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Chapter 1

Introduction

Everyday we encounter the results of discoveries and achievements of quantum mechan-
ics and atomic physics which were made over the last century: be it the laser diode in
a DVD player displaying our holiday pictures or measurements of the thickness of the
Earth’s ozone layer protecting us from UV radiation [Ste11]. In the first experiments
in atomic physics the structure of atoms and their unique absorption spectra were
deciphered, this is now the basis for thousands of applications from determining the
velocity at which the universe expands to measuring the alcohol content in the breath
of a speeding driver.

Nowadays, using light and electro-magnetic fields, atoms can be manipulated and
cooled to temperatures within a few 100 nK of absolute zero. At such low temperature
the behaviour of the atoms is not determined by their external degrees of freedom, but
by quantum statistics. Bosons, particles with integer spin, can condense into a single
state and form a macroscopic wavefunction extending over the inter-particle distance.
More than 70 years after the initial description by Bose and Einstein [Bos24, Ein25],
these Bose-Einstein condensates (BEC) were demonstrated in atomic gases [And95,
Dav95a] and recently light, the most prominent member in the class of bosons, was
condensed [Kla10].

For particles with half-integer spin, fermions, the behaviour at low temperatures
is very different from bosons: instead of lumping together they each occupy a state
by themselves, keeping their distance. The first degenerate quantum gas of fermionic
atoms was produced in 40K [DeM99a]. The quantum statistics of fermions [Fer24,
Fer26, Dir26] plays an important role in many areas of physics. In condensed matter
Fermi statistics determines electric and transport properties, neutron stars are pre-
vented from collapsing by Fermi pressure and all matter known to us is composed of
quarks and electrons which are fermionic elementary particles. For the understanding
of superconductivity the pairing of fermions with attractive interactions plays a major
role [Che05]. Finding accurate theoretical descriptions for these phenomena and un-
derstanding the influence of interactions and the quantum statistics of fermions is still
ongoing work.
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1.1 Cold quantum gases

In cold quantum gases formed by neutral atoms there are no effects of electric charge
and crystal impurities and these systems enable us to observe the quantum nature of
particles. Quantum degenerate gases have been used to demonstrate effects known from
condensed matter physics, such as the Mott insulator - superfluid transition [Gre02,
Jör08], the pairing of fermions [Reg04, Zwi05] and Anderson localization [Bil08, Roa08].
A step further is to use systems of cold atoms as a simulator for other systems in
physics which are difficult or impossible to compute classically [Fey82]. This requires
the implementation of controllable logic operations and a correlation of the atoms.

Strong correlations in experiments with cold quantum gases can be created either
by confining the atoms tightly in optical lattices [Deu98, Gre02] or by tuning the
interaction between the atoms in strength and even sign with the help of so-called
Feshbach resonances [Fes58, Fes62, Chi10]. In cold atoms Feshbach resonances occur
when a bound state within a two-body potential is resonant with the energy of a pair
of unbound atoms. When the magnetic moments of the bound state and the unbound
pair differs, they can be brought into resonance by applying a magnetic field. At the
resonance, the scattering length, a measure for the interaction strength between atoms,
diverges and changes sign.

The beauty and importance of Feshbach resonances is that they make it possible to
use ultracold atoms as a model system for other areas of physics. Once the interaction
between the atoms is strong enough, only a few universal parameters are required to
describe the system. Systems with entirely different underlying processes can then be
studied and compared to the strongly interacting cold atoms. At strong interactions the
description of the cold atoms by mean-field theory breaks down and new methods need
to be used. With the bosonic isotope of 39K it has been shown recently that depending
on the interaction strength the critical temperature for Bose-Einstein condensation
changes [Smi11].

For certain interaction strengths atoms can also form few-body bound states [Kra06]
with universal properties described by Efimov [Efi70]. Although these states exist due
to two-body interaction, they are not present as two-body states. Efimov states are
also relevant in nuclear physics [Ham10].

With a Feshbach resonance the interaction in fermionic quantum gas can be tuned
from repulsive to attractive through the so-called BEC-BCS crossover. A bosonic
molecule formed by two fermions can then transform into a pair of fermions coupled in
momentum space, similar to a Cooper pair in superconducting theory [Gio08, Ing07,
Blo08]. With 40K this crossover has been explored [Ste08] and the condensation of the
composite bosonic molecules into a BEC has been achieved [Gre03].

The positions and widths of Feshbach resonances of an atomic species in a specific
state depend on the interatomic potential, which differs for the different species and
the different states. Before Feshbach resonances can be used as a tool to tune the
interaction, their positions and properties need to be determined. The atomic species
we are working with is 40K. It has been used as a single species [DeM99a, Lof02, Gre03]
and others, but also in combination with the fermionic 6Li [Wil08, Tie10b, Nai11,
Wu11], and the bosonic 87Rb [Sim03, Ino04, Fer06, Osp06a, Zir08a].
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1.2 This thesis

Feshbach resonances occur in a multitude, especially with a element like 40K, where
many combinations of hyperfine states are stable. Prior to the results presented in this
thesis the position of four Feshbach resonances in mixtures of 40K in the three lowest
hyperfine states was determined [Lof02, Reg03a, Reg03c, Reg06, Gae07]. In this thesis
we present measurements on mixtures occupying states in the middle of the hyperfine
manifold of 40K.

Relying on experiment alone, one can get lost in the large number of loss features
as if wandering in the wilderness bearing neither map nor compass. To find ones way
in the uncharted area of Feshbach resonances it is necessary to start mapping out
the surroundings by starting at a known situation and not just wander off randomly
into the terrain. All explorations in experiments have to go hand in hand with the
theoretical description of the position and nature of the resonance features.

With detailed knowledge of the interatomic potentials, the positions and properties
of Feshbach resonances can be calculated using the coupled channel method (CC). How-
ever, this method is computationally intensive and whether all resonances are found
depends on the step size in the numerical calculation. To predict the positions of new
Feshbach resonances in previously unstudied state mixtures and to locate resonances
of special interest we use a simple asymptotic bound state model (ABM). Once exper-
imental data is obtained the initial parameters of the ABM are improved and more
precise predictions are calculated. The experimental data obtained is compared with
another approximate model, the multi quantum defect theory (MQDT), and the CC
calculations.

To reach temperatures cold enough to study the quantum nature and control the
interaction of the atoms, we use the techniques of laser cooling and evaporative cooling
[Met99, Ket99]. We constructed an apparatus to cool and capture 40K and measure
Feshbach resonances at a stable magnetic field. To investigate a Feshbach resonance
in a certain channel it is of great importance to prepare the hyperfine state mixtures
required in a reliable and reproducible manner, especially in the case of 40K with its
rich hyperfine structure. Without this, difficulties arise when assigning experimen-
tally observed loss features. To achieve this we developed a state-dependent detection
scheme and a transfer procedure to populate the desired states. For the mapping out
of Feshbach resonances we start out with binary mixtures of hyperfine states and mea-
sure atom loss depending on the magnetic field. In a second step, the states can be
measured individually to rule out p-wave resonances within one hyperfine state.

1.3 Outline
This thesis covers both experimental and theoretical aspects of the study of Feshbach
resonances in 40K. Chapter 2 contains a brief overview of the theoretical concepts
required to describe cold trapped fermions. The scattering of cold fermions and the
theory of Feshbach resonances are introduced. Here we put emphasis on the specifics of
40K, which offers more options for stable state mixtures than other alkalis. Additionally
the simple model which we use to calculate the positions of Feshbach resonances is
presented.
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The major part of this thesis was to construct an apparatus to produce cold mix-
tures of 6Li and 40K. In Chapter 3 this experimental apparatus is described, putting
the emphasis on the 40K part and newly added components. Special features of our
apparatus include the two-dimensional magneto-optical traps used as sources for the
cold atoms, an optically plugged magnetic trap and a transport of the cold atom cloud
by means of optical tweezers.

The detailed experimental sequence to produce cold mixtures of specific states in
40K is explained in Chapter 4. The calibration of the magnetic field is of importance
for the accurate specification of the measured data. How and to what precision we
determine the magnetic field is also presented in Chapter 4. In this chapter we also
present measurements of Feshbach resonances which show special features. An indica-
tion of the width of a Feshbach resonance is determined by evaporating the cold atom
cloud at different magnetic fields; in Chapter 4 a model to fit the data is developed.

The main result of this thesis, the measurement of Feshbach resonances in various
spin mixtures of 40K, is presented in Chapter 5. The measured values are compared
with values obtained by our collaborators in coupled channel calculations and the two
simple models. Overall we measured the position of 23 Feshbach resonances in eleven
different state combinations.

The appendices cover more details about 40K in optical potentials (Appendix A),
the hyperfine structure of 40K (Appendix B) and its optical transition probabilities
(Appendix C).



Chapter 2

Theoretical Background

In this chapter the theoretical concepts and notations used in this thesis are presented.
This chapter gives an overview of scattering theory and Feshbach resonances and their
description. We present the simplified model which was used to calculate the positions
of Feshbach resonances in 40K. This chapter also presents the assumptions to analyse
and model the behaviour of ultracold atoms in external potentials. We put emphasis
on the peculiarities of 40K and the nature of fermions.

Cold quantum gases have a density which is in general low enough to describe the
interactions as two-body interactions. For low enough temperatures the description
of scattering processes by s-wave interaction is sufficient. The field of cold atoms is
very active and there are plenty of good textbooks and overview articles dealing with
both the theoretical aspects and the experimental techniques involved, for example
[Ing07, Met99, Ket99, Chi05].

2.1 Fermions
In the everyday world as we experience it, two identical particles are never truly in-
distinguishable. For example the movement and the trajectory of two billiard balls
which look alike can be followed and backtracked either by eye or with the help of a
fast camera. Additionally two otherwise identical billiard balls can be marked with
different numbers and made distinguishable.

In quantum mechanics however, identical particles are truly indistinguishable. The
particles can be specified by nothing more than a complete set of commuting observ-
ables. According to the Heisenberg uncertainty principle it is not possible to obtain
an exact measurement of all the observables simultaneously. The particles cannot be
labelled and followed individually as in classical mechanics. When measuring a two-
particle system of indistinguishable particles in state |ka〉 and state |kb〉, where the |ki〉
represent a collective index for the complete set of observables, all linear combinations
of the two particles of the form

c1 |ka〉 |kb〉+ c2 |kb〉 |ka〉

result in identical eigenvalues. The eigenvalues are degenerate with respect to the
exchange of the two particles |ka〉 and |kb〉, so at this level of analysis the linear com-
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bination to describe the pair is not uniquely defined yet. This exchange degeneracy
is lifted by including the exchange of two particles with the permutation operator P12
with

P12 |ka〉 |kb〉 = |kb〉 |ka〉 .

Its eigenvalues are +1 and -1, so the description of a two-body system is either sym-
metric or antisymmetric. It can be shown that in three dimensions the operator P12 is
a constant of motion, as it commutes with the Hamiltonian [Sak94]. Being a constant
of motion also implies that the symmetric and the antisymmetric solutions cannot be
converted into each other. Those two distinct solutions represent two distinct kinds
of particles: bosons and fermions. Including the exchange of two particles, the non-
degenerate solutions for the two-body wavefunction for two indistinguishable particles
a and b at positions r1 and r2 in terms of the single-particle wavefunctions ψi(ri) are:

ψ+(r1, r2) = CN (ψa(r1)ψb(r2) + ψb(r1)ψa(r2))
ψ−(r1, r2) = CN (ψa(r1)ψb(r2)− ψb(r1)ψa(r2)), (2.1)

with a normalizing factor CN . Under exchange of the two particles the wavefunction
is symmetric for the plus-sign and antisymmetric for the minus-sign. The symmetric
wavefunction is applicable for bosons and the antisymmetric version describes fermions.
From Eq. 2.1 the Pauli exclusion principle [Pau25] becomes clear: two identical fermions
can neither occupy the same state ψi nor the same position r. For ψa = ψb the two-
body wavefunction ψ−(r1, r2) vanishes, the same happens for r1 = r2. Particles with
a half-integer spin, the fermions, obey Fermi-Dirac statistics [Dir26, Fer26], whereas
particles with integer spin, the bosons, obey Bose-Einstein statistics [Bos24, Ein25].
For an ensemble of particles, the average number of particles n̄i per single particle state
εi is given by

n̄BE
i = 1

e(εi−µ)/kBT − 1 (2.2)

for bosons and
n̄FD
i = 1

e(εi−µ)/kBT + 1 (2.3)

for fermions. Here µ is the chemical potential. The behaviour of fermions and bosons
differs most strikingly at low temperatures. Bosons in a trapping potential as depicted
in Fig. 2.1 collect in the ground state of the system and form a Bose-Einstein conden-
sate (BEC), as has been demonstrated for the first time in 1995 by [And95, Dav95a].
Identical fermions on the other hand, fill up the states up to the Fermi-energy EF with
one fermion occupying one state at a time. A Fermi degenerate gas of atoms has been
realized for the first time in 40K in 1999 [DeM99a].

2.2 Two-body Hamiltonian
At the densities and temperatures relevant for experiments with ultracold atoms, most
of the interactions can be characterized by two-body interactions. Two interacting
atoms can be described by the two-body Hamiltonian as:

H = Hrel + Hint, (2.4)
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EFermi

en
er

gy

fermions bosons

Figure 2.1: The behaviour of trapped fermions and bosons at zero temperature. Iden-
tical fermions fill the levels one by one up to the Fermi energy EF , whereas bosons
collect in the ground state to form a Bose-Einstein condensate.

with the Hamiltonian for the relative motion Hrel of the two atoms and the Hamiltonian
describing the internal energy of the two atoms Hint:

Hrel = p2

2mr
+ V, (2.5)

Hint = HB
hf,α + HB

hf,β (2.6)

The operator p2/2mr describes the relative kinetic energy of two atoms with reduced
mass mr = m1m2/(m1 +m2) and the potential V the effective interaction of the atoms.
The internal Hamiltonian is presented in the following section.

2.2.1 Internal Hamiltonian
The internal Hamiltonian for two alkali atoms in their electronic ground state is the
sum of hyperfine interaction Hhf and the Zeeman interaction HZ for each of the two
atoms† labelled α and β:

HB
hf = Hhf + HZ (2.7)

= ahf

~2 i · j + µB

~
(gJ j + gIi) ·B, (2.8)

where ahf is the hyperfine constant for the fine structure level under consideration, gJ
the total Landé g-factor of the electron, gI the gyromagnetic factor of the nucleus, µB
the Bohr magneton, ~ the reduced Planck constant h/2π and B is the magnetic field.
We use the convention µI = −gIµBI/~. The operators i and j are the nuclear spin and
angular momentum operators with corresponding quantum numbers mi and mj

‡. 40K
has the electronic ground state 4 2S1/2, so J equals to the spin operator S and S = 1/2.

†Eq. 2.8 applies for the atoms in the ground state, for excited atoms see Appendix B
‡To avoid confusion in this section, we label the operators I, S, J and F in capital letters when

only one atom is concerned and for the coupled operators of the two atoms. For systems of two atoms,
the individual operators and quantum numbers are labelled in lower case letters.
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Figure 2.2: Hyperfine structure of 40K in the ground state |4 2S1/2〉. The states are
labelled a to r with rising energy and in the low-field basis |F,mF 〉. In the lower
hyperfine manifold, where F = 9/2, the states f to j are low-field seeking at low
magnetic field. In the upper hyperfine manifold (F = 7/2) the states o to r are low-
field seeking. The hyperfine structure is inverted unlike in most other alkalis. For more
details see Appendix B.

The nuclear spin of 40K is I = 4. The energy eigenvalues of the internal Hamiltonian
of a 40K atom are shown in Fig. 2.2. The states are labelled with the low-field basis
|F,mF 〉 quantum numbers, where F = I + J and alphabetically with rising energy.

The hyperfine constant of 40K is ahf = h × −285.7308(24)MHz, resulting in a
hyperfine splitting ∆Ehf = h× 1285.79MHz of the two hyperfine manifolds. Note that
the hyperfine structure is inverted unlike in most other alkalis [Zac42]. In Appendix B
the hyperfine structure of 40K is described in more detail and values for all relevant
constants are given.

The internal Hamiltonian in Eq. 2.6 can be separated into a term which conserves
the total electron spin H+

int and a term H−int which couples the different spins. This
is done for indistinguishable particles with j = s = 1/2 in the symmetrized basis
|SMSIMI〉 with I = iα + iβ, S = sα + sβ and equal ahf , gJ and gI .

H+
int = ahf

2~2 I · S + µB

~
(gJS + gII) ·B (2.9)

H−int = ahf

2~2 (iα − iβ) · (sα − sβ) (2.10)

2.2.2 Hamiltonian for the relative motion
The effective interaction V in the Hamiltonian of the relative motion in Eq. 2.5 can
be expressed as the (central) Coulomb interaction V C(r) of the two atoms with inter-
nuclear distance r and total spin S = sα + sβ.

V C(r) =
∑
S

|S〉VS(r) 〈S| = PsVs + PtVt. (2.11)

Depending on the coupling of the individual spins, the interaction potential VS(r) has
for s = 1/2 atoms a singlet (S=0) or a triplet (S=1) character with the respective
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singlet and triplet potentials Vs(r) and Vt(r). The operators Ps and Pt project out the
singlet and triplet components of the wave function respectively. The interaction in
Eq. 2.11 can then be rewritten into a sum of a direct VD and a exchange interaction
J(r)[Pet02] including the eigenvalues of Ps and Pt:

V C(r) = VD + J(r)sα · sβ (2.12)

= Vs(r)− 3Vt(r)
4 + [Vt(r)− Vs(r)] sα · sβ (2.13)

= Vs(r)− 3Vt(r)
4 + [Vt(r)− Vs(r)]

(1
2S2 − 3

4

)
. (2.14)

In the asymptote the direct interaction VD corresponds to the van der Waals potential

VD = −C6

r6 −
C8

r8 −
C10

r10 − · · · (2.15)

≈ −C6

r6 , (2.16)

with the van der Waals range

r0 = 1
2

(2mrC6

~2

)1/4
(2.17)

as the characteristic length of the potential [Gri93, Fla99].
In the description of the two-body Hamiltonian in Eq. 2.4, we have not included

dipole-dipole coupling. Neglecting dipole-dipole interaction, the two-body Hamiltonian
can be separated into a radial and a spin part. The relative Hamiltonian Hrel acts only
on the radial part of the atoms wavefunction and the internal Hamiltonian Hint acts
only on the spin part.

2.3 Elastic collisions
The scattering of particles by a potential has been treated extensively in the litera-
ture (for example in [Sak94, CT77]); here we present the main results important for
the experiments with 40K. The Pauli exclusion principle limits the types of two-body
wavefunctions for fermions. When considering the scattering between two fermions
the two-body wavefunction needs to be symmetrized properly. In systems of identical
fermions s-wave collisions are forbidden due to the Pauli exclusion principle. To obtain
the elastic scattering properties the time-independent radial wave equation needs to be
solved for given values of l and s [Fli91]:

ERl(r) =
[

~2

2mr

(
∂2

∂r2 + 2
r

∂

∂r

)
+ ~2l(l + 1)

2mrr2 + VS(r)
]
Rl(r). (2.18)

For l = 0 the influence of the scattering potential on the scattered wavefunction in
the asymptotic case (r →∞) can be expressed by the s-wave phase shift η0. It is:

a = − lim
k→0

tan η0

k
(2.19)
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The singlet Vs and triplet potentials Vt result in a singlet part as and a triplet part at
of the s-wave scattering length a.
The asymptotic solutions to Eq. 2.18 can be described as a partial wave expansion
[Sak94]:

〈X|Ψ〉 large r−→ 1
(2π)3/2

∑
l

(2l + 1)Pl(cos θ)
2ik

[
[1 + 2ikfl(k)] e

ikr

r
− e−i(kr−lπ)

r

]
, (2.20)

where Pl(cos θ) are Legendre polynomials for the scattering angle θ and fl(k) is the
lth partial wave amplitude. The solution is expressed as a spherically incoming wave
e−i(kr−lπ)/r and an outgoing spherical wave eikr/r. The scattering event changes the
coefficient of the outgoing wave. The partial wave amplitude is connected to a phase
shift ηl [Sak94]:

fl(k) = 1
k cot ηl − ik

. (2.21)

For partial waves with l = 1 (p-wave) and a van der Waals potential as in Eq. 2.15,
the phase shift is related to the p-wave scattering length a1 [Gau10] as:

a3
1 = − lim

k→0

tan η1

k3 . (2.22)

Collisions at low energies for partial waves with l > 0 are in general suppressed, because
a centrifugal barrier forms a threshold with the effective potential

Vth(l) = −C6

r6 + ~2

2mr

l(l + 1)
r2 . (2.23)

The maximum threshold energy Eth can be approximated to

Eth(l) = − C6

r6
max

+ ~2

2mr

l(l + 1)
r2

max
(2.24)

using the local maximum of the effective potential at

r4
max = 6C6mr

~2l(l + 1) .

In the case of 40K the threshold is 100µK for p-wave (l = 1) and 510µK for d-wave
(l = 2) partial wave collisions. In the magneto-optical trap we have temperatures up
to 190 µK, in the magnetic trap and the optical trap they are in the range of a few
10µK. In the latter traps the main scattering channel will be s-wave.

2.4 Spin Exchange and 40K
Spin exchanging collisions are inelastic. Due to the Zeeman interaction (see Fig. 2.2)
the different hyperfine states have different energies depending on the magnetic field.
When spin exchange occurs, the energy difference of the total energy between final and
initial states Ef−Ei can be negative or positive, leading to exothermic and endothermic
collisions respectively. For a positive difference in energy, this is the activation energy
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Property Symbol Value unit Ref.

singlet scattering length as 104.41(9) a0 [Fal08]
triplet scattering length at 169.67(24) a0 [Fal08]
van der Waals range r0 65.02 a0
van der Waals coefficient C6 3925.9 EHa

6
0 [Fal08]

van der Waals coefficient C8 4.224×105 EHa
8
0 [Fal08]

van der Waals coefficient C10 4.938×107 EHa
10
0 [Fal08]

Table 2.1: Scattering properties of 40K in units of the Bohr radius a0 = 5.2917720859×
10−11 m and the Hartree energy EH = 4.35974394× 10−18 J [NIS10].

Eact needed to make spin exchanging collisions happen. In collisions described by the
Hamiltonian in Eq. 2.4 the total spin MT = mF + m′F of two colliding atoms in the
hyperfine states with quantum numbers mF and m′F is conserved. Furthermore in the
case of fermions the two-body wave function obeys Fermi-Dirac statistics enforcing
an antisymmetric total wavefunction for atoms in identical states. Therefore all spin
exchanging s-wave collisions between atoms in the same hyperfine state mF = m′F are
forbidden. We only consider s-wave collisions between atoms in the electronic ground
state |2S1/2〉 of 40K in this section. Dipolar relaxation, where the atoms enter in a
s-wave channel and leave in a d-wave channel, only plays a minor role (away from
Feshbach resonances), as the temperature of the cold atoms is far below the d-wave
threshold.

In the case of collisions between atoms in the two hyperfine manifolds F = 9/2
and F = 7/2, the collision is exothermic. The energy difference is of the order of the
hyperfine splitting ∆Ehf = h×1285.79MHz, corresponding to a temperature of 60mK.
This is much higher than all the trapping potentials employed in this experiment.
Atoms in different hyperfine manifolds which undergo spin exchanging collisions will
be lost from the trap. In our experiment spin exchange between atoms in the two
hyperfine manifolds can play a role during a state preparation step, which will be
described in detail in Sec. 4.2.

The case of collisions between 40K atoms within the lower hyperfine manifold (F =
9/2) needs to be considered for trapped cold clouds and when preparing atoms in
specific binary mixtures to measure Feshbach resonances as will be described in Sec. 4.2.
When considering binary state mixtures in the lower hyperfine manifold of 40K, there
are several combinations of states which are stable or can be made stable against spin
exchange. There are in general two possibilities for the final state combination when
exchanging one quantum of angular momentum. For neighbouring states one of these
combinations is excluded as it is identical to the initial states:

|(mF + 1),mF 〉 → |(mF + 2), (mF − 1)〉 (a)
9 |(mF ), (mF + 1)〉 . (b)

For states where ∆mF = 2, one combination is excluded due to the Pauli exclusion
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Figure 2.3: Activation temperature Tact necessary for spin exchange between atoms in
the lower hyperfine manifold, depending on the magnetic field B. The curves are for
spin exchanging processes where one unit of angular momentum is exchanged. The
solid lines show spin exchange between atoms in neighbouring states (h+ i, ..., b+ c).
The dashed lines show the non-adjacent spin exchange channels which are present in
the f, g, h, i, j mixture. For the channels shown in red the reversed (exothermic) process
is possible in the f, g, h, i, j mixture. The inset shows the magnetic field range relevant
for the state preparation described in Sec. 4.2.

principle:

|(mF + 2),mF 〉 → |(mF + 3), (mF − 1)〉 (a)
9 |(mF + 1), (mF + 1)〉 . (b)

This can be understood as a time-reversed collision of identical fermions. In general
the spin exchange channels for the exchange of one quantum of angular momentum
are:

|(mF + i),mF 〉 → |(mF + i+ 1), (mF − 1)〉 (a)
→ |(mF + i− 1), (mF + 1)〉 . (b)

The hyperfine structure of 40K is inverted (see Fig. 2.2), so the energy of the state
|mF + 1〉 is always higher than of the state |mF 〉. The channels labelled as (a) above are
therefore endothermic channels, requiring activation energy Eact to drive spin exchange.
The channels labelled (b) above are exothermic, releasing energy when spin exchange
takes place. The activation temperature

Tact = Eact/kB = (Ef − Ei)/kB (2.25)

corresponds to the temperature at which the activation energy is provided by the
thermal energy of the atom cloud. The difference in energy between final and initial
states Ef −Ei depends on the magnetic field and results in an activation temperature
Tact as shown in Fig. 2.3.
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For binary mixtures consisting of neighbouring states or states with ∆mF = 2 it
is always possible to stabilize the mixture by increasing the magnetic field or lowering
the temperature of the cold atom cloud. The activation temperature necessary Tact to
drive spin exchange in mixtures of neighbouring states in the lower hyperfine manifold
is shown as solid lines in Fig. 2.3. The activation temperature Tact for states with
∆mF = 2 is even higher. As mixtures of neighbouring states and of states with
∆mF = 2 can be made stable, also mixtures of atoms in three adjacent states can
be stabilized. The fact that 40K is fermionic and has an inverted hyperfine structure
allows for the realization of a multitude of stable state combinations, exceeding the
possibilities in other alkalis.

2.4.1 Populated states in the magnetic trap
The cold atoms in the magnetic trap (and in the optical dipole trap) are in the states
f, g, h, i, j (labelled as in Fig. 2.2). The combination |9/2 + 7/2〉 (j + i) is stable
against spin exchanging collisions as there is no other combination with MT = 8.
The binary mixture |9/2 + 5/2〉 (j + h) is stable against spin exchanging collisions
as the only possible final state combination is excluded due to the Pauli exclusion
principle§. The mixture f, g, h, i, j has in total nine channels, where spin exchanging
s-wave collisions can exchange one unit of angular momentum between two atoms. Of
those nine channels six are endothermic, the three remaining channels are exothermic
and correspond to the reversed processes of endothermic channels.

Of the six endothermic channels, five involve neighbouring states or states with
∆mF = 2. The dashed lines in Fig. 2.3 show the spin exchange channels present in the
f, g, h, i, j mixture for non-adjacent states. The red lines correspond to the reverse of
the three exothermic spin exchanging channels possible for atoms in the mixture. The
energy release from the exothermic spin exchanging processes leads to loss from the
trap or – for low magnetic fields – a heating of the cold atom cloud.

2.4.2 Scattering rate for spin exchange
Apart from the existence of decay channels, in an experiment the actual loss rate and
with that the stability of a mixture of two states is determined by the scattering rate.
The two-body scattering rate K2, depends on the density of the involved states, the
spatial overlap of the states and the difference between singlet and triplet scattering
length [Pet02]:

K2 = 4π(as − at)2v′rel

∣∣∣〈F ′αm′F,α F ′βm′F,β|sα · sβ|FαmF,α FβmF,β〉
∣∣∣2 , (2.26)

where |F ′αm′F,α F ′βm′F,β〉 and |FαmF,α FβmF,β〉 denote the final and initial hyperfine
states and v′rel is the relative velocity of the atoms in the final state. It is

v′rel =
√

2
mr

(Ekin + EHF
α + EHF

β − EHF′
α − EHF′

β ), (2.27)

§The same arguments hold for the combinations |−9/2 + −7/2〉 (a+b) and |−9/2 + −5/2〉 (a+c).
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with the reduced mass mr = (mαmβ)/(mα + mβ) and the kinetic energy Ekin of the
initial states. The energies EHF

i and EHF′
i denote the hyperfine energies of the initial

and final states. To calculate the spin exchange rate between atoms of the same
atomic species, the hyperfine basis |FαmF,α FβmF,β〉 is transformed to the total spin
basis |SMS I MI〉.

From the factor (as − at)2 in Eq. 2.26 follows, that the two-body inelastic loss rate
K2 is expected to be low, when the singlet and triplet scattering lengths are similar.
This effect can also be understood as an interference effect as has been shown for 87Rb
[Kok97, Bur97]. In the group at JILA [DeM01] an upper limit for the the non-resonant
spin exchange rate in 40K was determined to be K2 < 2 × 10−14 cm3/s. Compared to
other alkali atoms where K2 ≈ 10−11 cm3/s [Pet02], this is rather low.

2.5 Feshbach resonances
So far we have covered the scattering properties for scattering from a central potential
(Sec. 2.3). The potential determines the value of the scattering length a at low temper-
atures. A form of resonant scattering are Feshbach resonances; they are an important
tool to control the interaction between ultracold atoms, as they allow to widely tune
the scattering length of the atoms.

In the asymptotic case (r → ∞) the hyperfine energy of the two colliding atoms
with distance r determines the total energy of the atom pair. The total energy of
the unbound pair forms the so-called open channel, as (s-wave) collisions are always
possible even when T → 0. Feshbach resonances occur when in addition to the open
channel there is also a two-body bound potential, a so-called closed channel, present.
All scattering potentials which have a higher asymptotic energy than the open channel
are referred to as closed channels (see Fig. 2.4). Due to resonant coupling to a bound
state with binding energy Eb within a closed channel the scattering length a can diverge.

The divergence of the scattering length occurs when the bound state in the closed
channel shifts into resonance with the energy of the open channel. Due to the difference
in magnetic field dependence of the open and closed channel, the closed channel can
be moved relative to the energy of the open channel by applying an external magnetic
field. The bound state in the closed channel is resonant at a certain magnetic field B0,
when there is a coupling between the open and the closed channel. At the resonance
at magnetic field B0 the scattering length diverges as shown in Fig. 2.5.

The theory of Feshbach resonances [Fes58, Fes62] was originally developed for nu-
clear physics, where the resonances do not depend on an external magnetic field but
on the energy of the scatterers. The application of Feshbach resonances to alter the
sign and the strength of the interaction in ultracold atoms by changing an external
field was proposed by [Tie92, Tie93]. The first experimental observation of this effect
in ultracold atoms were made in 23Na [Ino98] and in 85Rb [Cou98]. A detailed review
of Feshbach resonances in ultracold atoms is given in [Chi10].

If only one closed channel is present the scattering length can be expressed as the
sum of a resonant part ares and the background scattering length abg originating from
the open channel:

a(B) = abg + ares(B).
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Figure 2.4: Two-channel model for a Feshbach resonance. When two atoms collide at
energy E in the open (entrance) channel (black curve), they can couple resonantly to a
bound state with binding energy Eb within a molecular potential (closed channel) (red
curve). The coupling leads to a diverging scattering length. If there is a difference in
magnetic moment of the open and the closed channel, the energy of the bound state
in the closed channel can be tuned to cross the energy threshold of the two atoms by
changing the magnetic field.

The s-wave scattering in absence of inelastic two-body channels is described by [Moe95]

a(B) = abg

(
1− ∆B

B −B0

)
, (2.28)

with the off-resonant background value of the scattering length abg, the Feshbach res-
onance position B0 and its width ∆B. The width is defined via the position of the
zero-crossing of the Feshbach resonance B(a = 0) = B0 + ∆B. The behaviour of the
scattering length around a Feshbach resonance is shown in Fig. 2.5. The scattering
cross section is given by:

σ = g
4πa2

1 + k2a2 = g
4πa2

bg

(
1− ∆B

B−B0

)2

1 + k2a2
bg

(
1− ∆B

B−B0

)2 , (2.29)

where k is the momentum and g is a symmetry factor. It is g = 1, except for the
case of two identical atoms (same species and same state) in a Maxwellian gas [Chi10].
The difference in magnetic moment between the open and the closed channel ∆µ =
µ0−µc = −∂Eb/∂B describes the coupling strength C between the open and the closed
channel.

C ≡ abg∆B∆µ.
Further useful expressions to describe a Feshbach resonance are the length scale [Pet04]

R∗ ≡ ~2

2mrabg∆B∆µ,

the width
Γ ≡ ~2k

mrR∗
= 2Ck
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Figure 2.5: Divergence of the s-wave scattering length a around a Feshbach resonance
at the magnetic field B0.

and the resonance strength which can be described by a dimensionless parameter
[Chi10]:

sres = R∗

r0

For large positive values of a there is a molecular state with binding energy

Eb = ~2

2mra2 . (2.30)

Further away from the resonance and for positive values of a the energy is proportional
to the magnetic field B, with a slope depending on the difference of the magnetic
moments of the open and closed channel. The quadratic dependence close to the
Feshbach resonance is caused by the coupling between open and closed channel.

To calculate the exact position and widths of Feshbach resonances the potentials
of the involved channels are needed and their coupling has to be computed. In general
this requires the (numerical) solving of a large number of coupled equations using
coupled channel calculations (CC). Simple models like the asymptotic bound state
model (ABM) and the multichannel quantum defect theory (MQDT) are useful to
assign resonances and allow for the calculation of approximate resonance positions
with less computational effort than needed for CC. In the experiments presented in
this thesis we used the ABM to assign and locate Feshbach resonances. The following
section gives a brief introduction to this model.

2.6 Asymptotic bound state model
The asymptotic bound state model (ABM) was initially developed (see [Tie10b] and
references therein) to assign features observed in experiments with 6Li - 40K [Wil08]
to the bound states and closed channels causing the Feshbach resonances. The main
idea is that the two-body Hamiltonian in Eq. 2.4 is diagonalized and the energy of the
bound molecular states is varied to fit known resonances. The input parameters are
the singlet as and the triplet scattering length at and the C6 coefficient to describe the
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van der Waals tail of the interatomic potential. It is not necessary to solve the radial
Schrödinger equation.

The model is called asymptotic because it is assumed that the detailed behaviour
of the potential at small interatomic distances can be neglected as the main contribu-
tion to the position of Feshbach resonances stems from the asymptotic behaviour of
the atoms. In the course of diagonalizing the Hamiltonian, the overlap between the
wavefunction in the singlet Vs and the triplet potential Vt needs to be computed. This
overlap is ≈ 1. For a first calculation of the position of Feshbach resonances there
are thus only three input parameters necessary. The calculation can be improved by
optimizing the overlap and the bound state energies of the molecular bound states to
fit data determined in experiments. With the improved assumptions for the energies
and the overlap, the position of other Feshbach resonances can be determined. The
ABM has the advantage that all possible resonances, however narrow, will be pre-
dicted with relatively little computational effort. These results can then be used as
input for the exact coupled channel calculations. The assignment of s- and p-wave is
also immediately clear with ABM.

The ABM has been applied to mixtures of 6Li - 40K [Wil08, Tie10c], 85Rb - 87Rb,
6Li - 87Rb [Li08], 6Li - 85Rb [Deh10], 40K - 87Rb [Tie10c], 3He∗ - 4He∗ [Goo10] and to
23Na [Kno11]. The original ABM has been extended to also include dipole-dipole inter-
actions and overlapping resonances [Goo10], and radio-frequency induced resonances
[Tsc10]. The ABM is also used to calculate the widths of resonances [Tie10c]. This
involves rewriting the Hamiltonian in terms of the closed and open channel contri-
butions and extracting the coupling between them. For the individual mixtures and
species some adaptations have to be made, it turns out that for 6Li - 40K one bound
state is sufficient. In 40K two bound states play a role as well as the large background
scattering length (see Sec. 5.3.3).

In our experiment we used the ABM together with values of the four resonances
known at that time as well as the input parameters as, at and C6 from molecule
spectroscopy [Fal08] to get initial predictions for Feshbach resonances in the hyperfine
state mixtures of 40K. Once new measurements were obtained, the overlap and binding
energies were optimised (see Sec. 5.3.3) and further predictions for other hyperfine state
mixtures were calculated.

2.7 Trapped fermions

We use magnetic and optical traps to confine the 40K. These trapping potentials are
described in detail in the appendices A and B. The potential has an effect on the
density of states and with that on the Fermi energy EF. As depicted in Fig. 2.1, the
Fermi energy EF is defined as the energy of the highest state in a potential occupied
at T = 0. The Fermi temperature is defined accordingly as TF = EF/kB. For an ideal
gas in a trapping potential U(r), the density of states is

g(ε) = 1
h3

∫
δ

(
ε−

[
p2

2m + U(r)
])

dpdr. (2.31)
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From the definition of the Fermi energy follows the total number of atoms N :

N ≡
∫ EF

0
g(ε) dε. (2.32)

With Eq. 2.31 and 2.32 and a known potential the Fermi energy EF can be calcu-
lated. The optical dipole trap used in our experiment, can be approximated at low
temperatures by a harmonic potential¶, with

UODT(x, y, z) = m

2 (ω2
rx

2 + ω2
ry

2 + Aω2
rz

2)

this results in the density of states [But97]

gODT(ε) = ε2

2A(~ωr)3 (2.33)

and
EF = ~ωr(6AN)1/3, (2.34)

where A = ωz/ωr is the aspect ratio of the optical dipole trap, and the trapping fre-
quencies are determined by the mass of the atoms and the laser detuning as described in
Appendix A. For the linear magnetic trap as employed in the experiment (see Sec. 3.5.1
and B.3) with a potential of the form

UMT(x, y, z) = U0

2
√
x2 + y2 + 4z2,

the density of states is given by [Bag87]:

gMT(ε) = 16
√

2
105π

(
2
√
m

~U0

)3

ε7/2. (2.35)

The Fermi energy in this case is

EF ≈ 1.5962N2/9
(

~U0√
m

)2/3

. (2.36)

2.7.1 Fermi degenerate density distribution
For an ideal gas below the Fermi temperature TF the distribution is a Fermi-Dirac
distribution

fFD(ε) = 1
1
ζ
eε/kBT + 1 , (2.37)

with the fugacity ζ ≡ exp (µ/kBT ) depending on the chemical potential µ.
To calculate the density distribution of a degenerate gas in a potential, a semi-

classical approximation can be used as long as the thermal energy of the gas kBT is
¶The atoms in the optical dipole trap are in a Gaussian potential, which can be approximated

harmonically for low atom temperatures. The density distribution for thermal atoms in a Gaussian
potential is described in Appendix A.
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much larger than the spacing ~ω of the (quantum mechanical) levels of the trapping
potential U(r). In this case the density distribution is given by:

nFD(r) = 1
h3

∫ 1
e(H(p,r)−µ)/kBT + 1 dp. (2.38)

Integration over all possible momenta p results in the density distribution of a degen-
erate cloud of fermions at finite temperatures 0 < T < TF :

nFD(r) = −
(

2πmkBT

h

)3/2

Li3/2(−ζe−U(r)/kBT ), (2.39)

with the polylogarithm function (Jonquière’s function) Lin(x) ≡ ∑∞
k=1 x

k/kn. The
number of atoms for a harmonic confinement is obtained by integrating Eq. 2.39 over
r:

N = − 1
A

(
kBT

~ωr

)3

Li3(−ζ). (2.40)

Combining this result with the Fermi energy kBTF in a harmonic trap Eq. 2.34 the
fugacity depends only on T/TF:

T

TF
= (−6 Li3(−ζ))−1/3 (2.41)

In the experiments we determine the density distribution by means of absorption imag-
ing (see 3.8.3) along the axial direction of the dipole trap. This results in a projection
of the atom density on a two-dimensional optical density profile, which we can calculate
for a harmonic potential by integrating Eq. 2.34 over y‖.
The imaging is usually done after releasing the atoms from the trap and some expan-
sion of the cloud in time-of-flight. In the case of a harmonic trap it has been shown
[Bru00], that the description of an ideal Fermi gas after free expansion only requires a
rescaling of the spatial coordinates xi in the density distribution Eq. 2.39, similar to
the bosonic case [Cas96, Kag96]. The rescaled coordinates x′i(t) are given by

x′i(t) = xi(0)√
1 + ω2

i t
2
, (2.42)

when the harmonic trapping potential with trapping frequencies ωi is switched off at
t = 0. For a harmonic trap the cloud maintains the aspect ratio and shape it had in
the trap after free expansion. This shape invariance only holds for harmonic potentials
and simplifies the analysis of the absorption images tremendously. From the absorption
images the number of atoms and the temperature of the cloud can be determined using
the rescaled density profiles [But97, DeM01].

‖The axial (z-) direction of the dipole trap corresponds to the y-axis in the coordinate system of
the experiment as depicted in Fig. 3.2.





Chapter 3

Experimental setup

3.1 Introduction

In this chapter the experimental setup is described. The experiments are done using the
apparatus designed and developed for mixtures of ultracold 6Li and 40K. At the time
this apparatus was devised there were no other experiments on this specific mixture.
Additionally, the scattering properties between the atomic species were not yet known,
so the design had to make allowances for possible slow thermalization between the
species. Recently the groups in Munich, in Innsbruck, at the MIT and in Paris have
also built experiments for 6Li and 40K. The group in Munich [Tag06] included 87Rb as
a third atomic species in their setup to ensure efficient cooling. 87Rb had been brought
to degeneracy previously together with both 40K [Roa02, Ino04] and 6Li [Sil05], after
the interspecies scattering lengths had been determined [Fer02, Sil05]. In the group
in Innsbruck an all-optical approach was chosen, resulting in large numbers of 6Li
and low numbers of 40K. In that experiment efficient thermalization of the sample
is ensured by evaporating on the high-field side of a Feshbach resonance in lithium
at 834G [Wil08, Spi09]. The potassium is kept in the lowest hyperfine state and is
sympathetically cooled by the lithium. In the group at the MIT the bosonic isotope
41K is used as a coolant [Wu11]. The group in Paris chose an approach similar to ours
[Rid11b, Rid11a], relying on the thermalization between 6Li and 40K.

We decided on a setup which combines magnetic and optical trapping. A magnetic
trap can be efficiently loaded from a magneto-optical trap (MOT) and provides large
atom numbers [Ono00, Sta07]. An optical dipole trap has the advantage that all
hyperfine states can be trapped and the trapping potential is identical for all states
of one atomic species. Loading the dipole trap from a magnetic trap requires less
optical power and a smaller trapping volume than loading it directly from a MOT.
Two aspects of the design make the cold atoms easily (optically) accessible: firstly we
use an optically plugged magnetic trap [Dav95a] instead of a more commonly used Ioffe-
Pritchard type trap [Pri83]. Secondly the optical dipole trap is employed as optical
tweezers to transport the atoms [Gus01] to a science cell where the experiments are
done. In many cold atom experiments magnetic transport is employed instead, in which
a cascade of coils or moving coils are used to transfer the atoms [Gre01]. The science
cell is a quartz cell offering good optical access with a small working distance for the
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optics.
Producing samples of ultracold atoms requires a vacuum system, lasers tuned close

to the transition frequencies of the atoms, a magnetic trap, an off-resonant optical
dipole trap or a combination of both to cool the gas close to degeneracy.

Much of the experimental setup has already been described in detail in the thesis of
T.G. Tiecke [Tie09a]. The present chapter summarizes the experimental setup putting
emphasis on added components and the parts essential for the experiments described
in this thesis. In section 3.2 the vacuum system is described, the laser system is covered
in section 3.3 and the magneto-optical trap in section 3.4. In section 3.5 the optically
plugged magnetic trap is explained including its fast switching electronics. Our optical
dipole trap and the feedback circuit with large dynamic range used to stabilize its
intensity are presented in section 3.6. The coils used to produce homogeneous and
stable magnetic fields for Feshbach measurements are covered in section 3.7. The
experimental sequence, the preparation and detection of the Zeeman states and the
calibration of the Feshbach coils are described in Chapter 4.

3.2 Vacuum system

The vacuum system is shown in Fig. 3.1 and Fig. 3.2. It consists of four parts: a
stainless steel chamber (labelled (c) in Fig. 3.1) where the initial cooling and trapping
is done, a two-dimensional MOT (2D-MOT) source for lithium (h), a 2D-MOT source
for potassium (a) and a small quartz cell as a science cell (d).

The stainless steel chamber (Kimball Physics Inc., MCF800-SO2000800-A) in the
middle is used for the MOT, magnetic trapping, evaporation and the loading of the
optical trap. The chamber is cylindrical and has eight CF40 ports on the mantle
(labelled 1–8 in Fig. 3.1) and CF160 ports on top and bottom. Two of the CF40 ports
(numbered 1 and 5) are taken up by the 2D-MOTs. Another four (numbered 2,4,6 and
8) are used for MOT beams. Of the remaining two, one (7) is used as an input port for
the dipole trap, the plug beam and the horizontal imaging light. The last port (3) hosts
the science cell. All vacuum windows are uncoated and of optical quality. In the big
ports on the top and bottom of the chamber uncoated quartz windows with a diameter
of 113mm protrude bucket-like into the steel chamber. The windows are connected
to CF150 re-entry flanges with a non-magnetic glass-to-metal seal (Vacom). The coils
employed for the magneto-optical trap (MOT) and the magnetic trap are placed close
to the windows. The re-entry flanges were chosen to ensure a small distance between
the coil centres (see Fig. 3.7). The two MOT beams for the vertical direction enter the
chamber through the hollow core of the coils.

Connected to the main vacuum chamber via a four-way cross is a titanium sublima-
tion pump (Leybold, V150) and via a 60 cm long tube of diameter 2 1/2 inch (labelled
(e) in Fig. 3.1) a 55 l/s ion pump (Varian, Vacion Plus 55 Starcell). The current reading
of the ion pump controller (Varian, Midivac) is below the detection limit (1× 10−7 A),
corresponding to a pressure P < 6×10−10 mbar. As an indicator of the vacuum quality
we use the lifetime of the atoms in the optical dipole trap (≈ 40 s). A T-piece just
before the ion pump allows the connection of a turbo pump through an all-metal valve
(Varian, 951-5027).

Probably due to residual argon in the system the ion pump needs an occasional
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Figure 3.1: The vacuum system as seen from above schematically: (a) potassium 2D-
MOT source, (b) lithium 2D-MOT source, (c) main vacuum chamber, (d) science cell,
(e) CF63 tube to the main 55 l/s ion pump, (f) CF40 tube leading to the 40 l/s ion
pump (g) and (h) titanium sublimation pumps (mounted vertically), (i) direction of
view in Fig. 3.7 and (j) gate valve between lithium 2D-MOT and main chamber. This
figure is taken from [Tie09a].

bake-out. The argon saturates the ion pump and reduces the ultimate vacuum. In the
experiment it is then noticeable that the lifetime of the atoms in the optical dipole
trap shortens to ≈ 15 s. A bake-out of the ion pump was necessary every 6 – 9 months.
Argon was introduced into the system during the first bake-out of the vacuum system
[Tie09a] and has since then been pumped by the ion pump through the differential
pumping section connecting the 40K 2D-MOT to the main chamber. When a bake-out
of the ion pump is necessary, it is heated to just below 400 ◦C for several hours while
a turbo-molecular pump disposes of the gas load. As the ion pump is cooling down,
the titanium sublimation pump connected to the main chamber is run for about one
minute at 50A, after degassing it at 25A.

The lithium 2D-MOT is pumped by a 40 l/s ion pump (Varian, Vacion Plus 40
Starcell) and another titanium sublimation pump (Leybold, V150)(h). This titanium
pump was never used since the initial bake-out and the ion pump shows no load when
the lithium oven is heated. This confirms the reputation of alkalis as efficient getters
in high-vacuum applications. The lithium 2D-MOT can be separated from the rest of
the vacuum system with a gate valve (Leybold, UHV 28699).

Attached to the main chamber via a glass-to-metal transition is the quartz science
cell with a length of 42mm and a 12.7mm2 cross-sectional area produced by Techglass
Inc. (in Aurora, Colorado, USA). The science cell allows for excellent optical access.
Coils designed to produce a highly homogeneous magnetic field to measure Feshbach
resonances are built around the science cell (see section 3.7).

The potassium 2D-MOT cell is custom-made of glass by Techglass. A four-way
cross with optical quality windows (diameter 30mm) provides access for the four 2D-
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Figure 3.2: Photograph of the vacuum system. The parts are labelled (a) to (j) as in
Fig. 3.1.

MOT beams cooling the atoms in radial direction (see Fig. 3.5 and Fig. 3.6). The cell
is connected via a glass-to-metal transition to a CF40 flange. A differential pumping
section of 23mm length and 2mm diameter connects the 2D-MOT to the the main
chamber. Mounted in front of the differential pumping tube is a gold mirror with a
2mm hole in its centre. A distance of 2mm between the back of the mirror and the
differential pumping tube ensures efficient pumping between the two surfaces. The
gold mirror can be used to reflect a probe beam or a one-dimensional optical molasses
beam. Opposing the mirror on the other end of the 2D-MOT cell is a fifth optical
quality window which is used for probe, cooling and push beams along the axis of the
2D-MOT.

Connected to the side of the 2D-MOT cell is a glass tube of 13mm diameter leading
via a T-piece to a break-seal ampule containing 40K-enriched potassium. The glass
tube ends via a glass-to-metal transition and bellows in a CF16 flange. The flange
was initially intended to pump the 2D-MOT cell but was never used during the baking
and remains sealed with a valve [Tie09a]. As a source for the 40K we us KCl enriched
to an abundance of 6% 40K (Trace Science International). The distillation into the
break-seal ampule was done by Techglass. To achieve the necessary vapour pressure in
the 2D-MOT, the entire cell is heated with heater tape and insulated with aluminium
foil.

To complete the description of the vacuum system, it is mentioned that we have
built the first realisation of a 2D-MOT for lithium. It is fed by an effusive oven and
results in an output flux up to 3×109/ s. Lithium reacts with glass, therefore we chose
a stainless steel chamber for the lithium 2D-MOT. The windows admitting the MOT
light are under a 45◦ angle to the main axis of the lithium beam emitted from the
oven, so the lithium cannot reach the windows under normal operation. The lithium
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Figure 3.3: Optical spectrum of 40K with D1 and D2 lines. The transitions used
for cooling, trapping and imaging are indicated. The numerical values originate from
[Ari77] and [Fal06]. Unlike in other isotopes of potassium, the hyperfine structure is
inverted in 40K.

2D-MOT is also connected to the main chamber via a differential pumping tube with a
gold mirror in front (identical to the potassium 2D-MOT). The principle is described in
detail and predicted to work also for other light atomic species in [Tie09b] and [Tie09a].

3.3 Laser system

All manipulation of 40K with light is done on the D2 line, where we call the transi-
tion |2S1/2, F = 9/2〉 → |2P3/2, F = 11/2〉 the trap transition and the |2S1/2, F = 7/2〉
→ |2P3/2, F = 9/2〉 is referred to as the repump transition (see Fig. 3.3). Light with
frequencies tuned close to those transitions we refer to as trap and repump light respec-
tively. In contrast to many other alkali isotopes, 40K has a sufficiently small hyperfine
splitting in the ground state (∆Ehf=1285.79MHz) to allow for the use of an acousto-
optical modulator (AOM) to bridge the frequency difference.

One master laser (Toptica DLX110) is stabilized in frequency. The output power
(350mW) is split into several beams, which are shifted by AOMs to the proper fre-
quencies for the beams to trap, repump and image the atoms. To have sufficient power,
the trap and repump light is amplified by tapered amplifiers. In Fig. 3.4 the simpli-
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fied optical setup is shown omitting beam-shaping optics and mirrors. The repump
frequency is generated by shifting the master frequency by 1143MHz with an AOM
from Brimrose (GPF-1240-200-766). All other frequencies used to manipulate the 40K
are obtained using AOMs by Isomet.

The DLX110 laser is stabilized to a polarization Zeeman spectroscopy. We lock
the laser to the unresolved |2S1/2, F = 1〉 → |2P3/2〉 transition in 39K. Light from the
master laser is brought via a polarization-maintaining fibre to a separate optical table
and its frequency is shifted by -260MHz with an AOM by Crystal Technologies. The
linearly polarized light (≈ 200 µW) passes through a heated vapour cell (≈ 40 ◦C)
filled with potassium in natural abundance. A partial reflector (R = 10%) reduces the
power in the retro-reflected beam such that the two beams form a pump-probe setup
of a Doppler-free saturation spectroscopy [Lev74, Bir74]. The vapour cell is placed in a
homogeneous magnetic field of a few Gauss. The field is parallel to the light, resulting in
σ+ and σ− transitions (∆mF = ±1), being the allowed optical transitions. The σ+ and
σ− transitions are shifted in frequency due to the Zeeman shift and differ in strength
due to different Clebsch-Gordon coefficients. By placing a quarter waveplate and a
polarizing cube in the path of the probe beam as shown in Fig. 3.4, the two circular
polarizations can be split and detected seperately by photodiodes (OPT101P-ND). By
electronically subtracting the two photodiode signals a dispersive signal to lock the laser
is retrieved. Two different stages stabilize the laser: one fast loop (bandwidth ≈ 4 kHz)
feeds back to the diode current of the master laser and one slower loop (bandwidth
≈ 1Hz) feeds back to the piezo-electric actuator controlling the grating position in the
DLX110. The slow loop compensates for thermal drifts whereas the current feedback
ensures short term stability.

The light for the trap and the repump beams is amplified by tapered amplifiers (Ea-
gleyard, EYP-TPA-0765-01500-3006-CMT03-0000). The amplifier chips are mounted
in a home-built aluminium housing, which we designed to ensure that thermal effects
do not alter the position and consequently the injection of the amplifier. The main
feature is that the chip is mounted such that any thermal expansion results in a minute
rotation around the optical axis rather than a displacement. This rotation preserves
the injection of the laser beam in the amplifier chip and ensures constant power output.
The temperature of the chip mount is stabilized with two thermo-electric Peltier ele-
ments (Eureca Meßtechnik, TEC 1H-30-30-44/80-BS). The chip mount is electrically
insulated from the aluminium housing by studs made from PEEK (polyether ether
ketone), a plastic with high tensile strength and small mechanical relaxation. The
collimation lenses on both sides of the chip are also mounted on holders made from
PEEK. The threads on the lens holders are tightly fitted into the aluminium housing;
for collimation the holder is simply wound in or out using a wrench. The design of the
mount and its thermal behaviour is described in some detail in [Koo07].

The tapered amplifier for the repump light is injected with 8mW and emits 200mW.
The temperature is stabilized to 31 ◦C by a temperature controller (Thorlabs, TED
200C). The current through the chip (1.7A) is supplied by a home-built power sup-
ply. The tapered amplifier for the trap light has both temperature and current (2A)
stabilized by a laser controller (Sacher, Pilot 2000). It runs at 25 ◦C, is injected with
47mW and emits 767mW. Both tapered amplifiers only required re-adjustment of the
injection when the optical path before the amplifiers changed. The collimation has
stayed stable. The coupling efficiency into optical fibres is about 50%.
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3.4 Magneto-optical trapping

In a magneto-optical trap (MOT) neutral atoms are cooled by the absorption and re-
emission of light and trapped in a steep magnetic gradient. The cooling mechanism
works due to radiation pressure from three orthogonal pairs of counter-propagating
beams [Raa87, Met07]. Depending on the number of levels in the atomic spectrum and
the lifetimes and transition probabilities of the excited states, several optical transitions
need to be driven by light. Successive absorption of light on a so-called cycle transition,
enables the cooling. To achieve this in alkalis, two frequencies are needed: a trap (or
cool) and a repump frequency. An atom moving towards the light beam is in resonance
due to the Doppler effect when the laser frequency is red detuned by several linewidths
Γ. Additionally the magnetic field gradient causes a spatially varying Zeeman shift of
the transition frequencies and restricts the allowed optical transitions. If the counter-
propagating beams have σ+ and σ− polarization, a moving atom will always be closer
to being resonant with the light beam pushing the atom to the centre of the trap.
Effectively the atoms are pushed to the centre of the trap where the magnetic field
vanishes [Met99].

For the magneto-optical trapping of 40K the trap laser is red detuned by 6Γ from
the |2S1/2, F = 9/2〉 −→ |2P3/2, F = 11/2〉 transition. The repump light is detuned by
2Γ from the |2S1/2, F = 7/2〉 −→ |2P3/2, F = 9/2〉 transition. The detuning is chosen
to be identical for the two- and the three-dimensional MOT (3D-MOT).

3.4.1 Two-dimensional MOT for 40K
As sources for cold atoms, we employ a two-dimensional magneto-optical trap (2D-
MOT). A great variety of sources for cold atoms have been developed over the years. For
potassium custom-made dispensers are used alone [WI97, DeM99b], or in combination
with light-induced atomic desorption (LIAD) [Goz93], as demonstrated in [Kle06] using
UV light. The resulting short vacuum lifetimes of using dispensers can be somewhat
improved [Moo05, Gri05] but the shortest loading times and highest atom numbers
so far have been achieved with beam-loaded MOTs. The highest loading rates for
different atomic species have been achieved with a Zeeman slower [Lis99, Slo05, Sta05].
However, the design of a Zeeman slower requires substantial engineering, especially
when recycling schemes or multiple species are used.

Compared to a Zeeman slower a 2D-MOT has the advantages that it is a compact
setup, it does not allow hot atoms into the main chamber and it makes most efficient
use of the atoms. Furthermore there are no stray magnetic fields close to the main
MOT. Especially in the case of potassium the high price of enriched potassium is
an argument to use a 2D-MOT. The 2D-MOT is a two-dimensional realisation of a
MOT. The circularly polarized light beams are applied from four (not six) directions
in space and the magnetic gradient is also two-dimensional as shown in Fig. 3.5. The
two-dimensional quadrupole field is zero along the symmetry axis. The MOT beams
drive cold atoms towards this axis. Along the axial direction there is no confinement
by magnetic fields. A push beam is used to push the atoms through the differential
pumping tube into the capture region of the 3D-MOT in the centre of the main chamber
(see section 3.2). Some designs for 2D-MOTs employ an additional cooling beam
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Figure 3.5: Schematics of the 2D-MOT for 40K. The beams are retro-reflected and the
magnetic field is formed by stacks of permanent magnets.

opposing the push beam creating a one-dimensional optical molasses [Die98, Cha06,
Rid11b]; others are purely two-dimensional [Sch02]. For potassium 2D-MOTs are used
in Hamburg [Osp06b], Florence [Cat06] and Paris [Rid11b].

As described in section 3.2 we use two separate 2D-MOTs for the two species, the
one for lithium is described in detail in [Tie09b]. Our source for the potassium is a
break-seal ampule, which was opened with a glass-encapsulated magnet also included
in the glass cell (see Fig. 3.6, Fig. 3.5 and Sec. 3.2). The glass cell of the 2D-MOT is
heated to about 50 ◦C to increase the vapour pressure. Two sets of permanent magnets
provide the magnetic quadrupole field. The magnets are made of Nd2Fe14B (Eclipse
magnets, N750-RB) and their magnetisation has been measured to be 8.8(1)×105 A/m
[Koo07]. Each set consists of two magnets separated by 12mm. A single magnet has
the dimensions 25× 10× 3mm. Effectively the two magnets then form a 62mm long
magnetic dipole. The two magnet sets are each placed 35mm away from the axis of
the cell and together form a radial gradient of 20G/cm. We use 120mW trap light
and 40mW repump light per beam. The beams are retro-reflected (see Fig. 3.5) and
have a 1/e-diameter of 18mm. For an improved loading of the 3D-MOT we employ a
push beam, which is aligned along the axis of the 2D-MOT. The push beam consists
of 2.6mW of trap light detuned only by 2Γ from the trap transition. With this 2D-
MOT we achieve loading rates in the 3D-MOT of 3 × 108/s. This is over an order
of magnitude more than reported from Hamburg [OS06]. Recently the group in Paris
[Rid11b] achieved 3D-MOT loading rates of 1.4× 109/s using larger and more intense
2D-MOT and 3D-MOT beams, and an additional molasses beam in the symmetry axis.
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30 mm

Figure 3.6: The 2D-MOT chamber for 40K is a custom-made glass cell. A side arm
leads to the potassium reservoir and a valve. In the foreground the glass-encapsulated
magnet, which was used to break the potassium ampule, is visible.

3.4.2 Three-dimensional MOT
The three-dimensional magneto-optical trap (3D-MOT) was designed and optimized
as a dual system for lithium and potassium. All waveplates, polarization cubes and
mirrors are therefore dichroic. The six 3D-MOT beams, three orthogonal pairs of
counter-propagating beams, are all derived from a single beam, which consists of trap
and repump light. The beam is split into six using λ/2 waveplates and polarizing
cubes. To produce circular polarization we use quarter waveplates custom-made by
Casix for the wavelengths 670 nm and 767 nm. They have a diameter of 18mm, which
is about the 1/e diameter of the MOT beams. The trap light has P = 10mW per
beam, corresponding to an intensity of I = 2.3Is, where Is is the saturation intensity
(see Appendix A). Although the polarizing cubes are suitable for both the lithium
and the potassium wavelengths, the reflection angle differs slightly for the two. When
aligning the MOT optics, care has to be taken to minimise the impact of this effect.

For the loading of the MOT we make use of a dark spot MOT [Ket93]. This results
in high atom numbers and a high density. For the dark spot MOT the repump light in
all the MOT beams is switched off and a separate beam is used. This separate beam
of repump light (3.4mW) is sent through a plate with a dark spot in the middle. The
beam is then split into two counter-propagating beams and imaged onto the centre of
the MOT. At the center of the MOT the intensity of the repump light is reduced to
2% compared to the intensity in the surrounding area. The image of the dark spot
has a diameter of ≈ 3mm at the center of the MOT. The dark spot is also favourable
for the suppression of light-induced collisions between the lithium and potassium when
performing experiments on the mixture [Tie09a].

The magnetic quadrupole field for the MOT is produced by the same coils as used for
the magnetic trap (for a more detailed description see Sec. 3.5.1), and has a gradient of
14 G/cm. The push beam from the 2D-MOT is directed at the center of trap produced
by these coils. This impedes the loading of the 3D-MOT and pushes on the atom
cloud. To prevent this and optimize the loading, shim coils produce another few Gauss
to shift the atom cloud away from the path of the push beam. The shim coils consist
each of several loops of ribbon cable wound around the main vacuum chamber. The
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individual wires of the cable are connected in series resulting in 80 windings per coil.
There are four shim coils in total: two coils to shift the MOT up or down, positioned
around the top MOT coil, and two coils positioned orthogonal to the MOT coils and
orthogonal to each other. The shim coils can produce up to 10G. They are powered
by Delta Elektronika (ES030-5) power supplies. The current can be switched quickly
to dummy loads using MOSFETs. In 16 s we load up to a total of 2×109 atoms in
the 3D-MOT. For large atom numbers the temperature of the MOT is T = 190 µK.
Sub-Doppler MOT temperatures were reached with 40K by [Cat98, Mod99], but these
results concern lower MOT densities.

After the MOT loading the MOT parameters are modified briefly to increase the
phase-space density before loading into the magnetic trap. In 10ms the magnetic
field gradient is ramped up to 44G/cm and the shim coils shift the MOT to optimize
the magnetic trap loading. Following this compression stage, the atoms are opti-
cally pumped into low-field seeking states. Optical pumping light resonant with the
|2S1/2, F = 9/2〉 −→ |2P3/2, F = 9/2〉 transition is applied to the atoms for 60µs at an
intensity of about 1.4Is. During the optical pumping step, repump light from all six
directions prevents population of the |2S1/2, F = 7/2〉 manifold. The bright repump
light has P = 1.5mW per beam, corresponding to an intensity of I = 0.3Is and is not
attenuated by a dark spot in the centre.

An offset field of 3.6G along the direction of the optical pumping beam is provided
by one of the shim coils. The optical pumping has been optimized to achieve a mixture
of atoms in the F = 9/2,mF = 9/2, 7/2 and 5/2 states. About 60% of the atoms
in the MOT are then recaptured in the magnetic trap. A higher efficiency can be
achieved [Tie09a], but this yields much more atoms in the fully-streched state mF =
9/2. However, to achieve thermalization in the magnetic trap, a mixture of atoms in
different spin states is necessary.

3.5 Optically plugged magnetic trap

For the magnetic trapping we employ an optically plugged magnetic trap. It is a
combination of a magnetic field supplied by two coils and a blue-detuned laser focused in
the center of the magnetic trap as an optical plug. The coils create a linear quadrupole
trap with zero magnetic field at the centre. Near the zero crossing of the magnetic field
the atoms can undergo spin-flips to untrapped states and be lost from the trap. These
so-called Majorana losses [Maj32] become more pronounced the colder and therefore
closer to the trap centre the atoms get. The dipole force exerted by the blue detuned
laser repels the atoms from the centre of the trap and prevents Majorana losses. This
method has been used to produce the first Bose-Einstein condensate at MIT in 1995
[Dav95a]. The idea of the optical plug was later abandoned in favour of magnetic traps
with an offset field. The advantage of the optically plugged trap is that it allows to
make use of a linear trap with its favourable evaporation properties and it saves space,
which would be needed for an additional coil or Ioffe bars to produce the offset field.
When evaporating in a linear trap the volume decreases faster than in a harmonic
trap, thus increasing the phase space density faster [Bag87, Dav95b]. Only recently
other groups have started again employing an optically plugged trap to produce large
Bose-Einstein condensates [Nai05, Heo11] or ultracold Fermi clouds [Wu11].
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Figure 3.7: Schematic of the cut through the vacuum chamber showing the MOT coils
and the water-cooling. The shim coils are wound around the main chamber and are
used as trim coils for the MOT loading and optical pumping. Only two of the four
shim coils are shown in the schematic. The antennas consist of simple wire loops.

3.5.1 Magnetic trap
The magnetic trap is formed by the two MOT coils with their centres separated by
about 110mm. The coils are developed for the use in loudspeakers and fabricated
out of a Kapton insulated copper tape (Canatron, CT 7419). The copper tape has
a 25×0.25mm cross-section and Kapton insulation on both sides. Each coil has 76
windings resulting in a coil with 45mm outer radius and 17.5mm inner radius. The
coils are glued to slit copper plates, which are water-cooled. The copper tape ensures
a high current density. With a current of 100A a magnetic gradient of B′ = 176G/cm
along the z-direction is created. The absolute value of the magnetic field is B(x, y, z) =
(B′/2)

√
x2 + y2 + 4z2. The symmetry axis is in z-direction as indicated in Figs. 3.7

and 3.2. The inductance of the coils is 365µH. Each coil is mounted close to the CF150
windows protruding into the main chamber.

The magnetic field has to be switched off entirely by the time an image of the
atoms is taken. Residual fields would shift the resonance frequency of the atoms and
distort the number of detected atoms. According to Faraday’s law fast switching of
magnetic fields induces a high voltage, which can drive an induced current creating a
magnetic field opposing the initial one. To prevent this a special switch is employed.
The switch was constructed following the example of [Aub05], described in detail in
[Stu04]. In one switch box several features are included: four IGBT switches (Semikron,
SKM100GB123D) disconnect the coils from the power supply within 600 ns. The in-
duced voltage spike is absorbed by stacks of transient voltage suppressor diodes (TVS,
ST SM15T39A). A current of 100A then switches off within 100 µs.
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Figure 3.8: Simplified circuit diagram of the MOT coil switch. The grey arrows indicate
the direction of the current. Analogue and TTL signals control the various functions
of the switch. Apart from optical decouplers, insulators and other means to protect
the involved parts, also the filters to prevent ringing of the current after switch on have
been omitted in this schematic.

For a fast switch-on to a high current a pre-charged capacitor (8 µF) is switched
into the circuit with a thyristor (CS35/1200). The switch-on time is limited by a filter
to 50A/µs to protect the thyristor. The switch box also includes two relays (Stancor,
586-914), which allow to change between a gradient and a homogeneous field. All
operations of the switch box are controlled by analogue signals (0-10V) and TTL
pulses. The steering signals are decoupled by insulation amplifiers from the control
circuit to protect the computer control from high voltages. For a simplified schematic
see Fig. 3.8.

However using tape to make a coil has two major flaws: a thermal gradient within
the coil, with the thereby caused magnetic inhomogeneities and instabilities, and eddy
currents within the tape. The coil is only cooled from one side, resulting in a thermal
gradient from top to bottom. This gradient gives rise to a gradient in resistance
and therefore in current density in each winding. The stability of the magnetic field
in strength and position is limited by the thermalization of the coils. In particular
the position of the magnetic field zero with respect to the position of the optical plug
depends on an identical rate of thermalization for both coils, which cannot be assumed.
It is difficult to achieve optimal thermal contact between coil and cooling plate. The
Kapton insulation of the tape is not coated onto the copper but attached in the form
of a 50µm thick adhesive tape. The Kapton tape protrudes on the top and bottom
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of the coil. We have improved this by milling off the Kapton and placing 0.2mm
thick electric insulation pads between cooling plate and the coils. The thick pads were
necessary because the contact surface is not entirely flat. However, the insulation limits
the thermal conductance between the coils and cooling plates.

The heating of the MOT coils results in a decreased atom number if the coils run
for longer than usual (for example when measuring the lifetime in the magnetic trap).
For a normal experimental cycle where the atoms are transferred from the magnetic
trap to the dipole trap after 23 s and a new measurement starts about every minute,
the temperature varies about 8 ◦C. When running 100A through the coils, they heat up
by about 35 ◦C within 2 minutes. In addition the tape coils have the disadvantage that
the switching-off induces eddy currents within the copper tape of the coils, which can
persist for a couple of milliseconds. The current only produces a small field, orthogonal
to the dipole created by the coil itself. In practice a shift of the resonance frequency for
the imaging is not noticeable any longer after 2ms time-of-flight. We do not recommend
the use of copper tape with a large aspect ratio for coils in a magnetic trap.

3.5.2 Optical plug

The coils create a linear quadrupole trap with zero magnetic field at the centre. To
prevent Majorana losses at the zero-crossing we focus 9W of 532 nm laser light as an
optical plug in the centre of the trap. It is essential that the beam profile of the plug
laser is a Gaussian transverse electro-magnetic mode (TEM00). Dust on the optics
or thermal lensing in an AOM can lead to a doughnut shaped mode (TEM01), which
makes the optical plug less efficient. To avoid this problem we have replaced the AOM,
which was initially used to switch off the plug, by a high power shutter (nmLaser
Products Inc., LST4WBK2-D123). The shutter does not close sufficiently fast to be
able to image the cloud in the main chamber after release from the magnetic trap.
For alignment purposes it is best to leave the plug switched-on during time of flight.
The imaging of the atoms then allows for qualitative measurements. All quantitative
measurements are done releasing the atoms from the optical dipole trap with the optical
plug switched off.

As illustrated in Fig. 3.9 the beam mode and focus shape is monitored with a CCD
camera placed in the focus of the reflection from the beamsplitter which combines the
optical plug and the optical dipole trap just in front of the vacuum chamber. The
passage through the beamsplitter introduces astigmatism to the plug beam profile,
displacing the two foci by about 2.2mm. The average waist of the beam is w =16µm.
The light for this optical plug is provided by a 10W Verdi (Coherent).

When running a high current through the MOT coils for times longer than 30 s,
for instance when measuring the vacuum lifetime in the main chamber, the coils heat
up noticeably and this affects the number of trapped atoms. This can be attributed
to the thermalization of the coils. When heating up, the position of the magnetic field
zero changes such that the alignment of the optical plug is not optimal any more and
Majorana losses are not sufficiently suppressed. The alignment of the plug beam itself
is stable, we only have to adjust it every 4–6 weeks during normal operation.
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Figure 3.9: A dichroic beamsplitter combines the optical plug and optical trap beams.
A small percentage of the plug light is reflected on a CCD camera to detect the beam
quality and the focal size. The position of the translation stage is controlled using an
additional laser. The polarization of the light is normal to the plane of this figure.

3.6 Optical dipole trap

The cold atom cloud is loaded into an optical dipole trap (ODT) and transported
into the science cell by moving the focus of the trap. The cold atoms are transferred
from the magnetic trap after the evaporation (see Sec. 4.1 for more details). In an
optical dipole trap (ODT) the dipole force exerted by the laser light on the atoms is
directed to regions of high intensity if the light is red-detuned to the atomic transitions
[Ash70, Chu86]. The dipole force depends on the intensity and detuning as described
in Appendix A and is identical for all hyperfine states.

The light for the ODT is provided by a 1065 nm fibre laser (YLD-5-LP, IPG Pho-
tonics). The intensity noise ∆I/I of the fibre laser is at its lowest when the laser is set
to high output powers (5W). Therefore we do not control the trap depth via the output
power of the fibre laser but with a high-power AOM (Crystal Technology, 3080-197)
set to 80MHz. The AOM shows no signs of drift or heating. The ODT is formed by
focussing up to 1.62W of laser light† to a waist of w0 = 20 µm. The resulting trapping
potential has, according to the expression A.9 in Appendix A, a maximum depth of
345µK for 40K. At full beam power the harmonic trapping frequencies are, according to
Eq. A.12, ωr = 2π× 4.27 kHz in the radial and ωa = 2π× 51Hz in the axial direction.

†The power of the beam is 1.9W before passing four more optical elements. Assuming 4% loss at
each surface results in 1.62W laser power in the chamber.
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As illustrated in Fig. 3.9, we transport the cold non-degenerate cloud of atoms
by means of optical tweezers to the science cell. This method has first been used
by [Gus01]. A f = 100mm lens, producing the focus for the ODT, is mounted on
a linear air-borne translation stage (Leuven Air Bearings, LAB-LS). The translation
stage is moved by a geared DC motor (Maxon Motor, 118751) via a grooved belt. The
motor is steered by a motion controller (Maxon Epos 24/5) that gets its commands
from an encoder (HEDL5540). The focussing lens (f = 100mm) can be moved over
22 cm with the translation stage. A 1:1 telescope installed behind the focussing lens
images the focus to its position in the vacuum chamber. The telescope preserves both
the numerical aperture and the focus shape during the transport to ensure constant
trapping frequencies.

The starting position of the translation stage is kept constant by a feedback loop
using the power level on a photodiode as input. A laser beam is aligned on a knife
edge positioned on the translation stage. The power of the light passing the knife edge
is measured using the photodiode. As soon as the stage reaches its homing position,
the motor is stopped. The reproducibility of the focus position after the transport is
σr = 1 µm in the radial and σa = 40 µm in the axial direction [Tie09a]. Both deviations
are much smaller than the typical diameter of the cloud in radial (dr ≈ 10 µm) and
axial (da ≈ 1mm) direction. When transporting the cold atom cloud to the science
cell and back, the atom number is not reduced within the experimental error for the
typical vacuum lifetime of 40 s. We transport a thermal cloud in the 345µK deep ODT
and do not detect significant heating due to the transport.

Just before entering the main chamber the dipole trap beam is overlapped with the
optical plug beam using a dichroic beamsplitter (CVI laser, BSR-15-1940) as shown
in Fig. 3.9. The dipole trap beam is reflected by the beamsplitter, so the focus is not
influenced by the beamsplitter contrary to the optical plug. This ensures a uniform
trapping frequency in the radial direction. To increase the trap depth allowing for
higher atom numbers we plan to include another laser to form a crossed-dipole trap in
the science cell.

3.6.1 Intensity stabilization of the fibre laser
Intensity fluctuations of the ODT laser lead to heating and loss of trapped atoms
[Sav97]. The heating and subsequent atom loss is most severe when reaching low trap
depths [Geh98]. When evaporating the cold atom cloud by lowering the trap depth,
high atomic densities can not be reached reproducibly if the intensity of the dipole
trap is fluctuating. When evaporating from the optical trap (see Sec. 4.1), we lower
the power typically down to 5% of the full power. An intensity stabilization for the
dipole trap has to have a large enough dynamic range to be still effective at low in-
tensities. Additionally, an AOM has non-linear deflection efficiency. The deflected
optical power increases logarithmically with the driving radio-frequency. When opti-
mizing evaporation ramps, a linear response of the output power to the control signal
is convenient.

At full laser power the noise spectrum of the fibre laser shows peaks of 10 dBm at
100Hz and 300Hz, we detected no other noise peaks up to the detector limit of 3.5GHz.
To realize an intensity stabilization with a feedback loop we detect light of the fibre
laser leaking through a mirror in its path (see Fig. 3.9). This mirror has to be chosen
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Figure 3.10: Schematic of the components used to control the diffraction power and
frequency of the AOM for the ODT. The circuit for the intensity stabilization is shown
in Fig. 3.11. All parts marked with * are manufactured by Mini-Circuits.

with care: the main polarization leaking through the mirror has to match the desired
polarization of the dipole trap, otherwise the feedback will even increase intensity
noise as it stabilizes on the minority polarization. The polarization leaking through
a mirror depends on its orientation relative to the beam and its polarization [Hec90].
Although the light from the fibre laser is linearly polarized, the AOM and mirrors (not
all shown in Fig. 3.9) modify the polarizations of the beam [Ekl75]. A Glan-Thompson
polarizer (Thorlabs, GTH10/M) with a high extinction ratio (105:1) in the beam path
after the AOM filters out the minority polarization. The light leaking through the
sampling mirror is detected with a high speed photodiode (Thorlabs, DET110) with
20 ns rise time. The signal of the photodiode is compared to a reference voltage (power
control voltage in Figs. 3.10 and 3.11) with a differential amplifier. The difference
signal is integrated, rectified and amplified with a logarithmic amplifier as depicted in
Fig. 3.11.‡ The circuit contains several potentiometers and fixed value resistors, which
need to be set depending on the specific rf-amplifier and AOM used. These resistors
ensure the linear response of the optical power deflected by the AOM to the power
control voltage supplied by the main experiment control.

As illustrated in Fig. 3.10, the frequency for the AOM is set by a voltage controlled
oscillator (VCO) (Mini-Circuits, ZOS-100) attenuated by 7 dB. We use the AOM at a
fixed frequency of 80MHz. The rf-amplification circuit for the AOM was set up using
a ZX73-2500 (Mini-Circuits) voltage variable attenuator (VVatt). The output of the
VVatt is split into two (Mini-Circuits, ZSCJ2-2-1), one half of the signal is used as a
monitor output and the other is amplified by a ZHL-03 (Mini-Circuits) amplifier and
sent to the AOM. The output power of the VVatt is controlled by the feedback signal
generated by the intensity stabilization circuit.

In the intensity stabilization circuit in Fig. 3.11 the analogue and manual switches
and an additional amplification of the power control voltage allow for an operation of
the AOM without the stabilization. The analogue switches (AD7512DIJ) are controlled
by triggers from the main experiment control (see Sec. 3.9). Monitor outputs give out
the photodiode signal, the error signal and the feedback signal controlling the radio
frequency power going to the AOM. Followers (not shown in Fig. 3.11) built with LF353
amplifiers provide buffered output for the monitor signals. All other amplifiers used for
the circuit are of the type AD844AN. The whole circuit has been constructed such that
ground loops and radio frequency noise from other equipment have minimal influence.

‡We acknowledge support from the group of I. Bloch for details of the electronics design.
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To protect the radio frequency amplifier from damage a load detector (not shown in
3.11) allows an output to the amplifier only when an AOM is connected.

To test the intensity stabilization we modulated the output power of a test laser
diode at different frequencies and measured the attenuation of the modulation of the
optical output power due to the lock. Up to 300Hz the modulation is attenuated by
25 dB. That is sufficient to reduce the intensity noise of the fibre laser. When testing
the lock with the fibre laser, we do not detect any noise peaks. The white noise of the
fibre laser is reduced by 10 dB by the lock.

3.7 Feshbach coils

In the field of cold atoms Feshbach resonances have proven to be a powerful tool
to manipulate atoms and vary their interaction strength. To make use of Feshbach
resonances the magnetic field has to be set to values where the resonances occur. The
position and widths of the Feshbach resonances differ for the different atomic species
used, so the requirements on stability, homogeneity and strength of the magnetic field
are different for each system. For the 6Li- 40K case, first experiments and calculations
[Wil08, Tie10b] showed that many of the Feshbach resonances are located below 500G
and are narrower than 1G. High precision, stability and homogeneity of the magnetic
field over the whole sample of cold atoms is thus required to be able to make use of
these Feshbach resonances.

To achieve high homogeneity, the coils for the Feshbach field are arranged in
Helmholtz configuration. Both coils are wound on a mount manufactured from a single
piece of brass to ensure and maintain the correct distance of the coils. The outer diam-
eter of the coils is 158mm. The brass housing is slit to prevent eddy currents. The slit
itself has been refilled using glass-fibre. The brass mount is water-cooled and its over-
all volume is minimised to prevent eddy currents and provide good optical access. To
ensure high field homogeneity and thermal stability we chose to employ many windings
per coil and relatively little current. Each coil has 126 windings and is made of copper
wire (Romal bv) with a rectangular (3 × 2mm) cross-section. The different layers of
the coil are then easier to position during the winding procedure. The rectangular
cross-section also increases the overall current density j and homogeneity compared to
a wire with circular cross-section. The two coils are identical except for the helicity of
corresponding layers.

Around the origin of the two coils, where the cold atoms are located, the overall
current density is then antisymmetric:

~j(~r) = −~j( ~−r)

Deviations from perfect homogeneity around the origin due to finite size effects, the
changing of layers of the wire and the leads to the coils cancel each other in all odd
orders. The windings of the coil proceed around the mount as a true helix. The
transitions between layers do not occur stepwise but continuously over a whole winding.
Spacers made from glass-fibre ensure the correct positioning of the individual windings
and the coil is glued with epoxy (Stycast, 1266). The design and construction of the
Feshbach coils is described in more detail in [Tie09a].
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Figure 3.12: Schematic of the Feshbach coils and the additional coils for fast sweeps
and Stern-Gerlach experiments. The position of the trim coils is indicated, the coils
are omitted from the schematic. The mount is made of a single piece of brass and is
water-cooled. Holes drilled in the mount offer good optical access to the science cell in
the middle.

Mounted inside the Feshbach coils are coils to allow for fast sweeps, coils to trim
residual field curvatures and a coil to apply a gradient for Stern-Gerlach experiments.
The fast sweep coils have a diameter of 21mm, and 10 windings. The used copper foil
(Alphacore, Laminax B-series) has a 3.175×0.254mm cross-section and a 25.4µm thick
Kapton insulation coated onto one side. The fast sweep coils are mounted in Helmholtz
configuration around the science cell. Like the Feshbach coils these coils are set up in
an antisymmetric way. The trim coils have a diameter of 74mm, 15 windings, and
they are glued 50mm from the centre (see Fig. 3.12). The copper wire has a diameter
of 1mm. The coil for the Stern-Gerlach experiments (see 4.4) is located about 1 cm
away from the centre of the science cell, has 56 windings, a radius of 15.5mm and a
wire diameter of 0.5mm. The Stern-Gerlach coil is glued with epoxy (Stycast, 1266)
and has a 10 kΩ temperature resistor (RS, 484-0149) attached to it.

The magnetic field homogeneity was determined using a XEN-1200 field probe
with a resolution of 3.5mG up to 100G. The remaining inhomogeneities were fitted to
a polynomial expansion in the z-direction (for more details see [Tie09a]). The main
coils have an inhomogeneity in the first order of B′/B0 = 1.5× 10−6/mm, the relative
overall homogeneity is better than 10−5. The fast sweep coils are in first order less
homogeneous (B′/B0 = 4 × 10−4/mm) than the big coils. However, considering the
low fields in the sweep coils, the absolute homogeneity of the two coils is comparable.
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The thermal stability of the Feshbach coils has been simulated and the maximum
temperature of the coils has been measured to fluctuate less than 0.1 ◦C within two
hours [Tie09a]. The fluctuation is determined by the drift of the cooling water tem-
perature in the laboratory.

Apart from a high field stability and homogeneity the Feshbach coils also have to
allow for fast sweeping and switching of the field to be able to manipulate the atoms.
The main Feshbach coils are powered by a Danfysik (Model 858) power supply. The
power supply is specified to a stability of ±1 ppm for 30min. It delivers up to 25A.
The programming via RS232 is limited to 2A/s (≈ 35G/s). To shorten the time
the field in the Feshbach coils takes for switch-on and -off, we employ a switch and
a dummy resistor. At the beginning of each experimental cycle (described in detail
in Chapter 4), the current is programmed to the desired value and switched to run
through a resistive load, matched to the resistance of the Feshbach coils. The ≈ 50 s,
which elapse during the experimental cycle until the Feshbach coils are needed, are
sufficient to stabilize the current running through the dummy load. At the beginning
of the Feshbach experiment two MOSFETs (BUZ 344) switch from the dummy load
to the Feshbach coils. The current through the coils then reaches its set value within
a few hundred milliseconds (see Sec. 4.3). For a fast switch-off, the MOSFETs switch
back to the dummy load while transient voltage suppressors absorb the induced voltage
spike. Once the current is running through the dummy load again, the power supply
is programmed to zero current output.

The fast sweep coils are powered by a Delta Elektronika (ES075-2) supply. Com-
bined with a homebuilt transistor regulation, linear sweeps up to 40G/ms with a field
stability of less than 10−5 can be achieved.

3.8 Imaging systems
The means to detect the number of atoms and their temperature and distribution is
imaging. We employ three different methods: fluorescence imaging at low field and
absorption imaging in low and high field. The imaging is done by detecting the (near)
resonant light on a CCD camera.

3.8.1 Cameras and optical setup
As shown in Fig. 3.13 four cameras in total are used for the imaging. Two of these
(Sony, SX90) are used for the separate imaging of lithium and potassium and can image
on the horizontal axis both in the science cell and in the main chamber. The lenses
for the two horizontal imaging paths are on flippable mounts to switch between the
two imaging positions. The other two cameras provide images in the vertical direction
in the main chamber (Sony, X710) and the science cell (Apogee, U13). The effective
pixel size at the location of the atomic sample has been calibrated for all cameras as
described in [Tie09a]. The effective pixel sizes at the sample of the Sony (SX90) cameras
including the telescopes are 3.60µm when imaging in the science cell and 3.67 µm when
imaging in the main chamber. The time elapsing between taking the absorption and
the reference image is limited by the readout time. For the Sony cameras this takes
500ms. The Apogee has an effective pixel size of 3.94 µm when using a ×4 microscope
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Figure 3.13: Schematic of the imaging systems in (a) the main chamber and (b) the
science cell. The lenses with f=200 and 250mm can be flipped in and out of the
optical path. For the vertical imaging with the Apogee camera in the science cell a ×4
microscope objective is used.

objective (Edmund Optics, NT36-131). The Apogee camera is used in fast kinetics
mode achieving time delays between taking two images down to 3ms.

In the science cell the vertical imaging offers excellent optical access and can reach
a high resolution. In a test setup it has been shown [Tie09a] that we can achieve a
high resolution for the vertical imaging in the science cell. The upper limit for the
imaging resolution is ≈ 3 µm for a single point source. However the optical density
is always highest when imaging along the axis of the optical dipole trap. Most of the
experimental data presented in this thesis was obtained using images of the cold atom
cloud taken along the horizontal axis. The vertical imaging in the main chamber is
mostly used for alignment and to optimize the dipole trap loading.

The resonant imaging light is derived from the master laser by a double-pass through
an AOM (see Fig. 3.4) and split into two beams which are each coupled into polarization
maintaining fibres (Schäfter + Kirchhoff, PMC-630-4.5NA011-3-APC). With dichroic
beamsplitters the imaging light for lithium is combined with the light for potassium
(not shown in Fig. 3.4). The output of the first fibre is used for the imaging in horizontal
direction. The light is linearly polarized. The second fibre can be connected either to a
collimator at the science cell or at the main chamber. This light is used for the imaging
in vertical direction and is σ+ polarized by a waveplate. The circular polarized light
can be used for imaging both in low and high magnetic field. The linear polarization
is only used for low field imaging.
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3.8.2 Fluorescence imaging
For florescence imaging in the main chamber we irradiate the atoms with near resonant
light using the MOT beams and the light scatters in all directions. The MOT beams
are under an angle to the imaging path, so only scattered photons and no photons of
the MOT beams are detected by the CCD camera. A trapped atom in the MOT can
scatter many photons without being lost from the trap. This allows for long exposure
times of the camera and thus a good signal to noise ratio. This imaging method is used
to characterise the MOT, the magnetic trap and to optimize the magnetic trap capture
efficiency. We only used it for relative measurements, which do not require calibration
of the signal. The characterization of the lithium 2D-MOT-source in [Tie09b] was also
done using fluorescence imaging.

3.8.3 Absorption imaging
For absorption imaging a low intensity resonant light pulse passes through the cloud
of atoms onto the camera. In areas where there are atoms, the light is absorbed and
the image shows a shadow of the atomic sample. In this thesis all absorption images
were taken after release of the atoms from a trap after variable times of expansion. In
ballistic expansion only a few photons can be scattered per atom as atomic motion and
photon recoil can blur the image. In addition to the resonant light a pulse of repump
light is switched on when imaging to prevent a population of dark states. In the main
chamber the repump light is part of the MOT beams, therefore under a 45◦ angle to the
imaging beam and in two counter-propagating beams. In the science cell the repump
light is back reflected and under an angle of ≈ 30◦ to the imaging path. During the
imaging pulse the atoms absorb photons from the imaging beam and re-scatter them
in all directions. For a resonant light pulse of duration ∆t with low intensity, i.e. the
saturation parameter s0 = I/Is � 1, the number of photons Np scattered is given by
Np = 1

2s0Γ∆t, with Γ being the natural linewidth of the optical transition [Met99].
The recoil from the absorbed photons shifts the atoms out of resonance due to the
Doppler effect. The frequency shift is given by ωD = vreckNp, with the wavevector k
of the light and the recoil velocity vrec = ~k/m. The re-emission moves the atoms in
random directions resulting in a blurring of the cloud’s image. The atoms are then
on average displaced in the transverse direction by rrms = vrec∆t

√
Np/3 [Jof93]. For

potassium we use intensities for the imaging pulses with saturation parameter s0 = 0.4
and a pulse length of ∆t = 100 µs, resulting in a displacement by rrms = 9 µm and a
frequency shift of ωD = 0.4Γ.

To obtain a signal from the CCD camera three images need to be recorded. After
every absorption image taken with intensity Iabs, two images of the optical field are
taken. One as a reference with imaging light Iref and one without imaging light with
intensity Ibg as background. The signal is then: I(x, y)/I0(x, y) = (Iabs − Ibg)/(Iref −
Ibg). For the Sony cameras we found that the background image Ibg can be neglected,
and it is not used in the analysis of the data. The intensity distribution is used to
calculate the column density of the atomic distribution using the Lambert-Beer law:

I(x, y)
I0(x, y) = exp(−OD) = exp(−σn(x, y)),
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Figure 3.14: With rising magnetic field the detuning from the zero field imaging tran-
sition |2S1/2, F = 9/2〉 → |2P3/2, F = 11/2〉 changes. Shown are the frequencies for σ−
transitions mF = −9/2 → m′F = −11/2 (full line) to mF = 5/2 → m′F = 3/2 (long
dashes). For magnetic fields higher than 55G, the different transitions are separated
by more than the linewidth Γ and the mF states can be imaged individually.

with the optical density OD, the column density along the imaging beam axis n(x, y) =∫
dzn(x, y, z) and the atomic absorption cross-section of the atoms

σ = κ
3λ2

2π
1

1 + (2δ/Γ)2 .

Here δ is the detuning from the atomic resonance and κ a transition dependent coef-
ficient. For the transition |2S1/2, F = 9/2〉 −→ |2P3/2, F = 11/2〉 and linear polarized
light κ = 2/5, for circular polarized it is κ = 1 [Tie09a].

3.8.4 High-field imaging
The ability to image in high field is vital if switching-off times of the magnetic fields are
slower than the dynamics of the cold atom cloud. Atoms can be lost from the cloud or
become invisible to the imaging light under conditions where molecules are formed as
a result of sweeping through a Feshbach resonance during the switch-off. In non-zero
magnetic field the different Zeeman states are not described by just one set of quantum
numbers but by a combination of different sets. Transitions which are closed transitions
at zero field cease to be closed at higher magnetic fields. In addition, the transition
probabilities change with magnetic field. The imaging transitions have to be chosen
carefully depending on the specific magnetic field and the state which has to be imaged.
The transition probabilities of 40K in dependence of the magnetic field are described
in more detail in C.2. For atoms in the states |2S1/2, F = 9/2,mF = −9/2, · · · , 5/2〉
σ− transitions to the states |2P3/2, F

′ = 11/2,m′F = −11/2, · · · , 3/2〉§ are allowed. As
shown in Fig. 3.14 with rising magnetic field the atomic transition frequencies change
by a considerable amount.

§For convenience the low-field labelling of the states is used.
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Figure 3.15: The signal for the beat lock is obtained by mixing the beat signal of the
two lasers with a reference frequency and detecting the phase between that signal and
its delayed part. The last amplifier, the delay line and the phase detector are placed
in a metal box to minimize noise.

To be able to adapt to these changes, we stabilize the frequency of the high-field
imaging laser with a frequency offset lock. The lock is based on the fact that a beat
signal of two laser frequencies accumulates a frequency-dependent phase-shift when
propagating through coaxial cable. The time delay introduced by the cable is fre-
quency independent, so the phase shift is only proportional to the beat frequency and
a feedback signal to stabilize a laser can be derived [Sch99]. The high-field imaging laser
itself is a grating stabilized external cavity diode laser (ECDL), built after a scheme by
[Ric95]. The diode used is a anti-reflection coated diode (Eagleyard, EYP-RWE-0790-
04000-0750-SOTO1) and the grating is a holographic grating (Thorlabs, GH13-18U)
optimized for the ultra-violet to prevent a high power density within the cavity.

Reference light with frequency νref is superimposed with the light of the high-field
imaging laser with frequency νhfi. Both beams are matched in power (about 95µW in
each beam) and polarization and coupled into a single mode polarization maintaining
fibre. The resulting beat note ∆ν = νref−νhi = 266MHz of the two beams is detected by
a fibre coupled fast photodiode (Thorlabs, DET02AFC) with a bandwidth of 1.2GHz.

In Fig. 3.15 it is shown how the beat signal is processed electronically to obtain a
lock signal. To retrieve a feedback signal for the stabilization of the high-field imaging
laser, the signal of the photodiode (level ≈ −32dBm) is first amplified by 20 dB (Mini-
Circuits, ZFL-500). In a second step the signal is mixed (Mini-Circuits, ZFM2000+)
with the reference frequency νvco = 320MHz from a voltage controlled oscillator (Mini-
Circuits, ZOS400). The signal now contains the frequency components νvco − ∆ν,
νvco + ∆ν, νvco, ∆ν and also higher orders and combinations of those frequencies (see
Fig. 3.16).

The signal is split into two, one part is for control purposes, the other part is
amplified once more by 20 dB and then divided by another splitter (Mini-Circuits,
ZSCJ-2-1). One part is delayed by l = 4.5m of coaxial radio-frequency cable, resulting
in a time delay of τ = l/cg ≈ 22.5 ns where the group velocity cg of the signal is
about 2/3 of the speed of light. Both signals are recombined on a phase detector
(Mini-Circuits, ZRPD-1). The output voltage Uerr of the phase detector varies with
the cosine of the phase shift φ acquired in the coax cable. The phase shift depends
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Figure 3.16: Spectrum of the mixed beat signal showing the signal used for locking
at νvco − ∆ν, the beat frequency of the two lasers ∆ν, the frequency of the voltage
controlled oscillator νvco and higher orders and other combinations of those frequencies.

only on the mixed signal and the time delay between the paths: φ = 2π(νvco −∆ν)τ .
One of the zero crossings of the output signal Uerr is used as a locking point for the
feedback for the high-field imaging laser. The spacing of the zero crossings depends
on 1/τ and the position can be set with the frequency νvco. For a wider capture range
and a higher locking stability a shorter coax cable can be used. The length of the coax
calble was chosen to achieve a high resolution and a narrow laser bandwidth.

The output of the phase detector is sent through a low pass filter (Mini-Circuits,
BLP1.9) with cut-off frequency at 1.9MHz. The error signal Uerr then feeds back into
two separate servo loops: a slow loop (≤ 1 kHz) feeding back to the piezo-electric
actuator (Thorlabs, AE0505D08F) setting the length of the cavity of the high-field
imaging ECDL and a fast control (bandwidth ≈ 1MHz) to feed back to the current
running through the laser diode.

The linewidth of the stabilized high-field imaging laser is estimated by recording the
beat signal ∆ν of the two lasers. The output of the photodiode is fed into a spectrum
analyser. The data of the spectrum analyser is read out to an oscilloscope using the
x-y-outputs, averaged 4 times and rescaled to dBm as read from the spectrum analyser.
The read-out via the oscilloscope adds electronic noise so a direct conversion to a linear
scale introduces big errors. The data is thus first smoothed before rescaling and fitting.
The video filter setting of 1MHz contributes to the linewidth. The data, converted to
a linear scale, is shown in Fig. 3.17.

The beat signal of two lasers can be described as the convolution of two Lorentz
functions – if no broadening due to e.g. electronic noise occurs. Electronic noise is
certainly added to the beat-signal by the spectrum analyser. The locking circuit might
also contribute noise. Assuming a Gaussian distribution of the noise, the measured
beat-signal is a convolution of Lorentz and Gauss functions, which is a Voigt function.
The fit with a Voigt function results in a width of 1.2MHz for the Gauss part and
0.45MHz for the Lorentz part of the function. The widths wi of two Gaussian distri-
butions convolute to (w2

1 + w2
2)1/2, for a Lorentz distribution it is w1 + w2. Without

exact knowledge of the sources of broadening of the signal 1MHz is an upper estimate
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Figure 3.17: The black squares show the recorded and linearised beat signal of the
high-field imaging and the reference laser. The red solid line is a Voigt fit to the data.
For comparison the Gauss fit (green dots) and the Lorentz fit (blue dashes) are also
displayed.

for the width of the high-field imaging laser.
The possible offset frequencies for the lock are limited to 400MHz by the VCO, for

an even bigger range of frequencies a direct digital synthesis chip (DDS) as is used for
the evaporation can be employed.

3.9 Computer control and analysis

The whole experiment is controlled by one desktop computer running on the operating
system Windows XP. This computer addresses all analogue and digital outputs and
accesses the cameras. A laptop computer, also running on Windows XP, is used to
control the stepper motor for the optical transport as described in Sec. 3.6. The laptop
is also used to view and analyse the data from the CCD camera monitoring the focus
size and shape of the dipole trap and the plug beam.

The main computer reads out the cameras and saves the images to the network.
The analysis of the measurements is done on a computer running on Linux (Fedora
Core 6). For the analysis we use open-source software. We made this choice because
most drivers for cards and cameras are more easily available for Windows and our
control program was developed for Windows (see 3.9.1). Using open-source software
makes the analysis more portable and compatible. With a Linux operation system it is
also comparatively easy to make use of remote processing or use and write bash scripts.

3.9.1 Control program and hardware
The hardware for the computer control was chosen to accommodate the laboratory
control system as developed by T. Meyrath and F. Schreck (a detailed description and
manuals can be found online: [Mey02]). We did not entirely reproduce their system
and did not include analogue inputs and radio-frequency synthesizers.
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Our control includes at the moment 80 digital and 40 analogue outputs and an
interface to DDS evaluation boards. The digital outputs are compatible with TTL and
can drive 50Ω loads. The analogue outputs can each drive a current up to 250mA and
are programmable between -10 and +10V. A 32-bit National Instruments Digital I/O
card (NI6533) interfaces between the output bus and the controlling computer. More
details on the used hardware can be found in [Tie09a].

Apart from the outputs mentioned above, the main control computer also uses
various protocols to address other devices used in the experiment. The cameras used
mostly for the imaging (Sony X710 and SX90) are read out using FireWire. The fibre
laser and the Danfysik power supply are programmed via RS232. USB is used for one
of the DDS systems and the Apogee camera. An oscilloscope (Fluke, PM3394B) and
a multimeter (Tulby Thandar, 1906) can be read out via GPIB.

3.9.2 Software
As mentioned in Sec. 3.9, the control software is based on the control system de-
scribed in [Mey02]. The program uses Visual C++ functions which provide access to
all outputs. In a graphical user interface (GUI) the defined variables can be set and
measurement routines can be called. Whenever the measurement routine is called the
program is executed twice. In the first run the system is prepared and external devices
are pre-set. In the second run the digital outputs are switched, the analogue outputs
are set to the programmed voltage and external devices such as the cameras and the
optical transport are controlled in a synchronized manner. The time resolution between
the different output commands is 3 µs. As mentioned above, we have not implemented
any input channels; the cameras are read out using home-written software which is
called by the control program. The programs are written in Visual C++ and make use
of drivers for the cameras. All cameras get their triggers via digital outputs from the
main control program. The same holds for the optical transport: the Maxon motor
controller is steered by a separate program running on the laptop. The endpoint and
the sinusoidal trajectory are controlled by the separate program but the triggers to
start and end the transport are given by the main program.

With each experimental run images are taken. The images are acquired and saved
in PGM (Portable Gray Map) format. First they are saved to a local hard drive
and then transferred together with files containing the experimental parameters to a
network drive. The analysis is then done using software written in GNU C++ running
on the Linux computer. A dynamic library offers various routines to fit one- and two-
dimensional distributions to the PGM images. The library can either be called from a
GUI written in Python 2.5.1 or from command lines in a bash program or shell. For
more details about the used software see [Tie09a].

3.10 Sources for radio and microwave
frequency

To manipulate the 40K atoms many different frequencies are necessary: for laser cooling
and imaging the light has to be shifted by 50–250MHz, the evaporation and the repump
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laser require frequencies in the GHz range and the state manipulation described in
Sec. 4.2 works at frequencies in both ranges.

The frequencies for the optical transitions require a frequency stability < 1MHz,
smaller than the linewidth (Γ = 6.03MHz). This stability can easily be achieved with
voltage controlled oscillators (VCOs). We use VCOs from the ZOS-series manufac-
tured by Mini-Circuits for most of our AOMs. Voltage variable attenuators (Mini-
Circuits, ZX73-2500+) regulate the power and Mini-Circuits amplifiers ZHL-3A-S (for
ν < 150MHZ) and ZHL-2-S (for ν < 150MHZ) produce the power required, which is
up to ≈ 1W.

The only AOM where we do not use a VCO is the Brimrose AOM that shifts the
light to obtain repump light (see Sec. 3.3). The frequency needed there is 1.1GHz.
A VCO with the required frequency stability would have to have voltage drifts of the
steering voltage lower than 1mV, which is hard too achieve. For the repump AOM
we employ a DDS (AD9956) as frequency source. The power is amplified by a 2W
amplifier (Hughes, 700-1400MHz).

3.10.1 DDS systems
There are two different types of direct digital synthesis (DDS) systems in use in our
experiment. The first system consists of three AD9956 (Analog Devices) DDS chips
mounted together with a VCO and a loop filter on evaluation boards. The boards are
programmed via USB and updated and synchronized to the experiment with triggers
from the digital output boards. Each VCO is phase-locked to a DDS chip. The
available output frequencies are then 0.9–1.35GHz from two of the boards and 200–
300MHz from the third board. The other DDS system is based on four AD9858 (Analog
Devices) DDS chips mounted on evaluation boards. These chips can be programmed
in parallel via the main bus system. The DDS frequency can then be changed every
15µs with a 32-bit accuracy. Again VCOs are phase-locked to the DDS chips. The
output frequencies of this system are 1–1.3GHz from one output and 0-400MHz from
the three other outputs. Both DDS systems give out frequencies with a linewidth less
than 100Hz. More details on the used clocks, VCOs and more detailed circuitry of the
DDS systems can be found in [Tie09a].

3.10.2 Amplification and switching
All the frequencies for the evaporation and state manipulation from the DDS require
additional amplification. Figure 3.18 shows a schematic of amplification stages and
the switching to the right antennas. All powers are regulated by voltage variable
attenuators (Mini-Circuits, ZX73-2500+) and the signals from the DDS boards can be
directed to one of the two outputs of a switch (Mini-Circuits, ZASWA-2-500R+).

The frequency for the hyperfine manipulation is derived from a AD9858 DDS chip.
A switch is used to direct the frequency to the main chamber or the science cell. The
frequency for evaporation on the hyperfine transition (1.2GHz) in the main chamber is
amplified with a 1W (Mini-Circuits, ZHL-2-12) and then with a 15W (RSE, PA15-23)
amplifier. The power is sent via a bi-directional coupler and a triple-stub tuner to
the antenna. The antenna is a single loop of unshielded BNC cable and has strong
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Figure 3.18: Schematic of the amplification stages for the radio and microwave frequen-
cies used to manipulate the atoms. All components marked with * are manufactured
by Mini-Circuits. The triple-stub tuner is omitted from the schematic.

resonances. The triple-stub tuner is tuned to achieve a flat frequency response in the
range 1.1–1.3GHz.

When the other output of the switch is in use, the microwave power is increased
first by 12.8 dB (Mini-Circuits, ZX60-3018G) and then sent through a 30W (Downeast,
2330PATV) amplifier and a circulator to the antenna. In the science cell this frequency
range is used for the clean out of undesired Zeeman states and for the calibration of the
magnetic field as described in Chapter 4. The bi-directional coupler and the circulator
protect the amplifiers from the power being reflected back by the antenna.

The lower frequency range from 0–400MHz is used for the preparation of the proper
Zeeman states and for field calibration in the science cell. Here the output from the
AD9858 DDS chip can be switched to a 50Ω terminator to prevent noise. For both
the use in the main chamber and the science cell the radio frequency is amplified by
the same 4W (Mini-Circuits,TIA-1000-R18) amplifier. The switching between the two
antennas is done with a relay. There is no circulator or coupler in this path as the
amplifier is protected against back-reflected power.

The antennas for the radio and microwave frequencies consist of simple wire loops.
The antennas for the microwave have one winding and the ones for the radio frequency
have seven. For more detailed specifications of the used antennas and the setup for the
lithium antennas see Table 3.3 in [Tie09a].



Chapter 4

Experimental sequence

In this chapter a description is given of the preparation of ultracold atoms in the desired
Zeeman states and the measurements of Feshbach resonances in collisions between
atoms. Figure 4.1 shows an overview of the entire experimental sequence in the form
of a timeline. The sequence displayed is used for most measurements of Feshbach
resonances, the cases where the procedure is adapted are described in the text. The
preparation of the cold atoms involves evaporation steps and a transport of the cold
sample to the science cell, where the Zeeman states are prepared and the measurements
are taken. Each experimental cycle takes up to 60 s, depending on the holding time
at a specific magnetic field to determine magnetic field dependent losses. Furthermore
the magnetic field calibration and selected measurements are presented.

A vital step in the experimental sequence is the reproducible preparation of binary
mixtures of Zeeman states. This is required to be able to investigate a Feshbach
resonance in a specific channel. Multi component mixtures of Zeeman states complicate
the assignment of observed loss features.

In earlier experiments on the apparatus [Tie09a] a number of different state prepara-
tion procedures were implemented in the main chamber. The 40K atoms were prepared
in the fully stretched |F = 9/2,mF = 9/2〉 state by forced evaporation of the unde-
sired states in the magnetic trap or in a combination of optical and magnetic trap.
Additionally optical transitions at low and high magnetic field and adiabatic sweeps
to high-field seeking states were employed. All these experiments made use of Zeeman
state sensitive detection by means of a Stern-Gerlach experiment in the main chamber.
However, the Stern-Gerlach detection in the main chamber required very low dipole
trap frequencies ωr = 2π× 560Hz (corresponding to about 2% of the full ODT power)
to resolve the individual states to confirm a succesful state preparation. At such low
ODT powers a lossless optical transport of the cold clouds to the science cell can hardly
be achieved, the ODT is best set to full power for this purpose. In the absence of state
dependent detection the preparation of the states at a higher trap depth can leave
atoms in undesired states undetected. In addition, without Stern-Gerlach experiment
at the science cell, de-polarization of the states during the transport is difficult to
detect.

In the course of this work we build a coil to perform Stern-Gerlach detection (see
Sec. 3.7) at the science cell. We added switches and antennas (see Sec. 3.10.2) to have



52 4. Experimental sequence

M
O

T
loading

16
s

M
O

T
com

-
pression

10
m

s

Feshbach
experim

ent

-2D-M
O

T
off

-shim
coilsoff

-M
O

T
off

-offsetB
-field

on
-opt.pum

ping
lighton

60
ms

M
T

com
-

pression

-M
T

on

evaporation

300
m

s
22.3

s

-plug
off

-B-offseton

250
m

s
4.4

s

optical
transport

3
s

evaporation
state

cleaning

140
m

s

rf
transfers

1s
510
m

s

optical
pum

ping
O

D
T

loading

0.5
-10

s

-B-offset
higher

-FB-
coils
on

-FB-coil
off

-gradient
on

-O
DT

off

Stern-
G

erlach
im

aging

-B
fields

off

-2D-M
O

T
on

-3D-M
O

T
on

-plugon
-O

DT
on

-M
T

off
-B-offset
higher

|B
|

O
D

T
pow

er

tim
e

(notto
scale)

detection
opticaldipole

trap
(O

D
T)

opt.
pum

ping
m

agnetic
trap

(M
T)

M
O

T

science
cell

m
ain

cham
ber

A
B

C
D

E
F

G
H

I
J

K
L

M
N

delay

transport

Figure
4.1:

Sim
plified

schem
atic

ofthe
experim

entalsequence.
T
he

lower
graph

show
s
the

applied
m
agnetic

fields
and

the
power

of
the

O
D
T
.In

the
text

the
experim

entalsteps
A

to
N

are
described

in
detail.



4.1. Atom cooling and trapping 53

(a) (b) (c)

Figure 4.2: Scaled optical density (OD) images of the atoms taken 3ms after release
from the magnetic trap without (a) and with (b) the optical plug. The number of
atoms in the cloud depicted in (a) is 1× 106. Using the same fitting procedure for the
cloud in image (b) yields 4× 106. The cross in (b) indicates the approximate position
of the ODT with respect to the plug beam. (c) Vertical cut trough the (unscaled)
optical density distribution of the same atom clouds with (top) and without the plug
(bottom).

all necessary radio and microwave frequencies for the state preparation available at
the science cell as well. The states can now be prepared and detected at the same
dipole trap depth. The Stern-Gerlach detection is possible to trap frequencies of up to
ωr = 2π×2.7 kHz (corresponding to ≈ 40% of the full ODT power). This arrangement
also allows for the state sensitive detection of Feshbach resonances.

4.1 Atom cooling and trapping

The experimental cycle starts with 16 s of MOT loading (step A in Fig. 4.1). The
details of the MOT set-up are described in Sec. 3.4.2. The optical plug (see Sec. 3.5
for details) is switched on from the beginning of the MOT loading. At the end of the
MOT loading the 2D-MOT beams are switched off with shutters; and the shim-coils,
which create an offset field to move the MOT to a position favourable for loading, are
ramped down to zero. The MOT is compressed in 10ms by ramping the magnetic
gradient from 14G/cm to 44G/cm (step B in Fig. 4.1).

After compression, the MOT field is switched off and an offset field of 3.6G along the
axis of the optical pumping beam is switched on (step C, for more details see Sec. 3.4.2).
Repump light in all directions is also switched on. The optical pumping light and the
repump light transfer the atoms into the magnetically trappable states f, . . . j in the
lower hyperfine manifold of the ground state |2S1/2, F = 9/2〉 (see Fig. 2.2). For the
forced evaporation step later in the sequence, it is crucial that more than one trappable
state is populated, as identical fermions do not thermalize via s-wave collisions. The
optical pumping step is optimized accordingly (see Sec. 3.4.2). Following the optical
pumping light pulse of 60µs, the magnetic trap is switched on to a vertical gradient
of 88G/cm and subsequently compressed by increasing the gradient to 176G/cm in
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300ms (step D in Fig. 4.1). The offset field for the optical pumping is ramped down
to zero during this compression. In this way we load up to 1 × 109 atoms into the
magnetic trap.

In the magnetic trap the atom number and temperature are reduced by forced
evaporation [Hes86, Lui96, Ket96] using microwave radiation driving the transitions
from the lower to the upper hyperfine manifold of the ground state (step E). The
microwave frequency is resonant with the transitions from the trapped Zeeman states
f, . . . j to the untrapped states in the upper hyperfine manifold |2S1/2, F = 7/2〉. The
frequency of the microwave radiation is swept from 1160MHz to 1280MHz in five
sweeps in a total time of 22.3 s. The hyperfine splitting at zero magnetic field is
∆Ehf = 1285.79MHz. The combination of the individual sweeps approximates an
overall exponential sweep. Due to the Zeeman effect experienced by the atoms in
the gradient of the magnetic trap, atoms which are further from the magnetic trap
center have a higher total energy and are preferentially removed from the trap. Re-
thermalization of the remaining atoms via collisions lowers the temperature of the
cloud. At the end of the evaporation stage there are typically 2.5 × 106 atoms in the
plugged magnetic trap.

As shown in Fig. 4.2 the optical plug suppresses Majorana losses resulting in an
increase of the atom number compared to the case without the optical plug. In the ex-
ample shown, the cloud is evaporated in four sweeps to 1278MHz and imaged after 3ms
time-of-flight. With the optical plug switched on, our imaging and fitting procedure
does not yield accurate atom numbers as the Stark-shift and the non-Gaussian cloud
shape are not taken into account. However, for alignment and optimization purposes
the atom number obtained from the fit using a Gaussian profile provides a relative
measure to compare to the atom number in the unplugged trap. The fit yields four
times more atoms with the plug than without the plug.

For the ODT loading (step F in Fig. 4.1), the gradient of the magnetic trap is
ramped down to zero in 250ms while the power of the ODT (see Sec. 3.6) is ramped
to full power. The cross in Fig. 4.2 (b) indicates how the ODT beam is aligned with
respect to the plug beam. The two beams are co-propagating and the focus of the
ODT beam is shifted away from the plug region. At full power the ODT is 345µK
deep and we transfer typically 1.2 × 106 atoms into the ODT, an efficiency of about
50% compared to the atom number in the optically plugged trap. The optical plug is
switched off after the loading of the ODT.

The optical transport (step G, see Sec. 3.6) transfers the atoms in an approximate
(half a period long) sinusoidal velocity profile in 4.4 s over 22 cm from the main chamber
into the science cell. To prevent de-polarization of the atom cloud in the ODT during
the transport, an offset field of about 2.5G is ramped up in 50ms using the fast sweep
coil located at the science cell (see Sec. 3.7). We have optimized the switch-on point
in time and the magnitude of the offset-field to minimize de-polarization. The field is
ramped on after about 75% of the transfer-time has passed. The focus of the ODT
is then within about 10% of its final position, which corresponds to a distance of less
than a coil diameter away from the center of the fast sweep coils. The full-power ODT
contains typically 1× 106 atoms after the transfer to the science cell.

In the science cell the gas is evaporatively cooled by reducing the power of the ODT
to 5 – 10% of the initial power (step H in Fig. 4.1). This evaporation takes a total of 3 s
and is performed in several ramps approximating an overall exponential ramp [Ada95].



4.2. State preparation 55

2S1/2,F=9/2

2S1/2,F=7/2

|a>

|j>

B [G]

(e)

E
[M

H
z]

|j>, mF = +9/2
|i>, mF = +7/2
|h>, mF = +5/2
|g>, mF = +3/2
|f>, mF = +1/2
|e>, mF = -1/2
|d>, mF = -3/2

|2S1/2, F=9/2> (a) (b) (c)

2S1/2

2P1/2

2P3/2

F=9/2

F=7/2

F=5/2

(d)

|k>

|r>

Figure 4.3: Schematics of the state preparation. Optical density images taken after
applying a Stern-Gerlach pulse show: (a) state population before the preparation; (b)
after clean out; (c) prepared states. As depicted in (d) and (e) the state preparation
is done in two steps: With microwave (blue, horizontally striped arrows) atoms in
undesired states are excited to the F = 7/2 state. Resonant (green, tilted striped
arrows) light drives a transition to the |2P3/2, F = 5/2〉 state and removes the atoms
from the trap. In the second step atoms are transferred to the desired spin states using
radio frequency sweeps (red, filled arrows). The last step is done at a higher offset field
(see text).

The final power of the ODT is chosen depending on the experiment to be performed.
For most of the measurements presented in this chapter and Chapter 5 the final power
of the ODT was 60mW, corresponding to a trap depth of about 12 µK. In this trap
there are typically 2− 4× 105 atoms at a temperature of about 1 µK.

4.2 State preparation

For a proper assignment of the various Feshbach resonances in the scattering channels
of 40K atoms a pure and balanced binary mixture of only the desired Zeeman states
is beneficial. As shown in Fig. 4.3(a) only the low-field-seeking states of the lower
hyperfine manifold |2S1/2, F = 9/2〉 are populated when the atoms are loaded in the
ODT. The offset field applied during the transport preserves this population.

The preparation of a balanced binary mixture of states is done in two steps, first we
apply a state cleaning procedure in which all atoms except those in the state j (mF =
9/2) are removed (step I in Fig. 4.1). The result is shown in Fig. 4.3(b). Secondly the
desired states are populated by means of a radio-frequency transfer procedure (step J),
the result is shown in Fig. 4.3(c). The images shown were taken using Stern-Gerlach
imaging, which will be described in Sec. 4.4. The microwave and radio frequencies
employed for the state preparation are derived from the same DDS systems used in the
main chamber and switched to the science cell as described in Sec. 3.10.2 and shown
in Fig. 3.18. Within experimental error we have not observed any heating of the cloud
due to the state preparation.
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Figure 4.4: Loss features in the atom number when driving the labelled transitions
without applying atom removal light. The offset field in this example is about 6G and
the frequency is scanned for each point over 300 kHz in 300ms.

4.2.1 State cleaning
The state cleaning procedure is illustrated in Fig. 4.3(d) and (e). The atoms in the
undesired Zeeman states f, g, h, i in the lower hyperfine manifold |2S1/2, F = 9/2〉 are
excited with microwave radiation to the upper manifold |2S1/2, F = 7/2〉. From there
the atoms are removed by resonant σ−-polarized light tuned to the |2S1/2, F = 7/2〉 −→
|2P3/2, F = 5/2〉 electronic transition in the D2-line.

The atom removal light is necessary due to spin exchange. To illustrate the phe-
nomenology, we show in Fig. 4.4 the effect of microwave sweeps in the range of 1268–
1280MHz. In this example the sweeps are done without atom removal light. For each
point the frequency is swept over 300 kHz in 300ms. Loss features appear when the
frequency is resonant with transitions to the upper hyperfine manifold. The loss oc-
curs because atoms excited to the upper hyperfine manifold undergo spin exchanging
collisions [Hap72] with the atoms in the lower hyperfine manifold, resulting in atom
loss. Contrary to spin exchange within the lower hyperfine manifold (see Sec. 2.4)
this process is exothermic, releasing energy in the mK range, heating the atom clouds
to temperatures higher than the trap depth of the ODT. As expected for this spin-
exchange mechanism, the loss of the population also occurs in states which are not
excited by the microwave radiation. This is shown in Fig. 4.5, where the atoms are
detected with Stern-Gerlach imaging.

The state cleaning for the Feshbach measurements is done in the science cell at an
offset field of 7.2G produced by the fast sweep coils in the presence of atom removal
light. The field is ramped up in 50ms from the offset value used during the transport.
With a series of four sweeps of microwave radiation the atoms from the undesired states
f, g, h, i in the lower hyperfine manifold are excited to the states k, l,m, n in the upper
hyperfine manifold. In each of the four sweeps, the microwave radiation is swept over
a range of 50 kHz in 35ms. These sweeps are done around the frequencies to drive



4.2. State preparation 57

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
0.00

0.05

0.10

0.15

0.20  mF = 9/2 , j      mF = 7/2 , i      mF = 5/2 , h 
 mF = 3/2 , g     mF = 1/2 , f    

 

 

 
 

frequency [MHz]

ato
m 

nu
mb

er
 [a

rb
. u

.]

Figure 4.5: Loss in spin states due to spin exchanging collisions with states in the upper
hyperfine manifold when not applying atom removal light. Around 1271MHz only the
j → k microwave transition is driven. At 1274.6MHz only the transitions i → l and
h→ k are addressed. The offset field in this example is about 6G.

the transitions g → n and f → m (first sweep); h → l (second sweep); i → l and
h→ k (third sweep); and i→ k (fourth sweep). The atom removal light tuned to the
|2S1/2, F = 7/2〉 −→ |2P3/2, F = 5/2〉 transition prevents losses due to spin exchange
between the microwave excited atoms and the remaining atoms in the states in the
lower hyperfine manifold. At the offset field employed, the Zeeman splitting of the
four populated states in the upper manifold is about 6MHz, the same as the linewidth
Γ of the D2 line. The Zeeman splitting of the electronically excited states in the
|2P3/2, F = 5/2〉 manifold at the offset field is about 2Γ. With sufficient intensity, it
is not necessary to sweep the frequency of the atom removal light, but adequate to
tune the frequency within about 2Γ for optimal atom removal. The intensity and
detuning of the atom removal light is optimized by exciting the population of one of
the trapped states by microwave radiation to the upper hyperfine manifold, applying
atom removal light and detecting the remaining atoms with Stern-Gerlach imaging.
When the atoms are efficiently removed from the upper hyperfine manifold, no losses
occur in the remaining trapped states. The population in the cleaned-out state is
minimized, while the occupation in the other states is conserved. When the intensity
of the atom removal light is too high, also atoms in the lower hyperfine manifold are
optically excited to the |2P3/2〉 manifold and are lost from the sample. The optimal
intensity was established experimentally.

4.2.2 State transfers
The state cleaning leaves atoms only in the |2S1/2 F = 9/2,mF = 9/2〉 state. For a
70mW deep trap, the atom number is typically 1.7 × 105. From there the atoms are
transferred in two radio-frequency sweeps [Rub81] to the desired final states. To get
a good resolution between the states, the offset field is increased from 7.2G to about
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17G in 100ms. The energy difference between the Zeeman states then differs by about
41–47 kHz, which we are able to resolve with radio frequency. A higher field would in
principle enable the reduction of the sweep time, nevertheless it was chosen to keep the
field as low as possible to be able to explore Feshbach resonances at a field as low as
possible. The first sweep over 90 kHz in 500ms transfers the atoms adiabatically into
the state with the higher Zeeman energy of the two desired states. A second sweep
over 30 kHz in 500ms produces the mixture with the adjacent state. For this second
sweep the radio frequency power is reduced to 1/3 of its initial value. The final states
are each populated with typically 3×104 atoms. The temperature of the cold atoms is
1 µK, corresponding to T/TF ≈ 1.5.

The first radio-frequency transfer shows the best result when only one state is
initially populated. Up to four final states are populated by the transfer if two states
are initially populated. The combination of spin cleaning and radio-frequency transfers
as described above is used to produce mixtures of adjacent states. However for the mF

= 7/2 and mf = 5/2 mixture (i + h), as well as for the mF = 9/2 and mF = 5/2
mixture (j + h) the preparation procedure is adapted. For the i + h mixture, first an
adiabatic transfer is performed from the state mF = 9/2 to to the state mF = 5/2
and then atoms in the undesired states are removed as described above. Accordingly
for the j + h mixture the state mF = 7/2 is transferred to the state mF = 5/2 and
the atoms in undesired states are cleaned out. This method results in higher atom
numbers in the mixtures. It can also be adapted for mixtures of the states a, b and c.
There the population in the states j, i, h . . . is first transferred adiabatically into the
a, b, c . . . states, before employing further state cleaning and state transfers.

4.3 Field-dependent loss measurements

Following the spin preparation the offset field is decreased from 17G to 6.45G and the
power supply of the main Feshbach coils is switched from the dummy load to the coils
(see Sec. 3.7). The magnetic field reaches 95% of its final value within 10ms. It takes in
total 0.5 s to reach the set current to within 1%�. Once the final field is reached by the
Feshbach coils the fast sweep coils are ramped up within 10ms. The fast sweep coils
produce fields up to 17G and are used to scan the magnetic field around a Feshbach
resonance to resolve details. The Feshbach coils produce the big magnetic field offset
to reach field values below the resonance and the fast sweep coils are used to scan over
the resonance. In this way we prevent that the field drifts slowly over the Feshbach
resonance during the settling of the current.

After the delay (step K in Fig. 4.1) due to the settling of the current, the actual
Feshbach experiment (step L) is performed. We determine the positions of the Feshbach
resonances by an increase in the atomic loss rate [Reg03a]. The mixture of cold atoms in
the prepared states is held at a magnetic field value for an adjustable holding time (0.5 –
10 s) and the remaining atoms are detected subsequently. For scans over magnetic field
ranges larger than 17G, only the current through the main Feshbach coils is scanned.
To minimize in this case the effect of the settling of the current on the detected relative
losses, the actual measuring time is chosen much longer (>3 s) than the settling time.
Switching the Feshbach coils off takes about 600 µs; to prevent depolarization of the
spin states due to the switching, a small offset field is applied.
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4.4 Stern-Gerlach imaging
Once the Feshbach coils are switched off, the mixture is detected by absorption imaging
after a time-of-flight. To distinguish the different spin states contained in the cold atom
cloud a Stern-Gerlach gradient field (step M in Fig. 4.1) is applied before zero-field
imaging (step N in Fig. 4.1). The magnetic gradient is pulsed on for the first 3.7ms
of the time-of-flight after the cold atoms are released from the optical dipole trap. A
single coil, situated about 1 cm above the atom cloud, produces a gradient of 100G/cm,
which is sufficient to separate the spin states during the 4ms total time-of-flight. The
current is switched between a resistive dummy load and the coil using FETs. This
ensures a fast switching of the Stern-Gerlach field. Again, to prevent depolarization of
the states during the switching, an offset field of 6.45G is applied.

After all the coils are switched off and the magnetic field has decayed, the imag-
ing and repump light flashes are applied and the atoms in the separated clouds are
detected. The switch-off of the offset field does not affect the state-dependent detec-
tion, as the initial population distribution in the states spin is now separated in space.
Any depolarization at this stage is not relevant, the imaging itself is done without an
applied field (see Sec. 3.8).

The Stern-Gerlach pulse is sufficient to separate the spin states in clouds at tem-
peratures of around 12µK, so it is necessary to evaporate from the ODT to a trap
depth of at most 140 µK. This trap depth corresponds to 40% of the full power of
the ODT and results in a trap frequency of ωr = 2π × 2.7 kHz. Compared to the
Stern-Gerlach detection previously implemented in the main chamber [Tie09a], this is
a major improvement.

A separation of the spin states of clouds at even higher temperatures could be
achieved with a higher magnetic field gradient. In the restricted available space this
could be done by using two coils, but then the separation of the states is impeded as
the atoms get partially trapped.

4.5 Magnetic field calibration
The magnetic field is calibrated by driving the transitions either between the two
ground state hyperfine manifolds or between Zeeman states within the lower hyperfine
manifold. For the frequencies required the corresponding magnetic field is calculated
using the Breit-Rabi formula as described in Appendix B.1. We calibrate the field
during the measurement part of the sequence (see Sec. 4.3).

The choice of the transition employed for the calibration depends on the frequency
ranges available from the DDS system (see Sec. 3.10.1). The DDS system delivers
either radio frequency radiation in the range 0 – 400MHz or microwave frequency
radiation in the range 1 – 1.3GHz. In the case of high magnetic fields the transition
between the Zeeman states |2S1/2, F = 9/2,mF = 9/2〉 and |2S1/2, F = 9/2,mF = 7/2〉
is driven with radio frequency. The calibration is done by detecting the population
in the mF = 7/2 state versus the frequency. An example for the calibration with
radio frequency is shown in Fig. 4.6(b). For low field the hyperfine transition between
|2S1/2, F = 9/2,mF = 9/2〉 and |2S1/2, F = 7/2,mF = 7/2〉 is driven and the loss in
the |F = 9/2,mF = 9/2〉 state is detected with changing frequency. In both cases the
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Figure 4.6: (a) Calibration error ∆Bcal of the magnetic field. The error given is the
difference between the values obtained with the Breit-Rabi formula and the correspond-
ing fitted linear calibration function. The different bullet shapes correspond each to
one dataset for one calibration function. Note that the axis on the right hand side
has a different scale. This scale is for the point at 392G (empty circle) belonging to
the calibration set marked with circles. (b) Data for the magnetic field calibration at
139.392G (blue diamond in (a)). The atoms are transferred from state j to state i us-
ing radio frequency. The frequency dependent population in i is fitted with a Lorentz.
The center frequency of the fit is used to calculate the magnetic field using the Breit-
Rabi formula Eq. B.5. The width of the fitted Lorentz in this example corresponds to
10mG.

radiation is applied for 50ms at powers low enough to prevent power-broadening of the
transition. The frequency is scanned in steps of 1 kHz.

The center frequency of the transition is determined by fitting a Lorentz function to
the data. The position of the center frequency has an error of < 1mG for all fitted data.
The width of the fitted Lorentz is < 15mG. The values of the magnetic field calculated
using the Breit-Rabi formula are then fitted with a linear calibration function. This
function is used to calculate the magnetic field in dependence of the voltage employed
to control the power supply.

The magnetic field calibration was repeated at regular intervals, taking calibration
points around the measured Feshbach resonances. Over time the offset field drifted,
which might be due to a change of stray fields from power supplies and other apparatus
which were added to the setup in the vicinity of the Feshbach coils.

A measure for the accuracy of the calibration is the difference ∆Bcal between the
data points taken and the magnetic field calculated according to the linear calibration
formula. In Fig. 4.6(a) this error is shown. For magnetic field values below 315G the
absolute error is less than 15mG, below 230G it is below 5mG, corresponding to a
relative error of ∆B/B = 2 × 10−5. At 392G the calibration is 80mG away from the
data point (∆B/B = 2× 10−4).
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Limits to the magnetic field precision
The stability of the power supply for the Feshbach coils (see Sec. 3.7) is specified to
<1ppm, so the precision of the measured magnetic field is likely to be limited by
other factors. The current running through the coil gives rise to heating and thermal
expansion, which lowers the magnetic field for a given current. For a linear thermal
expansion of the coil, the relative change in magnetic field is ∆B/B = −1.7× 10−5/K.
At high currents (28.5A corresponding to 500G), the temperature of the coils rises only
slowly by 3◦C with a time-constant of 4min as described in [Tie09a]. The maximum
temperature of the coil is constant to within 0.1K for a period of two hours. This is
limited by the temperature drift of the cooling water which runs through the mount at
a pressure of 2 bar. The temperature of the cooling water also shows day to day drifts
of 0.5K. During the experimental cycle, the coil is on for at most 11 s the temperature
increases in this time by approximately 0.082K, resulting in ∆B/B < −1.4 × 10−6.
When including the delay time due to the settling of the current and considering a
typical measuring time of 4 s the relative change in magnetic field is at most−4.3×10−7.
This shows that in principal a very high accuracy can be achieved with the Feshbach
coil and the employed power supply. The thermal stability of the Feshbach coil is not
limiting the measured magnetic field precision.

The only part of the Feshbach coil circuit which was not optimized for thermal
stability when taking the data presented in this thesis, is the MOSFET switch. The
MOSFETs are likely to be responsible for the observed loss in magnetic field precision
at large magnetic fields. The MOSFETs are mounted on heat sinks and are not actively
cooled. Running a high current through the MOSFETs leads to considerable heating
(up to 20◦C) within the measuring time. The drain – source resistance of a MOSFET
rises non-linearly with temperature and current. For a higher current the effect is more
severe and can lead to a runaway behaviour which ultimately destroys the MOSFET.
The 20◦C rise in temperature increases the resistance by a factor 1.5, however the
Danfysik power supply is not specified to regulate such big load changes. After the
switch from the dummy load to the coil the current takes 0.5 s to settle within 1%�†. It
is specified to regulate up to 10% resistance changes within <0.05 ppm. Recently the
MOSFET switch has been equipped with water-cooling, so the change in resistance of
the MOSFETs should be below 10% and we should be able to eliminate the switch as
a cause for the loss in accuracy.

A limiting factor for the magnetic field precision, which we could not test yet,
can be short term fluctuations of the background magnetic field originating from the
electrical equipment running at 50Hz of the main power line. The background is not
in phase with the experimental cycle and contributes to a varying offset. To improve
the magnetic field stability in the future, the experimental cycle could be synchronized
to the 50Hz frequency of the main power line. This would suppress common noise in
the offset magnetic field which can influence the precision of the state preparation and
calibration. With the synchronization it would also be possible to test the long-term
stability of the magnetic field.

Another cause for the lower limit of the measured magnetic field precision can
†To measure the current running through the Feshbach coils we use a Agilent (N2775A, 50MHz)

current probe. The current is limited to 15A, corresponding to a field of about 260G. The resolution
is about 20mA corresponding to 350mG (1%�).
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Figure 4.7: p-wave resonance between state h (black circles) and j (blue squares). On
the resonance the atoms re-appear in the i channel (red triangles). At 68(1.8)G is a
p-wave resonance in the h+ h mixture. The lines are guides to the eye.

be remaining field inhomogeneities over the volume where the cold atom sample is
located. Power supplies and other apparatus located near the Feshbach coils contribute
to the overall magnetic field and add gradients. The homogeneity of the magnetic field
produced by the Feshbach coils was determined in a separate set-up (see Sec. 3.7). The
implementation of a crossed dipole trap would reduce the sample volume, reducing the
effect of inhomogeneities. The trim coils described in Sec. 3.7 could be put to use to
correct for remaining curvatures.

4.6 Measured Feshbach resonances
The positions of Feshbach resonances measured in this work are presented in Tables 5.1
and 5.2. All Feshbach resonances were measured by observing the losses in dependence
of the magnetic field. The loss features have varying profiles, the narrow and isolated
s-wave resonances both show a symmetric profile which we fit with a Lorentz function
to determine the position B0 of the Feshbach resonance and the widths ∆BL of the loss
feature. The widths given in Table 5.1 are the widths of the loss features, which are
not identical with the resonance width ∆B. The p-wave resonances and some of the
s-wave resonances show an asymmetric profile. In this case we determine the position
of the Feshbach resonance as the magnetic field where the biggest loss occurs. The
widths stated are the full widths at half maximum (FWHM). For all measurements
where we used Stern-Gerlach imaging, the analysis and determination of B0 and ∆BL
is done for all involved spin states separately and the stated values are averages.

For some p-wave resonances we also resolve the doublet feature due to magnetic
dipole-dipole interactions [Tic04]. The assignment of the observed loss features to s-
or p-wave resonances is simplified by measuring spin-dependently: if only one spin
state shows losses at a certain field, an s-wave resonance can be excluded due to the
fermionic nature of the atoms.
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Figure 4.8: p-wave Feshbach resonance in the i+ i system. The black squares show the
population in state i. The line is a guide to the eye. The values obtained with coupled
channel calculations in (see Table 5.2) are shown with red vertical lines. The error bars
represent the statistical error (y-values) and the step size of the scan (x-values).

4.6.1 p-wave resonances with special features
Figure 4.7 shows a p-wave resonance at 44(1.8)G in the h + j mixture. The feature
at 68(1.8)G is a p-wave resonance in the h + h mixture. With the Stern-Gerlach
imaging the loss in the h and j states is clear. However, on the resonance the state
i is populated. The state i has a Feshbach resonance in the vicinity as displayed in
Fig. 4.8. Spin exchanging collisions where h+ j → i+ i are normally suppressed. The
final state consists of identical states, which for fermions is forbidden.

Analysis of the resonances in the two mixtures around this field shows, that both
Feshbach resonances originate from the second least bound state in the triplet molecular
potential. The difference in energy between the h+ j and the i+ i mixture at these low
fields is less than 400 kHz, corresponding to a thermal energy of less than 20µK. The
depth of the optical trap in the measurement displayed in Fig. 4.7 is about 45µK. The
heating due to the energy difference between the two mixtures does therefore not lead
to substantial atom loss from the trap. The relative magnetic moment µrel = −∂E/∂B
is negative, so the bound state approaches the free atom threshold from above with
rising magnetic field. At 44(1.8)G the h+j mixture is resonant with the bound state of
the molecular potential; at the same magnetic field the same state can decay through
the i + i channel. This is because the energy of the asymptote of the i + i channel is
lower than the energy of the molecular state at this magnetic field. The atoms can
enter the i+ i channel from the h+ j channel via the molecular level.

The double loss feature observed in some of the p-wave resonances in Table 5.2
has its origin in the p-wave scattering of different projections of the total angular
momentum MT of the pair onto the magnetic field direction. The magnetic dipole
interaction of the atoms leads to a small energy difference of the projections, splitting
the resonance into two. Accordingly, Feshbach resonances involving higher partial
waves with l > 0 split into l + 1 resonances corresponding to the projections Ml =
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0, |±1|, |±2|, . . . |±l|. This feature is thermally broadened and therefore only detectable
when the temperature of the atoms is lower than the splitting [Tic04].

The multiplet structure in Fig. 4.8 in the i+ i mixture was measured at a temper-
ature of about 3µK. It is not only a double but a quadruple feature, which is caused
by the coupling of channels due to dipole-dipole interaction. The i+ i channel couples
to the i+ j, h+ i and h+ h channel and depending on the projections of Ml on these
channels Feshbach resonances occur at different magnetic fields. The values obtained
with coupled channel calculations (see Sec. 5.3.1) are shown as vertical lines in Fig. 4.8.

When forming molecules at a p-wave resonance, the projections of the total angular
momentum is visible in the angular distribution of the dissociated molecules as demon-
strated by [Gae07]. P -wave resonances, where the magnetic dipole interaction splits
the resonance into two distinct resonances, have been proposed to tune anisotropic
interaction between atoms [Tic04, Bar02].

4.6.2 Width of a Feshbach resonance
Apart from the exact position of a Feshbach resonance it is also important to determine
its width. The width has influence on the resonance strength (see Sec. 2.5) and on
the requirements for the magnetic field stability. The width of the loss feature ∆BL

is affected by more parameters than the resonance width alone and gives therefore no
quantitative information on the resonance width. To determine the width of a Feshbach
resonance the effect of scattering properties of the cold cloud can be measured. We
evaporate the cold atom cloud around the Feshbach resonance in the c + d mixture
at 178.3G and detect the size of the cloud after evaporation in dependence of the
magnetic field.

For the measurement described in this section the experimental sequence as de-
scribed above is slightly altered. The evaporation in the optical dipole trap is done in
two steps. At first the power of the ODT is ramped down exponentially from full power
to 150mW in 600ms. At this trap depth the atoms are prepared in a c + d mixture
with the method described in Sec. 4.2. Then the Feshbach coils are switched on and
once the final field is reached, a second evaporation step follows. In 5 s the power is
reduced to 20mW in an exponential ramp. After another 200ms at the final field the
cold atom cloud is imaged at zero field without the Stern-Gerlach pulse after 3.5ms
time-of-flight. The data points in Fig. 4.9 show the cloud size in the radial direction
of the ODT.

When evaporating the cold atom cloud around a Feshbach resonance the scattering
cross section σ changes with magnetic field. As a result the final atom number and
temperature of the cloud differ, for small σ the evaporation is less efficient and the
cloud is hotter and bigger and vice versa. Just below the resonance the cloud is heated
by 3-body losses due to the molecular state present and the cloud size is increased. The
two data points, where this occurs (shown as squares in Fig. 4.9) have been omitted in
the fit described below.

We fit the data using an approximative model. The behaviour of the cloud size
S(B) with varying magnetic field is attributed to the behaviour of the scattering cross
section σ over the resonance (see Sec. 2.3). The maximum cloud size S0 is assumed to
occur at the zero crossing of the scattering length Ba=0 = B0 + ∆B and the minimal
value at the resonance position B0. During the evaporation ramp, the depth of the
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Figure 4.9: The size of the cold atom cloud after 3.5ms expansion. The error bars
display the statistical error. The data is fitted with the model described in the text
(full line). As a comparison, the fit to the data using the values for ∆B and B0 from
CC calculations is shown (dashed line). The inset is a zoom into the region around the
resonance. The data shown as squares is omitted from the fit.

trap U0(t) changes as
U0(t) = U0e

−t/τR ,

with a time constant τR which is much longer than the collision time τCol of the atoms
and the oscillation time in the trap. The ramp corresponds to an adiabatic decompres-
sion and the temperature evolves in a harmonic trap as [Lui96, Wal10]:

Ṫ

T
≈ U̇(t)
U(t) = − 1

τR
. (4.1)

When η = U0(t)/(kBT ) is large and spilling of atoms can be neglected [Wal96], the
evaporation rate is:

Ṅ

N
= −n0vrσe

−η = − 1
τCol

e−η, (4.2)

with the density n0, the relative velocity vr and the scattering cross section

σ = 4πa2

1 + k2a2 =
4πa2

bg

(
1− ∆B

B−B0

)2

1 + k2a2
bg

(
1− ∆B

B−B0

)2 . (4.3)

The temperature is related to the evaporation rate [Lui96, Wal10]:

Ṫ

T
= 1

3(η − 2)Ṅ
N
. (4.4)

Combining the equations 4.2,4.4 and 4.1, leads to an expression for η

eη = 1
3τRn0vrσ(η − 2). (4.5)
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This equation can be solved with the Lambert W(x) function (product logarithm)
[NIS11, Sco06, Wit11]. For equations of the form

e−cu = a(u− b),

where a, b, c ∈ R, it is

u = b+ 1
c
W(ce

−cb

a
).

Using this result we obtain:

η = 2−W
(
−3e2

τRn0vrσ

)
= 2−W

(
−3e2τCol

τR

)
. (4.6)

For |x| < 1/e the Lambert W(x) function can be written as a power series

W(x) = x− x2 + · · · .

For a ramping time constant τR � τCol the condition is fulfilled and the expression for
η takes the form:

η ≈ 2 + const.× σ−1. (4.7)

The cloud size after expansion is described in a harmonic approximation (see Eq. A.12
and [Gri00]) by:

S ∝ 1
√
η
. (4.8)

The final size Sf of the cloud after evaporation is the initial size Si ∝
√
kBTi/Ui reduced

by a value depending on the field dependent behaviour of η during the evaporation:

Sf = Si −∆S(η(B)).

At the zero crossing of the resonance, where σ = 0, the cloud will not thermalize. In
the experiments the initial η is rather large (≈ 10), so we assume that spilling of atoms
only plays a minor role [Wal96] and that the size of cloud S0 for σ = 0 is determined
by the initial temperature Ti and the final potential depth Uf as: S0 =

√
Ui/Uf Si.

The field dependent size of the cloud can then be described as

Sf ∝ S0

1− 1√
η(B)

 .
Replacing η(B) with the expression for η in Eq. 4.7, and rearranging the expression we
obtain as a fitting function for the measured cloud size:

S(B) = S0

1−

 P 2
1

(
1− ∆B

B−B0

)2

1 + P 2
2

(
1− ∆B

B−B0

)2


1/2 , (4.9)

where the width ∆B and the position B0 of the resonance and the maximum cloud size
S0 are fitting parameters. The fitting parameters P1 and P2 incorporate the effect of
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Parameters B0[G] ∆B[G] S0[pixel] P1 P2 Ba=0[G] Sbg[pixel]
Fit to Data 177.774 9.056 12.626 0.06313 0.36997 186.83 11.8784
CC and Data 178.3 8.7 12.657 0.06596 0.38801 187.00 11.8787

Table 4.1: Fit results for the fit to the cloud size in Fig. 4.9, where the full line is a full
fit to the data and the dashed line is the fit using the CC values for B0 and ∆B. The
parameters Ba=0 and Sbg are calculated using the fit results.

the background scattering length abg, the atom impulse k on the cloud size and other
constants. Away from the resonance the cloud size has the background value

Sbg = S0

1−
(

P 2
1

1 + P 2
2

)1/2
 .

For comparison we also fit the data including results from CC calculations (see
Table 5.1). The fitting function has then two fitting parameters less, BCC

0 = 178.3G
and ∆BCC = 8.7G. The fitting results for the fit to the data (depicted as a full line in
Fig. 4.9) and the fit where only S0, P1 and P2 are fitted (dashed line) are displayed in
Table 4.1. In this measurement the magnetic field is varied around B0 in steps of 0.88G
and around the zero crossing in steps of 1.76G. We use the step size of the scan as a
conservative estimate for the error in magnetic field. The Feshbach resonance position
we determine by a loss measurement as described in Sec. 4.3 to be B0 = 178(1)G.

Another way to measure the width of a Feshbach resonance is via the cross - di-
mensional thermalization as shown in [Lof02]. However, this requires an aspect ratio
of the two radial axes of the ODT, which we do not have. In [Joc02, O’H02] the
zero crossing of the Feshbach resonance at 850G of 6Li was measured by observing
the evaporation around the zero crossing at a fixed trap depth. This method works
most satisfactorily when the background scattering length is very large. In 6Li it is
aLi

bg ≈ −3000 a0, whereas around the Feshbach resonance at 178.3G in the c + d state
in 40K the background scattering length is ac+d

bg ≈ 186 a0. The evaporation at a fixed
trap depth can be also used for smaller background scattering lengths in two-species
experiments. In the case of the 6Li-40K mixture [Tie10b], the 40K serves as thermal
bath and the loss over time of the 6Li around a Feshbach resonance is used to determine
∆B. This is possible as the trapping potential for 40K has more than double the depth
than for 6Li. When using an optical lattice, the dephasing of Bloch oscillations and
ballistic expansion from the lattice can be used to determine the width of a Feshbach
resonance (see Sec. 5.2).
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This chapter is in preparation for submission.

We present a detailed study of magnetically tunable Feshbach reso-
nances in ultracold 40K binary collisions. We measured 26 not previ-
ously reported Feshbach resonances and compare these to the results
of full coupled channel calculations (CC) as well as to two simplified
theoretical models developed for the exploration of Feshbach spectra
in binary mixtures: the three parameter multichannel quantum de-
fect theory (MQDT) and the asymptotic bound-state model (ABM).
Our results demonstrate the accuracy of simple theoretical models.
The stability of the binary mixtures with respect to two-body losses
is investigated theoretically.

5.1 Introduction

Since the first realization of a degenerate Fermi gas [DeM99a], experiments using 40K
have explored a wealth of ultracold physics. A crucial experimental achievement was
the discovery of a magnetically tunable Feshbach resonance in 40K [Lof02], which led
to the formation of a molecular BEC [Gre03]. In optical lattices a Mott insulator of
fermionic atoms was demonstrated [Jör08], which provides insights into the fermionic
Hubbard Hamiltonian [Sch08]. A 40K Feshbach resonance has been used to explore the
physics of the BCS-BEC crossover [Ste08]. Further, 40K was used to investigate reso-
nant collisions and molecule formation near Feshbach resonances in mixtures with other

†The main contribution of this author to the paper presented here is the measurement and analysis
of most of the experimental data.
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atomic species such as 87Rb [Sim03, Ino04, Fer06, Osp06a, Osp06c, Zir08a, Zir08b], and
6Li [Wil08, Tie10b, Nai11, Wu11]. A gas of ultracold polar molecules was created by co-
herent transfer of Feshbach associated 40K87Rb molecules to the rovibrational ground
state [Ni08, Osp10]. The studies on mixtures open up further promising avenues of
research.

Magnetically tunable Feshbach resonances in ultracold gases of alkali metal atoms
[Köh06, Chi10] are phenomena that facilitate many of the current experiments with
quantum gases. They occur when colliding atoms with particular internal configura-
tions are coupled to a near-degenerate state with a different internal configuration. The
energy difference between the scattering threshold and the bare bound state can be
adjusted by the application of a magnetic field. When the molecular state is degenerate
with the threshold, the s-wave scattering length will diverge [Tay72]. However, iden-
tical fermions in the same internal state cannot undergo s-wave collisions due to the
Pauli principle. In this case the p-wave scattering volume can be made to diverge due
to the presence of a weakly-bound state. A crucial property of the Feshbach resonance
is that the magnitude and sign of the scattering length can be adjusted at will. When
a magnetic field B is present, we can define a collisional entrance channel in terms of
the energy eigenstates of the asymptotically separated atoms.

For 40K the single-atom energy levels of the electronic ground state are shown as
a function of magnetic field in Fig. 5.1, with the states labeled a, . . . , r in order of
increasing energy [Ari77]. A special feature of 40K is the inverted hyperfine structure
[Zac42]. This inversion has important consequences for spin-exchange relaxation in the
presence of a magnetic field. Of the 45 different binary mixtures that can be created
with atoms in the lowest hyperfine manifold 17 are stable against spin-exchange in the
zero-temperature limit. These include all mixtures with atoms in adjacent hyperfine
states as well as all binary mixtures with atoms in hyperfine states differing by two units
of angular momentum because all exit channels are forbidden either energetically or by
Pauli blocking. Consequently, all triple mixtures of ultracold atoms in three adjacent
hyperfine states are stable against spin exchange in the presence of a magnetic field.
Of these 17 mixtures stable against spin exchange only the a + b mixture is fully
stable. The lifetime of all other binary mixtures is limited by magnetic dipole-dipole
relaxation. Feshbach resonances occur in all of these mixtures in collisions between
atoms in different hyperfine states as well as in the same hyperfine state. Thus far, the
observation of Feshbach resonances has been reported for the a + b channel, the b + b
channel and the a + c channel [Lof02, Reg03c, Tic04, Reg03a]. The large variety of
mixtures stable against spin exchange stimulated us to make a broader exploration of
Feshbach resonances in 40K.

In this paper we explore Feshbach resonances in homonuclear mixtures of the
fermionic quantum gas 40K. Our results agree to within experimental error with cou-
pled channels calculations using the best available potentials [Fal08]. We identify, both
experimentally and theoretically, mixtures of different hyperfine states with special
features in the properties of the Feshbach resonances. In Section 5.2 we discuss the
experimental contributions and present the main results of this paper in Tables 5.1
and 5.2. We measured 26 not previously observed resonances, 12 s-wave and 14 p-
wave resonances. In particular, we observed a ‘well-isolated’ s-wave resonance in the
c + d channel with a width of 8.7G and separated by +55G (attractive side) from
the next resonance (p-wave) in the spectrum. In the j + h channel we observed a
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Figure 5.1: The energy eigenvalues of the single 40K atom Zeeman and hyperfine Hamil-
tonian H1 as a function of applied magnetic field (1Gauss = 10−4 Tesla). We label the
states from a to r in order of increasing energy. Also shown are the f and mf quan-
tum numbers that these states correspond to. An entrance channel labelled as a + b,
for example, would correspond to a collision with the atoms initially in a state with
appropriate symmetry, containing one atom in state a and one in state b [Chi10].

p-wave resonance with decay to the i+ i channel in which the atoms remain optically
trapped. If this channel can be made elastic, for instance by rf dressing of the h level
[Kau09, Pap10], it may be an interesting model system to study three fermion inter-
actions. Further we observed four p-wave resonances where the magnetic dipole-dipole
structure could be resolved [Tic04]. In Section 5.3 we discuss the theoretical side. We
report on the performance of two simplified theoretical models developed for the ex-
ploration of Feshbach spectra in binary mixtures: in Section 5.3.2 we discuss the three
parameter multichannel quantum defect theory (MQDT) [Han09] and in Section 5.3.3
the asymptotic bound-state model (ABM) [Tie10c]. The advantages and disadvantages
of the simplified models are discussed in Section 5.3.4 and their performance is com-
pared against the CC results. In Section 5.4 we present a summary and concluding
remarks.

5.2 Experiments

The experimental data in Tables 5.1 and 5.2 was obtained on different experimental
setups in groups from Amsterdam [A], Munich [M] (previously in Mainz) and Zurich
[Z], which all determined the resonance field locations B0 via loss measurements. Data
marked with [A] was measured in a three-dimensional optical dipole trap by observing
the spin-dependent loss of atoms versus magnetic field, well-known since the pioneering
experiment by the Ketterle group [Ino98]. Data marked with [M] and [Z] was taken
in optical lattices. In Munich [M] the magnetic field width of the resonance, ∆B,
was determined by investigating the crossover from ballistic to diffusive expansion in
a blue-detuned optical lattice as a function of magnetic field [Sch10]. In Zurich ∆B
was measured by observing the dephasing of Bloch oscillations in a red-detuned optical
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Figure 5.2: Determination of the field width of a loss feature around a s-wave resonance
in 40K. It is an expanded view of Fig. 5.4. The atom number in the two spin states
(squares and triangles) is fitted with a Lorentz distribution (solid line). The center of
the loss feature we take as B0, the width as ∆BL.

lattice, as was previously demonstrated for the bosonic case in Innsbruck [Gus08].

5.2.1 Experiments in Amsterdam
In Amsterdam the positions of the Feshbach resonances were determined as an increase
in the atomic loss rate [Ino98]. To distinguish between losses in the different spin chan-
nels all measurements are done with state selective detection. We load about 106 atoms
from a magnetic trap into a single pass optical dipole trap, created by focusing 1.9W
from a fiber laser (λ = 1.07 µm) to a 19 µm waist acting as optical tweezers [Tie10b].
The transferred cloud consists of a mixture of atoms in the magnetically trappable spin
states g, h, i, j in the notation of Fig. 5.1. Using the tweezers the cloud is moved into
the center of a Feshbach coil producing the magnetic field for the measurements. As
the cloud consists of fermions in different spin states it can be evaporatively cooled by
reducing the intensity of the trapping light. The spin composition of the mixture is
determined using the Stern-Gerlach method with typically 104 atoms at the final tem-
perature of about 1 µK. We use for this purpose a magnetic field gradient of 100G/cm,
applied during the expansion after release from the optical trap. The gradient sepa-
rates the different spin states, which are then detected at zero field using absorption
imaging.

In view of the many states of the f = 9/2 ground state hyperfine manifold hundreds
of Feshbach resonances can be observed. Therefore, to ensure a proper assignment of
the Feshbach resonances, it is essential to prepare high purity binary mixtures of only
the desired spin states. The spin state preparation is done in two steps: firstly, all atoms
except those in the most populated state j are removed from the sample by a two photon
cleaning process at an offset field of 7G. With microwave sweeps the impurity states are
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adiabatically transferred to the upper hyperfine manifold (f = 7/2) and subsequently
removed by resonant light at the 2S1/2, f = 7/2 → 2P3/2, f = 5/2 optical transition
(D2-line). Secondly, the desired states are populated by radio frequency transfers at
an offset field of 18G. We have not observed any heating of the cloud due to the spin
preparation. The remaining density of the spin mixture is about 1012 cm−3. After
holding the atoms for 1−5 s at a designated magnetic field, we switch off the Feshbach
coil and apply a Stern-Gerlach pulse to determine the remaining fraction of atoms in
each spin state using absorption imaging.

The positions B0 and the widths ∆BL of the measured loss features are listed in
Tables 5.1 and 5.2. The loss feature of the 102.10G d+ e resonance is shown in more
detail in Fig. 5.2. This mixture is a good test bench for the approximate theories,
which will be discussed in more detail in Section 5.3. We have observed symmetric as
well as asymmetric loss profiles. The narrow and isolated s-wave resonances show a
symmetric profile and are fitted with a Lorentz function to determine the position B0
and the width ∆BL of the loss feature caused by the Feshbach resonance.

The full width at half maximum (FWHM) of the loss features differs from the usual
definition of the theoretical width [Chi10] and only serves as a qualitative indicator to
characterize the observed feature. The actual loss rate as a function of magnetic field
was not measured. The p-wave resonances and some of the broader s-wave resonances
show an asymmetric profile. Here we report the position of the Feshbach resonance as
the magnetic field where the biggest loss occurs. For the broader p-wave resonances we
also resolve the doublet feature due to magnetic dipole-dipole interactions [Tic04]. The
assignment to s- or p-wave resonances is simplified by state dependent detection: if
only one spin state shows losses at a certain field, an s-wave resonance can be excluded
in view of the fermionic nature of the atoms.

The narrowest resonances studied experimentally were the s-wave resonances at
22.1(3)G in the c+d channel and at 102.10(9) and 138.21(9)G in the d+e channel. The
centres of the loss features (B0) of the latter two resonances were found to agree within
experimental error (100mG) with CC calculations based on the Born-Oppenheimer
potentials of Ref. [Fal08] (see Section 5.3.1). Further, we observed a ‘well-isolated’ s-
wave resonance at B0 = 178(1)G in the c+ d channel, with a p-wave resonance as the
nearest resonance separated by +55G on the attractive side of the s-wave resonance.
This resonance may prove valuable in applications where one aims at minimizing the
elastic cross section by tuning to the zero crossing of the s-wave resonance (see sections
5.2.2 and 5.2.3). Another interesting resonance is the p-wave resonance at 44(2)G in
the j + h channel, where the j + h → i + i decay channel is close to elastic and the
atoms in the i states remain trapped. If this channel can be made elastic, for instance
by rf dressing of the h level [Pap10], it may be an interesting model system to study
three-fermion interactions in the i, j, h mixture. The i + i channel shows two p-wave
resonances at small separation, each with the characteristic doublet structure due to
magnetic dipole-dipole interactions [Tic04]. We obtain B0 = 43.8(2)G, B0 = 44.7(2) G
and B0 = 45.2(2) G, B0 = 46.4(2) G, both for |ml| = 1 and |ml| = 0 respectively. The
dipolar structure was also observed in c+ c and d+ d resonances.
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5.2.2 Experiments in Munich
In Munich the widths of the Feshbach resonances are measured by observing the expan-
sion of an a+ b mixture in a flat-bottom two-dimensional (2D) optical lattice [Sch10].
First, the atoms are harmonically confined in a red-detuned crossed beam optical dipole
trap, where typically 2× 105− 3× 105 atoms are evaporatively cooled to temperatures
of T/TF = 0.13(2), where TF is the Fermi temperature. Subsequently, a band-isolating
state is prepared by ramping up a three-dimensional (3D) simple-cubic blue-detuned
optical lattice with a depth of 8ER, where 1ER = h2/(2mλ2) is the recoil energy, with
m the atomic mass and λ = 738nm the wavelength of the lattice light corresponding
to a λ/2 = 369 nm lattice spacing. By lowering the power of the red-detuned trap to
about 10% of its initial power, the dipole potential is adjusted to compensate for the
anti-confinement of the lattice, thus flattening the bottom of the optical lattice poten-
tial and allowing the atom cloud to expand in 3D. By increasing the vertical lattice to
a depth of 20ER vertical tunneling of the atoms is suppressed and the expansion can
be studied under quasi-2D confinement without the influence of gravity.

The loading procedure results in a well-known density distribution of the atoms with
Gaussian core radius R0 which is independent of the interactions between the atoms
[Sch10]. The core expansion velocity vc depends on the interaction between the atoms
and is varied from noninteracting to strongly interacting by varying the scattering
length from zero (a = 0) to a very large value (a → ∞) with the aid of the Feshbach
resonance at 202 G. In the non-interacting limit the expansion shows the characteristic
ballistic behavior of an ideal band insulator. In the presence of interactions the core
expansion velocity vc is reduced by diffusive motion under the influence of collisions.
To determine vc we measure the core radius versus time with phase-contrast imaging,
using the scaling function

Rc(t) =
√
R2

0 + v2
c t

2. (5.1)

Within experimental error this function was found to describe the expansion for all
interaction strengths investigated. Around the zero crossing of the Feshbach resonance
(a = 0) the expansion velocity vc(B) shows a pronounced peak as a function of magnetic
field. From the position of the peak we determine the zero crossing of the a+b resonance
at B(a = 0) = 209.1(2) G. The center of the resonance B0 was determined by measuring
the loss feature in a similar fashion as in Amsterdam (see Section 5.2.1). We obtained
B0 = 202.1 G, which implies that the width of the resonance equals ∆B = 7.0(2) G.
The accuracy of these measurements is limited by the magnetic field calibration. The
uncertainties in determining the expansion velocities are much smaller. The vicinity of
the p-wave resonance in the b+ b channel at 198.8 G can give rise to some broadening
and shift of the function vc(B). Therefore, for measurements of the crossover from
ballistic to diffusive expansion in an optical lattice an interesting alternative is offered
by the s-wave resonance at B0 = 178 G in the c + d channel, well-separated by 55 G
from the p-wave resonance in the c+ c channel at B0 = 233 G.

5.2.3 Experiments in Zurich
In Zurich we determined the zero-crossing of the scattering length a(B) through the
observation of Bloch oscillations in an optical lattice as a function of magnetic field. At
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(a) (b)

Figure 5.3: Suppressed dephasing of Bloch oscillations at the zero crossing of the
scattering length. In the a+ c and a+ b mixtures ((a) and (b) respectively), the root
mean square momentum width qrms in units of camera pixels shows a characteristic
dip when the interactions vanish at the zero crossing of the scattering length. Figure
extracted from [Jör10a].

vanishing interactions these oscillations can be maintained for many thousand cycles. A
small amount of interaction, however, already leads to collisions and to the dephasing of
oscillations of different atoms. Thus, the dephasing of Bloch oscillations constitutes an
excellent observable for locating the zero crossing, as demonstrated in [Gus08] for the
bosonic case. Combined with an independent measurement of the resonance position,
it can be used to determine the resonance width. The starting point of this experiment
is a degenerate Fermi gas of typically 2×104 atoms loaded in a one-dimensional optical
lattice of depth 5ER, where ER is the recoil energy. We limit the filling in the band,
since the fermionic nature of the atoms would otherwise lead to a complete occupation
of the entire Brillouin zone (band-insulating state) and prevent the observation of the
oscillations.

After excitation, the atoms are allowed to oscillate for up to 750ms, and this for
different values of the offset magnetic field. We then measure the quasi-momentum
distribution after a time-of-flight expansion. A moment is chosen where the atoms are
left at the band center after the oscillation. There, a = 0 corresponds to the smallest
measured root mean square (rms) momentum spread. Fig. 5.3 shows the experimental
results. Using the literature values for B0 [Lof02, Reg04, Reg03a, Reg03b] and the
background scattering length abg = 174a0, with a0 = 0.0529nm the Bohr radius, we fit
a Gaussian dip to the rms momentum width:

qrms(B) = q0 + ∆q exp
−1

2

(
abg

∆a

)2
(

1− ∆B
B −B0

)2
 . (5.2)

The four remaining parameters are determined by the fit: q0, the rms momen-
tum for dephased oscillations, ∆q, the maximum change in rms momentum without
interactions, ∆a, the width of the low dephasing regions around a = 0. We obtain
∆B = 7.5(1) G for the a + b resonance at 202.1 G and ∆B = 7.6(1) G for the a + c
resonance at 224.21(5) G. The accuracy is limited by the magnetic field calibration,
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the uncertainty of the resonance position and the width of the dip. Compared to ex-
perimental values obtained at JILA [Reg03a], the width of the a+ c resonance differs.
However, it is consistent with the value of the on-site-interaction U extracted from
lattice modulation spectroscopy in a three-dimensional optical lattice [Jör10b]. Addi-
tionally we have observed a previously unreported p-wave Feshbach resonance in the
c + c channel which shows the characteristic doublet feature due to magnetic dipole-
dipole interactions [Tic04]. We obtain B0 = 232.8(2) G and B0 = 233.4(2) G for
|ml| = 1 and |ml| = 0 respectively. Here ml is projection of the orbital angular mo-
mentum on the magnetic field axis. The assignment of the loss features to a p-wave
resonance is confirmed by the suppression of either the |ml| = 0 or the |ml| = 1 reso-
nance when the experiments are realized in a one-dimensional geometry, depending on
the relative orientation of the magnetic field axis and the extension of the gas [Gün05].

Experiment CC
Channel MT B0 [G] Source B0 [G]
a + c -7 215(5) M 215.0
b + b -6, -8 198.30(2) [Gae07] 198.4
b + b -7 198.80(5) [Gae07] 198.9
c + c -4,-6 232.8(2) [Z]; 232.8(2) [A] Z/A 233.0
c + c -5 233.4(2) [Z]; 233.6(2) [A] Z/A 233.6
c + c -5 245.3(5) [M]; 245.4(4) [A] M/A 245.0
c + d -3,-5 262.2(2) A 262.2
c + d -4 262.6(2) A 262.5
d + d -3 287(1.8) A 287.6
d + d -3 311.8(4) A 311.8
d + e -2 338(1.8) A 338.4
e + e -1 373(1.8) A 373.7
h + h 5 68(1.8) A 67.6
h + h 5 102(1.8) A 100.2
h + h 5 139(1.8) A 138.0
h + h 5 324(1.8) A 323.1
h + j 7 44(1.8) A 44.6
i + i 6,8 43.8(2) A 43.6
i + i 7 44.7(2) A 44.9
i + i 6,8 45.2(2) A 45.3
i + i 7 46.4(2) A 46.4

Table 5.2: Observed p-wave Feshbach resonances with accompanying coupled-channels
(CC) parameterizations. The letters A, M, and Z refer to measurements performed in
Amsterdam, Munich and Zurich, respectively. MT is the total projection of angular
momentum along the magnetic field axis, for each collision channel it can take on
three values corresponding to different projections of the orbital angular momentum
quantum number ml = 0,±1. CC calculations were performed at an initial collision
energy of E/kB = 1 µK. This accounts for the discrepancy between the calculated
positions in the b + b channel with Ref. [Gae07] where effort was made to account for
the temperature dependence.
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5.3 Theoretical models
In this Section we discuss the coupled-channels (CC) method which is used to ac-
curately describe the two-body interactions of ultracold potassium atoms. The CC
method allows for a precise characterization of all the measured Feshbach resonances.
The results are included in Tables 5.1 and 5.2 for comparison with experiment. Addi-
tionally, the CC method is used to test the validity of two simplified models of resonance
scattering: The asymptotic bound-state model (ABM) and multichannel quantum de-
fect theory (MQDT). Each of these two approaches represents a different method of
simplifying the problem of searching for and characterizing Feshbach resonances and
molecular states. The corresponding features and limitations will be discussed.

5.3.1 Coupled channels calculations
Numerical solution of the CC equations and specifically their application to cold gases
have been discussed widely [Joh73, Sto88, Hut94, Mie96]. Here we give an overview
of what is involved to solve the CC equations. As input for the newly written CC
code, which was implemented in the MATLAB programming language, we use the
Born-Oppenheimer (BO) potentials of Ref.‘ [Fal08]. The combination of calculation
and experiment showed that it was not necessary to fine-tune these BO potentials, i.e.
the BO potentials are accurate enough to properly describe the scattering of ultracold
potassium atoms. The obtained numerical results are used to characterize atomic two-
body loss rates and resonance parameters, which are presented in Tables 5.1 and 5.2.
The inelastic collision rate in the vicinity of a resonance is also of interest as it is related
to the longevity of an experiment.

In the center of mass frame [Tay72] the Hamiltonian for two alkali metal atoms in
the presence of a magnetic field B, is given by

H = p2

2µ +Hint + V + V ss, (5.3)

where the first term represents the relative kinetic energy with the reduced mass µ. The
two-body internal energy Hint is determined by the Zeeman and hyperfine interactions
for each atom j

Hint =
2∑
j=1

(
ahf

~2 sj · ij + µB(gesj + gnij) ·B
)
. (5.4)

The hyperfine constant ahf gives the magnitude of the hyperfine splitting as seen in Fig.‘
5.1; ij, sj, µB, gn, ge are the nuclear spin of atom j, electronic spin of the valence electron
of atom j, Bohr magneton, nuclear g-factor, and electronic g-factor respectively. The
term V = PsVs +PtVt includes the singlet Vs and triplet Vt BO potentials [Fal08] with
the operators Ps and Pt projecting out the singlet and triplet components of the wave
function respectively. The spin-spin dipole interaction is described by

V ss = α2Eha
3
0

~2r3 [s1 · s2 − 3(s1 · r̂)(s2 · r̂)] , (5.5)

which is the long range approximation to the interaction between the magnetic mo-
ments of the outer shell electrons belonging to each of the alkali metal atoms, as
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Figure 5.4: Observation of 40K Feshbach resonances by loss spectroscopy of the d + e
mixture. Upper plot, right y-axis: Atoms remaining in the trap after the cloud had
been held for 3 s at magnetic field B. Light blue circles denote atoms in the d state, dark
blue circles denote atoms in the e state. Left y-axis: The solid line is the imaginary part
of the scattering length and is proportional to the inelastic collision rate for two-atom
collisions. The vertical lines indicate the positions of some p-wave resonances: light
blue dashed being in the d+ d channel, black dotted the d+ e channel, and dark blue
dashed the e + e channel. Lower plot: The solid line is the real part of the scattering
length as.
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discussed in Ref.‘ [Sto88]. Here r̂, Eh, and α are the interatomic separation, Hartree
energy, and fine structure constant respectively.

Starting from the rigorous multichannel scattering theory it is possible to derive
the coupled-channels equations in the close-coupling approximation [Tay72, New66].
Hereby we express the wave function in terms of the N (channel) states |σm〉, that
diagonalize the Hamiltonian Hint and have the correct symmetry,

1
r

N∑
m=1
|σm〉ψm(r). (5.6)

The radial Schrödinger equation can now be projected on the channel states which
yields N equations

∂2ψm
∂r2 = 2µ

~2

N∑
n=1

[
Wm,n(r) + V ss

m,n − Eδm,n
]
ψn(r) (5.7)

where δm,n is the Kronecker delta and

Wm,n(r) = δm,n

[
En + ~2

2µ
ln(ln + 1)

r2

]
+ Vm,n. (5.8)

Here En is the eigen-energy of the internal Hamiltonian Hint and ln is the relative
orbital angular momentum quantum number of the state |σn〉. It is useful to rewrite
this set of equations in the N ×N matrix form

Ψ′′(r) = [Q(r) + Vss(r)] Ψ(r), (5.9)

where the elements of the matrix Q(r) are given by (2µ/~2)[Wm,n(r)−Eδm,n]. Consid-
ering the scattering boundary condition (i.e. r → ∞), [Ψ]{1,...,N},m can be interpreted
as being the scattering wave function with an incoming wave in channel m. In prac-
tice, rather than propagating the wave function and derivative matrices to large r,
we instead propagate the log-derivative matrix Y = Ψ′[Ψ]−1 using the technique of
Manolopoulos [Man86]. With this in mind a multichannel S matrix can be extracted
via [Tay72]

S(r) =
[
Y(r)h(1)(r)− h′(1)(r)

]−1
×
[
h′(2)(r)−Y(r)h(2)(r)

]
, (5.10)

where [h(1,2)(r)]m,n = −δm,n
√
knirh

(1,2)
ln

are diagonal matrices with h
(1)
ln

and h
(2)
ln

rep-
resenting spherical Hankel functions of the first and second kind. The asymptotic
magnitude of the momentum in channel |σn〉 equals ~kn =

√
2µ(E − En). For non-

s-wave entrance channels the numerical propagation becomes difficult at low collision
energies. We find it necessary to use the long range approximate correction to the S
matrix given by [Sto88]

S(∞) ≈ S(r1)− i µ
~2

∫ ∞
r1

{[
h(2)(r) + S(r1)h(1)(r)

]
× Vss(r)

[
h(2)(r) + h(1)(r)S(r1)

]}
dr

(5.11)
in order to greatly increase the rate of convergence. This expression assumes that r1
is large enough to neglect contributions from V , which fall off as r−6. The integration
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in this expression is performed analytically. We only include open channels in this
correction.

Although we have thus far formulated the problem using |σi〉, it is also useful to
employ an alternative set of angular momentum states. In the inner region, where
the singlet and triplet potentials are dominant, we use a basis in which i1 and i2 are
coupled to give I, and s1 and s2 are coupled to give S. This has the advantage of the
BO contribution V being diagonal. We perform the basis transformation to the basis
states |σm〉 at the internuclear distance where the energy difference |Vt − Vs| is large
compared to the atomic hyperfine coupling.

Once an S matrix has been evaluated one can extract the s-wave scattering length
by defining the phase shift δ(E), related to the element of the S matrix [S]e,e =
exp[2iδ(E)], with e indicating the entrance channel. If the entrance channel is the
only open channel the scattering length is given by the limiting process

a = lim
k→0

− tan[δ(E)]
k

. (5.12)

This can be generalized to the case where the scattering is not purely elastic; i.e., there
is more than one open channel. Here the complex scattering length ã and complex
phase shift δ(E) are now related by

ã = a− bi = lim
k→0

− tan[δ(E)]
k

. (5.13)

It can be shown, see Refs. [Nai11, Hut07, Boh99, Fed96], that in the vicinity of a
Feshbach resonance the following parameterization is valid

a(B) = abg

(
1− ∆B(B −B0)

(B −B0)2 + (γB/2)2

)
, (5.14a)

b(B) = 2ares
(γB/2)2

(B −B0)2 + (γB/2)2 . (5.14b)

In these expressions, abg is the background scattering length, representing the scattering
length of the entrance channel in the absence of a resonance. We have expressed
the decay rate of the bound state, γ [Köh05], in magnetic field units, γB = ~γ/µres,
where µres is the difference in magnetic moment between the entrance channel and
the bound state causing the resonance. The resonance length ares is defined by ares =
abg∆B/γB and characterizes the strength of a resonance. The width and the center
of the resonance are given by ∆B and B0, respectively. The real part of the complex
scattering length ã is still the appropriate parameter to describe the elastic scattering
process, while the imaginary part can be used to describe the inelastic collision rate
coefficient for channels with two atoms in different spin states

K2(B) = 4π~
µ
b(B). (5.15)

In the limit of zero collisional energy this rate has its peak exactly on resonance where
it equals K2(B0) = 8π~ares/µ. In a thermal gas at kBT � γB the rate drops rapidly
with temperature, K2(B0) ∝ T−2. For partial densities nα and nβ the total decay
rate of component α is given by −ṅα/nα = K2nβ + τ−1

vac, where τvac is the vacuum
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Figure 5.5: (Color online) Energy spectrum of s-wave molecular levels of 40K in the
d+ e channel. Energies are given relative to the d+ e threshold. The binding energies
were obtained using: the CC method (black line), the MQDT (red dashed line), and
the ABM (green dot-dashed line). The inset shows the binding energies near the broad
resonance around B ' 290 G. For the MQDT and ABM the optimized parameters
were used as input. The results for ABM are shown without the dressing of the bound
state [Tie10c], except in the inset (green dotted line).

lifetime. Some results of the CC calculation for the real and imaginary parts a(B)
and b(B) of the scattering length are shown for the d + e mixture in Fig.‘ 5.4, where
they can be compared to experimental findings. For all observed s-wave resonances
the calculated values for B0, ∆B, abg, ares, γB and µres were obtained for a collision
energy E/kB = 1 µK and are tabulated in Table 5.1. For the p-wave resonances the
collision energy was E/kB = 1 µK and only the position B0 of the resonance center is
tabulated.

The bound state calculations are performed as in Ref. [Hut94]. They involve nu-
merical methods similar to those used for the scattering calculations. However the
asymptotic r → ∞ boundary condition on Ψ(r) now requires that all elements decay
suitably to zero. The term Vss(r) is neglected in the bound state calculations because
they are used for comparison to the MQDT and the ABM (see Fig.‘ 5.5), neither of
which include this term. We propagate Y(r) from small r outwards to some matching
point R, which we call Ya. We then propagate from large r inwards to R which we
call Yb. It can be shown that a bound state exists if the matching matrix

M(E) = Ya −Yb (5.16)

has an eigenvalue equal to zero.
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5.3.2 Multichannel quantum defect theory
The MQDT [Han09] is a scattering theory approach, incorporating two simplifying
assumptions based on the separation of scale between the kinetic energy of the collid-
ing atoms and the depth of the interatomic potential. Firstly, a pure van der Waals
potential is used. We analytically solve the radial Schrödinger equation with this po-
tential, using a powerful set of tools developed by Gao (see Ref.‘ [Gao05] and references
therein). This saves the computational effort of propagating either the wave function
or its log-derivative to large distances. Secondly, the physics occurring at small r is ac-
counted for by an energy-independent boundary condition (a ‘quantum defect’) given
in terms of the singlet and triplet scattering lengths [Gao05]. Matching the energy
dependent solutions of the van der Waals potential to the short range boundary con-
dition allows scattering and bound state properties to be predicted based on just three
parameters describing the interactions: the scattering length of the singlet as and
triplet at potential and the dispersion coefficient C6 which describes the van der Waals
tail of the interaction.

We have applied our model to calculations in the presence of a magnetic field
[Han09] and RF radiation [Kau09, Han10]. We also note Gao’s earlier work on collisions
of alkali atoms at zero magnetic field [Gao05]. In the present work, an MQDT search
over all possible collision channels was used as a guide for the CC calculations. The
singlet and triplet scattering lengths were allowed to vary slightly from their actual
values to optimize the fit to known resonances. This offsets the main error introduced
by the above approximations: that deeper bound states are less accurately reproduced
by the approximate potential.

We have calculated the Feshbach resonances using the most recent literature values
given in Ref.‘ [Fal08] (as = 104.41 a0, at = 169.67 a0 and C6 = 3925.9 Eha6

0), which we
will refer to as the physical parameters. The data, presented in Table 5.3, has an rms
deviation for the resonance locations of 17.4G, with a systematic offset towards the low
field side. By using as and at as fit parameters, we reduce the rms deviation to 2.6G,
obtaining final fit parameters of afits = 101.88 a0 and afitt = 165.41 a0. Data for the d+ e
s-wave channel, optimized in this manner, is shown in Fig.‘ 5.5. The three lowest-field
s-wave resonances in the d + e channel arise from a deep bound state belonging to
a higher collision threshold. Consequently, non-C6 terms of the potential are more
significant, and the MQDT calculation has a larger error than it does for the other
resonances shown. Based on our s-wave fit, we calculate several p-wave resonances,
listed in Table 5.4. With the exception of two outlying points in the h + h channel,
we reproduce the CC results well. We note that it is possible to obtain a much better
fit when considering only resonances created by shallow bound states. This illustrates
that the freedom given by the two fit parameters can only offset some of the errors
introduced by making our approximations.

5.3.3 Asymptotic bound state model
The ABM [Tie10c] uses only bound states to calculate Feshbach resonance positions
and widths. This approach allows accurate prediction of the resonances based on simple
matrix operations, without solving the radial Schrödinger equation. As in the MQDT
approach, it is sufficient to use as inputs as, at and C6. From these, we use the accu-
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mulated phase method [Ver09] to calculate binding energies εSν and overlap parameters
〈ψS′ν′ |ψSν 〉, where ν, ν ′ range over all contributing bound states of the singlet and triplet
potentials. Here ν is counted from the dissociation limit, i.e. ν = −1 is the least bound
state. Since the initial application of the ABM to the mixture of 6Li-40K [Wil08],
it has been successfully applied in its original form by other groups on a variety of
systems [Li08, Voi09, Deh10, Kno11], and extended to include dipole-dipole interac-
tions [Goo10], overlapping resonances [Goo10], and RF-induced resonances [Tsc10].
Here, we describe an extension to the ABM which makes it applicable to systems with
a large background scattering length.

Ultracold scattering in the entrance channel, in the absence of Feshbach resonances,
is well described by abg. This scattering length will depend on the energy εbg of the least
bound state of the background interaction potential. When the background scattering
length is non-resonant, this least bound state is not energetically near the threshold
of the channel. As in this case the effect of the scattering states on this bound state
is small, the ABM accurately gives εbg. This changes when the background scattering
length becomes resonant, i.e. the background scattering length is much larger than the
range of the interaction potential (abg � r0), as occurs in relevant collision channels of
40K. In such a system, the entrance channel supports a bound state close to threshold.
The effect of these scattering states on the bound state (which cannot be neglected) can
be incorporated into the ABM by effectively correcting the coupling of the least bound
singlet and triplet states via their overlap parameter 〈ψ0

−1|ψ1
−1〉. To determine this

correction we use the degenerate internal states (DIS) approximation [Sto88]. Within
this approximation abg can be deduced from a simple decomposition of the entrance
channel |σe〉 into singlet and triplet admixtures,

aDIS
bg ' 〈σe|as Ps + at Pt|σe〉. (5.17)

The energy of the least bound state of the entrance channel potential, which effectively
includes the coupling to scattering states, can now be obtained from

εDIS
bg ' −

~2

2µ(aDIS
bg − r0)2 . (5.18)

where the range of the potential is taken to be the van der Waals length
r0 = (µC6/8~2)1/4. Equation (5.18) is only accurate when aDIS

bg � r0. By varying
〈ψ0
−1|ψ1

−1〉 with magnetic field such that εbg = εDIS
bg , we effectively determine the correct

singlet-triplet coupling of the least-bound states in the presence of nearby scattering
states. The resulting magnetic field dependent overlap 〈ψ0

−1|ψ1
−1〉(B) is used as input

for the usual ABM calculations. Note that the range variation of the overlap param-
eter is a few percent, which corresponds to a shift of εbg of a few MHz. The ABM
can readily output quantum numbers of bound states and can be generalized to more
accurate potentials.

We calculate the s-wave Feshbach resonances using the physical values of as, at
and C6 as given in the previous section. The resonance values are shown in Table 5.3.
Considering that the ABM uses only bound states and just three input parameters, the
agreement with the coupled channels calculations is quite satisfactory. The initial fit
has an rms deviation from the CC s-wave resonance positions of 16.4G. Performing a
least-squares fit by slightly varying the overlap parameters and the ε1−2 binding energy
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gives better agreement, yielding an rms deviation for the resonance positions of σ '
6.9G. The bound states produced by this fitted calculation are shown in Fig.‘ 5.5.

For the p-wave resonances the background scattering is non-resonant. Therefore,
we calculate the p-wave resonances using ABM in its original form, using magnetic field
independent overlap parameters. We fit the resonance positions by varying only the
〈ψ0
−2|ψ1

−2〉 overlap parameter and the binding energy ε0−2. The other binding energies
and overlap parameters are kept fixed to the values obtained from the accumulated
phase method. The rms deviation on the fit is σ ' 6.3G and the resonances are shown
in Table 5.4.

5.3.4 Comparison of MQDT and ABM
MQDT and the ABM have both previously been applied to the 6Li-40K [Wil08, Tie10b,
Nai11] and 40K-87Rb [Han09, Tie10c] mixtures, which allow for some indirect compar-
ison. Here we present an explicit comparison of the two models for the more complex
case of 40K-40K. We compare the results of the two models to the results of the CC
calculation which are summarized in Tables 5.3 and 5.4 and shown in Fig.‘ 5.5. The
results obtained by using physical parameters (i.e. literature values) are shown in the
middle columns of Table 5.3. MQDT has the slightly higher rms deviation from the
CC results compared to the ABM, consistently producing B0 values that are too low.
As the qualitative agreement is good for both models, they can both be used for guid-
ing more accurate coupled channels calculations, or providing quick feedback between
theory and experiment. The fitted results of each model are also shown in Table 5.3.
Here the MQDT approach produces a significantly lower rms deviation from the CC
results compared to the ABM.

In optimizing the MQDT model to the CC data we varied only as and at, while
keeping C6 constant. For fitting the ABM we varied the binding energies and wave
function overlaps, yielding effectively eight free parameters. However, in both the s-
and p-wave cases one overlap parameter was dominant in obtaining a good fit. For the
s- and p-wave fits the most relevant overlap parameters were 〈ψ0

−1|ψ1
−2〉 and 〈ψ0

−2|ψ1
−2〉,

respectively. Both of these elements involve the ν = −2 states. This indicates that
either non-C6 components of the potential are becoming significant, as is the main
limiting factor for the MQDT approach, or that deeper bound states should be taken
into account in the ABM. Despite the simplification of neglecting scattering states,
good qualitative agreement is obtained for the resonance widths with the ABM. With
the scattering approach of MQDT, we also obtain good qualitative agreement with
the CC results. However, quantitatively we find that the MQDT and the ABM are
limited in their accuracy for predicting the widths of Feshbach resonances. Resonance
widths depend on the difference between the singlet and triplet potentials, which both
theories only include crudely by assigning each potential the appropriate scattering
length. Next we consider molecular bound-state manifolds obtained via MQDT and
ABM and compare these to CC calculations. We consider the s-wave d + e channel
which, within the range of 300Gauss, contains 7 resonances. Two of these resonances
were too narrow to be observed experimentally. As this channel contains both wide
and narrow resonances it very suitable for a comparison of the simplified models with
respect to the CC results. The results of the comparison, where we used the optimized
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CC MQDT ABM
Channel B0 (G) B0 (G) B0 (G)
a + c 215.37 222.7 229.4
b + b 198.58 200.0 203.1
c + c 233.18 235.9 231.2
c + c 245.13 246.2 247.7
c + d 262.28 263.6 258.9
d + d 287.00 292.6 280.1
d + d 311.60 312.0 311.2
d + e 338.19 339.4 333.4
e + e 373.00 380.5 365.9
h + h 67.82 73.8 65.6
h + h 101.17 79.2 94.
h + h 136.46 119.7 136.5
h + h 323.37 320.1 336.5
h + j 44.57 48.1 43.3
i + i 44.80 48.4 43.5

σRMS (G): 8.1 6.3

Table 5.4: Positions of several p-wave resonances, comparing MQDT and the ABM
to CC results. The MQDT positions were calculated using the same fit derived for
the s-wave resonances, while a separate ABM fit was performed. The value of σRMS is
determined using the CC results without dipole-dipole interaction.

parameters as input, are shown in Fig. 5.5. For the MQDT it is difficult to reproduce
the lower field (narrow) resonances as these result from a deeper bound state belonging
to a (energetically) higher collision threshold. For the ABM it is hard to reproduce the
highest field resonance as the threshold effects become strong for this (wide) resonance.
These threshold effects can be incorporated [Tie10c] to produce better results for the
wide resonance, as can be seen in the inset of Fig. 5.5. Both models have difficulties to
reproduce the molecular bound-state manifolds at low magnetic fields around the 10
MHz. This can be attributed to the fact that the models were fit to resonance magnetic
field positions, i.e. points at zero energy.

5.4 Summary and conclusions

We have presented a detailed study on the rich Feshbach resonance structure of 40K.
Excellent agreement is found for 29 resonances (both s-waves and p-waves) between
the CC calculations and measurements, 26 of which were experimentally observed for
the first time. Two of these resonances show features that deserve special attention:
The ‘well-isolated’ s-wave resonance in the c+ d channel at 178(1) G with the nearest
resonance at +55 G from the resonance center, which is of importance for applications
relying on the zero crossing of the s-wave resonance. The other resonance is the p-
wave resonance at 44(2) G in the j + h channel, where the j + h → i + i decay
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channel is close to elastic and might find an application in studies on three fermion
interactions. Comparison of the CC calculations with the experimental observations
shows that the currently available BO potentials [Fal08], which are used as input for
the CC calculations, are sufficiently accurate to predict the position and width of all
studied resonances within the experimental error of 100 mG. This provides confidence
that, with these BO potentials, the CC method can be used to reliably model ultracold
collisions of potassium atoms. A full characterization of the observed s-wave resonances
is given in Table 5.1.

For the ABM, the large background scattering length for most scattering channels
of 40K made it necessary to account for the strong influence of scattering states via a
magnetic field-dependent overlap parameter between the least-bound singlet and triplet
states. This effectively accounts for the coupling between the bound and continuum
states, and is provided by mapping the field-dependent background scattering length,
a continuum parameter, onto the background binding energy, an ABM property that
is sensitive to the overlap parameter. The mechanism is generic, and can be applied to
other atomic systems with large positive background scattering lengths.

In addition we compared the performance of the MQDT and the ABM as two
valuable simplified models complementary to the CC method. The MQDT is based on
scattering states while the ABM is based on bound states. In essence, both models are
based on three parameters. They are able to reproduce the scattering and bound state
properties of 40K atom pairs quite well. In particular the prediction of the resonance
positions is fairly accurate. While MQDT gives the better optimized fit, the ABM
performs slightly better with the physical input parameters and is the simpler approach.
As both simplified methods do not account properly for the exchange energy, the
predictions for the resonance width correspond only qualitatively to the CC results.
As the ABM incorporates separate physical effects at separate levels, it provides a
framework within which a system can be studied at various levels of complexity. This
is not possible within the MQDT approach. The strengths and limitations of both
models are illustrated by comparing the predicted resonance field positions and bound-
state energy spectrum (for s- and p-wave resonances) with CC calculations. From a
detailed study of the molecular bound-state manifolds of the s-wave d+ e channel we
conclude that both models performed equally well, be it that ABM shows a difficulty
in handling resonances were strong threshold effects are involved, whereas the MQDT
has a handicap in cases when more deeply bound states are involved. Both the MQDT
and the ABM proved to be very valuable for the exploration of the 40K quantum gas
as an example of a system with a rich structure of Feshbach resonances. For a full
characterization the more demanding CC calculations remain indispensable.



Appendix A

Atoms in optical potentials

Neutral atoms can be trapped in an optical dipole potential due to the AC Stark effect.
A far detuned intense laser beam induces an electric dipole moment in the atom. In
the electric field of the laser beam, the induced dipole is subject to an optical potential.
The electric field E of light induces a dipole p in an atom

p = αE. (A.1)

The complex atomic polarizability α is given by[Mil88]:

α = 6πε0c
3 Γ
ω2

0

(
1

ω2
0 − ω2

L − i(ω3
L/ω

2
0)Γ

)
, (A.2)

where ω0 is the atomic resonance frequency, ωL the (angular) frequency of the light,
Γ the linewidth of the transition, c the speed of light and ε0 the electric constant.
The values for the D1 and D2 transitions of 40K are given in Tables A.1 and A.2.
The semi-classical approach in Eq. A.1 is valid as long as the light intensity I and
detuning δ = ωL − ω0 are such that the excited state is not substantially populated.
The potential of the induced dipole p in the electric field E is given by

Udip(r) = −1
2p · E(r) = − 1

4ε0c
Re(α)I(r), (A.3)

with
I = ε0c

2 |E|
2.

A.1 Optical potential for 40K
For a multilevel atom one has to consider in principle all optical dipole transitions
with all their atomic polarizabilities. However, the linewidths of transitions to higher
electronic states are an order of magnitude smaller than the transitions in the electronic
ground state and add, in the case of 40K, a correction of less than 1%. In [Gri00] the
different detuning of the D1 and D2 line is also taken into account. In the case of
40K, the detuning of both the dipole trap and the optical plug is much larger than the
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Property Symbol Value Ref.

Wavelength λ = c/ν 770.1081365(2) nm
Frequency ω = 2πν 2π× 389.286184353(73)THz [Fal06]
Wavenumber k = (2π)/λ 2π× 12985.189385(3) cm−1

Lifetime τ 26.72(5) ns [Wan97]
Linewidth Γ = 1/τ 2π× 5.95(1)MHz
Recoil velocity vrc = (~k)/m 1.29654 cm/s
Recoil temperature Trc = (mv2

rc)/(2kB) 404 nK
Doppler temperature TD = (~Γ)/(2kB) 143µK
Saturation intensity Is = (πhc)/(3λ3τ) 1.70mW/cm2

Table A.1: Optical properties of the D1 (|2S1/2〉 → |2P1/2〉) transition in 40K. More
data on properties of 40K can be found in a concise form in [Tie10a]. Compilations of
atomic data for other alkalis are available online from [Ste10] for rubidium, caesium
and strontium; and from [Geh03] for lithium.

hyperfine splitting ∆Ehf = 1.286GHz so we use the average of the detunings of the D1
and D2 line and treat potassium as a two-level system.

If the detuning of the light is much smaller than the transition frequency of the
atom (|δ| � ω0) the potential A.3 can be written as [Gri00]:

Udip(r) = −3πc2

2
Γ
ω3

0

( 1
ω0 − ωL

+ 1
ω0 + ωL

)
I(r). (A.4)

A.2 Rotating wave approximation

The rotating wave approximation (RWA) can be used [Met99], if the following condition
is fulfilled:

ω0 + ωL � ω0 − ωL. (A.5)

The second term in the brackets can be neglected and A.4 simplifies to:

URWA(r) = 3πc2

2ω3
0

Γ
δ
I(r). (A.6)

For δ < 0, i.e. a red-detuned light field, the potential is attractive and the atom
experiences a force towards regions of high light intensities. The atoms stay trapped in
the focus of a red-detuned laser beam . A blue-detuned light field repels the atoms away
from high intensities. We use this for the optical plug as described in Sec. 3.5.2. In the
case of 40K the condition A.5 is not entirely fulfilled. The potential is underestimated
by about 10% when the RWA is used, so we do not apply this approximation.
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Property Symbol Value Ref.

Wavelength λ = c/ν 766.7006746(2) nm
Frequency ω = 2πν 2π× 391.016296050(88)THz [Fal06]
Wavenumber k = (2π)/λ 2π× 13042.899699(2) cm−1

Lifetime τ 26.37(5) ns [Wan97]
Linewidth Γ = 1/τ 2π× 6.03(1)MHz
Recoil velocity vrc = (~k)/m 1.3023 cm/s
Recoil temperature Trc = (mv2

rc)/(2kB) 408 nK
Doppler temperature TD = (~Γ)/(2kB) 145 µK
Saturation intensity Is = (πhc)/(3λ3τ) 1.75mW/cm2

Table A.2: Optical properties of the D2 (|2S1/2〉 → |2P3/2〉) transition in 40K.

A.3 Potential produced by a Gaussian beam
For a Gaussian laser beam with power P and beamwaist w0, the intensity distribution
I(r, z) in axial z and radial direction r is described by

I(r, z) = 2P
πw(z)2 exp

(
−2r2

w(z)2

)
. (A.7)

The beam radius w(z) at distance z from the beamwaist w0 is given by

w(z) = w0

√
1 + (z/zR)2, (A.8)

with the Rayleigh range
zR = π

λ
w2

0.

For linearly polarized light the potential is:

Udip(r, z) = U0

1 + (z/zR)2 exp
(
−2r2

w(z)2

)
, (A.9)

with
U0 = −3c2ΓP

ω3
0w

2
0

( 1
ω0 − ωL

+ 1
ω0 + ωL

)
. (A.10)

The trap frequencies of the atom with massm, in radial ωr and axial ωz trap directions
are given by

ωi =

√√√√ 1
m

∣∣∣∣∣∂2Udip(r, z)
∂i2

∣∣∣∣∣. (A.11)

Around the focus of the beam (z, r = 0), where the trap can be assumed to be harmonic,
the trap frequencies are

ωr =
√

4U0

mw2
0

and ωz =
√

2U0

mz2
R

. (A.12)
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A.4 Density distribution
The density distribution of the atoms in a potential U(r) is determined by a distribution
function. For temperatures larger than the Fermi temperature TF this is the Maxwell-
Boltzmann distribution:

fMB(ε) = e−ε/kBT . (A.13)
For non-interacting particles with the single particle Hamiltonian

H(p, r) = p2

2m + U(r),

the density is obtained by integration over all possible momenta:

nMB(r) =
∫
n0e

−H(p,r)/kBT dp. (A.14)

A.4.1 Density in a harmonic potential
For a harmonic potential, which can be used as an approximation for the optical
dipole trap at low atom temperatures, the integration results in a Gaussian density
distribution

nMB(r) = n0,MBe
mω2
r(x2+y2+A2z2)/2, (A.15)

with
n0,MB = NAω3

r

(
m

2πkBT

)3/2

and where A = ωz/ωr is the aspect ratio of the optical dipole trap.

A.4.2 Density in a Gaussian potential
The density distribution of N atoms at a temperature T in the (Gaussian) optical
dipole trap is:

nODT(r, z, T ) = n0 exp
(
Udip(r, z)
kBT

)
; (A.16)

from this the 1/e radii wr(T ) and wz(T ) can be obtained numerically. The central
density is then

n0 = N

Ve
using the effective volume Ve(T ) = π3/2w2

rwz. (A.17)

The effective volume is obtained by approximating the density with a Gaussian distri-
bution:

ñODT(r, z, T ) = n0 exp
(
−r2

2w2
r(T )

)
exp

(
−z2

2w2
z(T )

)
. (A.18)

With this approximation the integration for the effective volume
N

n0
= Ve =

∫
V

exp
(
−x2

2w2
r(T )

)
exp

(
−y2

2w2
r(T )

)
exp

(
−z2

2w2
z(T )

)
dx dy dz (A.19)

can be solved with the Gauss error function erf(x) and the Euler gamma function Γ(x)
[Bro96].
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Hyperfine structure

The fine structure of an alkali atom is determined by the coupling of the outer electron’s
spin S with its orbital angular momentum L to the total angular momentum of the
electron†

J = S + L.

The L–S coupling leads in alkalis to the D1 and D2 line with J = 1/2 and J = 3/2
respectively. For 40K the fine structure splitting is 1.7THz (see Tables A.1 and A.2),
all additional perturbations due to the hyperfine interaction and external magnetic
fields can be treated separately for each J when they are small compared to the fine
structure splitting. The interaction between the angular momentum of the nucleus I
and the electron J couples to the total angular momentum of the atom

F = I + J

and results in the hyperfine splitting. All the angular momentum operators F, I,J have
corresponding quantum numbers F, I, J which obey the triangular relation

|I − J | ≤ F ≤ I + J,

†In atoms with more than one valence electron the coupling can differ from the described L–S
coupling. In that case j–j coupling occurs or mixtures of both j–j and L–S coupling, depending on
the energy scales.

Property Symbol Value Ref.

Mass m 39.96399848(21) u [NIS10]
Nuclear spin I 4
Number of Neutrons N 21
Atomic number Z 19
Natural abundance 0.000117(1)% [NIS10]
Isotope lifetime τ40K 1.248 × 109 y [NND11]

Table B.1: Physical properties of 40K. The mass is given in unified atomic mass units
(1 u = 1.660538921 × 10−27 kg).
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State Property Symbol Value [MHz] Ref.
2S1/2 magnetic dipole constant ahf h×−285.7308(24) [Ari77]
2P1/2 magnetic dipole constant ahf h× −34.523(25) [Fal06]
2P3/2 magnetic dipole constant ahf h× −7.585(10) [Fal06]
2P3/2 electric quadrupole constant bhf h× −3.445(90) [Fal06]

Table B.2: Hyperfine structure coefficients for 40K.

so there are (2J + 1) possible values for F when J < I. The angular momentum
operators obey the relation

I · J = 1
2(F2 − I2 − J2).

The hyperfine interaction is described by the Hamiltonian

Hhf = 1
~2

(
ahfI · J + bhf

3(I · J)2 + 3
2I · J− I2J2

2I(2I − 1)J(2J − 1)

)
, (B.1)

using the magnetic dipole constant ahf and the electric quadrupole constant bhf . The
quadrupole term only exists for states with J > 1/2, as derived in [MK85]. The values
for ahf and bhf are shown in Table B.2.

B.1 Hyperfine splitting with an external
magnetic field

The hyperfine interaction in presence of an external magnetic field B is described by

HB
hf = Hhf + HZ, (B.2)

where HZ is the Zeeman interaction

HZ = µB

~
(gJJ + gII) ·B, (B.3)

with the Landé g-factor of the electron gJ , the gyromagnetic factor of the nucleus gI
and the Bohr magneton µB. Here the sign convention is‡:

µI = −gIµB
I
~

and µJ = −gJµB
J
~
. (B.4)

The values for the g-factors are in Table B.3. The level structure of the hyperfine states
for 40K is shown for the ground state |2S1/2〉 in Fig. B.1 and for the excited state |2P3/2〉
in Fig. B.2.

In practice we solve the field dependence and energy splitting of the hyperfine
states numerically, however in the special case of F = I±1/2 (J = 1/2) the Breit-Rabi
formula [Bre31, Oh08] provides an analytical expression for the eigenvalues of HB

hf for
the Zeeman states with quantum number mF :

‡The sign convention for µI is chosen as in [Ari77].
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State Property Symbol Value Ref.

All states total nuclear g-factor gI 0.000176490(34) [Ari77]‡
2S1/2 total electronic g-factor gJ 2.00229421 (24) [Ari77]
2P1/2 total electronic g-factor gJ 2/3
2P3/2 total electronic g-factor gJ 4/3

Table B.3: Electronic and gyromagnetic factors for 40K.

E(F = I ± 1/2,mF ) = −ahf

4 +mFgIµBB ±
∆Ehf

2

√
1 + 4mF

2I + 1x+ x2 (B.5)

using the abbreviation
x = (gJ − gI)µB

∆Ehf
B

and the hyperfine splitting energy

∆Ehf = ahf

(
I + 1

2

)
.

We employ this analytical expression for the calibration of the magnetic field described
in Sec. 4.5.

B.2 Limit of high and low magnetic fields
For low magnetic fields B the I–J coupling is valid and the total angular momentum
F precesses around the direction of the magnetic field. The hyperfine energy for states
with J = 1/2 is then well described by the linear Zeeman effect:

EB,low
hf = mFgFµBB + ∆E0

hf (B.6)

using the hyperfine splitting at zero field

∆E0
hf = ahf

2 [F (F + 1)− I(I + 1)− J(J + 1)]

and

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1) + gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1) .

The values for gF for the different manifolds are shown in Table B.4. In high magnetic
field the I–J coupling is lifted and both angular momenta precess independently around
the direction of the magnetic field. In this so called Paschen-Back regime, the hyperfine
energy of a state with quantum number mI , mJ and J = 1/2 is approximated by:

∆EB,high
hf = mJgJµBB + ahfmImJ . (B.7)
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State Value
2S1/2, F = 9/2 0.222634
2S1/2, F = 7/2 −0.222281
2P1/2, F = 9/2 0.074231
2P1/2, F = 7/2 −0.073878
2P3/2, F = 11/2 0.363765
2P3/2, F = 9/2 0.229102
2P3/2, F = 7/2 −0.020985
2P3/2, F = 5/2 −0.571176

Table B.4: Landé gF factors for 40K.

The hyperfine field Bhf is a characteristic crossover field. It is defined as the magnetic
field where the energy of the states in the low-field approximation equals the energy in
the high-field approximation. For J = 1/2 it is [Leg01]

Bhf = ahf(I + 1/2)
(gJ − gI)µB

≈ ahf(I + 1/2)
2µB

.

The hyperfine field for the ground state manifold 2S1/2 of 40K is Bhf = 459G. The low-
field approximation is valid to describe the cold atoms in the MOT and the magnetic
trap, as the magnetic fields used are much lower than Bhf .

B.3 Magnetic trapping potential
Neutral atoms are trapped magnetically due to the Zeeman effect: an applied magnetic
field B shifts the eigenenergies of an atom proportionally to the magnetic field value
|B|. The applied field results in a magnetic moment µ which is aligned with the external
field. The magnetic potential is

U(B) = −µ ·B = mFgFµBB, (B.8)

States where mFgF > 0 are trapped, and states where mFgF < 0 are expelled from a
magnetic gradient as described in Sec. 3.5.1. The exact trapping potential depends on
the geometry of the magnetic field, a more detailed discussion about magnetic trapping
and trap geometries can be found in [Ber87, Ket92, Met99, Ket99, For07].
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Figure B.1: The hyperfine structure of the ground state |2S1/2〉 of 40K. The states are
labelled with the low field quantum numbers |F,mF 〉 and with a to r with rising energy.
In the lower hyperfine manifold (F = 9/2), the states f to j are low-field seeking at
low magnetic field. In the upper hyperfine manifold (F = 7/2) the states o to r are
low-field seeking. The hyperfine structure is inverted unlike in most other alkalis.
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Figure B.2: The hyperfine splitting of the excited state |2P3/2〉. The states are labelled
with the high-field quantum numbers.





Appendix C

Optical transition probabilities

When imaging cold atoms, the transition strength of the used imaging transition needs
to be known to accurately fit the number of atoms. Additionally the frequency of the
imaging light and – if necessary – of the repump light has to be chosen according to the
possible transitions and decay channels. The transition matrix element µeg describes
the coupling between a ground and an excited state by an electric dipole:

µeg = e 〈e|ε̂ · r|g〉 ,

here ε̂ is the unit vector of the light polarization and e the elementary charge. The
states are described by a wavefunction which can be factorised into a radial part and
an angular part. The transition matrix element can be expanded in terms of Clebsch-
Gordan coefficients using the Wigner-Eckart theorem. A detailed derivation can be
found for example in [Met99, Wal10, LeB11]. The transition strengths for other isotopes
of potassium and other alkalis are in listed [Met99].

C.1 Transition probabilities at zero magnetic
field

The transition matrix element µeg coupling a ground state with quantum numbers
n, L, S, I, J, F,mF to an excited state with quantum numbers n, L′, S, I, J ′, F ′,m′F can
be expressed as:

µeg = eRA,
the radial part R only concerns the n, L quantum numbers and is the same for all
transitions within one line. To compare the transition strengths of transitions in the
D1 and in the D2 line, the radial part R has to be taken into account (see [Met99]).
The angular part is described by:

A = (−1)1+L′+S+J+J ′+I−m′
√

(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×
√

max(L,L′)
(
F 1 F ′

m q −m′
){

J ′ F ′ I
F J 1

}{
L′ J ′ S
J L 1

}
. (C.1)
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The curly brackets denote 6j-symbols and the normal brackets 3j-symbols. The j-
symbols enforce the correct coupling of angular momenta and obey the triangular
relation and selection rules. The selection rules in this case are:

∆L = 0,±1 with L = 0 9 L′ = 0
∆S = 0
∆J = 0,±1 with J = 0 9 J ′ = 0
∆I = 0
∆F = 0,±1 with F = 0 9 F ′ = 0

(C.2)

At low or zero magnetic field it is m = mF in Eq. C.1 and the selection rule

∆mF = 0,±1 for π and σ± polarized light applies. (C.3)

In Tables C.1 and C.2 the normalized (angular) transition strengths A2, for transitions
from the states |2S1/2, F = 9/2, 7/2〉 are given.

C.2 Transition probabilities at non-zero
magnetic field

With rising magnetic field the quantum numbers |J, I, F,mF 〉 cease to be good quan-
tum numbers. The eigenvectors of the hyperfine Hamiltonian HB

hf in Eq. B.2 are no
longer pure states of one set of |J, I, F,mF 〉, but a mixture. In the high field limit
the quantum numbers |J, I,mJ ,mI〉 are good quantum numbers and form a basis for
HB

hf . To describe the absorption of imaging light by the atoms in high field, the tran-
sition matrix elements have to be adapted. When considering transitions from the
2S1/2 manifold to the 2P3/2 manifold, the hyperfine fields Bhf of the differ substantially.
The hyperfine field in the ground state is Bhf = 459G, in the excited 2P3/2 state it
is about 35G. As can be seen in Fig. B.2, there are no more level crossings at mag-
netic fields higher than the hyperfine field, so the labelling in the high-field quantum
numbers is justified. Apart from the fully-stretched states |mJ = −3/2,mI = −4〉 and
|mJ = 3/2,mI = 4〉, the eigenstates are mixtures of the high-field basis states.

As an example we consider the transition from |J = 1/2, F = 9/2,mF = −3/2〉 to
|J ′ = 3/2, F ′ = 11/2,m′F = −5/2〉, at a field of 178G close to the Feshbach resonance
in the c+d state. The states can be expressed in terms of the |mJ ,mI〉 basis by solving
the Hamiltonian HB

hf numerically.

|F,mF 〉 = α |mJ = mF −mI ,mI〉+ β |mJ = mF −mI ,mI〉+ · · ·

For the ground state it is:

|9/2,−3/2〉 = 0.897 |−1/2,−1〉+ 0.443 |1/2,−2〉 .

For the excited state it is:

|11/2,−5/2〉 = −0.997 |−3/2,−1〉−0.083 |−1/2,−2〉−0.003 |1/2,−3〉−5×10−5 |3/2,−4〉 .

At B = 178G the excited consists of four |mJ ,mI〉 basis states, two of the basis states
have coefficients which are smaller than 0.01. The contributions of these states only
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Figure C.1: Coefficients α2, β2, γ2 and δ2 of the decomposition of the
|J = 3/2, F = 11/2,−5/2〉 state in the |mJ ,mI〉 basis.

play a role for fields up to the hyperfine field Bhf of the excited state (see Fig. C.1).
The decomposition of the ground state is shown in Fig. C.2.

The transition matrix elements can now be calculated by calculating the coefficients
in the |mJ ,mI〉 basis by replacing m by mJ and then summing over the mJ :

AB = δmIm′I
∑
mJ

A〈J,mJ ,mI |J, F,mF 〉 (C.4)

The decomposition of the lower state in terms of the |mJ ,mI〉 basis is included by the
last term. In addition to the selection rules in Eq. C.2, the following selection rules
apply:

∆mI = 0
∆mJ = 0,±1 for π and σ± polarized light. (C.5)

The decomposition has to be calculated numerically and has a different field depen-
dency for each state.
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Summary

This thesis presents the measurement of Feshbach resonances in various hyperfine state
mixtures of ultracold 40K. Feshbach resonances can be used to tune the strength and the
sign of the interaction between atoms. With this tool ultracold atoms can be used as a
model system for other problems in physics. For very strongly interacting atoms only
a few universal parameters are required to describe the system. Systems with entirely
different underlying processes, such as for example neutron stars or superconductors,
might share the same parameters and can then be compared to the strongly interacting
cold atoms.

Feshbach resonances in neutral atoms occur when the energy of two colliding un-
bound atoms is in resonance with the energy of a bound state of the two atoms. When
the magnetic moment of the bound pair differs from the unbound pair, the energy
difference can be tuned into resonance by applying a magnetic field. Around the reso-
nance the scattering length, which is a measure for the interaction strength, diverges.
By changing an applied magnetic field the interaction of the atoms can be tuned from
attractive to repulsive and vice versa. Close to the resonance the interaction becomes
so strong that the two-body mean field description breaks down and new theories are
necessary.

The positions and widths of Feshbach resonances of an atomic species in a specific
state depend on the interatomic potential which differs for different species and different
states. Before Feshbach resonances can be used as a tool to tune the interaction, their
positions and properties need to be determined. The theoretical description of Feshbach
resonances is presented in Chapter 2.

To be able to make use of Feshbach resonances the temperature of the atoms needs
to be close to the absolute zero (-273.15 ◦C), otherwise the kinetic energy of the atoms
would smear out the effect. The experimental setup and the techniques to trap and
cool the atoms to such low temperatures are described in Chapter 3. At those very
low temperatures the behaviour of the atoms is governed by quantum statistics and
the division of the particles in two distinct classes - bosons and fermions - manifests
itself. Bosons can condense into a single state and form a macroscopic wavefunction
extending over the inter-particle distance. Bosonic atoms can be made to display
interference patterns; something which is at room temperature only possible for light.

For fermions, the behaviour at low temperatures is very different from bosons: in-
stead of condensing into a single state they each occupy a state by themselves, keeping
their distance. The quantum statistics of fermions plays an important role in many
areas of physics. In condensed matter Fermi statistics determines electric and trans-
port properties, neutron stars are prevented from collapsing by Fermi pressure and all
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matter known to us is composed of quarks and electrons which are fermionic elemen-
tary particles. For the understanding of superconductivity the pairing of fermions with
attractive interactions plays a major role.

We work with the fermionic potassium isotope 40K in the experiments described
in this thesis. 40K has a rich hyperfine structure with many stable combinations of
hyperfine states. Each binary combination of hyperfine states can show Feshbach
resonances at various fields, sometimes close in magnetic field to or even overlapping
with another Feshbach resonance in a different hyperfine state combination. It is
therefore important to prepare mixtures of only the desired states as described in
Chapter 4. Additionally there are also various kinds of resonances; relevant in our case
are s-wave resonances which only occur between atoms in non-identical states and p-
wave resonances which are allowed also between identical states. In addition, the shape
and position of p-wave resonances depends on the temperature and the projection of
the atoms’ magnetic moment on the axis of the magnetic field.

Prior to the results presented in this thesis the position of four Feshbach resonances
in mixtures of 40K in the three lowest hyperfine states were known. In this thesis
we present measurements on mixtures occupying states in the middle of the hyperfine
manifold of 40K. Overall we measured 10 s-wave resonances in 4 state mixtures and
13 p-wave resonances in 8 different binary mixtures. Among the s-wave resonances we
identified in the c+ d mixture a resonance which is isolated from other resonances by
about 55G. For the same Feshbach resonance we determined the width by evaporating
the cold cloud at different magnetic fields and measuring the magnetic field dependent
cloud size.

In the j+h mixture there is a p-wave resonance around the same magnetic field as a
p-wave resonance in the i+ i mixture. On resonance the atoms in the j+h channel are
not entirely lost from the optical dipole trap, but appear in the i state. The resonance
in the i+ i channel displays a multiplet feature caused by the dipole-dipole coupling to
the i+j, i+h and the h+h channels. The results of those measurements are presented
in Chapters 4 and 5.

The measured Feshbach resonances are useful for the development and improvement
of simple theories. The experimental data was used by our collaborators as a test
ground for two simple models, the asymptotic bound state model (ABM) and the
multi quantum defect theory (MQDT). The values obtained with coupled channel
calculations (CC) using the currently known potentials for 40K were all within the
experimental uncertainty of the measured values.

With the mapping out of the Feshbach resonances in 40K it is now easier to chose
the Feshbach resonances where side effects of other resonances can be neglected. This is
of importance not only for experiments using 40K alone, but also for experiments with
mixtures with other atomic species. Depending on the requirements for an experiment,
the most convenient Feshbach resonance can be located.



Samenvatting

Dit proefschrift presenteert de meting van Feshbach-resonanties in mengsels van ver-
schillende hyperfijntoestanden van ultrakoud 40K. Feshbach-resonanties kunnen worden
gebruikt om de sterkte en het teken van de wisselwerking tussen atomen in te stellen.
Met dit werktuig kunnen ultrakoude atomen worden gebruikt als een modelsysteem
voor andere problemen in de natuurkunde. In het geval van zeer sterk wisselwerk-
ende atomen zijn er slechts een paar universele parameters nodig om het systeem te
beschrijven. Systemen met helemaal andere onderliggende processen, zoals bijvoor-
beeld neutronensterren of supergeleiders, zouden dezelfde parameters kunnen delen en
dan met de sterk wisselwerking koude atomen vergeleken kunnen worden.

In neutrale atomen komen Feshbach-resonanties voor wanneer de energie van twee
botsende ongebonden atomen in resonantie is met de energie van een gebonden toes-
tand van de twee atomen. Wanneer het magnetisch moment van het gebonden paar
afwijkt van het ongebonden paar, kan het energieverschil in resonantie worden ge-
bracht door het aanzetten van een magnetisch veld. Rondom de resonantie divergeert
de strooilengte, een maat voor de wisselwerkingssterkte. Door het veranderen van het
toegepast magnetisch veld kan de wisselwerking tussen de atomen van aantrekkend tot
afstotend en vice versa ingesteld worden. Dicht bij de resonantie wordt de wisselwerk-
ing zó sterk, dat beschrijving door een theorie waar de deeltjes een veld ervaren, dat
alleen van de twee-deeltjes wisselwerking afhangt, niet meer werkt en nieuwe theorieën
nodig zijn. De posities en breedtes van Feshbach-resonanties zijn afhankelijk van het
interatomaire potentiaal wat verschilt voor verschillende atoomsoorten en toestanden.
Voordat Feshbach-resonanties kunnen worden gebruikt als een instrument om de wis-
selwerking in te stellen, moeten hun posities en eigenschappen worden bepaald. De
theoretische beschrijving van Feshbach-resonanties is te vinden in hoofdstuk 2.

Om gebruik te kunnen maken van Feshbach resonanties moet de temperatuur van de
atomen dicht bij het absolute nulpunt (-273.15 ◦C) zijn, anders zou de kinetische energie
van de atomen het effect verbergen. De experimentele opstelling en de technieken om
de atomen te vangen en tot zulke lage temperaturen te koelen worden in hoofdstuk 3
beschreven. Bij deze zeer lage temperaturen wordt het gedrag van de atomen beheerst
door quantumstatistiek en de opdeling van de deeltjes in twee verschillende klassen
- bosonen en fermionen - manifesteert zich. Bosonen kunnen in een enkele toestand
condenseren en vormen een macroscopische golffunctie die groter is dan de afstand
tussen de deeltjes. Bosonische atomen kunnen interferentiepatronen vormen, iets dat
op kamertemperatuur alleen te doen is met licht.

Voor fermionen is het gedrag bij lage temperaturen heel anders dan voor boso-
nen: in plaats van condensatie in één toestand bezetten ze elk een aparte toestand en
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houden ze afstand van elkaar. De quantumstatistiek van fermionen speelt een belan-
grijke rol in veel gebieden van de natuurkunde. In gecondenseerde materie bepaalt de
Fermi-statistiek elektrische en transport-eigenschappen, neutronensterren storten niet
in vanwege de Fermi-druk en alle materie die ons bekend is, bestaat uit quarks en
elektronen - fermionische elementaire deeltjes. Voor het begrijpen van supergeleiding
speelt de koppeling van fermionen met aantrekkende wisselwerking een belangrijke rol.

In de in dit proefschrift beschreven experimenten werken we met het fermionsich
kalium isotoop 40K, wat een rijke hyperfijnstructuur met veel stabiele combinaties
van hyperfijntoestanden heeft. Elke binaire combinatie van hyperfijntoestanden kan
bij diverse magneetvelden Feshbach-resonanties tonen, soms dicht bij elkaar in mag-
netisch veld of zelfs overlappend met een andere Feshbach-resonantie van een andere
combinatie van hyperfijntoestanden. Daarnaast zijn er ook verschillende soorten reso-
nanties; relevant in ons geval zijn s-golf resonanties die alleen optreden tussen atomen
in niet-identieke toestanden en p-golf resonanties die ook zijn toegestaan tussen iden-
tieke toestanden. Daarnaast is de vorm en positie van p-golf resonanties afhankelijk
van de temperatuur en de projectie van het magnetisch moment van de atomen op de
as van het magnetisch veld.

Voorafgaand aan de resultaten gepresenteerd in dit proefschrift was de positie van
vier Feshbach-resonanties in mengsels van 40K in de drie laagste hyperfijnniveaus bek-
end. In dit proefschrift presenteren we metingen op mengsels van toestanden uit het
midden van de hyperfijntoestands-"waaier" van 40K. In totaal hebben we 10 s-golf res-
onanties gemeten in 4 verschillende mengsels en 13 p-golf resonanties in 8 verschillende
binaire mengsels. Onder de s-golf resonanties hebben we er een gevonden in het c+ d
mengsel, die op een afstand van circa 55G van aangrenzende resonanties ligt. Voor
dezelfde Feshbach-resonantie hebben we de breedte bepaald door het verdampen van de
koude wolk bij verschillende magnetische velden en het meten van de veldafhankelijke
wolkgrootte.

In het j + h mengsel is er een p-golf resonantie rond hetzelfde magnetisch veld als
bij een p-golf resonantie in het i+ i mengsel. Bij de resonantie vallen de atomen in het
j + h kanaal niet allemaal zoals verwacht uit de optische dipoolval, maar verschijnen
ze in de i toestand. De resonantie in het i + i kanaal toont een multipletstruktuur
veroorzaakt door de dipool-dipool koppeling aan de i + j, i + h en de h + h-kanalen.
De resultaten van deze metingen worden gepresenteerd in hoofdstuk 4 en 5.

De gemeten Feshbach-resonanties zijn nuttig voor de ontwikkeling en verbetering
van eenvoudige theorieën. De experimentele data is door samenwerkende theoretici als
proeftuin voor twee eenvoudige modellen gebruikt, de asymptotische gebonden toes-
tand model (ABM) en de multi quantum defect theorie (MQDT). De met gekoppelde
kanaal theorie (CC) berekende waarden (met behulp van de op dat moment bekende
potentialen voor 40K) waren allemaal binnen de experimentele onzekerheid van de
gemeten waarden.

Met het in kaart brengen van de Feshbach-resonanties in 40K is het nu gemakkelijker
om de Feshbach-resonanties uit te kiezen waar neveneffekten van andere resonanties
kunnen worden verwaarloosd. Dit is niet alleen van belang voor experimenten met
enkel 40K, maar ook voor experimenten met mengsels met andere atomaire soorten.
Afhankelijk van de vereisten voor een experiment, kan de best passende Feshbach-
resonantie worden gelokaliseerd.
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