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Chapter 1 Introduction

1.1 Background

Nature provides us with three spatial coordinates to describe various phenomena which
happen in our daily life. We often do not use all the coordinates as it is sufficient to
build a description or a model in 2-dimensional or even in 1-dimensional terms using
either symmetry or necessity considerations. Low-dimensional systems were always used
as textbook examples aimed to make the description of phenomena technically easier
and the phenomena themselves physically transparent. This does not mean, however,
that all low-dimensional problems are only poor dependent relatives of the rich family
of colorful and challenging 3D physics. Dilute low-dimensional gases present an example
of many-body systems that stand by themselves and for which the dimensionality is
essential.

Bose-Einstein condensation (BEC) is a quantum statistics phenomenon which occurs
in a 3D system of bosons (particles with an integer spin) when the characteristic thermal
de Broglie wavelength of particles exceeds the mean interparticle separation. Under this
condition it is favorable for particles to occupy a single ground state, and below a critical
temperature the population of this state becomes macroscopic. This phenomenon has
been predicted as a result of the work of Bose [1] and Einstein [2] in the mid twenties.
Since that time, a number of phenomena have been considered as manifestations of BEC:
superfluidity in liquid helium, high-Tc superconductivity in some materials, condensation
of hypothetical Higgs particles, BEC of pions and so on. Bose-Einstein condensation in
dilute gases has been observed in 1995 in pioneering experiments with clouds of magnet-
ically trapped alkali atoms at JILA [3], MIT [4] and RICE [5].

Since then the field of ultracold quantum gases has developed from the point of proof
of principle to a mature field, and hundreds of BEC experiments with different atoms,
atom numbers, temperatures, interatomic interactions and trapping geometries have been
performed. Many experiments focus attention on creating quasi2D and quasi1D trapped
gases by tightly confining the particle motion to zero point oscillations in one or two
directions. Then, kinematically the gas is 2D or 1D, and the difference from purely 2D
or 1D gases is only related to the value of the interparticle interaction which now depends
on the tight confinement. The presence of a shallow confinement in the other direction(s)
allows one to speak of a trapped 1D(2D) gas. Recently, several groups have realized
quasi2D and quasi1D regimes for trapped condensates [6; 7; 8; 9]. One-dimensional
systems of bosons become especially interesting in view of ongoing experiments on atom
lasers and atom chip interferometry. These experiments deal with very elongated atomic
clouds where the problem of phase coherence is of fundamental importance.

Uniform purely 1D and 2D many-body systems are relatively well understood and
described. However, the presence of the trapping potential adds new features to the well-
known problems and attracts our attention to the low-dimensional systems again. The
trapping geometry introduces a finite size of the system and significantly modifies the
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2 Chapter 1. Introduction

structure of energy levels. The effective interparticle interaction plays an important role
in low dimensions and in trapped gases it strongly depends on the tight confinement.
A number of questions arise naturally: How do these features modify the well-known
conclusions about the BEC phase transition, superfluidity and phase coherence properties
of the low-dimensional quantum gases? What are the regimes of quantum degeneracy in
these novel low-dimensional systems?

Trying to find answers to these questions we rely on a long prehistory of the subject.
In uniform low-dimensional Bose systems the true BEC and long-range order are absent
at finite temperatures [10; 11]. At sufficiently low temperatures the density fluctuations
are suppressed as in the 3D case. However, long-wave fluctuations of the phase of the
boson field provide a power law decay of the density matrix in 2D and an exponential
decay in 1D (see [12] for review). The characteristic radius of phase fluctuations exceeds
the healing length, and locally the system is similar to a true condensate. This state of
the system is called quasicondensate or condensate with fluctuating phase (see [13]).

The presence of the quasicondensate is coupled to the phenomenon of superfluidity.
In uniform 2D systems one has the Kosterlitz-Thouless superfluid phase transition asso-
ciated with the formation of bound pairs of vortices below a critical temperature. The
Kostelitz-Thouless transition has been observed in monolayers of liquid helium [14; 15].
Recently, the observation of KTT in the 2D gas of spin-polarized atomic hydrogen on
liquid-helium surface has been reported [16]. BEC of excitons – electron-hole bound pairs
in semiconductors – has been discussed for a long time (see [17; 18; 19; 20] for review).
There are now promising prospects for reaching quantum degeneracy in quasi2D trapped
exciton gases [21; 22; 23; 24]. Bose-Einstein condensation of composite bosons formed
out of tightly bound pairs of electrons (bipolaron mechanism) is one of the explanations
of the high critical temperature in superconducting copper-oxide layers and other HTSC
materials [25]. Non-BCS mechanisms of superconductivity have been reported in quasi1D
wires [26].

From a theoretical point of view, the situation in dilute gases is unique compared
with liquids or HTSC materials. In a gas the characteristic radius of interaction between
particles, Re, is much smaller than the mean interparticle separation, giving rise to a small
parameter (gaseous parameter). In the ultra-cold limit, collisions are dominated by the
s-wave scattering and the scattering amplitude is characterized by a single parameter of
the dimension of length. In low dimensions this quantity is an analog of the 3D scattering
length and replaces the full knowledge of the interaction potential. The existence of the
small gaseous parameter allows an ab initio theoretical description of gases and makes
the physical picture more transparent than in phenomenological theories of liquids.

1.2 This Thesis

In this Thesis we develop a theory for describing regimes of quantum degeneracy and
BEC in ultra-cold low-dimensional trapped gases. The main emphasis is put on the phase
coherence and on the role of interparticle interaction in trapped degenerate gases. The
results of the Thesis are linked to the ongoing and future experimental studies.

In Chapter 2 we introduce fundamental concepts related to BEC in low dimensions
and give a brief overview of literature on low-dimensional quantum gases.
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In Chapter 3 we investigate the interparticle interaction in the quasi2D regime and
discuss the influence of the tight confinement on the properties of degenerate quasi2D
Bose and Fermi gases. The first section is dedicated to the mean-field interaction in
quasi2D Bose gases. We show that it is sensitive to the strength of the tight confinement,
and one can even switch the sign of the interaction by changing the confinement frequency.
We find that well below the BEC transition temperature Tc the equilibrium state of a
quasi2D Bose gas is a true condensate, whereas at intermediate temperatures T < Tc
one can have a quasicondensate.

After the recent progress in cooling 3D Fermi gases to well below the temperature
of quantum degeneracy, achieving superfluidity is a challenging goal and it may require
much lower temperatures. In the second section we show that quasi2D atomic Fermi
gases are promising for achieving superfluid regimes: the regime of BCS pairing for weak
attraction between atoms, and the regime of strong coupling resulting in the formation
of weakly bound quasi2D bosonic dimers. For the BCS limit, we calculate the transition
temperature Tc and discuss how to increase the ratio of Tc to the Fermi energy. In the
other extreme, we analyze the stability of a Bose condensate of the quasi2D dimers.

Active studies on achieving the quasi2D regime [27; 28; 29; 30; 31; 6; 7] for cold gases
raise a subtle question of how 3D collisions and interactions transform into 2D. In a
nondegenerate gas, the crossover from 3D to 2D should take place when the level spacing
for the tightly confining potential becomes comparable with the mean kinetic energy of
particles. In Chapter 4 we develop a theory of pair interatomic collisions at an arbitrary
energy in the presence of tight confinement in one direction. We identify regimes in
which collisions can be no longer regarded as three-dimensional and the 2D nature of
the particle motion is important. We describe the collision-induced energy exchange
between the axial and radial degrees of freedom and analyze the recent experiments on
kinetic properties, thermalization and spin relaxation in a tightly confined gas of Cs
atoms [27; 28; 29; 30].

Chapter 5 is dedicated to quasi1D trapped Bose gases. We discuss the regimes of
quantum degeneracy and obtain the diagram of states for this system. We identify three
regimes: the BEC regimes of a true condensate and quasicondensate, and the regime of
a trapped Tonks gas (gas of impenetrable bosons). We show that the presence of a sharp
cross-over to the BEC regime requires extremely small interaction between particles.

The phase coherence in a degenerate 3D Bose gas depends on the geometry. If the
sample is sufficiently elongated, long-wave thermal fluctuations of the phase in the axial
direction acquire 1D character and can destroy BEC. In Chapter 6 we show that in very
elongated 3D trapped Bose gases, even at temperatures far below the BEC transition
temperature Tc, the equilibrium state is a quasicondensate. At very low temperatures the
phase fluctuations are suppressed and the quasicondensate turns into a true condensate.

A simple and efficient method of observing phase fluctuations in an elongated trapped
Bose-condensed gas has been recently demonstrated in Hannover. The method relies on
the measurement of the density distribution after releasing the gas from the trap. In
the second section of Chapter 6 we analyze this experiment and show how the phase
fluctuations in an elongated BEC transform into the density modulations in the course
of free expansion.





Chapter 2 Overview

In this chapter we give a brief overview of literature on low-dimensional gases and intro-
duce important concepts and methods used in this Thesis.

2.1 BEC of an ideal gas in 1D and 2D harmonic traps

The analysis of trapped gases has been extended mostly to the noninteracting case.
Bagnato and Kleppner [32] have found that in a harmonically trapped ideal 2D Bose gas
occupation of the ground state becomes macroscopic (ordinary BEC transition) below
a critical temperature which depends on the number of particles and trap frequencies.
Ketterle and van Druten have shown that the BEC-like behavior is also present in an
ideal trapped 1D gas [33].

We start with thermodynamic description of an ideal 1D or 2D gas of N bosons
trapped in a harmonic external potential. The gas sample is assumed to be in thermal
equilibrium at temperature T . We will calculate thermodynamic averages for the grand
canonical ensemble, where the system is characterized by a fixed chemical potential µ
and fluctuating number of particles N . In the thermodynamic limit (N → ∞) this is
equivalent to the description in the canonical ensemble (fixed N and fluctuating µ).

Generally, in an arbitrary trap of any dimension the system is characterized by a set
of eigenenergies of an individual atom, {εν}. The (average) total number of particles N
is then related to the temperature and chemical potential by the equation

N =
∑

ν

N ((εν − µ)/T ) , (2.1.1)

where N(z) = 1/(exp z − 1) is the Bose occupation number (we use the convention
kB = 1). The population of the ground state (ε0 = 0) is

N0 =
1

exp(−µ/T )− 1
, (2.1.2)

and in the thermodynamic limit can become macroscopic (comparable with N) only if
µ = 0. For a large but finite number of particles in a trap, N0 becomes comparable with
N and one has a crossover to the BEC regime at a small but finite µ.

We now determine the temperature of the BEC crossover for a 2D Bose gas confined
in a circularly symmetric harmonic trap. In this case the index ν corresponds to the
pair of quantum numbers {nx, ny} in such a way that εnx,ny = ~ω(nx + ny), where ω
is the trap frequency. This particular level structure allows one to rewrite the sum in
Eq. (2.1.1) in the form of an integral

N = N0 +

∫ ∞

0

N((ε− µ)/T )ρ(ε)dε. (2.1.3)
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6 Chapter 2. Overview

Here ρ(ε) = ε/(~ω)2 is the density of states of the system and we have separated the
ground state population. The transformation from the sum to the integral is justified
by the inequality ~ω ¿ T and by the fact that the relative contribution of several low-
energy states is negligible (the density of states goes to zero). For a large population of
the ground state Eq. (2.1.2) gives −µ/T ≈ 1/N0 ¿ 1. Then the first two leading terms
in the expansion of the integral in Eq. (2.1.3) are

∫ ∞

0

N((ε− µ)/T )ρ(ε)dε ≈
(

T

~ω

)2(
π2

6
− 1 + lnN0

N0

)

, (2.1.4)

and Eq. (2.1.3) reduces to the form

N
[

1− (T/Tc)
2
]

= N0 − (T/~ω)2 (1 + lnN0)/N0, (2.1.5)

where

Tc =
√

6N/π2~ω . (2.1.6)

From Eq. (2.1.4) one clearly sees that there is a sharp crossover to the BEC regime at
T ≈ Tc [32; 34]. Below Tc we can neglect the last term in Eq. (2.1.5). Then we obtain
the occupation of the ground state N0 ≈ N

[

1− (T/Tc)
2
]

similar to that in the 3D case.
Above Tc the first term in the rhs of Eq. (2.1.5) can be neglected compared to the second
one. Note that at Tc the de Broglie wavelength of particles λ ∼

√

~2/mTc becomes
comparable with the mean interparticle separation ∼ (Nmω2/Tc)

−1/2. In the crossover
region between the two regimes all terms in Eq. (2.1.5) are equally important and we
estimate the width of the crossover region as

∆T

Tc
∼
√

lnN

N
. (2.1.7)

Solutions of Eq. (2.1.5) for various N are presented in Fig. 2.1.1.

For a large number of particles the relative width of the crossover region is very small.
Therefore, one can speak of an ordinary BEC transition in an ideal harmonically trapped
2D gas.

In the 1D case the spectrum is εn = ~ωn and the density of states is ρ(ε) = 1/~ω.
Here the integral representation Eq. (2.1.3) fails as the integral diverges for −µ/T → 0
and we should correctly take into account the lowest energy levels [33]. In the limit
{−µ, ~ω} ¿ T we rewrite Eq. (2.1.1) in the form

N = N0 +
T

~ω

M
∑

n=1

1

n− µ/~ω +

∞
∑

n=M+1

1

exp(~ωn/T − µ/T )− 1
, (2.1.8)

where the number M satisfies the inequalities 1¿M ¿ T/~ω. The first sum is

M
∑

n=1

1

n− µ/~ω = ψ(M+1−µ/~ω)−ψ(1−µ/~ω) ≈ −ψ(1−µ/~ω)+ln(M−µ/~ω), (2.1.9)
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Figure 2.1.1: The ground state population in a 2D trap versus temperature. The curves
are calculated from Eq. (2.1.5) for various N .

where ψ is the digamma function. The second sum in Eq. (2.1.8) can be transformed to
an integral

∞
∑

n=M+1

1

exp ~ωn−µ
T − 1

≈ T

~ω

∫ ∞

~ωM/T

dx

exp(x− µ/T )− 1
≈ − T

~ω
ln

~ω(M − µ/~ω)
T

.

Finally, eliminating the chemical potential by using the equality −µ ≈ T/N0, we reduce
Eq. (2.1.8) to the form

N − T

~ω
ln

T

~ω
= N0 −

T

~ω
ψ

(

1 +
T

~ωN0

)

. (2.1.10)

As in the 2D case, we have two regimes, with the border between them at Tc determined
by N ≈ (Tc/~ω)[ln(Tc/~ω) + 0.577]. Indeed, below this temperature the first term in
the rhs of Eq. (2.1.10) greatly exceeds the second one and the ground state population
behaves as N0 ≈ N − (T/~ω) ln(T/~ω). The crossover region is determined as the
temperature interval where both terms are equally important:

∆T/Tc ∼ 1/ lnN. (2.1.11)

The crossover temperature in a 1D trap is Tc ≈ N~ω/ lnN and, in contrast to 3D and
2D cases, is much lower than the degeneracy temperature Td ≈ N~ω. In Fig. 2.1.2 we
present N0(T ) calculated from Eq. (2.1.10).

The crossover region in the 1D case is much wider than in 2D. This is not surprising
as the crossover itself is present only due to the discrete structure of the trap levels. The
quasiclassical calculation does not lead to any crossover [32].

Note that an ideal 2D Bose gas in a finite box has the density of states independent
of energy, just like a harmonically trapped 1D gas. Therefore, it is characterized by a
similar crossover to the BEC regime [35; 33].
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Figure 2.1.2: The ground state population in a 1D trap versus temperature. The curves
are calculated from Eq. (2.1.10) for various N .

2.2 Interacting Bose gas

We now consider an interacting d-dimensional Bose gas in a trap with the potential U(r).
The Hamiltonian of the system in the second quantization reads (see [36])

Ĥ =

∫

r

Ψ̂†(r)

(

−~2∇2

2m
+ U(r)

)

Ψ̂(r)+
1

2

∫∫

r, r′
V (|r−r′|)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r)Ψ̂(r′), (2.2.1)

where V (r) is the potential of interaction between two atoms and Ψ̂(r), Ψ̂†(r) are the
Boson field operators satisfying the commutation relations

[Ψ̂(r), Ψ̂(r′)] = 0, [Ψ̂(r), Ψ̂†(r′)] = δ(r− r′). (2.2.2)

In the Heisenberg representation the time derivative of Ψ̂(r) is given by

i~
∂Ψ̂

∂t
= −[Ĥ, Ψ̂] =

(

−~2∇2

2m
+ U(r) +

∫

r′
V (|r− r′|)Ψ̂†(r′)Ψ̂(r′)

)

Ψ̂. (2.2.3)

Using the commutation relations (2.2.2) we rewrite Eq. (2.2.3) in the form

i~
∂Ψ̂

∂t
+ V (0)Ψ̂ = −~2∇2

2m
Ψ̂ + U(r)Ψ̂ + Ψ̂

∫

r′
V (|r− r′|)Ψ̂†(r′)Ψ̂(r′). (2.2.4)

The term V (0)Ψ̂ gives only a trivial time dependence and can be eliminated by the
substitution Ψ̂→ Ψ̂ exp(iV (0)t/~). Let us now turn to the density-phase representation
of the field operators

Ψ̂ = exp(iφ̂)
√
n̂, Ψ̂† =

√
n̂ exp(−iφ̂), (2.2.5)
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where the density and phase operators are real and satisfy the commutation relation

[n̂(r), φ̂(r′)] = iδ(r− r′). (2.2.6)

Substituting Eqs. (2.2.5) into Eq. (2.2.4) and separating real and imaginary parts, we get
the coupled continuity and Euler hydrodynamic equations for the density and velocity
v̂ = (~/m)∇φ̂:

−~
∂n̂

∂t
=

~2

m
∇(∇φ̂ n̂) , (2.2.7)

−~
∂φ̂

∂t
=

~2

2m
(∇φ̂)2 − ~2

2m

∇2
√
n̂√
n̂

+ U(r) +

∫

r′
V (|r′ − r|)n̂(r′) . (2.2.8)

Eqs. (2.2.7-2.2.8) are obtained from the Hamiltonian (2.2.1) without any approxi-
mations and, in principle, should describe any property of an interacting Bose gas. At
the same time, these equations are nonlinear and very complicated. However, in a dilute
ultra-cold weakly interacting gas we can use a number of simplifications. The short-range
character of the interatomic potential1 allows us to rewrite the integral in Eq. (2.2.8) as

∫

r′
V (|r′ − r|)n̂(r′) ≈ gn̂(r), (2.2.9)

where the mean-field coupling constant g can also depend on density or on average
momentum of particles (see Chapters 3 and 4).

We further simplify Eqs. (2.2.7-2.2.8) assuming small fluctuations of the density. In
this case, Eq. (2.2.7) shows that fluctuations of the phase gradient are also small. Repre-
senting the density operator as n̂(r) = n0(r)+ δn̂(r) and shifting the phase by −µt/~ we

then linearize Eqs. (2.2.7-2.2.8) with respect to δn̂, ∇φ̂ around the stationary solution

n̂ = n0, ∇φ̂ = 0. The zero order terms give the Gross-Pitaevskii equation for n0:

− ~2

2m

∇2√n0√
n0

+ U(r) + gn0 = µ , (2.2.10)

and the chemical potential µ follows from the normalization condition
∫

r

n0(r) = N . (2.2.11)

The first order terms provide equations for the density and phase fluctuations:

~ ∂(δn̂/
√
n0)/∂t = (−~2∇2/2m+ U(r) + gn0 − µ)(2

√
n0 φ̂) , (2.2.12)

−~ ∂(2
√
n0 φ̂)/∂t = (−~2∇2/2m+ U(r) + 3gn0 − µ)(δn̂/

√
n0) . (2.2.13)

Solutions of Eqs. (2.2.12-2.2.13) are obtained by representing δn̂, ∇φ̂ in terms of
elementary excitations:

δn̂(r) = n0(r)
1/2
∑

ν

if−ν (r)e−iενt/~ âν +H.c. , (2.2.14)

φ̂(r) = [4n0(r)]
−1/2

∑

ν

f+
ν (r)e−iενt/~ âν +H.c. . (2.2.15)

1In this Thesis we do not consider dipolar or charged gases with long-range interatomic forces.
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From Eqs. (2.2.14-2.2.15) we then find equations for the eigenenergies εν and eigenfunc-
tions f±ν of the excitations:

(

−~2∇2/2m+ U(r) + gn0 − µ
)

f+
ν = ενf

−
ν , (2.2.16)

(

−~2∇2/2m+ U(r) + 3gn0 − µ
)

f−ν = ενf
+
ν . (2.2.17)

The commutation relation (2.2.6) ensures that the functions f±ν are normalized by the
condition

1

2

∫

r

(

f+
ν (r)f−ν

∗
(r) + f−ν (r)f+

ν
∗
(r)
)

= 1 . (2.2.18)

Equations (2.2.16-2.2.17) are exactly the same as the Bogolyubov-de Gennes equa-
tions2 for elementary excitations of a Bose-Einstein condensate with the density profile
n0(r). The functions f±ν are related to the well-known Bogolyubov u, v functions by
f±ν = u ± v. We thus see that the assumption of small density fluctuations is sufficient
for having the Bogolyubov spectrum of the excitations, irrespective of the presence or
absence of a true condensate.

The spectrum of elementary excitations of a trapped Bose-condensed gas has been
intensively discussed in literature. In a vast majority of experiments the number of
particles is very large and the chemical potential µ greatly exceeds the level spacing
in the trap. In this case the kinetic energy term in Eq. (2.2.10) is much smaller than
the nonlinear term and can be neglected. This approach is called the Thomas-Fermi
(TF) approximation, and in a harmonic trap the density profile n0 takes the well-known
parabolic shape

n0 = [µ− U(r)]/g. (2.2.19)

In this case, the low-energy excitations (εν ¿ µ) can be found analytically [38; 39;
40]. The dependence of the excitation spectrum on the trapping geometry has been
extensively studied for 3D TF condensates (see [41] for review). For example, in very
elongated cigar-shaped condensates the spectrum of low lying axial excitations reads
εj = ~ωz

√

j(j + 3)/2 [40; 42]. Stringari [42] has found the spectrum for very anisotropic
pancake-shaped condensates. The spectrum of low-energy excitations has also been found
for purely 2D and 1D Thomas-Fermi clouds [43].

In a homogeneous Bose gas the chemical potential µ = gn0 and Eqs. (2.2.16-2.2.18)
give the well-known spectrum and wavefunctions:

ε(k) =
√

E(k) [E(k) + 2µ] , (2.2.20)

f±k =
1√
V

(

ε(k)

E(k)

)±1/2

eik·r , (2.2.21)

where E(k) = ~2k2/2m is the free-particle spectrum, and V is the d-dimensional volume
of the system. The Bogolyubov spectrum (2.2.20) is phonon-like, with ε(k) ≈ cs~k, for
energies of the order of or smaller than µ. This corresponds to momenta k . 1/lc, where
the healing length lc = ~/√mµ. The speed of sound is cs =

√

µ/m. For larger momenta
the spectrum (2.2.20) is particle-like, with ε(k) ≈ E(k) + µ.

2Similar equations have been found by de Gennes [37] for inhomogeneous superconductors.
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The chemical potential µ is an approximate border between two classes of excitations.
In order to analyze the role of these two classes let us separate the operator of the density
fluctuations into two parts: δn̂ = δn̂s + δn̂p, where the indices s and p stand for the
phonon (ε < µ) and free-particle (ε > µ) parts respectively. We now use Eq. (2.2.14) and
calculate the density-density correlation function 〈δn̂s(r1)δn̂s(r2)〉, where the symbol 〈...〉
denotes the statistical average. A straightforward calculation yields

〈n̂′s(r1)n̂
′
s(r2)〉 =

n0

V

∑

ε(k)<µ

E(k)

ε(k)
[2N(ε(k)/T ) + 1] cosk · (r1 − r2) . (2.2.22)

Here we used the equality 〈â†kâk〉 = N(ε(k)/T ) for the equilibrium occupation number
of excitations. Taking into account that this number is always smaller than T/ε(k) we
obtain

〈n̂′s(r1)n̂
′
s(r2)〉/n2

0 . (µ/Td)
d/2 max{(T/µ), 1}, (2.2.23)

where d is the dimension of the system, and the temperature of quantum degeneracy is

Td = ~2n
2/d
0 /m. We then see that well below Td in 2D and 3D weakly interacting gases

the phonon-induced density fluctuations are small and can be neglected. To ensure that
they are small in the one-dimensional gas we require T ¿ (µTd)

1/2 in 1D. Then, omitting
fluctuations originating from the high-energy part (ε > µ) of the spectrum, we represent
the field operator Ψ in the form

Ψ̂ =
√
n0 exp

(

iφ̂s

)

, (2.2.24)

In order to make sure that fluctuations coming from high-energy excitations can be
omitted, we a priori assume that they are small and can be evaluated by linearizing the
field operator Ψ̂ = exp(iφ̂)

√
n̂ with regard to the high-energy part. This is equivalent to

writing the preexponential factor in Eq. (2.2.24) as (
√
n0 +Ψ̂′) instead of just

√
n0. The

operator Ψ̂′ accounts for both density and phase fluctuations and reads

Ψ̂′ = i
∑

ε(k)>µ

uk(r)âke
−iε(k)t/~ − vk(r)â†keiε(k)t/~ . (2.2.25)

At energies significantly larger than µ the function vk = (f+
k − f−k )/2 → 0, and uk =

(f+
k + f−k )/2 → V −1/2 exp(ik · r). The energy itself is ε(k) ≈ E(k) + µ and, hence,

the operator Ψ̂′ describes an ideal gas of Bose particles with chemical potential equal to
−µ. One thus sees that high-energy Bogolyubov excitations correspond to the incoherent
non-condensed part of the gas. The density of this gas is exponentially small at T < µ
and for T & µ it is equal to

〈Ψ̂′†Ψ̂′〉 ≈
∫

ε(k)>µ

N [ε(k)/T ]
ddk

(2π)d
∼ n0 ×



















(T/Td)
3/2 , in 3D

(T/Td) ln(T/µ) , in 2D

T (µTd)
−1/2 , in 1D.

(2.2.26)
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At temperatures T ¿ Td (T ¿ (µTd)
1/2 in the 1D case) the quantity 〈Ψ̂′†Ψ̂′〉 is really

small, which justifies Eq. (2.2.24) for the field operator.
Equation (2.2.24) allows us to calculate correlation functions at low temperatures

to zero order in perturbation theory. For obtaining perturbative corrections, one should
expand Eqs. (2.2.12-2.2.13) up to quadratic terms in δn̂ and φ̂. This provides a correction
for the stationary solution and for the chemical potential as a function of density. One
should then include the low-energy density fluctuations and the high-energy fluctuations
in the expression for the field operator. This is equivalent to proceeding along the lines
of the perturbation theory developed by Popov (see [12]).

2.3 Phase fluctuations and quasicondensates in a uni-

form gas

Bose-Einstein condensation in a uniform gas is associated with the long-range order
in the system, i.e. with the finite value of the one-particle density matrix ρ(r1, r2) =
〈Ψ̂†(r1)Ψ̂(r2)〉 at |r1 − r2| → ∞. Using Eq. (2.2.24) the density matrix at low tempera-
tures can be written in the form [12]

ρ(r1, r2) = n0

〈

e−i[φ̂s(r1)−φ̂s(r2)]
〉

= n0 e
− 1

2

〈

[φ̂s(r1)−φ̂s(r2)]
2
〉

. (2.3.1)

The phase correlator is obtained from Eqs. (2.2.15) and (2.2.21). It reads

〈

[

φ̂s(r)− φ̂s(0)
]2
〉

=
1

2n0V

∑

ε(k)<µ

ε(k)

E(k)
[2N(ε(k)/T ) + 1] (1− cosk · r) , (2.3.2)

In the 3D case this correlator is small even at temperatures larger than µ, where it is

approximately equal to T/(π2Tdn
1/3
0 lc).

The two-dimensional vacuum fluctuations of the phase are negligible and in 2D one
has a true condensate at zero temperature. At finite temperatures the correlator (2.3.2)
takes the form (see [44])

〈

[

φ̂s(r)− φ̂s(0)
]2
〉

≈ T/(πTd) ln(r/lc) . (2.3.3)

This result means that the long-wave fluctuations of the phase of the boson field provide
a power law decay of ρ(r) at r →∞ in contrast to the 3D case. This was first found by
Kane and Kadanoff [44] and is consistent with the Bogolyubov theorem [10; 11] indicating
the absence of a true condensate at finite temperatures in 2D. The power law behavior of
ρ(r) is qualitatively different from the exponential decay at large distances in a classical
gas, which indicates a possibility of phase transition at sufficiently low T . The existence
of a superfluid phase transition in 2D gases (liquids) has been proved by Berezinskii
[45; 46]. Kosterlitz and Thouless [47; 48] found that this transition is associated with the
formation of bound pairs of vortices below a critical temperature TKT which is of the
order of Td. Recently, the exact value of this temperature has been found using Monte
Carlo simulations [49; 50].
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Earlier theoretical studies of 2D systems have been reviewed in [12] and have led to the
conclusion that below the Kosterlitz-Thouless transition (KTT) temperature the Bose
liquid (gas) is characterized by the presence of a quasicondensate, which is a condensate
with fluctuating phase (see [13]). Indeed, from Eqs. (2.3.1) and (2.3.3) we see that the
density matrix decays on a length scale Rφ ≈ lc exp(πTd/T )À lc. In this case the system
can be divided into blocks with a characteristic size greatly exceeding the healing length
lc but smaller than the radius of phase fluctuations Rφ. Then, there is a true condensate
in each block but the phases of different blocks are not correlated with each other.

The situation is similar in the 1D gas at temperatures T ¿ (µTd)
1/2, except for the

presence of a true condensate at T = 0. Eq. (2.3.2) gives
〈

[

φ̂s(r)− φ̂s(0)
]2
〉

≈ T√
µTd

r

lc
+

1

π

√

µ

Td
ln
r

lc
, (2.3.4)

where the first term in the rhs comes from the thermal part and the second one from the
vacuum part of the phase fluctuations. Thus, at zero temperature the density matrix
undergoes a power-law decay [51; 52; 12], and there is no true Bose-Einstein condensate.
This is consistent with a general analysis of 1D Bose gases at T = 0 [53]. At finite
temperatures the long-range order is destroyed by long-wave fluctuations of the phase
leading to an exponential decay of the one-particle density matrix at large distances
[44; 12].

In this Thesis we mostly concentrate on the properties of a trapped 1D Bose gas in
the weakly interacting regime, where the healing length lc = ~/√mng greatly exceeds
the mean interparticle separation 1/n. This corresponds to small values of the parameter
γ = mg/~2n. Our previous discussions of the uniform 1D interacting gas in this chapter
were related to this particular regime. In general, the 1D Bose gas with repulsive short-
range interactions characterized by the coupling constant g > 0 is integrable by using
the Bethe Ansatz at any g and n and has been a subject of extensive theoretical studies
[54; 55; 56; 57]. The equation of state and correlation functions depend crucially on
the parameter γ. The weakly interacting regime (γ ¿ 1) is realized at comparatively
large densities (or small g). For sufficiently small densities (or large g), the parameter
γ À 1 and one has a gas of impenetrable bosons (Tonks gas), where the wavefunction
strongly decreases when particle approach each other. In this respect the system acquires
fermionic properties.

2.4 Realization of BEC’s in lower dimensions

In commonly studied BEC’s in 3D harmonic traps the mean-field interaction greatly
exceeds the level spacings. In this case the Thomas-Fermi approximation can be used
and the shape of the condensate density profile is given by Eq. (2.2.19). For the Thomas-
Fermi condensate the chemical potential equals

µ3D =

(

15N0gm
3/2ω̄3

π29/2

)2/5

, (2.4.1)

where ω̄3 = ωxωyωz, N0 is the number of condensed particles, and g = 4π~2a/m is the
3D coupling constant with a being the 3D scattering length.
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In order to reach quasi-1D or quasi-2D regimes for BEC in harmonic traps one has
to satisfy the condition µ¿ ~ω0, where ω0 is the frequency of the tight confinement. In
cylindrically symmetric traps (ωx = ωy = ω⊥) the approximate crossover to quasi-1D or
quasi-2D, defined by µ3D = ~ω0, occurs if the number of condensate particles becomes

N1D =

√

32~
225ma2

√

ω⊥
ω2
z

; N2D =

√

32~
225ma2

√

ω3
z

ω4
⊥

.

Görlitz et al. [6] have explored the crossover from 3D to 1D and 2D in a 23Na BEC
by reducing the number of the condensed atoms. The scattering length for sodium is
relatively small, a ≈ 28Å , and the traps in this experiment feature extreme aspect ratios
resulting in high numbers N1D > 104 and N2D > 105.

For the 1D case, the condition µ = ~ω⊥ yields a linear density ñ1D ≈ 1/4a, implying
that the linear density of a 1D condensate is limited to less than one atom per scattering
length independent of the radial confinement. Therefore, tight transverse confinement,
as may be achievable in small magnetic waveguides [58; 59; 60; 61; 62; 63] or hollow
laser beam guides [64; 65], is by itself not helpful to increase the number of atoms in
a 1D condensate. Large 1D numbers may be achieved only at the expense of longer
condensates or if the scattering length is smaller.

In anisotropic traps, a primary indicator of crossing the transition temperature for
Bose-Einstein condensation is a sudden change of the aspect ratio of the ballistically
expanding cloud, and an abrupt change in its energy. The transition to lower dimensions
is a smooth cross-over, but has similar indicators. In the 3D Thomas-Fermi limit the
degree of anisotropy of a BEC is independent of the number of atoms N0, whereas in
1D and 2D the aspect ratio depends on N0. Similarly, the release energy in 3D depends
on N0 [41] while in lower dimensions it saturates at the zero-point energy of the tightly
confining dimension(s).

A trapped 3D condensate has a parabolic shape and its radius and half-length are
given by R⊥ =

√

2µ3D/mω2
⊥ and Rz =

√

2µ3D/mω2
z , resulting in an aspect ratio of

R⊥/Rz = ωz/ω⊥. When the 2D regime is reached by reducing the atom number, the
condensate assumes a Gaussian shape with the width lz =

√

~/mωz along the axial
direction, but retains the parabolic shape radially. The radius of a trapped 2D condensate
decreases with N0 as R⊥2D = (128N2

0 a
2~3ωz/πm

3ω4
⊥)

1/8 (see Section 3.1). Similarly, the
half-length of a trapped 1D condensate is Rz2D = (3N0a~ω⊥/mω2

z)
1/3 (see Chapter 5).

In a ballistically expanding cloud the size in the direction(s) of shallow confinement
practically does not change in time compared to a fast expansion in the direction(s) of
tight confinement. In the case of pancake Thomas-Fermi condensates the latter equals
bzRz, where the parameter bz is governed by the scaling equation [66; 67; 68]

b̈z = ω2
z/b

2
z. (2.4.2)

At long times of flight tÀ 1/ωz Eq. (2.4.2) predicts bz ≈
√
2ωzt. Therefore, the aspect

ratio is bz(t)Rz/R⊥ ≈
√
2ω⊥t.

If the cloud is in the quasi-2D regime, the scaling parameter equals bz(t) ≈ ωzt and
the aspect ratio is bz(t)lz/R⊥2D ≈ (π~ω3

z/128mN
2
0 a

2ω4
⊥)

1/8ω⊥t, which is larger than in
the Thomas-Fermi regime. Görlitz et al. [6] have observed the crossover in the change
of the aspect ratio by decreasing the number of particles in the condensate.
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Figure 2.4.1: Signature of 1D condensate. Radial size of expanding condensates with 104

atoms as a function of time of flight. The straight line is the expected behavior for the
expansion of the ground state radial harmonic oscillator with ω⊥/2π = 4kHz

In cigar-shaped Thomas-Fermi condensates at t À 1/ω⊥ the aspect ratio equals
R⊥b⊥(t)/Rz ≈ ωzt. In the quasi-1D regime the radial size expands differently and the
aspect ratio reads

√

~/mω⊥b⊥(t)/Rz1D ≈ (~ω⊥/9N2
0 a

2mω2
z)

1/6ωzt and is larger than
in the Thomas-Fermi case. In both cases the scaling parameter is b⊥(t) ≈ ω⊥t (see
[66]). The change in the aspect ratio with the decrease of the particle number has been
observed in Ref. [6]. Schreck et al. [8] have reached the quasi-1D regime in a 7Li
condensate taking advantage of the small scattering length. Their measurements of the
radial size of the cloud agree with the time evolution of the radial ground state wave
function (see Fig. 2.4.1).

An efficient way to reach the quasi-2D and quasi-1D regimes in trapped condensates
is to apply a periodic potential of an optical lattice to a 3D condensate initially prepared
in a usual magnetic trap. In this way an array of quasi-2D Rb condensates has been
obtained by Burger et al. [7]. Greiner et al. [9] realized an array of quasi-1D Rb
condensates in a two-dimensional periodic dipole force potential, formed by a pair of
standing wave laser fields.

Advantages of this method are obvious: First, an optical lattice can confine a large
array of 2D or 1D systems, which allows measurements with a much higher number of
involved atoms with respect to a single confining potential. Second, the macroscopic
population of a single quantum state in the initial 3D trap naturally transfers the whole
system into 2D or 1D systems well below the degeneracy temperature.





Chapter 3 Quantum degenerate

quasi-2D trapped gases

3.1 Bose-Einstein condensation in quasi-2D trapped

gases

We discuss BEC in quasi-2D trapped gases and find that well below the transition temper-
ature Tc the equilibrium state is a true condensate, whereas at intermediate temperatures
T < Tc one has a quasicondensate (condensate with fluctuating phase). The mean-field
interaction in a quasi-2D gas is sensitive to the frequency ω0 of the (tight) confinement
in the “frozen” direction, and one can switch the sign of the interaction by changing ω0.
Variation of ω0 can also reduce the rates of inelastic processes. This offers promising
prospects for tunable BEC in trapped quasi-2D gases.

The influence of dimensionality of the system of bosons on the presence and character
of Bose-Einstein condensation (BEC) and superfluid phase transition has been a subject
of extensive studies in spatially homogeneous systems. In 2D a true condensate can
only exist at T = 0, and its absence at finite temperatures follows from the Bogolyubov
k−2 theorem and originates from long-wave fluctuations of the phase (see, e.g., [69;
12]). However, as was first pointed out by Kane and Kadanoff [44] and then proved by
Berezinskii [45; 46], there is a superfluid phase transition at sufficiently low T . Kosterlitz
and Thouless [47; 48] found that this transition is associated with the formation of bound
pairs of vortices below the critical temperature TKT = (π~2/2m)ns (m is the atom mass,
and ns the superfluid density just below TKT ). Earlier theoretical studies of 2D systems
have been reviewed in [12] and have led to the conclusion that below the Kosterlitz-
Thouless Transition (KTT) temperature the Bose liquid (gas) is characterized by the
presence of a quasicondensate, that is a condensate with fluctuating phase (see [13]). In
this case the system can be divided into blocks with a characteristic size greatly exceeding
the healing length but smaller than the radius of phase fluctuations. Then, there is a
true condensate in each block but the phases of different blocks are not correlated with
each other.

The KTT has been observed in monolayers of liquid helium [14; 15]. The only dilute
atomic system studied thus far was a 2D gas of spin-polarized atomic hydrogen on liquid-
helium surface (see [70] for review). Recently, the observation of KTT in this system has
been reported [16].

BEC in trapped 2D gases is expected to be qualitatively different. The trapping po-
tential introduces a finite size of the sample, which sets a lower bound for the momentum
of excitations and reduces the phase fluctuations. Moreover, for an ideal 2D Bose gas
in a harmonic potential Bagnato and Kleppner [32] found a macroscopic occupation of
the ground state of the trap (ordinary BEC) at temperatures T < Tc ≈ N1/2~ω, where
N is the number of particles, and ω the trap frequency. Thus, there is a question of

17
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whether an interacting trapped 2D gas supports the ordinary BEC or the KTT type
of a cross-over to the BEC regime1. However, the critical temperature will be always
comparable with Tc of an ideal gas: On approaching Tc from above, the gas density is
nc ∼ N/R2

Tc
, where RTc ≈

√

Tc/mω2 is the thermal size of the cloud, and hence the

KTT temperature is ∼ ~2nc/m ∼ N1/2~ω ≈ Tc.
The discovery of BEC in trapped alkali-atom clouds [3; 4; 5] stimulated a progress

in optical cooling and trapping of atoms. Present facilities allow one to tightly confine
the motion of trapped particles in one direction and to create a (quasi-)2D gas. In other
words, kinematically the gas is 2D, and in the “frozen” direction the particles undergo
zero point oscillations. This requires the frequency of the tight confinement ω0 to be much
larger than the gas temperature T and the mean-field interparticle interaction n0g (n0 is
the gas density, and g the coupling constant). Recent experiments [72; 73; 27; 28; 74; 75]
indicate a realistic possibility of creating quasi-2D trapped gases and achieving the regime
of quantum degeneracy in these systems. The character of BEC will be similar to that
in purely 2D trapped gases, and the main difference is related to the sign and value of
the coupling constant g.

In this section we discuss BEC in quasi-2D trapped gases and arrive at two key con-
clusions. First, well below Tc the phase fluctuations are small, and the equilibrium state
is a true condensate. At intermediate temperatures T < Tc the phase fluctuates on a
distance scale smaller than the Thomas-Fermi size of the gas, and one has a quasicon-
densate (condensate with fluctuating phase). Second, in quasi-2D the coupling constant
g is sensitive to the frequency of the tight confinement ω0 and, for a negative 3D scat-
tering length a, one can switch the mean-field interaction from attractive to repulsive
by increasing ω0. Variation of ω0 can also reduce the rates of inelastic processes. These
findings are promising for tunable BEC.

In a weakly interacting Bose-condensed gas the correlation (healing) length lc =
~/√mn0g (g > 0) should greatly exceed the mean interparticle separation. In (quasi-)2D
the latter is ∼ 1/

√
2πn0, and we obtain a small parameter of the theory, (mg/2π~2)¿ 1

(see [13]).
We first analyze the character of BEC in a harmonically trapped 2D gas with repulsive

interparticle interaction, relying on the calculation of the one-particle density matrix.
Similarly to the spatially homogeneous case [69; 12], at sufficiently low temperatures
only phase fluctuations are relevant. Then the field operator can be written as Ψ̂(R) =

n
1/2
0 (R) exp{iφ̂(R)}, where φ̂(R) is the operator of the phase fluctuations, and n0(R)

the condensate density at T = 0. The one-particle density matrix takes the form [12]

〈Ψ̂†(R)Ψ̂(0)〉 =
√

n0(R)n0(0) exp{−〈(δφ̂(R))2〉/2}. (3.1.1)

Here δφ̂(R) = φ̂(R)− φ̂(0), and R = 0 at the trap center. Formula (3.1.1) is a general-

ization of Eq. (2.3.1) for the inhomogeneous case. For a trapped gas the operator φ̂(R)
is given by (we count only phonon excitations (see Overview))

φ̂(R) =
∑

ν: εν<n0g

[4n0(R)]−1/2f+
ν âν + h.c., (3.1.2)

1Indications of a BEC-type of phase transition in a weakly interacting trapped 2D Bose gas were
obtained in [71].
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where âν is the annihilation operator of an elementary excitation with energy εν , and
f±ν = uν ± vν are the Bogolyubov u, v functions of the excitations.

In the Thomas-Fermi regime the density n0(R) has the parabolic shape, with the
maximum value n0m = n0(0) ≈ (Nm/πg)1/2ω, and the radius RTF ≈ (2µ/mω2)1/2.
The chemical potential is µ = n0mg, and the ratio Tc/µ ≈ (π~2/mg)1/2 À 1. For
calculating the mean square fluctuations of the phase, we explicitly found the (discrete)
spectrum and wavefunctions of excitations with energies εν ¿ µ by using the method
developed for 3D trapped condensates [38; 39; 40]. For excitations with higher energies
we used the WKB approach. At distances R greatly exceeding lc near the trap center,
for T À µ we obtain

〈(δφ̂(R))2〉 ≈ mT

π~2n0m
ln (R/λT ), (3.1.3)

where λT is the wavelength of thermal excitations (εν ≈ T ). Eq. (3.1.3) holds at any
T for a homogeneous gas of density n0m, where at T ¿ µ it reproduces the well-known
result (see [12]). Strictly speaking, for T À µ we should put the healing length lc instead
of λT under the logarithm. However, this gives only a small correction at temperatures
significantly lower than Tc. In a trapped gas for T ¿ µ, due to the contribution of
low-energy excitations, Eq. (3.1.3) acquires a numerical coefficient ranging from 1 at
R¿ RTF to approximately 3 at R ≈ RTF .

The character of the Bose-condensed state is determined by the phase fluctuations at
R ∼ RTF . With logarithmic accuracy, from Eq. (3.1.3) we find

〈(δφ(RTF ))2〉 ≈
(

T

Tc

)

( mg

4π~2

)1/2

lnN. (3.1.4)

In quasi-2D trapped alkali gases one can expect a value ∼ 10−2 or larger for the small
parameter mg/2π~2, and the number of trapped atoms N ranging from 104 to 106. For
T & µ the quantity n0mλ

2
T ≈ (π~2/m/g)(µ/T ) and lnN is always significantly larger

than ln(n0mλ
2
T ).

Then, from Eq. (3.1.4) we identify two BEC regimes. At temperatures well below
Tc the phase fluctuations are small, and there is a true condensate. For intermediate
temperatures T < Tc the phase fluctuations are large and, as the density fluctuations are
suppressed, one has a quasicondensate (condensate with fluctuating phase).

The characteristic radius of the phase fluctuations Rφ ≈ λT exp (π~2/mT ), following

from Eq. (3.1.3) under the condition 〈(δφ̂(R))2〉 ∼ 1, greatly exceeds the healing length.
Therefore, the quasicondensate has the same Thomas-Fermi density profile as the true
condensate. Correlation properties at distances smaller than Rφ and, in particular, local
density correlators are also the same. Hence, one expects the same reduction of inelastic
decay rates as in 3D condensates [13]. However, the phase coherence properties of a
quasicondensate are drastically different. For example, in the MIT type [76] of experiment
on interference of two independently prepared quasicondensates the interference fringes
can significantly differ from the case of pure condensates.

We now calculate the mean-field interparticle interaction in a quasi-2D Bose-condensed
gas, relying on the binary approximation. The coupling constant g is influenced by the
trapping field in the direction z of the tight confinement. For a harmonic tight confine-
ment, the motion of two atoms interacting with each other via the potential V (r) can be
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still separated into their relative and center of mass motion. The former is governed by
V (r) together with the potential VH(z) = mω2

0z
2/4 originating from the tight harmonic

confinement. Then, similarly to the 3D case (see, e.g. [77]), to zero order in perturbation
theory the coupling constant is equal to the vertex of interparticle interaction in vacuum
at zero momenta and frequency2 E = 2µ. For low E > 0 this vertex coincides with the
amplitude of scattering at energy E and, hence, is given by (see [36], pp. 501-502)

g = f(E) =

∫

drψ(r)V (r)ψ∗f (r). (3.1.5)

The wavefunction of the relative motion of a pair of atoms, ψ(r), satisfies the Schrödinger
equation

[

−~2

m
∆+ V (r) + VH(z)− ~ω0

2

]

ψ(r) = Eψ(r). (3.1.6)

The wavefunction of the free x, y motion ψf (r) = ϕ0(z) exp(iqρ), with ϕ0(z) being the
ground state wavefunction for the potential VH(z), ρ= {x, y}, and q = (mE/~2)1/2. As
the vertex of interaction is an analytical function of E, the coupling constant for µ < 0
is obtained by analytical continuation of f(E) to E < 0.

The possibility to omit higher orders in perturbation theory requires the above crite-
rion (mg/2π~2)¿ 1.

The solution of the quasi-2D scattering problem from Eq. (3.1.6) contains two distance
scales: the extension of ψ(r) in the z direction, l0 = (~/mω0)

1/2, and the characteristic
radius Re of the potential V (r). In alkalis it ranges from 20 Å for Li to 100 Å for Cs.
At low energies (qRe ¿ 1) the amplitude f(E) is determined by the scattering of the
s-wave for the motion in the x, y plane.

We first consider the limiting case l0 À Re. Then the relative motion of atoms in the
region of interatomic interaction is not influenced by the tight confinement, and ψ(r) in
Eq. (3.1.5) differs only by a normalization coefficient from the 3D wavefunction:

ψ(r) = ηϕ0(0)ψ3D(r). (3.1.7)

At r À Re we have ψ3D = 1− a/r. Hence, for Re ¿ r ¿ l0, Eq. (3.1.7) takes the form
ψ = ψas(r) = ηϕ0(0)(1− a/r). This expression serves as a boundary condition at r → 0
for the solution of Eq. (3.1.6) with V (r) = 0 (r À Re). The latter can be expressed
through the Green function G(r, r′) of this equation:

ψ(r) = ϕ0(z) exp(iq · ρ) +AG(r, 0), (3.1.8)

The coefficients A and η are obtained by matching the solution (3.1.8) at r → 0 with
ψas(r).

Similarly to the case of a purely 1D harmonic oscillator (see, e.g., [78]), we have

G(r, 0) =
1

l0

∫ ∞

0

dt
exp{i(z2 cot t/4l20 − q2l20t− t/2 + ρ2/4tl20)}

t
√

(4πi)3 sin t
.

2For an inhomogeneous density profile in the x, y plane, µ should be replaced by n0(R)g.
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Under the condition ql0 ¿ 1 (µ¿ ~ω0) at r ¿ l0 we obtain

G ≈ 1

4πr
+

1

2(2π)3/2l0

[

ln

(

1

πq2l20

)

+ iπ

]

. (3.1.9)

Omitting the imaginary part of G (3.1.9) and comparing Eq. (3.1.8) with ψas, we imme-
diately find

η = − A

4πaϕ0(0)
=

[

1 +
a√
2πl0

ln

(

1

πq2l20

)]−1

. (3.1.10)

In Eq. (3.1.5) one can put ψf = ϕ0(0) = (1/2πl20)
1/4. Then, using the well-known

result
∫

drψ3D(r)V (r) = 4π~2a/m, Eqs. (3.1.5), (3.1.7) and (3.1.10) lead to the coupling
constant

g =
2
√
2π~2

m

1

l0/a+ (1/
√
2π) ln (1/πq2l20)

. (3.1.11)

For µ < 0, analytical continuation of Eqs. (3.1.9) and (3.1.11) to E = ~2q2/m < 0 leads
to the replacement E → |E| = 2|µ| in the definition of q.

The coupling constant in quasi-2D depends on q = (2m|µ|/~2)1/2 and, hence, on the
condensate density. In the limit l0 À |a| the logarithmic term in Eq. (3.1.11) is not
important, and g becomes density independent. In this case the quasi-2D gas can be
treated as a 3D condensate with the density profile ∝ exp (−z2/l20) in the z direction.

As follows from Eq. (3.1.11), for repulsive mean-field interaction in 3D (a > 0) the
interaction in quasi-2D is also repulsive. For a < 0 the dependence of g (and the
scattering amplitude f) on l0 has a resonance character (cf. Fig. 3.1.1): The cou-
pling constant changes sign from negative (attraction) at very large l0 to positive for
l0 < l∗ = (|a|/

√
2π) ln (1/πq2l20). The resonance originates from the fact that the modu-

lus of energy coincides with the binding energy of a pair of atoms in the quasi-2D geometry
at l0 ≈ l∗. This should describe the case of Cs, where a . −600 Å [79; 80; 81; 73; 27; 28]
and the condition l0 À Re assumed in Eq. (3.1.11) is satisfied at l0 < l∗. Near the reso-
nance point l∗ the quantity (m|g|/2π~2) becomes large, which violates the perturbation
theory for a Bose-condensed gas and makes Eqs. (3.1.5) and (3.1.11) invalid.

For l0 . Re (except for very small l0) we used directly Eqs. (3.1.5) and (3.1.6) and
calculated numerically the coupling constant g for Li, Na, Rb, and Cs. The potential
V (r) was modeled by the Van der Waals tail, with a hard core at a distance R0 ¿ Re
selected to support many bound states and reproduce the scattering length a. The
numerical results differ slightly from the predictions of Eq. (3.1.11). For Rb and Cs both
are presented in Fig. 3.1.1.

The nature of the g(l0) dependence in quasi-2D can be understood just relying on the
values of g in the purely 2D and 3D cases. In 2D at low energies the mean-field interaction
is always repulsive. This striking difference from the 3D case can be found from the
solution of the 2D scattering problem in [36] and originates from the 2D kinematics: At
distances, where Re ¿ ρ¿ q−1 (q → 0), the solution of the Schrödinger equation for the
(free) relative motion in a pair of atoms reads ψ ∝ ln(ρ/d)/ ln(1/qd) (d > 0). We always
have |ψ|2 increasing with ρ, unless we touch resonances corresponding to the presence of
a bound state with zero energy (d→∞). This means that it is favorable for particles to
be at larger ρ, i.e. they repel each other.
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Figure 3.1.1: The parameter mg/2π~2 versus l0/Re at fixed n0 for Rb (a) and Cs (b).
Solid curves correspond to the numerical results, dashed curves to Eq. (3.1.11). The
dotted curve in (b) shows the result of Eq. (3.1.11) in the region where m|g|/2π~2 ∼ 1.

In quasi-2D for very large l0 the sign of the interparticle interaction is the same
as in 3D. With decreasing l0, the 2D features in the relative motion of atoms become
pronounced, which is described by the logarithmic term in Eq. (3.1.11). Hence, for a > 0
the interaction remains repulsive, whereas for a < 0 the attraction turns to repulsion.

The obtained results are promising for tunable BEC in quasi-2D gases, based on
variations of the tight confinement and, hence, l0. However, as in the MIT studies of
tunable 3D BEC by using Feshbach resonances [82], an “underwater stone” concerns
inelastic losses: Variation of l0 can change the rates of inelastic processes. For optically
trapped atoms in the lowest Zeeman state the most important decay process is 3-body
recombination3.

This process occurs at interparticle distances r . max{Re, |a|} [84; 85]. We will
restrict ourselves to the case where l0 & |a| and is also significantly larger than Re. Then
the character of recombination collisions remains 3-dimensional, and one can treat them
in a similar way as in a 3D gas with the density profile (n0/

√
πl0) exp (−z2/l20).

However, the normalization coefficient of the wavefunction in the incoming channel
will be influenced by the tight confinement. Relying on the Jastrow approximation, we
write this wavefunction as a product of the three wavefunctions ψ(rik), each of them
being a solution of the binary collision problem Eq. (3.1.6). In our limiting case the

3Three-body recombination to a weakly bound quasi-2D molecular state was discussed in [83].
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solution is given by Eq. (3.1.7) divided by ϕ0(0) to reconstruct the density profile in
the z direction. The outgoing wavefunction remains the same as in 3D, since one has a
molecule and an atom with very large kinetic energies.

Thus, in the Jastrow approach we have an additional factor η3 for the amplitude
and η6 for the probability of recombination in a quasi-2D gas compared to the 3D case.
Averaging over the density profile in the z direction, we can relate the quasi-2D rate
constant α to the rate constant in 3D (see [85] for a table of α3D in alkalis):

α = (η6/πl20)α3D. (3.1.12)

As η is given by Eq. (3.1.10), for a > 0 the dependence α(l0) is smooth. For a < 0
the rate constant α peaks at l0 ≈ l∗ and decreases as l40/(l∗ − l0)6 at smaller l0. This
indicates a possibility to reduce recombination losses while maintaining a repulsive mean-
field interaction (g > 0). For Cs already at l0 ≈ 200 Å (l∗ ≈ 500Å) we have α ∼ 10−17

cm4/s, and at densities 108 cm−2 the life-time τ > 1 s.
The predicted possibility to modify the mean-field interaction and reduce inelastic

losses by varying the frequency of the tight confinement opens new handles on tunable
BEC in quasi-2D gases. These experiments can be combined with measurements of
non-trivial phase coherence properties of condensates with fluctuating phase.

3.2 Superfluid transition in quasi-2D Fermi gases

We show that atomic Fermi gases in quasi-2D geometries are promising for achieving
superfluidity. In the regime of BCS pairing for weak attraction, we calculate the critical
temperature Tc and analyze possibilities of increasing the ratio of Tc to the Fermi energy.
In the opposite limit, where a strong coupling leads to the formation of weakly bound
quasi-2D dimers, we find that their Bose-Einstein condensate will be stable on a long
time scale.

Recent progress in trapping and cooling of Fermi isotopes of K [86; 87; 88; 89] and
Li [90; 8; 91; 92; 93; 94] has shown the ability to go far below the temperature of
quantum degeneracy and to manipulate independently the trapping geometry, density,
temperature and interparticle interaction. The Duke experiment [95] presents intriguing
results on the possibility of achieving a superfluid phase transition in the two-component
Fermi gas of 6Li.

Two-dimensional Fermi gases have striking features not encountered in 3D. In the
superfluid state, thermal fluctuations of the phase of the order parameter strongly modify
the phase coherence properties. The interaction strength depends logarithmically on the
relative energy of the colliding atoms. For degenerate Fermi gases this energy is of the
order of the Fermi energy εF which is proportional to the 2D density n. Accordingly, the
exponential dependence of the BCS transition temperature on the interaction strength
transforms into a power law dependence on the density: Tc ∝ n1/2 [96; 97; 98; 99].
This suggests a unique possibility to cross the critical point by adiabatically expanding a
degenerate Fermi gas. Since the ratio T/εF remains unchanged, the temperature scales
as n and decreases with density faster than Tc.
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Experimentally it is possible to achieve the quasi-2D regime by confining the atoms
in one direction so tightly that the corresponding level spacing exceeds the Fermi energy.
Under this condition the degenerate Fermi gas is kinematically two-dimensional. Thus
far, this regime has been reached for Cs atoms [73; 27; 74; 75; 30; 31] and for Bose-
Einstein condensates of Na [6] and Rb [7].

In the quasi-2D regime the mean-field interaction between particles exhibits a similar
logarithmic dependence on the particle energy as in the purely 2D case (see Section 3.1
and Chapter 4). The amplitude of the s-wave scattering turns out to be sensitive to
the strength of the tight confinement. This opens new handles on manipulations of the
interparticle interaction and superfluid pairing.

In this section we show that atomic Fermi gases in quasi-2D geometries can become
strong competitors of 3D gases in achieving superfluidity. The ability to increase the
interparticle interaction by tuning the trap frequencies gives an opportunity to realize a
transition from the standard BCS pairing in the case of weak attraction to the limit of
strong interactions and pairing in coordinate space. In the latter case one eventually gets
a dilute system of weakly bound quasi-2D dimers of fermionic atoms, which can undergo
Bose-Einstein condensation. For the BCS case, we calculate the critical temperature Tc
to second order in perturbation theory and discuss possibilities of increasing the ratio
Tc/εF . In the other extreme, we find that the interaction between the quasi-2D dimers is
repulsive, and their collisional relaxation and decay are strongly suppressed. This allows
us to conclude that BEC of these composite bosons will be stable on a long time scale.

We consider an ultracold two-component Fermi gas in the quasi-2D regime and confine
ourselves to the s-wave interaction and superfluid pairing between atoms of different
components. We assume that the characteristic radius of the interaction potential is
much smaller than the harmonic oscillator length in the tightly confined direction, l0 =
(~/mω0)

1/2, where m is the atom mass, and ω0 is the confinement frequency. Then the
interaction problem involves two length scales: l0 and the 3D scattering length a. For
a < 0 and |a| ¿ l0, there is a peculiar quasi-2D weakly bound s-state of two particles,
with the binding energy (see Chapter 4)

ε0 = 0.915(~ω0/π) exp (−
√
2πl0/|a|)¿ ~ω0. (3.2.1)

In this case the coupling constant for the intercomponent interaction takes the form
g = (4π~2/m) ln−1(ε0/ε), where the relative collision energy ε is assumed to be either
much smaller or much larger than ε0 (see Chapter 4). As in degenerate Fermi gases one
has ε ∼ εF , the interaction is attractive (g < 0) if the density is sufficiently high and one
satisfies the inequality

ε0/εF ¿ 1. (3.2.2)

Thus, the inequality (3.2.2) is the necessary condition for the BCS pairing. For
finding the critical temperature Tc below which the formation of Cooper pairs becomes
favorable, we go beyond the simple BCS approach and proceed along the lines of the
theory developed by Gor’kov and Melik-Barkhudarov for the 3D case [100].

The critical temperature Tc is determined as the highest temperature for which the
linearized equation for the order parameter (gap) ∆ = 〈gΨ̂Ψ̂〉 has a nontrivial solution
[101]. Assuming that the quasi-2D gas is uniform in two in-plane directions, the gap
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Figure 3.2.1: The leading contributions to δV (q,q′).

equation in the momentum space takes the 2D form

∆(q) ≈ −
∫ {

~2

m
f(z,q,q′)

[

K(q′) +
1

z − ξ(q′) + i0

]

+ δV (q,q′)K(q′)

}

∆(q′)
d2q′

(2π)2
,

(3.2.3)
where K(q) = (1/2ξ(q)) tanh(ξ(q)/2T ), ξ(q) = ~2q2/2m − µ, µ ≈ εF = π~2n/m is the
chemical potential, and n is the total density of the two equally populated components.
The first term in the rhs of Eq. (3.2.3) results from the direct interaction between parti-
cles, and we renormalized the interaction potential in terms of the scattering amplitude
f (vertex function). The latter is a solution of the quasi-2D scattering problem. The
parameter z has a meaning of the total energy of colliding particles in their center of
mass reference frame. It is of the order of εF and drops out of the final answer. The term
δV (q,q′) describes the modification of the interparticle interaction due to the presence
of other particles (many-body effects). The leading contributions to this term are second
order in the scattering amplitude. They are shown in Fig. 3.2.1 and correspond to an
indirect interaction between two particles when one of them interacts with a particle-
hole pair virtually created from the ground state (filled Fermi sea) by the other particle.
These second order contributions are important for the absolute value of the critical tem-
perature (preexponential factor in the 3D case), whereas higher order terms involving
more interaction events can be neglected.

The amplitude f is independent of the momenta q,q′ and we will use the 2D relation
(see [12])

f = 4π ln−1{ε0/(−z)}. (3.2.4)

The last term in the rhs of Eq. (3.2.3) is a small correction, since δV ∼ f 2. Accordingly,
the quantity |f | represents a small parameter of the theory. In the quasi-2D regime
(z ¿ ~ω0) the motion of particles in the tightly confined direction provides a correction
to Eq. (3.2.4), which is ∼ (z/~ω0)f

2 (see Chapter 4). It is much smaller than δV and
will be omitted.

Equations (3.2.3) and (3.2.4) show that the momentum dependence of the order
parameter appears only due to the second order term that contains many-body contri-
butions to the interparticle interaction δV . The latter is a function of p = |q + q′| and
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rapidly decays for p > 2qF , where qF =
√
2mµ/~ is the Fermi momentum. For p ≤ 2qF

the quantity δV is almost constant. Therefore, one has ∆(q′) ≈ ∆(qF ) in a wide momen-
tum range near the Fermi surface. Then, for q = qF a direct integration of Eq. (3.2.3)
yields

∆(qF ) = −
f(z)

4π
∆(qF ) ln

(

− 2µz

π2T 2
e2γ
)

− δV (qF , qF )
m

2π~2
ln
(

C
µ

T

)

∆(qF ),

where γ ≈ 0.5772 is the Euler constant, and C is a numerical factor determined by the
momentum dependence of ∆ and δV . The calculation of δV (qF , qF ) is straightforward
and gives δV (qF , qF ) = (~2/2πm)f2(2µ). Then, using Eq. (3.2.4) we obtain the critical
temperature

Tc ≈ (2µ/π) exp
(

γ − 1− |2πRef−1(2µ)|
)

.

The exponent in this equation should be large and the quantity Ref−1(2µ) should be
negative. As the chemical potential is µ ≈ εF , from Eq. (3.2.4) one sees that these
requirements are reached under the condition (3.2.2). Using Eqs. (3.2.1) and (3.2.4) the
critical temperature takes the form

Tc=
γ
√
2ε0εF
πe

= 0.16
√

εF~ω0 exp

(

−
√

π

2

l0
|a|

)

¿ εF . (3.2.5)

The relative correction to this result is of the order of 1/| ln(ε0/εF )| ¿ 1.
Note that Eq. (3.2.5) predicts by a factor of e smaller value for the critical temperature

than a simple BCS calculation4. This means that the attractive interaction between
particles becomes weaker once we take into account the polarization of the medium.

The ratio Tc/εF is not necessarily very small. For example, using Feshbach resonances
the scattering length is tunable over a wide interval of negative values [86; 87; 91; 92;
93; 94]. Keeping the exponential term equal to 0.05 in Eq. (3.2.5), with ω0 ∼ 100 kHz
we obtain Tc/εF ∼ 0.1 for 2D densities n ∼ 109 cm−2 (Tc ∼ 40 nK).

As in the purely 2D case [96; 97; 98; 99], the transition temperature Tc ∝ n1/2 and
the ratio Tc/εF increases with decreasing density as n−1/2. This is a striking difference
from the 3D case, where this ratio decreases exponentially with density. In the presence
of the in-plane confinement, one can approach the BCS transition in a degenerate Fermi
gas by adiabatically expanding the quasi-2D trap in the in-plane direction(s). As the
degeneracy parameter T/εF is conserved in the course of the adiabatic expansion, the
ratio T/Tc will decrease as n1/2. Equations (3.2.1) and (3.2.5) also show that one can
increase ε0 and Tc/ε0 by tuning |a| to larger values or by making the tight confinement
stronger and thus decreasing l0.

What happens if ε0 and εF become comparable with each other, i.e. one reaches
the quasi-2D resonance for two-body collisions? Then Eq. (3.2.5) leads to Tc ∼ εF
and is no longer valid. In fact, for ε0 > εF the formation of bound quasi-2D dimers of
distinguishable fermions becomes energetically favorable and one encounters the problem
of Bose-Einstein condensation of these bosonic molecules. Thus, an increase of the ratio
ε0/εF from small to large values is expected to provide a transformation of the BCS
pairing to molecular BEC. This type of crossover has been discussed in literature in

4For the purely 2D case see this calculation in [96; 102; 103].
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the context of superconductivity [104; 105; 106; 102; 97; 98; 99] and in relation to
superfluidity in 2D films of 3He [96; 103]. The idea of using a Feshbach resonance for
achieving a superfluid transition in the BCS-BEC crossover regime in ultracold 3D Fermi
gases has been proposed in refs. [107; 108].

We will not consider the crossover regime and confine ourselves to the limiting case of
molecular BEC (ε0 À εF ). A subtle question is related to the stability of the expected
condensate, which depends on the interaction between the molecules. For the repulsive
interaction one will have a stable molecular BEC, and the attractive interaction should
cause a collapse.

The molecule-molecule scattering is a 4-body problem described by the Schrödinger
equation
[

−~2

m

(

∇2
r1
+∇2

r2
+
∇2

R

2

)

+ U(r1)+ U(r2)+
∑

±

U

(

r1 + r2

2
±R

)

− E
]

Ψ(r1, r2,R)=0.

(3.2.6)
Here r1 is the distance between two given distinguishable fermions, r2 is the distance
between the other two, R is the distance between the centers of mass of these pairs,
and U is the interatomic potential. The total energy is E = −2ε0 + ε, with ε being the
relative molecule-molecule kinetic energy.

The interaction between molecules is present only at intermolecular distances of the
order of or smaller than the size of a molecule d∗ = ~/√mε0. Therefore, at energies
ε ¿ ε0 the scattering between molecules is dominated by the s-wave channel and can
be analyzed on the basis of the solution of Eq. (3.2.6) for ε = 0. For large R the
corresponding wavefunction is Ψ(r1, r2,R) ≈ K0(r1/d∗)K0(r2/d∗) ln(αR/d∗), where the
decaying Bessel function K0(r1,2/d∗) represents the 2-body bound state. The parameter
α is a universal constant which can be found by matching the quantity ln(αR/d∗) with
the solution of Eq. (3.2.6) at short distances. Finally, matching ln(αR/d∗) with the
wavefunction of free relative motion of two molecules at distances d∗ ¿ R ¿ Λε, where
Λε = ~/

√
mε is their de Broglie wavelength, we obtain the coupling constant (scattering

amplitude) for the interaction between molecules:

gm = (2π~2/m) ln−1(2α2e−2γε0/ε) > 0; ε¿ ε0. (3.2.7)

A precise value of α is not important as it gives rise to higher order corrections in
Eq. (3.2.7). However, in order to make sure that this constant is neither anomalously
large nor anomalously small we have integrated Eq. (3.2.6) numerically. For this purpose,
it is convenient to transform Eq. (3.2.6) into an integral equation for a function which
depends only on three independent coordinates. This has been done by using the method
of ref. [109]. Our calculations lead to α ≈ 1.6. They show the absence of 4-body
weakly bound states and confirm an intuitive picture that the interaction between two
molecules can be qualitatively represented by means of a purely repulsive potential with
the range ∼ d∗. For the interaction between Bose-condensed dimers, in Eq. (3.2.7) one
has ε = 2nmgm ¿ ε0, where nm is the density of the dimers (see Section 3.1). We thus
conclude that a Bose condensate of these weakly bound dimers is stable with respect to
collapse.

The 2D gas of bosons becomes Bose-condensed below the Kosterlitz-Thouless tran-
sition temperature TKT [47; 48] which depends on the interaction between particles.
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According to the recent quantum Monte Carlo simulations [49; 50], for the 2D gas with
the coupling constant (3.2.7) the Kosterlitz-Thouless temperature is given by

TKT = (π~2nm/m) ln−1
[

(η/4π) ln
(

1/nmd
2
∗

)]

, (3.2.8)

where the numerical factor η ≈ 380. For εF ¿ ε0, the density of dimers nm ≈ n/2 and the
parameter (1/nmd

2
∗) ≈ 2πε0/εF . Then, for ε0/εF = 10, Eq. (3.2.8) gives TKT /εF ≈ 0.1

and at densities 108 cm−2 the transition temperature in the case of 6Li is TKT ≈ 30 nK.
The weakly bound dimers that we are considering are molecules in the highest rovibra-

tional state and they can undergo collisional relaxation and decay. The relaxation process
occurs in pair dimer-dimer or dimer-atom collisions. It produces diatomic molecules in
deep bound states and is accompanied by a release of the kinetic energy. The size of these
deeply bound molecules is of the order of the characteristic radius of the interatomic po-
tential Re ¿ l0, and their internal properties are not influenced by the tight confinement.
Therefore, the relaxation can be treated as a 3D process and it requires the presence of
at least three fermionic atoms at distances ∼ Re between them. Since at least two of
them are identical, the relaxation probability acquires a small factor (kRe)

2 compared
to the case of bosons, where k ∼ 1/d∗ =

√

ε0/~ω0/l0 is a characteristic momentum of
atoms. The 3D density of atoms in the quasi-2D geometry is ∼ n/l0. Thus, qualitatively,
the inverse relaxation time can be written as τ−1

rel ∼ αreln(Re/l0)
2(ε0/~ω0)/l0, where αrel

is the relaxation rate constant for the highest rovibrational states of 3D molecules of
two bosonic atoms. We estimate τrel keeping in mind the recent measurements for Rb2

molecules [110] which give αrel ≈ 3 × 10−11 cm3/s. For l0 in the interval from 10−5 to
10−4 cm, the suppression factor (Re/l0)

2(ε0/~ω0) ranges from 10−3 to 10−5 and at 2D
densities n ∼ 108 cm−2 we find the relaxation time τrel of the order of a second or larger.

Dimer-dimer pair collisions can lead to the formation of bound trimers, accompanied
by a release of one of the atoms. The formation of deeply bound trimer states will be
suppressed at least in the same way as the relaxation process discussed above. Therefore,
it is important that there are no weakly bound trimers in (quasi-)2D. Just as in 3D [111;
112] (see also ref. [109]), this can be established by using the zero-range approach (Re →
0). We have performed this analysis along the lines of the 3D work [109]. Qualitatively,
the symmetry of the 3-fermion system containing two identical fermions provides a strong
centrifugal repulsion that does not allow the presence of 3-body bound states. This is in
contrast to 2D bosons where one has two fully symmetric trimer bound states [113].

Thus, the life-time of quasi-2D dimers of fermionic atoms is rather long and one easily
estimates that it greatly exceeds the characteristic time of elastic collisions. One can even
think of achieving BEC in the initially non-condensed gas of dimers produced out of a
non-superfluid atomic Fermi gas under a decrease of n or l0.

In conclusion, we have found the temperature of superfluid phase transition in two-
component quasi-2D Fermi gases. Our results are promising for achieving this transition
in both the regime of BCS pairing and the regime of BEC of weakly bound dimers.



Chapter 4 Interatomic collisions in a

tightly confined Bose gas

We discuss pair interatomic collisions in a Bose gas tightly confined in one (axial) di-
rection and identify two regimes of scattering. In the quasi-2D regime, where the con-
finement frequency ω0 greatly exceeds the gas temperature T , the scattering rates exhibit
2D features of the particle motion. At temperatures T ∼ ~ω0 one has a confinement-
dominated 3D regime, where the confinement can change the momentum dependence of
the scattering amplitudes. We describe the collision-induced energy exchange between the
axial and radial degrees of freedom and analyze recent experiments on thermalization and
spin relaxation rates in a tightly (axially) confined gas of Cs atoms.

4.1 Introduction

Collisional properties of ultra-cold gases strongly confined in one direction attract a great
deal of interest since the start of active studies of spin-polarized atomic hydrogen. In
the latter case the interest was related to recombination and spin relaxation collisions
and to elastic scattering in the (quasi-)2D gas of atomic hydrogen adsorbed on liquid
He surface (see [70] for review). The discovery of Bose-Einstein condensation in trapped
alkali-atom clouds [3; 4; 5] stimulated a progress in evaporative and optical cooling and
in trapping of neutral atoms. Present facilities make it possible to (tightly) confine the
motion of particles in one direction to zero point oscillations. Then, kinematically the
gas is 2D, and the only difference from the purely 2D case is related to the value of the
interparticle interaction which now depends on the tight confinement. Thus, one now
has many more opportunities to create (quasi-)2D gases. In the recent experiments with
optically trapped Cs [73; 27; 74; 75; 29; 30] about 90% of atoms are accumulated in the
ground state of the harmonic oscillator potential in the direction of the tight confinement.

In this chapter we consider a Bose gas tightly confined in one (axial) direction and
discuss how the axial confinement manifests itself in pair elastic and inelastic collisions.
We identify two regimes of scattering. At temperatures T ¿ ~ω0 (ω0 is the axial fre-
quency) only the ground state of the axial harmonic oscillator is occupied, and one has
a quasi-2D regime. In this case, the 2D character of the relative motion of particles at
large separation between them, manifests itself in a logarithmic energy dependence of
the scattering amplitude. For a negative 3D scattering length a, we observe resonances
in the dependence of the elastic scattering rate on a. This is quite different from the
3D case where the scattering rate always increases with a2. The presence of these reso-
nances in quasi-2D follows from the analysis given in Section 3.1 and finds its origin in
increasing role of the 2D kinematics of the particle motion with increasing ratio |a|/l0,
where l0 = (~/mω0)

1/2 is the axial extension of the atom wavefunction, and m the atom
mass.

29
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At temperatures T ∼ ~ω0 we have a confinement-dominated 3D regime of scat-
tering, where the 2D character of the particle motion is no longer pronounced in the
scattering process, but the axial confinement can strongly influence the energy (tem-
perature) dependence of the scattering rate. Treating collisions as three-dimensional,
the wavevector p of the relative motion of colliding atoms does not decrease with T .
The atoms undergo zero-point oscillations in the axial direction and this corresponds
to p ∼ 1/l0. If the 3D scattering amplitude is momentum-dependent at these p, which
is the case for |a| & l0, then the temperature dependence of the elastic collisional rate
becomes much weaker. This means that for a large 3D scattering length the tight axial
confinement suppresses a resonant enhancement of the collisional rate at low energies.
In many of the current experiments with ultra-cold gases one tunes a to large posi-
tive or negative values by varying the magnetic field and achieving Feshbach resonances
[114; 115; 116; 82; 117; 28; 118; 119; 120]. In the unitarity limit (|a| → ∞) the 3D elastic
cross section is σ = 8π/p2 and the rate of 3D elastic collisions strongly increases with
decreasing temperature. The tight confinement of the axial motion makes the scattering
rate practically temperature independent at T ∼ ~ω0. We obtain a similar suppression
of resonances for inelastic collisions, where the resonant temperature dependence in 3D
is related to the energy dependence of the initial wavefunction of colliding atoms. We
analyze the Stanford and ENS experiments on elastic [27; 29; 30] and spin relaxation
[27] collisions in a tightly axially confined gas of cesium atoms and discuss the origin of
significant deviations of the observed collisional rates from the 3D behavior.

We develop a theory to describe the collision-induced energy exchange between ax-
ial and radial degrees of freedom of the particle motion. We establish selection rules
for transitions between particle states in the axial harmonic potential and calculate the
corresponding transition amplitudes. This allows us to consider temperatures T & ~ω0

and analyze thermalization rates in non-equilibrium clouds. In the Stanford and ENS
experiments these clouds were created by means of degenerate Raman sideband cooling
[73; 27; 74; 75; 29; 30] which effectively leads to a gas with different axial (Tz) and radial
(Tρ) temperatures. After the cooling is switched off, the temperatures Tz and Tρ start
to approach each other, and ultimately the gas reaches the equilibrium temperature. At
sufficiently low T only a few axial states are occupied and the temperature dependence
of the corresponding thermalization rates should deviate from the 3D behavior, thus
exhibiting the influence of the axial confinement on the scattering process. We calcu-
late the thermalization rates and establish the conditions under which this influence is
pronounced.

The minimum energy exchange between the radial and axial degrees of freedom of
two colliding atoms is equal to 2~ω0. This follows from the symmetry of the interatomic
potential with respect to simultaneous inversion of the axial coordinates of the two atoms,
which ensures the conservation of parity of their wavefunction under this operation.
Accordingly, the sum of two (axial) vibrational quantum numbers can be changed only by
an even value. The rate of energy transfer from the radial to axial motion is proportional
to the difference between the radial and axial temperatures ∆T = Tρ − Tz, if they are
close to each other. As the total energy of colliding particles should exceed 2~ω0 in order
to enable the energy transfer, the rate of this process at temperatures T < ~ω0 becomes
exponentially small: ∆Ė ∝ ∆T exp(−2~ω0/T ). Due to the presence of the energy gap
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~ω0 in the excitation spectrum of the axial harmonic oscillator, the heat capacity of the
axial degree of freedom is dEz/dTz ∼ exp(−~ω0/T ), which leads to a thermalization
rate ∆Ṫ /∆T ∝ exp(−~ω0/T ). This exponential temperature dependence shows that the
thermalization is suppressed at very low temperatures. One can deeply cool the axial
motion, but radially the cloud remains ”hot” on a very long time scale.

4.2 2D scattering problem

First, we discuss the purely 2D elastic scattering in pair collisions of ultra-cold atoms
interacting via a short-range potential U(ρ). At interparticle distances ρ → ∞ the
wavefunction of colliding atoms is represented as a superposition of the incident plane
wave and scattered circular wave [36]:

ψ(ρ) ≈ eiq·ρ − f(q, φ)
√

i

8πqρ
eiqρ. (4.2.1)

The quantity f(q, φ) is the scattering amplitude, q is the relative momentum of the
atoms, and φ the scattering angle. Note that f(q, φ) in Eq. (4.2.1) differs by a factor of
−√8πq from the 2D scattering amplitude defined in [36].

Similarly to the 3D case, the scattering amplitude is governed by the contribution of
the s-wave scattering if the relative momentum q satisfies the inequality qRe ¿ 1, where
Re is the characteristic radius of interaction. In the case of alkali atoms, the radius Re

is determined by the Van der Waals tail of the potential U(ρ) and ranges from 20 Å for
Li to 100 Å for Cs. The s-wave scattering amplitude is independent of the scattering
angle φ. The probability α(q) for a scattered particle to pass through a circle of radius
ρ per unit time is equal to the intensity of the scattered wave multiplied by 2πρv, where
v = 2~q/m is the relative velocity of colliding atoms. From Eq. (4.2.1) we have

α(q) =
~
2m
|f(q)|2. (4.2.2)

The velocity v is equal to the current density in the incident wave of Eq. (4.2.1). The
ratio of α(q) to this quantity is the 2D cross section which has the dimension of length:

σ(q) = |f(q)|2/4q. (4.2.3)

For the case of identical bosons Eqs. (4.2.2) and (4.2.3) have an extra factor 2 in the rhs.
The quantity α(q) is nothing else than the rate constant of elastic collisions at a

given q. The average of α(q) over the momentum distribution of atoms, multiplied by
the number of pairs of atoms in a unit area, gives the number of scattering events in this
area per unit time.

For finding the s-wave scattering amplitude one has to solve the Schrödinger equation
for the s-wave of the relative motion of colliding atoms at energy ε = ~2q2/m:

[

−~2

m
∆ρ + U(ρ)

]

ψs(q, ρ) =
~2q2

m
ψs(q, ρ). (4.2.4)
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At distances ρÀ Re the relative motion is free and one can omit the interaction between
atoms. Then the solution of Eq. (4.2.4), which for qρ À 1 gives the partial s-wave of
ψ(ρ) (4.2.1), takes the form

ψs(q, ρ) = J0(qρ)−
if(q)

4
H0(qρ), ρ¿ Re, (4.2.5)

where J0 and H0 are the Bessel and Hankel functions.
On the other hand, at distances ρ¿ 1/q one can omit the relative energy of particles

in Eq. (4.2.4). The resulting (zero energy) solution depends on the momentum q only
through a normalization coefficient. In the interval of distances where Re ¿ ρ ¿ 1/q,
the motion is free and this solution becomes ψs ∝ ln(ρ/d), where d > 0 is a characteristic
length that depends on a detailed shape of the potential U(ρ) and has to be found
from the exact solution of Eq. (4.2.4) with q = 0. This logarithmic expression serves
as a boundary condition for ψs(q, ρ) (4.2.5) at qρ ¿ 1, which immediately leads to the
scattering amplitude [36]

f(q) =
2π

ln(1/qd∗) + iπ/2
, (4.2.6)

where d∗ = (d/2) expC and C ≈ 0.577 is the Euler constant.
It is important to mention that the condition qRe ¿ 1 is sufficient for the validity

of Eq. (4.2.6). This equation also holds for the case of resonance scattering, where the
potential U(ρ) supports a weakly bound s-level. In this case the spatial shape of ψs(q, ρ)
at distances where Re ¿ ρ ¿ 1/q, is the same as the shape of the wavefunction of the
weakly bound state. This gives d∗ = ~/√mε0, where ε0 is the binding energy. We thus
have the inequality d∗ À Re, and the quantity qd∗ in Eq. (4.2.6) can be both small and
large. The rate constant α(q) peaks at q = 1/d∗ and decreases as 1/[1 + (4/π2) ln2(qd∗)]
with increasing or decreasing q. Note that the 2D resonance is actually a resonance in
the logarithmic scale of energies. The decrease of α by factor 2 from its maximum value
requires a change of energy ε = ~2q2/m by factor 20.

For qd∗ ¿ 1 one may omit the imaginary part in Eq. (4.2.6), and the scattering
amplitude becomes real and positive1. The positive sign of f(q) has a crucial consequence
for the mean-field interparticle interaction in purely 2D Bose gases. In the ultra-cold limit
where qRe ¿ 1, the scattering amplitude is related to the energy of interaction in a pair
of particles (coupling constant g). For a short-range potential U(ρ), the energy of the
mean-field interaction in a weakly interacting gas is the sum of all pair interactions. In a
uniform Bose-condensed gas the coupling constant g for condensate atoms is equal to the
amplitude of scattering (with an extra factor ~2/m for our definition of f) at the energy
of the relative motion ε = ~2q2/m = 2µ, where µ is the chemical potential2. Hence, we

1For interatomic potentials which have a shallow well (spin-polarized atomic hydrogen), the bound
state with an exponentially small binding energy ε0, characteristic for shallow 2D potential wells [36],
does not exist due to the presence of a strong repulsive core [121]. For potentials with a deep well (alkali
atoms) the situation is similar to that in 3D: There are many bound states and only accidentally one can
encounter a very weakly bound s-level (d∗ → ∞). Thus, for realistic momenta of particles in ultracold
gases we always have the inequality qd∗ ¿ 1.

2This is easily established by comparing the relation for the vertex of elastic interaction, obtained to
zero order in perturbation theory [77], with the expression for the scattering amplitude [36]. In the case
of an inhomogeneous density profile one should replace µ by n0g, where n0 is the coordinate-dependent
condensate density.
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have

g =
~2

m
f(qc) =

2π~2

m

1

ln(1/qcd∗)
> 0; qcd∗ ¿ 1, (4.2.7)

where qc =
√
2mµ/~ is the inverse healing length. In a dilute thermal 2D gas, due to

the logarithmic dependence of f on q, the thermal average of the mean-field interaction
leads to the coupling constant g = (~2/m)f(qT ), where qT =

√
mT/~ is the thermal

momentum of particles. At sufficiently low temperatures, where qT d∗ ¿ 1, we again
have g > 0.

Thus, in an ultra-cold purely 2D gas the coupling constant for the mean-field inter-
action is always positive in the dilute limit and, hence, the interaction is repulsive. This
striking difference from the 3D case is a consequence of the 2D kinematics. For low en-
ergies, at interparticle distances ρÀ Re, the (free) relative motion of a pair of atoms is
governed by the wavefunction ψs ∝ ln (ρ/d). The probability density |ψs|2 of finding two
atoms at a given separation increases with ρ as the condition ρ > d is always reached,
unless the atoms have a bound state with energy ε→ 0 (d→∞). This means that it is
favorable for particles to be at larger ρ, i.e. they repel each other.

4.3 Scattering in axially confined geometries. Gen-

eral approach

In this section we discuss elastic scattering of atoms (tightly) confined in the axial (z)
direction, assuming that the motion in two other (x, y) directions is free. We analyze how
the scattering is influenced by the confinement and calculate a complete set of scattering
amplitudes corresponding to collision-induced transitions between particle states in the
confining potential. We still call this scattering elastic as the internal states of atoms are
not changing.

For a harmonic axial confinement, the motion of two atoms interacting with each
other via the potential V (r) can be still separated into their relative and center-of-mass
motion. The latter drops out of the scattering problem. The relative motion is governed
by the potential V (r) and by the potential VH(z) = mω2

0z
2/4 originating from the axial

confinement with frequency ω0. For the incident wave characterized by the wavevector q

of the motion in the x, y plane and by the quantum number ν of the state in the potential
VH(z), the wavefunction of the relative motion satisfies the Schrödinger equation

[

−~2

m
∆+ V (r) + VH(z)− ~ω0

2

]

ψ(r) = εψ(r), (4.3.1)

where ε = ~2q2/m+ ν~ω0.
The scattering depends crucially on the relation between the radius of interatomic

interaction Re and the characteristic de Broglie wavelength of particles Λ̃ε. The latter is
introduced qualitatively, as the motion along the z axis is tightly confined. Accounting
for the zero point axial oscillations one can write Λ̃ε ∼ ~/

√
mε̃, with ε̃ = ε+ ~ω0/2. We

will consider the ultra-cold limit where

Λ̃ε À Re. (4.3.2)
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Eq. (4.3.2) immediately leads to the inequality qRe ¿ 1, as the de Broglie wavelength
for the motion in the x, y plane is ∼ 1/q. For small ν the harmonic oscillator length
l0 = (~/mω0)

1/2 plays the role of the axial de Broglie wavelength of atoms. Therefore,
the ultra-cold limit (4.3.2) also requires the condition l0 À Re. For large ν, the axial
de Broglie wavelength is ∼ l0/

√
ν and, according to Eq. (4.3.2), this quantity should be

much larger than Re.
Under the condition qRe ¿ 1, the scattering amplitudes are determined by the contri-

bution of the s-wave for the motion in the x, y plane. In the case of identical bosons, the
s-wave scattering requires even values of ν and ν ′ as the wavefunction ψ should conserve
its sign under the transformation z → −z. The quantum numbers ν and ν ′ should be
even also for distinguishable particles. Otherwise at distances of interatomic interaction,
r . Re, the wavefunction ψ will be small at least as Re/l0, ensuring the presence of this
small parameter in the expressions for the scattering amplitudes.

The scattering amplitudes corresponding to transitions from the initial state ν (of
the relative motion in the potential VH(z)) to final states ν ′ are defined through the
asymptotic form of the wavefunction ψ at an infinite separation ρ in the x, y plane:

ψ(r) ≈ ϕν(z)eiq·ρ −
∑

ν′

fνν′(ε)ϕν′(z)

√

i

8πqν′ρ
eiqν′ρ, (4.3.3)

where ϕν(z) and ϕν′(z) are the (real) eigenfunctions of the states ν and ν ′. For each
of the scattered circular waves the value of the momentum qν′ follows from the energy
conservation law ~2q2ν′/m = ε− ~ω0ν

′ > 0.
Relying on the condition (4.3.2), we develop a method that allows us to express

the scattering amplitudes through the 3D scattering length. At interparticle distances
r À Re the relative motion in the x, y plane is free, and the motion along the z axis is gov-
erned only by the harmonic oscillator potential VH(z). Then, the solution of Eq. (4.3.1)
with V (r) = 0 can be expressed through the Green function Gε(r, r

′) of this equation.
Retaining only the s-wave for the motion in the x, y plane, we have

ψ(r) = ϕν(z)J0(qρ) +AνGε(r, 0), (4.3.4)

and the expression for the Green function Gε(r, 0) reads

Gε(r, 0) =
∑

ν′

ϕν′(z)ϕν′(0)×







iH
(1)
0 (qν′ρ)/4; q2ν′ > 0

K0(|qν′ |ρ)/2π; q2ν′ < 0
(4.3.5)

Here the summation is also performed over closed scattering channels for which q2
ν′ < 0.

The function K0(x) = (iπ/2)H0(ix) and it decays as
√

π/2x exp (−x) at x À 1. Thus,
for ρ → ∞ the terms corresponding to the closed channels vanish. Then, comparing
Eq. (4.3.4) at ρ → ∞ with Eq. (4.3.3), we find a relation between the scattering ampli-
tudes and the coefficients Aν :

fνν′ = −Aνϕν′(0)θ(ε− ~ω0ν
′), (4.3.6)

where θ is the step function.
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The condition l0 À Re ensures that the relative motion of atoms in the region of
interatomic interaction is not influenced by the axial (tight) confinement. Therefore,
the wavefunction ψ(r) in the interval of distances where Re ¿ r ¿ Λ̃ε, differs only by a
normalization coefficient from the 3D wavefunction of free motion at zero energy. Writing
this coefficient as ϕν(0)η, we have

ψ(r) ≈ ϕν(0)η(1− a/r). (4.3.7)

Eq. (4.3.7) contains the 3D scattering length a and serves as a boundary condition for
ψ(r) (4.3.4) at r → 0.

For r → 0, a straightforward calculation of the sum in Eq. (4.3.5) yields

Gε(r, 0) ≈
1

4πr
+

1

2(2π)3/2l0
w

(

ε

2~ω0

)

, (4.3.8)

where the complex function w(x) is given by

w(x) = lim
N→∞



2

√

N

π
ln
N

e2
−

N
∑

j=0

(2j − 1)!!

(2j)!!
ln(j − x− i0)



 . (4.3.9)

With the Green function (4.3.8), the wavefunction (4.3.4) at r → 0 should coincide with
ψ(r) (4.3.7). This gives the coefficient

η =
1

1 + (a/
√
2πl0)w(ε/2~ω0)

(4.3.10)

and provides us with the values of the coefficients Aν . Then, using Eq. (4.3.6) and ex-
plicit expressions ϕν(0) = (1/2πl20)

1/4(ν−1)!!/
√
ν!, we immediately obtain the scattering

amplitude f00(ε) and express all other scattering amplitudes through this quantity:

f00(ε) = 4πϕ2
0(0)aη =

2
√
2π

l0/a+ (1/
√
2π)w(ε/2~ω0)

, (4.3.11)

fνν′(ε) = Pνν′f00(ε)θ(ε− ~ω0ν)θ(ε− ~ω0ν
′), (4.3.12)

where

Pνν′ =
ϕν(0)ϕν′(0)

ϕ2
0(0)

=
(ν − 1)!!(ν′ − 1)!!√

ν!ν′!
. (4.3.13)

One can see from Eqs. (4.3.11) and (4.3.12) that for any transition ν → ν ′ the
scattering amplitude is a universal function of the parameters a/l0 and ε/~ω0. The
quantity Pνν′ in Eq. (4.3.12) is nothing else than the relative probability amplitude
of having an axial interparticle separation |z| ¿ l0 (in particular, |z| . Re) for both
incoming (ν) and outgoing (ν ′) channels of the scattering process. It is thus sufficient to
study only the behavior of f00(ε).

We emphasize the presence of two distinct regimes of scattering. The first one, which
we call quasi-2D, requires relative energies ε¿ ~ω0. In this case, the relative motion of
particles is confined to zero point oscillations in the axial direction, and the 2D kinematics
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of the relative motion at interatomic distances ρ > l0 should manifest itself in the depen-
dence of the scattering amplitude on ε/2~ω0 and a/l0. In the other regime, at energies
already comparable with ~ω0, the 2D kinematics is no longer pronounced in the scatter-
ing process. Nevertheless, the latter is still influenced by the (tight) axial confinement.
Qualitatively, the scattering amplitudes become three-dimensional, with a momentum
∼ 1/l0 related to the quantum character of the axial motion. Thus, we can say that this
is a confinement-dominated 3D regime of scattering. With increasing the relative energy
to εÀ ~ω0, the momentum is increasing to

√
mε/~ and the confinement-dominated 3D

regime continuously transforms to ordinary 3D scattering.

4.4 Quasi-2D regime

In the quasi-2D regime, due to the condition ε¿ ~ω0, the incident and scattered waves
have quantum numbers ν = ν ′ = 0 for the motion in the axial harmonic potential VH(z).
The relative energy ε = ~2q2/m and the inequality ql0 ¿ 1 is satisfied. In this case
Eq. (4.3.9) gives

w(ε/2~ω0) = ln (B~ω0/πε) + iπ, (4.4.1)

where B ≈ 0.915. Then our equation (4.3.11) recovers Eq. (3.1.11) of Section 3.1, ob-
tained in this limit (In Section 3.1 the coefficient B was put equal to unity).

Using Eq. (4.4.1) we can represent f00(ε) (4.3.11) in the 2D form (4.2.6), with

d∗ = (d/2) expC =
√

π/B l0 exp (−
√

π/2 l0/a). (4.4.2)

This fact has a physical explanation. Relying on the same arguments as in the purely 2D
case, one finds that in the interval of distances where l0 ¿ ρ ¿ 1/q, the wavefunction
ψ ∝ ϕ0(z) ln (ρ/d). On the other hand, for ρÀ l0 we have ψ(r) = ϕ0(z)ψs(ρ), where ψs
is given by the 2D expression (4.2.5) with f(q) = f00(ε). This follows from Eqs. (4.3.4)-
(4.3.6), as all closed scattering channels (ν ′ 6= 0) in Eq. (4.3.5) for the Green function
Gε(r, 0) have momenta |qν′ | & 1/l0 and will be exponentially suppressed at ρ À l0.
Matching the two expressions for the wavefunction ψ one immediately obtains the 2D
equation (4.2.6). However, the parameter d∗ (4.4.2) can be found only from the solution
of the quasi-2D scattering problem.

We thus conclude that the scattering problem in the quasi-2D regime is equivalent
to the scattering in an effective purely 2D potential which leads to the same value of
d∗. For positive a ¿ l0, this potential can be viewed as a (low) barrier, with a height
V0 ∼ ~2a/ml30 and radius l0. Hence, in the case of positive a we have a small (positive)
scattering amplitude, in accordance with Eqs. (4.2.6) and (4.4.2). For a negative a
satisfying the condition |a| ¿ l0, the effective potential is a shallow well which has a
depth |V0| and radius l0. This shallow well supports a weakly bound state with an
exponentially small binding energy ε0, which leads to an exponentially large d∗ as follows
from Eq. (4.4.2). As a result, we have a resonance energy dependence of the scattering
amplitude f00 at a fixed ratio a/l0, and a resonance behavior of f00 as a function of a/l0
at a fixed ε/~ω0.

The resonance in the energy dependence of f00 is quite similar to the logarithmic-scale
resonance in the purely 2D case, discussed in Section 4.2. The quasi-2D resonance is also
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Figure 4.4.1: The function |f00|2 versus energy for a/l0 = −1 (solid curve), a/l0 = ∞
(dashed curve) and a/l0 = 1 (dotted curve).

described by Eq. (4.2.6), where the length d∗ is now given by Eq. (4.4.2). As expected,
the dependence of f00 on ε is smooth.

The resonance in the dependence of the quasi-2D scattering amplitude on a/l0 has
been found and discussed in Section 3.1. Relying on the above introduced effective 2D
potential for the quasi-2D scattering, we can now explain this resonance on the same
grounds as the resonance in the energy dependence of f00. We will do this in terms of
the relative energy ε and the binding energy in the effective potential, ε0 = ~2/md2

∗ ∝
exp(−

√

π/2l0/|a|). For ε/ε0 = (qd∗)
2 À 1, the scattering amplitude in Eq. (4.2.6) is real

and negative. It increases in magnitude with decreasing ratio ε/ε0, that is with decreasing
q or l0. In the opposite limit, where ε/ε0 ¿ 1, the scattering amplitude is real and positive
and it increases with the ratio ε/ε0. The region of energies ε/ε0 ∼ 1 corresponds to the
resonance, where both the real and imaginary parts of f00 are important. The real part
reaches its maximum at ε/ε0 = exp (−π), drops to zero at ε/ε0 = 1, and acquires the
maximum negative value for ε/ε0 = expπ. The dependence of Imf00 on ε/ε0 is the
same as that of the quantity |f00|2. Both of them peak at ε/ε0 = 1 and decrease with
increasing or decreasing ε/ε0.

Qualitatively, the picture remains the same for |a| ∼ l0. In Fig. 4.4.1 we present the
dependence of |f00|2 on ε/2~ω0 at a/l0 equal to −1, 1, and ∞. In the two last cases we
always have ε/ε0 ¿ 1, and |f00|2 increases with ε at ε ¿ ~ω0. For a/l0 = −1 we have
the above described logarithmic-scale resonance in the behavior of |f00|2.

The quasi-2D resonance is much more pronounced in the dependence of the scattering
amplitude on the parameter a/l0. The reason is that f00 logarithmically depends on the
particle energy, whereas the dependence on a/l0 is a power law. For ε¿ ~ω0, Eq. (4.3.11)
yields

|f00|2 =
16π2

(
√
2π l0/a+ ln (B~ω0/πε))2 + π2

. (4.4.3)
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Figure 4.4.2: The function |f00|2 versus |a|/l0 at various energies for a < 0 (a) and a > 0
(b).

The quantity |f00|2 differs only by a factor of ~/m from the rate constant of elastic
collisions (see Eq. (4.2.2)), and one can think of observing the resonance dependence
of |f00|2 on a/l0 in an experiment. For example, one can keep ε (temperature) and
ω0 constant and vary a by using Feshbach resonances. The resonance is achieved at
a = −

√
2πl0/ ln (B~ω0/πε). This is a striking difference from the 3D case, where the

cross section and rate constant of elastic collisions monotonically increase with a2. In
Fig. 4.4.2 we present |f00|2 versus a/l0 at a fixed ε/~ω0. In order to extend the results
to the region of energies where the validity of the quasi-2D approach is questionable, the
quantity |f00|2 was calculated by using Eq. (4.3.11) for the scattering amplitude. The
resonance is still visible at ε/~ω0 = 0.06 and it disappears for ε/~ω0 = 0.2.

The obtained results allow us to conclude that for |a| & l0 the approximate border line
between the quasi-2D and confinement-dominated 3D regimes is ε ≈ ε∗ = 0.1~ω0. For
|a| ¿ l0, as we will see below, the confinement-dominated regime is practically absent.

The output of kinetic studies in thermal gases is usually related to the mean collisional
frequency (the rate of interatomic collisions) Ω = ᾱn, where ᾱ is the mean rate constant
of elastic collisions, and n the gas density. In the quasi-2D regime, the rate constant ᾱ
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follows directly from Eq. (4.2.2), with twice as large rhs for identical bosons:

ᾱ =
~
m
〈|f00|2〉, (4.4.4)

where the symbol 〈 〉 stands for the thermal average. Our numerical calculations show
that the average of |f00|2 over the Boltzmann distribution of particles only slightly broad-
ens the resonances in Fig. 4.4.1 and Fig. 4.4.2. Due to the logarithmic dependence of
f00 on the relative energy, the thermal average is obtained with a good accuracy if one
simply replaces ε by the gas temperature T . Thus, in order to observe the manifestation
of the 2D features of the particle motion in their collisional rates one has to achieve very
low temperatures T < 0.1~ω0.

4.5 Confinement-dominated 3D regime

In the confinement-dominated 3D regime, where ε ∼ ~ω0, the axial confinement influences
the scattering process through the confined character of the axial motion. In order to
analyze this influence, we first examine the function w(ε/2~ω0) which determines the
energy dependence of the scattering amplitudes. The imaginary part of w(x), following
from Eq. (4.3.9), is equal to

Imw(x) = π

[x]
∑

j=0

(2j − 1)!!

(2j)!!
= 2
√
π
Γ([x] + 3/2)

[x]!
, (4.5.1)

where [x] is the integer part of x. The function Imw(x) has a step-wise behavior as shown
in Fig. 4.5.1. It is constant at non-integer x and undergoes a jump at each integer x,
taking a larger value for larger x. With increasing x, the jumps become smaller and for
xÀ 1 we have Imw(x) ≈ 2

√
πx. The real part of w(x) was calculated numerically from

Eq. (4.3.9) and is also given in Fig. 4.5.1. At any x we have |Rew(x)| < 1, except for
narrow intervals in the vicinity of integer x. In each of these intervals the function Rew(x)
logarithmically goes to infinity as x approaches the corresponding integer value. This is
consistent with the step-wise behavior of Imw(x): As one can see directly from Eq. (4.3.9),
for x approaching an integer j the analytical complex function w ∝ ln (j − x− i0).

The described behavior of the function w(ε/2~ω0) has a direct influence on the scat-
tering amplitudes. For ε/2~ω0 close to an integer j, the amplitude is small and it is
equal to zero for ε = 2~ω0j. This phenomenon originates from the fact that for ε close
to 2~ω0j, a new scattering channel opens (really or virtually). For this channel the mo-
mentum |qν′ | =

√

m|ε− 2~ω0j|/~ is very small. Hence, at distances ρ ¿ |1/qν′ | the
wavefunction ψ (4.3.4) will be determined by the contribution of this low-momentum
term if ρÀ l0. This is clearly seen from Eqs. (4.3.5) and (4.3.4) and makes the situation
somewhat similar to that in the quasi-2D regime of scattering. In the latter case, the
wavefunction ψ (4.3.4) at distances ρ ¿ 1/q is also determined by the contribution of
the low-momentum channel as long as ρ À l0. Then, as follows from the analysis in
Section 4.4, this wavefunction and the scattering amplitude f00 behave as 1/ ln (~ω0/ε)
in the limit ε→ 0. In the present case, the wavefunction ψ and the scattering amplitudes
are small as 1/ ln (~ω0/|ε− 2~ω0j|) for ε→ 2~ω0j.
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Figure 4.5.1: The functions Rew(x) (solid curve) and Imw(x) (dashed lines). The dotted
curve shows the function 2

√
πx corresponding to the asymptotic behavior of Imw at large

x.

The energy dependence of |f00|2 on ε/2~ω0 for a/l0 equal to −1, 1, and ∞ is dis-
played in Fig. 4.5.2. Outside narrow energy intervals in the vicinity of integer ε/2~ω0,
the quantity |f00|2 is a smooth function of ε. One can also see a sort of a step-wise de-
crease of |f00|2 with increasing ε, originating from the step-wise increase of the function
Imw(ε/2~ω0). For ε/2~ω0 close to integer values j > 0 we find a fine structure similar
in nature to the behavior of |f00|2 at ε ¿ ~ω0. For a/l0 = 1 and a/l0 = ∞ there are
narrow dips corresponding to the logarithmic decrease of |f00|2 as ε → 2~ω0j, and for
a/l0 = −1 these dips are accompanied by resonances. Note that the thermal distribution
of particles averages out this fine structure, and the latter will not be pronounced in
kinetic properties.

The difference between the confinement-dominated 3D regime and the ordinary 3D
regime of scattering will manifest itself in the rate of elastic collisions (mean collisional
frequency Ω). For the Boltzmann distribution of particles, one can find this quantity by
turning to the thermal distribution for the relative motion of colliding partners. Collision-
induced transitions between the states of the relative motion in the axial potential VH(z)
are described by the rate constants

ανν′(ε) = (~/m)|fνν′(ε)|2, (4.5.2)

where the scattering amplitudes fνν′ are given by Eqs. (4.3.11) and (4.3.12), and an extra
factor 2 for identical bosons is taken into account. The collisional frequency Ω = ᾱn,
where n is the (2D) density, and the mean rate constant of elastic collisions, ᾱ, is obtained
by averaging ανν′ (4.5.2) over the thermal distribution of relative energies ε and by
making the summation over all possible scattering channels. We thus have

Ω = ᾱn =
∑

νν′

∫

nΛ2
T d

2q

(2π)2
ανν′(ε)A exp

(

− ε
T

)

. (4.5.3)

Here ΛT = (2π~2/mT )1/2 is the thermal de Broglie wavelength, ε = ~2q2/m + ~ω0ν,



Section 4.5. Confinement-dominated 3D regime 41

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

a/l
0
=1

a/l
0
=∞ b)

a/l
0
=-1

 

|f
00

|2

ε/2=ω
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15 a)

|f
00

|2

Figure 4.5.2: The function |f00|2 versus energy. In (a) the parameter a/l0 = −1. In (b)
the dashed curve corresponds to the unitarity limit (a/l0 =∞), and the dotted curve to
a/l0 = 1.

and the quantum numbers ν and ν ′ take only even values. The distribution function
over ν and q is normalized to unity. The normalization coefficient A is obtained by the
summation over both even and odd ν and is equal to

A = 2(1− exp (−~ω0/T )). (4.5.4)

Note that the number of collisions per unit time and unit surface area in the x, y plane
is equal to ᾱn2/2 = Ωn/2.

The manifestation of the tight axial confinement of the particle motion in collisional
rates depends on the relation between the scattering length a and the characteristic
de Broglie wavelength Λ̃ε ∼ ~/

√

m(ε+ ~ω0/2) accounting for the zero point axial os-

cillations. For the scattering length satisfying the condition |a| ¿ Λ̃ε, the scattering
amplitudes are energy independent at any ε, except for extremely small energies in
the quasi-2D regime. This follows directly from Eqs. (4.3.10)-(4.3.12). The condition
|a| ¿ Λ̃ε automatically leads to the inequalities |a| ¿ l0 and |a| ¿ ~/

√
mε. Hence,

the function w(ε/2~ω0) is much smaller than l0/|a|, unless ε . ~ω0 exp (−l0/|a|) (see
Eq. (4.4.1) and Fig. 4.5.1). Accordingly, Eq. (4.3.10) gives η = 1 and Eqs. (4.3.11),
(4.3.12) lead to the scattering amplitudes

fνν′ = 4πaϕν(0)ϕν′(0)θ(ε− ~ω0ν)θ(ε− ~ω0ν
′). (4.5.5)
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The amplitudes (4.5.5) are nothing else than the 3D scattering amplitude averaged over
the axial distribution of particles in the incoming (ν) and outgoing (ν ′) scattering chan-
nels. From Eqs. (4.5.2) and (4.5.5) one obtains the same rate of transitions ν → ν ′ as
in the case of 3D scattering of particles harmonically confined in the axial direction and
interacting with each other via the potential V (r). This is what one should expect, since
under the condition |a| ¿ Λ̃ε the amplitude of 3D scattering is momentum independent.
The integration over d2q in Eq. (4.5.3) leads to the mean collisional frequency

Ω =
~n
2m

(4πa)2A
∑

ν,ν′

ϕ2
ν(0)ϕ

2
ν′(0) exp

(

−~ω0

T
max{ν, ν′}

)

.

Thus, in the case where |a| ¿ Λ̃T , the tight confinement in the axial direction can
manifest itself in the collisional rates only through the axial distribution of particles and
the discrete structure of quantum levels in the axial confining potential. The expression
for the collisional frequency Ω can be reduced to the form

Ω =
8π~n
m

(

a

l0

)2

ξ, (4.5.6)

where the coefficient ξ ranges from 1 at T ¿ ~ω0 to 2/π for T À ~ω0. The condition
|a| ¿ Λ̃T is equivalent to |a| ¿ l0 and qT |a| ¿ 1, where qT =

√
mT/~ is the thermal

momentum of particles. For T À ~ω0, Eq. (4.5.6) gives the collisional frequency which
coincides with the three-dimensional result averaged over the classical Boltzmann profile
of the 3D density in the axial direction, nB(z):

Ω3D = 〈σ3Dv〉
∫

n2
B(z)

n
dz. (4.5.7)

Here σ is the 3D elastic cross section, and v is the relative velocity of colliding particles. In
other words, the quantity (1/2)ᾱn2 = (1/2)Ωn coincides with the number of 3D collisions
per unit time and unit surface area in the x, y plane, given by (1/2)〈σ3Dv〉

∫

n2
B(z)dz.

From Eq. (4.5.6) we conclude that for |a| ¿ l0 the confinement-dominated 3D regime
of scattering is not pronounced. At temperatures T . ~ω0 the collisional rate only
slightly deviates from the ordinary 3D behavior. This has a simple physical explanation.
For |a| ¿ Λ̃T , treating collisions as three-dimensional we have Ω ∼ 8πa2vn3D. At low
temperatures T . ~ω0 the velocity v ∼ ~/ml0 and the 3D density is n3D ∼ n/l0. For
T À ~ω0 we have v ∼ (T/m)1/2 and n3D ∼ n(mω2

0/T )
1/2. In both cases the ”flux”

vn3D ∼ ω0n, and there is only a small numerical difference between the low-T and
high-T collisional frequencies.

The ultra-cold limit (4.3.2) assumes that the characteristic radius of interatomic in-
teraction Re ¿ l0. Therefore, the condition |a| ¿ l0 is always satisfied, unless the
scattering length is anomalously large (|a| À Re). Below we will focus our attention on
this case, assuming that |a| & l0.

Let us first show how the 3D result follows from our analysis at T À ~ω0, irrespective
of the relation between a and Λ̃ε. At these temperatures the main contribution to the sum
in Eq. (4.5.3) comes from ε À ~ω0 and large ν and ν ′. Accordingly, we can replace the
summation over ν and ν ′ by integration. At energies much larger than ~ω0 the quantity
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√
ν/l0 is nothing else than the axial momentum kz and we have ε = ~2(q2 + k2

z)/m.
For these energies the function w(ε/2~ω0) in Eq. (4.3.11) takes its asymptotic form
w ≈ i

√

2πε/~ω0. Using Eq. (4.3.12), this immediately allows us to write

|fνν′ |2 = P 2
νν′

8πa2

l20(1 + p2a2)
= P 2

νν′

σ3D

l20
; ν′ <

ε

~ω0
,

where p =
√

q2 + k2
z is the 3D momentum of the relative motion, and σ3D = 8πa2/(1 +

p2a2) is the cross section for the 3D elastic scattering. For large ν and ν ′, Eq. (4.3.13)
gives Pνν′ = (4/π2νν′)1/4, and the integration over ν ′ in Eq. (4.5.3) multiplies σ3D by
the relative 3D velocity v. Then, turning from the integration over ν to the integration
over the axial momentum, we reduce Eq. (4.5.3) to

Ω =

∫

nΛ2
T d

3p

(2π)3
(σ3Dv)A exp

(

−~2p2

mT

)

, (4.5.8)

and one can easily check that Eq. (4.5.8) coincides with the three-dimensional result Ω3D

(4.5.7).
In the limiting case, where the thermal momentum of particles satisfies the inequality

qT |a| À 1, we obtain

Ω3D =
16~n
m

(

~ω0

T

)

; qT |a| À 1. (4.5.9)

In the opposite limit, where qT |a| ¿ 1, at temperatures T À ~ω0 we automatically have
|a| ¿ ΛT and, accordingly, recover Eq. (4.5.6) with ξ = 2/π:

Ω3D =
16~n
m

(

a

l0

)2

; qT |a| ¿ 1. (4.5.10)

As mentioned in Section 4.4, for |a| & l0 the approximate border line between the
quasi-2D and confinement-dominated 3D regimes is ε∗ ≈ 0.1~ω0. In the temperature
interval ε∗ < T < ~ω0, the leading scattering channel will be the same as in the quasi-
2D case, that is ν = ν ′ = 0. However, the expression for the scattering amplitude f00

is different. From Fig. 4.5.1 and Eq. (4.3.11) one concludes that the real part of the
function w can be neglected and the scattering amplitude takes the form

f00 =
2
√
2π

l0/a+ i
√

π/2
.

Then, retaining only the scattering channel ν = ν ′ = 0, Eqs. (4.5.2) and (4.5.3) yield

Ω =
8π~n
m

(

a

l0

)2
1− exp (−~ω0/T )

1 + πa2/2l20
. (4.5.11)

The difference of Eq. (4.5.11) from the quasi-2D result of Eqs. (4.4.3) and (4.4.4) is
related to the absence of the logarithmic term in the denominator. This follows from the
fact that now we omitted the real part of the function w, which is logarithmically large
in the quasi-2D regime.
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Figure 4.5.3: The quantity mΩ/~n versus temperature. In (a) the parameter a/l0 = −1
(dashed curve), and a/l0 = 1 (dotted curve). In (b) a/l0 = ∞ (unitarity limit). The
solid curves in (a) and (b) show the 3D result (4.5.7). The arrow in (b) indicates the
lowest ratio T/~ω0 in the Stanford and ENS experiments.

It is worth to note that for l0 À |a|, Eq. (4.5.11) is only slightly different from the 3D
result (4.5.10). This is consistent with the above given analysis leading to Eq. (4.5.6).

On the other hand, for large |a|/l0 the difference between Eq. (4.5.11) and the 3D
result (4.5.9) is significant. This originates from the fact that for a large scattering
length a the 3D amplitude of scattering in the ultra-cold limit depends on the particle
momenta. For a tight axial confinement, treating collisions as three-dimensional, the
relative momentum of colliding particles at temperatures T . ~ω0 is ∼ 1/l0 and it no
longer depends on temperature. Hence, the scattering rate is quite different from that in
3D. Given these arguments, one expects a strongly pronounced confinement-dominated
3D regime of scattering if the ratio |a|/l0 À 1.

This is confirmed by our numerical calculations for the temperature dependence of
Ω from Eq. (4.5.3). In Fig. 4.5.3 we present the results for a/l0 equal to −1, 1, and ∞.
The largest deviation from the 3D regime is observed in the unitarity limit (a → ∞).
From Fig. 4.5.3 we see that in the Stanford [27] and ENS [29; 30] experiments performed
in this limit3 one should have significant deviations of collisional rates from the ordinary

3In the Stanford experiment [27] the unitarity limit for collisions between Cs atoms in the hyperfine
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3D behavior.

4.6 Thermalization rates

We will now discuss the collision-induced energy exchange between axial and radial de-
grees of freedom of the particle motion in an ultra-cold Bose gas tightly confined in the
axial direction of a pancake-shaped trap. It is assumed that the radial confinement is
shallow and it does not influence the scattering amplitudes. In this geometry, using
degenerate Raman sideband cooling, the Stanford [73; 27] and ENS [74; 75; 29; 30]
groups created Cs gas clouds with different axial (Tz) and radial (Tρ) temperatures. Af-
ter switching off the cooling, interatomic collisions lead to energy exchange between the
axial and radial particle motion and the temperatures Tz and Tρ start to approach each
other. Ultimately, the gas reaches a new equilibrium state, with a temperature in be-
tween the initial Tz and Tρ. The corresponding (thermalization) rate has been measured
at Stanford [27] and ENS [29; 30] and it provides us with the information on the regimes
of interatomic collisions in the gas.

The radial motion of particles is classical. Therefore, we will calculate the rate of
energy exchange between the radial and axial degrees of freedom for a given value of the
radial coordinate ρ and then average the result over the Boltzmann density profile in the
radial direction. The latter is given by

n(ρ) = n(0) exp

(

−mω
2ρ2

2T

)

, (4.6.1)

where n(0) = mω2N/2πT is the 2D density for ρ = 0, ω the radial frequency, and N the
total number of particles. Collision-induced transitions ν → ν ′ change the energy of the
axial motion by ~ω0(ν

′ − ν). We will assume that in the course of evolution the axial
and radial distribution of particles remain Boltzmann, with instantaneous values of Tz
and Tρ. Then the rate of energy transfer from the radial to axial motion can be written
on the same grounds as Eq. (4.5.3) and reads

Ėz = −Ėρ =
1

2

∫

n2(ρ)d2ρ
∑

νν′

∫

Λ2
T d

2q

(2π)2
~ω0(ν

′−ν) ~
m
|fνν′(ε)|2A exp

(

−~2q2

mTρ
− ~ω0ν

Tz

)

,

(4.6.2)
where ε = ~2q2/m+ ~ω0ν, and the normalization coefficient A depends now on both Tz
and Tρ.

The radial energy of the gas is Eρ = 2NTρ, and the axial energy is given by Ez =
N~ω0[exp (~ω0/T )− 1]−1. The time derivatives of these energies take the form

Ėz =
N~2ω2

0Ṫz

4T 2
z sinh2(ω0/2Tz)

; Ėρ = 2NṪρ. (4.6.3)

state F = 3, mF = 3 has been achieved by tuning the magnetic field to the Feshbach resonance at 30 G.
In the ENS experiment [29; 30] the magnetic field was very small. According to the recent calculations
[122], this corresponds to a large and negative scattering length (a ∼ −1500 Å ) for collisions between Cs
atoms in F = 3 states. For the ENS axial frequency ω0 = 80 kHz we have l0 ≈ 200 Å . Hence, the ratio
|a|/l0 in this experiment was approximately equal to 7, which is already rather close to the unitarity
limit.
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Given the initial values of Tz and Tρ, Eqs. (4.6.2) and (4.6.3) provide us with the necessary
information on the evolution of Tz(t) and Tx(t).

For a small difference δT = Tρ − Tz, these equations can be linearized with respect
to δT . As the total energy is conserved, Eqs. (4.6.3) reduce to

δṪ =
Ėz
N

(

1

2
+

4T 2 sinh2(~ω0/2T )

~2ω2
0

)

. (4.6.4)

In Eq. (4.6.2) we represent the exponent as −(ε/T + δT~ω0ν/T
2) and turn from the

integration over dq to integration over dε. The zero order term of the expansion in
powers of δT vanishes. The (leading) linear term, being substituted into Eq. (4.6.4),
leads to the differential equation for δT (t):

δṪ = −Ωth(T )δT, (4.6.5)

where the thermalization rate Ωth(T ) is given by

Ωth =
n(0)Λ2

TA

16π~

[

~2ω2
0

2T 2
+ 4 sinh2

(

~ω0

2T

)]

∑

ν>ν′

(ν − ν′)2
∫ ∞

~ω0ν

dε|fνν′(ε)|2 exp
(

− ε
T

)

.

(4.6.6)
The degeneracy parameter is n(0)Λ2

T = N(~ω/T )2 and it is small as the gas obeys the
Boltzmann statistics. The normalization coefficient A is again given by Eq. (4.5.4).

The quantum numbers ν and ν ′ take only even values and, hence, in order to change
the state of the axial motion one should have a relative energy ε > 2~ω0. Therefore, at
temperatures lower than ~ω0 the rate of transitions changing the axial and radial energy is
∝ exp (−2~ω0/T ). On the other hand, the axial energy Ez ∝ exp (−~ω0/T ) and thus the
thermalization rate Ωth ∝ exp (−~ω0/T ). This can be easily found from Eq. (4.6.6) and
shows that the quantum character of the axially confined particle motion exponentially
suppresses the thermalization process at temperatures T ¿ ~ω0. In particular, this is
the case for the quasi-2D regime.

In the most interesting part of the confinement-dominated 3D regime, where ε∗ <
T < ~ω0, the energy exchange between the axial and radial motion of particles is mostly
related to transitions between the states with ν ′ = 0 and ν = 2. The relative energy ε
should be larger than 2~ω0 and, at the same time, this energy is well below 4~ω0. Hence,
the scattering amplitude f20(ε) is determined by Eqs. (4.3.11 and (4.3.12) in which one
can put w(ε/2~ω0) ≈ i3π/2 (see Eq. (4.5.1) and Fig. 4.5.1). This gives

f20 =
2
√
2π

l0/a+ i(3/2)
√

π/2
,

and from Eq. (4.6.6) we obtain

Ωth =
16~ω0

9πT
Ω0

exp(−~ω0/T )

1 + 8l20/9πa
2
(1− exp (−~ω0/T ))

3. (4.6.7)

The characteristic frequency Ω0 is given by

Ω0 = ω2N/ω0. (4.6.8)
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Figure 4.6.1: Thermalization rate versus temperature in the unitarity limit (a =∞). The
solid curve shows the result of our calculations for Ωth/Ω0, and the dotted line the 3D
result Ω3D

th /Ω0. Squares and circles show the data of the Stanford and ENS experiments.

At temperatures T À ~ω0, Eq. (4.6.6) leads to the 3D result for the thermalization
rate:

Ω3D
th =

8

15π

(

~ω0

T

)2

Ω0; qT |a| À 1, (4.6.9)

Ω3D
th =

16

15π

(

a

l0

)2(~ω0

T

)

Ω0; qT |a| ¿ 1. (4.6.10)

Comparing Eqs. (4.6.9) and (4.6.10) with Eq. (4.6.7) one sees that Ωth should acquire its
maximum value at T ∼ ~ω0. For |a| & l0 this maximum value is on the order of Ω0/2π.

As one expects from the discussion in Section 4.5, the difference of the thermalization
rate from Ω3D

th is pronounced for large values of a. For example, in the unitarity limit
Eq. (4.6.9) gives Ω3D

th ∝ 1/T 2, whereas in the confinement-dominated regime we have
Ωth ∝ (1/T ) exp (−~ω0/T ).

It should be emphasized that for any T , ω0, and a the ratio Ωth/Ω0 depends only
on the parameters T/~ω0 and a/l0. This can be found directly from Eq. (4.6.6). In
Fig. 4.6.1 we present the temperature dependence of Ωth in the unitarity limit, obtained
numerically from Eq. (4.6.6), and compare our results with the data of the Stanford [27]
and ENS [29; 30] experiments. With the current error bars, the ENS results do not show
significant deviations from the classical 3D behavior. These results agree fairly well with
our calculations. The Stanford experiment gives somewhat lower values of Ωth/Ω0 at the
lowest temperatures of the experiment.

In the hydrodynamic regime for the gas cloud, where the characteristic collisional
frequency greatly exceeds the radial frequency ω, our assumption of quasiequilibrium
at instantaneous (time-dependent) values of Tz and Tρ may not be valid. Nevertheless,
the shape of the curve Ωth(T ) qualitatively remains the same, including the exponential
decrease with temperature at T < ~ω0 and power law decrease with increasing T at
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temperatures larger than ~ω0. However, the maximum value of Ωth will be somewhat
lower (in particular, of the order of ω [27]).

The number of particles (per “2D” sheet of atoms) in the Stanford experiment [27]
was N ∼ 104 [123], which is by a factor of 20 higher than at ENS for T ≈ ~ω0 [29; 30]. We
then estimate the 2D density of atoms for these temperatures to be n ∼ 2.5×108 cm−2 at
Stanford (ω ≈ 90 Hz), and n ∼ 0.5×108 cm−2 at ENS (ω ≈ 180 Hz). For these densities,
the ratio of the collisional frequency Ω in Fig. 4.5.3 to the radial frequency is Ω/ω ∼ 0.3
in the ENS experiment, and Ω/ω ∼ 3 in the experiment at Stanford. At temperatures
T > ~ω0 the density n and the ratio Ω/ω are smaller in both experiments. We thus
see that the ENS experiment [29; 30] was in the collisionless regime, although rather
close to the hydrodynamic regime at temperatures T ≈ ~ω0. For these temperatures, the
Stanford experiment [27] has already achieved the hydrodynamic regime, and this can
explain the discrepancy between our calculations and the Stanford results in Fig. 4.6.1.

4.7 Inelastic 2-body processes

Inelastic scattering of atoms is also influenced by the tight axial confinement of the
particle motion. In this section we will consider the inelastic 2-body processes, such as
spin relaxation, in which the internal states of colliding atoms are changing, and the
released internal-state energy of the atoms is transferred to their kinetic energy. Our
goal is to establish a relation between the inelastic rates in 3D and those in the (tightly)
axially confined geometry. The analysis given below relies on two important conditions
widely met for the 2-body spin relaxation [124]:
i)The energy release per collision greatly exceeds the gas temperature and the frequency
of the axial confinement. Accordingly, the inelastic transitions occur at comparatively
short interparticle distances ∼ Rin which are much smaller than the characteristic de
Broglie wavelength of particles.
ii)The inelastic transitions are caused by weak (spin-dipole, spin-orbit, etc.) interatomic
interactions and can be treated with perturbation theory.

To first order in perturbation theory the amplitude of inelastic scattering, defined in
the same way as in the previous sections, is given by a general expression [125]

fin(ε) =
m

~2

∫

ψi(r)Uint(r)ψf (r)d
3r. (4.7.1)

Here ψi(r) and ψf (r) are the true wavefunctions of the initial and final states of the rela-
tive motion of colliding atoms, and Uint(r) is the (weak) interatomic potential responsible
for inelastic transitions. This potential is the same as in the 3D case. The function ψf
is also the same as in 3D, since the relative energy in the final state is much larger than
~ω0. Thus, the only difference of the amplitude fin (4.7.1) from the amplitude of inelastic
scattering in the 3D case is related to the form of the wavefunction ψi.

The characteristic interatomic distance Rin at which the inelastic transitions occur,
satisfies the inequality Rin ¿ Λ̃ε (see item ii). Therefore, we are in the ultra-cold
limit similar to that determined by Eq. (4.3.2) in the case of elastic scattering, and
the conditions qRin ¿ 1 and Rin ¿ l0 are satisfied. The former ensures a dominant
contribution of the s-wave (of the initial wavefunction ψi) to the scattering amplitude
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fin (4.7.1). Due to the condition Rin ¿ l0, at distances r ∼ Rin the wavefunction ψi
has a three-dimensional character: ψi(r) ∝ ψ̃3D(r), where ψ̃3D(r) is the wavefunction of
the 3D relative motion at zero energy. For r À Re we have ψ̃3D(r) = (1 − a/r), and in
order to be consistent with Eq. (4.3.7) we should write

ψi(r) = η(ε)ϕν(0)ψ̃3D(r), (4.7.2)

where the coefficient η(ε) is given by Eq. (4.3.10), and ν is the quantum number of the
initial state of the relative motion in the axial harmonic potential VH(z).

In the 3D case, the amplitude f0 of inelastic scattering at zero initial energy is deter-
mined by Eq. (4.7.1) with ψi replaced by ψ̃3D. Hence, Eq. (4.7.2) directly gives a relation
between the two scattering amplitudes:

fin = η(ε)ϕν(0)f0. (4.7.3)

Due to the high relative kinetic energy of particles in the final state of the inelastic
channel, the density of final states in this channel is independent of the axial confinement.
Therefore, relying on Eq. (4.7.3) the mean rate constant ᾱin of inelastic collisions in the
axially confined geometry and the corresponding collisional frequency can be represented
in the form

ᾱin = 〈|η(ε)|2ϕ2
ν(0)θ(ε− ~ω0ν)〉α0; Ωin = ᾱinn, (4.7.4)

where α0 is the 3D inelastic rate constant at zero energy.
Note that in the ultra-cold limit the 3D inelastic rate constant is temperature in-

dependent and equal to α0 if the scattering length |a| . Re. For |a| À Re, the wave-
function of the relative motion in the region of interatomic interaction takes the form
ψi(r) = η3Dψ̃3D(r), where |η3D|2 = (1 + p2a2)−1 and p is the 3D relative momentum
of colliding particles (see, e.g. [126]). Hence, for the inelastic rate constant we have
〈α0(1 + p2a2)−1〉. In the presence of axial confinement, averaging the frequency of in-
elastic collisions over the (quantum) axial density profile n3D(z), we obtain

Ωin =

〈

α0

(1 + p2a2)

〉∫

n2
3D(z)

n
dz. (4.7.5)

The density profile n3D(z) accounts for the discrete structure of quantum levels in the
axial confining potential and for the quantum spatial distribution of particles. Therefore,
Eq. (4.7.5) gives the ordinary 3D result only at temperatures T À ~ω0, where n3D(z)
becomes the Boltzmann distribution nB(z).

We first analyze the influence of axial confinement on Ωin (4.7.4) for the case where
|a| ¿ Λ̃T or, equivalently, |a| ¿ l0 and qT |a| ¿ 1. In this case we may put η = 1 at any
T , except for extremely low temperatures in the quasi-2D regime. Then Eq. (4.7.4) gives

Ωin = 〈ϕ2
ν(0)〉α0n =

α0n√
2π l0

tanh1/2

(

~ω0

T

)

. (4.7.6)

One can easily check that Eq. (4.7.6) coincides with Eq. (4.7.5) in which p|a| ¿ 1. The
reason for this coincidence is that, similarly to the case of elastic scattering described by
Eq. (4.5.5), for η = 1 the scattering amplitude fin (4.7.3) is independent of the relative
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energy ε. Hence, the inelastic rate is influenced by the axial confinement only through
the axial distribution of particles. However, this influence is significant, in contrast to
the case of elastic scattering under the same conditions (see Eq. (4.5.6)). Qualitatively,
for qT |a| ¿ 1 we have Ωin ∼ α0n3D. At temperatures T ¿ ~ω0, a characteristic
value of the 3D density is n3D ∼ n/l0 and we obtain Ωin ∼ α0n/l0. For T À ~ω0,
the 3D density n3D ∼ n(mω2

0/T )
1/2 and hence the frequency of inelastic collisions is

Ωin ∼ (α0n/l0)(~ω0/T )
1/2.

We now discuss the temperature dependence of the inelastic rate for the case where
|a| & l0, which in the ultra-cold limit (4.3.2) assumes that |a| À Re. In the quasi-2D
regime and in the temperature interval ε∗ < T < ~ω0 of the confinement-dominated 3D
regime, the most important contribution to the inelastic rate in Eq. (4.7.4) comes from
collisions with the axial quantum number ν = 0. Then, using Eq. (4.3.11) we express the
parameter η through the elastic amplitude f00 and obtain a relation between Ωin and
the mean frequency of elastic collisions Ω(T ):

Ωin(T ) = 〈|f00(ε)|2〉
α0n

(4πaϕ0(0))2
= Ω(T )β, (4.7.7)

where β = (1/128π3)1/2(ml0α0/~a2) is a dimensionless parameter independent of tem-
perature. The temperature dependence of Ω is displayed in Fig. 4.4.1 and Fig. 4.5.3 and
was discussed in Sections 4.4 and 4.5. Note that the parameter β is not equal to zero for
|a| → ∞. In this case, since the amplitude f0 is calculated with the wavefunction ψ̃3D

which behaves as a/r for r →∞, we have α0 ∝ a2 and β = const.
At temperatures T À ~ω0, using the same method as in Section 4.5 for the case of

elastic scattering, from Eq. (4.7.4) we recover the 3D result Ω3D
in given by Eq. (4.7.5)

with n3D(z) = nB(z). In the limiting case, where qT |a| À 1, we find

Ω3D
in =

8~n
m

β

(

2~ω0

T

)3/2

= Ω3D(T )β

(

2~ω0

T

)1/2

. (4.7.8)

Comparing Eq. (4.7.8) with Eq. (4.7.7), we see that in the confinement-dominated 3D
regime the deviation of the inelastic rate from the ordinary 3D behavior should be larger
than that in the case of elastic scattering.

As follows from Eq. (4.7.7) and Fig. 4.5.3, for |a| & l0 the inelastic frequency Ωin

reaches its maximum at temperatures near the border between the quasi-2D and confine-
ment-dominated 3D regimes. The maximum value of Ωin is close to

Ω̃in =
16~
m

β. (4.7.9)

From Eq. (4.7.4) one finds that at any T the ratio Ωin/Ω̃in depends only on two param-
eters: T/~ω0 and a/l0. In Fig. 4.7.1 we present our numerical results for Ωin/Ω̃in as a
function of T/~ω0 for a/l0 equal to −1, 1, and ∞. As expected, the deviations from the
3D behavior are the largest in the unitarity limit.

The inelastic rate of spin relaxation in a tightly (axially) confined gas of atomic ce-
sium has been measured for the unitarity limit in the Stanford experiment [27]. Due to
a shallow radial confinement of the cloud in this experiment, the 2D density n ∼ 1/T
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Figure 4.7.1: The quantity Ωin/Ω̃in versus temperature. In (a) the parameter a/l0 = −1
(dashed curve), and a/l0 = 1 (dotted curve). In (b) a/l0 = ∞ (unitarity limit). The
solid curves in (a) and (b) show the 3D result (4.7.7).

(see Eq. (4.6.1)). Then, Eq. (4.7.8) gives the 3D inelastic frequency Ω3D
in ∼ 1/T 5/2,

whereas in the temperature interval ε∗ < T < ~ω0 of the confinement-dominated regime
Eqs. (4.5.11) and (4.7.7) lead to Ωin ∼ (1/T )(1 − exp (−~ω0/T )). In order to compare
our calculations with the data of the Stanford experiment on spin relaxation, in Fig. 4.7.2
we display the ratio of Ωin(T/~ω0) to Ωin at T = 3~ω0 which was the highest temper-
ature in the experiment. The temperature dependence of the inelastic rate, following
from the Stanford results, agrees fairly well with the calculations and shows significant
deviations from the 3D behavior. It should be noted that, in contrast to thermalization
rates, the inelastic decay rate is not sensitive to whether the gas is in the collisionless or
hydrodynamic regime [27].

4.8 Concluding remarks

In conclusion, we have developed a theory which describes the influence of a tight axial
confinement of the particle motion on the processes of elastic and inelastic scattering.
The most interesting case turns out to be the one in which the 3D scattering length
a exceeds the extension of the wavefunction in the axial direction, l0. In the ultra-
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Figure 4.7.2: The ratio of Ωin(T/~ω0) to Ωin at T = 3~ω0 versus temperature in the
unitarity limit (a =∞). The solid curve shows the result of our numerical calculations,
and the dotted line the 3D limit. Circles show the data of the Stanford experiment.

cold limit defined by Eq. (4.3.2), the condition |a| > l0 automatically requires large
|a| compared to the radius of interatomic interaction Re. Then we have a pronounced
confinement-dominated 3D regime of scattering at temperatures on the order of ~ω0.
Treating interatomic collisions as three-dimensional, the relative momentum of colliding
atoms is related to the quantum character of the axial motion in the confining potential
and becomes of the order of 1/l0. As a result, the scattering rate can strongly deviate
from the ordinary 3D behavior. The axial extension of the wavefunction, achieved in
the experiments at Stanford and ENS [73; 27; 74; 75; 29; 30], is l0 ≈ 200 Å. The
required value of the scattering length, |a| > l0 and |a| À Re, is characteristic for Cs
atoms (Re ≈ 100Å ) and can also be achieved for other alkali atoms by using Feshbach
resonances.

In order to observe the 2D features of the particle motion in the rates of interatomic
collisions one has to reach the quasi-2D regime of scattering, which requires much lower
temperatures, at least by an order of magnitude smaller than ~ω0. For ω0 ≈ 80kHz
(~ω0 ≈ 4 µK) as in the Stanford [73; 27] and ENS [74; 75; 29; 30] experiments, these are
temperatures below 400nK. As one can see from Fig. 4.5.3, the rate of elastic collisions
is still rather large for these temperatures and, hence, one can think of achieving them
by evaporative cooling. Moreover, for realistic radial frequencies ω ∼ 100Hz there is a
hope to achieve quantum degeneracy and observe a cross-over to the BEC regime. The
cross-over temperature is Tc ≈ N1/2~ω (see [32] and the discussion in Section 3.1), and
for N ∼ 1000 particles in a quasi-2D layer we find Tc ≈ 100nK.

Another approach to reach BEC in the quasi-2D regime will be to prepare initially
a 3D trapped condensate and then adiabatically slowly turn on the tight axial confine-
ment. Manipulating the obtained (quasi-)2D condensate and inducing the appearance of
thermal clouds with temperatures T < Tc, one can observe interesting phase coherence
phenomena originating from the phase fluctuations of the condensate in quasi-2D (see
Section 3.1).

Interestingly, at temperatures T ∼ Tc the collisional frequency Ω can be on the
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order of the cross-over temperature if |a| & l0. This follows directly from Fig. 4.4.1
and Eq. (4.4.4) which give Ω ∼ π~n/m even at temperatures by two orders of magnitude
smaller than ~ω0. As the 2D density of thermal particles is n ∼ Nmω2/T , we immediately
obtain ~Ω(Tc) ∼ N1/2~ω ≈ Tc. This condition means that the trapped gas becomes a
strongly interacting system. The mean free path of a particle, v/Ω(Tc), is already on
the order of its de Broglie wavelength ~/

√
mTc. At the same time, the system remains

dilute, since the mean interparticle separation is still much larger than the radius of
interatomic interaction Re. In this respect, the situation is similar to the 3D case with
a large scattering length a À Re at densities where na3 ∼ 1. The investigation of the
cross-over to the BEC regime in such strongly interacting quasi-2D gases should bring
in analogies with condensed matter systems or dense 2D gases. Well-known examples
of dense 2D systems in which the Kosterlitz-Thouless phase transition [47; 48] has been
found experimentally, are monolayers of liquid helium [14; 15] and the quasi-2D gas of
atomic hydrogen on liquid helium surface [16].

On the other hand, for |a| ¿ l0 the collisional frequency near the BEC cross-over,
Ω(Tc) ¿ Tc/~, and the (quasi-)2D gas remains weakly interacting. Then, the nature of
the cross-over is questionable (see Section 3.1). Generally speaking, one can have both
the ordinary BEC cross-over like in an ideal trapped gas [32] and the Kosterlitz-Thouless
type [47; 48] of a cross-over. We thus see that axially confined Bose gases in the quasi-2D
regime are remarkable systems where by tuning a or l0 one can modify the nature of the
BEC cross-over.





Chapter 5 Regimes of quantum

degeneracy in trapped 1D gases

We discuss the regimes of quantum degeneracy in a trapped 1D gas and obtain the diagram
of states. Three regimes have been identified: the BEC regimes of a true condensate and
quasicondensate, and the regime of a trapped Tonks gas (gas of impenetrable bosons). The
presence of a sharp cross-over to the BEC regime requires extremely small interaction
between particles. We discuss how to distinguish between true and quasicondensates in
phase coherence experiments.

Low-temperature 1D Bose systems attract a great deal of interest as they show a
remarkable physics not encountered in 2D and 3D. In particular, the 1D Bose gas with
repulsive interparticle interaction (the coupling constant g > 0) becomes more non-ideal
with decreasing 1D density n [56; 57]. The regime of a weakly interacting gas requires
the correlation length lc = ~/√mng (m is the atom mass) to be much larger than the
mean interparticle separation 1/n. For small n or large interaction, where this condition
is violated, the gas acquires Fermi properties as the wavefunction strongly decreases at
short interparticle distances [54; 56; 57]. In this case it is called a gas of impenetrable
bosons or Tonks gas (cf. [127]).

Spatially homogeneous 1D Bose gases with repulsive interparticle interaction have
been extensively studied in the last decades. For the delta-functional interaction, Lieb
and Liniger [56; 57] have calculated the ground state energy and the spectrum of ele-
mentary excitations which at low momenta turns out to be phonon-like. Generalizing
the Lieb-Liniger approach, Yang and Yang [128] have proved the analyticity of thermo-
dynamical functions at any finite temperature T , which indicates the absence of a phase
transition. However, at sufficiently low T the correlation properties of a 1D Bose gas are
qualitatively different from classical high-T properties. In the regime of a weakly inter-
acting gas (nlc À 1) the density fluctuations are suppressed [44; 129], whereas at finite
T the long-wave fluctuations of the phase lead to exponential decay of the one-particle
density matrix at large distances [44; 129; 130]. A similar picture, with a power-law
decay of the density matrix, was found at T = 0 [51; 52]. Therefore, the Bose-Einstein
condensate is absent at any T , including T = 0. From a general point of view, the ab-
sence of a true condensate in 1D at finite T follows from the Bogolyubov k−2 theorem
as was expounded in [10; 11] (for the T = 0 case see [53]). Earlier studies of 1D Bose
systems are reviewed in [12]. They allow us to conclude that in 1D gases the decrease of
temperature leads to a continuous transformation of correlation properties from ideal-gas
classical to interaction/statistics dominated. A 1D classical field model for calculating
correlation functions in the conditions, where both the density and phase fluctuations
are important, was developed in [131] and for Bose gases in [132]. Interestingly, 1D gases
can posses the property of superfluidity at T = 0 [133; 12]. Moreover, at finite T one
can have metastable supercurrent states which decay on a time scale independent of the
size of the system [134].

55
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The earlier discussion of 1D Bose gases was mostly academic as there was no possible
realization of such a system. Fast progress in evaporative and optical cooling of trapped
atoms and the observation of Bose-Einstein condensation (BEC) in trapped clouds of
alkali atoms [3; 4; 5] stimulated a search for non-trivial trapping geometries. At present,
there are significant efforts to create (quasi-)1D trapped gases [135; 62], where the radial
motion of atoms in a cylindrical trap is (tightly) confined to zero point oscillations. Then,
kinematically the gas is 1D, and the difference from purely 1D gases is only related to
the value of the interparticle interaction which now depends on the radial confinement.
The presence of the axial confinement allows one to speak of a trapped 1D gas.

Ketterle and van Druten [33] considered a trapped 1D ideal gas and have revealed
a BEC-like behavior of the cloud. They have established that at temperatures T <
N~ω/ ln 2N , where N is the number of particles and ω the trap frequency (we use the
Boltzmann constant kB = 1), the population of the ground state rapidly grows with
decreasing T and becomes macroscopic.

A fundamental question concerns the influence of interparticle interaction on the pres-
ence and character of BEC. In this chapter we discuss the regimes of quantum degeneracy
in a trapped 1D gas with repulsive interparticle interaction. We find that the presence
of a sharp cross-over to the BEC regime, predicted in [33], requires extremely small
interaction between particles. Otherwise, the decrease of temperature leads to a contin-
uous transformation of a classical gas to quantum degenerate. We identify 3 regimes at
T ¿ Td, where Td ≈ N~ω is the degeneracy temperature. For a sufficiently large inter-
particle interaction and the number of particles much smaller than a characteristic value
N∗, at any T ¿ Td one has a trapped Tonks gas characterized by a Fermi-gas density
profile. For N À N∗ we have a weakly interacting gas. The presence of the trapping
potential introduces a finite size of the sample and drastically changes the picture of long-
wave fluctuations of the phase compared to the uniform case. We calculate the density
and phase fluctuations and find that well below Td there is a quasicondensate, i.e. the
BEC state where the density fluctuations are suppressed but the phase still fluctuates.
At very low T the long-wave fluctuations of the phase are suppressed due to a finite size
of the system, and we have a true condensate. The true condensate and the quasiconden-
sate have the same Thomas-Fermi density profile and local correlation properties, and
we analyze how to distinguish between these BEC states in an experiment.

We first discuss the coupling constant g for possible realizations of 1D gases. These
realizations imply particles in a cylindrical trap, which are tightly confined in the radial
(ρ) direction, with the confinement frequency ω0 greatly exceeding the mean-field inter-
action. Then, at sufficiently low T the radial motion of particles is essentially “frozen”
and is governed by the ground-state wavefunction of the radial harmonic oscillator. If
the radial extension of the wavefunction, l0 = (~/mω0)

1/2 À Re, where Re is the char-
acteristic radius of the interatomic potential, the interaction between particles acquires
a 3D character and will be characterized by the 3D scattering length a. In this case,
assuming l0 À |a|, we have

g = 2~2a/ml20. (5.0.1)

This result follows from the analysis in [136] and can also be obtained by averaging the 3D
interaction over the radial density profile. Thus, statistical properties of the sample are
the same as those of a purely 1D system with the coupling constant given by Eq. (5.0.1).
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In the regime of a weakly interacting gas, where nlc À 1, we have a small parameter

γ = 1/(nlc)
2 = mg/~2n¿ 1. (5.0.2)

For particles trapped in a harmonic (axial) potential V (z) = mω2z2/2, one can introduce
a complementary dimensionless quantity α = mgl/~2 which provides a relation between
the interaction strength g and the trap frequency ω (l =

√

~/mω is the amplitude of
axial zero point oscillations).

At T = 0 one has a true condensate: In the Thomas-Fermi (TF) regime the mean
square fluctuations of the phase do not exceed ∼ γ1/2 and, hence, they are small un-
der the condition (5.0.2) (see [43]). The condensate wavefunction is determined by
the Gross-Pitaevskii equation which gives the TF parabolic density profile n0(z) =
n0m(1 − z2/R2

TF ). The maximum density n0m = µ/g, the TF size of the condensate
RTF = (2µ/mω2)1/2, and the chemical potential µ = ~ω(3Nα/4

√
2)2/3. For α À 1 we

are always in the TF regime (µ À ~ω). In this case, Eq. (5.0.2) requires a sufficiently
large number of particles:

N À N∗ = α2. (5.0.3)

Note that under this condition the ratio µ/Td ∼ (α2/N)1/3 ¿ 1. For α¿ 1 the criterion
(5.0.2) of a weakly interacting gas is satisfied at any N , and the condensate is in the TF
regime if N À α−1. In the opposite limit the mean-field interaction is much smaller than
the level spacing in the trap ~ω. Hence, one has a macroscopic occupation of the ground
state of the trap, i.e. there is an ideal gas condensate with a Gaussian density profile.

At this point, we briefly discuss the cross-over to the BEC regime, predicted by
Ketterle and van Druten for a trapped 1D ideal gas [33]. They found that the decrease
of T to below Tc = N~ω/ ln 2N strongly increases the population of the ground state,
which rapidly becomes macroscopic. This sharp cross-over originates from the discrete
structure of the trap levels and is not observed in quasiclassical calculations [32]. We
argue that the presence of the interparticle interaction changes the picture drastically.
One can distinguish between the (lowest) trap levels only if the interaction between
particles occupying a particular level is much smaller than the level spacing. Otherwise
the interparticle interaction smears out the discrete structure of the levels. For T close
to Tc the occupation of the ground state is ∼ Tc/~ω ≈ N/ ln 2N [33] and, hence, the
mean-field interaction between the particles in this state (per particle) is Ng/l ln 2N . The
sharp BEC cross-over requires this quantity to be much smaller than ~ω, and we arrive
at the condition N/ ln 2N ¿ α−1. For a realistic number of particles (N ∼ 103 − 104)
this is practically equivalent to the condition at which one has the ideal gas Gaussian
condensate (see above).

As we see, the sharp BEC cross-over requires small α. For possible realizations of 1D
gases, using the coupling constant g (5.0.1), we obtain α = 2al/l20. Then, even for the
ratio l/l0 ∼ 10 and moderate radial confinement with l0 ∼ 1µm, we have α ∼ 0.1 for
Rb atoms (a ≈ 50 Å). Clearly, for a reasonably large number of particles the cross-over
condition N ¿ α−1 can only be fulfilled at extremely small interparticle interaction.
One can think of reducing a to below 1Å and achieving α < 10−3 by using Feshbach
resonances as in the MIT and JILA experiments [82; 120]. In this case one can expect
the sharp BEC cross-over already for N ∼ 103.
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We now turn to the case of large α. For γ À 1 one has a Tonks gas [56; 57]
(the realization of the axially uniform Tonks gas in a square-well (axial) potential was
discussed in [136]). The one-to-one mapping of this system to a gas of free fermions [54]
ensures the fermionic spectrum and density profile of a trapped Tonks gas. For (axial)
harmonic trapping the condition γ À 1 requiresN ¿ N∗. The chemical potential is equal
to N~ω, and the density distribution is n(z) = (

√
2N/πl)

√

1− (z/R)2, where the size

of the cloud R =
√
2Nl. The density profile n(z) is different from both the profile of the

zero-temperature condensate and the classical distribution of particles, which provides a
root for identifying the trapped Tonks gas in experiments. The interference effects and
dynamical properties of this system are now a subject of theoretical studies [137; 138].
In Rb and Na this regime can be achieved for N . 103 by the Feshbach increase of a to
∼ 500 Å and using ω ∼ 1Hz and ω0 ∼ 10kHz (α ∼ 50).

Large α and N satisfying Eq. (5.0.3), or small α and N À α−1, seem most feasible
in experiments with trapped 1D gases. In this case, at any T ¿ Td one has a weakly
interacting gas in the TF regime. Similarly to the uniform 1D case, the decrease of tem-
perature to below Td continuously transforms a classical 1D gas to the regime of quantum
degeneracy. At T = 0 this weakly interacting gas turns to the true TF condensate (see
above). It is then subtle to understand how the correlation properties change with tem-
perature at T ¿ Td. For this purpose, we analyze the behavior of the one-particle density
matrix by calculating the fluctuations of the density and phase. We a priori assume small
density fluctuations and prove this statement relying on the zero-temperature equations
for the mean density n0(z) and excitations. The operator of the density fluctuations is
(see, e.g. [71])

n̂′(z) = n
1/2
0 (z)

∞
∑

j=1

if−j (z)âj + h.c., (5.0.4)

where âj is the annihilation operator of the excitation with quantum number j and energy
εj , f

±
j = uj ± vj , and the u, v functions of the excitations are determined by the same

Bogolyubov-de Gennes equations (generalization of the Bogolyubov method for spatially
inhomogeneous systems see in [37]) as in the presence of the TF condensate.

The solution of these equations gives the spectrum εj = ~ω
√

j(j + 1)/2 [43; 42] and
the wavefunctions

f±j (x) =

(

j + 1/2

RTF

)1/2 [
2µ

εj
(1− x2)

]±1/2

Pj(x), (5.0.5)

where j is a positive integer, Pj are Legendre polynomials, and x = z/RTF . For the
mean square fluctuations of the density, 〈δn̂2

zz′〉 = 〈(n̂′(z)− n̂′(z′))2〉, we have

〈δn̂2
zz′〉

n2
0m

=

∞
∑

j=1

εj(j + 1/2)

2µn0mRTF
(Pj(x)− Pj(x′))2(1 + 2Nj),

with Nj = [exp(εj/T ) − 1]−1 being the occupation numbers for the excitations. At
T À ~ω the main contribution to the density fluctuations comes from quasiclassical
excitations (j À 1). The vacuum fluctuations are small: 〈δn̂2

zz′〉0 ∼ n2
0mγ

1/2. For the
thermal fluctuations on a distance scale |z − z′| À lc, we obtain

〈δn2
zz′〉T ≈ n2

0m(T/Td)min{(T/µ), 1}. (5.0.6)
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We see that the density fluctuations are strongly suppressed at temperatures T ¿ Td.
Then, one can write the total field operator as ψ̂(z) =

√

n0(z) exp(iφ̂(z)), where φ̂(z)
is the operator of the phase fluctuations, and the one-particle density matrix takes the
form (see, e.g. [12]) which is a generalization of Eq. (2.3.1) for the inhomogeneous case

〈ψ̂†(z)ψ̂(z′)〉 =
√

n0(z)n0(z′) exp{−〈δφ̂2
zz′〉/2}, (5.0.7)

with δφ̂zz′ = φ̂(z) − φ̂(z′). The operator φ̂(z) is given by (we count only phonon part
(see Overview))

φ̂(z) = [4n0(z)]
−1/2

∑

j: εj<µ

f+
j (z)âj + h.c., (5.0.8)

and for the mean square fluctuations we have

〈δφ̂2
zz′〉 =

∑

j: εj<µ

µ(j + 1/2)

2εjn0mRTF
(Pj(x)− Pj(x′))2(1 + 2Nj).

For the vacuum fluctuations we find (c.f. [139; 43])

〈δφ̂2
zz′〉0 ≈ (γ1/2/π) ln (|z − z′|/lc),

and they are small for any realistic size of the gas cloud. The thermal fluctuations of
the phase are mostly provided by the contribution of the lowest excitations and the
restriction εj < µ is not important. A direct calculation, with Nj = T/εj , yields

〈δφ̂2
zz′〉T =

4Tµ

3Td~ω

∣

∣

∣

∣

log

[

(1− x′)
(1 + x′)

(1 + x)

(1− x)

]∣

∣

∣

∣

. (5.0.9)

In the inner part of the gas sample the logarithm in Eq. (5.0.9) is of order unity.
Thus, we can introduce a characteristic temperature

Tph = Td~ω/µ (5.0.10)

at which the quantity 〈δφ̂2
zz′〉 ≈ 1 on a distance scale |z − z′| ∼ RTF . The character-

istic radius of phase fluctuations is Rφ ≈ RTF (Tph/T ) ∝ N2/3/T , and for T < Tph it
exceeds the sample size RTF . This means that at T ¿ Tph both the density and phase
fluctuations are suppressed, and there is a true condensate. The condition (5.0.3) always
provides the ratio Tph/~ω ≈ (4N/α2)1/3 À 1.

In the temperature range, where Td À T À Tph, the density fluctuations are sup-
pressed, but the phase fluctuates on a distance scale Rφ ¿ RTF . Thus, similarly to
the quasi-2D case (see Section 3.1), we have a quasicondensate. The radius of the phase
fluctuations greatly exceeds the correlation length: Rφ ≈ lc(Td/T )À lc. Hence, the qua-
sicondensate has the same density profile as the true condensate. Correlation properties
at distances smaller than Rφ are also the same. However, the phase fluctuations lead to
a drastic difference in the phase coherence properties.

In Fig. 5.0.1 we present the state diagram of the trapped 1D gas for α = 10 (N∗ =
100). For N À N∗, the decrease of temperature to below Td leads to the appearance
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Figure 5.0.1: Diagram of states for a trapped 1D gas.

of a quasicondensate which at T < Tph turns to the true condensate. In the T − N
plane the approximate border line between the two BEC regimes is determined by the
equation (T/~ω) = (32N/9N∗)

1/3. For N < N∗ the system can be regarded as a trapped
Tonks gas (for an infinitely long atom waveguide, the approximate border line between
the Tonks and weakly interacting regimes is given in terms of density and temperature
in [140]).

Phase coherence properties of trapped 1D gases can be studied in ‘juggling’ experi-
ments similar to those with 3D condensates at NIST and Munich [141; 142]. Small clouds
of atoms are ejected from the main cloud by stimulated Raman or RF transitions. Ob-
serving the interference between two clouds, simultaneously ejected from different parts
of the sample, allows the reconstruction of the spatial phase correlation properties. Sim-
ilarly, temporal correlations of the phase can be studied by overlapping clouds ejected
at different times from the same part of the sample. In this way juggling experiments
provide a direct measurement of the one-particle density matrix. Repeatedly juggling
clouds of a small volume Ω from points z and z′ of the sample, for equal time of flight to
the detector we have the averaged detection signal I = Ω[n0(z)+n0(z

′)+2〈ψ̂†(z)ψ(z′)〉].
At T ¿ Tph the phase fluctuations are small and one has a true condensate. In

this case, for z′ = −z we have 〈ψ̂†(z)ψ̂(z′)〉 = n0(z) and I = 4Ωn0(z), and there is
a pronounced interference effect: The detected signal is twice as large as the number
of atoms in the ejected clouds. The phase fluctuations grow with T and for T > Tph,
where the true condensate turns to a quasicondensate, the detection signal decreases
as described by 〈ψ̂†(z)ψ̂(z′)〉 from Eqs. (5.0.7) and (5.0.9). For T À Tph the phase
fluctuations completely destroy the interference between the two ejected clouds, and
I = 2Ωn0(z).

In conclusion, we have identified 3 regimes of quantum degeneracy in a trapped 1D
gas: the BEC regimes of a quasicondensate and true condensate, and the regime of a
trapped Tonks gas. The creation of 1D gases will open handles on interesting phase
coherence studies and the studies of “fermionization” in Bose systems.



Chapter 6 Phase-fluctuating 3D

Bose-Einstein condensates

6.1 Phase-fluctuating 3D condensates in elongated

traps

We find that in very elongated 3D trapped Bose gases, even at temperatures far below
the BEC transition temperature Tc, the equilibrium state will be a 3D condensate with
fluctuating phase (quasicondensate). At sufficiently low temperatures the phase fluctua-
tions are suppressed and the quasicondensate turns into a true condensate. The presence
of the phase fluctuations allows for extending thermometry of Bose-condensed gases well
below those established in current experiments.

Phase coherence properties are among the most interesting aspects of Bose-condensed
gases. Since the discovery of Bose-Einstein condensation (BEC) in trapped ultra-cold
clouds of alkali atoms [3; 4; 5], various experiments have proved the presence of phase
coherence in trapped condensates. The MIT group [76] has found the interference of two
independently prepared condensates, once they expand and overlap after switching off
the traps. The MIT [143], NIST [141] and Munich [142] experiments provide evidence
for the phase coherence of trapped condensates through the measurement of the phase
coherence length and/or single particle correlations.

These results support the usual picture of BEC in 3D gases. In equilibrium, the
fluctuations of density and phase are important only in a narrow temperature range near
the BEC transition temperature Tc. Outside this region, the fluctuations are suppressed
and the condensate is phase coherent. This picture precludes the interesting physics of
phase-fluctuating condensates, which is present in 2D and 1D systems (see Section 3.1,
Chapter 5 and refs. therein).

In this section we show that the phase coherence properties of 3D Thomas-Fermi (TF)
condensates depend on their shape. In very elongated 3D condensates, the axial phase
fluctuations are found to manifest themselves even at temperatures far below Tc. Then,
as the density fluctuations are suppressed, the equilibrium state will be a condensate with
fluctuating phase (quasicondensate) similar to that in 1D trapped gases (see Chapter 5).
Decreasing T below a sufficiently low temperature, the 3D quasicondensate gradually
turns into a true condensate.

The presence and the temperature dependence of axial phase fluctuations in suffi-
ciently elongated 3D condensates suggests a principle of thermometry for Bose-condensed
gases with indiscernible thermal clouds. The idea is to extract the temperature from a
measurement of the axial phase fluctuations, for example by measuring the single-particle
correlation function. This principle works for quasicondensates or for any condensate that
can be elongated adiabatically until the phase fluctuations become observable.

So far, axial phase fluctuations have not been measured in experiments with cigar-
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shaped condensates. We discuss the current experimental situation and suggest how one
should select the parameters of the cloud in order to observe the phase-fluctuating 3D
condensates.

We first consider a 3D Bose gas in an elongated cylindrical harmonic trap and ana-
lyze the behavior of the single-particle correlation function. The natural assumption of
the existence of a true condensate at T = 0 automatically comes out of these calcula-
tions. In the TF regime, where the mean-field (repulsive) interparticle interaction greatly
exceeds the radial (ωρ) and axial (ωz) trap frequencies, the density profile of the zero-
temperature condensate has the well-known shape n0(ρ, z) = n0m(1 − ρ2/R2 − z2/L2),
where n0m = µ/g is the maximum condensate density, with µ being the chemical po-
tential, g = 4π~2a/m, m the atom mass, and a > 0 the scattering length. Under the
condition ωρ À ωz, the radial size of the condensate, R = (2µ/mω2

ρ)
1/2, is much smaller

than the axial size L = (2µ/mω2
z)

1/2.

Fluctuations of the density and phase of the condensate, in particular at finite T , are
related to elementary excitations of the cloud. The density fluctuations are dominated
by the excitations with energies of the order of µ. The wavelength of these excitations is
much smaller than the radial size of the condensate. Hence, the density fluctuations have
the ordinary 3D character and are small. Therefore, one can write the total field operator
of atoms as ψ̂(r) =

√

n0(r) exp(iφ̂(r)), where φ̂(r) is the operator of the phase. The
single-particle correlation function is then expressed through the mean square fluctuations
of the phase (see, e.g. [12]):

〈ψ̂†(r)ψ̂(r′)〉=
√

n0(r)n0(r′) exp{−〈[δφ̂(r, r′)]2〉/2}, (6.1.1)

with δφ̂(r, r′) = φ̂(r)− φ̂(r′). The operator φ̂(r) is given by (see, e.g., [71])

φ̂(r) = [4n0(r)]
−1/2

∑

ν

f+
ν (r)âν + h.c., (6.1.2)

where âν is the annihilation operator of the excitation with quantum number(s) ν and
energy εν , f

+
ν = uν + vν , and the u, v functions of the excitations are determined by the

Bogolyubov-de Gennes equations.

The excitations of elongated condensates can be divided into two groups: “low energy”
axial excitations with energies εν < ~ωρ, and “high energy” excitations with εν > ~ωρ.
The latter have 3D character as their wavelengths are smaller than the radial size R.
Therefore, as in ordinary 3D condensates, these excitations can only provide small phase
fluctuations. The low-energy axial excitations have wavelengths larger than R and exhibit
a pronounced 1D behavior. Hence, one expects that these excitations give the most
important contribution to the long-wave axial fluctuations of the phase.

The solution of the Bogolyubov-de Gennes equations for the low-energy axial modes
gives the spectrum εj = ~ωz

√

j(j + 3)/4 [42], where j is a positive integer. The wave-
functions f+

j of these modes have the form

f+
j (r) =

√

(j + 2)(2j + 3)gn0(r)

4π(j + 1)R2Lεj
P

(1,1)
j

( z

L

)

, (6.1.3)



Section 6.1. Phase-fluctuating 3D condensates in elongated traps 63

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

 f

|z|/L

Figure 6.1.1: The function f(z/L). The solid curve shows the result of our numerical
calculation, and the dotted line is f(z) = 2|z|/L following from Eq. (6.1.5).

where P
(1,1)
j are Jacobi polynomials. Note that the contribution of the low-energy axial

excitations to the phase operator (6.1.2) is independent of the radial coordinate ρ.
Relying on Eqs. (6.1.2) and (6.1.3), we now calculate the mean square axial fluctua-

tions of the phase at distances |z− z′| ¿ R. As in 1D trapped gases (see Chapter 5), the
vacuum fluctuations are small for any realistic axial size L. The thermal fluctuations are
determined by the equation (we count only the “low energy” excitations)

〈[δφ̂(z, z′)]2〉T =
∑

j: εj<~ωρ

µ(j + 2)(2j + 3)

15(j + 1)εjN0

(

P
(1,1)
j

( z

L

)

− P (1,1)
j

(

z′

L

))2

Nj , (6.1.4)

with N0 = (8π/15)n0mR
2L being the number of Bose-condensed particles, and Nj the

equilibrium occupation numbers for the excitations. The main contribution to the sum
over j in Eq. (6.1.4) comes from several lowest excitation modes, and at temperatures
T À ~ωz we may put Nj = T/εj . Then, in the central part of the cloud (|z|, |z′| ¿ L) a
straightforward calculation yields

〈[δφ̂(z, z′)]2〉T = δ2L|z − z′|/L, (6.1.5)

where the quantity δ2L represents the phase fluctuations on a distance scale |z − z ′| ∼ L
and is given by

δ2L(T ) = 32µT/15N0(~ωz)2. (6.1.6)

Note that at any z and z′ the ratio of the phase correlator (6.1.4) to δ2
L is a universal

function of z/L and z′/L:

〈[δφ̂(z, z′)]2〉T = δ2L(T )f(z/L, z
′/L). (6.1.7)

In Fig. 6.1.1 we present the function f(z/L) ≡ f(z/L,−z/L) calculated numerically from
Eq. (6.1.4).
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The phase fluctuations decrease with temperature. As the TF chemical potential is

µ = (15N0 g/π)
2/5(mω̄2/8)3/5 (ω̄ = ω

2/3
ρ ω

1/3
z ), Eq. (6.1.6) can be rewritten in the form

δ2L = (T/Tc)(N/N0)
3/5δ2c , (6.1.8)

where Tc ≈ N1/3~ω̄ is the BEC transition temperature, and N the total number of par-
ticles. The presence of the 3D BEC transition in elongated traps requires the inequality
Tc À ~ωρ and, hence, limits the aspect ratio to ωρ/ωz ¿ N . The parameter δ2c is given
by

δ2c =
32µ(N0 = N)

15N2/3~ω̄

(

ωρ
ωz

)4/3

∝ a2/5m1/5ω
22/15
ρ

N4/15ω
19/15
z

. (6.1.9)

Except for a narrow interval of temperatures just below Tc, the fraction of non-condensed
atoms is small and Eq. (6.1.8) reduces to δ2

L = (T/Tc)δ
2
c . Thus, the phase fluctuations can

be important at large values of the parameter δ2
c , whereas for δ

2
c ¿ 1 they are small on

any distance scale and one has a true Bose-Einstein condensate. In Fig. 6.1.2 we present
the quantity δ2c for the parameters of various experiments with elongated condensates.

In the Konstanz [144] and Hannover [145] experiments the ratio T/Tc was smaller
than 0.5. In the recent experiment [65] the value δ2

c ≈ 3 has been reached, but the
temperature was very low. Hence, the axial phase fluctuations were rather small in these
experiments and they were dealing with true condensates. The last statement also holds
for the ENS experiment [146] where T was close to Tc and the Bose-condensed fraction
was N0/N ≈ 0.75.

The single-particle correlation function is determined by Eq. (6.1.1) only if the conden-
sate density n0 is much larger than the density of non-condensed atoms, n′. Otherwise,
this equation should be completed by terms describing correlations in the thermal cloud.
However, irrespective of the relation between n0 and n′, Eq. (6.1.1) and Eqs. (6.1.4)-
(6.1.6) correctly describe phase correlations in the condensate as long as the fluctuations
of the condensate density are suppressed. This is still the case for T close to Tc and
N0 ¿ N , if we do not enter the region of critical fluctuations. Then, Eq. (6.1.8) gives
δ2L = (N/N0)

3/5. At the highest temperatures of the Bose-condensed cloud in the MIT
sodium experiment [147], the condensed fraction was N0/N ∼ 0.1 and the phase fluctu-
ations were still small.

On the contrary, for N0/N ≈ 0.06 in the hydrogen experiment [148], with δ2
c from

Fig. 6.1.2 we estimate δ2L ≈ 1. The same or even larger value of δ2L was reached in the
Munich Rb experiment [142] where the gas temperature was varying in a wide interval
around Tc. In the Rb experiment at AMOLF [149], the smallest observed Bose-condensed
fraction was N0/N ≈ 0.03, which corresponds to δ2L ≈ 5. However, axial fluctuations of
the phase have not been measured in these experiments.

We will focus our attention on the case where N0 ≈ N and the presence of the axial
phase fluctuations is governed by the parameter δ2

c . For δ
2
c À 1, the nature of the Bose-

condensed state depends on temperature. In this case we can introduce a characteristic
temperature

Tφ = 15(~ωz)2N/32µ (6.1.10)

at which the quantity δ2L ≈ 1 (for N0 ≈ N). In the temperature interval Tφ < T < Tc,
the phase fluctuates on a distance scale smaller than L. Thus, as the density fluctua-
tions are suppressed, the Bose-condensed state is a condensate with fluctuating phase or
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Figure 6.1.2: The parameter δ2c for experiments with elongated condensates. The up and
down triangles stand for δ2c in the sodium [147] and hydrogen [148] MIT experiments, re-
spectively. Square, cross, diamond, circle, and star show δ2

c for the rubidium experiments
at Konstanz [144], Munich [142], Hannover [145], ENS [146], and AMOLF [149].

quasicondensate. The expression for the radius of phase fluctuations (phase coherence
length) follows from Eq. (6.1.5) and is given by

lφ ≈ L(Tφ/T ). (6.1.11)

The phase coherence length lφ greatly exceeds the correlation length lc = ~/√mµ.
Eqs. (6.1.11) and (6.1.10) give the ratio lφ/lc ≈ (Tc/T )(Tc/~ωρ)2 À 1. Therefore, the
quasicondensate has the same density profile and local correlation properties as the true
condensate. However, the phase coherence properties of quasicondensates will be drasti-
cally different (see below).

The decrease of temperature to well below Tφ makes the phase fluctuations small
(δ2L ¿ 1) and continuously transforms the quasicondensate into a true condensate.

It is interesting to compare the described behavior of the interacting gas for δ2
c À 1,

with the two-step BEC predicted for the ideal Bose gas in elongated traps [150]. In
both cases, at Tc the particles Bose-condense in the ground state of the radial mo-
tion. However, the ideal gas remains non-condensed (thermal) in the axial direction for
T > T1D = N~ωz/ ln 2N (assuming T1D < Tc), and there is a sharp cross-over to the
axial BEC regime at T ≈ T1D. The interacting Bose gas below Tc forms the 3D TF
(non-fluctuating) density profile, and the spatial correlations become non-classical in all
directions. For δ2c À 1, the axial phase fluctuations at T ∼ Tc are still large, and one has
a quasicondensate which continuously transforms into a true condensate at T below Tφ.
Note that Tφ is quite different from T1D of the ideal gas.

Let us now demonstrate that 3D elongated quasicondensates can be achieved for
realistic parameters of trapped gases. As found above, the existence of a quasicondensate
requires large values of the parameter δ2c given by Eq. (6.1.9). Most important is the
dependence of δ2c on the aspect ratio of the cloud ωρ/ωz, whereas the dependence on
the number of atoms and on the scattering length is comparatively weak. Fig. 6.1.3
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Figure 6.1.3: The ratios Tc/Tφ = δ2c and µ/Tφ in (a) and the temperature Tφ in (b),
versus the aspect ratio ωρ/ωz for trapped Rb condensates with N = 105 and ωρ = 500
Hz.

shows Tc/Tφ = δ2c , µ/Tφ, and the temperature Tφ as functions of ωρ/ωz for rubidium
condensates at N = 105 and ωρ = 500 Hz. Comparing the results for δ2c in Fig. 6.1.3 with
the data in Fig. 6.1.2, we see that 3D quasicondensates can be obtained by transforming
the presently achieved BEC’s to more elongated geometries corresponding to ωρ/ωz & 50.

One can distinguish between quasicondensates and true BEC’s in various types of
experiments. By using the Bragg spectroscopy method developed at MIT one can mea-
sure the momentum distribution of particles in the trapped gas and extract the coherence
length lφ[143]. The use of two (axially) counter-propagating laser beams to absorb a pho-
ton from one beam and emit it into the other one, results in axial momentum transfer
to the atoms which have momenta at Doppler shifted resonance with the beams. These
atoms form a small cloud which will axially separate from the rest of the sample provided
the mean free path greatly exceeds the axial size L. The latter condition can be assured
by applying the Bragg excitation after abruptly switching off the radial confinement of
the trap. The axial momentum distribution is then conserved if the dynamic evolution
of the cloud does not induce axial velocities. According to the scaling approach [67; 68],
this is the case for the axial frequency decreasing as ωz(t) = ωz(0)[1 + ω2

ρt
2]−1/2.
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In ”juggling” experiments described in Chapter 5 and similar to those at NIST and
Munich [141; 142], one can directly measure the single-particle correlation function. The
latter is obtained by repeatedly ejecting small clouds of atoms from the parts z and z ′

of the sample and averaging the pattern of interference between them in the detection
region over a large set of measurements. As follows from Eqs. (6.1.6) and (6.1.7), for
z′ = −z the correlation function depends on temperature as exp {−δ2

L(T )f(z/L)/2},
where f(z/L) is given in Fig. 6.1.1.

The phase fluctuations are very sensitive to temperature. From Fig. 6.1.3 we see that
one can have Tφ/Tc < 0.1, and the phase fluctuations are still significant at T < µ, where
only a tiny indiscernible thermal cloud is present.

This suggests a principle for thermometry of 3D Bose-condensed gases with indis-
cernible thermal clouds. If the sample is not an elongated quasicondensate by itself,
it is first transformed to this state by adiabatically increasing the aspect ratio ωρ/ωz.
This does not change the ratio T/Tc as long as the condensate remains in the 3D TF
regime. Second, the phase coherence length lφ or the single-particle correlation function
are measured. These quantities depend on temperature if the latter is of the order of Tφ
or larger. One thus can measure the ratio T/Tc for the initial cloud, which is as small as
the ratio Tφ/Tc for the elongated cloud.

We believe that the studies of phase coherence in elongated condensates will reveal
many new interesting phenomena. The measurement of phase correlators will allow one
to study the evolution of phase coherence in the course of the formation of a condensate
out of a non-equilibrium thermal cloud.

6.2 Observation of phase fluctuations in Bose-Einstein

condensates

We describe a method of observing phase fluctuations through the measurement of the
density profile after releasing the gas from the trap. It is shown how the phase fluctua-
tions of an elongated BEC transform into the density modulations in the course of free
expansion. The average value of the modulations is found as a function of the number of
particles, temperature, time of flight, and trap frequencies.

Fluctuations of the phase of a Bose condensate are related to thermal excitations and
always appear at finite temperature. However, as shown in Section 6.1, the fluctuations
depend not only on temperature but also on the trap geometry and on the particle num-
ber. Typically, fluctuations in spherical traps are strongly suppressed as the wavelengths
of excitations are smaller than the size of the atomic cloud. In contrast, wavelengths of
the excitations in strongly elongated traps can be larger than the radial size of the cloud.
In this case, the low-energy axial excitations acquire a 1D character and can lead to more
pronounced phase fluctuations, although the density fluctuations of the equilibrium state
are still suppressed. Because of the pronounced phase fluctuations, the coherence prop-
erties of elongated condensates can be significantly altered as compared with previous
observations. In particular, the axial coherence length can be much smaller than the size
of the condensate, which can have dramatic consequences for practical applications.
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Figure 6.2.1: Absorption images and corresponding density profiles of BECs after 25ms
time-of-flight taken for various temperatures T and aspect ratios [λ = 10 (a), 26 (b), 51
(c)].

This section provides a theoretical basis for the experiment on observation of phase
fluctuations carried out at the University of Hannover (see [151; 152]). The experiment is
performed with Bose-Einstein condensates of up to N0 = 5× 105 rubidium atoms in the
|F = 2,mF = +2〉 state of a cloverleaf-type magnetic trap. The fundamental frequencies
of the magnetic trap are ωx = 2π×14Hz and ωρ = 2π×365Hz along the axial and radial
direction, respectively. Due to the highly anisotropic confining potential with an aspect
ratio λ = ωρ/ωx of 26, the condensate is already elongated along the horizontal x axis.
In addition, further radial compression of the ensemble by means of a superimposed blue
detuned optical dipole trap is possible [65]. The measurements are performed for radial
trap frequencies ωρ between 2π× 138Hz and 2π× 715Hz corresponding to aspect ratios
λ between 10 and 51. After rf evaporative cooling to the desired temperature, the system
is allowed to reach an equilibrium state by waiting for 1 sec (with rf “shielding”). Then,
within 200µs the trapping potential is switched off and the density profile of the cloud
is detected after a variable time-of-flight.

Figure 6.2.1 shows examples of experimental data for various temperatures T < Tc
and aspect ratios λ. The usual anisotropic expansion of the condensate related to the
anisotropy of the confining potential is clearly visible in the absorption images. The
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line density profiles below reflect the parabolic shape of the BEC density distribution.
Remarkably, pronounced stripes in the density distribution are observed in some cases.
On average these stripes are more pronounced at high aspect ratios of the trapping
potential [Fig. 6.2.1(c)], high temperatures (bottom row of Fig. 6.2.1), and low atom
numbers.

The appearance of stripes in the process of ballistic expansion can be understood
qualitatively as follows. As mentioned in Section 6.1, in the equilibrium state of a BEC
in a trap the density distribution remains largely unaffected even if the phase fluctuates.
The reason is that the mean-field interparticle interaction prevents the transformation of
local velocity fields provided by the phase fluctuations into modulations of the density.
However, after switching off the trap, the mean-field interaction rapidly decreases and
the axial velocity field is then converted into a particular density distribution.

The stripes and their statistical properties can be described analytically using the
scaling theory (see e.g. [66; 67; 68]). The condensate without initial fluctuations evolve
according to the scaling solution

ψ =

√
n0(ρ, x)

b2ρ(t)
eiφ0 , (6.2.1)

where φ0 = (m/2~)(ḃρ/bρ)ρ2, ρ is the radial coordinate, and n0 is the initial Thomas-
Fermi density profile. The scaling parameter bρ(t) is the ratio of the radial size at time
t to the initial size. This parameter is determined by the scaling equations [66; 67; 68]).
For initially elongated condensate, on a time scale t¿ ω2

ρ/ωz we have b2ρ(t) = 1 + ω2
ρt

2,
whereas the axial size of the released cloud remains unchanged.

Equations determining the ballistic expansion in the presence of the density and phase
fluctuations, δn and φ, are obtained from the Gross-Pitaevskii equation linearized with
regard to δn, ∇φ around the solution (6.2.1). This gives two coupled equations:

˙δn =
1

b2ρ
ξ̂φ− ~∇2

x(n0φ)

m
, (6.2.2)

−n0φ̇ =
gn0δn

~b2ρ
+

1

4b2ρ
ξ̂

(

δn

n0

)

− ~∇2
xδn

4m
, (6.2.3)

where ξ̂ = −(~/m)(~∇ρ′n0 · ~∇ρ′ + n0∇2
ρ′), and ρ′ = ρ/bρ. Combining Eqs. (6.2.2) and

(6.2.3), we find:

δ̈n− g∇2
x(n0δn)

mb2ρ
+

~2∇4
xδn

4m2
=

∂

∂t

(

ξ̂φ

b2ρ

)

+
~

4b2ρm
∇2
xξ̂
δn

n0
. (6.2.4)

In the Thomas-Fermi limit (µ/~ωρ À 1) the last term in the rhs of Eq. (6.2.4) can be
neglected. For the axial excitations the quantities φ and δn are independent of the radial
coordinate (see [42], and Eq. (6.1.2) in the previous section). This allows us to average
Eq. (6.2.4) over the radial coordinate. The averaging procedure nullifies the first term in
the rhs and yields

δ̈n− ∇
2
x(µ(x)δn)

2mb2ρ
+

~2

4m2
∇4
xδn = 0, (6.2.5)
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with µ(x) = µ(1 − x2/L2), and L being the axial size. At t = 0 we have bρ = 1,
and Eq. (6.2.5) is nothing else than the eigenmode equation for the axial excitations of
trapped elongated condensates. For low-energy excitations the third term in the lhs of
the eigenmode equation (quantum pressure term) can be omitted and one has the energy
spectrum εj = ~ωx

√

j(j + 3)/4, where j is a positive integer (see [42] and the previous
section).

The main contribution to the density modulations in the expanding cloud comes from
quasiclassical excitations (j À 1), at least on a time scale t À 1/ωρ. Therefore, we will
rely on the local density approximation and neglect spatial derivatives of µ(x). Then
Eq. (6.2.5) transforms to the equation for (local) Bogolyubov eigenmodes characterized
by the axial momentum k:

~2 ¨δnk + ε̃2k(t)δnk = 0 , (6.2.6)

where

ε̃k(t) =

√

µ(x)~2k2

2mb2ρ
+

~4k4

4m2
(6.2.7)

is the “local Bogolyubov spectrum”. For short times, namely t . 1/ωρ, the phonon

part of this spectrum is dominant and ε̃k(t) ≈ ~c(x)k/bρ(t), where c(x) =
√

µ(x)/2m is
the local velocity of axially propagating phonons in the initial cloud. Then Eq. (6.2.6) is
solved in terms of hypergeometric functions of the variable−τ 2 = −ω2

ρt
2. For larger times

we have bρ ≈ ωρt and Eq. (6.2.6) can be solved in terms of Bessel functions of the variable
t̃ = ε̃2k(0)t/~µ(x). The two regimes may be matched by using the asymptotic expression
for the hypergeometric function at τ À 1, and for the Bessel function at t̃ ¿ 1. In this
way we obtain an analytic expression for the density fluctuations δn(x, t) =

∑

k δnk(x, t).
Since the momentum k and the quantum number j are related to each other as k =
ωxj/2c(x), the relative density fluctuations for τ À 1 can be represented in the form:

δn(x, t)

n0(x)
= 2

∑

j

φj exp
{

−(εj/~ωρ)2 ln τ
}

sin

(

ε2jτ

µ(x)~ωρ

)

, (6.2.8)

where φj is the initial (t=0) contribution of the j-th mode to the phase operator in
Eq. (6.1.2) (with ν = j).

From Eq. (6.2.8) one obtains a closed relation for the mean square density fluctua-
tions σ2 by averaging (δn/n0)

2 over different realizations of the initial phase. Taking

into account that 〈(âj + â†j)(âj′ + â†j′)〉/4 = Njδjj′/2, using the quasiclassical average

(P
(1,1)
j (x))2 ' 4(1 − x2)−3/2/πj, and transforming the sum over j into an integral we

obtain:
〈

(

δn(x, t)

n0(x, t)

)2
〉

=
4

π(1− (x/L)2)3/2
T

Tφ

∫ ∞

j=0

dj

j2
sin2

(

~ω2
xτj

2

4µ(x)ωρ

)

exp

[

−
(

ωxj

ωρ

)2
ln τ

2

]

.

(6.2.9)
In the central part of the cloud (x ≈ 0) the integration of Eq. (6.2.9) gives

〈

(

δn(0, t)

n0(0, t)

)2
〉

=

(

σBEC
n0

)2

=
ωx
ωρ

T

Tφ

√

ln τ

π







√

√

√

√

1 +

√

1 +

(

~ωρτ
µ ln τ

)2

−
√
2






. (6.2.10)
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Figure 6.2.2: (a) A typical initial phase distribution calculated for ωx = 2π × 14Hz,
ωρ = 2π× 508Hz, N0 = 2× 105, and T = 0.5Tc. (b) Corresponding density profile after
25ms time-of-flight from a direct solution of the Gross-Pitaevskii equation (solid line)
and analytical theory (dashed line).

Note that Eq. (6.2.10) provides a direct relation between the observed density fluctuations
and temperature, and thus can be used for thermometry at very low T .

In the experiment [151; 152] Eq. (6.2.10) has been used to compare directly the
averaged measured value of [ (σBEC/n0)2 ]

1/2
exp

to the predicted value of (σBEC/n0)theory for
various values of T,N0, ωx, ωρ, and t (see Fig. 6.2.3). The theoretical value takes into
account the limited experimental imaging resolution.

The experimental results follow the expected general dependence very well. With the
direct link of the phase fluctuations in the magnetic trap to the observed density modu-
lation given by Eq. (6.2.10), the data therefore confirm the predicted general behavior of
phase fluctuations in elongated BECs. However, the measured values are approximately
by a factor of 2 smaller than those predicted by theory. This discrepancy could be due to,
for example, a reduction of the observed contrast caused by a small tilt in the detection
laser beam with respect to the radial stripes. Most of the observed experimental data,
which exhibit fluctuations well above the noise limit, correspond to T > Tφ. This implies
that the measurements were performed in the regime of quasicondensation; i.e., the phase
coherence length lφ = LTφ/T of the initial condensate was smaller than the axial size L.
For instance, for λ = 51, T = 0.5Tc, and N0 = 3× 104, one obtains lφ ≈ L/3.

Recently, theoretical predictions of this chapter have been experimentally tested by
Gerbier et al. [153]. They have measured the temperature-dependent coherence length of



72 Chapter 6. Phase-fluctuating 3D Bose-Einstein condensates

Figure 6.2.3: Average standard deviation of the measured line densities [ (σBEC/n0)2 ]
1/2
exp

compared to the theoretical value of (σBEC/n0)theory obtained from Eq. (6.2.10). The
dashed line is a fit to the experimental data.

an elongated Bose condensate by using Bragg spectroscopy and have found quantitative
agreement between their measurements and our theoretical results. The measurements
are consistent with the absence of density fluctuations, even when the phase fluctua-
tions are strong, and confirm the existence of the regime of quasicondensate – novel
phenomenon in the physics of elongated 3D BECs.
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Summary

This Thesis is devoted to theoretical investigation of trapped low-dimensional quantum
gases.

In Chapter 2 we review theoretical grounds of the physics of degenerate low-dimensio-
nal Bose gases. We discuss Bose-Einstein condensation (BEC) in ideal low-dimensional
gases, macroscopic description of an interacting quantum Bose gas, elementary excita-
tions and their description in terms of Bogolyubov-de Gennes equations, phase fluctua-
tions and coherence, and the phenomenon of quasicondenstaion.

Then, in Chapter 3 we investigate quasi-2D Bose and Fermi gases. In the first section
we discuss BEC in quasi-2D trapped gases and arrive at two key conclusions. First,
well below the temperature of quantum degeneracy Td the phase fluctuations are small,
and the equilibrium state is a true condensate. At intermediate temperatures the phase
fluctuates on a distance scale smaller than the Thomas-Fermi size of the gas, and one
has a quasicondensate. Second, in quasi-2D the coupling constant is sensitive to the
frequency of the tight confinement ω0 and, for negative 3D scattering length a, one can
switch the mean-field interaction from attractive to repulsive by increasing ω0.

In the second section of Chapter 3 we show that quasi-2D atomic Fermi gases can
strongly compete with 3D gases in achieving superfluidity. In the regime of BCS pair-
ing for weak attraction we calculate the critical temperature Tc to the second order in
perturbation theory and analyze possibilities of increasing the ratio Tc/εF , where εF is
the Fermi energy. In the opposite limit, where a strong coupling leads to the formation
of weakly bound quasi-2D dimers, we find that the interaction between the dimers is
repulsive and their collisional relaxation and decay are strongly suppressed. We thus
conclude that a Bose-Einstein condensate of these composite bosons will be stable on a
rather long time scale.

In Chapter 4 we consider a Bose gas tightly confined in one (axial) direction and
discuss how the axial confinement manifests itself in elastic and inelastic pair collisions.
We identify two regimes of scattering. At temperatures T ¿ ~ω0 one has a quasi-2D
regime in which the 2D character of the relative motion of particles manifests itself in a
logarithmic energy dependence of the scattering amplitude. At temperatures T ∼ ~ω0

we have a confinement-dominated 3D regime of scattering, where the 2D character of
the particle motion is no longer pronounced in the scattering process, but the axial
confinement can strongly influence the energy (temperature) dependence of the scattering
rate. For a large 3D scattering length, the tight confinement provides a much weaker
temperature dependence of the elastic collisional rate than in the 3D case and suppresses
its resonant enhancement at low energies. We have employed our theory for explaining
the Stanford and ENS experiments with tightly confined Cs clouds.

In Chapter 5 we discuss the regimes of quantum degeneracy in a trapped 1D gas with
repulsive interparticle interaction. We find that the presence of a sharp crossover to the
BEC regime requires extremely small interaction between particles. Otherwise, the de-
crease of temperature leads to a continuous transformation of a classical gas to a quantum
degenerate. We identify three regimes at T ¿ Td. For a sufficiently large interparticle
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interaction and the number of particles much smaller than a characteristic value N∗, at
any T ¿ Td one has a trapped Tonks gas characterized by a Fermi-gas density profile.
For N À N∗ we have a weakly interacting gas. In this case we calculate the density and
phase fluctuations and find that even well below Td there is a quasicondensate. At very
low T the long-wave fluctuations of the phase are suppressed due to a finite size of the
system, and we have a true condensate. The true condensate and the quasicondensate
have the same Thomas-Fermi density profile and local correlation properties, and we
analyze how to distinguish between these BEC states in an experiment.

Finally, in Chapter 6, we show that phase coherence properties of 3D Thomas-Fermi
condensates depend on their shape. In very elongated 3D condensates, the axial long-
wave fluctuations of the phase manifest themselves even at temperatures far below the
BEC transition temperature. Then the equilibrium state is a quasicondensate similar
to that in 1D trapped gases. At sufficiently low temperatures, the 3D quasicondensate
gradually transforms into a true condensate with decreasing T . In the second section
we investigate the influence of equilibrium phase fluctuations on the density profile of an
elongated 3D Thomas-Fermi condensate after switching off the trap. We find a relation
between the phase fluctuations in the trap and density modulations in the expanding
cloud. The results of this chapter have been used for explaining experiments with elon-
gated condensates in Hannover and have been confirmed by experiments in Orsay.



Samenvatting

Dit proefschrift is gewijd aan de theoretische onderzoek van opgesloten laag-dimensionale
kwantumgassen.

In hoofdstuk 2 geven we een overzicht van de theoretische basis van de natuurkunde
van laag-dimensionale Bose gassen in het ontaarde kwantumgebied. We bespreken de
Bose-Einstein-condensatie (BEC) van een ideaal gas in lage dimensies, de makroscopische
beschrijving van een wisselwerkend kwantum Bose gas, de elementaire excitaties en hun
beschrijving in termen van Bogolyubov-de-Gennes-vergelijkingen, de fase fluctuaties en
de coherente eigenschappen van het condensaat, en het fenomeen van quasicondensatie.

Vervolgens, in hoofdstuk 3 onderzoeken we quasi-twee-dimensionale Bose en Fermi
gassen. In het eerste deel bespreken we BEC in quasi-2D opgesloten gassen en komen tot
twee sleutelconclusies. Ten eerste, de fase fluctueert weinig bij temperaturen veel lager
dan de temperatuur Td van de kwantum ontaarding. Bij tussenliggende temperaturen
fluctueert de fase op een schaal kleiner dan de Thomas-Fermi lengte van het gas: men
heeft een quasicondensaat. De tweede conclusie is dat in het quasi-2D geval de interac-
tiekonstante gevoelig is voor de frequentie van de sterke opsluiting ω0. Daarnaast kan
men bij een systeem met negatieve 3D verstrooiingslengte a, de mean-field wisselwerking
veranderen van aantrekkend tot afstotend door ω0 te verhogen.

In het tweede deel van hoofdstuk 3 laten we zien dat atomaire quasi-2D Fermi gassen
sterk met 3D gassen kunnen concureren als het gaat om het bereiken van superfluı̈diteit.
In het geval van BCS paring bij zwakke aantrekking berekenen we de kritieke temperatuur
Tc tot de tweede orde in storingsrekening en analyseren we de mogelijkheden om de
ratio Tc/εF te vergroten; hier is εF de Fermi energie. In het tegenovergesteld geval,
waarin sterke interactie tot vorming van zwak-gebonden quasi-2D dimeren leidt, vinden
we dat de wisselwerking tussen de dimeren afstotend is en dat hun verval en relaxatie
door botsingen sterk zijn onderdrukt. Wij concluderen daarom dat een Bose-Einstein
condensaat van deze samengestelde bosonen over langere tijd stabiel zal zijn.

In hoofdstuk 4 beschouwen we een Bose gas, dat in één (axiale) richting sterk opge-
sloten is. Ook beschrijven wij hoe de axiale opsluiting zich in elastische en inelastische
paarbotsingen uit. We identificeren twee verschillende verstrooiingsgebieden. Bij tem-
peraturen van T ¿ ~ω0 vindt men een quasi-2D gebied waarbij het 2D karakter van de
relatieve beweging van deeltjes zichzelf manifesteert in een logaritmische energie afhan-
kelijkheid van de verstrooiingsamplitude. Bij temperaturen T ∼ ~ω0 vinden we een 3D
regime waarbij de opsluiting het verstrooiingsgedrag domineert. Het 2D karakter van de
deeltjesbeweging is dan niet meer belangrijk in het verstrooiingsproces, maar de energie
(temperatuur) afhankelijkheid van de verstrooingsfrequentie zal sterk door de axial op-
sluiting worden bëınvloed. De nauwe opsluiting maakt de temperatuurafhankelijkheid
van de elastische botsingsfrequentie voor grote 3D verstrooiingslengtes veel zwakker dan
in het 3D geval. Ook wordt de resonante verstrooiing bij lage energieën onderdrukt.
Wij hebben onze theorie toegepast op experimenten die op Stanford en bij de ENS zijn
gedaan met sterk opgesloten Cs.

In hoofdstuk 5 bespreken we de gebieden van de kwantumontaarding in een opgeslo-
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ten 1D gas met afstotende wisselwerking tussen de deeltjes. Wij vinden dat voor een
scherpe BEC-overgang de wisselwerking tussen de atomen bijzonder zwak moet zijn. In
het tegenovergesteld geval lijdt de verlaging van de temperatuur tot een onafgebroken
vervorming van een klassiek tot een kwantum ontaard gas. We onderscheiden drie gebie-
den voor T ¿ Td. Als de wisselwerking tussen de deeltjes sterk genoeg is en het aantal
atomen veel kleiner is dan de karakteristieke waarde N∗, dan heeft men een opgesloten
Tonks gas voor willekeurige T ¿ Td. Het Tonks gas heeft een dichtheidprofiel gelijk
aan die van een ideaal Fermi gas. Voor N À N∗ hebben wij een zwak wisselwerkende
gas. Voor dit geval berekenen we de dichtheid en fase fluctuaties. Wij vinden dat men
zelfs voor temperaturen ver onder Td een quasicondensaat krijgt. Voor zeer lage tempe-
raturen T zijn de langegolf fluctuaties van de fase onderdrukt wegens de eindige lengte
van het systeem. Dit resulteert in een echt condensaat. Het echte condensaat en het
quasicondensaat hebben dezelfde Thomas-Fermi dichtheidsprofielen en lokale correlatie
eigenschappen. Wij analyseren hoe men het verschil tussen deze BEC-toestanden in een
experiment zichtbaar kan maken.

Tenslotte, in hoofdstuk 6 laten we zien dat fase coherente eigenschappen van een 3D
Thomas-Fermi condensaat afhankelijk zijn van zijn vorm. In zeer lange 3D condensa-
ten manifesteren de axiale langegolf fase fluctuaties zich bij temperaturen veel lager dan
de kritieke temperatuur voor BEC. Het thermische evenwicht van het systeem is dan
een quasicondensaat vergelijkbaar met 1D opgesloten gassen. Voor voldoende lage tem-
peraturen vervormt het 3D condensaat geleidelijk tot een echt condensaat met kleiner
wordende T . In het tweede deel onderzoeken we hoe de fase fluctuaties van de evenwichts-
toestand het dichtheidsprofiel van een lang 3D Thomas-Fermi condensaat bëınvloeden
na het uitzetten van de val. Wij vinden een relatie tussen de fase fluctuaties die de wolk
had tijdens de opsluiting in de val en de dichtheidsmodulaties van de expanderende wolk.
De resultaten van dit hoofdstuk zijn gebruikt om experimenten met lange condensaten in
Hannover te verklaren. Ook zijn deze resultaten door experimenten in Orsay bevestigd.
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