging system yields excellent agreement with all of the data. With weak
dressing of state |2〉 (δ2 =0.968) it is possible to freeze spin dynamics altogether such that
the two states maintain their overlap and the widths remain constant (apart from a small
in-phase quadrupole oscillation and decay from state |2〉), see figure 5.7(b,d). A more
quantitative representation of the data, showing excellent agreement between experiment
and simulation, is given in figure 5.8, where the widths of the two states are shown for
different evolution times. Clearly, the focus point can be identified in figure 5.8(a) around
t = 75 ms and in figure 5.8(b) around t = 30 ms, whereas no focussing is present in
figure 5.8(c).

5.6 Outlook

We have shown that by introducing a small state-dependence to the radial trapping po-
tential using RF-dressing we can precisely tune the 1D interaction parameters in a two-
component quantum gas by more than 10%, over an experimentally significant range.
In our experiments this modification competes with the state dependence of the axial
trapping and provides a new “knob” to control spin motion, leading to tuneable nonlinear
behavior.

Our method can be naturally extended in several ways. For instance, control over the
interactions without the accompanying state-dependence of the axial trapping can be ob-
tained by using one-dimensional box-shaped potentials [125]. By introducing an additional
displacement of the transverse potential in a state-dependent way it is possible to further
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Figure 5.7: Spatiotemporal behavior of the spin polarization (n1 − n2) following the
sudden transfer to the state-dependent potentials. States |1〉 and |2〉 are indicated red
and blue, respectively. (a) shows the evolution with RF parameters corresponding to
equal inter-atomic interactions (δ1 = 0.904, δ2 = 1) and (b) equal effective potentials
(δ1 = 1, δ2 = 0.968). (c) and (d) show the results of 1D-GPE simulations corresponding
to (a) and (b), respectively.
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lines are results of 1D GPE solutions. States |1〉 and |2〉 are indicated red and blue, respec-
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(δ1 = 1, δ2 = 0.968).
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reduce u12, allowing all three interaction parameters to be tuned independently, something
that is not generally possible with a magnetically controlled Feshbach resonance.

The observed spin dynamics depend critically on the precise differences in interaction
strengths. For 87Rb, the three relevant scattering lengths are nearly equal and therefore
weak dressing is sufficient to tune the system parameters to the point of symmetric in-
teractions or to where the spin dynamics become frozen. Since the RF parameters can be
precisely known, such experiments could also allow precision determination of the scat-
tering length differences. More generally, tuning the system parameters around the point
of spin-independent interactions strongly affects the dispersion relation of the spin excita-
tions [104]. In particular this allows the spin velocity to be tuned around zero, providing
a new handle for the study of spin waves in one-dimensional atomic gases.

Tunable interactions in two-component quantum gases have important applications in
the areas of spin-squeezing and quantum metrology [61, 62], and the ability to control
spin motion opens new avenues for future studies of quantum coherence in interacting
quantum systems [30, 111, 85, 86, 132]. Our current experiments are performed in the
weakly interacting 1D regime and at low temperature, and we find that a description
based on two coupled 1D Gross-Pitaevskii equations is sufficient to describe our data.
The methods presented here to tune interactions are not limited to this regime, however.
In particular, we plan to apply these methods to systems with stronger interactions (e.g.,
by lowering the 1D density) and with higher temperatures. This will provide experimental
tests of (and challenges to) more sophisticated theoretical methods, for both equilibrium
and non-equilibrium phenomena. For instance, it will be possible to experimentally explore
predictions of the thermodynamic Bethe Ansatz for the two-component Bose gas [47] (as
already indicated in chapter 4) and to explore quantum quenches in strongly interacting
1D systems by dynamical control over the spin-dependent interactions. Finally, we expect
that the experimental control over spin motion and interactions, as demonstrated here,
will benefit the realization of spin-“charge” separation in a Bose gas [27, 29].



Chapter 6
Extension to Bose-Fermi mixtures

6.1 Introduction

All results presented in this work were obtained with the CELSIUS apparatus described
in chapter 3. Even though the existing setup has proven very fruitful and reliable, there
are a number of improvements on our wish list for a next generation setup. First and
foremost, we intend to extend our studies of one-dimensional (1D) systems to Bose-Fermi
and Fermi-Fermi mixtures. Atom chips offer many advantages in this regard: rapid sym-
pathetic cooling of the fermion 40K by the boson 87Rb on an atom chip has already been
demonstrated [133], atom chips enable the study of individual realizations of 1D quantum
gases [41, 124], and finally they make possible the use of versatile radio-frequency dressed
potentials [124, 128] that can be both state- and species-selective [134]. The latter allows
tuning the interaction parameters, which enables comparison to exactly solvable models
in our experiments (see chapter 5). Our interest is in dynamics, coherence, relative phase,
phase separation [135] and coupling between components of a Bose-Fermi mixture in one
dimension. Apart from an added species, an improved general performance is desirable. A
new apparatus should provide a longer vacuum lifetime, shorter experimental cycle times,
better optical access and increased flexibility in the use of on-chip traps.

In this chapter, we present our design of the KELVIN (K15, Experiment for Low-
dimensional, Variable-Interaction systems, Next generation) apparatus to investigate
quantum degenerate mixtures of Rb and K. It includes a double chamber vacuum setup
and a two-species mirror-MOT powered by a system of amplified diode lasers. The setup
can be subdivided into three parts: the diode laser system, the vacuum system and the
atom chip.

6.2 Laser system

Coherent light for cooling, repumping, optical pumping and imaging of 87Rb (780 nm) and
40K (767 nm) is provided by a system of diode lasers, acousto-optical modulators (AOMs)
and tapered amplifiers (TAs) (see figure 6.1). Three grating-stabilized external cavity
diode lasers (ECDLs) serve as master lasers for the cooling light for Rb and K and the
repumping light for K. The lasers are frequency-stabilized by means of FM-spectroscopy.
Whereas standard laser diodes in home-built mounts are used for the Rb lasers, an anti-
reflection coated diode with a broad gain spectrum (Eagleyard, EYP-RWE-0790) [136]
is employed as K master laser. Repumping light for K is generated by frequency-shifting
part of the 767 nm light by 1.2 GHz with an AOM in four-pass configuration and sub-
sequent amplification by injection into a high-power slave laser. Amplification by three
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TAs (Eagleyard, EYP- TPA-0780 for Rb and EYPTPA-0765 for K) in home-built, highly
temperature-stable mounts, yields a total power of maximally 2 W per amplifier. A split-
ting and frequency shifting stage consisting of ten doubly passed AOMs allows indepen-
dent control over the individual frequencies. After recombination according to time and
location of its application, all light is coupled into six single-mode optical fibers, guiding
it towards outcouplers mounted around the vacuum chamber. In this manner the laser
light arriving at the chamber has perfect gaussian mode profiles and stray light from the
laser system can easily be shielded.
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6.3 Vacuum system

We chose a two-chamber approach, illustrated in figure 6.2, to separate the low vacuum
(10−7 mbar) volume of the 2D-MOT source from the high vacuum (10−11 mbar) of the
main chamber containing the atom chip. This is necessary because potassium will have
a higher vapor pressure than rubidium under the planned operating conditions, which
would cause increased collisions of the trapped gas with the background gas. The 2D-
MOT part is formed by a quartz glass cuvette mounted under a four-way cross piece.
The latter provides optical access for atom beam characterization as well as ports for
a 5 l/s ion pump and current feedthroughs for powering the dispensers containing 87Rb
and enriched 40K. A gate valve between the 2D-MOT part and the underside of the
main chamber allows for rapid exchange of empty dispensers without affecting the high
vacuum. The 2D-MOT works such that both species are simultaneously and transversely
laser-cooled and pushed through an aperture, thereby forming an intense beam of slow
(10 − 20 m/s) atoms [137, 138, 139, 101]. The aperture between the two chambers has
a diameter of 1 mm and a length of 12 mm, resulting in a pumping resistance of 100 s/l.
These dimensions ensure that the pressure on the high vacuum side is not limited by
differential pumping. Additionally the aperture restricts the opening angle of the atomic
beam to 40 mrad, matching the size of the mirror-MOT trapping volume. Close couplers
between vacuum components are used to minimize the distance from the 2D-MOT capture
region to the mirror-MOT.

A spherical octagon with eight CF40 flanges and two CF100 viewports on the outside
serves as main chamber. It is extended by a tube to allow for large conductance connection
of a 75 l/s ion pump, a turbo-molecular pump and a titanium sublimation pump. The atom
chip is mounted from the top on a water-cooled copper block and is positioned 1 cm above
the center of the octagon. The other two top flanges are used for a vacuum gauge and
current feedthroughs. Three sets of water-cooled coils around the main chamber generate
the field for the mirror-MOT and bias fields with arbitrary direction for magnetic traps.
The main chamber is surrounded by three sets of coils, generating the magnetic fields for
the mirror-MOT, compensation of the earth’s magnetic field and bias fields in arbitrary
direction for magnetic trapping. For improved clarity, only two of the pairs of coils are
shown in figure 6.2. A third pair is mounted on the front side CF100 flange and around
the extended tube.

6.4 Conveyor belt atom chip

The double layer atom chip design, depicted in figure 6.3, is formed by a silver foil with
milled wire patterns [140] and a nano-fabricated science chip glued on top. The dimensions
of the silver foil are 62× 30× 0.25 mm. A 2 mm thick Macor substrate is epoxied between
the silver foil and a water-cooled copper block for electric isolation. A “U”- and a “Z”-
wire with a 4 mm long central section followed by a meandering conveyor belt pattern
are milled into the silver foil, which also acts as the reflective surface of the mirror-MOT.
The wires are 500µm wide and separated by 150µm, the minimum groove size. They
support a current of up to 20 A. At z = 2 mm distance from the chip surface the “U”-
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glass cuvette (2D-MOT)

atom chip

four way cross

gate valve

main chamber

co
ils

coils

Figure 6.2: Two views of the double chamber vacuum system. The atom chip is mounted
into the spherical octagon vacuum chamber via its top port. A gate valve is connecting
the bottom of the chamber to a glass cuvette, which forms part of the 2D-MOT. Two
pairs of coils for magnetic field generation are depicted in brown and red. The laser beams
of the mirror MOT are colored yellow.

science chip

final z-trap

conveyor belt

mirror
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initial z-trap
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Figure 6.3: Double layer atom chip design. The blue rectangle symbolizes the part of
the silver foil which is used as a mirror for the magneto-optical trap. The ellipse therein
is the area illuminated by the two laser beams entering the chamber at an angle of 45 ◦.
The conveyor belt is located under the science chip.
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trap, when operated at 15 A, yields a trap with a magnetic field gradient of 16, 57, 45 G/cm
in x,y,z-direction, where the x-axis is parallel to the central wire and the z-axis points
in the direction of gravity. For a current of 20 A the “Z”-trap produces a gradient of
1200, 1200, 19 G/cm at z = 0.5 mm with a trap depth of 58 G, or correspondingly 3.8 mK.
For calibration purposes, quantum degeneracy can already be achieved in this trap. By
multiple rotations of the bias field in the y-z-plane, the trap minimum can be shifted
as far as 3 cm along the conveyor belt [73] to a final position below the science chip.
In this manner the capture region is separated from the science region, enabling good
optical access along the x- and the y-axis. Even in-vacuum lenses for maximum numerical
aperture are an option in this setup.

6.5 Experiment cycle time

With background loading replaced by loading from the clean, intense and rapidly switch-
able atomic beam output from the 2D-MOT, the loading time is reduced to approximately
2 s and the vacuum lifetime in the main chamber will be significantly increased. The large
area mirror allows for a bigger capture volume and thereby a higher initial number of
trapped atoms. This guarantees an improved robustness against number fluctuations in-
duced by electronic and acoustic noise. After the mirror-MOT and optical pumping stages,
we anticipate the atoms can be transferred into the “U”- and the “Z”- trap and finally
moved below the science chip within 1 sec. At this position, the atoms are taken over by
the “Z”-trap of the science chip, marked as final “Z”-trap in figure 6.3. Another second
is needed for the final evaporative cooling of Rb and sympathetic cooling of K, before
reaching a degenerate Bose-Fermi mixture. The overall cycle time can be as short as 5 s.
Furthermore this design facilitates future science chips which could incorporate multiple,
individually addressable trap geometries.

6.6 Concluding remarks

A major guideline to the presented design has been minimizing the time before first
experiments can be performed. Where possible, the setup is based on readily available
components, reducing the need for home-built parts. In a first step, an already existing
compatible atom chip will be glued onto a milled silver substrate to from a double-layer
chip. First tests with milling grooves into the silver substrate to create the desired wire
pattern were undertaken successfully. The existing CELSIUS setup (see chapter 3) was
used for experiments with 87Rb alone. In comparison, besides the increased experimen-
tal possibilities provided through the added second species, the KELVIN setup offers
improvements in many regards.

The two-chamber approach separates the atom source from the capture region. This not
only speeds up the loading of atoms in the MOT as pointed out in section 6.5, but also
avoids contamination of volume the experiments are conducted in. This will greatly en-
hance the lifetime of trapped atoms. As already mentioned, the time needed to perform
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a single experiment will be reduced by approximately a factor of two, leading to a higher
temporal stability during the operation of the experiment. By using a smaller main cham-
ber and bigger windows, the optical access will be improved. Separating the capture region
from the science region below the double layer atom chip serves the same purpose. To-
gether, these two improvements will make possible a higher numerical aperture in the
imaging system, resulting in a better optical resolution.

At the time of writing all components for the optical setup (figure 6.1) and the vacuum
apparatus (figure 6.2) have been either ordered or manufactured. The new atom chip
design is yet to be implemented.
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Chapter A
Experimental sequence for
two-component 1D Bose gas

The purpose of this appendix is to provide a more detailed description of the experimental
program used to obtain the main results of this thesis, specifically for chapter 5. The first
part of this procedure, from starting by cooling atoms in a magneto-optical trap, via
loading and compressing a purely magnetic trap to finally generating a 1D Bose-Einstein
condensate, is explained in [90] . Here, we focus on the additions and changes made to
create a two-component Bose gas, state-selective potentials using radio frequency fields
and to image atoms state-selectively.

The initial part of the experimental procedure is very similar to that described in [90] to
achieve a BEC in this setup. To test proper operation of the setup we measure the number
of atoms in the condensate. This number is typically N = 45000, in a Ioffe-Pritchard type
static magnetic trap created with the broad “Z”-wire (see chapter 3.1.3) and miniwire two.
The trap, formed by running currents of 1.055 A through the “Z”-wire and 3 A through
miniwire two, has trap frequencies ωx = 48 Hz and ωy,z = 1060 Hz. The final evaporation
frequency is 2.3 MHz. . With this test sequence checked, we take out the final evaporation
stage to BEC, and instead ramp down the evaporation radio-frequency to a value that is
∼ 100 kHz higher than the value needed to reach BEC.

In what follows we go through the essentials of the subsequent steps in the sequence
used for the experiments of chapters 5 and 4 (the latter with modifications detailed in
chapter 4.2). These steps are illustrated by specific lines in the so-called “time frame”,
a text file that is interpreted by the experiment control computer running LabView, as
described in more detail in [113].

The tables in this appendix show the key parts of the actual time frame. Each line of the
time frame contains a waiting time before a device is set to the specified value. Depending
on the device, a value can be set instantaneously or continuously ramped within a specified
time. Different ramp types can be pre-programmed: “ramp” followed by a number is a
linear ramp, where the number encodes the time resolution. “DDSramp” is a linear ramp
optimized for use with the direct digital synthesis (DDS) boards we use to generate radio
frequencies (see chapter 3.1.4) for evaporative cooling and RF dressing (see chapter 5).
Lines starting with “External parameter” attribute a value to a variable.

Table A.1 shows how DDS channels 3 and 4 are set to output the same frequency. Even
though only one of the two channels might has a non-zero output amplitude at this time,
it was found necessary to program their frequencies to be the same at all times. This
ensures a stable relative phase of the two RF signals during later stages of RF dressing.

At this stage, the trapped atoms are still in the |F = 2,mf = 2〉 state. As mentioned in
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comment time [ms] device value unit ramp type ramp time [ms]
hold s9+25 DDS 3 freq f0+1 MHz DDSramp 10
sync dds 0 DDS 4 freq f0+1 MHz DDSramp 10

Table A.1: Synchronizing DDS channels 3 and 4

comment time [ms] device value unit ramp type
mix spins External parameter 0.008 m1

10 DDS 3 freq 2.22 MHz step
sync dds 0 DDS 4 freq 2.22 MHz step

0.1 DDS 3 ampl 0.675 mA step
m1 DDS 3 ampl 0 mA step

Table A.2: Transfer from the |2, 2〉 state to the |2, 2〉 state of 87Rb

chapter 4.2, we transfer about 20000 atoms to the |2〉 = |F = 2,mf = 1〉 state with a 8µs
RF pulse resonant with the level splitting of the F = 2 state (see table A.2).

Next, by using the two-photon transition illustrated in figure 2.1, we coherently transfer
the atoms from the |2〉 state to the |1〉 state with almost 100 % efficiency. Table A.3 shows
the code used to perform this transfer. To prevent the intermediate state |F = 2,mf = 0〉
from being populated, we detune the microwave about 1 MHz away from this transition.
Since it takes some time for the microwave generator to lock onto a newly programmed
frequency (via radio frequency channel DDS 1, see also chapter 3.2), a delay time is
introduced. By using a negative relative time, the command is moved backwards in the
time sequence. This assures a stable microwave frequency by the time the pulse is switched
on.

Subsequently, the magnetic trapping potential is tightened by increasing the current in
the z-shaped chip wire and in the coils generating the bias field in the y-direction. This
causes a higher collision rate and therefore facilitates the following last step of evaporative
cooling to degeneracy. The details of this step are listed in table A.4. While cooling atoms
in state |1〉, remaining atoms in state |F = 2,mf = 2〉 are removed by coupling to the
untrapped |F = 1,mf = 0〉 state by means of a constant microwave pulse combined with
a RF sweep. Due to the change of the magnetic potential, microwave detuning and RF
frequencies have slightly changed with respect to earlier stages of the procedure. After
evaporative cooling for 620 ms we achieve condensation with a gas of typically 13000 atoms
in state |1〉. A variable waiting time is inserted to reduce the number of atoms by three-
body collisions and collisions with the background gas. This is needed to reach the low
densities required by the 1D condition (2.22).
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comment time [ms] device value unit ramp type
quarter cycle time External parameter 0.25 m6
mw detuning External parameter -1005.5 d0
conversion kHz to MHz External parameter d0/1000 d1
rf amplitude (two photon) External parameter 2 k7
mw programming delay External parameter 8.5 l8

-l8 DDS 1 freq 22.6586945-d1/2 MHz step
mw pulse l8 microwave high TTL
rf pulse 0 DDS 3 freq 1 MHz step
sync dds 0 DDS 4 freq 1 MHz step

0 DDS 3 ampl k7 mA step
m6*2 microwave low TTL
0 DDS 3 ampl 0 mA step

Table A.3: Combined radio-frequency and microwave pulse to coherently transfer from
state |2〉 to state |1〉
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comment time [ms] device value unit ramp type ramp time [ms]
rf ampl External parameter 1 a7
ramp time External parameter 2 h9
dressing freq External parameter 2.16 f9
rel. phase External parameter 304 p7
offset 0 DDS 3 phase p7 deg step

0 DDS 4 phase 0 deg step
0 DDS 3 freq f9 MHz step
0 DDS 4 freq f9 MHz step
1 DDS 3 ampl a7/1.0673 mA ramp h9
0 DDS 4 ampl a7 mA ramp h9

Table A.5: Switching on radio-frequency dressing

A final transfer pulse (like the one described in table A.3) mixes the - now degenerate -
population of states |1〉 and |2〉. Rabi cycles of this transition are shown in figure 5.1. After
creating an even mixture of the two states, we turn on the RF dressing (see table A.5) by
simultaneously increasing the RF current through chip wires on both sides of the trapping
z-wire. The current originating from DDS channel 3 needs to be attenuated by a small
empirically determined factor in order to achieve equal RF amplitudes at the position of
the trapped gas.

Lastly, we take separate absorption images of atoms in both states of the two-component
Bose gas. To illustrate the way the state-selective imaging is performed, we provide three
tables: Firstly, imaging of state |2〉 is shown in table A.6 with lines irrelevant for imaging
this state omitted. Secondly, table A.7 demonstrates the procedure used for state |1〉,
containing two additional stages. Finally, tableA.8 shows how a single variable controls
which state is imaged. Each time a time frame is executed, the parameter f1 is set to
either 0 or 1, to image state |1〉 or |2〉, respectively.

In both cases, state |1〉 and state |2〉, the intensity of the probe laser pulse is controlled via
the MOT EOM value, while its frequency is set by MOT AOM. The atom cloud is released
from the trap for 1 ms time-of-flight to improve the detection efficiency while preserving
the longitudinal distribution. The exposure is controlled by three nested time windows
created by the opening and closing of the mechanical probe shutter, the MOT EOM (9.4 V
corresponds to closed) and the camera trigger, where TTL low triggers the camera. After
the state-selective part of the imaging procedure explained below, an absorption image
(using the F = 2, F ′ = 3 transition), a light image and a dark image are taken, each with
an exposure time of 30µs and a delay of 35 ms in between exposures.

As already mentioned, probing atoms in state |1〉 requires two extra steps before the
actual exposure. First atoms in state |2〉 are removed with a 2 ms resonant light pulse
(see table A.7). This is followed by a second step, in which a 0.7 ms repumping pulse from
F = 1 to F = 2 is applied. After this, the atoms are imaged in the same way as atoms in
state |2〉.
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comment time [ms] device value unit ramp type
prepare probe External parameter 6 i8

0 MOT AOM 6.5 V step
0 MOT EOM i8 V step

...
time of flight 1 Probe shutter open TTL
1st trigger 1.2 Camera trigger low TTL

0 MOT EOM i8 V step
1 Camera trigger high TTL
0 MOT EOM 9.4 V step
5 Probe shutter shut TTL

Table A.6: Imaging of atoms in state |2〉

comment time [ms] device value unit ramp type
prepare probe External parameter 6 i8

0 MOT AOM 6.3 V step
0 MOT EOM i8 V step

...
blow away F=2 -2 Probe shutter open TTL

0 MOT EOM 2 V step
2 MOT EOM 9.4 V step
0 Probe shutter shut TTL
External parameter 0.7 x1

time of flight 1 Probe shutter open TTL
-x1 Repump shutter open TTL

repump F=1 to F=2 0 MOT EOM 9.4 V step
0 Repump EOM 0 V step

1st trigger 1.2+x1 Camera trigger low TTL
0 MOT EOM i8 V step
1 Camera trigger high TTL
0 MOT EOM 9.4 V step
5 Probe shutter shut TTL

Table A.7: Imaging of atoms in state |1〉
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comment time [ms] device value unit ramp type
image (F=1/F=2)=(0/1) External parameter 0 f1
prepare probe External parameter 6 i8

0 MOT AOM 6.3*(1-f1)+6.5*f1 V step
0 MOT EOM i8 V step

...
blow away F=2 -2+5*f1 Probe shutter open TTL

-5*f1 MOT EOM 2 V step
2 MOT EOM 9.4 V step
0 Probe shutter shut TTL
External parameter 0.7 x1

time of flight 1 Probe shutter open TTL
open for F=1 only -x1+5*f1 Repump shutter open TTL
repump for F=1 -5*f1 MOT EOM 9.4 V step

0 Repump EOM 0 V step
1st trigger 1.2+x1 Camera trigger low TTL

0 MOT EOM i8 V step
1 Camera trigger high TTL
0 MOT EOM 9.4 V step
5 Probe shutter shut TTL

Table A.8: State-selective imaging of atoms
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Summary

When atoms are cooled to temperatures close to absolute zero (about 150 nanokelvin
in our case), their quantum statistics become apparent. Depending on whether the total
number of constituent protons, neutrons and electrons is even or odd, the atom is a
boson or a fermion, respectively. When being trapped and cooled in an external potential,
bosons condense into the quantum mechanical ground state and can be treated as a
coherent matter wave called a Bose-Einstein condensate (BEC). Fermions on the other
hand are subject to the Pauli exclusion principle, which prohibits two identical fermions
from occupying the same quantum state. Therefore, in a cold Fermi gas, all quantum
states up to a certain energy are occupied by exactly one atom. Most experiments with
quantum gases (BECs and Fermi gases) are performed in traps that allow motion in all
three dimensions. The focus of this work in on one-dimensional (1D) bosonic quantum
gases, in which the atoms are confined such that they can only move along a single
direction.

One-dimensional quantum gases feature phenomena not present in their 2D or 3D coun-
terparts. For example, a 1D Bose gas becomes more strongly interacting as the density
decreases. Under specific conditions these 1D systems can be described by exactly solvable
models, whereas the description of systems with higher dimensionality inherently relies
on approximations.

In spinor quantum gases, the atoms can occupy multiple internal states. This offers the
opportunity to study the interplay between internal (spin) and external (motion) degrees
of freedom. This interplay is important in generally relevant and challenging phenomena
such as quantum magnetism.

In our experiments, exclusively performed with a specific, bosonic isotope of rubidium,
87Rb, we create a two-component (spinor) Bose gas in a 1D potential. The states involved
are the two clock states of 87Rb that experience the same magnetic trapping potentials.
At the heart of our experimental setup is an atom chip, a micro-fabricated wire pattern
on a silicon substrate used to generate magnetic potentials. It allows for trapping of atoms
in strong magnetic gradients at a distance of a few to a few hundred micrometers from
the chip surface. A 1D potential is formed by strongly increasing the confinement in the
two spatial dimensions perpendicular to the field-generating wire. In this way the motion
of the atoms is restricted to only one dimension.

To achieve the aforementioned conditions for a two-component Bose gas, besides ultra-
cold temperatures and low atomic densities, control over the interatomic interactions is



82 Summary

required. Traditionally, interactions among ultra-cold atoms are controlled via Feshbach
resonances by changing the background magnetic field. Since the magnetically trappable
states of 87Rb do not have any convenient Feshbach resonances, we developed a novel ap-
proach to tuning the interactions between atoms in 1D gases by means of radio-frequency
dressed potentials.

By applying radio-frequency fields, we couple the original state to all states within the
same hyperfine manifold, resulting in a modified (dressed) potential. The coupling depends
on the ellipticity of the RF polarization through the sign of the g-factor of the atomic
state. Since the clock states have opposed g-factors and we can tune the RF polarization,
the dressed potentials are state-dependent.

In 1D Bose gases, the effective interactions between atoms depend on the trapping po-
tential. We exploit the state-dependence of RF dressed potentials to tune the effective
inter- and intrastate atomic interactions. This technique provides access to the point of
spin-independent interactions where exact quantum many-body solutions are available
and the point where spin motion is frozen. As the main result of this work, we show
the corresponding time evolutions of the spin polarization derived from state-selective
absorption images. A simulation based on coupled 1D Gross-Pitaevskii equations yields
excellent agreement with the data.

This technique developed in this work paves the way for new experiments on 1D many-
body physics. The natural next step is to extend our studies to Bose-Fermi mixtures.
The corresponding design of the next generation experimental apparatus is presented
in the last chapter. In a wider sense, tuning interactions in 1D Bose gases could lead
to accuracy improvements in (atom chip based) atomic clocks and prove beneficial to
quantum computing schemes.



Samenvatting

Wanneer atomen afgekoeld worden tot temperaturen dicht bij het absolute nulpunt
(ongeveer 150 nanokelvin in ons geval), wordt hun kwantumstatistiek duidelijk zichtbaar.
Afhankelijk van of het totale aantal samenstellende protonen, neutronen en elektronen
in het atoom even of oneven is, is het atoom respectievelijk een boson of een fermion.
Wanneer ze worden gevangen en afgekoeld in een externe potentiaal, condenseren boso-
nen in de kwantummmechanische grondtoestand, en kunnen ze beschreven woren als een
coherente materiegolf die Bose-Einstein condensaat (BEC) genoemd wordt. Fermionen,
daarentegen, zijn onderworpen aan Pauli’s uitsluitingsprincipe dat verbiedt dat twee iden-
tieke fermionen dezelfde kwantumtoestand bezetten. Daarom worden in een koud Fermi
gas alle kwantumtoestanden tot een bepaalde energie bezet door precies één atoom. De
meeste experimenten met kwantumgassen (BECs en Fermi gassen) worden uitgevoerd met
vallen die beweging in alle drie de richtingen toestaan. Het hier beschreven werk draait om
ééndimensionale (1D) bosonische kwantumgassen, waarin de atomen zo zijn opgesloten
dat ze slechts in één richting kunnen bewegen.

Eéndimensionale kwantumgassen vertonen verschijnselen die niet in hun 2D en 3D even-
beelden aanwezig zijn. Bijvoorbeeld: een 1D Bose gas wordt sterker wisselwerkend als
de dichtheid afneemt. Onder specifieke omstandigheden kunnen deze 1D systemen wor-
den beschreven door exact-oplosbare modellen, terwijl de beschrijving van systemen met
hogere dimensie inherent benaderingen nodig heeft.

In spinor quantumgassen kunnen de atomen meerdere interne toestanden bezetten. Dit
biedt de mogelijkheid om de wisselwerking tussen interne (spin) en externe (beweging)
vrijheidsgraden te bestuderen. Deze wisselwerking is belangrijk in algemeen relevante en
uitdagende fenomenen zoals kwantummagnetisme.

In onze experimenten, die allemaal zijn uitgevoerd met een specifiek, bosonisch isotoop
van rubidium, 87Rb, maken we een twee-component (spinor) Bose gas in een 1D potentiaal.
De gebruikte toestanden zijn de twee kloktoestanden van 87Rb die dezelfde magnetische
valpotentiaal ondergaan. In het hart van onze experimentele opstelling bevindt zich een
atoomchip, een gemicrofabriceerde structuur op een silicium substraat die wordt gebruikt
om magnetische potentialen te maken. Deze maakt het mogelijk om atomen te vangen in
sterke magnetische gradiënten op een afstand van enkele tot enkele honderden micrometers
van het chip-oppervlak. Een ééndimensionale potentiaal wordt gevormd door de opsluiting
in twee ruimtelijke richtingen loodrecht op de veldmakende draad sterk te vergroten. Op
deze manier wordt de beweging van de atomen beperkt tot slechts één dimensie.



84 Samenvatting

Om de bovengenoemde omstandigheden te bereiken voor een twee-components Bose gas
is, naast ultralage temperaturen en lage atomaire dichtheden, ook controle over de in-
teratomaire wisselwerkingen nodig. Traditioneel worden de wisselwerkingen tussen ul-
trakoude atomen ingesteld via Feshbach resonanties door het achtergrondmagneetveld te
varieren. Aangezien de magnetisch vangbare toestanden van 87Rb geen geschikte Feshbach
resonanties hebben, hebben wij een nieuwe methode ontwikkeld om de wisselwerkingen
tussen atomen in 1D gassen te variëren door middel van radio-frequente “aangeklede”
(“dressed”) potentialen.

Door radio-frequente velden aan te leggen, koppelen we de oorspronkelijke toestand met
alle andere Zeeman-subniveaus binnen dezelfde hyperfijn toestand, en dit resulteert in
een veranderde (aangeklede) potentiaal. De koppeling hangt af van de ellipticiteit van
de RF polarisatie via het teken van de g-factor van de atomaire toestand. Omdat de
kloktoestanden tegengestelde g-factoren hebben en we de RF polarisatie kunnen variëren,
zjin de aangeklede potentialen toestandsafhankelijk.

In 1D Bose gassen hangen de effectieve wisselwerkingen tussen de atomen van de valpoten-
tiaal af. We maken gebruik van de toestandsafhankelijkheid van de met RF aangeklede po-
tentialen om de effectieve atomaire wisselwerkingen te verstemmen, zowel tussen de toes-
tanden (inter-state) als binnen dezelfde toestand (intra-state). Deze techniek geeft toegang
tot het punt van spin-onafhankelijke wisselwerkingen waar exacte kwantumveeldeeltjeso-
plossingen beschikbaar zijn, en tot het punt waar de spinbeweging bevroren is. Als hoof-
dresultaat van ditw erk laten we de corresponderende tijdsevolutie van de spinpolarisatie
zien, afgeleid van toestandsafhankelijke absorptiebeelden. Een simulatie gebaseerd op
gekoppelde Gross-Pitaevskii vergelijkingen geeft uistekende overeenkomst met de metin-
gen.

De techniek die hier is ontwikkeld maakt de weg vrij voor nieuwe experimenten aan
1D veeldeeltjesfysica. De natuurlijke volgende stap is het uitbreiden van ons werk naar
Bose-Fermi mengsels. Een daarbij passend ontwerp voor de volgende generatie van de
experimentele opstelling wordt gepresenteerd in het laatste hoofdstuk. In bredere context
zou het verstemmen van wisselwerkingen in 1D Bose gassen kunnen leiden tot verbeterde
nauwkeurigheid van (op atoomchip gebaseerde) atoomklokken en zou het voordeel kunnen
bieden bij bepaalde ontwerpen voor kwamtumcomputers.



Zusammenfassung

Wenn Atome bis kurz vor den absoluten Nullpunkt (in unserem Fall bis ungefähr 150
Nanokelvin) gekühlt werden, wird ihre Quantenstatistik sichtbar. Abhängig davon, ob die
Gesamtanzahl der einzelnen Protonen, Neutronen und Elektronen gerade oder ungerade
ist, ist das Atom ein Boson oder ein Fermion. Gefangen in einem externen Potential, neigen
gekühlte Bosonen dazu, in den quantenmechanischen Grundzustand zu kondensieren und
können als eine kohärente Materiewelle, genannt Bose-Einstein Kondensat (BEC), be-
handelt werden. Fermionen unterliegen dem Pauli’schen Ausschlussprinzip, welches zwei
identischen Fermionen verbietet, den selben Quantenzustand einzunehmen. Aus diesem
Grund werden in einem kalten Fermigas alle Quantenzustände bis zu einer bestimmten En-
ergie mit exakt einem Atom besetzt. Die meisten Experimente mit Quantengasen (BECs
und Fermigasen) werden mit Fallen durchgeführt, die eine Bewegung der Atome in allen
drei Raumrichtungen erlauben. Der Fokus dieser Arbeit liegt bei eindimensionalen (1D)
bosonischen Quantengasen, in welchen die Atome so eingeschlossen werden, dass sie sich
nur noch entlang einer einzigen Richtung bewegen können.

Eindimensionale Quantengase weisen Phänomene auf, die in 2D- oder 3D-Gasen nicht
vorkommen. Zum Beispiel wird die Wechselwirkung zwischen den Atomen in einem 1D
Bosegas stärker, wenn dessen Dichte abnimmt. Unter besonderen Bedingungen können
diese 1D-Systeme durch exakt lösbare Modelle beschrieben werden, während Systeme mit
höherer Dimensionalität nur mithilfe von Näherungen beschrieben werden können.

In Spinor-Quantengasen können die Atome mehrere interne Zustände einnehmen. Dadurch
wird es möglich das Wechselspiel zwischen (internen) Spin- und (externen) Bewegungs-
Freiheitsgraden zu untersuchen. Dieser Zusammenhang spielt eine wichtige Rolle bei
anspruchsvollen Phänomenen wie zum Beispiel dem Quantenmagnetismus.

In unseren Experimenten arbeiten wir mit dem bosonischen Rubidium-Isotop 87Rb. Wir
erzeugen ein zweikomponentiges (Spinor-) Bosegas in einem 1D-Potential. Die dabei ver-
wendeten Zustände sind die “clock”-Zustände von 87Rb, die das gleiche magnetische Fal-
lenpotential erfahren. Das Herz unseres experimentellen Aufbaus ist ein Atomchip, eine
mikrofabrizierte Struktur elektrischer Leiterbahnen auf einem Siliziumsubstrat, die ver-
wendet wird um magnetische Potentiale zu generieren. Der Atomchip ermöglicht das Fan-
gen von Atomen in starken magnetischen Gradientenfeldern im Abstand von einigen weni-
gen bis zu einigen Hundert Mikrometern zur Oberfläche des Chips. Das eindimensionale
Potential wird durch eine starke Erhöhung der Fallengradienten in den zwei Raumrich-
tungen senkrecht zum felderzeugenden Leiter geformt. Auf diese Weise wird die Bewegung
der Atome auf nur eine Dimension beschränkt.
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Um die oben erwähnten Bedingungen für ein zwei-komponentiges Bosegas zu erfüllen,
wird neben ultra-kalten Temperaturen und geringer Atomdichte auch Kontrolle über die
interatomaren Wechselwirkungen benötigt. Traditionell werden Wechselwirkungen zwi-
schen ultra-kalten Atomen über Feshbach-Resonanzen kontrolliert, welche wiederum über
das magnetische Feld eingestellt werden. Da 87Rb keine geeigneten Feshbach-Resonanzen
in den magnetischen fangbaren Zuständen aufweist, haben wir eine neue Methode ent-
wickelt, bei der die Wechselwirkung zwischen den Atomen eines 1D-Gases mithilfe von
Radiofrequenz(RF)-Potentialen eingestellt wird.

Hierfür verwenden wir Radiofrequenzfelder, um den urspünglichen Zustand mit allen
Zuständen derselben Mannigfaltigkeit zu koppeln und somit ein modifiziertes Potential
(“dressed potential”) zu erzeugen. Die Kopplung hängt dabei via das Vorzeichen des g-
Faktors des Atomzustands von der Elliptizität der RF-Polarisation ab. Da die “clock”-
Zustände entgegengesetzte g-Faktoren haben und wir die RF-Polarisation beliebig ein-
stellen können, sind die so modifizierten Potentiale zustandsabhängig.

In 1D-Gasen hängen die effektiven Wechselwirkungen vom Fallenpotential ab. Wir nutzen
die Zustandsabhängigkeit der RF-Potentiale, um die effektiven Wechselwirkungen zwi-
schen Atomen desselben Zustands, sowie zwischen Atomen unterschiedlichen Zustands
einzustellen. Diese Technik ermöglicht das Einfrieren der Spinbewegung sowie das Un-
tersuchen der spin-unabhängige Wechselwirkungen, für die exakte Vielteilchen-Lösungen
existieren. Als Hauptresultat dieser Arbeit zeigen wir die entsprechende zeitliche Entwick-
lung der Spinpolarisation, die wir aus zustandsabhängigen Absorptionsbildern bestimmt
haben. Eine Simulation, basierend auf gekoppelten 1D-Gross-Pitaevskii Gleichungen, zeigt
eine hervorragende Übereinstimmung mit unseren Daten.

Die im Rahmen dieser Arbeit entwickelte Technik ermöglicht neue Experimente im Bereich
der eindimensionalen Vielteilchenphysik. Unser nächster Schritt wird es sein, unsere Un-
tersuchungen auf Bose-Fermi-Gemische auszuweiten. Das Design für einen entsprechenden
experimentellen Aufbau ist Gegenstand des letzten Kapitels. Im weiteren Sinne kann die
Forschung an 1D Bosegasen zu Verbesserungen der Genauigkeit von Atomchip-basierten
Atomuhren führen und einen Beitrag zur Entwicklung von Quantencomputern leisten.
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