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Chapter 1

Introduction

1.1 Cold trapped atoms

Through the interaction with electromagnetic fields atoms can be localized and lev-
itated in space, free from confining material surfaces. In vacuo the atoms are thus
ideally isolated from their environment, only influenced by the confining electro-
magnetic field. The realization of such conditions offers opportunities in many areas
of physics. Obviously, the combination of the confinement of a particle, allowing
for long observation times, and the elimination of external influences is ideal for
high-precision studies of fundamental single particle properties, which may have im-
portant consequences, for example, for the development of more accurate frequency
standards [1]. Making use of the potentially very low kinetic energies of the trapped
particles, collisional phenomena can be studied in a new regime of ultra-low colli-
sional energies, both between atoms [2] and between atoms and surfaces [3]. Traps
may also be put to use as sources of very slowly moving atoms for matter-wave
experiments, such as atomic interferometry [4].

Maybe the most intriguing, however, is the possibility to prepare collections of
many weakly interacting particles under such conditions that the quantum mechani-
cal uncertainty in position, expressed by the thermal wavelength \,, = h/\/27rmkpT,
becomes comparable to the interparticle spacing, A ~ n~Y/3, Here T is the tem-
perature of the trapped gas, n the gas density, and m the particle mass. For
these conditions of quantum degeneracy new, exotic states of matter have been
predicted. For instance, in the weakly interacting bosonic system of atomic hydro-
gen for Tn~2/3 = 1.6 x 10~* K cm? a phase transition to a gaseous state displaying
macroscopic quantum behavior is expected to occur, the so-called Bose-Einstein con-
densation (BEC). Quantum degeneracy in a system of weakly interacting particles
would provide a model system for macroscopic quantum behavior, with possibly im-



portant consequences for the understanding of superconductivity and superfluidity.”

Trapping of charged particles is possible since the invention of the Paul trap in
1958 [5]. Trapping of neutral particles is much harder because the trapping forces
must rely on interactions with higher order moments, such as, for instance, static
magnetic dipole moments, which are much weaker than electrostatic interactions.
The resulting trapping potentials are therefore relatively shallow and the particles
must be “pre-cooled” to very small kinetic energies before they can be trapped.
For example, the magnetic moment of atoms is typically ~ up, the Bohr magne-
ton. Since the maximum achievable well depths of static magnetic traps are of the
order AB = 1T, the kinetic energy of the atoms has to be reduced to less than
uAB/[kg ~ 1K, in temperature units. In 1977 Kiigler et al. succeeded in trapping
very slow neutrons (v < 20m/s) in a magnetic storage ring [6].

In the last decade enormous progress has been made in the field of trapping and
cooling, which is for a large part due to the development of laser cooling techniques.
In 1985 the first neutral atoms were trapped by decelerating a beam of sodium atoms
using near-resonant laser light and subsequently switching on a magnetostatic trap
[7). Since then the field of trapped neutral atoms has grown at a very rapid pace and
many trapping schemes have been developed (mainly for the alkalis Na, Rb, and Cs)
employing optical fields, static magnetic fields, microwave fields, and combinations
of these [8, 9]. These schemes have in common that a continuous wave (cw) laser
is required. As this was (and still is) not available at the Lyman-a wavelength
(Aa = 121.6 nm) of the 1S — 2P transition in atomic hydrogen, the simplest atom
was initially excluded from this line of research. However, in 1987 Hess et al. [10]
and shortly thereafter Van Roijen et al. [11] succeeded in magnetically trapping
hydrogen atoms, using cryogenic instead of optical techniques.

1.2 Spin-polarized atomic hydrogen

Atomic hydrogen is the only gaseous atomic system in which quantum degener-
acy was already pursued before the advent of electromagnetic trapping techniques.
This was made possible by the fact that H gas can be stabilized at sub-Kelvin
temperatures by applying a strong magnetic field and covering the walls of the con-
taining vessel with a layer of liquid helium, as was first demonstrated by Silvera
and Walraven [12). The strong B-field aligns the electron spins, thus suppressing
recombination to the molecular state in the gas, while the extremely low energy
of physisorption of H on a liquid-helium surface (~ 1K) prevents massive surface
adsorption and thus minimizes surface-catalyzed recombination. Owing to the weak-
ness of the triplet interatomic potential and the small atomic mass, spin-polarized



H is expected to remain gaseous down to T’ = 0, which makes it the ideal candidate
for the observation of quantum degeneracy in a weakly interacting system.

Initially, experiments were aimed at increasing the density of a gas of “high-field
seeking” spin-down polarized H (H|) in thermal equilibrium with the cell walls [13].
It turned out that in this approach serious limitations arise on both the attainable
density and the temperature of the gas due to three-body recombination on the
surface, which make reaching BEC very hard, if not impossible. For this reason the
attention turned to wall-free confinement of “low-field seeking” spin-up polarized
hydrogen atoms (H?) in a static B-field minimum [14]. Since a B-field maximum
in free space is not allowed by Maxwell’s equations, it is not possible to trap H|
magnetostatically. In switching from H| to HT, however, orders of magnitude in
stability are sacrificed because an extra two-body decay channel is introduced in the
form of electron spin relaxation to the non-trapped H| state, which is energetically
favorable [15].

Among the trapable atomic speciés atomic hydrogen is unique in the sense that
no optical techniques are required to load atoms into a magnetostatic trap. Instead
HT gas can be pre-cooled to sub-Kelvin temperatures and manipulated by liquid-
helium covered surfaces. In this way gas densities can be built up around the trap-
ping region which are sufficiently high to scatter atoms into trapped states through
elastic interatomic collisions. In fact, this filling mechanism is so efficient that the
achievable gas densities (< 3 x 10 cm™3) are higher than in any other trapped
system and are only limited by two-body collisional relaxation to non-trapped H|
[11). As a result the trapped gas quickly reaches a state of internal equilibrium
through elastic interatomic collisions. This is not only important for a proper de-
scription of the statistical properties of the gas, but it also enables a cooling method
that does not require optical techniques: evaporative cooling [10]. As the trapped
atoms are continually redistributing their energies through elastic collisions, some-
times HT atoms are produced with kinetic energies larger than the well depth which
subsequently escape (evaporate) from the trap. After thermalization this results in
a lower temperature of the remaining gas. By slowly reducing the well depth the
temperature can be reduced even further. Using this technique, temperatures as
low as ~ 100 uK at densities ~ 8 x 10! cm™ have been attained with trapped H,
which is within an order of magnitude of the above-mentioned BEC criterion (3].

Although laser cooling techniques have been very successful in reducing the ki-
netic energy of trapped atoms - average energies ~ 1 uK are achieved more or less
routinely in trapped Cs - it is now generally being recognized that evaporative cool-
ing techniques are the most promising for reaching the quantum degenerate regime,
“also for other atoms than H [16]. This may be illustrated with the following simple



argument. The lowest temperature that can be reached with current laser cooling
techniques is the so-called single photon recoil limit T = h2k%/2mkp, where k is
the wavenumber of the photon. For atomic hydrogen Tr = 650 uK and for cesium
Tr ~ 0.13 uK. This corresponds to the situation in which the average atomic mo-
mentum is ~ hk, the recoil due to the spontaneous emission of a photon. In other
words, at the recoil limit the thermal wavelength A;; of the atoms is approximately
equal to the wavelength A of the light. Therefore, in order to reach the quantum
degenerate regime using laser cooling, the density should be so high that the average
interatomic distance n=1/® < A. It is clear that under these conditions the usual
optical cooling principles, which are based on single particle excitation, are no longer
applicable.

1.3 This thesis

Until recently all information on the samples of trapped H{ was obtained indirectly
by monitoring the flux of atoms escaping from the trap [3, 11]. To this purpose the
traditional bolometric technique was employed to detect the heat released in the re-
combination to the molecular state. In Amsterdam Van Roijen et al. [11, 17] studied
the magnetic relaxation of trapped Hf in thermal equilibrium with the surrounding
walls in this way. However, as the quantum degeneracy regime comes within reach,
the traditional detection techniques start lacking sensitivity and the need arises for
a non-destructive, in situ detection technique, capable of independently determining
the temperature and the density of the trapped gas. Resonant optical techniques
seem the obvious answer. These techniques have not been applied before mainly
because of a hesitancy to combine the cryogenic environment (dilution refrigerator)
necessary for spin-polarized H research with the requirements for the generation
and detection of narrowband Lyman-a radiation (harmonic generation and vacuum
optics).

In this thesis the implementation of resonant optical techniques at the Lyman-«
wavelength to the system of trapped HT is described. The results of the first optical
experiments with trapped HT are presented, showing the value and the reliability
of this new diagnostic method, and a detailed description is given of the theoretical
and the experimental aspects of Lyman-a spectroscopy. As a first application the
dynamics are studied of a sample which is thermally isolated from the surrounding
walls by means of evaporative cooling. The important evaporative cooling process
is investigated both theoretically and experimentally.

First and foremost, an accurate description of the magnetic field B(F) in our
trap is required, both for the spectroscopy of the gas and for the description of



its dynamical properties. In Chapter 2 an approximate method for calculating the
field in our magnetic trap is developed, based on an expansion method, which yields
accurate analytical expressions. '

In Chapter 3 the properties of samples of trapped HT are reviewed. The load-
ing of the trap, the thermalization process, and several particle loss and heating
mechanisms are discussed. An approximate description of the field in our so-called
Toffe trap is introduced, which allows us to obtain convenient analytical expressions
for the density of trapped states, which in turn enables straightforward calculation
of important quantities like the effective volume, the specific heat, and the average
interatomic collision rates.

Chapters 4 and 5 deal with the experimental techniques. Chapter 4 describes
the cryogenic part of the setup, in particular the construction details of the exper-
imental cell at the heart of the dilution refrigerator. New features are the optical
access from room temperature and the installation of cryogenic Lyman-a detectors
inside the cell, which enable measurement of both the transmission of the sample
and the resonant fluorescence. Chapter 5 describes the optical part of the setup.
Narrowband Lyman-a radiation (121.6 nm, bandwidth ~ 100 MHz) is generated in
krypton gas as the third harmonic of pulsed UV light at 364.8 nm. The efficiency of
our Lyman-a generation scheme is investigated and various special techniques are
discussed concerning frequency tuning and stability and the use of vacuum optics.
Furthermore, the design and the detection sensitivity of our home-made cryogenic
Lyman-a detectors are discussed.

Chapter 6 is devoted to Lyman-a spectroscopy of samples of trapped HT. The
first half of this chapter gives a detailed theoretical treatment of the extinction of a
Lyman-o beam passing through an HT sample. A proper description, necessary for
the understanding of the experimental spectra and reliable diagnostics of the gas,
turns out to be quite involved. It entails including effects due to Zeeman shifts,
Doppler shifts, optical thickness, the polarization of the light, and optical activity
of the sample. In the second half of this chapter several examples of experimental
spectra are presented. The general features of the spectra are qualitatively explained
and it is shown how the temperature and the density of the gas can be determined
through careful fitting with approximately 25% accuracy. The accuracy is mainly
limited by imprecise knowledge of the beam shape. Some spectra display unexpected
features, which are explained in terms of subtle polarization and dispersion effects.
The emphasis in this work is on transmission spectroscopy, but some fluorescence
spectra are analyzed as well. Furthermore, optical evidence is shown of the fact that
cold deuterium gas can be produced and subsequently transported to the trapping
region. However, we were not able to trap DT.



In Chapter 7 the dynamics of the evaporative cooling process is investigated. A
convenient model is presented, free of adjustable parameters, which allowed us to
derive analytical expressions for the particle and energy loss rate during evaporative
cooling in our Ioffe trap. It is shown that under conditions favorable for obtain-
ing reasonable cooling rates, the energy distribution of the trapped atoms deviates
essentially from the Boltzmann form. Using Lyman-a transmission spectroscopy
the evolution of the temperature and the density have been measured during the
onset of the evaporation process. The experimental results are confronted with the
theoretical description.

1.4 Future prospects

Aside from considerations of detection sensitivity, the applica,tioh of Lyman-a res-
onant optical techniques to H{ was also strongly motivated by the possibility of
optical cooling. Recently Setija et al. demonstrated optical cooling of trapped HT,
using the apparatus described in this thesis [18]. Two methods were used: Doppler
cooling, for which a minimum temperature of 8 mK was reported, and light-induced
evaporation (LIE), a new cooling method by which 3mK was reached. The latter
is the optical analog of ordinary forced evaporative cooling [3] and is particularly
promising. It has the advantage over the usual forced evaporation method that it
is no longer necessary to ramp down the confining magnetic field, so one can work
with a well-defined, static trapping potential. LIE requires high density samples
(optically thick) and fast collisional thermalization. Therefore it is very well suited
for trapped HT.

The LIE results obtained thus far are very encouraging. In order to reach lower
temperatures higher cooling powers are required, which can be accomplished by
simply increasing the Lyman-« intensity. Furthermore, once the sub-mK regime is
entered, it will become necessary to upgrade the detection sensitivity as well, as the
samples become very small. At present both the beam intensity and the detection
sensitivity are mainly limited by the available control over the shape and the size of
the beam at the site of the sample. The beam intensity may be further increased by
improving the efficiency of the third harmonic generation of Lyman-a. With these
improvements the pK regime should be within reach. .
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Chapter 2

Magnetic Trap

2.1 Introduction

For the present experiments we use the magnetostatic trap built by van Roijen et al.
[1, 2]. We modified the trap to enable trapping of larger Hf samples and to increase
the flexibility of the trapping parameters. The magnetic field configuration is a
so-called Ioffe trap [3] (see Fig. 2.1), originally developed in the 1960’s for trapping
plasmas and first proposed for neutral atom trapping by Pritchard [4].

The Ioffe trap configuration consists of two circular coaxial coils with parallel
currents, and four linear conductors (Ioffe bars), arranged symmetrically around
the symmetry axis of the circular coils at equal radial distances with equal currents
in alternating directions. In the central region the circular coils produce a B field
nearly parallel to the axis, which has a minimum in |B| in the axial direction, but
which is not confining in the radial direction. The four Ioffe bars generate a B
field perpendicular to the axis. This field is zero on the axis and its magnitude |B|
increases linearly with the radial distance from the axis. If the current through the

four linear conductors is large enough the two B fields add up to a minimum in | B]
in the center.

Figure 2.1: Side and end view of a Ioffe trap [5].



Although several other minimum-B-field configurations are conceivable [5], the
Toffe trap combines a number of properties which suit our purposes: 1) To trap a
substantial amount of HT atoms a potential well depth comparable to the adsorption
energy of H atoms on the surrounding surface (¢./k5 = 1K for H on liquid *He) is
required. In our Ioffe trap a maximum magnetic well depth of 1.5 T can be achieved,
which is equivalent to 1 K trapping energy for HT atoms. 2) The trap should prefer-
ably have a single central minimum in [E | to obtain maximum localization of the
atoms. This rules out ring configurations commonly used in neutron and plasma
trapping. 3) The field in the minimum |§ |min should be non-zero for several reasons,
which exclude the much simpler two-coil quadrupole trap: First, a non-zero min-
imum prevents particle loss due to nonadiabatic spin-flips (Majorana transitions)
[6], which can become a significant loss mechanism at very low temperatures. Sec-
ond, for the spectroscopic diagnostics (Chapter 6) and optical manipulation of the
trapped gas [7] it is important that the different Zeeman components of the absorp-
tion lines are spectrally separated. Third, a non-zero minimum ensures that the
bottom of the potential well is “flat” in all directions, so that at very low tempera-
tures it is still possible to trap a sizeable amount of atoms. In our loffe trap an extra
trimming coil is included halfway between the two axially confining coils, enabling
adjustment of |B|ni independent of the currents through the confining coils, thus
providing control over the Zeeman splitting of the absorption lines. Furthermore,
tunability of Iélm;n makes it possible to investigate the B-field dependence of the
various collisional decay proceses. 4) The combination of axial confinement using
dipole coils and quadrupolar radial confinement results in a trapping field that de-
pends in a well-behaved manner on position, allowing analytical calculation of the
particle energy distribution function in the trap and related quantities. This will
be discussed in Chapter 3. Near the minimum the trap potential is harmonic which
makes the description of particle motion simple, in particular at very low tempera-
tures. In fact it is possible in our trap to construct a potential well that is harmonic
and isotropic near the minimum, as will be discussed in Sect. 2.3.3. It can be shown
[5] that this is only possible in magnetostatic traps with |Blmin # 0, of which the
Ioffe trap is probably the simplest realization.

In this chapter we will describe the main features of the actual trapping magnet
and a method to calculate the generated 5 field. In this method the finite dimensions
of the wire bundles and end effects of the Ioffe bars are taken into account explicitly
without resorting to brute force numerical integration. We will also investigate
the shape of the potential well near the minimum and discuss several examples of
trapping geometries.

13
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Figure 2.2: Lower part: Cross section view (y = 0) of the trapping magnet coils. The
z-axis (from left to right) is pointing vertically upwards in reality. Upper part: Magnetic
field along the z-axis if only the dissociator coil, the upper confinement coil, and. the
racetracks are energized with the maximum allowable currents. Solid line: field on axis.

Dashed line: field 6 mm off axis.

2.2 The trapping magnet assembly

Our trapping magnet consists of four circular coils with a common symmetry axis,
" the z-axis, and four racetrack-shaped coils, orientated as shown in Fig. 2.2. All
coils are wound with superconducting wire and have rectangular wire bundle cross
sections. The entire trapping magnet assembly fits into a stainless steel tank which
is filled with liquid *He at 4.2K during operation. The magnet tank has a free
accessible bore with a diameter of 40 mm for z < —103 mm and of 16 mm for z >
—103 mm, inside which the experimental cell at 7'30.2K is mounted (Chapter 4).
A detailed description of the construction of the trapping magnet assembly, the
winding of the coils, and the materials used is given in Ref. [2]. Here the discussion
is restricted to the information that is necessary for the calculation of the magnetic

14



field.

The four identical racetrack coils are electrically connected in series in such a
way that a 90° rotation around the z-axis is equivalent to a reversal of the currents.
Consequently, the racetracks generate a quadrupolar radially confining field. Each
coil has 1680 windings (42 layers of 40), packed in a wire bundle of 10 x 10 mm?. The
straight parts of the coils extend from z = —75mm to z = 75mm and the centers of
the inner bars and of the outer bars are at a radial distance of, respectively, 14 mm
and 49 mm from the z-axis. Each inner bar is connected to the corresponding outer
bar through semi-circular arcs. When the maximum current of 36 A is used, a radial
| B| field gradient of 2.2 T/cm can be achieved inside the bore.

From left to right (in reality from bottom to top, see Fig. 4.1) we have four dipole
coils (see Fig. 2.2), designated dissociator coil, lower confinement coil, Majorana
coil, and upper confinement coil. The center of the Majorana coil defines z = 0.
In the first trapping experiment [1] the upper and the lower confinement coils were
electrically connected in series with equal current orientation. When combined with
the racetracks this pair of, nearly identical, dipole coils generates a minimum in
|B| on the axis near z = 0. The smaller Majorana coil at z = 0 can be used to
adjust the value of |B|mi, without altering the current through the confining coils.
When the maximum current is sent through the confining coils and the racetracks,
while simultaneously pulling the field minimum down to | B|min = 0 by means of the
Majorana coil, a maximum well depth of 1.5T can be achieved. Below the lower
confinement coil a high field region (~ 4.5 T) can be created by a large solenoid, the
dissociator coil. In this high field region H atoms are produced in both electron-spin
states and its purpose is to keep the high-field seeking H| atoms well separated from
the HT atoms that get trapped in the field minimum.

If only the dissociator coil and the upper confinement coil are energized (see
Fig. 2.2), the result is a much longer trapping region. In fact, the combination of
the racetracks with any pair of the four dipole coils can be used to generate a B-field
minimum on the axis. For this reason we decided to decouple the upper and the
lower confinement coils. In the present setup all four dipole coils can be energized
separately.

In Table 2.1 all information needed to calculate the exact field generated by the
four dipole coils is summarized. Each coil can be characterized by the position z, of
the center, the length L over which it extends in the z direction, the inner radius a,
the thickness t (the difference between inner and outer radius), the total number of
windings N,,, the number of winding layers N;, and the maximum current I,,;,.
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Table 2.1: Dipole coil parameters (see text) [8].

dipole coil z.(mm) a(mm) L(mm) t(mm) N, Ny Inas(A)

upper conf. 50 24 12 11.8 1813 45 40
lower conf. -50 24 12 125 1726 45 40
Majorana 0 24 8 9.3 4335 T8 5
dissociator -131 22 50 16 7893 54 40

2.3 Calculation of the magnetic field

The eight trapping coils produce a complicated, highly inhomogeneous B field. For
reliable spectroscopy of the trapped gas detailed knowledge of ﬁ(r") is required, not
only because of the Zeeman shifts of the absorption lines, but also because the local
absorption of the light depends strongly on the angle between the light polarization
and B. Furthermore, precise knowledge of | B(7)| is essential for the averaging of, for
instance, the rates of collisional processes over the thermal density distribution of
the trapped gas [1] and for the calculation of particle trajectories. Exact numerical
calculation of the field using the law of Biot and Savart is time-consuming and does
not yield much insight. Instead we use an approximation method in which the field is
expanded in powers of the radial distance from the z-axis while taking full advantage
of the symmetries of the trap configuration, a method also employed by the authors
of Ref. [5]. For trap configurations with a single central minimum this expansion
is a very natural method, as it yields the highest accuracy in the region with the
largest particle concentration. Taking into account only the leading terms of the
expansion we obtain closed expressions for §(F) which describe the field accurately
in the entire trapping region.

2.3.1 Dipolar field

We will first calculate the field due to a single circular dipole coil with a wire bundle
of rectangular cross section. The z-axis is the symmetry axis, the center is situated
at z = 2., and its dimensions are characterized by the inner radius a, the length
L, and the thickness ¢. In the calculation we will assume a homogeneous current
density j = N,I/(Lt), where N, is the number of windings and I is the current
through a single wire. The field will be described in the cylindrical coordinates (p,

$, 2)-
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In free space the magnetic field B can be derived from a scalar potential V:

ov, 1oV, 9V,

-VV = ——a;ep - ;ﬁ%ﬁ - ‘5;6,-,- (21)

Since V- B = 0, the potential V obeys Laplace’s equation:
| BV 19V 18V &V
= t-5+t555t+t 55

B2 " pdp  p2 04 " 922
Because the potential V' is independent of ¢ (since By = 0) and because V is an
even function of p, we may write the following expansion in powers of p:

V(p6,2) = 3 amlz) P (23)

n=0

AV = =0. (2.2)

Substituting Eq. (2.3) into the Laplace equation (2.2), we find a recursion relation
between the z-dependent coefficients a,(z):

4n’ag(z) = —a3,5(2), - (24)

where the prime denotes differentiation with respect to z. Using Eqs. (2.4) and
(2.1) the field B in an arbitrary point (p, #,2) can now be written in terms of
ay(z) = —B,(0,0, 2):

Bp(p’ é, 2) = _’;'B;(O, 0, Z),D+ %B;”(O, 0, z)p3+ e
(2.5)
B.(p,¢,z) = B;(0,0,z)— iB;’(O, 0,2)p*+---

Thus, in any axially symmetric configuration the entire magnetic field (in free space)
is completely determined by the field on the axis, which can be obtained either by
measurement or by calculation. The field on the z-axis of a single current loop of
radius R, centered at z = A, with a current I, is given by the well-known law of
Ampére

B.(0,0,7) = 521+ G2y (2.6)

By integrating Eq. (2.6) over A from A = 2, — L/2 to A = z.+ L/2 and over R from
R = a to R = a +t, and assuming a homogeneous current density j = N,I/Lt,
we obtain an expression for the field on the axis due to a circular dipole coil with a
rectangular wire bundle cross section:

B.(0,0,z) = Fololay, zaltylted
z\U, Yy 2Lt 2 $11+ 1-|-1:%
1441423
— [ —— )}, @
I31+ 1+$4
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Figure 2.3: Calculated field components B, and B, versus z at p = 6 mm, generated by
the Majorana coil operating at the maximum current Imez = 5A. Solid line: analytical
expression using the first two terms in the B, expansion and the first term in the B,

expansion. Circles: exact numerical calculation.

" where 1 = (z— 2.+ L/2)/(a+1t), 22 = (2 —z.+ L/2)/a, x5 = (2 — 2. — L[2)[(a +1),
and z4 = (2 — 2. — L/2)/a. Using expression (2.7) and its derivatives with respect
to z, the expansion (2.5), and the information contained in Table 2.1, the magnetic
field due to the four dipoles in the trap can be calculated to any degree of precision.
It turns out that for our purposes it is sufficient to retain the first two terms in the
B, expansion and only the first term in the B, expansion, requiring the first and
the second z-derivative of expression (2.7). As an illustration of the accuracy of the
method we compare in Fig. 2.3 the field of the Majorana coil at p = 6 mm (the inner
radius of the present experimental cell) calculated using the truncated expansion
with the result of an exact numerical calculation, as a function of 2. Clearly, the
analytical expressions for B, and B, describe the dipolar field inside the trapping
region very well: For p < 6 mm the deviations in B, and | B| are < 1%, the deviations
in B, are < 10%.
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2.3.2 Quadrupolar field

For the calculation of the field of the racetrack coils we will use the scalar potential
method again and we will start with some very general symmetry considerations:
1) Twofold symmetry implies V(p, $,2) = V(p,¢ + 7,2). 2) V is an even function
of p. 3) Since |B| = 0 for p = 0 we are free to choose V(0,0,z) = 0 and 4) we are
also free to choose the reference direction for the azimuthal angle in such a way that
B, = —0V/[3p = 0 for ¢ = 0, consistent with the orientation of the racetracks (see
Fig. 2.2). Under these conditions V can be expanded in the following way:

V= io: i P2 ™ bym 20(2) sin 2. (2.8)

m=1n=1
By substituting the expansion (2.8) in the Laplace equation (2.2), the following
relations between the bam 2n-coeflicients are obtained:

b2m,2n(z) = —'.“,,-,21__"2)6'2/(17;—1),21:(2)’ m>n,
2.9)

bgm,gn(z) = 0, m<n.

These relations hold for any field with twofold symmetry. To calculate the field
using the expansion (2.8), knowledge of the functions

m-1

bgm,gm(z) = —-(1/(2m)!)(62""1B,,«,/apz""l),,=o,¢=o -+ z (2n/2m)b2m,gm (210)

n=1
m = 1,2,..., is required. In lowest order, i.e., in the quadrupolar approximation,
we find (using Eq. (2.1)):

Bﬂ(pa¢’z) = 2b(z)PSln2¢
Bd’(p’ #, z) = 2b(z)pcos2¢ (2'11)
B.(p,¢$,z) = V(z)p?sin2¢,

where b(z) = —byz(2). If b does not depend too strongly on z, it follows from

Egs. (2.11) that |B] is in lowest order proportional to p, a well-known property of
quadrupolar fields.

In our case we have the extra symmetry that a rotation over 90° around the
z-axis corresponds to a reversal of the currents: V(p,¢ + 7/2,2) = =V(p, 9, 2).
Consequently, only terms with odd n contribute in the expansion (2.8), i.e., terms
with sin2¢, sin6¢, sin10¢, etc. This means that the first corrections to the ex-
pressions (2.11) that cannot be calculated using the derivatives of b(z) are of the
order ~ p® and therefore negligible for small p. Hence it is reasonable to as-
sume that Eqgs. (2.11) suffice to describe the field of the racetracks and that only
b(z) = (1/2)(0B¢/dp)p=0,6=0 needs to be calculated for the experimental parameters.
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—

Figure 2.4: Cross section view of the racetracks at z = 0. The centers of the four inner
bars are at p = a; = 14mm, the centers of the four outer bars at p = a; = 49mm, the
square wire bundles have a thickness ¢ = 10mm. The directions of the currents are also
indicated.

To investigate the influence of higher order terms in p in more detail, we first
calculate the field for the (2-dimensional) case when the straight sections of the
racetracks extend from z = —co to z = co (see Fig. 2.4). The field due to four
infinitely long wires coinciding with the centers of the inner bars of the racetracks
(p = a1 = 14 mm) can be calculated quite straightforwardly in cartesian coordinates.
Subsequently, the scalar potential is also easily derived,

"°I In (—-——(””“”)2) @)

V‘lw(z7 y) = -Im (:l) + zy)’

and can be expanded either in cartesian or in cylindrical coordinates:

2p0l i (z/ay + iy/a,)*"+?

Viw = —Im et 4n +2
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2ﬂoI Z (e/ ax)“““: :li[(;n +2)4] (2.13)

n=0
The expansion in cylindrical coordinates is precisely of the form we expected on
grounds of symmetry considerations. Cartesian coordinates, however, are more con-
venient for calculating the scalar potential due to the rectangular shape of the four
Ioffe bars: We assume a homogeneous current density j = N, I/t?, with I the cur-
rent through a single wire, and integrate Eq. (2.13) over the square wire bundle
cross sections. After rewriting the result in cylindrical coordinates and regrouping
the series in terms of (p/a;)"sinng, we arrive at the following expression for the
scalar potential due to four square, inﬁnitely long Ioffe bars:

poNwl

Vo = —BT{1 - ()2 sin2s
1_ T tyqlye Ly
+ G152 1<al) sin6+ O[(£)1) (214)
Using Eq. (2.1), the corresponding magnetic field components become:
| _ Nl 1 otinp
Bp(p’ ¢) - way {[1 - 12(al) ]a1 81n2¢
+ 1= T(EVIE) sin6s + Ol L )
(2.15)
_ NIy Lotis
Bulpr#) = L - )1 26
21, ¢

+ =50 )‘]( )50056¢+0[( -

From Egs. (2.15) it follows that the relative contribution to |B| of the nonlinear
terms in p is of the order [1 — (131/60)(t/a;)*)(p/a1)*, which is < 1% for p < 5mm
and clearly negligible in most cases.

The expressions (2.15) should describe the quadrupolar field in the z = 0 plane
of the actual trap fairly well, as end effects due to the finite length of the racetracks
are presumably small at z = 0 (see Fig. 2.2). The field of the outer bars can be
obtained trivially by changing the sign of expressions (2.15) and replacing a, by as.
We calculated the quadrupolar field of the real racetracks at z = 0 as a function
of p for § = 0° and ¢ = 45° by exact numerical integration and compared this to
the field obtained using the analytical expressions for infinitely long Ioffe bars (see
Fig. 2.5). As expected, the magnitude of the field increases linearly (within ~ 1%)
up to p = 5mm, beyond this distance non-linearities become significant. The field
gradient is & = 2.2T/cm if the racetracks are operated at the maximum current
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Figure 2.5: Calculated field magnitude B of the racetracks operating at Inoz = 36 A as
a function of p at z = 0 for ¢ = 0° and ¢ = 45° (squares). Also shown is the relative
deviation (B — ap)/B, a = 2.21T/cm, from a purely quadrupolar field (triangles). Solid
line: analytical expression for ¢ = 0°. Dashed line: analytical expression for ¢ = 45°.

I.. = 36 A. The analytical expressions describe the quadrupolar field very well
at z = 0, including the non-linearities. The largest deviations, < 1%, occur at
p = 6 mm for ¢ = 45° and are probably due to finite length effects of the racetracks.

The non-linearities in the quadrupolar field, associated with the “higher har-
monics” (sin 64, sin 104, etc.), only play a role in parts of the trapping region where
the hydrogen atom density is so strongly suppressed that they can be completely
neglected in the description of many properties. The effects on the quadrupolar field
connected with the finite length of the racetracks, however, can only be neglected if
the trapping region falls well within the z-range of the straight sections of the race-
tracks, as is the case, for instance, for the trapping geometry used by van Roijen et
al. [1,2]. In the longer trapping geometries used in the present experiments (see, for
instance, Fig. 2.2) part of the trapping field is determined by the semi-circular arcs
at the end of the Ioffe bars. These end effects are taken into account properly if we
describe the field with Egs. (2.11), so the function b(z) = (1/2)(0B3/0p),=0,¢=0 is
required. This function has been calculated numerically and is accurately described
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Figure 2.6: Calculated magnetic field components versus z of the racetracks (I = Imoz =
36 A) for p = 6mm and ¢ = 45°. Circles: exact numerical calculation. Solid lines: closed
expressions.

by the following form:

b(z) = bo(I/ Inas)ltanh(22=) + tanh( 22, (2.16)

1 21

where by = 1.104 T/cm, zo = 86.6 mm, and z; = 15.5mm have been obtained by
fitting Eq. (2.16) to the numerically calculated values. As a check we calculated the
field of the racetracks as a function of z for p = 6 mm, ¢ = 45°, using Eqgs. (2.11) and
(2.16), and compared this to an exact numerical calculation, as shown in Fig. 2.6.
The expressions (2.11) and (2.16) clearly describe the behavior of both field com-
ponents very well. The small systematic deviation in B, is due to the p® field
contributions (see Fig. 2.5), which have not been taken into account. Apparently,
finite length effects become significant for |z| > 40 mm, manifesting themselves in
a decrease of the radial field gradient, but also in the appearance of a B, field
component.
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2.3.3 Field near the minimum

Most of the complexities and details of the trapping field which have been discussed
in the previous sections are only relevant for trapped gas samples at relatively high
temperatures. At low temperatures most hydrogen atoms reside near the minimum
where the description of the field is much simpler. If we approximate the dipolar field
on the z-axis by B, = By+ f(z — z0)%, where 8 = (1/2)(8%B,(0,0, 2)/92?) =5, , with
z = 2o the position of the minimum, and the quadrupolar field by using a constant
radial field gradient e, then, adding Egs. (2.5) and (2.11), the field components are

[5):

B, = —apsin2$— fp(z — z)
B, = —apcos2¢ (2.17)
B, = Bo+p(z - z)* - 380%,

and therefore

B= \/[Bo + B(z — 20)?)? + [a® — BBy + 208(z — z0) sin 2¢]p? + (1/4)B%p%. (2.18)

A direct consequence of Eq. (2.18) is that a finite radial field gradient is needed
for trapping: The field will only be confining if a® > 8B,. Typical values for the
present experiments are By = 0.1 T, a = 2.2 T/cm, and 8 = 0.022 T/cm?, in which
case Eq. (2.18) may be approximated by

B = \/[Bo + B(z — 20)2]? + [a? + 2aB(z — z0) sin 26]p2. (2.19)

For many applications, the sin2¢ term in Eq. (2.19) can also be neglected, yielding
an expression that allows the analytical calculation of some important properties of
the trapped gas (Chapter 3).

Very close to the minimum, i.e., for (B — By)/By, < 1, Eq. (2.18) may be
expanded, yielding to lowest order in z and p:

2
B=Bo+ Bz~ 20 + 5(5 — A" (2.20)

The harmonic approximation (2.20) of the field is only valid if the temperature T
of the trapped gas is much smaller than upBy/kp, for instance for By = 0.1 T if
T < 0.067K. One of the nice features of the Ioffe trap is that the radial field
gradient o can be adjusted independently of 8 and By, allowing the construction of
‘an isotropic harmonic | B| field by setting

a =/38B,. (2.21)

For instance, for the typical values By = 0.1T and 8 = 0.022 T/cm? this means
lowering the radial field gradient to @ = 0.08 T/cm (I = 1.3A).
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Table 2.2: Currents through the trapping coils, defining different trapping geometries.

geometry racetracks dissociator lower conf. Majorana upper conf.
Short 36 A 35 A 40 A -4.5 A 40 A
Long 36 A 35 A 0 -1A 2T A
Isotrop. harm. 1.3 A 35A 0 -1A 27T A

2.4 Examples of trapping geometries

We will now discuss two ‘trapping geometries, calculated using Table 2.1 and the
closed expressions (2.5), (2.7), (2.11), and (2.16). The currents which are sent
through the trapping coils and which define the different trapping geometries, are
tabulated in Table 2.2. The signs of the dipole coil currents indicate their relative
orientations.

In Fig. 2.7 the trapping geometries are shown. The |B| field is calculated as a
function of z for four radial distances ranging from p = 0mm to p = 6 mm, the
latter corresponding to the inner radius of the present experimental cell.

The “short” geometry was used in the trapping experiment of van Roijen et al.
[1,2]. The minimum is located at zop = 0.5 mm and the field near the minimum can be
characterized by (see Sect. 2.3.3) Bp = 0.05T, a = 2.2T/cm, and 8 = 0.13 T/cm?.
The lowest field on the wall surrounding the trapping region is B,, = 1.33 T, resulting
in an effective well depth of €,/kp = pp(By — Bo)/ks = 0.85K. The shape of
the potential is described very well by Eq. (2.19) up to relatively high fields, which
simplifies calculations of several properties of the trapped gas (Chapter 3). A striking
feature is the secondary minimum, located at z = —74 mm, which plays a role in the
transmission spectroscopy of the trapped gas (Chapter 6). By changing the current
through the Majorana coil from —5 A to +5 A, By can be set anywhere between 0
and 17T.

The “long” geometry is the trapping configuration most commonly used in the
experiments described in this thesis, in particular for the measurements of evapora-
tive cooling, described in Chapter 7. The effective trapping depth is ¢,./kg = 0.82K,
the minimum is located at zp = —7.5mm, and the field near the minimum can be
characterized by By = 0.1 T, a = 2.2T/cm, and 8 = 0.022 T/cm?. The main ad-
vantage of this geometry is the large number of atoms that can be trapped (~.2.5><
more than in the “short” geometry at a given temperature and maximum density
of the trapped gas), a property that can be decisive for the optical detection of gas
samples at very low temperatures. Due to the combination of the strong axially
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Figure 2.7: |§| versus z for p = 0,2,4, and 6mm. a) “Short” trapping geometry. b)

“Long” trapping geometry.
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confining field of the dissociator coil and the rapidly decreasing radial field gradi-

ent for z < —50 mm, the B, = 1.33 T equipotential surface more or less coincides

with the cylindrical side wall of the experimental cell for z < 0. This feature is

especially useful in the description of evaporative cooling mediated by the cell walls
(Chapter 7).
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Chapter 3
Trapp-ed Atomic Hydrogen

In this chapter the properties of magnetostatically trapped H samples are discussed
relevant to the experiments described in this thesis. The essential features of hydro-
gen trapping which were already addressed by Van Roijen et al. [1, 2] are reviewed,
and some new insights are added. In Sect. 3.1 the potential energy of hydrogen
atoms in a static magnetic field is treated. In Sect. 3.2 the thermodynamics of
trapped hydrogen samples in thermal equilibrium is discussed. A simple but ac-
curate approximative method is presented for calculating analytically the partition
function of a gas sample in a Ioffe trap. This permits us to calculate directly sev-
eral important (quasi-)equilibrium properties like the specific heat and the effective
volume of the sample. In this section extra attention is paid to the influence of the
vicinity of the cell walls on the sample properties, which is especially important for
the description of the evaporative cooling process (Chapter 7). We also dwell on
the calculation of the sample-averaged collisional rates, which determine the equili-
bration time and, ultimately, the lifetime of the gas. In Sect. 3.3 the processes of
the loading of the trap and the thermalization of the Hf sample are discussed and a
justification for the assumption of thermal equilibrium is given. In Sect. 3.4 several
particle loss mechanisms are briefly discussed, in particular collisional relaxation.
Finally, in Sect. 3.5, the heat-balance equation of the trapped sample is derived and
the processes that affect the temperature of the gas are described.

3.1 Potential energy

Confinement of neutral particles in magnetostatic traps relies on the Zeeman in-
teraction Ez = —fi - E(i’) between the magnetic moments j of the particles and a
nonuniform static magnetic field E(r"’) If the magnetic field experienced by a par-
ticle does not change too rapidly, the magnetic moment i will adiabatically follow
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the magnetic field vector B(r"’) and the energy of the particle in the external field
will only depend on B(7) = |B(F)|. More precisely, if the time dependent field
experienced by a particle only contains Fourier components with frequencies much
smaller than the transition frequencies Awz between the various Zeeman sublevels, -
the particle will remain adiabatically in the same Zeeman sublevel it started out
with. In practice this condition is always fulfilled, except in zero-field regions [3].
This is of no concern to us, as we only consider field configurations with a non-zero
minimum in |B|. Particles in a Zeeman sublevel whose energy increases with |Bl,
the so-called “low-field seekers”, experience a force in the direction of decreasing
field magnitude and can in principle be captured in a region with a minimum in IE |-
The potential energy of these particles with respect to the field minimum is

Up(7) = Ez(7) — Ez(7o), (3.1)

where 7% is the position of the minimum.

The interaction of hydrogen atoms in their electronic groundstate (1251,) with
an externally applied static magnetic field is somewhat more complicated due to
the hyperfine interaction between the electron spin § and the proton spin . The
interaction is described by the following effective Hamiltonian [4]:

Heyp = (gepBS— Gnlind) - B + ap?- 3. (3.2)

where pp and g, are the Bohr magneton and the nuclear magneton, g. and gn
the corresponding g-factors, and a, the hyperfine splitting in zero-field, ax/kp =
0.068 K. Diagonalization of H,;; yields four hyperfine states, labeled a, b, ¢, and d
in order of increasing energy (see Fig. 3.1):

B = ~iou=Jaull+ (5 Ba)]”
E, = %ah - ,:—,,u"B
E, "%ah + %ah[l + (ﬂ+B/ah)2]1/2
E; = an+3uB,

(3.3)

where p* = g.pig + goptn. The four eigenstates may be expressed in the |mq, m;)

|a)

basis:

sin0|T}) — cos9|LT)

6) = L)
[} = cosO|T}) +sind|l}) (3.4)
ld) = IT%),

where T, |, 1, and } denote respectively m, = 1/2, m, = =1/2, m; = 1/2, and
m; = —1/2, and the hyperfine mixing angle 6 is defined by

tan 20 = an/(u* B) = an/(2pBB). (3.5)

30



En/ks (K)

-0.4
00 01 02 03 04 05

Figure 3.1: The hyperfine energies (in temperature units) of atomic hydrogen in the
125, /2 electronic ground state as a function of magnetic field.

For B > ai/p* = 0.0507 T the Zeeman term is dominant in H.ss and the eigenstates
approach pure |m,, m;) states. In the rest of this thesis we will replace both u* and
g~ by 2up, which is a good approximation (< 1% error). It is clear from Fig. 3.1
that atoms in the low-field seeking ¢ and d states (HT) will be attracted by a B-field
minimum, and can be trapped, whereas atoms in the a and b states (H|) will be
repelled. Analogous to Eq. (3.1), the potential energy of an H atom in a trapping
field is defined as.

Up(7) = En(7) — En(7), (3.6)
where h denotes the hyperfine state.

3.2 Equilibrium thermodynamics

Our method of calculating thermodynamic properties of the trapped sample hinges
on two simplifying assumptions: First, the trapped gas can be treated as a classical
ideal gas. This is true to a very good approximation because the interaction between
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spin-polarized H atoms is very weak and the thermal de Broglie wavelength is always
much smaller than the mean interparticle spacing. Also the quantum mechanical
level spacing in the trapping potential is always several orders of magnitude smaller
than the average kinetic energy. Second, the trapped gas is in a state of internal
thermal equilibrium; this is not a priori clear and a justification will be given in
Sect. 3.3.

In addition we will make use of an approximative description of the magnetic field
in a Ioffe trap, which enables the analytical calculation of the density of states and
the partition function of the gas. From the partition function we derive expressions
for the effective volume and the specific heat of the trapped gas.

We will pay extra attention in the following to the influence of boundary effects
on the sample-averaged properties of the trapped gas. Usually these effects are
assumed negligible, as the particle density at the edge of the potential well is strongly
suppressed [1, 2, 5]. We will show, however, that they can be quite significant.

3.2.1 Density distributions

In thermal equilibrium the phase space distribution f(7,p) of a classical ideal gas in
a potential field U,(7) is described by

f(7B) = no(2rmkpT)~*/2 exp[—(Up(7) + p*/2m)/k5T). (3.7)

The reference density ng is chosen in such a way that the phase space distribution
function f is normalized to the total particle number N = [ d®r d®p f(, p), where
the integration is over the available phase space. By integrating over the entire
momentum space we obtain the density distribution

n(7) = no exp[—U,(7)/kaT]. (3.8)

In the case of a complete thermal distribution in momentum space ng is equal to
the density at the position ry of the minimum in U,. For d state atoms in a static
magnetic field the potential energy takes the simple form U,(7) = pg[B(7) — Bol,
where B, = |B(7b)| is the field magnitude at the minimum. The potential energy of
¢ state atoms has a more complicated dependence on B(F) (see Eq. (3.3)), but for
By, > 0.1T, as is the case for most of the experiments described in-this thesis, it is
"approximated quite accurately by the same expression as used for d state atoms.
The well depth of the trap ¢, is equal to the potential energy corresponding to
the minimum field strength B,, on the surfaces surrounding the trapping region. For
d state atoms ¢;, = pp(B, — Bo). In the “long” trapping geometry Bo = 0.1 T and
B, = 1.33T (see Chapter 2), so at a typical temperature T' = 0.1 K the density of
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Figure 3.2: Magnetic field contours of the “long” trapping geometry. The cell walls are

also indicated. Note the difference in z and z scales.

H1 atoms at the wall is suppressed by exp(e;/kpT) ~ 3 x 10® and the assumption
that the wall influence is negligible is fully justified. At a temperature T = 0.2K,
the wall density is suppressed to ~ 2% of the central density, which still seems small.
However, we will show that in the latter case the wall influence can no longer be
neglected for the calculation of a number of quantities.

To include the cell wall explicitly in the density distribution, we make use of an
approximation which is based on the particular shape of our trapping potential. In
Fig. 3.2 the magnetic field contours of the “long” trapping geometry are shown. As
the cylindrical side wall nearly coincides with the B,, = 1.33 T equipotential surface,
and the side wall surface area comprises the major part of the total wall surface area
(note the length/width ratio of the trapping field), we may replace the cell wall in
our calculations by the B,, equipotential surface.

To obtain a more realistic density distribution than n(7) given in Eq. (3.8), we
consider two limiting cases:

1) The cell wall is a perfectly reflective surface, so the density distribution is
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simply a Maxwell-Boltzmann distribution, truncated in configuration space:

n4(7) noexp[—Uy(P)/ksT] , U, < €,
ng(f") =0 5 Up>étr'

(3.9)

2) The cell wall is a perfectly adsorptive surface. Strictly speaking all particles
will then be adsorbed on the wall in thermal equilibrium.

Let us suppose, however, that we have a trapped gas surrounded first by per-
fectly reflective walls. After the gas has reached thermal equilibrium, the walls
are switched instantaneously from perfectly reflective to perfectly adsorptive. The
atoms with orbits intersecting the cell walls will be removed within a single oscilla-
tory period. As these are the most energetic atoms, the average energy per trapped
atom immediately after switching on the pumping walls will be lower than before.
Thermalizing interatomic collisions will drive the remaining gas to a new equilibrium
state at a lower temperature. The same collisions will also scatter more particles into
wall-intersecting orbits, which are lost. Let us assume that the internal (collisional)
equilibration rate of the sample is much faster than the rate at which the sample
is depleted by the pumping wall. In that case the pumped sample will slowly lose
particles and evolve in quasi-equilibrium towards lower temperatures. This process
is called evaporative cooling.

If a particle comes out of a collision event with a total energy (kinetic energy plus
potential energy) greater than e, then it has the possibility to reach the adsorbing
wall. Taking into account constants of motion other than the total energy, which are
associated with symmetries in the potential Uy, and the fact that the particle in a
second collision may be scattered back into a low-energy trajectory, it is not clear how
large the probability is to reach the wall. To enable an approximate determination
of the distribution function of the pumped sample we make the second assumption
that this probability is unity, i.e., any particle given a total energy > e will be
removed. We shall return to these questions in more detail in Chapter 7. Starting
from a thermal equilibrium phase space distribution (3.7) and integrating f(,5)
over all momenta for which U,(F) + p*/2m < €, we obtain the density distribution
n, of a sample pumped by the cell wall:

o) = n(@lrt( 2D - 2oy [T RO exp(- 22y (310

Of course this distribution is described much more conveniently in phase space,
where it is simply a Maxwell-Boltzmann distribution truncated at the Uy(¥) +
p?/2m = ¢, surface. However, for some applications (e.g. spectroscopy of the
gas during evaporative cooling, Chapter 7) an explicit expression is required. The
density distribution (3.10) was used by Helmerson et al. [24] in their analysis of
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Figure 3.3: Density distributions n;/ng and n,/ng at z = 2o as a function of the radial
distance p from the center of the trap. Solid curve: n;/ng for T = 0.1K; dashed curve:
ny/ng for T = 0.2K; dotted curve: n,/ng for T = 0.2K. The cylindrical side wall is at

p = 6mm.

experiments with magnetically trapped Na atoms. When U, approaches ., the
density n, goes smoothly to zero as a function of U,. Note that the pumped den-
sity distribution as defined by Eq. (3.10) is still characterized by a temperature T'
and a density no. However ng is no longer the central density, n,(7) < ng, and
strictly speaking T’ cannot be interpreted as the thermodynamic temperature of the
system. In the case of a pumped distribution T’ and ng are convenient parameters
characterizing an essentially non-equilibrium distribution.

A word of caution may be necessary on the terminology used: Both distributions
considered are truncated Maxwell-Boltzmann distributions, one in phase space and
one in configuration space, but in the following the term truncated distribution is
reserved for distributions truncated in configuration space.

In Fig. 3.3 the radial density distributions n;/ng and n,/ng in our trap at z = z
are plotted for the gas temperatures T = 0.1K and 0.2K. At T = 0.2K there is
a significant effect of the pumping wall on the density distribution, also in regions
far from the wall. At T' = 0.1 K the difference between n; and n, is negligible. The
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sample is best described in terms of the truncated distribution n; during the loading
of the trap, when the wall temperature is relatively high (20.15K) and the HT gas
is in thermal equilibrium with the wall (Sect. 3.3). The pumped distribution n,
should be used, for instance, when the wall temperature is low ($0.08 K) and the
gas is evaporatively cooled.

3.2.2 Density of states

Before turning to the partition functions associated with the particle distributions
discussed in the previous section, it is useful to first discuss the density of states in
a loffe trap. In general, the density of states of a potential well U, can be written
as

p(€) = 2r(2m)*/? /U g Ve U)o (3.11)

Here the normalization is chosen in such a way that p(€)de is equal to the infinitesimal
phase space volume occupied by the positions and momenta (7,p) for which € <
U,(F)+p?/2m < e+de. Since we know the exact magnetic field B(7) (see Chapter 2)
and the B-dependence of the potential energy U, (Sect. 3.1), the density of states
p(€) for both ¢ and d state atoms can be calculated numerically. However, this
procedure does not yield much insight and can be quite time-consuming, for instance
when continuously changing field configurations are involved. The calculations can
be simplified considerably by assuming a pure d state gas and using a convenient
approximate description of the B-field.

In a Ioffe trap near the trap center (p = 0,z = zo) the field magnitude B can be
approximated by (see Chapter 2)

B~ \/[Bo + B(z — 20?2 + a?p?, (3.12)

where By = 0.1 T, a = 2.2T/cm, and B = 0.023 T/cm?, for the “long” geometry.
Using Egs. (3.11) and (3.12), we obtain a simple analytical expression for the density
of states of a pure d state gas in a Ioffe trap:

_ Cme PP o 2unbo
2y VB ¢

The value of 3 used corresponds to the exact axial field curvature at the minimum of

p(e)

). (3.13)

the trap, so the approximation should work best at low energies. The description at
higher energies can be improved by adjusting the values of 3 and z, appropriately.
The approximation gives the most accurate results in field geometries whose axial
field profiles have a close resemblance to the required parabolic shape (Eq. (3.12)),
such as, for instance, the “short” geometry (see Chapter 2). However, as will be
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shown in Sects. 3.2.4 and 3.2.5, it works quite well for the “long” trapping geometry.
When the axial field profile deviates very much from the required parabolic shape,
as is for instance the case in the trapping experiments at MIT [5], the field may be
approximated by the more general form

B~ \/(Bo + Blz = zol°)? + o/, (3.14)

which still allows an analytical approach. For the trap used at MIT, for instance,
§ > 2. In our description we will restrict ourselves to the quadratic axial field
approximation (3.12), which yields relatively simple expressions, while being suffi-
ciently accurate for our case.

Another practical quantity is the “magnetlc density of states” pp(B). Analo-
gous to the energy density of states p(e), pp(B’)dB’ is defined to be equal to the
infinitesimal volume in configuration space occupied by the positions 7 for which
B' < B(f) £ B' + dB'. In other words:

d
4 —_— em— d3 . .
ru(B) = 75 /B(F‘)<B’ T (3.15)

Using the field approximation Eq. (3.12), the magnetic density of states par can be
derived in a straightforward manner:

ou(B) = = \/-[(B — Bo)*/? + Bo(B — Bo)'/?). (3.16)

The magnetic density of states is useful for calculating the partition function of a
system of particles which is only limited in configuration space and for calculating
sample averages of B-dependent quantities like, for instance, collisional relaxation
rates. Furthermore, it is used for the interpretation of transmission spectra (Chap-
ter 6) and the calculation of the evaporative cooling rate (Chapter 7).

3.2.3 Partition functions

The partition function of a classical ideal gas of N particles in a potential U, is given
by

N
z=25 | (3.17)
where the “single-particle partition function” z is defined as
2=h3 / exp[—(Uy(7) + p*/2m) ks T)dp &r. (3.18)

We will now calculate the partition functions z associated with the different particle
distributions discussed in Sect. 3.2.1, using the approximation for the density of
states-developed in Sect. 3.2.2.
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For an infinite distribution of particles, not disturbed by walls (B,, — o), the
partition function z., can be written as

oo = b [ ple) exp(—c/kaT)de, (3.19)

where p is the density of states as defined in Eq. (3.11). Using Eq. (3.13), 2. for a
gas of d state atoms in a potential of the form (3.12) is readily obtained:

e = (T/T){L+ S(T/T)), (3.20)

where kgTy = ppBo/ks and kgTy = [(2mn?)~3/2h3u3{?0?8Y/2/3]/4 can be inter-
preted as the temperature for which the thermal wavelength of the trapped parti-
cles in a Ioffe trap with By = 0 becomes equal to their average classical oscillation
amplitude. For the “long” geometry T3 = 2.87 uK and Tp = 0.067 K.

To obtain an expression for the partition function z, of a gas sample pumped by
the cell wall we only need to replace the upper bound of the integration (3.19) by €,
the potential energy on the surface of the cell wall, as we assume that all particles
with a total energy greater than e, will actually reach the wall and be removed.
Using again Eq. (3.13), we find:

Zy =231 —e M1+ 7+ lﬂz + -I'L] (3.21)
P 2 61+26n°)°
where we have introduced the dimensionless quantities n = ¢./kgT and § =

Bo/(B,, — By). For the trap configuration under consideration T = 0.82K and
¢ = 0.08. For n = 4 (T =~ 0.2K) the correction due to the presence of the walls is
~ 40%, which is quite significant. For n > 10 (T < 0.08K) the correction is less
than 1% and the factor in curly brackets may be replaced by unity.

The calculation of the partition function z; of a gas surrounded by perfectly re-
flective walls, when the distribution is only truncated in configuration space, requires
a different approach. In this case it is more convenient to carry out the integrations
over momentum and configuration space separately:

2= A7 exp[—U,(7)/ ksT]d°r. (3.22)

Up(R)<eer
Here A, = h/\/2rmkgT is the thermal deBroglie wavelength; the integration over
momentum space is contained in the factor A;2. For a pure d state gas Eq. (3.22)

can be written as

By
ze= A A pum(B) exp[—pp(B — Bo)/ksT)dB, (3.23)
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where pps is the magnetic density of states as defined in Eq. (3.15). Using the
approximative form (3.16), we find:

2

2= 2o {1 — exfe /i — 2y/n/7 13'—'-13*(_—,%)" ’"} (3.24)
For n > 4, the erfc,/q] term is negligible. For 7 = 4 and ¢ = 0.08 the correction due
to the presence of the walls in this distribution amounts to ~ 13%.

As a first application we determine the fraction f,, that is removed from a distri-
bution in thermal equilibrium with the surrounding reflective walls, when the wall
surfaces are switched to a perfectly adsorptive state. This “evaporation” fraction
may be written as fe, = (2:—2,)/z:, which for 7 > 4 can be accurately approximated
by ,

1+4(1

61+2€ \/——*i{—g%m} (3.25)
We find that for n = 4 (T =~ 0.2K in our trap) and £ = 0.08 approximately 30%
of the particles is removed immediately after switching on the evaporation. For

= 8 (T =~ 0.1K) this fraction is ~ 3%. Note that the evaporation fraction
fev is independent of the detailed shape of the potential well, it only depends on
1 = €, /kpT and { = Bo/(By — Bo)-

The determination of the partition function is an important result enabling a

fev —e'”{1+1]+217 +

straightforward derivation of the thermodynamic functions of the trapped gas. In
general, it can be applied to the description of processes which are slow in com-
parison to the collisional equilibration rate. In this thesis the main application of
the thermodynamic description is a quantitative analysis of the evaporative cool-
ing process (Chapter 7). In the following sections we will use the expressions we
have obtained to calculate the most basic sample-averaged quantities, the effective
volume and the internal energy of a trapped sample.

3.2.4 Effective volume and sample dimensions

The effective volume of the sample is a practical quantity which is closely related
to the single-particle partition function z. In general we can define the effective
volumes of order £ =1,2,3,... by

Vie = / Y () o)t dPr, (3.26)

where the integration is over the geometrical volume Vje,, which is bounded by the
cell walls. The effective volume of order £ = 1 is simply given by Vi, = N/no, where
N is the number of trapped particles. The effective volume of order £ = 2 is useful
when discussing sample-averaged rates of binary interatomic collisions (Sect. 3.2.6).
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For thermal distributions not truncated in momentum space the simple relation
Vie(T) = V1(T/£) holds.

The single-particle partition function 2z (Eq. (3.18)) and the first-order effective
volume Vj. are by definition related through Vi, = z)3,. Using Eq. (3.20) we can
immediately write the expression for the first-order effective volume of a pure d state
gas in an infinite potential well of the form (3.12):

> = Vo(T/T)701 + (1) T)) (327)

Here V, = 373/2a~28~Y*¥B, — By)*/?, T,, = €:/kp, and Ty = upBo/kp. For the
“long” geometry Vo = 38 cm?, T = 0.82K, and Tp = 0.067 K. The effect of the
presence of the cell walls can be taken into account with the same correction factors
as in Egs. (3.24) and (3.21):

VL = Vle {1 — erfe\/n — 24/n/ 1 _:;;f } , (3.28)

and

. _ 1 773
P _yol]—e M1 - - 2
V4, 1,{ e "l1+n+ 27 +61+2£1)]}’ (3.29)

where the superscripts ¢ and p refer as usual to distributions truncated in configu-
ration space and pumped distributions, respectively. »

To check the accuracy of the approximative method we calculated numerically
the exact first-order effective volume VY, of a d state gas as a function of temperature,
using the experimental B field, and compared this to the approximative analytical
expression (3.28) (see Fig. 3.4). Using Vo = 42 cm® we find that the approximative
expression (3.28) agrees within 1% with the exact calculation for 0.05 < T < 0.25K,
which is the relevant temperature range for the experiments described in this thesis.
Also shown in Fig. 3.4 is V;°, calculated using Eq. (3.27) with V, = 38 cm®, which
describes the first-order effective volume accurately for T < 0.05 K and is also useful
for making rough estimates at higher temperatures.

For convenience we also introduce here some length scales which are measures for
the linear dimensions of a sample in an axially symmetric potential. The effective
axial length £.;; may be defined as

by = / n(0, z)/no dz, (3.30)

where n(p,z) is the density at the point (p,z). Using the approximate expres-
sion (3.12) for the B-field in our Ioffe trap, we find for a d state gas

Z,,, = \/WkBT/uBﬂ. (3.31)
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Figure 3.4: Effective volume V{, in the “long” geometry versus temperature. Solid curve:
numerically calculated V¢, using experimental B-field; dashed curve: V{, from analytical
expression (3.28) with Vp = 42 em®, 4T = 0.82K, and £ = 0.08; dotted curve: Vi of
Eq (3.27) with Vp = 38 cm®.

For f# = 0.023 T/cm? (“long” geometry), the effective axial length les;/VT =
14cmK12 so at T = 0.1K £y ~ 4cm. The effective area A ;s in the z = z
plane may be defined as

Ay = /o 27pn(p, 20) /o dp, (3.32)
and the effective sample radius p.ss by

Pess =\ Aess /. (3.33)

Using again Eq. (3.12), one may easily derive for a d state gas

25T ‘
Pess = ‘/;BB V1+To/T. (3.34)

a

The potential experienced by the particles is harmonic for temperatures T' < T.
The ratio between the effective length and width of the sample is then independent
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of temperature: fess/2p.s; = \/ma?/88Bo, which means for the “long” geometry
Less/2pess = 30. If T > T, then the effective sample radius is proportional to the
temperature: p.;; = v/2kgT/cup. For the “long” geometry we then find p.ss/T =
lemK™1.

3.2.5 Internal energy

The internal energy E of a classical ideal gas in thermal equilibrium can be expressed
in terms of z, the single-particle partition function:

2102
B = NksT*-7. (3.35)

Using Eq. (3.20) we easily obtain the internal energy E,, of a pure d state gas in an
infinite potential of the form (3.12):

Ew _,1+4 HTo/T)
NkgT ~ "1+ 4(To/T)’

(3.36)

where kgTy = ppBo. Note that the internal energy is independent of the Ioffe
trap parameters @ and 3 (or Vp). For T' « T, the average energy E,, ~ 3NkgT,
reflecting the approximately harmonic trapping potential experienced by d state
atoms at very low energies (see Chapter 2). For the “long” geometry (Bo = 0.1T)
at T = 0.2K, E/NkgT = 3.82. Using Egs. (3.21) and (3.24) we can also derive
expressions for the internal energy E; of a sample truncated by reflective walls:

Et — Eoo 4 zoo 5/2 -7
NksT _ NksT 3r 2

2
2
3
v = N CLD

and for the internal energy E, of a sample surrounded by adsorptive walls:

E, E, 1z, nie™”

2

3¢
B _ Ee lzo | |
NkoT ~ NkaT 62 142670 T T ] (3.38)

1+ 2¢n

Note that the internal energies of the truncated and the pumped distributions are

also independent of the Ioffe trap parameters a and . The temperature depen-
dence is completely determined by By and B,,. In the limit T < To (én > 1) the
expressions for a harmonic potential are obtained. The internal energies E, /NkpT,
E./NkgT, and E,/NkgT, calculated using respectively Eqgs. (3.36), (3.37), and
(3.38) with Bp = 0.1 T and B,, = 1.33 T (¢ = 0.08 and nT = 0.82K), are plotted in
Fig (3.5) as a function of temperature. Clearly, the corrections due to the presence
of the cell wall can be quite substantial in the temperature range relevant to the
experiments described in this thesis (0.05 K < T' < 0.2K). Also shown in Fig. 3.5 is
the exact internal energy of a truncated sample, E:/NkgT, calculated numerically
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Figure 3.5: Internal energy of the trapped gas in units NkpT versus temperature, Dashed
curve: Eo/NkpT; dotted curve: E;/NkpT; dash-dotted curve: E,/NkgT. All three
broken curves were calculated using the analytical expressions based on the approximation
of the B-field. Solid curve: numerically calculated Ey(T)/NkgT using the experimental
B-field of the “long” geometry.

using the experimental B-field. The analytical expression (3.37), based on the ap-
proximation of the B-field, agrees within 7% with the exact numerical calculation
for T < 0.2K. We would like to stress that there are no adjustable parameters
in Eq. (3.37); the differences arise from the deviations in the detailed shape of the
experimental field from the approximative form (3.12).

When the distribution is truncated only in configuration space, the internal en-
ergy E can be split up into a kinetic energy (3/2)NkgT and a potential energy
1eNkpT, where v1. = (T/Vie)(0V2e/OT). One can easily show that for a pumped
distribution (truncated in phase space) the equality E = (71.+3/2) NkpT also holds.
In the latter case, however, the two terms can no longer be identified as pure kinetic
energy and potential energy contributions. We can define more generally effective
average potential energies of order £=1,2,3,... by

Vgeo
neksT = Vi [ Up@ln(7) /ol dr, (3.39)
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in analogy with definition (3.26). For a thermal distribution not truncated in mo-
mentum space Y(T) = me(T/€)/L. The quantity ;. is a practical quantity when
discussing heating of the sample due to particle loss associated with binary atomic
collisions.

3.2.6 Sample-averaged collision rates

Consider a volume V filled homogeneously with a single-component gas of N par-
ticles in thermal equilibrium. In the usual approach (see, e.g., Ref. [4]) the £-body
collision event rate I, in the gas is written in terms of an £-body rate constant Gj:

I‘[ = -},—n‘GJ/, (340)

where n = N/V is the particle density. In general G, depends 6r_x externally applied
fields and thus in an inhomogeneous system on position, so we may write

1 1
Ty= z/dar G[(F)n‘(i') = Z'!néGche) (341)

where the system-averaged rate constant Gy = V! [ &r G(7)[n(7)/nd)’, no is a
reference density, and V., the £** order effective volume, is defined in Eq. (3.26).

In experiments with trapped HT densities are always so low that only binary
collisions have to be considered. Therefore we will omit the subscript denoting the
number of particles involved in a collision from now on. For two-body collisions the
rate constant G = (v,0), where the brackets () denote averaging over a thermal
velocity distribution.” Here v, is the relative velocity of the colliding pair and o
is the effective cross section, i.e. the total cross section for a collision between
two particles with relative velocity ¥, averaged over all directions of ¥, [6]. The
effective cross section ¢, which may apply to both elastic and inelastic collisions,
contains all necessary information about a single collision event, including particle-
indistinguishability effects.

In the definition of the two-body rate constant G thermal equilibrium is implicitly
assumed, so in the case of a pumped distribution the above averaging procedure is
not applicable. For any thermal distribution we may write

1 L. . .
T'= %/d?'r/d?'pl/dspz |P2 _Pllo'f(r,lh)f(r,}?z), (3.42)

where f(7, p) is the thermal distribution function (3.7) and the integration is over
the available phase space. In general o depends both on |p; — pj| and on 7. For a
pumped distribution the integration is over all (7, p) for which U,(7) +p? ,/2m < €.
Since the momentum space integrations depend on 7, the evaluation of I' generally
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involves a complicated nested inteéra.l which is different for each choice of the trap-
ping potential U,.

Fortunately, in the case of atomic hydrogen the relevant rate constants can often
be approximated by very simple forms. As we will discuss in more detail in Sect. 3.3,
the elastic scattering cross section is to a good approximation independent of the
external field and the relative velocity of the colliding atoms, which simplifies the
calculation of the elastic collision event rate comsiderably. For inelastic collision
processes, i.e. collisions in which untrapped high-field seeking states are produced
(Sect. 3.4), o is inversely proportional to the relative velocity at very low collision
energies. In this case G = (v,0) = v,0 is independent of temperature and the
calculation of the total event rate for inelastic collisions only involves an integration
over T space:

1 1
D=3 [ &rGEmy () = 5niC Vi, (3.43)

where n, is the pumped density distribution (3.10).

3.3 Loading of the trap and thermalization

As far as neutral atom trapping is concerned, HT is unique because it can be captured
in a magnetostatic trap without the use of a resonant radiation source. This is due to
the fact that spin-polarized atomic hydrogen is the only gas that can be manipulated
and cooled using material surfaces at temperatures comparable to the well depth
of magnetic traps (€,/kgS1K). This can be accomplished by covering all surfaces
with a layer of superfluid helium. In the loading process the confining cryogenic
surfaces serve two purposes: First, they cool the H gas to temperatures low enough
for trapping. Second, collisions between the atoms are necessary to scatter them
into trapped states and the surfaces surrounding the trapping region are essential
for building up the relatively high densities required for efficient filling through
collisions. The densities of trapped particles that can be achieved in this way are so
high that the trapped atoms undergo many collisions with each other during their
trapped lifetime. As a result the trapped sample reaches a state of internal (quasi)
equilibrium shortly after loading.

3.3.1 Interaction with helium surfaces

The interaction of H atoms with a surface of liquid helium at sub-Kelvin temper-
atures has some remarkable properties [4]. When an H atom impinges on a {-He
surface it is either adsorbed on the surface or reflected. When the atom is adsorbed
it floats on top of the surface and does not dissolve into the liquid. The interaction is
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extremely weak: The adsorption potential for H on ¢-*He supports only one bound
~ state with a binding energy €,/kp = 1.011(10) K [7]. The shallow adsorption poten-
tial is essential for spin-polarized hydrogen research as it allows a gas of H atoms to
exist in thermal equilibrium with the walls of its container at temperatures below
1 K. In the experiments described in this thesis all inner surfaces of the experimen-
tal cell were covered with a (saturated) superfluid film of *He with a thickness of
~ 100 A.

At sub-Kelvin temperatures the thermal wavelength of the H atoms, AT =
17.5 AK/2, is longer than the range of the He surface adsorption potential (< 10 A).
As the wavelength ), of the H atoms colliding with the surface increases with
decreasing T', the overlap of the incoming plane wave with a surface bound state
becomes smaller, giving rise to the phenomenon of quantum reflection: The prob-
ability that an H atom impinging on the £-He surface is adsorbed, the so-called
sticking probability s, decreases with decreasing temperature. If the atom is not
adsorbed it is reflected specularly. Berkhout et al. measured the sticking probabil-
ity in the temperature range 0.07K < T < 0.5K: s/T =~ 0.33K~! [8, 9]. For the
experiments described in this thesis s <0.07, so the helium covered surfaces act as
highly reflective mirrors.

An H atom adsorbed on the He surface comes off again after some time 7, through
a thermally activated desorption process. Using a simple argument this residency
time 7, can be estimated [4] from

Ty = exp(€./kTw), (3.44)

h
skgTy,

where T, is the wall temperature. We find for T, = 0.2K 7, ~ 0.5 s and for
T, = 0.0TK 7, =~ 50ms. Clearly the residency time has a very strong temperature
dependence in the relevant temperature range. As a consequence the loading process
is very sensitive to the temperature of the cell walls.

3.3.2 Elastic H-H collisions

Elastic collisions between H atoms play a crucial role in our experiments. The
cross section for elastic scattering between H atoms is well known. For elastic
collisions between d state atoms the T' = 0 s-wave scattering cross section is given
by e = 8ma%, where ap = 0.72 A is the triplet scattering length, calculated using
the well-known H-H interaction potential [12, 13]. At finite temperatures there
are in principle contributions due to higher order partial waves and the energy
dependence of the collisional phase shifts. For the collisional energies encountered
in our experiments, however, these corrections are always small and can be safely
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neglected. In this thesis we therefore always use the T" = 0 elastic scattering cross
section 0, = 13 A% The T = 0 cross section for elastic collisions between ¢ and d
state atoms is also independent of B, but twice as small due to distinguishability of
the particles. The T' = 0 cross section for elastic collisions between c state atoms,
however, is B-dependent and is given by

: 1 1
0 = 8nlad + T sin? 20 (ar — as)? - 3 sin? 20 ar(ar — as)), (3.45)

where 6 is the hyperfine mixing angle (Eq. (3.5)) and as = 0.17 A is the singlet
scattering length. For B > 0.05T (8 — 0) the ¢ — ¢ cross section becomes equal to
0y = 8ma%. For B > 0.1 T we find that 65 > 0.90.;, so for our experiments we may
approximate o< by the field independent value 87a%.

3.3.3 Loading process

Hydrogen atoms are produced in all four hyperfine states by dissociation of H; in
a low-temperature (T’ ~ 0.6 K) rf discharge in high field (Chapter 4). The low-field
seeking HT atoms are pulled through a narrow tube towards the trapping region
while the H| atoms stay behind in the high-field region. While travelling through
the narrow tube the “hot” HT gas exchanges heat through inelastic collisions with
the helium covered inner surface of the tube and is cooled to the wall temperature
T, of the trapping region.

The passage of the gas through the tube connecting the dissociator to the trap-
ping region is the most critical phase in the loading process. The surface coverage
depends exponentially on T, (see Eq. (3.44)), so if T, is too low the H atoms will
recombine through two-body surface recombination [4] on the inside of the transport
tube before they reach the trapping region. For a £-*He coverage it is experimentally
found that there is a critical minimum wall temperature T, = 0.15K for efficient
filling [2]. The above sketched picture is confirmed by the fact that when the sur-
faces are covered with a 3He-*He mixture, in which case ¢,/kg =~ 0.4K [10], the
critical wall temperature for filling is much lower. v

When the H7 gas enters the trapping region it is of course not immediately
trapped. An additional mechanism is required to scatter particles which move close
to the trap minimum into trapped orbits. In the case of H] we rely entirely on
elastic collisions between the atoms.

The HT gas is sprayed out of the filling tube into the trapping region, a long
cylindrical volume (~ 20 cm®) enclosed by £-*He covered walls (see Fig. 3.2). Typi-
cally a flux of a few times 10'? atoms per second can be produced, so within a second
an average density of the order of 10’ cm™ can be built up. An atom will rattle

47



around between the walls until it collides near the trap center and loses enough
kinetic energy in the event to be trapped. »

Due to the elongated shape of the potential well the radial oscillatory motion
is much faster than the axial motion so every atom collides with the walls ap-
proximately twice every radial oscillation period 7, ~ 0.4ms. The diameter of the
cylindrical trapping region d = 12mm. Assuming an average density n = 10'* cm™3
and a mean free path (noy)™! ~ 80 m we can estimate the time 7. in which every

atom has collided on average once:

™
T~ oo 1s. (3.46)

We expect that HT atoms are scattered into trapped states within a time of the order
of 7. = 1s. Once a small number of atoms is trapped, the central density increases
and the process is accelerated. Eventually the gas will settle into a thermal density
distribution. This filling procedure is only possible due to the presence of confining
walls, which allow the build-up of density in the trapping region.

'During the loading heat is carried off to the surrounding walls. Heat exchange
with the walls happens on a time scale 7, which is the average time between two
sticking wall collisions: 7, ~ 7,/2s. For T = 0.2K the sticking probability s ~ 0.07,
so 7, = 3ms < 7, and we expect the excess heat to be carried off immediately
during the thermalization process. Once the gas settles into a trapped distribution,
the wall contact is reduced. For a thermal distribution the fraction of particles
colliding with the walls is given by the evaporation fraction f., given by Eq. (3.25),
so the time constant for heat exchange then is 7, ~ 7./2sf.,. For T = 0.2K
fev ~ 30% and 7, ~ 0.01s, which is still much smaller than 7. Clearly, if no other
heating or cooling processes are involved, the trapped gas will thermalize directly
to the wall temperature T, at these densities.

Using the equilibrium description developed in the previous section we can esti-
mate the amount of heat carried off during the trapping process. Before any particle
is scattered into a trapped state, the energy with respect to the trap minimum of
a cloud of N atoms sprayed into the trapping region is E; = N(er + (3/2)ksTy).
After the gas has settled into a thermal density distribution, truncated by the reflec-
tive walls, its internal energy is E; = (y1e(Tw) +3/2)NkgT,,. Therefore, the energy
absorbed by the surrounding walls equals E;— E; = N (s —71e(Tw)ksTyw) = 10711 J
for N = 10'? and T, = 0.2K (see Sect. 3.2.5).

3.3.4 Thermalization time

For our description of the trapped gas we rely heavily on the fact that the gas
is in a state of internal (quasi) equilibrium. All kinds of processes are possible
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which disturb the equilibrium state of the sample (evaporation, collisional relaxation,
optical pumping, etc.). For our equilibrium assumption to be valid it is essential that
the timescale of collisional internal equilibration is much shorter than any timescale
associated with disruption of the equilibrium state.

We assume that the elastic collision event rate per atom I'./N is a good measure
for the internal equilibration rate: Every particle in the sample will have collided
In a time 7. = (2I./N)~! on average once with another particle. For a thermal
distribution of a pure d state gas (see 3.2.6)

=22 [&r [&p [ @nls - AIGHIGR). (3.47)

As usual, we introduce center-of-mass and relative momentum coordinates P =
(1 + p2)/2 and ¢ = p2 — p1. Using d°p; d®p; = d*P d3¢ and the definition (3.7) of
£, we get:

T, = gung(2rmkgT)~3 / &Pr e=2Usl/ksT / &3P e-P*ImksT / &g ge~a/4mksT
2m (3.48)
In the case of a pumped distribution, i.e., the integration over phase space restricted
to U, + p},/2m < €, the P and § integration boundaries depend on each other
which makes the calculation of T. slightly tricky. We will come back to this in detail
in Chapter 7 where a similar calculation is required for the evaporation rate. For
now we will calculate I', for a distribution truncated in configuration space, as is the
case, for instance, for a trapped sample in thermal equilibrium with the cell walls.

The P and § integrations can then be carried out straightforwardly and we find:

—=n2voqViL(T/2), » (3.49)

1
T.=
)
where © = 1/8kgT/7m is the average thermal velocity and V7, the first order effective
volume (see 3.2.4). The collision frequency per atom is

= V2notoe 1"({/?) (3.50)

For a typical central density ng = 5x 10 cm™2 and a temperature T = 0.2K we find
7. = 0.8s for the “long” geometry. As can be seen in Fig. 3.5, 71 does not depend
strongly on T. For constant v;, = 7 one can easily derive that V;. ~ T7. Thus in
our case the collision frequency for T < 0.2 K can be approximated to within ~ 25%
by

7 27 2050, (3.51)
where 1.5 < v < 2. Note that 7! is independent of the Ioffe trap parameters a and
B in this approximation. For kgT <« pupBy, i.e. for a harmonic trap, 11, = v = 1.5
and Eq. (3.51) holds exactly.
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Although in the case of a pumped distribution the calculation of 7. is some-
what more complicated, it is given to a good approximation by Eq. (3.50) for
n= etf/kBT 2 8.

3.4 Particle loss mechanisms

As can be seen at first glance from the Zeeman diagram (Fig. 3.1), a gas of magne-
tostatically trapped HT is not in its lowest energy state. The population of only the
HY states is a non-equilibrium situation and the spins will ultimately relax to non-
trapped H| states. The most fundamental spin-flip process is relaxation through
binary interatomic collisions. We will show, however, that these do not play any
role of importance in the experiments in this thesis. Other spin-flip mechanisms
are possible (collisions with trapped electrons, Majorana transitions, optical pump-
ing, and impurity relaxation on the wall), but can be avoided. If the helium film
is locally removed from the wall surface, particles may also leave the trap without
having their spins flipped if they have aquired enough kinetic energy to reach the
bare surface. Thermal escape of H] atoms then leads to evaporative cooling of the
sample. This loss mechanism will be treated in detail in Chapter 7. The HT atoms
may also escape after collisions with highly energetic particles of a spurious, “hot”,
background gas. The latter mechanism is thought to be determining the lifetime of
the trapped gas in the experiments described in this thesis (a lifetime of typically a
few minutes).

3.4.1 Collisional relaxation

The collisional properties of H atoms are very well known. In fact, due to its simple‘
structure, H is the only system for which interparticle collisions can be treated
exactly from first principles. The scattering of two H atoms is actually a four-
particle problem, containing the mutual interactions of two electrons and two protons
[6]. Since the final reaction products are again H atoms (for recombination to
the molecular state a third body is required), the H-H collision can be described
effectively by a spin-dependent interatomic potential, which has been calculated
from first principles by Kolos and Wolniewicz [13].

By far the most dominant scattering mechanism is due to the Coulomb inter-
action, which gives rise to the singlet and triplet interatomic potentials. Ignoring
for the moment the nuclear spin, H atoms in the electronic groundstate interact
through the singlet potential curve if S = 0 and through the triplet potential curve
if S = 1, where § = &, + &, is the total electron spin (see Fig. 3.6). In a gas of
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Figure 3.6: The singlet (dashed) and triplet interatomic potentials of hydrogen.

spin-polarized hydrogen (HT or H|) the atoms interact through the mainly repulsive
triplet potential. The elastic scattering cross section of Hf atoms, which we used in
the previous section, was calculated using the singlet/triplet potential curves.

Since the Coulomb interaction only depends on the interatomic distance, orbital
angular momentum is conserved during collisions and thus the total spin. Conse-
quently, for the description of inelastic (spin-flip) collisions other contributions to
the interatomic interaction have to be included.

At large interatomic distances the spin eigenstates of H atoms in a magnetic
field are the hyperfine states a, b, ¢, and d, as given in Eq. (3.4). Since the a and ¢
states are superpositions of electron spin-up (m, = 1/2,1) and electron spin-down
(ms = —1/2,) states, the two-particle spin states |hihs) (b1, k2 = a,b,c, d) are in
general superpositions of singlet (S = 0) and triplet (S = 1) states or, in other words,
the asymptotic two-particle spin states |hyh,) are in general not eigenstates of the
singlet/triplet interaction. As a result H atoms can be scattered in collisions from
one hyperfine state to the other. This spin-flip mechanism is called spin-exchange
relaxation. For an HY gas, consisting of ¢ and d state atoms, mainly collisions
between c state atoms lead to spin-exchange relaxation. For ¢ — d collisions spin-
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exchange relaxation only proceeds via odd partial waves, which have a negligible
contribution at low temperatures. Spin-exchange can be a very efficient mechanism,
leading to a rapid depletion of the c state population of the trapped gas. Since the
d state is a pure electron spin-up state, the remaining d state gas is stable against
spin-exchange relaxation. The collisional decay of a d state sample is much slower
as it is mainly induced by the relatively weak dipole-dipole interaction between the
magnetic moments of the electrons. In principle several other processes contribute
in a H-H collision event. It turns out, however, that it is sufficient for an accurate
description of inelastic collisions to take into account only the spin-exchange and
electron-electron dipolar interactions [6].

The collision event rate constants for inelastic H-H collisions have been calculated
by Lagendijk et al. and Stoof et al. [14, 15]. Van Roijen et al. have measured the
collisional decay of a sample of trapped d state atoms and found it to be in agreement
with theoretical predictions for dipolar decay [1, 2].

We will now estimate the relaxation lifetimes for both spin-exchange and dipolar
decay under conditions typical for the experiments in this thesis. As was already
mentioned in Sect. 3.2.6, both the spin-exchange and the dipolar event rate constants
go to a constant value if T — 0. We will approximate the inelastic event rate
constants by their T' = 0 values, which is good enough for a rough estimate. For a
pure d state sample the dipolar collision event rate is given by (see 3.2.6)

I‘dip = %ntz)GfipVha (3.52)

where G%? is the sample-averaged event rate constant for dipolar relaxation. Eq.
(3.52) holds for both distributions considered. In the dominant process (d + d —
a + a) two high-field seekers are produced ‘per event, so the dipolar decay rate
T = N/N = 2T'4ip /N becomes

Tcz; ~ nOG‘eﬁpVh/Vle- (353)

Approximating the field averaged rate constant by its value Gg at the trap minimum
(Bo =0.1T) we have G# ~ Gy = 2 x 107!* cm3/s. Using a typical central density
ng = 5 x 10 cm™ and T = 0.2K we find 74;, ~ 2 x 10%s. If the event rate
constant is correctly averaged over the inhomogeneous trapping field 74, can be
up to ~ 2x smaller [1, 2]. Similarly, we may approximate the field averaged spin-
exchange rate constant by its value at the trap minimum, G¢* = 10~!3cm3/s. For
a pure ¢ state sample under the same conditions we then find for the spin-exchange
relaxation lifetime 7., &~ 40s. Since the electron spin-down admixture of the c state
decreases with increasing magnetic field, the spin-exchange rate decreases as well,
so after correct field averaging a somewhat larger value for 7., is obtained. Taking
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Figure 3.7: “He-H elastic scattering cross section as a function of the relative velocity.

into account that in practice the ¢ density is smaller than no/2, the spin-exchange
lifetime in our experiments is always at least a few minutes.
For the experiments described in this thesis collisional relaxation of the trapped

gas is negligible.

3.4.2 “He background gas

In experiments with trapped alkali atoms the presence of a “hot” background gas
is often the lifetime determining factor. Due to the necessarily sub-Kelvin cell wall
temperatures helium is the only gas which may give rise to such problems in H1
experiments.

The scattering cross section for “He-H collisions can be calculated using the so-
called R2 potential [16, 19]. Recent measurements of the diffusion of H in *He gas at
sub-Kelvin temperatures [17] show good agreement with calculations based on the
R2 potential. In Fig. 3.7 the *He-H elastic scattering cross section oy is plotted as
a function of the relative velocity v,e;. The T = 0 cross section is very small, about
1% of the T = 0 H-H elastic cross section. Due to the negative sign of the scattering
length, af=° = —0.108 A, the s-wave phase shift goes through zero, giving rise to a
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minimum in o4 at v,q ~ 30m/s. At higher relative velocities contributions due to
higher order partial waves become appreciable and o4 increases rapidly.

We can estimate the effect for a homogeneous cell wall temperature T,,. For
T, = 0.2 K the *He vapor density n4 ~ 10* cm™3. If we take for the *He-H scattering
cross section a worst case value o4 = 10 A? and approximate the relative speed by
the “He average thermal velocity, we find that an H atom collides with a *He atom
once every 74 ~ 107s. Clearly, this is a completely negligible effect in the usual
HT trapping experiments. At slightly higher temperatures, however, this effect can
already become significant, as the *He vapor density is a very steep function of
temperature in this temperature region: n4 ~ exp(—Ls4/kpT), where Ly is the
latent heat per atom, Ly/kp = 7.1688 K [18].

In the experiments described in this thesis there was a substantial temperature
gradient over the length of the cell due to a spurious radiative heat load (Chap-
ter 4). The hottest part of the cell was the entrance window (4 mm diameter) at a
temperature of ~ 0.5 K, situated at a distance of ~ 20 cm from the HT sample (see
Fig. 4.2). The particle flux ® coming off a liquid *He surface with a temperature
T, and a surface area A is given by [20]

_Am
T 4n? B3

) k3T2e~LalkeTu (3.54)
where my is the atomic mass of *He. In view of the strong temperature dependence
it is clear that only the effect of the hottest part of the cell has to be considered.
Furthermore, since *He atoms colliding with a liquid *He surface are absorbed with
a probability close to unity, only “He atoms flying off the hot window surface in a
small solid angle subtended by the sample can reach the trapped H1 (see Chapter 4).
Assuming the HT velocities are negligible with respect to the *He velocities and using
the value o4 = 5 A? for the cross section, we may estimate the “*He-H collision rate

per HT atom:
-1 _ ®o,

Tl ——
4 7TL2’

where L is the distance from the surface to the Hf sample. For a surface with a

(3.55)

temperature T = 0.5K and a diameter of 4 mm at a distance L = 20 cm we find
7, = 50s. Since we do not know the exact temperature and surface area of the
“hot spot” we cannot make any precise statements, but the effect is clearly of the
same order of magnitude as the observed lifetime of a few minutes. In addition,
elimination of the radiative heat load recently resulted in much longer lifetimes,
probably only limited by collisional relaxation [21].

Only those *He atoms which come off the window surface with enough energy
to kick H1 atoms directly over the €;./ks = 0.8 K evaporation barrier contribute to
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particle loss. The rest of the *He kinetic energy deposited in the sample is distributed
through elastic H-H collisions and leads to uniform heating of the gas, as will be
discussed in Sect. 3.5.

3.4.3 Other loss mechanisms

If the magnetic field experienced by the trapped particles changes too rapidly, tran-
sitions between different hyperfine states are induced, as was already discussed in
Sect. 3.1. These so-called Majorana transitions are induced, for instance, in zero-
field regions at very low temperatures [3], which is clearly of no concern to us. Atoms
moving in a surface-adsorbed state along the cell wall may also experience a wildly
fluctuating field due to ferromagnetic impurities in the substrate [22]. For a trapped
HT sample in contact with the surrounding walls this can lead to very efficient d — ¢
relaxation on the wall. Subsequently this results in particle loss either by two-body
recombination on the wall surface or, after desorption, by spin-exchange relaxation
of the bulk gas. We have observed that the lifetime of a sample in contact with the
wall at T' =~ 0.2 K is considerably shorter than the lifetime at lower gas temperatures
(T < 0.1K), when the wall contact becomes negligible (Chapter 7). The difference
in lifetime is attributed to a wall-induced decay mechanism.

Probing the sample with Lyman-a introduces some extra loss processes. Obvi-
ously atoms are expelled from the trap due to optical pumping to non-trapped H|
states. This effect can be quite significant in our case since the number of photons
absorbed per second can be of the same order as the number of trapped particles.
We will come back to this in Chapter 6. Another possible loss process associated
with the Lyman-« probe is due to photo emission of electrons. The photoelectric
yield at the Lyman-a wavelength is ~ 3% for copper [23], so per second up to
~ 10° electrons with an energy of a few eV may be ejected from the cell wall. These
electrons may get trapped and lead to decay of the H{ sample through e-H collisions.

3.5 Heating and cooling

The same processes that give rise to particle loss in general also lead to a change of
temperature. Consider a number of processes causing both particle loss N = ¥; N;
and change of the total energy E = ¥; E;. For a sample in a state of (quasi)
equilibrium the internal energy E may be written as (see 3.2.5)
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so we can easily derive

b ZiEi— 5 NikpT (e +3/2)
Nkp(vie + TOv1./0T +3/2)

This is the basic equation for calculating temperature changes of the trapped gas.
For temperatures T < €:-/kg we have Tdy./0T < 41 and the heat capacity
Nkp(vie + TOne/0T + 3/2) ~ 3NkpT. However, for a pumped distribution at
temperatures kpT2e; /8 one should be more careful since the heat capacity can
be strongly reduced due to the truncation of the distribution. For instance, for
a pumped distribution in our trap at T = 0.2K the heat capacity is less than
(3/2)Nkg. This has important consequences for the onset of the evaporative cooling
process, which will be described in detail in Chapter 7.

Eq. (3.57) can be written in the form T = ¥; T}, where T; is the rate of tem-
perature change due to the i** process. In general, the different processes give rise

(3.57)

to different rates of heating and only the dominant ones have to be taken into ac-
count. In our experiments the temperature evolution during the limited lifetime of
the sample was determined mainly by evaporative cooling and probably to a lesser
extent by heating due to the “He background gas. We will now discuss some heating
processes and the associated timescales.

3.5.1 Intrinsic collisional heating

Collisions between HT atoms are most frequent in high density regions, so particle
loss due to inelastic collisions takes place preferentially at the center of the trap.
This results in an increase of the average energy of the remaining atoms and thus
in heating of the sample. Heating of the trapped gas due to collisional relaxation is
fundamentally unavoidable. Ultimately, the lowest temperatures that can be reached
in trapped HT gas will be limited by dipolar heating. However, we will make a
simple estimate showing that the influence of collisional heating in the experiments
described in this thesis is negligible, due to the limited lifetime of the gas.

Consider an inelastic collision process, characterized by a rate constant G, in
which both colliding HT atoms are scattered into non-trapped H| states. Due to
this process energy is extracted from the gas at a rate

B = [ G™RU(7) + (3/2)ksTIn*() &r. (3.58)

Approximating G/ (7) by its value Gy at the center of the trap (like in Sect. 3.4.1),
we have

Einet = GonVae(72e + 3/2)kBT & Niner(72e + 3/2)ksT, (3.59)

56



where Nino is the particle loss rate due to inelastic collisions. Using Eq. (3.57) we
arrive at the following equation for the heating due to collisional relaxation:

Tiﬁcl o Y2e — T1e Ninel. (3.60)
T~ me+Tom./0T+3/2 N
For a thermal distribution v5¢(T') = (1/2)71.(T/2). f T < €;,/kp we may aproxi-
mate 7, & 1.5, so Tinet /T =~ (1 /4)N;,,,1 /N. Apparently, the heating rate associated
with collisional relaxation events in which both atoms are turned into high-field seek-
ers, is comparable to the collisional relaxation rate itself. This is true in general, so
this heating process is completely negligible in our experiments.

Collisional relaxation events in which only one of the colliding atoms is lost from
the trap (e.g., d+d — a+d) give rise to so-called recoil heating. Due to conservation
of momentum, half of the energy gained in the exothermic reaction is dumped in
kinetic energy of the atom that remains trapped. At temperatures relevant to this
work these processes give rise to a similar heating behavior as described above.

3.5.2 Wall heating

As was shown in Sect. 3.3, inelastic wall collisions determine the temperature of the
gas during the loading process. Once the gas has settled into a trapped thermal
distribution, the influence of the walls is suppressed. We estimated crudely also for
this case the time constant 7,, of heat exchange with the walls:

Tw ™~ Tr/2fevsa ‘ (3'61)

with 7, the radial oscillation period and s/T = 0.33 K~! the sticking probability. In
a more accurate approach, the event rate of wall collisions of a trapped sample in
thermal equilibrium is given by

L = {rdAu, (3.62)

where n,, = noexp(—é,/kpT) is the density at the wall,  the average thermal
velocity, and A, =~ 40cm? the wall surface area. From Eq. (3.62) immediately
follows

= = ——7?

N a7
where V}, is the effective volume as given by Eq. (3.28). For T = 0.2K we find
7p 2 0.02s and for T = 0.1K 7, = 0.7s. For T = 0.05K 7, ~ 10%s and the gas can
be considered completely isolated from the walls. Although based on a completely
different picture, the crude estimate (3.61) agrees for 0.05K < T’ < 0.25K within a
factor ~ 3 with the more accurate expression (3.63).

2 ﬁ S Aw —e—tzr/kaT, (3.63)
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Implicitly we have assumed that the collisional internal equilibration rate ;!
is much larger than 7'. However, this is only the case for relatively low tem-
peratures and high densities. For instance, for typical conditions T = 0.1K and
np = 5x 10 cm™3, we find 7. = 1. Clearly a very efficient cooling mechanism, like

evaporative cooling, is required to cool the gas below the wall temperature.

3.5.3 *He background gas

As was already mentioned in the previous section, the energetic *He atoms evapo-
rating from hot spots on the cell wall in principle give rise to both particle loss and
heating. The exact temperature of the *He source is not known, so it is not possible
to make any precise quantitative statements about this heating process, but we can
make a rough estimate of an upper bound.

Assuming the H{ atoms have negligible velocities, on average a fraction & of the
4He kinetic energy is transferred to the H atom per *He-H elastic collision event.
The average kinetic energy of the *He atoms is 2kgT,,, with T, the wall temperature
[20]. Assuming that all *He-H collisions lead to heating of the gas and not to direct
particle loss, we find with the help of Eq. (3.57) for the heating rate:

. 16, _,
T4~'7—5Tw‘l'4 . (3.64)

For example, for T, = 0.5K and 74 = 50s (Eq. (3.55)) we find Ty ~ 10 Ks™™.
Assuming 7; ! is a realistic value for the H-He collision rate, this is clearly an overes-
timate for the heating rate, since the ‘He atoms with a kinetic energy greater than
(25/8)esr/kp ~ 2.5K will lead to direct particle loss and not to heating. In addition,
the scattering cross section increases with collision energy (Fig. 3.7), which means
that energetic collisions in which H atoms are kicked out of the trap are favored.
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Chapter 4
Cryogenic apparatus

In contrast to other trapable particles (neutrons, alkali atoms, electrons, ions) a
cryogenic environment is an essential requirement for trapping of H{. The available
magnetostatic traps have a well depth of the order of one Kelvin, so H atoms have
to be precooled to sub-Kelvin temperatures in order to be trapped. Since radiation
sources capable of stopping an atomic beam, such as used for the trapping of alkalis,
are not (yet) available for H, it is necessary to use the cryogenic techniques originally
developed for experiments with H| gas. The H{ gas is manipulated and precooled
by interaction with surfaces covered with a layer of superfluid helium. For trapping
experiments the temperature of the surfaces should be preferably below ~ 0.3K,
since at higher temperatures the He vapor density starts limiting the lifetime of the
trapped gas. Consequently, the experiments are carried out in a 3He-*He dilution
refrigerator.

4.1 Overview

An overview of the cryogenic apparatus is shown in Fig. 4.1. We use a commer-
cial dilution regrigerator (Oxford Instruments), which has been modified to enable
optical access from below, along the symmetry axis. The dilution unit has a maxi-
mum cooling capacity of 250 uW at a mixing chamber temperature of 100 mK and
a maximum circulation rate of 500 pmole/sec.

The can, which houses the trapping magnet, is situated inside a 4 K radiation
shield and is suspended from the main *He bath. During operation the magnet can
is filled with liquid “He at a temperature of 4.2 K. The trapping magnet assembly
inside the magnet can consists of three dipole coils, a set of quadrupole coils, and the
dissociator solenoid (see Chapter 2). Together they generate a magnetic field with
a minimum on the symmetry axis, at a height determined by the four currents sent
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‘through the three dipole coils and the dissociator coil. In the field configurations
considered in this thesis the position of the minimum is always approximately at the
center of the middle (Majorana) dipole coil. The calculation of the trapping field is
extensively treated in Chapter 2, including all experimental details relevant to the
calculation: The locations, orientations, and dimensions of the coils, their numbers
of windings, and their maximum allowable currents. A detailed description of the
construction of the magnet can and the trapping magnet assembly is given in Ref. [1].

The construction of the experimental cell is in principle straightforward: In
view of the compact construction of the trapping magnet and the presence of the
dilution unit above, optical access to the H] gas trapped in the field minimum
is most easily accomplished from below, along the symmetry axis. Therefore, the
main body of the experimental cell is a tube-like structure, suspended from the
mixing chamber, hanging freely in the bore of the magnet can. A cryogenic MgF,
window at the lower end of the cell allows light to enter the cell while keeping the
superfluid helium film confined to the inner surface. Technical complications arise
as a cryogenic dissociator, thermally isolated from the main cell body, a filling tube
with an intermediate thermal accommodation stage, and a trigger bolometer have
to be installed in the high field region of the dissociator coil (free accessible bore
40 mm), without blocking the light path. Moreover, light detectors have to be
installed inside the limited space of the trapping region (free accessible bore 16 mm)
without sacrificing too much of the effective trapping depth: the attainable trapping
depth is proportional to the radial distance of the material surface closest to the
symmetry axis. Any object sticking out from the side wall will reduce the trapping
depth. We have been able to mount four fluorescence detectors on the cylindrical
side wall of the trapping region and a transmission detector and a trigger bolometer
in the top part of the trapping region, while keeping a clear radial aperture 12 mm
across, corresponding to a maximum well depth of AB =1.3T.

The experimental cell extends from the mixing chamber to the holder for the
MgF, entrance window over a total length of approximately 46 cm. Optical access
from room temperature is provided by a thin-walled light tube between the cell
entrance window and the room temperature vacuum jacket. The optical access
and the various parts of the experimental cell are discussed in more detail in the
following.

4.2 Optical access

The use of Lyman-a radiation imposes some severe restrictions on the way the light
is guided into the cryostat.
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In the first place, the best available optical materials typically transmit per
component only ~ 50% at the Lyman-o wavelength (121.6 nm), so as few optical
components as possible should be used. In our setup the entrance window to the
cell is the only optical component inside the cryostat. In principle even this single
window could be dispensed with by making use of a film burner construction or by
lining the optical entrance to the cell with cesium, which inhibits superfluid film
flow [2]. In the case of a film burner one should take care that the fluxing helium
vapor cannot reach the trapping region.

In the second place, Lyman-a radiation is very strongly absorbed in N, H,0, all
organic solvents, vacuum greases, pumping oils, etc., so it is essential that the light
path is kept free from these kinds of contaminance. This is true in particular in a
cryogenic environment where the optical components act as very efficient sorption
pumps. For this reason the light in our setup is guided to the experimental cell
through a tube, isolating the light path from the contaminated cryostat vacuum
spaces. The light tube contains only metal parts and was cleaned meticulousiy.
Furthermore, in the room temperature vacuum space, which is in open connection
with the light tube vacuum and which contains various vacuum optical components,
only all-metal vacuum seals were used, strongly out-gassing materials were avoided
as much as possible, and all components were cleaned very thoroughly. These pre-
cautions turned out to be sufficient to avoid the build-up of cryo-deposits coming
from room temperature. During the initial cool-down the transmission of the MgF,
entrance window decreased, which was probably due to contaminations inside the
experimental cell, condensing on the window. However, during the subsequent run
of three months, in which the MgF; window was kept continuously at sub-Kelvin
temperatures, the Lyman-a transmission showed no sign of further deterioration.

The construction of the light tube is such that it provides a clean light path,
while simultaneously keeping the different parts of the cryostat thermally isolated.
It consists of two parts: A stainless steel tube (6 mm outer diameter and 0.2 mm
wall thickness) connects the room temperature vacuum jacket to the 4 K vacuum
jacket and radiation shield. Halfway, the stainless steel tube is thermally anchored
to liquid nitrogen temperature by means of a copper rod and braid (not shown
in Fig. 4.1) connected to the 77 K shield. The copper rod is soft-soldered to the
stainless steel tube. In the light tube a diaphragm with a 3 mm dia. aperture is
_situated at the height of the 4 K shield. A CuNi tube, 6 mm o.d. and 0.2 mm wall
thickness, connects the 4 K shield to the cell entrance window. To minimize the
conductive heat load on the experimental cell, the CuNi tube, coming from 4 K, is
pinned to the still (typical temperature 0.6 K) and the cold plate (typically at 0.3 K)
of the dilution umit. (The cold plate is the thermal stage between the continuous
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heat exchanger and the discrete heat exchangers.) The pinning is realized by copper
rods, soldered with Woods metal to the CuNi tube, and copper braids (not shown
in Fig. 4.1).

With all the precautions mentioned, the conductive heat load through the light
tube is reduced to the negligible level of < 1uW. However, the optical access
unavoidably introduces a heat load due to thermal radiation as well. This effect
was underestimated at first and it led to substantial heating of the cell in the first
run. The room temperature radiation reaching the MgF; window directly, without
reflections, or via reflections on the stainless steel surface, is entering in such a small
solid angle that it causes negligible heating (< 1 4W). However, the inner surface
of the CuNi tube, although oxidized, turns out to be a fairly good reflector of room
temperature radiation. As a result the window flange heated up to a temperature
of ~ 0.45K. The mixing chamber could not be cooled below 0.15K. On the basis
of the temperature of the mixing chamber and the 3He circulation rate we estimate
that the radiative heat load was approximately 300 4W, which means that at least
10% of the radiation entering the CuNi tube was absorbed in the cell. In a follow-
up experiment (3] radiation baffles were inserted in both parts of the light tube,
eliminating the problem completely.

4.3 Experimental cell

In Fig. 4.2 a more detailed drawing of the experimental cell is shown, together
with a plot of the trapping field. The experimental cell is suspended from the
mixing chamber and is almost entirely made out of copper to ensure good thermal
conductivity. It consists of three main parts, which will be described separately in
more detail. The upper part which contains the actual trapping region and extends
from z = —113 mm upwards to the mixing chamber. The lower part, which consists
of, amongst others, the dissociator and the window flange is located inside and below
the dissociator coil. The detection unit, which is a cylindrical device, shaped like an
apple corer, is slid inside the upper part of the cell and contains the transmission
photodiode, the bolometric fluorescence detectors, and the “evaporation pump”.
The upper part and the lower part of the cell are connected by an indium seal.

4.3.1 Upper part

The upper part of the cell is a plain copper tube, outer diameter 15 mm and inner
diameter 13 mm, soft soldered to a solid copper rod. The copper tube is hanging
freely in the 16 mm bore of the magnet can and surrounds the Hf trapping region.
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energized with their maximum allowable currents.

The top end of the solid rod is connected to the mixing chamber by an 8 mm
screwed joint, tightened with the maximum allowable torque of ~ 3Nm to ensure
good thermal conductivity [4].

The solid rod is made of high purity copper [5], with a low temperature thermal
conductivity T~! = 54 WK~2m™!. To improve the thermal conductivity of the
tube, which is made of plain copper, it was annealed during ~ 10 hr in a ~ 10~* mbar
O, environment at ~ 1000 K [6, 7], which resulted in a low temperature thermal
conductivity £ T~ = 270 WK~2m~!. The values for the thermal conductivity were
inferred from measurements of the ratio of the room temperature electrical resistivity
of the copper to that at 4.2K [4].

Owing to the high thermal conductivities of the tube and the solid rod the cell
walls surrounding the trapping region could be kept at a temperature of ~ 0.2K
with a temperature gradient of less than 10%, in spite of an excessive heat load.
The improvement of the thermal conductivity of, in particular, the copper tube
with respect to earlier trapping experiments [1], was vital for the success of the first

optical experiment.

66



The copper of the trapping volume and all other parts to which the HT gas
is exposed, were electrolytically etched to remove possible magnetic impurities im-
planted by machining. Such impurities may induce spurious hyperfine relaxation of
H1 atoms to H| when they are moving on or near the wall [8].

4.3.2 Lower part

The lower part of the cell is the service section, containing the MgF, entrance
window, the cryogenic dissociator for producing H gas, a trigger bolometer for the
removal of H| atoms, and all electrical feedthroughs. ,

The MgF; window (10 mm o.d., 1 mm thick, 60% Lyman-c transmission at room
temperature) is mounted in a brass window flange. The window is clamped with
indium seals on both sides, with a clear aperture of 6 mm. The flange is connected
by a copper tube (4 mm i.d., 6 mm o.d.) to the rest of the cell.

The cryogenic dissociator is a helical resonant cavity whose inner surfaces are
covered with a layer of solid H, underneath the superfluid helium film. By striking
a pulsed microwave discharge H atoms are produced, which subsequently find their
way to the trapping region through a filling tube. The dissociator is similar in design
and operation to the one described in some detail by Van Roijen [1]. The resonant
frequency of the cavity at low temperatures is f = 795 MHz, with a quality factor
Q =~ 400. The dissociator is thermally anchored to the still of the dilution unit at a
typical temperature of 0.6 K.

The H gas produced in a discharge is transported to the main body of the cell
through a thin-walled CuNi tube. The function of this filling tube is to isolate the
dissociator thermally from the main body of the cell and to precool the H gas. The
discharge produces large amounts of He vapor as well, which, if allowed to reach the
main body of the cell, lead to heating of the cell and a spurious decay of the trapped
sample. Therefore, halfway the filling tube there is an optically tight copper baffle,
the so-called thermal platform (not shown in Fig. 4.2), to condense the fluxing He
vapor. The first half of the filling tube is a 14 mm long CuNi tube, 6 mm o.d., with
a wall thickness of 0.2 mm. The second half is a 11 mm long CuNi tube, 4 mm o.d.,
with a wall thickness of 0.2 mm. The thermal platform between the two tube sections
is a small copper block with a hole running through. The thermal platform is pinned
to the cold plate of the dilution unit at a temperature of, typically, 0.3 K. Its inner
surface area is enlarged by means of a few mm? of silver sinter (“French powder”)
in order to accommodate the heat deposited by the condensing He effectively. The
second half of the filling tube is connected to the main cell body in such a way that
H atoms or He atoms entering the trapping region have to undergo at least a few
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wall collisions before they can reach the trapped sample.

In the present setup a flux of a few times 10'2 HT at/s can be produced easily. If
the microwave pulse parameters (peak power, pulse duration, and repetition rate)
and the number of pulses fed into the resonant cavity are kept constant the number
of atoms which are loaded into the trap is reproducible within a few percent.

The cell contains two trigger bolometers which can be used to locally remove H
atomns. A trigger bolometer is usually a small resistor, suspended by thin conductive
wires. If the resistor is heated with an electrical current sufficiently to evaporate
more He than can be replenished by superfluid film flow along the supporting wires,
then the liquid He film will be removed from the resistor surface. Once the surface
is bare, H atoms will be strongly adsorbed and recombine rapidly. One trigger
bolometer is located in in the high field region, at the height of the center of the
dissociator coil, approximately 12 mm off axis (not shown in Fig. 4.2). It is a small
carbon chip (~ 1 mm3), cut out of a Speer resistor, suspended by two 50 ym thick
superconducting wires (Niomax). Approximately 15 uW is required to burn off the
He film and thus trigger recombination of H| atoms caught in the high field region.
To keep the heat load on the main body of the cell minimal, the copper housing of
the trigger bolometer is thermally anchored to the cold plate of the dilution unit
and connected to the main body of the cell by a thin-walled CuNi tube. The inner
surface area of the copper housing is enlarged by means of a few mm? of silver sinter
in order to carry off the heat efficiently. The second trigger bolometer (denoted as
“pump” in Fig. 4.2), located in the top part of the trapping region, behind the photo
diode, will be described below.

4.3.3 Detection unit

The detection unit is a thin-walled copper supporting structure, 166 mm long, 13 mm
outer diameter, and 0.5 mm wall thickness. A length of 130 mm of the cylindrical
wall has been removed over half the circumference, yielding the shape of an apple
corer and enabling access to the inner surface. It fits tightly inside the copper tube
which is suspended from the mixing chamber. The lower end of the “apple corer”
is screwed to the lower part of the experimental cell.

At the upper end of the detection unit a GaAsP Schottky photodiode (Hama-
matsu G1126) is mounted, facing the light beam. For a discussion of its detection
characteristics, see Chapter 5, Sect. 5.5.1.

On the back of the photodiode a trigger bolometer is mounted. This bolometer is
a graphite film resistor, suspended by two 16 pm thick tungsten wires. The resistive
film is Aquadag, an aqueous dispersion of graphite particles [9], which is painted
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on a 2.5mm X 2.5mm Kapton foil, 50 um thick. The tungsten wires are attached
with silver epoxy to copper electrodes, which are vacuum evaporated on the foil.
Approximately 4 uW is required to burn off the He film. When triggered, this
bolometer efficiently pumps energetic HT atoms, thus enabling evaporative cooling
of the trapped sample. The photo diode acts as a shield, protecting the HT sample
against the He vapor fluxing off the trigger bolometer.

A 50 ym thick foil of Kapton is attached with Stycast 1266 epoxy to the inner
surface of the detection unit. Four thin (~ 1 um) Aquadag film resistors are painted
on the Kapton surface, which act as bolometric light detectors at low temperatures.
For a discussion of the use of these graphite film resistors as pulsed light detectors,
see Chapter 5, Sect. 5.5.2. The leads of the film resistors and the wiring of the
photodiode and the trigger bolometer are vacuum deposited on the Kapton surface.
In this way the fluorescence detectors and the wiring in the trapping region protrude
negligibly from the cell wall and a satisfactory trapping well depth can be attained.

The flat copper wiring on the Kapton foil inside the “apple corer” was made using
a photo-lithographic technique. First a relatively thick layer of copper (~ 1 pm) is
vacuum evaporated on a thoroughly cleaned Kapton foil. The copper bonds very
well to the Kapton substrate and can be kept for at least several weeks in a normal
atmosphere without showing any signs of deterioration. A photo-resistive layer is
sprayed on the copper. Using a positive mask, part of the photo-resistive layer is
exposed to UV light. After developing the photo-resistive layer, the Kapton foil is
submersed for ~ 10s in a Fe3Cl solution at ~ 45° C to etch off the copper at the
exposed sites. The resulting printed circuit is cleaned with water and acetone and
the foil is glued to the inner surface of the “apple corer”. Kapton foil with a 30 um
copper layer and a photo-resistive layer already present is commercially available.
However, due to the thickness of the copper layer this foil is not flexible enough to
be glued to the curved inner surface of the “apple corer” (radius of curvature 6 mm),
and was therefore not suitable for our purposes.

The printed circuit on the Kapton is shown In Fig. 4.3. The foil is 127 mm long
and 19 mm wide, corresponding to half the circumference of the inner surface of the
detection unit. Copper wires are soldered to the four pads on the top (right) side
copper wires to connect the photodiode and the trigger bolometer on top. The wires
are soldered with Woods metal; if higher temperature solders are used, the copper
layer may heat up too much, with the result that it comes off. From the twelve
soldering pads on the bottom (left) side the circuit is connected to the vacuum
-feedthroughs in the lower part of the cell. The four pairs of thicker strips in the
middle are the electrodes of the four Aquadag film resistors. For each the resistive
area is 10 mm wide and 2 mm long. The resistor films are labeled 1, 2, 3, and 4 from
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Figure 4.3: Printed circuit of the detection unit.

top to bottom (right to left in the figure) and the z-coordinates of the centers of the

resistors are, respectively, z; = 0, 22 = —11 mm, z3 = —21.5mm, and z; = —43 mm.

4.3.4 Thermometry

The temperatures of the various parts of the experimental cell are monitored using
a 200 © Matsushita carbon resistor [10] and three RuO, thick film resistors (Philips,
type RC-01) [11]. The resistances are measured using an AC method described in
Ref. [12]. We calibrated the four resistors in a separate run against a *He melting
curve thermometer [13].

Two of the resistors are attached to the main body of the experimental cell, one
to the solid rod of the upper part of the cell and the other to the window flange at
the low end of the cell. Further, one resistor is used to monitor the temperature of
the dissociator, and one to measure the temperature of the thermal platform.
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Chapter 5

Optical Apparatus

5.1 Introduction

In general, optical techniques are both essential and very convenient tools in exper-
iments with magnetically trapped atoms (see, for instance, Ref. [1]). The system of
trapped atomic hydrogen stands out for two reasons. In the first place, H is the only
atom that can be trapped without the use of optical techniques, as the H gas can
be manipulated and cooled by liquid-helium covered surfaces. Secondly, the use of a
resonant radiation source is rather cumbersome in the case of H due to the awkward
Vacuum Ultra Violet (VUV) wavelength (A = 121.6 nm) of the 125 — 2?P Lyman-a
(Lo) transition, in particular when combined with the cryogenic requirements for
trapping H. The main difficulty lies in the production of sufficiently intense narrow-
band VUV radiation, which at present can only be generated using pulsed lasers and
non-linear optical techniques. Furthermore, as L, radiation does not propagate in
air and, in particular, is very strongly absorbed in water, organic solvents, pump oils,
vacuum greases, etc., one has to work under very clean vacuum conditions or in a
very clean inert gas environment. The number of windows and lenses should be kept
at a minimum because of strong absorption of L, in all available materials (a 1 mm
thick MgF, element typically has 50-65% transmission). Moreover, at cryogenic
temperatures great care should be taken to avoid cryo-deposits on cold windows,
which can quickly reduce the transmission to zero. For an overview of the require-
ments of VUV spectrocsopy, see Ref. [2]. In designing the optical system we were
led by the following considerations: i) In order to perform accurate spectroscopy
‘and to allow for the possibility of optical cooling, the bandwidth should preferably
be close to the natural width of the relevant lines (100 MHz). i) An intensity close
to the saturation intensity of the transitions (~ 4 W cm™2) is desirable to facilitate
optical cooling. iii) The measurement of both transmission and fluorescence should
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be possible. iv) The light source should be reproducibly tunable over the range of
the H-spectrum. v) The system should exhibit a long-term reliability and relative
ease of operation, since cryogenic measuring runs typically last several months. The
system we describe in this chapter meets the above criteria, be it that the intensity
of our L, source is slightly less than desired (the intensity at the location of the
sample amounts to about 0.25 W cm™2).

5.2 Generation of narrow-band Lyman-«

5.2.1 Experimental setup

Our light source is based on pulsed amplification of the light of a single-frequency
cw ring dye laser (Coherent 699-21), operating at a wavelength of 729.6nm. The
amplified light is frequency-doubled in a KDP crystal and the L, radiation is ob-
tained by third-harmonic generation (THG) in a phase-matched mixture of Kr and
Ar [3, 4, 5]. A XeCl excimer laser (Lambda Physik LPX 210i, 308 nm) is the pump
source for pulsed amplification, as the relatively long pulses from this laser ensure
the smallest possible bandwidth. It has the additional advantage of providing a
relatively high pulse rate (100 Hz maximum). A similar, but Nd:YAG based scheme
was used by Cabaret et al. [6] to study Stark shifts in an atomic H beam.

A schematic diagram of the setup is shown in Fig. 5.1. The dye laser is pumped
by an Ar* laser (Coherent Innova 200). With cooling of the dye (pyridine 2) to
9°C, the single-mode output of the dye laser (effective line width 1.5 MHz) amounts
to ~ 750 mW at 6.5 W pump power. After passing an optical isolator the main part
of the cw light is sent through a three-stage Rhodamine 700 pulsed dye amplifier
(Lambda Physik 2003). After frequency-doubling, the ensuing Ultra Violet (UV)
light (364.8 nm) is amplified once more in a DMQ dye cuvette. At a repetition
rate of 50 Hz the energy of the amplified UV light is typically ~ 18 mJ/pulse. The
bandwidth of the 365 nm light was determined using a confocal etalon of 150 MHz
free spectral range (FSR) and found to be 40 — 60 MHz, a factor 2-3 larger than
that of a Fourier-limited Gaussian pulse of equivalent duration (20ns). From this
we obtain an estimate for the upper bound to the bandwidth of the L, beam of
150 MHz.

To produce L, the UV light beam (typical beam radius 2mm) is focused by an
f =15 cm lens into a mixture of, typically, 160 mbar Kr and 480 mbar Ar. Here Kr is
the nonlinear medium for third-harmonic generation, whereas Ar is added for phase-
matching purposes [7]. The typical power of the generated L, radiation corresponds
to 2 x 10° L, photons per 10ns pulse (conversion efficiency ~ 1077). The power is
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Figure 5.1: Schematic of the optical setup. Diagnostics stands for the reference cavities
and the wavemeter, the photodiodes are denoted by PD.

limited by the occurrence of dielectric breakdown in the Kr/Ar mixture at too high
an energy of the UV pulses. The frequency tripling is discussed in more detail in
Sect. 5.2.2. After tripling the L, radiation has to be separated from the, 107 times
stronger, copropagating UV light. This is done by employing the refraction and
dispersion of two MgF, lenses. Subsequently the L, beam is sent into the cryostat
from below, via a 45° mirror. A MgF, beam splitter between the mirror and the
cryostat offers the possibility to perform ratio measurements, largely eliminating the
noise due to the ~ 10% pulse-to-pulse fluctuations of the L, intensity. With the
beam splitter in place, about 2% (5 x 107 photons/pulse) of the L, power produced
in the tripling cell reaches the H sample. The monochromator and the VUV optics
will be described in more detail in Sect. 5.2.3.
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5.2.2 'Tripling efficiency

Third harmonic generation (THG) of a lowest order Gaussian beam in an isotropic
medium with negligible depletion of the fundamental beam, is described by [7]:

LN x® | PO, (5.1)

_ Py = c’ Y,
where P; is the third harmonic power, P; the power of the fundamental beam, \;
the fundamental wavelength, x(® the third-order susceptibility per atom for THG,
N the particle density of the nonlinear medium, and F the dimensionless phase-
matching function, which accounts for the interference between third harmonic light
generated in different parts of the beam. When the dimensions of the beam focus
are much smaller than the size of the tripling cell, F only depends on the confocal
parameter b and the difference in refractive index An = n(A1) — n(A/3) of the
medium. The generated third harmonic beam is also in the lowest order Gaussian
mode with the same confocal parameter b and propagating in the same direction as
the fundamental beam. Constructive interference of the generated third harmonic
light, i.e., F' # 0, is only possible if An < 0. The phase-matching function is
then given by F(z) = w’z?exp(z), with z = 67bAn/);. If the tripling cell only
contains the nonlinear medium, = depends linearly on N and optimum THG can
be achieved at a density N = N, for which the quantity N?2F(z) maximal. For
N = Ny, ¢ = —4, so F,;; = F(—4) = 2.9. By adding a positive dispersive linear
medium (An > 0), F(z) can be maximized independent of N, F,,, = F(—2) =

The efficiency of THG is then in principle only limited by the maximum attamable
particle density N of the nonlinear medium.

Due to the 4p%(1So) — 4p®55(3 P, ) resonance transition at 123.58 nm, krypton gas
has the required negative dispersion and also an appreciable third-order suscepti-
bility, x® = 1.0(5) x 107%°V~2m° [3, 4], at L, (121.6nm), making it very well
suited for THG of L., as was first shown by Mahon et al. [3]. Argon gas, having a
positive dispersion and a negligible x® at L,, is added for phase-matching at high
Kr densities. We use commercially supplied mixtures of predetermined Kr/Ar ratio
for easy approximate phase-matching.

To analyze the performance of our tripling system we measured the L, yield P3
as a function of the 365 nm pump-beam power P, for various phase-matched gas
mixtures, as shown in Fig. 5.2. The absolute L, flux was measured with an ion-
ization chamber filled with 8 torr of purified NO [2, 9], assuming 50% transmission
for the MgF; entrance window. The data obtained in 100 torr pure Kr show the
desired cubic dependence of the third harmonic power on the fundamental power,
except at the highest powers. The data obtained in Kr/Ar and Kr/H, mixtures
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Figure 5.2: L, yield versus 365 nm pump beam power for four different phase-matched
gas mixtures. The solid lines are theoretically calculated curves (see text).

however, show strong deviations from this behaviour. The 200 torr Kr and the
400 torr Kr data sets exhibit approximately the expected quadratic dependence on
Kr pressure. The two 200 torr Kr data sets, which were obtained using different
positively dispersive phase-matching gases, show convincingly that the tripling effi-
ciency depends on the Kr pressure only. The L, yields calculated using Eq. (5.1),
with x® = 0.9 x107%° V-2m?, are also shown in Fig. 5.2. The 100 torr pure Kr data
show good agreement with theory, the 200 torr Kr data only at the lowest powers.
The agreement with the 400 torr Kr data is less satisfactory. We believe that the
deviations from theory at high pump powers are due to intensity-dependent changes
of the refractive indices which break up the phase-matching [4, 10, 11]. This is a
third order nonlinear process (Kerr effect) which was not taken into account in the
theoretical description given above. The deviations are not due to linear absorption
of L, in Kr and Ar as was argued by Hilbig and Wallenstein [5]. In the first place,
we observe roughly the correct Kr pressure dependence. Secondly, the extinction
of L, was measured by passing the L, beam through a separate volume filled with
Kr and Ar. We find values of 4(1) x 10~ (cm torr)™! and 6(1) x 107 (cm torr)™?
respectively for the extinction coefficients in Kr and Ar, consistent with the data of
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Langer et al. [4]. These values are an order of magnitude too small to account for
the observed reduction in yield at high gas pressure.

The maximum L, yield is ultimately limited by dielectric breakdown in the
Kr/Ar mixture at high UV powers. Such a discharge results in large fluctuations
of the L, intensity. Therefore, we adjust a diaphragm in front of the tripling cell
to make the discharge just disappear. We also observed that the UV beam pro-
file shows an increasingly severe higher-order mode structure for aging amplifier
dyes, negatively affecting the conversion efficiency [8] and the threshold for dielec-
tric breakdown. The tripling cell is indium-sealed and closed by an all-metal valve.
No degrading of performance, associated with deteriorating gas purity, was observed
during a period of three months.

We find a somewhat lower L, yield than was reported by the authors of Ref. [5].
We attribute this to the lower breakdown intensity threshold I; which is known
~ to be associated with longer pump pulses: Iy, ~ p~'7,%7 [12, 13], where p is the
pressure of the gas mixture and 7, the pulse duration. Using Eq. (5.1), one can
easily derive that when operating just below the threshold for dielectric breakdown,
the number of third harmonic photons generated per pulse scales like ~ b7,
The combination of a shorter pulse (7, ~ 5 ns versus 7, &~ 10 ns), a larger confocal
parameter b ~ 3 mm (we fypically have b = 1.2 mm), and approximately half of our
UV pulse energy allowed the authors of Ref. [5] to go to much higher Kr gas pressures
before dielectric breakdown occurs. In view of this analysis, a higher L, yield may
be achieved in our setup by increasing the confocal parameter b, thus moving the
breakdown threshold to higher pump beam powers and higher gas pressures. This
would require a longer tripling cell to prevent damaging the entrance and exit optics.
Lowering the UV intensities by stretching the pulse length would have an adverse
effect on the L, yield.

The non-resonant tripling scheme with Kr was selected for its relative simplicity
and reliability. Various resonant four-wave mixing schemes for generating VUV have
been described in the literature which provide higher yields. A particularly efficient
scheme suitable for L, generation has been described by Marangos et al. [14].
However, these resonant schemes generally require two dye laser-amplifier chains,
and are hence significantly more complex. An interesting new development is the
generation of L, using frequency doubling in atomic H gas, in which the inversion
symmetry has been broken by a strong external static electric field [15]. Presently,
the L, intensities obtained using this method are comparable to the non-resonant
scheme we use, but the method has potential for being more efficient.
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5.2.3 VUV optics and UV-VUYV separation

When working with Ly, only two materials are available with a non-zero transmission
(Tr): LiF and MgF,. LiF has a slightly higher transmission than MgF; but its
transmission at L, decreases when exposed to a normal laboratory atmosphere, as
it deteriorates under the influence of moisture. For this reason we chose to use only
MgF; optical components, most of which were supplied by Harshaw [16]. MgF; is
birefringent, but in all our optical components the orientation of the optic axis is
perpendicular to the surface, so there should be no retardation effects when the L,
beam propagates at right angles through the optics. Table 5.1 gives the refractive
indices of MgF; at 19.5°C for the ordinary (n,) and extraordinary (n.) rays at some
relevant wavelengths [17].

Table 5.1: The refractive indices n, and n. of MgF; for some relevant wavelengths.

A(nm) N, Ne
“HeNe” 643.85 1.37682 1.38858
uv 365.01 1.38614 1.39834
VUV  121.53 1.6275 = 1.6320

After tripling, the L, and the 107 times stronger, copropagating 365 nm UV
light are separated in the monochromator, using the refraction and dispersion of
two MgF, lenses. The first lens (L, ) [18], which is placed off-axis with respect to the
incoming beam, focuses the L, beam onto a 0.5 mm diameter aperture, while the
fundamental beam is collimated and deflected via a mirror onto a beam dump (see
Fig. 5.3). This technique of harmonic separation, which eliminates the additional

365nm
rotating —10cm
Nj,-plate tripling cell L2
|4 ==
H e 12160m
II .].

Figure 5.3: The tripling cell and monochromator.
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absorption losses in a separate prism, was also used by VonDrasek et al. [20]. The
off-axis beam path enables selection of an unspoiled part of the lens, by a simple
rotation of the tripling cell with respect to the monochromator housing. This is
convenient, as the transmission of L; decreases after several weeks of irradiation
by the strong UV beam. A second MgF, lens (L;) [19], which collimates the L,
beam, is also used off-axis to provide additional spectral filtering. The double filter
arrangement reduces the intensity of the 365 nm radiation by more than 9 orders of
magnitude. Lens L, is mounted in a bellows assembly to allow three-axial positioning
for collimation and alignment purposes. The L, beam is sent into the cryostat from
below, via a 45° high quality (reflectivity ~ 85%) VUV mirror [21}, which is also
mounted in a bellows assembly, allowing horizontal displacement in the direction
of the incoming beam and small adjustments in both angular degrees of freedom
of the reflecting plane. The H sample is located ~ 75 cm above the mirror. The
combination of the VUV mirror and L, enables complete control of the L, beam in
the cryostat. A slight drawback of the off-axis use of the lenses is that it introduces
astigmatism. Nevertheless, by adjusting the horizontal position of Ly, we were able
to obtain a nearly circular beam cross section with a diameter of about 2mm at the
center of the trap, located 1.2 m from the tripling cell.

The volume between L; and L, is constantly being flushed with pure Ar at a
pressure of about 20 torr. This is essential, since impurities sputtered by the UV
beam will otherwise coat the lenses, making those impermeable for L, radiation.
The vacuum system behind L, is separated from the trapping volume by a 1 mm
thick, indium sealed, MgF,; window (Tr =~ 60%), at sub-Kelvin temperatures. To
avoid deposition of background gases onto this window we exclusively use all-metal
seals, thus eliminating diffusive leaks due to the permeability of rubber O-rings.
Furthermore, we minimize the gas load onto the cold window by closing a valve
separating the cryostat from the room-temperature vacuum system, when not taking
data. This allowed us to operate the system during a period of several months in
which the MgF, window was kept at temperatures well below 1 K.

The L, power can be measured in the room-temperature part of the setup by
moving a VUV mirror into the beam on a UHV translation stage which directs
the beam onto a solar blind vacuum diode (Hamamatsu R1187). A 1mm thick
retractable MgF, beam splitter (T'r & 60%), mounted at 45° on a second translation
stage, couples 5-10% of the beam into a second vacuum diode and thus enables ratio
measurements.

Although the generated L, light is linearly polarized [22, 23], we found that
its polarization inside the H cell varied dramatically with small adjustments of the
alignment. In spite of the fact that the beam does not travel at right angles through
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the lenses and the beam splitter, this cannot be due to retardation effects associated
with the normal birefringence because in all four MgF; components both the VUV
polarization and the optic axis lie in the horizontal plane of refraction. Instead we
attribute the change in polarization to the dielectrically coated aluminum 45° VUV
mirror [21]. By altering the orientation of the linear polarization of the incoming
UV light using a half-wave plate, we can continuously change the L, polarization in
the sample cell from left-circular via linear to right-circular.

5.3 Frequency tuning

The frequency of the pulsed L, radiation can be varied by tuning the cw dye laser
frequency. This is perfectly suitable for relatively slow scans. In some cases, how-
ever, the possibility of pulse-to-pulse frequency switching is desirable to monitor the
spectrum at specific discrete points during transient conditions when the spectrum
changes rapidly. The latter method was used in our experiments to infer the temper-
ature and density of the trapped Ht gas during evaporative cooling. Furthermore,
during optical cooling experiments it allows for occasional excursions to different
parts of the spectrum, e.g., for thermometry, while the sample is irradiated at the
optimal cooling frequency most of the time. To enable the fast switching, the cw
dye laser light is guided through an arrangement of three acousto-optic modulators
(AOM’s), which is depicted schematically in Fig. 5.4. The alignment of the mir-

-80 MHz VitVaom

S TS
-

AOM 1

‘80 MHz 150 MHz

Figure 5.4: Layout of the AOM arrangement. For clarity, the angles have been exagger-
ated. The thick line denotes the light path when AOM 2 (+80 MHz) is switched on.

rors in Fig. 5.4 is such that, if either one of the three AOM’s is switched on, the
first-order diffracted beam enters the amplifier section along the same path, while
there is no admixture of the zeroth-order undeflected light. With this AOM chain,
the frequency of the cw beam is shifted either —80 MHz, +80 MHz or +150 MHz

with respect to the incoming frequency. For the L, light this corresponds to two
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incremental steps of 0.96 GHz and 0.42 GHz respectively. The requirement for the
alignment of the diffracted beams is rather stringent, since the distances from the
AOM chain to the pulsed dye amplifiers and the Hf sample in the cryostat are 7m
and 15m, respectively. To avoid drifting of the beam alignment due to rf heat-
ing, the AOM’s are driven only during a 0.3 ms pulse, synchronized with the firing
of the excimer laser. Once the three beams are made to overlap while using this
method of pulsed AOM driving, the alignment procedure generally does not have to
be repeated during several days.
~ We have repeatedly checked whether the polarization of the generated L, light
was dependent on the particular AOM used. When scanning across the H spectrum,
while simultaneously switching rapidly between the three AOM’s, we always found
that, apart from the desired frequency shift, all three spectra were identical.

5.4 Frequency stability

In order to determine the L, frequency to within one natural line width (100 MHz),
the cw dye laser freqﬁency should be known to within ~ 20 MHz. For this purpose
part of the cw 729.6 nm light is sent to a wavemeter and two temperature-stabilized
reference cavities. The resolution of the commercial wavemeter (Burleigh WA-20) is
insufficient (0.3 GHz). The accuracy of the frequency measurement is improved by
using a piezo-driven confocal Fabry-Perot etalon, scanning ~ 6 GHz at a repetition
rate of 10 Hz. The FSR of the etalon is 3.0 GHz and its measured finesse is 175.
This implies that the resolution is indeed better than the required 20 MHz. Since
the uncertainty of the wavemeter reading is smaller than the FSR of the etalon,
there is no ambiguity as to which order of the etalon is observed. Hence, after an
initial calibration, we are able to obtain the cw laser frequency from a measurement
of the applied piezo voltage. To remove errors arising from the inherent drift of the
piezo material, even at constant temperature and pressure, we use a second etalon,
without piezo material, which has the same FSR and resolution. This etalon serves
as a standard for calibration of the piezo-driven etalon.

In order to obtain a good stability the design of both etalons was made as simple
as possible, minimizing long term settling effects. The body of the etalons was
made of an invar metal with a thermal expansion coefficient a =~ 1 x 10~¢K-1.
The choice of the piezo material (Quartz & Silice, P7-62) was motivated by its
small o (~ 2 x 1076 K~!) and low power dissipation. Using a cylindrical piezo of
length 9mm and wall thickness 1 mm the piezo-driven etalon is measured to scan
~ 18 MHz/V. The linearity of the piezo has been measured using the transmission
peaks of a 150 MHz FSR etalon as frequency markers. Over a scanning range of
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Figure 5.5: Frequency drifts of the reference cavities versus time, measured against a

Doppler-free atomic line of potassium.

6 GHz the deviation from linearity was less than the accuracy of the measurement
(~ 5 MHz).

Based upon the thermal expansion coefficients mentioned above we calculate a
frequency shift of the order of 1 MHz/mK for both etalons. Therefore, the etalons are
mounted in an extremely stable thermostat, developed for critical point experiments
by Michels and Van Lieshout in our laboratory [25]. The short-term stability of this
thermostat is better than 20 pK/h. In order to determine the long-term stability of
the thermostat-etalon combination we monitored the drift of the etalon transmission
peaks with respect to an atomic transition frequency. For that purpose we use the
428, /, — 625y, two-photon transition in potassium [26], which has a wavelength
of 728.6 nm. When using counterpropagating laser beams we obtain a Doppler-free
spectrum by observing the 62512 — 42Py3,3/2 cascade fluorescence. In Fig. 5.5 we
show the result of this measurement. Over a period of 10 days the tunable etalon
showed a constant drift of 365 kHz/h, while the fixed etalon remained stable within
5 MHz.



5.5 Cryogenic VUV detection

Due to the construction of the trapping magnet in the cryostat we have only very
limited optical access to the HT sample, along the symmetry axis of the cryostat.
The bottom entrance was reserved for the L, beam, and a detector on the top of the
cryostat, apart from requiring major changes to the cryostat, would have a very small
detection angle. Therefore, we decided to install the VUV transmission detector in
the experimental cell. For the measurement of the scattered light intensity there
was no other option but in situ detection. This puts some severe constraints on the
detectors that can be used: i) The detectors have to operate reliably in magnetic
fields up to ~ 1.5 T at temperatures as low as ~ 0.1 K. #) The transmission detector
has to fit inside the 12 mm diameter experimental cell and the fluorescence detectors
have to be mounted on the cylindrical cell wall, sticking out as little as possible, as
an object protruding from the cell wall by as little as 0.5 mm will already reduce
the effective trapping depth by about 10%.

5.5.1 Transmission measurement

The optical transmission of the trapped H{ gas is measured with a GaAsP Schottky
photodiode (Hamamatsu G1126) mounted at the end of the cell. With the protective
window removed, this diode is found to have a quantum efficiency (QE) of 14% for
L, from room temperature to well below liquid nitrogen temperature. An important
property of this type of diode is that it has a good long-term reproducibility under
VUVe-irradiation [27]. At liquid helium temperature or below the properties are
different, the QE dropping to about 10% at the specified maximum bias voltage
of 5V. At low temperatures the characteristics of the detector are not affected by
magnetic fields up to 1.5 T.

The semiconductor device probably no longer operates as a diode at sub-Kelvin
temperatures. We believe that the VUV detection properties are then the result of
photoemission of electrons from the GaAsP substrate or from the gold layer on top.
The QE is somewhat higher than the photoelectric yield of a room temperature Au
photocathode at 120 nm [28]. We observed that the L, sensitivity drops abruptly
by approximately a factor of two when helium is admitted to the experimental
cell, indicating partial blocking of the electron emission by the ~ 100 A layer of
superfluid helium. Furthermore, if the L, beam was slightly misaligned a comparable
signal with the opposite sign was obtained, probably due to photoemission from the
photodiode housing, which is connected to the diode ground. The main advantage of
using the diode instead of a (solar blind) metal photocathode lies in the sensitivity
to both UV and HeNe-laser light at room temperature. This allows for 365nm
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background checks and facilitates the rather delicate alignment of the optics (the
clearance of the light beam inside the cryostat is restricted to 3 mm in order to avoid
excessive heating due to room temperature radiation).

In prior tests with similar diodes we found that the low temperature QE could
be significantly increased by applying a larger bias voltage. However, in the present
experiments on trapped H| we have chosen not to take the chance of breakdown and
resulting damage to the diode. Therefore, the diode is operated at 5V bias voltage
throughout. ‘

5.5.2 Fluorescence measurement

For the measurement of the resonance fluorescence we take advantage of the cryo-
genic environment by applying a low-temperature bolometric detection technique. In
general, a bolometer is a resistor which has a large temperature coefficient d Rsoto/dT
and a very small heat capacity and which is poorly thermally linked to its environ-
ment. The energy dissipated in the resistor can be determined from the change
in resistance. We have installed four 1um thick carbon film resistors on the in-
side of the cylindrical cell wall, which turn out to function as sensitive pulsed-light
detectors, while protruding negligibly into the trap volume. Similar devices have
been used before in many spin-polarized H experiments, e.g. to measure the kinetic
energy carried by H| atoms [30].

For our resistor films we use Aquadag [29], an aqueous dispersion of carbon
powder, which is painted on a 50 pm thick Kapton substrate glued to the copper
cell wall. The resistance is measured through 1 pm thick copper leads, vacuum-
e\}aporated on the Kapton substrate. The resistor films are rectangles, 10 mm wide
and 2 mm long. (For more information on the manufacturing of these detectors and
on their exact positions in the experimental cell, see Chapter 4.) The carbon film
consists of ~ 250 A thick graphite flakes with a typical diameter of 1 ym, regularly
stacked with a packing fraction of ~ 50% [31]. The superfluid *He film that covers
all surfaces in the cell, will fill up the layer of stacked graphite flakes, so the resistor
is effectively submersed in a ~ 1um thick layer of liquid *He (see Fig. 5.6). The
resistivity p at room temperature is ~ 0.2 Qcm, corresponding to a square resis-
tance Ro = p/d = 2k for a film of thickness d = 1 um. The resistive behaviour is
completely different from that of semi-metallic graphite, as the electron transport
is not bottlenecked by the graphite particles but by the inter-particle contact resis-
tance. We measured the resistance of the bolometers as a function of temperature
and fitted the data to an expression of the form Rg = (po/d) exp[(To/T)?] [30] (see
Fig. 5.7). We find that the temperature dependence between 0.08 K and 4.2 K is in
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He film graphite

Figure 5.6: Schematic illustration of an Aquadag resistor film, covered with a thin layer
of liquid helium [31]. ‘
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Figure 5.7: Square resistance of a ~ 1 um thick Aquadag film resistor versus temperature.
The solid line is a fit to theory (see text).

agreement with 8 = 0.5 and To = 2.15 K. The temperature dependence is the same
for all bolometers. For the particular bolometer of Fig. 5.7 we find po/d = 2kQ.
The temperature coefficient of this bolometer is dRg/dT ~ 5kQ/mK at T = 0.1K
and dRp/dT ~ 0.4kQ/mK at T = 0.2K.

The thermal behaviour of a bolometer is governed by its heat capacity C;; and the
thermal resistance Ry to the environment. If relatively slow processes are studied,
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i.e. on time scales much longer than the thermal time constant 7y, = RiCin,
the response is only determined by R;;. In our application we want to measure
pulsed heat loads so it is essential to incorporate the relevant heat capacities in the
description. A simple model will now be presented which allows us to estimate the
sensitivity and the response time of the Aquadag bolometers.

We assume the light pulse impinging on the bolometer is completely absorbed
in the graphite particles, heating up the resistor.. The heat capacity Cc of a
1 cm? graphite layer, 1 um thick, packing fraction 50%, is given by Cc/T =
1.2 x 10719 JK~2, for T'$0.2 K [32]. Subsequently the heat will be transferred from
the graphite particles to the substrate, either through direct contact with the Kap-
ton or via the *He film. We assume that the thermal conductance associated with
the direct contact is negligible. The thermal boundary (Kapitza) resistance Ry
between the graphite and the liquid for T30.2 K may be estimated using the ex-
pression Ry AgiT? =~ 1072 W~1K*m? [32] for the Kapitza resistance between a
metal and liquid *He (Ag1 is the Kapitza surface area). Assuming that 50% of the
graphite surface area contributes to Ax1, we find for a 1 um thick, 1cm? Aquadag
film R T° ~ 5 W-1K*. The time constant 7, = R1Cc is then given by

nT? ~ 6 x 1071%sK?, (5.2)

so for T = 0.2K we find 7y = 15 ns. This time constant, which is essentially the
thermalization time of a single graphite flake, is independent of the thickness and the
surface area of the resistor. This estimate suggests that the graphite thermalizes with
the surrounding liquid on a very short time scale, comparable to the pulse duration
of the incoming light. In reality the graphite is inhomogeneously heated, since the
number of incident photons per pulse ($10°) is much smaller than the number of
graphite platelets (~ 10°) in the film resistor. The above estimate (Eq. (5.2)) is only
valid if the heat is first homogeneously distributed among the graphite platelets
before it is transferred to the liquid. Probably, however, the “hot” platelets in
the upper layers of the graphite film will give their heat to both the neighbouring
platelets and the surrounding liquid so the distribution of heat in the graphite film
and the liquid helium cannot be separated.

The heat capacity Cy, of a 1cm?, 0.5 um thick layer of liquid “He for T30.5K is
given by [32]

CrT 3~ 1.5x 1077 JK™. (5.3)

For the relevant temperatures (T' > 0.1K) the heat capacity Cc of the graphite
film can be neglected with respect to Cy. The Kapitza resistance R, between the
liquid and the Kapton substrate is given by R, A,T® = 7 x 1074 K*m?*W ! [33],
where Ag; is the geometrical surface area of the resistor film. For Ax, =1 cm? this
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gives -
Ry,T3 = TK*W™L, (5.4)
The resulting time constant 7; = Rg;Che of the heat transport from the liquid to

the substrate is pfoportional to the thickness of the resistor, but independent of the
temperature and the surface area:

T2 = 1ps. (55) -

A comparison of the three relevant time scales, 7, ® 7, < 7, gives rise to the
following picture: The impinging VUV pulse heats up the ‘He film to a temperature
determined by the pulse energy E, and the heat capacity Cy.; the graphite only
acts as an intermediate absorber, converting the VUV energy instantly into heat.
The bolometer Ry, resistance changes simultaneously by an amount

deolo
ar -’

Subsequently Ry, relaxes to its original value on a time scale of approximately 1 ps.

This is roughly in agreement with the experimentally observed (thermal/electronic)

ARbolo = (Ep/CHe) (5.6)

time constant of a few us.

To determine the resistance change A Ry, we send a DC bias current I, through
the resistor and measure the voltage drop. The maximum I, that can be sent
through is limited by DC heating of the bolometer, which results in a decrease in
sensitivity. In general, the sensitivity is a very complicated function of the substrate
temperature T,, and the bias current J,. After a proper analysis, based on the above
model (the heating of the resistor is completely determined by Rk2 and Cg.), we
find that theoretically the largest signal is obtained for the lowest possible value of
T, and the value of the bias current Jj e, for which the resistor film and the helium
are heated up to approximately 10% above T,,. We find for a substrate temperature
Tw = 01K, Iy mezr =~ 4 A and for Ty, = 0.2K [y mar = 25 uA, for 1cm x 1cm film
resistors. It is clear that Ij ., scales for a fixed temperature like A}!;“R,j,?, ie.
Iy mez ~ wVd, where w is the width of the resistor film.

We can now make an estimate of the detection sensitivity. At T' = 0.1K ab-
sorption of one L, photon by a 1cm x 1cm resistor will give rise to a signal AV =
IymazARboto = 8 X 1078 V. Since the change in resistance ARyo, ~ w™2d™! for a
fixed heat load, the maximum achievable signal per incident photon AV ~ w=1d~1/2,
Our film resistors are 10 mm wide, 2mm long, and approximately 1 um thick, so at
Tw=01K I ;o ~ 4 uA and AV =~ 8 x 10~8 V per incident photon. At T, = 0.2K
the estimated maximum achievable signal AV is approximately 10X smaller than
at T, =0.1K.
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Chapter 6

Lyman-a spectroscopy

6.1 Introduction

The application of resonant optical techniques to trapped HT is very appealing for
several reasons. It offers the possibility of in situ, non-destructive detection of the
trapped particles, with a sensitivity much higher than that of the traditional (de-
structive) bolometric techniques [1, 2]. It also provides an independent means for
determination of the temperature of the trapped gas,keither by directly probing the
spatial distribution of the particles in the trapping field, or by measuring the fre-
quency dependence of the light scattering, which yields information about both the
spatial distribution (Zeeman shifts) and the velocity distribution (Doppler shifts).
In addition, the large resonant 1-photon absorption cross section opens the way to
efficient optical manipulation (in particular optical cooling) of the gas. The Lyman-
« transition (L,, the first in the Lyman series) between the groundstate (1S) and
the first excited state (2P) in atomic hydrogen [3], is experimentally the most ac-
cessible optical 1-photon transition for groundstate H atoms. In spite of its high
transition frequency, which is far in the ultra-violet, it is therefore the most obvious
one for the application of resonant optical techniques to trapped HT. The energy
difference between the 15 state and the 2P state is 10.2eV, corresponding to a
transition frequency v, = 2.47 x 106 GHz and a wavelength A, = 121.6nm. The
natural linewidth of the 2P state is I'/27x = 100 MHz, corresponding to a radiative
lifetime of I'~! = 1.6 ns.

Groundstate H atoms can also be excited by 2-photon absorption on the 1§ — 25
transition at a wavelength 2), = 243nm, a method developed for precision spec-
troscopy [4]. The 2-photon scheme offers a potentially much higher spectral res-
olution due to the narrow linewidth (~ 1 Hz) of the metastable 225/, state, the
elimination of the first order Doppler effect, and the narrow bandwidth associated
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with the cw radiation sources available at 243 nm. A disadvantage is the low de-
tection sensitivity due to the small 2-photon absorption cross section. Since our
objective is not high resolution spectroscopy but sensitive detection and optical
cooling of the trapped gas, we opted for the 1-photon L, scheme. The application
of the 2-photon scheme to trapped H? is under development at MIT [5].

In this thesis the first optical experiments with magnetically trapped HT are pre-
sented. The emphasis in this work is on diagnostics, i.e., the optical determination
of the density and the temperature of the gas by L, spectroscopy. The special con-
ditions under which the spectroscopy is performed give rise to rather complicated
spectra, generally consisting of five distinct, but partially overlapping lines with dif-
ferent strengths and asymmetric lineshapes. As we shall see, the main features of
the spectra can be understood qualitatively as arising from averaging of the Zee-
man shifted fine structure lines over the density distribution in the inhomogeneous
trapping field. To extract reliable information on the density and the temperature
of the gas, however, a more detailed understanding of the spectra is required which
involves incorporating Doppler shifts, the position dependence of the absorption
cross sections, strong attenuation of the light beam due to local optical thickness,
effects associated with the varying angle between the polarization vector of the light
and B, and optical activity of the sample. In this chapter the calculation is treated
in detail and the diaghostic method is illustrated with several examples of fits to
the experimental spectra. Obviously, a detailed knowledge of the trapping field is
required, for which the results of Chapter 2 are essential.

This chapter is organized as follows: In Sect. 6.2 the 1§ — 2P transition fre-
quencies and probabilities are treated, in particular their magnetic field dependence.
In Sect. 6.3 the relevant aspects of the general theory of the extinction of a light
beam in a gas of resonant scatterers are reviewed. In Sect. 6.4 the results of the first
two sections are applied to the calculation of transmission spectra of HT samples
in our specific geometry. In Sect. 6.5 several examples are given of experimental
transmission spectra and their general features are explained. Some transmission
spectra are analyzed thoroughly by fits using the exact theory of Sect. 6.4. The
accuracy of this method for determining the temperature and the density of the
trapped gas is discussed. Furthermore, an example is presented of a transmission
spectrum of cold (non-trapped) atomic deuterium gas in our experimental cell. In
Sect. 6.6 some examples of fluorescence spectra are given, which are analyzed using
a éimple preliminary model. This potentially powerful detection method has not yet
been explored to the fullest. .
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6.2 Transition frequencies and probabilities

Due to its simple atomic structure, the energy levels and eigenstates of H can be
calculated from first principles. For this reason the H atom has been the ideal
testing ground for quantum electrodynamics and theoretical predictions of its energy
levels have been verified experimentally to an extremely high degree of accuracy [4].
However, as our interest is not in high resolution spectroscopy, it is sufficient to know
the absolute 1.5 — 2P transition frequencies to the extent that we can tune the L,
frequency conveniently within the range of the 2P multiplet (210 GHz), using a
commercial wavemeter (Chapter 5). For our diagnostics it is of course essential that
we have accurate expressions for the B-field dependence of the relative transition
frequencies and of the transition probabilities. A

In this section the B-field dependent fine structure of the 2P states is reviewed,
mostly ignoring the effect of the nuclear spin. On the basis of the excited state
fine structure and the ground state hyperfine structure the B-dependent transition
frequencies and probabilities are deduced. Since the hyperfine structure of the 2P
states can be completely ignored for B > 0.05 T, this is accurate enough for our
purposes. For completeness, however, the hyperfine structure of the 2P states is
also briefly discussed.

6.2.1 2P fine structure and 1S hyperfine structure

Neglecting the magnetic moment of the nucleus, the interaction of hydrogen atoms
in the 2P state with an externally applied B-field is described by the following
effective Hamiltonian:

Hps = Ey + (2/3)AL- 5+ pp(f + g.5) - B. (6.1)

Here E; = %thoo(l +me/m,)"! + ELs is a reference energy, with R, the Rydberg
constant, m, and m, the mass of the electron and of the nucleus, respectively, and
ELs contains Lamb shift corrections. Further, A is the B = 0 fine structure splitting,
7 the electron orbital angular momentum, § the electron spin, and g. the electron
g-factor. The total electronic angular momentum is denoted by f =0+35 We
define zero energy as the B = 0 energy of the 125, /; groundstate when the hyperfine
interaction is neglected (as in Chapter 3, Sect. 3.1). The 2P reference energy E;
for hydrogen is given by Eyy/h = 2466 068 GHz, and for deuterium by Eip/h =
2466 739 GHz [6). The fine structure splitting for hydrogen is Ag/h = 10.969 GHz
and for deuterium Ap/h = 10.973 GHz. For B = 0, the Hamiltonian Hrg yields
two discrete energy levels corresponding to the 22Py/; state (j = £+ s = 3/2) and
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Table 6.1: Energy levels and eigenstates of the ground state hyperfine structure and the

first excited state fine structure of hydrogen in a magnetic field.

m; energy state
g E1+A/3+(1+g./2)usB 1
i L | B = A/6+ppB/2+(A/2)\/T+2c/3+27 | sin04]0 1)+ cosfy|l])
e -3 | B1—A/6-ppB/2+(A/2)\/T-22/3+2% | sinf_|—11)+cosf_[01)
-2 Ey+A/3—(1+g./2)usB [-11)
2 L | Ey—A/6+ppB/2—(A/2)\/T+22/3+27 | —cos0,]01) +sinfy]1])
e -3 | B1—-A/6-ppB/2—(8/2)\/T-22/3+2% | —cosf_|~11)+sinf-[0 )
h
d an/4 + p~B/2 [014)
c —an/4+ (an/2)[1+ (¥ B/an)?]/? cos 9|0T}) + sin 6|01 )
125,
b an/4-uB/1 014)
a —an/4 = (an/2)[1+ (u* B/an)*'/? sin 8]074) — cos 0]011)

the 2Py, state (j =€ — s =1/2):

E(22P3/2) El + A/3

E(22P1/2) = E1—2A/3

(6.2)

For B # 0 the degeneracy in m; = m¢ + m, is lifted and straightforward di-

agonalization of Hps results in six different energy levels, which are tabulated in
Table 6.1 together with the corresponding eigenstates. Also tabulated are the hyper-

fine energies and states of the 1251/, hydrogen groundstate (see Chapter 3), which

is convenient for the calculation of transition frequencies and probabilities.

The 2P energy levels are given in terms of the dimensionless field parameter z,
which is defined by

usB B

T =

96

(9. —1)A — 0.7819T

(6.3)



The 2P eigenstates are expressed in the |m,, m,) basis, which is shorthand for the

[n, £, mq, s,m,) basis with obvious values for n, £, and s. The fine structure mixing

angles 01 are defined by

1461
2 k)

sinfy = (6.4)

wh
where c+1/3

7 ‘/1:|:2:c/3+:c2'

Each 2P state has two-fold degeneracy with respect to the orientation of the nuclear
spin 7. Therefore, for each 2P fine structure state in Table 6.1 one should read two
hyperfine states, one m; = 1/2 state (}) and one m; = —1/2 state (}).

The 125/, hyperfine states are expressed in the |m,,m,,m;) basis, again in
obvious notation. The ground state hyperfine parameters were already discussed in
Chapter 3: The hyperfine splitting is a5/h = 1.420 GHz, the hyperfine mixing angle
0 is defined by tan 26 = ap/(u*B), and p* ~ p~ =~ 2pp. In Fig. 6.1(a) then =1
and n = 2 energy levels of H are plotted as a function of magnetic field. Also shown
are the 225); levels, which are used in 2-photon spectroscopy, and the hyperfine
structure of the n = 2 states, which will be discussed in 6.2.5.

(6.5)

6.2.2 HT fine structure transitions

The basis in which the eigenstates are expressed in Table 6.1 is very convenient to
determine the allowed transitions, making use of general selection rules. In electric
dipole transitions the electron spin & and the nuclear spin 7" are unaffected, i.e.,
Amg = Am; = 0, and m, may either change by unity or remain unchanged, Am; = 0
or 1 [3]. Transitions with Am, = 0 can only be excited by linearly polarized
light with the polarization vector parallel to the quantization axis, and are called =
transitions. Transitions with Am, = £1 can only be excited if the polarization is
perpendicular to the quantization axis, and are called o (senkrecht) transitions. More
specifically, for Am, =1 (o transitions) one requires circularly polarized light with
the electric field vector rotating clockwise for an observer looking in the direction
of the quantization axis, and for Am, = —1 (o~ transitions) circularly polarized
light with the electric field vector rotating counter clockwise. The quantization
axis is always defined by the local direction of the magnetic field vector, so the
angle between the polarization vector and B determines which fraction of the light
participates in the excitation of a certain transition. In an inhomogeneous field this
gives rise to position dependent light absorption.

Assuming a pure d state gas in our trap, or, equivalently, neglecting the hyperfine
structure of the ground state, one o, two 0™, and two 7 transitions are allowed,
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Figure 6.1: Energy levels of the ground state and first excited state of H. (a) An overview;
(b) and (c) exploded views of the 22Py/; and the 22Py/,, 2%5)/; manifolds, respectively,
revealing the hyperfine structure of the n = 2 states. The arrows denote the allowed
optical transitions from the d state.

which we label, respectively, o1, 02, 03, 71, and 72 (see Fig. 6.1). The nomenclature
refers to the following excited states: 22Pyjp,m; = 3/2 (01), 22P3jp, m; = 1/2 (m1),
2! P35, m; = —1/2 (02), 22Pyj3,m;j = 1/2 (72), and 22Pyj,mj = —1/2 (03). The
corresponding transition frequencies, calculated using Table 6.1, are plotted as a
function of B in Fig. 6.2.

Of the five allowed transitions from the d state only the o, transition forms a
closed cycle: The 22Py,|17%) state can only decay to the d state. The other excited
states have finite probabilities of decaying also to the ¢ and a ground states, which
can be easily calculated using Table 6.1. For example, the probability per unit time
Ty for decay of the 22Pyy|lm; = 1/2,1) state to the d state is I'm = I'sin®4,,
where T is the natural line width. Analogously, ['zs/T' = cos? 0y, Lpo/T =sin®6_,
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Figure 6.2: Frequencies of the 10 allowed 1§ — 2P fine structure transitions versus
magnetic field. Solid curves: HT transitions; dashed curves: H| transitions. The fre-
quencies are relative to (E; — A/6)/h. In our experiments the relevant region for HT is
0.05T < B<15T and for H| B~ 4.5T.

and T,3/T = cos?0_. In Fig. 6.3 the relative transition probabilities are plotted as
a function of B. If B — oo the relative transition probabilities either go to 1 or
0 which is due to the fact that all fine structure states approach pure m, states in
high field.

Clearly, when doing spectroscopy on any line except o3, one should take into
account that particles are lost from the trap due to optical pumping to H| states.
For instance, when shining in on the 7, transition more than 2/3 of the excited
atoms decay to a high-field seeking state.

The oy transition in a finite magnetic field is effectively a two-level system.
Consequently, monochromatic light with the proper polarization (rotating clockwise
when looking in the direction of B) which is exactly on resonance with oy will be
absorbed with the maximum cross section 3A2/2x [7). The absorption cross section
scales with the transition probability, so for the other transitions from the d state
the maximum cross section is always less and dependent on B. For example, the
maximum cross section for resonant absorption on the 7, transition is 32 sin® 8, /27.
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Figure 6.3: Relative transition probabilities I';;/T of the five allowed transitions from the
d (b) state as a function of magnetic field.

Summarizing, H{ atoms in a magnetic trap with a non-zero field minimum give
rise to at least five Zeeman shifted absorption lines. The local absorption of light of
a certain frequency and polarization is strongly dependent on both the direction and
the magnitude of B, with a different dependence for each of the lines. The direction
of B determines for each transition the component of the oscillating electric field
vector participating in the excitation process; the magnitude |§| determines the
local resonant absorption cross section and the local resonant frequency.

6.2.3 H| fine structure transitions

We are primarily interested in spectroscopy of trapped HT gas, but during the load-
‘ing of the trap H| is also produced, which collects in the high field region (~ 4.5 T)
and may cause extra absorption lines in the transmission spectrum of the sample.
It is important that we can identify these H| lines as such.

From the high-field seeking doubly polarized b state one ¢~, two %, and two
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7 transitions are allowed, which are labeled o4, 03, 06, 73, and 4. The transitions
can be defined in terms of their excited states: o4 — 22P3j5,m; = 1/2; 05 —
22P3jy,m; = =325 06 — 2*Pyjo,mj = 1/2; 13 — 22 Pypy,mj = —1/2; and 7y —
2?Pyj3,m; = —1/2. The transition frequencies are plotted as a function of B in
Fig. 6.2 (dashed curves). The corresponding relative transition probabilities are
shown in Fig. 6.3: T'y4 = sz, I'es = [o1, Toe = T'r1y Tz = Fos, and Ty = Tyo.

6.2.4 HT hyperfine transitions

If we allow for the presence of ¢ state atoms in the trapped gas the situation becomes
more complicated. Applying the electric dipole selection rules again to Table 6.1
we find that 10 additional transitions to 2P states are allowed. The five of these
associated with the [07}) part of the c state are very similar to the five allowed
transitions from the d state: Two o™, one 0%, and two 7 transitions are allowed
to the same 2P fine structure states. The corresponding transition frequencies only
differ from those of the oy, 03, 03, 71, and =, transitions (Fig. 6.2) by an amount
equal to the ¢ — d transition frequency (~ 0.6 GHz for B > 0.1 T). The transition
probabilities can be obtained by simply multiplying the fine structure transition
probabilities (Fig. 6.3) by the hyperfine mixing parameter cos? §, which is close to
unity in most cases (cos?8 > 0.95 for B > 0.1 T).

The |0} F) part of the c state gives rise to two o*, one o~ and two 7 transitions.
The o~ transition excites the 22 Py, m; = —3/2 state, which is not accessible from
the d state and forbidden if only fine structure is taken into account. The contribu-
tions of the latter five transitions are very small in most cases since their transition
probabilities are suppressed by a factor sin?§ (< 0.05 for B > 0.1 T).

The Zeeman and Doppler broadening associated with the relatively high tem-
peratures (T'20.05K) of the experiments described in this thesis, prevented the
resolution of the 125;/, hyperfine structure.

6.2.5 2P hyperfine structure

If the magnetic moment of the nucleus is taken into account, the interaction of
hydrogen atoms in the 2P state with an externally applied magnetic field is described
by the following effective Hamiltonian [8]:

Huyp = Ey+(2/3)AL-8+ a;T- 7+ (an/128)7- €

- - - - 606
+{uBl + geptBS + gnptn?) - B, (6.6)

where a; = a4/32j(j + 1), pn the nuclear magneton, and g, the nuclear g-factor.
For B = 0, the Hamiltonian Hyp is, to a very good approximation, diagonal in
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the |n, 4, j, F,mp) basis, where F =+ 5+ 7is the total angular momentum. The
only off-diagonal elements are due to the 7- £ term, which causes very weak coupling
between between states with different 7 and can be safely neglected. Thus we have to
a very good approximation the following four energy levels for B = 0 (see Fig. 6.1):

E(22P3/2,F = 2) = Ei+ A/3 + ah/160
E(22P3/2,F =1) E,+A/3—a;/9

E(22P1/2,F =1) = E - 2A/3 + a;./96
E(2*Pyy,F =0) = Ey—A[3—an/32.

(6.7)

The hyperfine splitting of the 22Py/; level is a;/60h ~ 24 MHz and of the 22Py ),
level a;/24h =~ 60 MHz. If we compare this to the natural linewidth of the 2P states
(T'/2r = 100 MHz) and the bandwidth of our L, source (~ 100 MHz) it is clear that
the 2P hyperfine structure cannot be resolved spectrally. ,

Due to the hyperfine interaction the 2P eigenstates are no longer the fine struc-
ture states discussed in Sect. 6.2.1. As a result the nature (o%, 7) of the 15§ — 2P
transitions changes and new transitions appear which are forbidden in fine struc-
ture. For L, spectroscopy in relatively low fields (B0.01 T), when 2P hyperfine
effects become noticeable, it is therefore necessary to determine the B-dependent
eigenstates of Hyp, which in general requires diagonalizing a 12 x 12 matrix. Since
Hpyr is diagonal in mp, the matrix representation of Hyr in the In, ¢, 3, F,mp) basis
can be separated in submatrices of a given mp. The problem is then reduced to the
diagonalization of two 3 x 3 matrices (for the mp = %1 states) and one 4 X 4 matrix
(for the mp = 0 states), whose B-dependent elements are tabulated in Ref. (8]
The two |n = 0,£ = 1,j = 3/2,F = 2,mp = £2) states are already eigenstates
of Hyp. In principle this problem can be solved analytically, but it results in very
complicated expressions which do not give much insight. Numerical diagonalization
is more straightforward.

However, it is also possible to determine relatively simple closed expressions for
the eigenstates by making use of the fact that, depending on the field, certain terms
in Hyp can be treated as small perturbations. We distinguish two field regimes:
B> 0.004 T (regime I) in which approximation I holds, and B < 0.8 T (regime II)
in which approximation II holds. The approximations are discussed below. Since
the two regimes have a large overlap, there is a smooth transition between the two
approximations. Therefore, accurate closed expressions for the eigenstates can be
obtained for all values of B.

For pupB > a; (B> 0.004T), the hyperfine terms

a7 7+ (an/128)7- £,
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which couple states with different m;, contribute negligibly. In approximation I
these terms are left out. In that case the eigenstates are the fine structure states
already discussed in Sect. 6.2.1. If desired, the hyperfine admixture of the states
with different m; can be simply obtained by first order perturbation theory.

For ypB < A (z < 1 or B < 0.8T), coupling between states with different j
may be neglected, which is equivalent to subtracting the terms

#B(g. —1)8- B + (an/128)- £

from Hyr. In approximation II these terms are left out. In the |n,¥, j, F, mp) matrix
representation the problem is then reduced to straightforward diagonalization of 2x2
submatrices. The eigenstates in this approximation are four pure |r,, j, F, mp)
states and eight states which are linear combinations of two |n, ¢, j, F, mpr) states,
which only differ in the quantum number F. The 12 corresponding B-dependent
eigenvalues very accurately describe the 2P hyperfine structure displayed in Fig. 6.1
(b) and (c). Again, the admixture of states with different j can be accounted for by
first order perturbation theory.

A practical criterion is to use approximation I for B > 0.015T and approxi-
mation II for B < 0.015T. For B = 0.015T the two approximations are equally
accurate: for both approximations the admixtures due to the perturbation part of
Hyr amount to a few percent for B =~ 0.015T.

Since 2P hyperfine effects are completely negligible in the experiments described
in this thesis (B > 0.05T) the expressions for the 2P hyperfine eigenstates and
energies are not given here.

6.3 Resonant light scattering in a dilute gas

In this section some aspects of the general theory of the extinction of a light beam in a
gas of resonant scatterers are reviewed, to the extent necessary for the understanding
of our spectra. The treatment is semiclassical, with a classical representation of the
electromagnetic field but a quantum mechanical description of the atomic states.
The description is slightly more involved than in the usual treatments (for example,
Refs. [7, 9]), because we have to deal with multilevel atoms, and because the vector
character of the light has to be taken into account explicitly.
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6.3.1 Classical light propagation

From Maxwell’s equations for a dielectric medium the following general wave equa-
tion can be derived straightforwardly:

o O*E PP 1= =

ViE - —_—= - =V(V- .

E — eopo 912 Foms FYE € ( P) (6 8)

Here E is the electric field vector and P the induced polarization. We are interested
in the extinction of a plane electromagnetic wave in a dilute polarizable medium, so
we write E and P in the form

E(t) = Eo(F e,

- - . t9
B(Ft) = By, t)eiton, (6.9)

where k = w/c = w,/eoflo is the wave number in vacuum of a plane wave with
frequency w propagating in the z direction. If we assume Eo(r t) and Po(r t) are
slowly varying functions of 7 and ¢:

an aEO a}JO

15 I<<wIEo|| I <l 7~

yul Bl v l<<"-’|Po|7 (6.10)

and
|V’E0|<<2k| | V(Y- B)| < k|V - B| < K| By, (6.11)

and we neglect all but the largest terms in Eq. (6.8) (slowly varying amplitude
approximation), then we arrive at

220 o —[Po —(Py- &)&) | (6.12)

This is our basic equation for the calculation of the propagation of a L, beam
through a sample of trapped H{. The induced polarization gives rise to both extinc-
tion and dispersion of the light. In general E, is not parallel to B,. In Sect. 6.3.2
we will show that the induced polarization can be written as

Fo = € ;(' Eo, (6.13)
where X is the complex susceptibility tensor, which can be derived from microscopic

quantum mechanical theory.

6.3.2 Complex susceptibility tensor

Consider a collection of motionless 2-level atoms subjected to the perturbing effect
of a stationary electromagnetic wave Ey expli(kz — wt)], whose frequency w is close
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to the electric dipole transition frequency wp. The induced polarization is equal to
the product of the density of the particles and the expectation value of the electric
" dipole moment. Assuming the light intensity is so low that the population of the
excited state |2) is negligible with respect to the population of the ground state |1),
one may derive straightforwardly [7, 9]

B o_ n(ﬁlz : Eo)ﬁ21

F= Awg—w—iT/2)’ (6.14)

where n is the density of the atoms, D, = (1|eF]2) the electric dipole matrix
element, and T' = k% Dy,)2/37eoh the natural linewidth of the transition. From
Eq. (6.14) immediately follows the susceptibility tensor Xo for a gas at T = 0:

-

Xo= =5 —a—2 (= — )7L (6.15)

Eq. (6.15) can be readily extended to more complex multilevel sytems:

- Dt, w,,- - W =1

Xo= 32 E ne A Dhl’ T~ i), (6.16)
where .5(,‘ is the electric dipole matrix element between a ground state £ and an
excited state j, wy; the corresponding transition frequency, and n, the density of
atoms in the £ state. Eq. (6.16) only holds if the spacing between the ground state
sublevels £ and the spacing between the excited state sublevels j is negligible with
respect to wyj, so that for all excited states I'; = k2 3¢ |Dy;j|?/3weoh = T. This is
clearly the case for the 1§ — 2P transitions in H. Further, for Eq. (6.16) to be valid
it is necessary that the depletion of the ground state levels is negligible. We will
discuss the latter assumption in more detail in Sect. 6.3.3.

For the 1S — 2P transitions in trapped HT the matrix elements E[j generally
depend on ﬁ, whereas wy; and n, depend on |§ |- Note that the transition probabil-
ities discussed in Sect. 6.2 are connected to the electric dipole matrix elements by
the relation

Ty _ M——. (6.17)
L ¥,1Dy02

6.3.3 Power broadening

If the light intensity is so high that power broadening becomes appreciable, i.e., if
the population of the excited state(s) can no longer be neglected, the description
becomes much more complicated.

First, to estimate the influence of power broadening, which is in principle straight-
forward in the case of 2-level atoms and a cw light beam [7, 9], knowledge of the
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light intensity is required, which is a quantity with a large experimental uncertainty
in our experiments. Second, for a multilevel system with non-negligible depletion
of the ground states there is no longer a closed expression for the susceptibility:
the full optical Bloch equations have to be solved (position dependent, in our case),
involving all levels. Third, our light source is not cw but pulsed, with a pulse du-
ration 7, & 10 ns ~ 6I'~! (I'"! is the natural lifetime of the 2P state), which is too
short to reach the steady state population of the excited states [7]. As a result the
propagation of light at high intensities becomes sensitive to the detailed shape of
the pulse.

Therefore, for a reliable, quantitative understanding of the spectra it is essential
that our light intensity stays well below the saturation threshold. For a 2-level
system this means the Rabi frequency |Dis - Ejy|/# should be much smaller than
I'/2. This condition can be expressed as
k3chT
24r’

where I = %eoc|Eo[2 is the light intensity. For the L, transition this means the

intensity should stay well below I = 3.6 W/cm®. In our experiment we typically

I«

(6.18)

have ~ 5 x 107 photons per 10 ns pulse and a ~ 1 mm beam radius, corresponding
to I = 0.25W/cm?.

6.3.4 Doppler broadening

Up to now we assumed the atoms to be at rest. If we allow them to move the
resonant frequencies will be Doppler shifted. After averaging over the velocity dis-
tribution this gives rise to inhomogeneous line broadening. An atom with a velocity
component v, along the direction of the light propagation has shifted resonant fre-

quencies
wy; = wij(1 = v./c). (6.19)
Replacing wy; in Eq. (6.16) by wj; and averaging over a Maxwell-Boltzmann velocity
distribution,
X= (2rkgT/m)~'/? /°° dv, Xo (w};) exp(—mv?/ksT), (6.20)
we find oo
o 6% Dy Dy; T

=1 ne —— — w((), ‘ (6.21)
k2 ; Sy 1Dgil2 26

where b = k/2kgT/m, w(¢) = e~erfc(—i(), and (s = (w —we; +i/2)/b. The real
part of the complex error function w is the Voigt profile describing a Doppler broad-
ened line. In the literature the so-called plasma dispersion function Z({) = iv/7w(()
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Figure 6.4: Schematic overview of the experimental situation. Indicated are the magnetic
field contours, the positions of the detectors, and the light beam (dashed arrow).

is often used instead of w({). For computational purposes a useful approximation of
w(¢) in terms of generalized Lorentzians is given in Ref. [10]. For b > I'/2, i.e., for
T > 9mK in our case, the Voigt lineshape function reduces to a Gaussian function
with a FWHM Doppler linewidth Awp = 2bv/In2. In our case the FWHM Doppler
linewidth is given by Avp/VT = 1.76 GHzK~'/2. For b < T'/2 (T < 9mK), the
Voigt lineshape approaches a Lorentz lineshape with a FWHM linewidth Awy, =T,
and the expression (6.21) for X may be replaced by the simpler expression (6.16).

Eq. (6.21) together with the equation for the propagation of the electric field
amplitude, .

OE, ik~ =

=5 X Eo- (X By - &,)e.), (6.22)

forms the basis for the calculation of the spectra.

6.4 Application to trapped H?{

In our experiments a L, beam with a radius of ~ 1 mm enters the experimental
cell along the z-axis (see Fig. 6.4). The H1 sample, located near the centre, has a
spatial extent which depends on temperature: A typical temperature of T = 0.1K
corresponds to a spread in magnetic fields AB ~ kgT/upg = 0.15T and thus to a
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sample radius of ~ 1 mm (see Sect. 3.2.4), comparable to the beam radius. The light
beam passes through the gas, is partially scattered, and hits a photodiode (sensitive
area 2.3mm X 2.3mm). Part of the light scattered by the sample is absorbed by
bolometric fluorescence detectors on the cylindrical side wall. In our experiments up
till now the information on the trapped gas has been obtained mainly by measure-
ment of the frequency dependence of the transmitted light intensity. Before going
into the details of the calculation of the transmission spectra we will make some
general remarks on the light propagation through the trapped gas, motivating our
theoretical approach.

6.4.1 Phenomenology

The resonant absorption cross section for L, can be as high as 3% /2, which at

a typical density n = 10'2cm™3

corresponds to a resonant extinction length £e;: =
27 /(3nA2%) = 0.14 mm. In practice the resonant absorption cross section is smaller,
mainly due to Doppler broadening and polarization effects, but still it is so large that
already at moderate densities the HT sample becomes optically thick at resonant
frequencies. Under these conditions the sample actually casts a shadow on the
photodiode. Since the dimensions of the photodiode are comparable to the beam
diameter and comparable to or larger than the radial sample size, the intensity of
the light incident on the photodiode can be strongly varying over its surface.

The combination of strong absorption and a magnetic field induce substantial
changes of the polarization of the light while it passes through the sample. This
necessitates a description of the light propagation in terms of the electric field vector.
To illustrate this point, suppose linearly polarized light is incident on the sample
at a frequency resonant with a ot transition, but, due to Zeeman splitting, not
in resonance with any o~ transition. Then, if the magnetic field vector is parallel
to the direction of the propagating light, only left-circularly polarized light will be
absorbed, changing the polarization of the light from linear to right-circular. As in
Ioffe traps the orientation of B is varies strongly with position, the evolution of the
polarization is in general quite complicated in our samples. The H sample is not
just a simple polarizer.

Optical thickness goes hand in hand with strong dispersive effects. To make an
estimate of these effects we neglect the vector character of the light for the moment.
For a dilute medium of two-level atoms at rest the refractive index 7 is then given

by [7]:

L v 3 (6.23)
K 1+ () ’
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where wy is the resonant frequency and T' the natural linewidth. From Eq. (6.23)
follows that the refractive index of trapped HT gas (n < 10" cm™3) at the L, wave-
length is always very close to unity: (7 — 1)mez & 1 X 1073, For typical densities
n <102 em™3, n — 1 < 1075 so refractive effects are completely negligible. Disper-
sion, however, is still important. A light wave travelling a distance Az through the
sample acquires a phase shift A¢ = (7 — 1)kAz with respect to a wave in vacuum.
If the frequency of the light is tuned near resonance, wp —w = I'/2, a phase shift
A¢ =1 is acquired over a distance Az = 8x/nAZ, which is twice the extinction
length £c;; at this detuning. Such effects strongly enhance the polarization changes
caused by absorption of the light. Moreover, for large detuning dispersive effects
can still be appreciable while the absorption is small. For example, when tuned
halfway between a o* and a o~ line both circular components of a linearly polar-
ized light beam will be weakly, but equally, absorbed, thus keeping the light linearly
polarized. The real parts of the susceptiblities associated with the two transitions,
however, have opposite signs, causing an increasing phase shift between the two
circular wave components and thus rotation of the total, linear, polarization. This
so-called Faraday rotation is a purely dispersive effect. A

These considerations indicate that in order to calculate spectra reliably, it is
necessary to keep track of the intensity, the polarization, and the phase of the light
propagating through the sample. Therefore we have to integrate Eq. (6.22) for each
frequency and for all light trajectories ending on the photodiode surface. In view
of the complicated dependence of X on position, this is quite a task. Fortunately
it is possible to reduce the problem to a manageable size by making use of the
symmetries of our experimental situation.

6.4.2 Calculation opf transmission spectra

In order to write Eq. (6.22) in a practical and more transparent form, we introduce
the vector basis (€}, €, &) for the polarization vector of the light, defined by

é.a = E/k,
& = (&x B)/B, (6.24)
€1 = & X &,

where k is the wave vector of the unscattered light. The é3-axis, defined by the
propagation direction of the light, is identical to the z-axis, while the &-axis is
defined in such a way that B always lies in the plane of €; and €;. Since the angle
of the magnetic field in the plane perpendicular to the z-axis is independent of z
(see Chapter 2), Egs. (6.24) unambiguously define a single vector basis for each light
trajectory. (Actually, this is only approximately the case since the radial component
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of B rotates slightly as a function of z due to finite length effects of the racetracks
(Fig. 2.6); for the present purposes this can be completely neglected.)

The electric field amplitude E, may be expressed in either a linear or a circular
polarization basis:

Eo = EOlgl + Eozgz = Eo+€+ + Eo-a_, (6.25)

where & = (& % i&)/v2. The unit vector & (€.) corresponds to left(right)-
circularly polarized light. As we shall see, the circular polarization basis is the one
most convenient for our purposes.

The matrix representation of the susceptibility tensor X takes a simple diagonal
form [‘Sé]' in the (€4',8;’) basis, defined by &' = B/B, &' = &, &' = &' x &/,
and &' = (&' % i&')//2, which is simply the (Ex,&3) basis, rotated in the plane
of ¥ and B in such a way that &' || B:

1! X+ 0 0.
X]'=| 0 x- o |. (6.26)
-0 0 Xz

Here x4 is defined by

.67(3/2 Iﬁ(jlz
X+ =1 > ne <
k% XDy

where the ¢,j summation is restricted to o+ transitions. x- and X, are defined

r 6732 Ty
|2 2b w((y) = i—5= 2 me '2% w(Ces)s (6.27)
4

analogously, with the £, j summation restricted to, respectively, ¢~ and 7 transitions.
When only transitions from the d state are taken into account we find, using the
results of the previous sections, '

x+ = (67%%/k%) ng(T/2b) w({s1),
x- = (67%2/k%) ny(T/2b)[sin?6_ w((,2) + cos? 6_ w((s3)], (6.28)
X: = i(6%7/k®)ny(T/2b) [sin’ 61 w(Cr1) + cos? 04 w((a)]-

The magnetic field dependence is contained in the d atom density ng, the fine struc-
ture mixing angles 0., and the frequency detuning parameters (e;.

The unitary matrix A for transformation from a (€x,€3) representation to a
(€+’, €"’) representation is given by

(1 +cosfp)/2 (cosbp—1)/2 —sinfp/V2
A= | (cosfg—1)/2 (1+cosfp)/2 —sinbp/V2 |, (6.29)
sin0p/v/2 sinfs/v2 cos fg
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where 0 is the angle between B and , cos 05 = B, /B. The matrix representation
[?] of X in the (€4, €3) basis is thus given by

- -1/

[x] = 47 [x] 4. (6.30)

Combining Egs. (6.22), (6.26), (6.29), and (6.30), the equation for the propagation
of the electric field amplitude £, can now be written in the form of the following
set of coupled differential equations:

0Eoy [0z = (ik/8){[x+(1+ cosf5)% + x-(1 — cos 05)* + 2x, sin? 8] Ey,
+(2x: = x+ — x-) sin*0p Eo_}
0Fo-/8z = (ik/8){(2x: — X+ — x-)sin?8p Eoy

+[x+(1 — cos )% + x-(1 + cos 0p)? + 2x, sin? 8] Fo-}.
‘ (6.31)
For §5 = 0 (B || k) the equations are decoupled and ¥, drops out of the equations,
or, in other words, the 7 lines do not contribute to the propagation of the light:

OEos ik
3;& = 5z Bos. (6.32)

In our system this is the case on the symmetry axis of the trap. For 65 = /2
(BLE) the equations are also reduced to a simple decoupled form when written in
the linear polarization basis:

3E01 / 8z
OEg )0z

(3k/2)Xz Em
(ik/4)(x+ + x-) Eoz-

For other angles there is no B-independent polarization basis in which Eqs. (6.31)

(6.33)

decouple.
To a very good approximation our trapping field has quadrupolar symmetry (see
Chapter 2):

By(p, 4)
B¢(p, ¢)

where p is the radial distance from the 2-axis, ¢ the azimuthal angle (see Fig. 2.4), B,

apsin2¢ (6.34)

ap cos 29,

and By are the corresponding field components, and @ = 2.2 T/cm in the magnetic
field configurations used. The magnitude of the field is independent of ¢.

Consider a light beam with an axially symmetric intensity distribution but ar-
bitrary polarization which enters the cell along the z-axis and is partially absorbed
by the trapped gas. Obviously, the intensity distribution on the detector surface
will have the same two-fold symmetry as the field. Suppose that for a fixed value
of p and ¢ = 0 the initial electric field amplitude is given by E, = Eo €y + Eg_€_.
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Furthermore, the Eo, component gives rise to a field amplitude E; €, + E,_€_ on
the photodiode surface and the Eo_ component to a field amplitude E_, €, +E__€_.
Using the quadrupolar symmetry of the field and the definition (6.24) it is straight-
forward to derive that the intensity I; on the detector surface for an arbitrary angle
¢ can be written as ‘

Li = (e0¢/2)[|Bs? + |Es- [+ |E_4* + |E__|?

6.35
+Re(E44+E=, + E__E}_)cos24]. (6:35)

Thus, the intensity distribution on the detector surface can be completely deter-
mined by integrating Eq. (6.31) for a single value of ¢. Since the photodiode has a
square shape, centered on the z-axis, and hence four-fold symmetry, the ¢-dependent
term in Eq. (6.35) averages to zero in the measurement process. The observed signal
is proportional to the sum of the average intensities associated with the separate
circular polarization components, independent of their relative phase. This is a very
useful property in view of the fact that the polarization and the precise intensity
distribution of the L, beam entering the cell are unknown and have to be inferred
from the spectra.

Summarizing: Consider a sample of trapped HT, characterized by a specific field
configuration, particle number, and temperature. Assuming that the L, beam enter-
ing the experimental cell has an axially symmetric intensity distribution, Eq. (6.31)
has to be integrated for one value of the azimuthal angle ¢ and for the range of
values of the radial distance p which lie within the sensitive area of the photodi-
ode, separately for left and right-circularly polarized light. The information thus
obtained enables straightforward calculation of transmission spectra for light beams
with arbitrary polarization and arbitrary intensity distribution.

6.4.3 Bandwidth of the Lyman-o source

The transmission spectra which are calculated using the above recipe can only be
obtained by scanning the frequency of a monochromatic L, source. For comparison
with experimental spectra the theoretical spectra are convoluted with a Lorentzian
lineshape function with a 100 MHz FWHM linewidth, thus accounting for the finite
bandwidth of our L, source.

6.5 Transmission spectroscopy

In this section several examples are shown of experimental transmission spectra and
a qualitative interpretation of the general features is discussed. Theoretical fits to
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Figure 6.5: Transmission spectra recorded before (a) and after (b) removal of high-field

seeking H| atoms.

some spectra are presented, which allow the determination of the temperature and
the central density.

6.5.1 First optical evidence of trapping

In Fig. 6.5 two of the first recorded transmission spectra of trapped HT gas are
shown. The spectra were recorded in a trapping field with a minimum By = 0.2T
with the HT gas in thermal equilibrium with the cell walls at T ~ 0.2K. With
the help of Fig. 6.2 the multiplet on the low frequency side may be identified with
the HT transitions oy, 03, 03, 71, and m. The o3 and 73 lines overlap and cannot
be distinguished separately. The asymmetric line shapes reflect the distribution of
particles in the trapping field. The steep edge on the low frequency side of the oy
line, for instance, roughly corresponds with the field at the minimum, while the
blue wing is due to absorption by atoms in higher fields, consistent with the positive
sign of the Zeeman shift. The amount of inhomogeneous Zeeman broadening is
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directly related to the temperature of the gas: A temperature of T = 0.2K means
the trapped particles are spread out over a magnetic field range of, roughly, AB ~
kgT/pp = 0.3 T, which corresponds for the oy transition to a frequency range Av =
pAB[h ~ kpT/h = 4.2GHz. At this temperature the inhomogeneous Zeeman
broadening is dominant: the natural linewidth is I'/2x = 0.1 GHz and the Doppler
linewidth (FWHM) Avp/vT = 1.76 GHz K~1/? (see Sect. 6.3.4). The o3, 03, and
7y transitions have negative Zeeman shifts and are consequently asymmetrically
broadened to lower frequencies. The 7; line displays no appreciable asymmetric
broadening due to its small Zeeman shift.

In Fig. 6.5(a) an extra asymmetrically broadened line is present at high frequen-
cies, whose steep edge coincides with the H] o¢ transition in a field of ~ 4.5T. This
line is due to absorption by high-field seeking H| atoms, which are caught in the
field maximum (~ 4.5T) of the dissociator coil “up-stream” in the light path of the
L, beam (see Fig. 4.2). The o6 line is inhomogeneously broadened to lower frequen-
cies, in accordance with the positive sign of the Zeeman shift. The broadening of
the o6 line is larger than that of, for instance, the o line because the H| atoms are
in thermal equilibrium with a hotter part of the cell (T = 0.4K). On the basis of
Figs. 6.2 and 6.3 one would also expect a 7, line in the middle of the HT multiplet;
7 transitions, however, cannot be excited in the high-field region, since Bis strictly
parallel to k at the heart of the dissociator coil. In Fig. 6.5(b) a spectrum is shown
recorded immediately after triggering of the high-field bolometer, which very effec-
tively removes the H| atoms by recombination on a local helium-free surface in the
high-field region. The fact that the H| line has disappeared while the HT lines are
still there, is clear evidence of trapping of HT in the field minimum.

In later measurements we were able to improve the signal-to-noise ratio of the
transmission spectra significantly, allowing us to extract reliable quantitative infor-
mation on ‘the trapped samples using the exact theory described in Sect. 6.4.

6.5.2 Line shapes, absorption peaks, and density of states

Before going into a detailed comparison of the exact theory of Sect. 6.4 with the
experimental spectra, we will dwell on a simplified description of the extinction of
the light beam which provides a qualitative insight into the shape of the absorption
lines, e.g. the difference between the HT lines and the H| line (Fig. 6.5). In addition
it allows us to make approximate quantitative statements about the relation between
the position of the absorption peaks and the temperature of the trapped gas.
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Simplified picture. If we neglect the vector character of the light and dispersive
effects, the extinction of a light beam of frequency w and having an axially symmetric
intensity distribution is described by

% = —n(p,z) o(w, p, z) I(w, p, 2), (6.36)
where I is the light intensity, n(p, z) = noexp[—usB(p, 2)/ksT] is the gas density
at position (p,2), and o the absorption cross section. Restricting ourselves to a
single optical transition with a linear Zeeman shift, the cross section may be written
as 0 = 0o( B) Fy(w — wz), where the resonant cross section oy is only weakly field
dependent, Fy is the Voigt line shape function, and wz = wy + azB is the Zeeman
shifted resonant frequency. The Voigt line has a width Awy, which depends on
the natural linewidth I' and the temperature T. For temperatures T > 9mK
the Voigt linewidth Awy is approximately equal to the Doppler linewidth (FWHM
Avp/VT =1.76 GHzK~1/2),

Resonant absorption shells. In this simplified picture the absorption of light of a
certain frequency w only depends on the local field strength B. The relative absorp-
tion I-1(81/8z) is largest on the magnetic field contour (equipotential surface) for
which the extinction length £,;; = [n(B)o(w,B)]™! is minimal as a function of B.
If we only consider temperatures for which kgT > hAwy (ksT > 81n2(hk)?/m,
T > TmkK), then the density is a much more slowly varying function of B than the
cross section. To illustrate this, suppose light of a frequency w is absorbed on the oy
transition, in which case az = ug/h. The Voigt absorption linewidth corresponds
to a magnetic field range ABy & hAwy [up. Using Avy VT = 1.76 GHz K~V/? we
have ABy/vT ~ 0.13 TK~1/2. This means that for T = 0.1K, for example, the
light is resonant with o, over a field range ABy ~ 0.04 T. The relative change in gas
density over the field range ABy is |n~1(0n/0B)ABy| = 0.084 (T/K)~/2, which is
always small for the temperatures under consideration. Consequently, the value of
B for which £.;; is minimal is approximately equal to the value for which o(w, B)
reaches a maximum, i.e., for B = Bjs(w), where Byes(w) is defined by

wz(Bres(w)) = w. (6.37)

As a result, at densities which are so low that the sample is optically thin, most of
the absorption of light of a frequency w takes place in a thin shell, with a thickness
corresponding to a field range ABy ~ az'Awy, which encloses the “resonant”
magnetic field contour B = B,s(w). (Actually, the above argument does not hold
for frequencies w with a large detuning with respect to the minimum, Aw = w —
wz(Bo) > azkpT/up; these frequencies, however, only contribute to the far wings
of the absorption lines and are not important for this discussion.)
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The picture of resonantly absorbing shells breaks down at high densities, when
the outer layers of the gas cloud become optically thick even for non-resonant fre-
quencies. In order to make somewhat more specific statements we introduce two
convenient length scales: £y, the Voigt length, and /.., the resonant extinction
length.

Voigt length and resonant extinction length. The Voigt length is the thickness
of the resonant shell in the direction of the light propagation:

by = (aB/az)_lABv. (6.38)

On the z-axis (p = 0) B depends approximately quadratically on 2, B(0,z) =~
By + B(z — 20)?, where typically 8 = 0.023T/cm?. One can easily derive that the
axial Voigt length is then given by

0¥ (w) = ABv/2B(z — z0) = ABv[21/B[Bres(w) — Bo). (6.39)

For a given temperature a typical axial Voigt length is obtained by substituting
z — 2z = Le57/2 in Eq. (6.39), where £.s¢ is the effective axial length of the sample
(see Sect. 3.2.4). For the temperatures we are conéidering (T > TmK) we find a
typical axial Voigt length

8In2

67 = hk
v mupp

~ 5.5mm, (6.40)

independent of the temperature.

In the z = zp plane B is approximately proportional to the radial distance p
for B— By > By: B(p,20) & ap, where typically a = 2.2T/cm. The radial shell
thickness is then approximately independent of the field:

24~ ABy/a. (6.41)

For example, for the oy transition the radial shell thickness £{?¢ ~ 0.2mm at T =
0.1K, 25x smaller than the axial thickness. In Fig. 6.6 the absorption shell around
B,e, = 0.1T is plotted for T = 0.1 K, in a field B(p,z) = \/(Bo + Bz%)? + a?p?, with
By=0.1T, a =2.2T/cm, and B = 0.023 T/cm?.

The resonant extinction length is the extinction length at the center of the res-

onant absorption shell:

lre () = [2(Bres () 0(w, Bres(w))] ™ (6.42)

For example, for the oy transition at a temperature T = 0.1K and a local density
n = 10! cm™3, the resonant extinction length £, ~ 5 mm.
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Figure 6.6: Resonant absorption shell around the contour B,es = 0.2T at T = 0.1K. Note
the difference in scales in the axial (z) and the radial (z) direction. The horizontal bar
indicates the resonant extinction length for B = B,e,, T = 0.1K, and ng = 2 x 10! ¢m ™3,

Clearly, if £,¢(w) > £v, then the sample is optically thin at the frequency w and
the maximum absorption occurs in the resonant absorption shell around the field
contour B = B, (w). If £,.(w) < v, then the sample is optically thick and most
of the light is absorbed before it reaches the resonant absorption shell. Since the
shell thickness £y is much smaller in the radial direction than in the axial direction,
the sample is in many cases optically thick axially, but optically thin radially (see
Fig. 6.6).

Low densities. Let us first consider the case that £, > ¢y for all frequencies.
Maximum absorption in the spectrum then occurs at the resonant frequency w =
wz(B) which corresponds to the magnetic field contour of the absorption shell with
the largest number of particles, i.e., corresponding to a value B = ‘B, for which
the function pr(B) exp(—ppB/ksT) has a maximum. Here pp(B) is the magnetic
density of states as defined in Chapter 3 (Sect. 3.2), which can be approximated
quite well near the minimum by

ow(B) = 7 7s[(B = Bof* + Bo(B - Bo)"). (6.43)

In this approximation of the trapping field the value of B, only depends on By and
T and can be calculated easily. It is then also possible to express T in terms of By
and B,: '

T = /lBBp Bp - Bo
kg 3B,/2—- By’
which is very useful, as it allows us to make a quick estimate of the temperature of the

(6.44)

trapped gas on the basis of the positions of the absorption peaks. This is illustrated
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Figure 6.7: Transmission spectrum recorded with linearly polarized light (left) and axial
magnetic field profile with density distribution (right). It is indicated via the Zeeman
diagram how all five absorption peaks correspond to a single value of the magnetic field.

in Fig. 6.7. On the right hand side the axial magnetic field and the axial density
distribution are plotted as a function of z. On the left hand side a transmission
spectrum is shown, recorded with linearly polarized light, and the Zeeman diagram
of the five HT fine structure transitions. The figure gives a clear intuitive picture of
how the main features of the spectrum arise from the summation over the trapping
region of density weighed, Zeeman shifted fine structure lines. The asymmetric line
shapes reflect the signs and the magnitudes of the Zeeman shifts. The five absorption
peaks all agree with B, = 0.23 T, which suggests, using Eq. (6.44) and B, = 0.1K,
a gas temperature T = 81mK. The density distribution plotted corresponds to
T =81 mK.

This approximate method of determining the temperature of the trapped gas
can only be applied in a limited range of temperature and density. The picture of
resonantly absorbing shells breaks down at high densities (£, < £v), when the outer
layers of the gas cloud become optically thick even for non resonant frequencies, and
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for low temperatures kgTSAT, when the thickness of the absorption shells becomes
comparable to the sample size.

One-dimensional picture. Using similar density of states arguments we can also
understand the difference between the shapes of the HT lines and the H| line in
Fig. 6.5. The H]| atoms, caught in the field maximum, are magnetically trapped
in the z-direction but are free to move radially, in which direction they are only
confined by the inner surface of the surrounding light tube. Since B only depends
on z, Eq. (6.36) can be written in the form

or _
0B~

so maximum absorption occurs in regions where B/9z = 0, i.e., at positions where

(%?)'lnaI, (6.45)

the one-dimensional magnetic density of states diverges. For the high-field region
this means the absorption of light peaks at the resonant frequency corresponding to
the field maximum at B = 4.5T. Since there are no atoms residing in higher fields
this is also the frequency where the line is cut off, as is demonstrated in Fig. 6.5.
The sharp edge is a clear indication of one-dimensional absorption. The explanation
of the shape of the spectra in terms of one-dimensional density of states arguments
was also used by Helmerson et al. in their experiments with magnetically trapped
Na atoms [11].

High densities. In Fig. 6.8 a transmission spectrum is shown which was recorded
with left-circularly polarized light and at a relatively high temperature and density
(T ~0.2K and ng > 10'3cm=3). Since the z-component of the magnetic field in our
trap is pointing everywhere in the direction of the light beam, the excitation of o~
transitions o, and o3 is strongly suppressed. The magnetic field configuration used
was the “short” geometry (Chapter 2, Fig. 2.7), which has a shallow secondary field
minimum at z = —7.4cm, as can be seen in the upper part of the figure, where the
resonant frequencies of three transitions are plotted as a function of the position on
the axis. The absolute field minimum has a value By = 0.1 T, while the secondary
minimum is at By = 1.4 T. The magnetic barrier in between peaks at B = 1.7T.

Because of the high density and temperature, or, in other words, the large num-
ber of trapped particles, the sample is almost completely opaque for an appreciable
spectral range due to absorption on the oy resonance. The o, line is strongly broad-
ened and it is no longer possible to define a single frequency of maximum absorption.
A striking feature of the spectrum is the structure around v = 40 GHz which is due
to absorption on the oy transition by H{ atoms trapped in the secondary minimum.
The structure displays two peaks which can again be explained by similar density of
states arguments as used above. Notice that the local field mazimum at z ~ —5cm
gives rise to enhanced absorption as well. These “satellites” of the main o, line only
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Figure 6.8: Lower part: Transmission spectrum recorded with left-circularly polarized
light. Upper part: Resonant frequencies of the oy, 71, and 7 transitions as a function of

z, on the axis.

appear at relatively high densities a,hd/or temperatures since the density n; in the
secondary minimum is strongly suppressed with respect to the central density no:

n; = noexp[—pp(B1 — Bo)/ksT].

6.5.3 Diagnostics of the trapped gas

A reliable determination of the temperature and the density of the trapped gas
requires careful fitting of the parameters that enter into the exact theory described
in Sect. 6.4.2 to all the details of an entire transmission spectrum. In Fig. 6.9 two
examples of fits are shown. The two spectra were taken on the same sample, shortly
after each other, one with right- and one with left-circularly polarized light. The field
configuration used was the “long” geometry (Fig. 6.4), which has a single minimum
at By = 0.1 T. The scan time for each spectrum was 30's, which is approximately the
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Figure 6.9: Transmission spectra, recorded with (a) right and (b) left-circularly polarized
light, and energy level diagram defining the five allowed transitions. The solid lines are
calculated spectra for T = 51(12)mK and (a) no = 4.4(1.0) x 10'2cm™2 and (b) ng =
3.3(0.8) x 10'2 cm~3. The vertical bars denote the resonant frequencies of the five allowed

transitions for B = By.

maximum allowable time for gas densities ~ 10’2 cm™2 for taking spectra with the
aim of determining the temperature and the density of the trapped gas. Longer scan
times lead to non-negligible particle loss during the scan, either through intrinsic
loss mechanisms or through spurious optical pumping to H| states. A scan time of
30's, however, is sufficiently long to achieve a satisfactory signal-to-noise ratio, as is
clear from Fig. 6.9.

In the fitting procedure there are five free fitting parameters: the central density
ng, the fraction of atoms in the c state, the temperature of the trapped gas T, the
helicity of the light polarization, and the radial intensity distribution of the light
beam. The presence of hyperfine structure in the spectra, due to c state atoms,
becomes manifest only at TS10mK and does not play any role of importance in the
spectra described in this thesis. With the remaining four fitting parameters it is
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possible to obtain very good agreement between the experimental spectra and the
theory of Sect. 6.4, as is shown in Fig. 6.9. We find for both spectra a temperature
T = 51(12) mK, while for the spectrum first taken (a) no = 4.4(1.0) x 10'? cm™3, and
for the second spectrum (b) ng = 3.3(0.8) x 102 cm™3. The calculated spectra are
quite sensitive to the choice of the magnetic field §(1"'), especially to the value of the
field minimum By. We use for the calculation of E(f') the expressions of chapter 2
and it turns out it is not possible to attain the same high quality fits (with other
values of T' and ng) in a deviating field. The accuracy of the determination of T
and no depends on the conditions but is typically ~ 25%, limited predominantly
by imprecise knowledge of the beam shape. The reliability of the method would be
greatly improved by an independent determination of the L, beam shape.

The spectra shown in Fig. 6.9 exhibit several interesting features which will be
discussed in Sect. 6.5.4.

6.5.4 Polarization and dispersion effects

Polarization effects. In our experimental arrangement the wave vector E of the
light near the z-axis always points in the same direction as the z-component of the
magnetic field vector, so left-circularly polarized light mainly excites o* transitions
while right-circularly polarized light mainly excites o~ transitions. However, there
is clearly a o, contribution present in the spectrum of Fig. 6.9(a) and some traces of
absorption on the o~ transitions o; and o3 in the spectrum of Fig. 6.9(b). This is not
due to incomplete polarization of the light, but to the finite angle 6 between F and
B (off axis), as is immediately clear from Eq. (6.31): If 0p # 0 the component Eo_
is also absorbed on o transitions and the component Eo, on ¢~ transitions. Then,
the projection of the oscillating electric field vector of a purely circularly polarized
light beam on a plane L B is elliptical, and thus also contains a circular component
with opposite helicity.

Absorption enhanced by optical activity. Circularly polarized light can be writ-
ten as the sum of two perpendicular, phase shifted linearly polarized components
of equal amplitude. Since 7 resonances only affect the linearly polarized compo-
nent parallel to the transverse component of B with respect to the z-axis, B, =
B —(§ -€,)&., one would expect that 7-absorption of circularly polarized light cannot
exceed 50%, and thus, using the arguments of Sect. 6.4, neither can 7-absorption of
arbitrarily polarized light in a quadrupolar field. In the spectra of Figs. 6.8 and 6.9,
however, we observe that the maximum absorption on the 7 lines can be substan-
tially higher than 50%. The extra absorption is too strong to be attributed to the
far wings of o lines. To explain the origin of this feature Eq. (6.31) is rewritten in
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the linear polarization basis, defined by the local orientation of the magneiic field
(see Egs. (6.24) and (6.25)): ‘

aEm /aZ

(tk/4){[(x+ + x-) cos? 85 + 2x, sin? 6] Eg
—i(x+ — X-) cos 0 Eg,} (6.46)
0E0/0z = (ik[4){(x+ + X-)Eoz +i(x+ — X-) cos 05 En, }.

In this basis &) is by definition parallel to B, ; so only the component Ey, is directly
absorbed on 7 transitions. However, the equations are coupled so the component
Eq; is also affected - indirectly - by the = transition. Suppose, for instance, that
m-absorption has reduced Ey; to zero for some value of z. If the frequency is tuned
between a o* and a o~ resonance in such a way that linearly polarized light is equally
absorbed on both transitions, i.e., Imx+ = Imx.. and thus Rex4 = —Rex_, then the
Egs. (6.46) are coupled by a real coefficient (k/4)(x+—x-) cos §5. Consequently, the
amplitude Eo; will grow in phase with the existing component Eg,, which means the
total polarization vector £, = Eo1€1+ Egy €3, initially linear, remains linear but starts
rotating in the (€, &)-plane (= zy-plane). In this way the polarization, initially
perpendicular to B 1, will acquire a linear component parallel to the transverse
component of B and will be absorbed subsequently on the 7 transition.

The continuous rotation of the linear polarization in the zy-plane is called Fara-
day rotation. There is only pure Faraday rotation if Imy, = Imy_. At other
frequencies the polarization will in general be elliptical, with the eccentricity and
the orientation of the principal axes of the ellips continuously changing as a function
of 2.

Due to Faraday rotation both initial linear polarization components Eq; and Eg,
will be absorbed on 7 transitions. Therefore, at high densities more than 50% of
the light can be absorbed on a = line. The strengths of the ; line in Fig. 6.9(a) and
of the 7, line in Fig. 6.8 cannot be attributed to absorption in the wings of nearby
o lines and thus are clear evidence of strong optical activity of the trapped sample.

Absorption-induced line shift. Close inspection of the spectra shown in Fig. 6.9
reveals another subtle feature, namely, the frequency for maximum absorption of
the m; line is different for left- and right-circularly polarized light. The =, line
seems to be repelled by o lines: For left-circularly polarized light the o, line is
strongest and the m; line is shifted to the red, while for right-circularly polarized
light the o line is strongest and the , line is shifted to the blue. The fact that in
both cases the 7 line is on the slope of a strong o line suggests shifts in opposite
directions. This phenomenon can be traced back to the imaginary part of the
coupling coefficient (k/4)(x4+ — x-)cosfp in Eq. (6.46). Suppose at z = 0 we
have left-circularly polarized light Ey = Ejo(0)(&) + i€,) (linear components Eoi(0)
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and Eg,(0) = iEg;(0)). For small z the coupling term in Eq. (6.46) will give rise to
a change of Ey; according to

(P s 2 1 = X-) 0505 Ean(0), (647)
so Ey, will increase if Im(x4 — x-) < 0 and Eg; will decrease if Im(x4 — x-) > 0:
o-absorption of the component Eg; leads to the appearance of a linear component
parallel to & which may be either in phase or in anti-phase with the already existing
component Ey;, depending on the sign of Im(x4—x-). If 6™-absorption is dominant,
i.e., if Im(x4 — x-) < 0, the components are in phase, which means that part of the
electric field component parallel to é; is transformed into a linear component parallel
to &, which may be absorbed subsequently on the 7 transition. Hence m-absorption
of left-circularly polarized light is enhanced if Im(x4+ — x-) < 0, which means the
peak of the 7, line will be shifted towards the o, line, as is observed. Analogously,
w-absorption of right-circularly polarized light is enhanced if Im(x4 — x-) < 0, so
in that case the m; line will be shifted towards the o line.

6.5.5 Deuterium

To date deuterium gas has defied attempts of trapping. Probably the main reason for
this is the high binding energy of D on ¢-*He surfaces: €,/kp ~ 2.6 K [12]. Actually
we were able to show that if the experimental cell is heated up to T, > 0.4K, it is
possible to produce D gas in our cryogenic dissociator and transport it subsequently
to the trapping region. This is roughly consistent with the minimum temperature
T, ~ 0.15K required for loading the trap with H gas when the surfaces are covered
with £-*He (e,/ ks = 1.00(5) K, see Chapter 3, Sect. 3.3). Unfortunately we were
not able to trap DT, probably due to the high *He vapor density at T,, = 0.4 K.

One of the advantages of optical diagnostic techniques is the possibility to dis-
criminate between H and D gas, in contrast with earlier, bolometric, methods [1, 2]:
The transition frequencies of the L, manifold in D are ~ 770 GHz higher than the
equivalent ones in H and therefore spectrally well separated. In Fig. 6.10 a D trans-
mission spectrum is shown, recorded with the dissociator discharge continuously
running and the cell heated up to ~ 0.4K. It was necessary to keep the discharge
running as the signal disappeared within a few seconds after the dissociator was
turned off.

The trapping configuration used was the “short” geometry with Bp = 0.1T
(see Fig. 2.7). Using Fig. 6.2, the shape of the spectrum and the positions of the
absorption peaks can be explained by assuming the cell was filled mainly with high-
field seeking D| atoms in thermal equilibrium with the cell walls. The descending
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Figure 6.10: Deuterium transmission spectrum. Indicated are the absorption peaks due
to D| and DT transitions. The frequency is given relative to (Eyp — Ap/6)/h.

slope on the high frequency side (v > 20 GHz) is the red wing of the o6 line (compare
Fig. 6.5), which peaks and is sharply cut off at » ~ 60 GHz, corresponding to the field
maximum at B = 4.5T. The rising slope on the low frequency side (v < —20 GHz)
is, analogously, the blue wing of the o5 line, which peaks and is sharply cut off at
v = —57 GHz. The two doubly peaked structures are satellites of the main o5 and
o¢ lines, with the peaks due to the local secondary minimum at B = 1.4 T and
the nearby local maximum at B = 1.7T (compare Fig. 6.8). The structure around
v =0 is due to absorption on both the 74 transition and the DT transitions.
Although we did not succeed in trapping DT, we have shown that it is possible
in the present setup to produce D gas and transport it to the trapping. region in
sizeable quantities. This information may be useful for future attempts to trap DT.
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Figure 6.11: Orientations of the four bolometric fluorescence detectors on the cylindrical
side wall.

6.6 Fluorescence spectroscopy

In addition to the photodiode we have four bolometric detectors at our disposal,
which are mounted on the semi-cylindrical side wall of the detection unit, thus
enabling angularly resolved fluorescence spectroscopy (see Fig.6.4). Each detector
has a rectangular sensitive area, measuring 10mm X 2mm. The detectors are very
thin, protruding negligibly into the sample volume, and they follow the curved
inner surface of the cylindrical side wall. The orientations of the four detectors
are schematically indicated in Fig. 6.11. The z-coordinates z; of the centers are
2 =0, zp = —10.8 mm, 23 = —21.5mm, and z; = —43.0mm. The lengths ¢; of the
detectors in the z-direction are £; = £, = €3 = 2mm and ¢; = 10mm. The inner
radius of the detection unit is p,, = 6 mm, so the azimuthal angles A¢; subtended
by the detectors are A¢, = A¢, = A¢gs = 5/3 and A¢s = 1/3. Construction
details and the detection sensitivity of these devices are discussed in, respectively,
Chapters 4 and 5.

In this thesis emphasis is put on the use of transmission spectroscopy as a di-
agnostic tool. Fluorescence spectroscopy yields in principle more information - the
separate fluorescence detectors probe different parts of the trapped sample whereas
in transmission spectroscopy a lot of the local details are smeared out - but the
information is harder to analyze. Furthermore, the fluorescence meaurements in the
experiments described in this thesis suffered from a rather poor signal-to-noise ratio
compared to the transmission measurements. However, these noise problems are
probably not of a fundamental nature (see Sect 5.5.2), and may be eliminated in fu-
ture experiments. In this section we will discuss a simplified, preliminary analysis of
some fluorescence spectra, based on the analysis of the corresponding transmission
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spectrum. This allows us to check the reliability and consistency of our diagnos-
tic method and to estimate the detection sensitivity of the bolometric fluorescence
detectors.

The calculation of the fluorescent radiation absorbed by a bolometric detector is
more complicated than the calculation of the transmission of the sample. Using the
equations of Sect. 6.4 we can keep track of the power absorbed from the L, beam
as a function of position. The subsequent spontaneous emission is not isotropic, but
has an angular dependence which depends on the excited state and on both the local
direction and magnitude of B: For o fluorescence, the probability per unit solid angle
for emission of a photon with wave vector & is equal to (3/167)(1 + cos? 6,), where
0, is the angle between F and B. The angular function for decay on a 7 transition is
given by (3/87)sin?0, [13] The branching ratios determining the fraction of light
released through o-emission and the complementary fraction of 7-emission depend
on the excited state and |B| and can easily be calculated using Table 6.1 (see also
Fig. 6.3). If multiple scattering effects are assumed to be negligible, the fluorescence
reaching a particular detector from a small region in the sample is simply given
by the spontaneous emission radiated within the solid angle subtended by that
detector. Integration over the entire sample yields the total fluorescence incident
on the detector. Due to the small solid angle subtended by the photodiode, less
than 1072 of the emitted fluorescence reaches the photo diode. The fluorescent
intensity on the photodiode is therefore negligible with respect to the transmitted
light intensity and introduces no error for the transmission measurements.

The justification of the single scattering assumption is in the fact that the thick-
ness of the resonant absorption shells £y in the radial direction is much smaller than
the resonant extinction length 4., under the relevant conditions (see Sect. 6.5.2).
Consequently, the opacity for radially scattered light is fairly small, even under
conditions of optical thickness of the sample core in the axial direction.

The above described procedure for calculating the fluorescence is straightforward
but very time consuming. However, the calculation can be simplified considerably
by the following approximations: First, we neglect the radial extent of the sample
in the determination of the solid angle subtended by the detector, leaving only the
dependence on z. This is of course a very good approximation at low temperatures.
Second, we assume the spontaneous emission to be isotropic. For the o3, o3, 1,
and 7, transitions this may be justified by the fact that the branching ratios for
o and 7 emission are comparable, in which case the anisotropy averages out, more
or less. For the o; transition this is not the case, since it forms a closed cycle
and fluoresces therefore only through o-emission. At temperatures kT2 upB, the
anisotropy of the emission is also smeared out due to the fact that for each value of
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z the orientation of B varies with the position in the zy-plane.

As a result of the two assumptions, we only have to keep track of the absorbed
L, power P, as a function of 2. The power P; incident on detector ¢ then simply
follows from integrating the product of P,(z) and the detection solid angle over the
length of the sample:

o A zi+ b2 — 2 _ zi—0;[2—2 ‘
n=[re% [\/(z; +6f2=22 40 \Jm— /2= 2+ 2, 4 (049)

In Fig. 6.12 an example is shown of a transmission spectrum and the correspond-

ing fluorescence spectra, recorded with detectors 1 and 4. The incident light beam
was right-circularly polarized, as is clear from the near absence of the o, line. First
a fit to the transmission spectrum was obtained (see Fig. 6.12), using the theory
of Sect. 6.4, which yielded T = 46 mK and ng = 6.9 x 10’ cm™3. The correspond-
ing function P,(z) and Eq. (6.48) subsequently resulted in the fluorescence spectra
indicated with solid lines in Fig. 6.12. The experimental fluorescence spectra were
scaled to fit the theoretical spectra.

In view of the rather crude approximations used the result is very satisfactory.
The main features of the fluorescence spectra are reproduced fairly well. Appar-
ently our description gives a fully consistent description of both the transmission
and the fluorescence spectra. We would like to stress that the frequency axis of
the fluorescence spectra has not been scaled or shifted: the frequency dependence
of the fluorescence signal is in good theoretical agreement with the transmission
data. For both experimental fluorescence spectra approximately the same vertical
scaling factor was used which implies that the bolometric detectors 1 and 4 have
approximately equal detection sensitivities. The scaling factor obtained from this
fit was used in Chapter 5 to compare the experimental bolometric detection sensi-
tivity to the theoretically predicted value. Note that at most ~ 0.5% of the L, flux
entering the cell reaches the bolometers, indicating that, in spite of the rather poor
signal-to-noise ratio, the absolute detection sensitivity of the bolometers is higher
than that of the photodiode.

The fluorescence spectra are qualitatively different from the transmission spectra,
displaying more sharply peaked structures. This arises from the fact that the bolo-
metric detectors are more sensitive for the local absorption of the light, due to the
strong z-dependence of the detection solid angle. The sensitivity for local absorption
is also reflected by the fact that the absorption lines recorded by bolometer 4 are
shifted to the red with respect to the corresponding lines recorded by bolometer 1:
Bolometer 4 is sensitive to absorption in higher fields, which means that all fine
structure lines, except the o, line, are shifted to lower frequencies.
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Figure 6.12: Transmission spectrum and corresponding fluorescence spectra of detectors
1 and 4, recorded with right-circularly polarized light. The fluorescence is normalized to
the total L, flux entering the cell. The solid lines are calculated spectra, based on a fit to

the transmission spectrum: T = 46 mK and ng = 6.9 x 10! cm~3.
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Chapter 7

Evaporative cooling

7.1 Introduction

As a first application of our optical diagnostic method, we have studied evapora-
tive cooling [1], in particular the dynamics of the onset of the evaporation process.
Evaporative cooling is an efficient method to reduce the temperature of trapped
HT gas and is considered a very promising technique for attaining Bose-Einstein
condensation. Evaporative cooling was first proposed and demonstrated by Hess et
al. at MIT [3, 4]. Subsequently, Masuhara et al. showed the feasibility of so-called
forced evaporation. In later experiments [6, 7] this technique was improved and
temperatures as low as ~ 100 uK at densities ~ 10'® cm~3 were reached. Recently,
Setija et al. have demonstrated an optical version of forced evaporative cooling [8].
Because evaporative cooling does not have the temperature and density limitations
encountered in optical cooling, it is now also being considered for the application to
trapped alkalis [2]. '

Evaporative cooling is based on the preferential removal of atoms with an energy
higher than the average energy and on thermalization by elastic collisions. For a
gas of atoms, trapped at temperature T in an external potential U,(7), the evapo-
ration may be realized by removing the particles which reach a point 7, for which
Uy(7p) = €& > kpT. The remaining gas will be driven by thermalizing interatomic
collisions to a new equilibrium state at a lower temperature. Simultaneously, these
collisions continually generate new atoms which reach 7, thus keeping the evapora-
tion going. As the temperature of the trapped gas drops, the number of atoms that
are able to reach 7, is exponentially suppressed, so eventually the cooling rate is bal-
anced by a competing heating mechanism or becomes negligibly small. In order to
keep the cooling rate at a constant level as the temperature drops, the evaporation
threshold ¢;, may be lowered simultaneously, at a rate slow compared to the internal
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equilibration rate of the trapped gas. Using such forced evaporation techniques it
is in principle possible to reach arbitrarily low temperatures. Evaporative cooling
techniques have up till now only been applied to the system of trapped HT because it
is the only system of trapped particles with a lifetime much longer than the internal
collisional equilibration time.

To start the evaporation, we energize a small bolometer which is mounted in
relatively high field behind the photodiode, as is shown in Fig. 6.4. By boiling off
the helium film, the bolometer surface acts as a sorption pump, removing the most
energetic atoms, which leads to (evaporative) cooling of the remaining H gas. The
photo diode housing acts as a baffle, which protects the H sample against evaporating
He atoms. During the evaporation both the temperature and the density of the
trapped gas are measured in situ non-destructively by Lyman-a spectroscopy. In
our approach the trap is first loaded and the trapped gas is allowed to equilibrate
with the cell wall at a well-defined temperature. Subsequently, the evaporation is
initiated by triggering the bolometer, enabling us to study the dynamics of the onset
of the evaporation process independent of the filling of the trap. The objective of the
experiments described was a quantitative study of thermalization and evaporation
processes in the trapped gas, not the attainment of very low temperatures. Therefore
the experiments were performed in a static field geometry, creating well-defined
conditions for the spectroscopy of the gas and for the analysis of the evaporation
process.

In the experiments at MIT, evaporation is realized differently by letting the most
energetic H atoms escape over a magnetic field barrier to a neighbouring zero-field
region, where they recombine. The evaporation process is monitored by measuring
the heat released in the recombination process. The temperature is either inferred
from the evaporation rate, by making use of a model description of the trapped gas
[5], or determined by a (destructive) measurement of the energy distribution of the
trapped particles [6, 7]. The latter is accomplished by ramping down the magnetic
field barrier at a rate faster than the internal equilibration rate of the gas, while
measuring the number of escaping atoms as a function of the barrier height.

Before turning to our experimental results, we will discuss a model that has
been developed to describe the evaporation process. This model is free of adjustable
parameters. For an arbitrary trapping potential it yields a set of coupled differential
equations describing the evolution of the temperature T' and the number of trapped
particles N during evaporation. For a specific trapping potential which accurately
describes the field in our Ioffe trap, analytical expressions are found for the particle
and energy loss rate during evaporation. These are used in Sect. 7.3 to describe our
measurements.



7.2 Evaporation model

To calculate the evolution of the density and the temperature during evaporative
cooling we developed a model that is believed to give an accurate description from
the very moment the pumping bolometer is triggered. In principle the model can
be applied to any system of trapped particles in an arbitrary potential U,(7), which
interact through s-wave collisions. The essential ingredients are the following: (1)
The evaporation may be considered as arising from a perfectly adsorptive wall co-
inciding with (2) a surface of constant potential energy, U,(7) = ¢, surrounding
the gas; (3) Any particle in the trapped gas with a total energy greater than ¢, will
actually reach the wall and be removed forever; (4) During the evaporation process
the trapped gas is in a state of quasi-equilibrium.

We will first discuss these assumptions in detail for our specific experimental
situation:

(1) Sticky wall assumption. We will show that any atom colliding with the
cell wall has a much larger probability to reach the pumping bolometer than to
scatter back into a trapped state. For this purpose we discuss the relevant time
scales. As was shown in Chapter 3, Sect. 3.3, in thermal equilibrium the av-
erage time 7, between two elastic interatomic collision events is given by 7! =
\/Qnot'za'elVg,(T)/ Vie(T'), where ng is the central density, o = 1/8kgT/wm is the av-
erage thermal velocity, o = 8ma2 = 13 A2 is the s-wave scattering cross section,
and V. is the ¢** order effective volume. For T = 0.2K and ng =1 x 101 ¢m=3
Te X~ 4s. An atom on a trajectory intersecting the wall will undergo many wall
collisions before colliding with another atom. This arises since the radial oscillation
period 7, & 0.4 ms < 7.. Many of these wall collisions (3-6%) lead to surface adsorp-
tion followed by thermal desorption in a random direction. The residency time in a
surface adsorbed state 7, ~ 0.5 us for a wall temperature T, = 0.2 K (see Sect. 3.3).
The average time between two wall sticking events 7, ~ 7, /2s, where s is the stick-
ing probability, s/T" ~ 0.33K~? [9]. The average total energy of the H atoms after
thermal desorption is €, + %kBT, which is sufficient to reach the pump by Knudsen
flow, impeded by the radial magnetic field gradient, within a time 7, ~ 0.5, much
shorter than 7. In the temperature and density range relevant for our experiments
all relevant time scales are well separated, and we have Te KT KTy K Tp L 7o
Therefore the sticky wall assumption is justified.

(2) Equipotential approximation. We assume that we may replace the cell wall
in our calculations by the B, = 1.33 T equipotential surface. This is a very good
approximation for our trap, as the cylindrical side wall nearly coincides with the
B, = 1.33T contour and the side wall comprises the major part of the total wall
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surface area (see Fig. 6.4). The calculation of the evaporation rate thus reduces to
the calculation of the H{ flux crossing the B,, contour.

(3) Threshold condition. We assume that any atom emerging from a collision
at a position 7 with a total energy U,(7) + p?/2m > €, will actually reach the By
equipotential surface and be removed from the sample. This means that we neglect
the influence of symmetries in the potential Uy, which may give rise to constants
of motion other than the total energy, allowing trajectories with a total energy
exceeding €, that do not intersect the B, equipotential surface. For example, in
our Ioffe trap the field B(F) has axial symmetry at z = 0. As a consequence, particles
starting at z = 0 with only a small velocity in the z direction approximately conserve
angular momentum with respect to the symmetry axis, giving rise to wall-gra.zihg
orbits with a total energy > €. However, this is only true for trajectories which
are restricted to a small region around the z = 0 plane; for larger starting values
of |z| or |v,| the small deviations from axial symmetry experienced by the particle
are sufficient to scramble its axial angular momentum within, typically, a few radial
oscillation periods 7,. Simulations of trajectories indicate for our trap that besides
the total energy other constants of motion affect the evaporation process only in
a negligible part of the available phase space. Thus the evaporation rate may be
simply assumed equal to the flux of atoms passing through the U, + p*/2m = &
surface in phase spé,ce.

(4) Quasi-equilibrium assumption. In thermal equilibrium the phase space dis-
tribution function f of particles in a potential U,(F) is given by

f(F, B) = no(2rmksT) /> exp[—(U,(F) + p*[2m)/ ks T]. (7.1)

The density ng is chosen in such a way that f is normalized to the total particle num-
ber: N = [ f(,) &r &®p, where the integration is over the available phase space.
As a result of assumptions (1), (2), and (3), the particle distribution immediately af-
ter triggering the pumping bolometer can be described by f (7, p), truncated in phase
space at the U, + p?/2m = €, surface. This is the “pumped” distribution, already
discussed in detail in Chapter 3, Sect. 3.2. The assumption of quasi-equilibrium
means that during the entire evaporation process the particle distribution may be
described by the pumped distribution. On the one hand the pumped distribution is
distorted due to the evaporation of particles, on the other hand thermalizing elastic
collisions, which do not produce evaporating particles, tend to restore the pumped
distribution. The justification for the quasi-equilibrium assumption lies in the fact
that for the relevant conditions the total elastic collision rate N7, /2 for a pumped
distribution is always much larger than the evaporation rate. Notice that quasi-
equilibrium, as we define it, does not necessarily mean close to thermal equilibrium.
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Figure 7.1: Atomic momenta before and after an elastic collision.

For example, the (pumped) distribution immediately after switching on the pump
is far from equilibrium, as will be shown in Sect. 7.2.2.

In Sect. 7.2.1 relatively simple expressions will be derived for the particle and the
energy loss rate during evaporative cooling in an arbitrary potential, using the above
model. These general expressions will be applied in Sect. 7.2.2 to a specific potential
shape, which accurately describes the field in a Ioffe trap. For this particular case
closed analytical expressions are found. As a first application these expressions will
be used in Sect. 7.2.3 to estimate the lowest temperatures that can be reached with
evaporative cooling. In Sect. 7.3 they will be used to fit our experimental data.

7.2.1 General case

Consider an elastic collision event at a point 7 between two H atoms characterized
by initial momenta ) and f,, and final momenta 7, and 7' (see Fig. 7.1). We
introduce center-of-mass and relative momentum coordinates P = (7, + P2)/2 and
¢ = P> — p1. This is convenient because in an elastic collision P and q = |4
are conserved and only the angle § between ¢ and P and the azimuthal angle ¢
change. In a thermal distribution all initial angles (6, ¢) have equal probability.
The final angles (¢,¢') are independent of the initial angles (6, #), since the H
atoms only scatter through s-wave collisions. Thus all final angles (¢, ¢') also have
equal probability.

In order to calculate the evaporation rate we write the general equation for the
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total elastic collision event rate of a thermal distribution (see Chapter 3, Sect. 3.3):

2 -3
T, = c'emo(27; ZkBT) / Pr e=2Up(/kBT / &3P e—P*/mksT / Bqq e—¢*/4mksT
(7.2)
In a pumped distribution all particles have a total energy

p*/2m + Uy(7) < €y (7.3)

so during evaporation only collisions occur which are characterized by initial values
P, g, and 0 satisfying '

P? 4+ ¢*/4 + Pgq| cos 6] < 2m[es, — Up(7)]. _ (7.4)

In these collisions an evaporating atom is produced if the final values P' = P, ¢’ = g,
and ¢ fulfill ‘
P? 4+ ¢*/4 + Pg| cos 0’| > 2ml[er, — Up(7))- (7.5)

The calculation of the evaporation rate entails performing the integral (7.2) over
the part of phase space defined by the relations (7.4) and (7.5). To this purpose the
evaporation condition is incorporated in the integrand by averaging for fixed P and
q over all final angles (¢, ¢') which satisfy Eq. (7.5). The resulting form is integrated
over P, q, 0, and , with the integration boundaries defined by condition (7.4). We
will now discuss the calculation in detail.

Let us consider the class of colliding particle pairs at position 7, characterized
by fixed values of P and ¢. The fraction F' of these colliding pairs which actually
is part of the pumped distribution, i.e., which fulfills condition (7.4), can easily be
calculated using the fact that all scattering angles have equal probability:

1 o .
F=_ /0 dé / do sin, (7.6)

where the 0 integration is restricted to | cos 8] < [2m(e;r — Up) — P? — ¢*/4]/Pgq. We
find

2l = Up(7)) = P = /4

F(T‘, P, q) = Pq (7.7)
Expression (7.7) holds for values of P, g, and + which satisfy
P2 + q2/4 S 2m[etr - Up(i’)]y (78)

which is equivalent to F > 0 and a necessary condition for relation (7.4). For values
P, q, and 7 which do not satisfy (7.8), F < 0, which is clearly unphysical. Further,
F <1 for values of P, ¢, and 7 which satisfy

(P +q/2)* 2 2mlee — Up(P)], (1.9)
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which is a necessary condition for relation (7.5). If Eq. (7.9) is not satisfied then F' >
1, which is also unphysical. Thus all pairs which are characterized by the relations
(7.8) and (7.9) have a finite probability F of being part of the pumped distribution.
These same pairs also have a finite probability of producing an evaporating particle,
i.e., of fulfilling condition (7.5). Since all final angles (¢, ¢') are equally probable (s-
wave scattering), the condition (7.5) is complementary to condition (7.4). Therefore
the probability for producing an evaporating particle is equal to 1 — F for all P, g,
and " obeying (7.8) and (7.9).

Taking into account that in the pumped distribution in each evaporating scat-
tering event exactly one evaporating particle is produced, we can now write the
following expression for the flux N,, of evaporating atoms:

a',mo( 2rm kB T) -3
2m

N, = / &r exp[~2U,(7)/ ksT]x
Up<etr
Q 2Q
[ aP4xP? [ | daing* P, P.o) (1 = (7, P.o)] expl~(P" + &/4) /mksT],
~ (7.10)

where Q(r) = |/2m[e;, — U,(7)] is the maximum particle momentum at a position 7
in the pumped distribution, or, equivalently, the minimum momentum required to
reach the pumping wall. The integration boundaries for 7, P, and q combined with
the factor F(1 — F) in the integrand express the conditions (7.4) and (7.5).

After some straightforward manipulation, in which we chose the new variable
y = [Up(7) + (P* + ¢*/4)/m — €]/ kT, Eq. (7.10) can be written in the following
much simpler form:

N, = -m n50ad Vaa, (7.11)

where the volume V, is defined by

V.= /UPSC" d°r exp[-Up(7)/k5T) /oym dy (ym — y)y” exp(—y), (7.12)

with ym(7) = [e — o(7)]/ksT.

The energy flux carried by the evaporating particles can be calculated in a similar
way. Again we consider pairs of colliding particles at position 7, characterized by
fixed momenta P and q. By averaging over the final angles (¢’ ,#'), the average
energy (E.,) per particle carried by the evaporating particles can be calculated
straightforwardly:

" dg’ [ d6' sin¢ [U (F) + (P? + ¢%/4 + Pqcos 0’)/2m]
2" d¢! [ df' sin @'

(Ee) = (7.13)
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where the ¢ integrations are restricted to | cos ¢'| > [2m(e:, — U,) — P? — ¢*/4]/ Pq
(condition (7.5)). We find

(Bw) = e + 11 ~ (7, P o)L, (114)

where the fraction F is given by Eq. (7.7). Again, Eq. (7.14) only holds fO<F <1,
i.e., for P, q, and 7 which satisfy (7.8) and (7.9). As a result, the energy loss rate
E., due to evaporation is given by

_oanj(2rmkgT) "

. o
Eow= - jU o, Er expl=20 () kaTIx

2m
Q 2Q
2 3 - _ -
/0 dP4nP /2(Q—P) dq4rq® F(¥, P,q) [l — F(7, P,q)] x (7.15)

{er + (1= F(7, P12} exp[~(P* + ¢*/4) /mkaT].

After some manipulation, similar to the calculation of N.,, this can be written in
the following much simpler form:

. . 2Vs)2 }
Eey = Ney § €r + kgT . 7.16
{ort Fi2ko (7.16)

Under the given assumptions Eqgs. (7.11) and (7.16) describe the evaporation
process exactly. The problem has been reduced to the calculation of the functions
Vaj2(T) and Vijo(T), which can be calculated straightforwardly for an arbitrary
potential. In Sect. 7.2.2 analytical expressions are derived for the volumes V3/; and
Vs/2 for a potential which closely resembles the field in our Ioffe trap.

7.2.2 Ioffe trap

As was shown in Chapters 2 and 3, the modulus of the magnetic field in our Ioffe
trap can be approximated quite accurately by

B(p,2) = \/o?p + [Bo + B(z — 20)"%, (7.17)

where By = 0.1T, 2o = —7.5mm, a = 2.2T/cm, and B = 0.023T/cm?. In Chap-
ter 3, Sect. 3.2, the following expression for the density of states of a pure d state
gas in a field of the form (7.17) was derived:

(2m=?)3/?
2u3f’02/B
Using Eq. (7.18), we have plotted in Fig. 7.2 the energy distribution function
N(€) = nop(€) exp(—e/ksT) of an evaporating sample as a function of energy for

p(e) = ————') (7.18)
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Figure 7.2: Energy distributions of an evaporating sample in a Ioffe trap. Solid curve:
T = 0.2K (9 = 4); dashed curve: T = 0.1K (n = 8); dotted curve: T = 0.05K (n = 16).
The three distributions have been calculated for equal values of ng.

three values of T. N(e€)de is the number of trapped atoms in a small energy range
de around energy €. The distributions are cut off at € = €;,; for lower values of €
they correspond to ordinary Boltzmann distributions. Note that the pumped dis-
tributions can be far from equilibrium, in which case T cannot be interpreted as a
thermodynamical temperature, as was already mentioned in Chapter 3, Sect. 3.2.
Likewise, the density ny as we define it (Eq. (7.1)), is strictly speaking not equal to
the density at the minimum of the potential well. The latter identification only ap-
plies to true thermal distributions. For our purpose T and ng should be considered
as convenient parameters, characterizing the pumped distribution. Nevertheless, for
kgT < €,/8 (n > 8) only a small error is made if T is interpreted as the thermody-
namical temperature of the system and ng as the density at the minimum.

Fig. 7.2 nicely illustrates the evolution of the distribution during evaporative
cooling in our loffe trap. Before switching on the pump, the gas is in thermal equi-
librium with the cell wall at T = 0.2K. The solid curve is the energy distribution
immediately after triggering the pumping bolometer. Clearly, a substantial part of
the sample has been removed instantly. Subsequently, the average energy of the
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particles is reduced as more particles evaporate due to redistribution of the en-
ergy through elastic interatomic collisions. For kgT < €,/10 (7 > 10) the pumped
distribution becomes indistinguishable from a full thermal distribution and the evap-
oration has virtually come to a standstill.

To describe the evaporation process quantitatively we need expressions for the
volumes V3, and V35 Since the integrand of Eq. (7.12) only depends on U, it
is convenient to use the magnetic density of states pyr, which was introduced in
Chapter 3, Sect. 3.2. In the case of a pure d state gas in a magnetostatic trap
Eq. (7.12) can then be reduced to the following 2-dimensional integral:

Vo= [ dB pu(B) exol-na(B ~ Bo)/ksT] [ dy (v = )" xp(v), (7,19

where in this case y,, = pp(By — B)/ksT. In Sect. 3.2 the following expression for
the magnetic density of states of a field of the form (7.17) was derived:

4r :
pu(B) = Z’W[(B — Bo)*? + By(B — Bo)?]. (7.20)
Using Eq. (7.19), the volumes V3/, and Vs/; can now be calculated straightforwardly:

Vasz = (3y/7/4) Vo> exp(—n){n — 5 + 2n(n — 4) + exp(—n)x

21+ B6) + T(1+26) + n2(L+ 26) + 4n(1 + 26) + 5]}, (7.21)

and

Vsa = (15y/7/8) Von=*/ exp(—n){n — 6 + 3¢n(n — 5) + exp(—n)x
(14 196) + (1 + 86) + D(1+2€) + 20%(1 + £6) + 5n(1 + 26) + 6]}E |

: 7.22
where Vp = 313/2a~23-1/%(B,, — Bo)*/? n = pp(By, — Bo)/ksT, and £ = Bo/(B,, —
By). In the field geometry in which the evaporation measurements were performed
Vo = 38cm?, £ = 0.081, and T = 0.82K.

From Chapter 3 we also know the effective volume Vi, = N/ng of a pumped

distribution in the potential (7.17):

3

Vie = Vor~o2(1 + %gq) {1 —eMl+q+ .;.1,2 + -(1;1 f%én]} ’ (7.23)

which makes the description complete. The combination of Egs. (7.11), (7.16),

(7.21), (7.22), and (7.23) fully describes the evaporation process of a pure d state

gas in a magnetostatic trap of the form (7.17). These equations will be used in the
Sect. 7.3 to describe the measurements.

For n > 8, i.e., in our geometry for T < 0.1 K, the equations may be simplified

by neglecting the e~2" terms. The particle and energy loss rate during evaporation
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can then be approximated accurately by

N, _ n=5+2%n(n—14)
N = ~nodou ] _: % & exp(—n), (7.24)

and

(7.25)

. . —642 -5
E,,,:N,,,{et,+kBT” + 3én(n )}.

n—5+3n(n—4)
For smaller values of 7 it is essential that all other terms are taken into account
as well. For example, expression (7.24) yields a positive value for N,, for n > 5,
which is clearly unphysical. The potential experienced by the particles approaches
a harmonic well in the limit kT < ppBo (€n > 1). Egs. (7.11) and (7.16) then

reduce to: .
Neo/N = —ngbou(n — 4)exp(—n)

Ee, Nev[etr +kgT(n - 5)/(n - 4)].
Note that the condition £7 3> 1 does not necessarily imply that the potential well has

(7.26)

a harmonic shape up to the evaporation threshold ¢,. For the validity of Eqs. (7.26)
it is sufficient that the potential is harmonic in the region of the trap where the
majority of the particles reside. In the other extreme, i.e., if {7 < 1 (for instance if
B, = 0), the equations take the following simple form:

N, /N = —ngbo(n — 5) exp(—n)

E. = Nulew+ksT(n—6)/(n - 5)). (7.27)

Apparently, for large values of (> 8) the evaporative behaviour is not very sensitive
to the exact shape of the trapping field. For fixed values of T and ng both the particle
loss rate and the energy loss rate per evaporating particle are somewhat larger for
a harmonic well. Notice that the average excess kinetic energy per evaporating
particle is always less than kgT.

7.2.3 Minimum temperature

In the absence of a competing heating process, evaporative cooling in principle leads
to arbitrarily low temperatures. In practice, the lowest temperatures that can be
reached are always limited by the intrinsic heating associated with collisional relax-
ation (Chapter 3, Sect. 3.5). Whereas evaporative cooling relies on the preferential
removal of the most energetic atoms, relaxation heating is due to the preferential
removal of atoms with an energy less than average: Collisional relaxation mainly
takes place in the high-density region, i.e., near the center of the trap. The particle
loss rate due to evaporation and the particle loss rate due to collisional relaxation
both have the same density dependence, N ~ n?, since both are associated with
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two-body collisional mechanisms. Hence, the evaporative cooling rate and the re-
laxation heating rate also have the same density dependence. Consequently, for a
given trapping geometry there is a lowest temperature Tmin, independent of the den-
sity mo, at which evaporative cooling and relaxation heating exactly cancel. Once
this temperature has been reached, the sample will stay at Tpnin, if no other heating
processes are involved [3)].

We will now make an estimate of the equilibrium temperature Tp;n for the simple
case of a sample of d state atoms in a harmonic potential, using the previously
obtained results. The dipolar relaxation rate Ny, is given by (see Sect. 3.4):

Nd,'p ~ —ngGnge, (7.28)

where Go & 1 x 10715 cm?®/s is the dipolar rate constant at the field minimum and
Vae(T) = V1(T/2) is the second order effective volume. The corresponding rate of
energy loss Eg, from the sample is given by (see Sect. 3.5):

Edip ~ Ndip(7‘2e + 3/2)kBTs (729)

where ¥2.(T)ksT = (1/2)1(T/2)ksT is the second order average potential energy
per particle. For a harmonic potential 7;. = 3/4. The total energy per trapped
particle is by definition equal to (7ie + 3/2)ksT, so a steady state temperature is
reached when

Egip + Eey = (Naip + Noo)(11e + 3/2)k5T. (7.30)

Using Eqs. (7.26) and the fact that Vi (T) ~ T%? and m. = 3/2 for a harmonic
potential, Eq. (7.30) can be rewritten in the form

8\/§ VOl

3 Go

From Eq. (7.31) follows that Tpnin = 57 mK is the lowest temperature that can be

reached in a harmonic potential with a well depth €;./kp = 0.8 K, which corresponds

to n = 14.5. A temperature Thin = 90K may be reached for n = 10, i.e., by

lowering the evaporation barrier to €r/ks = 0.9mK (corresponding to B, — By =

13.5Gauss). These numbers are approximately the same for other shapes of the

potential [10]. In practice Tmin is always approximately one tenth of the trapping
depth.

As was already explained in Chapter 3, Sect. 3.5, collisional relaxation heating

(n* — 6n — T)exp(—n) = 1. (7.31)

does not play any role of importance in the experiments described in this work.
Collisions with relatively high-energy *He atoms, which are sprayed from a “hot”
spot on the cell wall, was probably the dominant heating mechanism in the evapo-
ration measurements. Since, unlike collisional relaxation, this is not a second order
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process, the background gas heating cannot be neutralized in a density independent
way by evaporative cooling and the temperature will therefore never reach a steady
state value. Initially, the relatively high densities in the trapped sample lead to
very efficient evaporative cooling and the sample cools in spite of background gas
heating. However, the cooling per trapped particle becomes less as the tempera-
ture and number of trapped particles drop. On the other hand, the heating per
trapped particle due to background gas is approximately independent of the density
and the temperature of the trapped gas. As a consequence, the evaporative cooling
will eventually be overcome by background gas heating and the sample will heat up
again. The temperature of the trapped gas will go through a minimum; the value
of the minimum temperature depends on the initial values of both T' and nq.

7.3 Evaporation measurements

7.3.1 3-point transmission spectroscopy

We have measured the evolution of T and no during evaporative cooling by means
of transmission spectroscopy. As will be shown, the distribution of particles changes
quite rapidly during the onset of the evaporation, typically on a time scale of a
few seconds under our conditions, so it is not possible to monitor 7' and ng by
full spectral scans of the 2P multiplet, which typically take 10 — 30s (Chapter 6).
Instead, we keep track of only a small, but characteristic, part of the spectrum,
using a chain of three acousto-optic modulators (AOM, see Chapter 5, Sect. 5.3).
Our AOM arrangement enables fast pulse-to-pulse switching of the VUV frequency
between v — 0.48 GHz, v + 0.48 GHz, and v + 0.90 GHz, where v is the 6t harmonic
of the cw laser frequency. In this way the evolution of a small part of the spectrum
can be recorded at three fixed frequencies with a time resolution determined by the
repetition rate of the L, pulses (maximum rep. rate ~ 50 Hz).

In order to determine T and ng during the evaporation process with a minimum of
particle loss due to optical pumping, the frequency v was tuned to a fixed frequency
in the blue wing of the oy line (see Fig. 7.3). The reason for choosing this part of
the spectrum is the fact that the oy transition is the only transition which forms a
closed optical cycle. In addition, the oy line is the only line with a positive Zeeman
shift, so contributions from other lines are strongly suppressed in its blue wing. As
a result the transmission ¢, of the sample in the blue wing of oy is a well-behaved,
monotonous function of v, T', and ng. In order to calculate to(v, T,n0) we use the
theory of Chapter 6. We assume that before switching on the pump the density
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Figure 7.3: Transmission spectrum recorded with left-circularly polarized light. The ar-
rows indicate the three AOM frequencies. The vertical bars denote the resonant frequencies
of the five allowed transitions for B = By.

distribution is given by the ordinary Boltzmann distribution (7.32):
n(F) = noexp[~U,()/ksT), (7.32)

and after switching on the pump by the “pumped” density distribution (Sect. 3.2.1):

n,(F) = n(F) [erf( ’ 9(7-')) 3_ Up(f) exp(—etr ;Blg(f') )] . (7_33)

Using these parametrizations of the density distributions there should be no discon-

tinuity in T and no, according to our model, when switching on the pump. The
exact calculation of the transmission gives rise to complicated functions t4(v, T, no).
However, using some simplifications a relatively simple expression may be derived
‘which is a good first order approximation for ¢, and which gives somewhat more
insight in the method of 3-point transmission spectroscopy

Making use of the fact that approximately B || E and that, to a good approx-
imation, only the o; resonance contributes, the vector character of the light and
dispersive effects may be neglected. The extinction of the Lyman-« intensity I is
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then described by I71(8I/3z) = no (Sect. 6.5), where o is the local absorption
cross section. The o7 resonant absorption cross section is independent of B and its
resonant frequency is a linear function of B. In the relatively high fields correspond-
ing to the far blue wing of o1, B ~ 22. If we approximate the local absorption line
shape by a é-function (thus neglecting the Doppler broadening with respect to the
Zeeman broadening) and we use the ordinary Boltzmann density distribution (7.32),
the following simple form for the L, transmission ¢, in the blue wing of o; may be
derived:

Inty = —oonolor/Av,/Avexp(—hAv/kpT). (7.34)
Here 0o = 3)\% /27 and Av = pp(B — B,)/h is the detuning from the o, resonant
frequency at the trap minimum. The length £,1/Av, /Av is an effective extinction
length, with £p ~ 0.5mm and Av, the detuning for B = B,,. Eq. (7.34) is a good
first order approximation for the dependence of t, on A, T, and no. Clearly, if
the transmission ¢, is known for two values of Av, then T and no are uniquely
determined. In practice we measure t, for three different values of Av, which allows
us to check the consistency of the method and to make an estimate of the error.
In the actual analysis of our data we make use of a more precise parametrization,
in which £, is a slowly varying function of Av, T, and ng. Details related to, e.g.,
Doppler broadening, the finite radial extent of the sample, and the fact that after
starting the evaporation the pumped distribution applies instead of a Boltzmann
density distribution, are lumped into £,. Eq. (7.34) holds for left-circularly polarized
light. For arbitrary polarization t, should be transformed appropiately.

7.3.2 Dynamics of evaporative cooling

In Fig. 7.4 the transmission versus time is shown during evaporation, at the three
frequencies indicated by arrows in Fig. 7.3. The data shown were taken on a single
sample of trapped H{ with an integration time of 80 ms (4 pulses) per data point.
The jump at t = 38 s coincides with the triggering of the evaporation bolometer and
marks the “immediate” removal of a part of the sample. The inset reveals that this
removal takes about 0.5s, consistent with Knudsen flow to the pump, impeded by
the presence of the magnetic potential. To determine T and ng, the three data points
at each time step are fitted to Eq. (7.34), after filtering the raw data (time constant
0.5 s). The result is shown in Fig. 7.5. For the calculation of the T and no data
points the proper density distributions are used, i.e., an ordinary Boltzmann density
distribution (Eq. (7.32)) for ¢ < 38s and a pumped density distribution (Eq. (7.33))
for ¢ > 38s. Therefore, for ¢t < 38s, T is the thermodynamical temperature of the
gas and ng the central density, whereas for ¢ > 38s T and ng should be interpreted
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Figure 7.4: Transmission vs time for three fixed frequencies (circles: v—0.48 GHz; squares:
v +0.48 GHz; triangles: v +0.90 GHz) in the blue wing of the oy line. The jump at ¢ = 38s

(inset) coincides with the triggering of the evaporation.

as the usual parameters characterizing the pumped distribution (see Sect. 3.2.1).
Initially the gas is in thermal equilibrium with the cell wall at T=T,~025K
and the density decays quickly due to a surface-induced mechanism. At t = 38s
a substantial fraction (~ 30%) of the trapped gas is removed. After triggering the
bolometer, T immediately drops to well below T,,. The resulting decrease of the
effective volume V}, leads to an increase of ng, in spite of the fact that particles are
being removed.

To describe the observed behaviour quantitatively, we assume that the evolution
of T and ng is determined by the combination of evaporation and collisions with ‘He
background gas. Using the heat balance equation derived in Sect. 3.5, we arrive at
the following equation describing the temperature evolution:

T = Eev - NekaT(71¢ + 3/2)
Nkg(11e + T(0m./0T) + 3/2)

+ Ty (7.35)

146



8f o0

N
(s-wo,,01) °u

42
300 ! ' L 0
9 200
E
F 100 |
0 1 ]
0 50 100 150

time (s)

Figure 7.5: T and no during evaporation calculated from the transmission data shown in
Fig. 7.4. The solid lines are the results of the evaporation model (see text).

The particle loss is given by . .
N N,
N~ N
Here the phenomenological decay time 74 and temperature T, are introduced to
account for the particle loss and heating due to *He background gas. In Sect. 3.5

some rough estimates were made of these quantities; for the description of the mea-

-7 (7.36)

surements, however, they will be used as free fitting parameters. For the calcu-
lation of N, and E., Egs. (7.11), (7.16), (7.21), and (7.22) are used. Further,
Eq. (7.23) is used for the effective volume Vi, = N/ng and for the calculation of
e = (T/V1e)(0Vie/OT), the effective average potential energy per trapped particle
in units kgT.

In Fig. 7.5 the results of the model are compared with the experiméntal data.
The solid curves have been obtained by integrating the coupled differential equations
(7.35) and (7.36). These curves are completely determined by the starting conditions
T; and ng;, and the choice of 74 and Ty. The best fit was obtained by choosing 74 =
90 s and Ty = 0. The time scale 74 = 90 s for particle loss due to *He background gas
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is roughly in agreement with the estimate of Sect. 3.4. Apparently the corresponding
heating term is too small to be observed on the relatively short time scales of our
measurements. The first few seconds after triggéring the bolometer are completely
determined by the evaporation dynamics. The initial sharp drop in T' is due to
the anomalously small value of the heat capacity Nkg[yie + T(d11./9T) + 3/2] of
the pumped distribution at the relatively high initial temperature (see, for instance,
Chapter 3, Fig. 3.5 and Fig. 7.2).

The model gives a .good description of the evaporation process, in view of the
absence of adjustable parameters. It is not possible to improve the fit by using
other values for the elastic scattering cross section (o = 134?) or for the well
depth (€;-/kp = 0.82K). The remaining discrepancy may be partly due to a sys-
tematic experimental error and partly due to the sensitivity of the calculated heat
capacity to the precise shape of the potential well. The heat capacity is calculated
for a potential with a parabolic axial field profile (Eq. 7.17), while the experimental
field (the “long” geometry) has a shape clearly deviating from this (Fig. 2.7). The
effective volume V. in the experimental field is accurately described by Eq. (7.23),
as was shown in Sect. 3.2, but the heat capacity may be much more sensitive to the
exact shape, as it depends on 8%V;./0T?. For this reason it would be interesting
to do similar measurements of the evaporation dynamics in a trapping geometry
which resembles more closely the required parabolic shape (for instance, the “short”
geometry, Fig. 2.7) and to establish whether the discrepancy disappears.

The evaporation measurements described in this chapter are only possible in a
limited temperature range. Due to the fact that the initial temperature is equal
to the wall temperature, T; = T,,, T; cannot be much higher than 0.3K: at higher
temperatures the “He background gas becomes a problem. On the other hand,
for T; = T, < 0.1K the liquid *He wall coverage starts acting as a true pumping
surface so it is no longer possible to switch on the evaporation instantly. However,
if a 3He-*He mixture is used for the wall coverage the trapped H{ gas can be in
thermal equilibrium with the cell walls down to T\, = 0.08 K. Consequently, the
initial temperature can in principle be varied over the range 0.08 K < T; < 0.3K by
using different wall coverages. Unfortunately, a spurious radiative heat load on the
cell prevented us from doing this within the framework of this thesis.

7.4 Conclusions

We have studied the dynamics of the evaporation process by in situ diagnostics of
the trapped gas, using Lyman-a spectroscopy. These measurements constitute the
first direct observation of thermalization processes in trapped HT. An analytical
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model has been developed which describes evaporative cooling in a Ioffe trap. The
model is in reasonable agreement with the experimental data.

In view of the importance of evaporative cooling techniques for systems of trapped
particles, the subject deserves a continuation study. The experiments described
above should be extended by varying the initial conditions T; and ny;, and the well
depth B,, — By. The model that has been developed can be tested more rigorously
by using a field configuration which resembles the model potential more closely.
From the theoretical point of view, there are two points which should be addressed
more closely: the assumption of quasi-equilibrium during evaporation and the role
of constants of motion, other than the total energy.

149



References

[1] O. J. Luiten, H. G. C. Werij, I. D. Setija, M. W. Reynolds, T. W. Hijmans,
and J. T. M. Walraven, Phys. Rev. Lett. 70, 544 (1993).

[2] C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt, and C. E. Wieman,
Phys. Rev. Lett. 70, 414 (1993).

[3] H. F. Hess, Phys. Rev. B 34, 3476 (1986).

{4] H. F. Hess, G. P. Kochanski, J. M. Doyle, N. Masuhara, D. Kleppner, and T.
J. Greytak, Phys. Rev. Lett. 59, 672 (1987).

[5] N. Masuhara, J. M. Doyle, J. C. Sandberg, D. Kleppner, T. J. Greytak, H. F.
Hess, and G. P. Kochanski, Phys. Rev. Lett. 61, 935 (1988).

[6] J. M. Doyle, J. C. Sandberg, N. Masuhara, I. A. Yu, D. Kleppner, and T. J.
Greytak, J. Opt. Soc. Am: 6, 2244 (1989).

[7] J. M. Doyle, J. C. Sandberg, I. A. Yu, C. L. Cesar, D. Kleppner, and T. J.
Greytak, Phys. Rev. Lett. 67, 603 (1991).

[8] I D. Setija, H. G. C. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans,
and J. T. M. Walraven, Phys. Rev. Lett. 70, 2257 (1993).

[9] J. J. Berkhout, O. J. Luiten, I. D. Setija, T. W. Hijmans, T. Mizusaki, and J.
T. M. Walraven, Phys. Rev. Lett. 63, 1689 (1989).

[10] J. M. Doyle, Ph. D. Thesis, Massachusetts Institute of Technology (1991).

150



Samenvatting

In dit proefschrift worden de eerste optische experimenten beschreven met atomair
waterstofgas bij zeer lage temperaturen, wandvrij opgesloten in een magneetveld.
We laten zien hoe door vacuiim-ultraviolet spectroscopie van de 1S — 2P Lyman-a
overgang in atomaire waterstof, informatie kan worden verkregen over de tempe-
ratuur en de dichtheid van magnetisch ingevangen gasmonsters. Hierbij wordt ge-
bruik gemaakt van een zeer nauwbandige lichtbron (bandbreedte ongeveer 100 MHz)
bij een golflengte van 121.6 nm, resonant met de Lyman-a overgang. Een belangrijk
voordeel ten opzichte van de traditionele bolometrische meetmethodes is het feit dat
het gas nu ter plaatse bestudeerd kan worden, zonder het monster te vernietigen.
Verder worden resonant-optische detectietechnieken gekenmerkt door een zeer hoge
gevoeligheid, hetgeen van groot belang is bij lage temperaturen, wanneer het aantal
ingevangen deeltjes zeer klein wordt. Tenslotte biedt een resonante lichtbron de
mogelijkheid om het gas optisch te koelen.

Het grootste deel van het proefschrift is gewijd aan een gedetailleerde beschrij-
ving van de theoretische en experimentele aspecten van Lyman-a spectroscopie
van magnetisch ingevangen atomair waterstofgas. Als eerste toepassing van deze
nieuwe diagnostische methode wordt de dynamica bestudeerd van een gasmonster
dat geisoleerd is van de wand door middel van de techniek van het zogenaamde af-
dampend koelen. Deze (niet-optische) koeltechniek is al eerder met succes toegepast
op magnetisch ingevangen waterstofgas en wordt als een goede kanshebber gezien
voor het realiseren van macroscopisch quantumgedrag in dit systeem.

Zowel voor de spectroscopie van het gas als voor de beschrijving van de dy-
namische eigenschappen is nauwkeurige kennis van het magneetveld onontbeerlijk.
In Hoofdstuk 2 wordt een methode ontwikkeld om het veld in onze magnetische
val te berekenen, gebaseerd op een benadering van het veld door middel van een
reeksontwikkeling in cylindercoérdinaten en gebruik makend van veldsymmetrieén.
Deze methode stelt ons in staat gesloten uitdrukkingen af te leiden, die het veld zeer
nauwkeurig beschrijven.

In Hoofdstuk 3 wordt een overzicht gegeven van de eigenschappen van magnetisch
ingevangen monsters van atomair waterstofgas. Het laden van de magnetische val,
het daaropvolgende thermalisatieproces en verscheidene verlies- en opwarmingspro-
cessen worden besproken. We voeren een benaderende uitdrukking in voor het veld
in onze val, die ons in staat stelt gesloten uitdrukkingen voor de toestandsdichtheid
af te leiden. Dit maakt het vervolgens mogelijk om op eenvoudige wijze belangrijke
thermodynamische grootheden van het gas te berekenen als het effectieve volume,
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de soortelijke warmte en de gemiddelde interatomaire botsingsfrequentie.

In de Hoofdstukken 4 en 5 worden de experimentele technieken besproken. In
Hoofdstuk 4 wordt het cryogene deel van de opstelling beschreven, met name de
preparaatruimte in het hart van de mengkoelercryostaat. Bijzondere nieuwe ken-
merken van de opstelling zijn de lichtgeleiding vanaf kamertemperatuur naar het
hart van de cryostaat en de cryogene Lyman-a detectoren in de preparaatruimte.
De laatste maken het mogelijk zowel de intensiteit te meten van het door het gas
doorgelaten licht (transmissie) als de intensiteit van het verstrooide licht (fluores-
centie), onder verschillend strooihoeken. In Hoofdstuk 5 wordt het optische deel
van de opstelling beschreven. De nauwbandige Lyman-« straling (121.6 nm) wordt
opgewekt in krypton gas als de derde harmonische van ultraviolet licht met een
golflengte van 364.8 nm. De efficiéntie van deze methode wordt onderzocht en ver-
scheidene speciale technieken worden besproken om de frequentie van het licht te
stabiliseren en op de gewenste wijze te kunnen verstemmen. Verder wordt ingegaan
op het gebruik van vacuiim-ultraviolet optiek en op de constructie en de gevoeligheid
van de cryogene Lyman-a detectoren.

Hoofdstuk 6 is gewijd aan Lyman-a spectroscopie van de magnetisch ingevangen
waterstofpreparaten. In het eerste deel van het hoofdstuk wordt een gedetailleerde
theoretische behandeling gegeven van de voortplanting van Lyman-a licht door
atomair waterstofgas in een uitwendig magneetveld. Een volledige beschrijving van
dit proces, noodzakelijk voor een correcte kwantitatieve interpretatie van de experi-
mentele spectra in termen van temperatuur en dichtheid, blijkt vrij gecompliceerd te
zijn: De vormen van de spectra worden voornamelijk bepaald door de combinatie van
de dichtheidsverdeling van het gas in de magnetische val en Zeeman-frequentiever-
schuivingen, maar het is essentieel om daarnaast Doppler-frequentieverschuivingen,
de polarisatie van het licht en de optische dichtheid en optische aktiviteit van het
monster in rekening te brengen. In het tweede deel van dit hoofdstuk komen de
experimentele spectra aan de orde. De algemene karakteristieken van de spec-
tra worden kwalitatief verklaard. Tevens laten we zien hoe door vergelijking met
theoretisch berekende spectra de temperatuur en de dichtheid van het magnetisch
ingevangen gas met ongeveer 25% nauwkeurigheid kunnen worden bepaald. Deze
nauwkeurigheid wordt voornamelijk beperkt door de experimentele onzekerheid om-
trent het profiel van de lichtbundel. Enige spectra vertonen onverwachte kenmerken,
die het gevolg blijken te zijn van subtiele polarisatie- en dispersie-effecten. In dit
proefschrift ligt de nadruk op transmissiespectroscopie, maar er worden tevens enkele
fluorescentiespectra geanalyseerd. Verder wordt een deuteriumspectrum getoond,
dat bewijst dat het mogelijk is in onze opstelling om koud atomair deuteriumgas
te maken en vervolgens naar de preparaatruimte te vervoeren. We waren echter
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niet in staat het atomaire deuteriumgas daadwerkelijk wandvrij op te sluiten in de
magnetische val.

In Hoofdstuk 7 wordt de dynamica van het proces van afdampend koelen on-
derzocht. We hebben een model ontwikkeld, zonder aanpasbare parameters, dat
ons in staat stelt gesloten uitdrukkingen af te leiden voor de snelheid waarmee
deeltjes ontsnappen en energie wordt onttrokken aan het gas gedurende afdampend
koelen in onze magnetische val. We laten zien dat gedurende de aanvang van het
afdampproces de energieverdeling van de atomen in de val essentieel afwijkt van de
evenwichtsverdeling. Door middel van Lyman-a transmissie-spectroscopie hebben
we de temperatuur en de dichtheid van het ingevangen gas gevolgd gedurende het
afdampproces. Het nieuwe theoretische model wordt getoetst aan de hand van deze

metingen.
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