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Chapter 1

Introduction and outline

1.1 Bose Einstein Condensation

The phenomenon Bose Einstein Condensation (BEC) was predicted in the early
days of quantum mechanics by Bose and Einstein [1]. For a system of weakly
interacting Bosons confined in a box, it was found that at a small, but finite
temperature a large fraction of the Bosons would go into the lowest energy
level, thus forming a Bose-Einstein condensate. The major physical significance
of BEC is that the condensate is a system, which shows quantum mechanical
behavior on a mesoscopic scale. As such, BEC is related to phenomena like
superfluidity and superconductivity.

The condition for BEC to occur is that the thermal de Broglie wavelength
A = /27h?/(mkT) is of the order of the interatomic spacing. For atomic
gasses this can only occur for extremely low temperatures. For example, for
alkali-vapors at a density around 10™ particles per cubic centimeter the critical
temperature is of the order 1 K. Over the last twenty years, several techniques
were developed to cool atomic gasses, nearly reaching the transition point. The
key to BEC was found in a combination of two different technologies: laser
cooling and magneto-optical trapping, and evaporative cooling and magnetic
trapping. This resulted in the year 1995 in the experimental observation of
BEC with the alkali elements Rubidium, Sodium and Lithium ([2], [3], [4]).

1.2 Evaporative cooling in the experiment

The goal of the experiment performed at AMOLF is to obtain BEC with 87Rb
atoms. This will provide an environment for further study of the properties
of the condensate. Very briefly, the experiment can be described as follows.
Laser cooling and magneto-optical trapping techniques are applied to obtain
a precooled atomic gas sample of ~10° atoms in an ultra high vacuum glass
cell. The laser light is then switched off and the sample is transferred to a
magnetic trap. After an adiabatic compression stage, the density of the atomic
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Figure 1.1: The level scheme of 3’Rb. The magnetically trapped atoms are
prepared to be in the 281/2, F =2, mp = 2 state.

sample n ~ 102 cm™2 and the temperature 7' ~ 300 pK, corresponding to a
phase-space density nA3 of the order 10~%. Finally, the sample is cooled to the
BEC transition by evaporative cooling. At the current stage in the experiment,
atoms can be loaded into a magneto optical trap (MOT) and the transfer to
the magnetic trap will be soon established. The initial values for evaporative
cooling of density and temperature given here are based on previously performed
experiments in other groups under similar conditions, see for example ?77.

In this report we will focus on the final stage of the cooling process: evapo-
rative cooling in a magnetic trap. The principle of magnetic trapping is based
on the following. A particle with a magnetic moment z placed in a magnetic
field B experiences a potential U (@) = —f- B. When ii is directed parallel
to the magnetic field the particle moves under influence of the magnetic force
F = —VU towards a region of high magnetic field. These particles are called
“high field seekers”. On the contrary, when ji is directed anti-parallel to the
magnetic field it tends to move towards a region of low magnetic field. These
particles are referred to as ”low field seekers”. Since only local minima in the
magnitude of a B-field can exist in a current free region [6], only low field seekers
can be trapped. Therefore, magnetically trapped atomic clouds are prepared in
such a way as to have all their spins pointing parallel to the magnetic field. This
is called ”spin polarization”. In our experiment, the 3’Rb atoms are optically
pumped to the 251/2 , =2, mp = 2 state during the transfer from the MOT
to the magnetic trap (see figure 1.1). The spin states mp = 2 and mp = 1 are
referred to as ”"trapped” states and the other three mp states are referred to as
“untrapped” states.



Atoms in magnetic traps are cooled by evaporative cooling, which is de-
scribed in Chapter 4. The process is based on the selective removal of particles
with energies higher than the mean energy per particle and on thermalization
by elastic collisions. This is similar to for example the cooling of hot water
due to evaporation of water molecules. It is a very powerful technique that can
increase phase space density over many orders of magnitude with relatively low
particle loss. Selective removal of atoms can be accomplished by selectively in-
ducing transitions to untrapped states, where for the shallow magnetic trapping
potentials used, the Zeeman splitting corresponds to frequencies in the radio
frequency regime. This process is described in Chapter 3. When the transition
is sufficiently saturated, all atoms with an energy higher than a certain thresh-
old value, the so called truncation energy ey, can be continuously removed from
the trap. The system effectively cools when the truncation energy is chosen to
be in the order of several times the mean energy per remaining atom ~ k7. As
the temperature of the atomic gas drops about two orders of magnitude during
the cooling process, the truncation energy has to be lowered accordingly.

The first goal of my work was to calculate of the efficiency of the rf-transition
for realistic parameters during evaporative cooling. On the basis of the results
the intensity of the rf-field needed for efficient evaporative cooling was fixed.
Also technical aspects of the implementation of the rf-circuit were considered.
The main goal of my work was to optimize the evaporation ramp, i.e. to de-
termine how to install and lower the evaporation barrier in such a way as to
reach the on-set of BEC with minimal particle loss. This optimization was done
by numerical simulation of the cooling process based on an analytical model
describing the thermodynamics of the atomic cloud. As a whole, this thesis
forms a fairly complete study of evaporative cooling for Rubidium atoms in a
magnetic trap.



Chapter 2

The magnetic trap

2.1 Trap design

Many different magnetic trap configurations have been used to trap atomic gas
samples. In our experiment we use so called the Ioffe trap. It consists of two
7axial coils”, two ” compensation coils” and four straight bars called ”Ioffe bars”,
with currents flowing as indicated in figure 2.1. The coils are wound from square
copper wire, which is hollow to allow water cooling. The currents are provided
by a HP model 6681A power supply, that is able to provide currents up to 580
A.

The field components of the Ioffe trap near the trap center, described in
cylindrical components, are found from [7] and are given by

B. = By+b2?,
B, = —apsin2¢ —bpz, (2.1)
By = —apcos2o,

where z denotes the axis of axial symmetry. The field gradient in the lateral
direction a is provided by the Ioffe bars and the axial curvature b is primarily
provided by the axial coils. The off-set field generated by the axial coils is com-
pensated by the compensation coils to yield a small value By, thereby slightly
reducing the axial curvature. Using a by-pass over the compensation coils the
value of By can be tuned.

The parameters a and b from (2.1) were determined from magnetic field
measurements at low currents (I = 40 A). The field was measured using a
F.W.Bell Gaus meter with a resolution of 0.1 G. The meter essentially consists
of a Hall probe with an active area of 0.18 mm in diameter. Using an assembly of
translation stages the probe could be moved through the interior of the magnetic
trap independently in three dimensions.

Figure 2.2 shows the magnetic field component along the vertical direction
at z = 0 as produced by the Ioffe bars. The data points are well fitted and
yield a gradient o’ = 0.353 T/m. In figure 2.3 the axial field component along
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Figure 2.1: The Ioffe trap: Shown are the ”axial coils”, the ” compensation coils”
and the "Ioffe bars”, where currents are flowing as indicated by the arrows. The
rf-coil is positioned in between the axial coils. The z-axis is taken to be the axis
of axial symetry.

the z-axis as produced by the axial coils together with the compensation coils
is shown. Again the data points are well fitted, yielding a gradient b’ = 14.0
T/m?. For a realistic current of 400 A. during the experiment, we obtain the
values a = 3.53 T/m and b = 140 T/m?.

2.2 The rf-coil

The position of the rf-coil in the magnetic trap is shown in figure 2.1. The rf-
coil is fitted in between the axial coils, which yields a maximum outer diameter
d = 31 mm. For a coil of two windings and wirethickness ~ Imm, the distance
between the center of the coil and the center of the magnetic trap must be at
least 17 mm.

The magnetic field geometry in relation to the direction of the rf-field is
shown in figure 77. Well away from the center of the magnetic trap the magnetic
field is dominated by the quadrupolar field of the Ioffe bars. For this case the
ri-field is directed parallel to the magnetic field lines in the z-direction and
directed perpendicular to the magnetic field lines in the y-direction. Near the
center of the magnetic trap the magnetic field is dominated by its component
By in the axial direction z (shown in the picture as an arrow tail in the center),
so that the rf-field is always directed perpendicular to the trapping field.

2.3 Trapping potential and density of states

The magnitude of the magnetic field |B| near the field center is obtained from
equation (2.1). Neglecting all terms of order higher than p? and using bBy < a®
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Figure 2.2: Measurement of the magnetic field component along the vertical
direction at z = 0 as produced by the Ioffe bars for a current I = 40 A. For
a realistic current I = 400 A during the experiment, we obtain for the field
gradient a = 3.53 T/m.

one finds

|B| = \/a2p? + (By + bz2)2. (2.2)

The associated magnetic trapping potential is given by

Vi(p,2) = grugmr (1B = Bo) = Va2 + U+ 32 —Up,  (23)

which is set to zero in the trap center. The radial gradient «, the axial curvature
0B and the parameter Uy are defined as o = grpgmra, 8 = grigmpb and
Uo = grppmpBo.

All relevant information about the trapping potential is contained in the
density of states, given by

pe) = / drdp 8[c — U(x) — p2/2m]. (2.4)
Evaluating the momentum integral one finds

B 27r(2m)3/2 Sy
ple) = Tt | VTR (2.5)
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Figure 2.3: Measurement of the axial field component along the z-axis as pro-
duced by the axial coils together with the compensation coils for a current I = 40
A. For a realistic current I = 400 A during the experiment we obtain for the
axial curvature b = 140 T/m?.

For a whole class of potentials, the so called power-law traps, equation 2.5 yields
p(e) = Appet/+o, (2.6)

where Apy, is a trap dependent constant. These include square (6 = 0), har-
monic (§ = 3/2) and spherically symmetric traps, with U(r) ~ /% as well as
potentials of the form U(z,y,2) ~ =" + |y[*/® + |2|*/%, with 6 = 3, 6.
The density of states in the Ioffe trap is found by substituting the Ioffe trapping
potential (2.3) into (2.5). This yields a sum of quadratic (6 = 3/2) and cubic
(6 =5/2) terms

p(e) = Arg(e® + 2Upe?), (2.7)

where Ao = (2mn2) 3/2/[(2rh)32023Y2). 1t is readily seen that for tem-
peratures kT > Uy the density of states (2.7) will effectively be the one of
a power-law potential § = 5/2. This corresponds to the case a?p? > Up in
trapping potential (2.3), so that the potential is effectively linear in the radial
direction. For temperatures kT < Uy the density of states is effectively har-
monic (§ = 3/2). This corresponds to the case a?p? < Uy in the trapping
potential (2.3), so that the potential is effectively linear in the radial direction.
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Figure 2.4: The magnetic field geometry in relation to the direction of the rf-
field. This picture represents a crossection through the trap center (z = 0) per-
pendicular to the Ioffe bars. Well away from the center of the magnetic trap the
magnetic field is dominated by the quadrupolar field of the Ioffe bars. For this
case the rf-field is directed parallel to the magnetic field lines in the z-direction
and directed perpendicular to the magnetic field lines in the y-direction. Near
the center of the magnetic trap the magnetic field is dominated by its component
By in the axial direction z (shown in the picture as an arrow tail in the center),
so that the rf-field is always directed perpendicular to the trapping field.
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Chapter 3

Inducing hyperfine
transitions with RF

3.1 Introduction

Magneticaly trapped atoms can be removed from the trap by inducing transi-
tions to untrapped hyperfine spin states. This is done by applying an oscillating
magnetic field with a linear polarization transverse to the static trapping field
B. The surface in space where transitions may occur, is determined by the
resonance condition

gFluB|§(£res)| = hwrf; (3.1)

with w,¢ the frequency of the oscillating magnetic field, gz the Landé g-factor
and j 5z the Bohr magneton. For typical trapping fields of 1072 T, wy; is in the
radio-frequency regime.

When w,¢ is chosen so that resonance occurs at the edges of the trap, the
atoms of low energy, that remain mostly near the center of the trap, are unaf-
fected. However, the atoms that have enough energy to reach the edges of the
trap will pass through a region of resonance and transitions to untrapped states
will occur. If this transition is sufficiently saturated, effectively all atoms with
an energy higher than a certain threshold value will evaporate from the trap.

The main part of this chapter is devoted to a calculation of the transition
probability to untrapped spin states for our 5-level Rubidium atom for realistic
experimental conditions. This will be done on the basis of the ”dressed state”
formalism [8] and involves numerical solution of the time dependent Schrodinger
equation. On the basis of these results, the rf-field amplitude that will provide
efficient evaporative cooling is determined. Finally, technical aspects of the
implementation of the rf-circuit will be considered.

11



3.2 Interaction with a rf-field

3.2.1 The Hamiltonian

Assuming that the atom is following a classical trajectory, the situation of an
atom moving in a magnetic field with a field gradient is equivalent to the situ-
ation of an atom at rest in a time varying magnetic field. The latter point of
view will be adopted here.

The Hamiltonian for a spin in a time varying magnetic field B (t) is given by

H(t) =~B(t) - F, (3.2)

with F the operator of total angular momentum and v = %ﬁ a constant. The

magnetic field consists of a contribution of the trapping field Bi,,,, directed along
the z-axis and a contribution from the rf-field. Assuming a linearly polarized rf-
field with the magnetic field component directed along the x-axis perpendicular
to the trapping field, the magnetic field is expressed as

B(t) = Biap? + By cos(wyt) &, (3.3)

with By the amplitude of the rf-field and w,s its frequency. Substituting this
expression for the magnetic field into the Hamiltonian (3.2) yields

H(t) = wo(t)F; + 2w g cos (wyst) Fy, (3.4)
with wg(t) = YByyap(t) the time dependent Zeeman shift and wg = %’YBrf a

measure of the intensity of the rf-field analogous to the Rabi frequency for a
two level system. Energy and spin are measured in units of 7.

3.2.2 Rotating frame and rotating wave approximation
This system is most easily treated in a rotating coordinate system, turning
around the z-axis with frequency w;s [§8]. The operator U generating this rotation
is given by:

U(t) = e~wrrth, (3.5)

Instead of the usual basis of mp states |a,, > we use rotating basis vectors
given by

lay, (t) >=U(t)|am > (3.6)
and the state vectors |¥(t) > transform as

|U7(t) >= U~ ()| T(t) >, (3.7

12



where the subscript r denotes the rotating co-ordinate frame. The Hamiltonian
in the rotating frame must be the operator generating the time evolution:

. 8 T _ T T
i [0 (8) >= H' (1) 7 (1) > (3.8)

Substituting (3.7) into (3.8) and using iZ¥ = HW, we find that the Hamiltonian
in the rotating frame must be given by

H™(t) =U*H(t)U +iU~'U, (3.9)

where the explicit time dependence of U has been omitted for convenience.
Let’s look somewhat closer at the obtained result. The first part to the right
of equation (3.9) is given by:

U_lH(t)U =wol, + wpFy + wrF, cos 2wt + wrFy, sin 2w,4t. (3.10)

The last three terms on the right of (3.10) have a straight forward physical
interpretation. The linearly polarized rf-field can be regarded as the sum of
two counter-rotating circularly polarized fields. In the rotating frame the co-
rotating component appears static, while the counter-rotating component ro-
tates at twice the frequency. Perturbation theory shows that this quickly oscil-
lating term can be neglected. This is known as the rotating wave approximation.

Apart from the ordinary transformation Hamiltonian U~1H (¢)U, an extra
term has been added to H,, which must be taken into account for any time
dependent transformation. In our case it is given by:

iU = —wyiF. (3.11)

Thus, the interaction energy with the magnetic field has been decreased by a
number of m photon energies. The approximated Hamiltonian in the rotating
coordinate system can now be written as

H"(t) = AQ})F, + wrFy, (3.12)
where the detuning A is introduced as

A(t) = wol(t) — wyg. (3.13)

The thus obtained approximated Hamiltonian is of a very simple form and
is only implicitly time dependent by the time dependence of A(t). For a five-
level spin system (F=2) the energy eigenvalues are calculated and plotted as a
function of A in figure 3.1. Far off resonance, the eigenstates of H" coincide
with the eigenstates of the non-interacting system. For each eigenvalue a number
of photon energies have been added as to make them cross at resonance A =
0. The presence of the perturbation term turns this crossing into an avoided
crossing. Here, an eigenstate of H” will be a superposition of the eigenstates of
the unperturbed system. This means that near resonance, one can not speak of

13
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Detuning A

Figure 3.1: Eigenvalues of H” as function of the detuning A. For reference,
also the non perturbed eigenenergies are shown (dashed lines). Far of resonance
the eigenstates coincide with the eigenstates of the non-interacting system, but
near resonance the levels ”"repel” to form an ”avoided crossing”. The splitting
between the energy levels equals wg.

a photon being either in the field or absorbed by the atom. Instead, the atom
is said to be ”dressed” with the photon energy. Eigenstates of H" are therefore
called "dressed states”.

In this picture a transition from the trapped state to the untrapped state
corresponds to an adiabatic passage along the eigenenergy curve. For a two level
system and for a magnetic field varying linearly in time, the probability P that
an atom passes adiabatically is given by the Landau-Zener formula P = 1—e~27"
[9], with T" given by

=2k (3.14)

This parameter will appear naturally in our equations as we will see later on.

14



3.2.3 Interpretation

The Hamiltonian H” defined in (3.12) is equivalent with the Hamiltonian of a
spin in an effective magnetic field B.g with a time varying component A(t) /v in
the z-direction and a static component wg/+v in the x-direction. This effective
B-field is of magnitude \/A? + w% /7 and its direction changes from the negative
z-axis to the x-axis to the positive z-axis as the atom moves through resonance
so that A changes its sign.

This system of a spin in a changing magnetic field behaves as the classical
system of an angular momentum under influence of a changing external force.
Initially, the spin will be precessing around the effective magnetic field axis with
a frequency proportional to the magnitude of the effective field. As the direction
of the effective magnetic field is changed slowly, allowing many cycles of the spin
precession for a small change in direction of the field, the axis of the precession
follows the axis of the effective magnetic field. So, as A changes sign, the spin
is reversed (adiabatic passage). However, when the direction of the effective
B-field is changed abruptly the axis of precession does not follow the axis of the
field and the initial spin state remains unchanged (diabatic passage).

3.3 Evolution of the system

3.3.1 Time dependent Schrodinger equation

The time evolution of the state of the atom as the it moves through resonance
is determined by the Schrodinger equation

0
25\\1/”@) >=H"(t)|U"(t) > . (3.15)
We expand |U(¢) > in the dressed state basis |¢,,(t) > as follows

U7 () >= Y am(t)e W () > (3.16)

with €, denoting the eigenvalues of H” and where the unknown time dependent
coefficients a,,(t) are to be determined. Substituting the expansion (3.16) in
the Schrodinger equation (3.15), using H”|¢,, >= €,|¢,, > and multiplying both
sides with < ¢,,| from the left, we find a set of coupled differential equations for
the coefficients a,, :

0

SPm()>=0. (3.17)

0 i [ en () —em () dE’
Ean(t)qL;am(t)e Jren@)=em (@)t (1)

When the energy difference between two eigenstates is large, the factor e Jhen)—en(tat’
will be quickly oscillating in time and so the coupling of these two eigenstates

is surpressed. Only near resonance, when the difference in energy is minimum
coupling can become significant.

15



3.3.2 Dimensionless variable

In order to facilitate numerical calculation and to gain more insight in the
parameters governing the problem we introduce the dimensionless variable
At)

2(t) = == (3.18)

The new Hamiltonian as function of z and in units of hwg, is then given by
H?*(z) = —zF, — F, (3.19)

and is implicitly dependent on the physical parameters wo(t) and wg of the
system.

Substituting the new variable z in equation (3.17), a new set of equations is
obtained for the new coeflicients ¢, defined as ¢, (z(t)) = a,(t)

0

52Pm(2) >=0, (3.20)

where the ¢,,’s and €,’s are eigenvectors and eigenvalues respectively of H?>.

The equation thus obtained is only implicitly dependent on the real param-
eters of the system, such as the speed of passage, the form of the trap potential
and the intensity of the rf-field. All these parameters are contained in the factor
w R% appearing under the integral in the exponential. By definition (3.18) of
z, we see that this factor is equivalent to the parameter I" in eq. (3.14)

at  wh -

where the tilde symbol is used to stress that this ” parameter” is actually a func-
tion of the dimensionless variable z. This function we will call the adiabaticity
function. Only, when A is varying linearly in time, [ is a constant. In that case
we will omit the tilde symbol and speak of the adiabaticity parameter.

3.3.3 The matrixelements < ¢,|Z¢,, >

Finally, we derive an analytical expression for the matrix elements < ¢,,| %Qﬁm >
appearing in (3.20). Taking the z-derivative of the equation H?|¢,, >= €, |¢,, >
and multiplying both sides from the left with < ¢,,| one finds that for m # n
the matrix elements are given by

< ¢,| %, >

€m — €n

9
< Pnl g Om >npm= (3.22)

For the case m = n we use the fact that |¢,, > can always be chosen real (true
for non-degenerate states) to show that

0] 10
< ¢n|$¢n >=353; < P lbn, >=0, (3.23)

16



see for example [7].

By diagonalization of H? in the basis of the usual \mF > states and using

BIT?
the easy diagonal form of 2= the quantities i ol LT appearing in the

€m_—€n

right hand side of (3.22) can be analytically calculated.
After some analytic manipulation, a very simple form is obtained

0 1 0 0 O
5 10 4 0 0 .
< ¢n‘_¢7n >= 0 7ﬁ 0 5 0 X 2 (324)
02 0 0 -8 0 1| 1T?
0 0 0 -1 0

where 8 = % = \/g The multiple zero entries of this matrix
imply that only neighboring dressed states are coupled by the rf-field. Why this

is the case is not yet clear.

3.4 Transition probabilities

Let’s summarize the problem. We aim to calculate the probability of finding
an atom, initially prepared in the trapped state mpr = 2, in an untrapped mg
state after it has moved through a region of resonance with the rf-field. This
problem has been reduced to numerically solving the equations (3.20).

In the limit of large and negative z, the initial state of the atom mp =
2 corresponds to the eigenstate |¢p; >, where the dressed states |¢,, > are
numbered from 1 to 5 by increasing eigenvalues as shown in figure 3.1. So, the
boundary conditions for equation (3.20) are summarized as

lim ¢i(z) =1and lim cpzi(2) =0. (3.25)

2——00

In the same way, the transition probability P to the untrapped mp states mg =
—2,—1,0 can be expressed as

P = lim (ex(2)[? + [ea(2)[? + |ea(2) ). (3.26)

For simplicity, let’s assume that the adiabaticity function f‘(z) is a constant:
[(z) =T. (3.27)

The solutions of equations (3.20), and so the value of the transition probability
P, are then purely determined by the value of I'. A set of solutions ¢y (z) for
I' =0.1 is shown in figure 3.2. The picture shows clearly how coupling between
dressed states is surpressed for large and negative z, then becomes important
in a region of resonance around z = 0 and then gets surpressed again for large
z. For increasing I, the coupling between different dressed states is surpressed.

17



lc,(2)|

Figure 3.2: A set of solutions ¢, (z) for I' = 0.1. Coupling between the dressed
states is strong around the resonance z = 0.

This is shown in figure 3.3, where the coefficient |c1(z)| corresponding to the
initial state |¢; > of the atom, is plotted for different values of I'. The transition
probability to untrapped states P is calculated for different values of I" as shown
in figure 3.4. The value of P approaches unity around I' ~ 1. At ' = 1 the
transition probability is: P = 0.97.

3.5 Rf-amplitude for efficient evaporative cool-
ing
3.5.1 Lower bound

We first apply the results of the preceding section to calculate the minimum
rf-amplitude B,; needed in order to efficiently drive transitions to untrapped
states. We consider the case of a Rubidium atom, trapped in the Ioffe trap
described in chapter 2, passing a region of resonance with a constant velocity v
in the outward radial direction in the plane of symmetry midway between the
axial coils (z = 0). The magnetic field component of the rf-field is assumed to
be directed perpendicular to the static trapping field.

The magnitude of the magnetic trapping field is found from equation (2.2)
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Figure 3.3: The solution |c1(#)| for different values of I. For increasing I'
coupling between dressed states is surpressed. For I' = 2 the transition is
almost completely adiabatic, while for I' = 0.2 the transition is non-adiabatic.

as

‘é(p, 2= 0)‘ = \/a2p? + B2, (3.28)

with a the magnetic field gradient and By the off-set field. As discussed in
section 2, the magnetic field is effectively linear in p for temperatures kT > Uy
and for kT' < Up it is harmonic, where Ug = grmp g Bo. These two limits are
separately discussed.

Linear limit

At the start of the cooling process the magnetic field is effectively linear in p:
B = ap. Using the definition of the detuning A in equation (3.13), we find that
the adiabaticity function I'(z) of (3.21) is a constant:

~ w2 w2 w2
I(z)= & =—=~-=—L_T (3.29)
- Vd_pT# yav

So, the result obtained in the preceding section can be directly applied to find
the transition probability P for any given values of wg and v.
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Figure 3.4: The transition probability to untrapped states P as function of the
adiabaticity parameter I'.

We assume the transition to be sufficiently saturated when the transition
probability of an atom moving at twice the mean thermal velocity is close to
unity. So we demand

P(wR, QUT) ~ 1. (330)

with vy = 1/% the mean thermal velocity of the Rubidium atom. Fixing

P(wg,2vr) at 0.97, a value that is obtained for I' = 1, we can express the
amplitude of the rf-field needed in the evaporation process as a function of
the temperature. For a temperature of 300uK in the beginning of the cooling
process we find: Bt = 1.3 107° Tesla. As temperature goes down, keeping the
transition probability P constant, By¢ decreases as v/T.

Harmonic limit

For temperatures below ~ 10uK the magnetic field at resonance is no longer
linear. The magnetic field gradient will deviate from the value a in the linear
limit and moreover, it will vary over the resonance region. However, when the
resonance is considered to be sharp so that ‘fl—f will not vary appreciably over

the region of resonance, it is reasonable to approximate f‘(z) by its value at the
resonance I'(0). The effective adiabaticity I'.y thus introduced can be written
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as the product of the adiabaticity parameter I' in the linear case and a factor
depending on the ratio of the truncation energy e; to the trapping parameter
U()C
2
~ w 1
P = F(O) = ’ycﬁ) U >
1- ([]0“:367: )

(3.31)

The extra factor simply arises from the fact that the field gradient decreases as
the position of resonance moves towards the field minimum. For high tempera-
tures we have e; > Uy and I'.g will approach the value of I' in the linear limit
given in (3.30).

The validity of this approximation can be easily checked by comparing the
value of P calculated from the exact solutions of (3.20) with the values obtained
using the constant I'yy. For ['ey = 1 we found that the error in the value of P
is over the whole temperature range smaller than 0.1%.

The rf-field amplitude for a constant value of 'y = 1 is shown as function
of temperature in figure 3.5 for a constant truncation parameter n = 8. In the
last stage of the cooling process at a temperature of 1K, the field amplitude
B, has been reduced to Bys = 2.2 1075 Tesla.

3.5.2 Upper bound

In order to have efficient evaporative cooling, the atoms of low energy in the
center of the trap should not be affected by the rf-field. Therefore, we demand
the mixing of the my states due to the interaction with the rf-field to be negli-
gible for atoms near the trap center. From Hamiltonian (3.12) we find that this
is the case when the detuning in the trap center Ag = |A(p =0,z = 0)] is large
compared to wg:

Ap > wp. (3.32)

This condition yields an upper bound to the rf-amplitude.
The detuning in the trap center is related to the truncation energy as Ag =
wit — wo(7 = 0) = %e; /R, so condition 3.32 can be rewritten as

2hwp < .

The quantity hwgr appears in the dressed state picture as the splitting between
the energy levels at the avoided crossing (see figure 3.1). Physically, this con-
ditions states that the deformation of the trapping potential due to the rf-field
should be small compared to the trap depth.

Here, we explicitly adopt the condition 2hwg < 0.1¢; to find an upper bound
to the rf-amplitude for efficient evaporative cooling. Both the upper and the
lower bound are plotted in figure 3.5. At the start of the cooling process,
the upper and lower bound are spaced far apart. The exact value of the rf-
amplitude is not critical, as long as it is in between the two curves. For lower
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Figure 3.5: A lower bound and an upper bound to the rf-amplitude for efficient
evaporative cooling. The lower bound originates from the condition that the
rf-transition should be sufficiently saturated. The upper bound follows from
the condition that the atoms in the trap center should not be affected by the
rf-field. At a temperature 7'~ 1 pK the lines cross, which implies that it may
not be possible to efficiently remove the atoms with high energy from the trap
without affecting the atoms with low energy in the center of the trap.

temperatures the spacing between the curves decreases and the lines even cross
at a temperature 7' ~ 1p K. This implies that the exact value of the rf-amplitude
is critical and that for very low temperatures it may not be possible to effectively
remove atoms from the trap without affecting the atoms in the center of the
trap.

3.6 Design of the rf-circuit

In the last section we calculated the amplitude of the rf-field needed for efficient
cooling during the evaporation process. It depends on the temperature and on
the truncation energy and necessarily decreases as the gas cools. In this section
we discuss how this can be technically realized. Our aim is two-folded: First we
aim for achieving an amplitude B,; = 150+ 10~ T at 50MHz, which corresponds
to efficient evaporation at a temperature 7' = 500u K for a truncation parameter
7 = 10. Then we must provide for a method to lower the rf-amplitude as the

22



temperature decreases.

3.6.1 Rf-coils

Coils of 1 mm thick copper wire of different number of windings N are tested
(N = 1,2,3,4). The dimensions of the coils are specified by the position at
which they are fitted into the magnetic trap as discussed in section 2: The outer
diameter d = 31mm and the outer edge of the coil can be placed 16mm from
the atomic cloud. The wavelength of the electromagnetic wave at 50MHz is 6m,
which is much larger than the dimensions of the coils. The self inductances L
for the different coils are measured on an impedance analyzer (Hewlett Packard
model 4192) at a frequency of 10MHz and are shown in the inset of figure
3.6. The coils are directly connected to an rf-generator without any impedance
matching. The total impedance Z;.; is thus given by Zi,s = R + iwL, with
Ryt the internal resistance (Rin; = 50Q2) of the rf-generator and w the angular
frequency. The output amplitude V; of the generator is set to 1V, into 50€2.

The amplitude of the rf-field is measured using a pick-up coil of two windings
of diameter 11mm (wirethickness 0.35 mm). Since the magnetic field is approxi-
mately homogeneous over the area of the small coil, the voltage over the pick-up
coil V,, is related to the oscillating magnetic flux as V,, = n * A, * %, with
n = 2 the number of windings and A, the area of the pick up coil (4,, = 97
mm?). The field amplitudes measured in the coil center as a function of fre-
quency are shown in figure 3.6. The solid lines are calculated from the currents
through the rf-coils |I| = |2Vp| /| Ziot| and using the well known formula for the
B-field on the axis of a current loop

2

r
B(I) = uOIN—Q(TQ T 1-2)3/2’

(3.33)

with 7 the coil radius (r = 15mm), = the distance from the coil center and p
the vacuum permeability. The data points overlap with the calculated curves
to a reasonable precision. The differences may be explained by the fact that the
self inductance L is not constant over frequency range of interest. The coil with
N = 2 produces the highest amplitude at 50MHz: B, = 6.2 10~7 T.

From this data we can obtain the power needed for the rf-generating system.
Taking into account the decrease in amplitude of a factor 0.29 at a distance of
17 mm from the coil center (see 3.33), we find that an amplification of 38 dB
is needed compared to the 1 V,,_,, setting of the function generator to obtain
a field amplitude B, = 150 * 10~7 T. This corresponds to a maximum output
power of the generating system of 17 Watt.

To investigate the influence of the magnetic trapping coils to the impedance
of the rf-coil N = 2, the rf-amplitudes were measured with the rf-coil placed at
its position in the magnetic trap. The results are shown in figure 3.7, where the
measured and calculated rf-amplitudes from figure 3.6 for the coil N = 2 are
shown for comparison. Apart from several small resonance peaks, the influence
of the magnetic trap is mainly shown by the presence of a distinct resonance
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Figure 3.6: Rf-amplitudes measured in the coil center for coils of outer diameter
d = 31 mm with different number of windings. The voltage of the rf-generator
is set to 1 V,,;,. The amplitude of the rf-field is measured using a pick-up coil of
two windings of diameter 11mm. The solid lines are calculated from the currents
through the rf-coils |I| = |2Vy| / | Ziot| and using formula 3.33 for the B-field on
the axis of a current loop

peak at 3 MHz. The width of the resonance, defined as the sum of the halfwidths
of the upward peak and the downward peak, is ~ 0.4MHz. At the top of the
resonance peak the amplitude is increased by a factor 3 and at bottom it is
decreased by the same factor. The temperature corresponding to a ri-frequency
of 3 MHz is ~ 30 uK (for n = 8). For this temperature the values for the
upper and lower bound in figure 3.5 are spaced apart more than one order of
magnitude.

3.6.2 Rf-Generator

In the final experimental set-up, the rf-field will be generated by a function
generator (Wavetek model 80) that operates in the frequency range 10mHz to
50MHz. The frequency is controlled by supplying a voltage to the frequency
modulation input. The rf-generator will be used in combination with a 25 Watt
broadband RF Power Amplifier that operates over a frequency range 10kHz-
250MHz. To decrease the rf-amplitude during the cooling process, a tunable
attenuator was set up. The attenuation factor is tuned by a controller voltage.
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Figure 3.7: Rf-amplitudes measured for the coil N = 2 placed at its position in
the magnetic trap. The measured and calculated rf-amplitudes from figure 3.6
for the coil N = 2 are shown for comparison. Apart from several small resonance
peaks, the influence of the magnetic trap is mainly shown by the presence of a
distinct resonance peak at 3 MHz. The width of the resonance, defined as the
sum of the halfwidths of the upward peak and the downward peak, is ~ 0.4MHz.
The rf-amplitudes at the top and the bottom of the resonance peak differ by a
factor ~ 10.

In this way, the current through the rf-coil can be varied over ~one order of
magnitude over the frequency range of interest. Both the ri-frequency and
amplitude are controlled by computer.
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Chapter 4

Evaporative cooling

4.1 Introduction

Evaporation as a cooling mechanism is well known from daily life. It serves to
carry off heat from the human body during exertion and cools a hot cup of
coffee. The principle of evaporative cooling is based on the preferential removal
of particles with an energy higher than the mean energy per particle and on
thermalization by elastic collisions.

The same principle can be applied to cool trapped atomic gas samples. Let’s
assume that all atoms with an energy higher than a threshold value &, the " trun-
cation energy”, will escape from the trap with unit probability. The truncation
energy has to be chosen larger than the average energy per atom. By elastic
collisions between atoms, the system tends to restore thermal equilibrium and
to redistribute itself over all the available states. So, atoms are continuously
scattered into the high-energy region (¢ > &;) and leave the trap. Since these
atoms carry away more than their share of mean energy the gas cools. This
process is called plain evaporative cooling.

After a while the mean energy per remaining atom becomes much less than
the truncation energy &;. As fewer and fewer atoms will acquire an energy
sufficient to escape from the trap, the cooling will become less efficient and
eventually be exponentially suppressed. To maintain a high cooling rate the
truncation energy must be ramped down in time. We are now speaking of forced
evaporative cooling. At this point it is convenient to introduce the truncation
parameter 7, which is defined as e, = nkT. Evaporative cooling with a constant
truncation parameter is a typical example of ”forced” evaporative cooling.

For the temperature regime of interest, elastic collisions result only from
the s-wave channel. The elastic cross section ¢ is then only a function of the
scattering length a and is for Bose atoms given by o = 8ma?. For 37Rb in the
F = 2, mp = 2 state the scattering length can be found from [11] and yields
a = 109ag, with ag the Bohr radius.

In order for evaporative cooling to be efficient, an atom acquiring an energy
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€ > & in an elastic collision event must leave the trap before experiencing
another elastic collision. This will be the case when the mean free path A is
much larger than the dimension [ of the sample:

AL (4.1)

At the start of the cooling process, at a typical density n ~ 102 cm™ and

temperature T' ~ 300 pK, we have A = 1/no ~ 0.5mm and the radial dimension
[~ kT/a ~ 0.1 mm, with « the radial gradient of the magnetic potential (2.3).
Thus condition (4.1) is satisfied. During the cooling process we may have to
adiabatically expand the trap in order for this condition to remain satisfied.

4.2 Enmergy distribution function

Evaporation is by its very nature a non equilibrium process. Nevertheless,
let’s first briefly discuss some aspects of the energy distribution for a trapped
atomic cloud in equilibrium in the non-degenerate regime. Applying Maxwell-
Boltzmann statistics, as the classical limit of quantum statistics, one finds the
Maxwell-Boltzmann (MB) energy distribution function

—&/kT
fleg=ze ", (4.2)
characterized by the temperature T of the atomic cloud. The fugacity z, also
written in terms of the chemical potential p as z = e“/kl, follows from the
condition

N = / dep(e) () (4.3)

with N the number of atoms and p(e) the density of states. In the non-
degenerate regime (z < 1) the fugacity can be expressed in terms of the par-
ticle density in the trap center and the thermal de Broglie wavelength A =
(27h? /mkT)'/? as

z=n(0)A3, (4.4)

where the quantity on the right side is called the phase-space density.

Now let’s assume that all the atoms from the tail of the MB distribution (4.2)
are removed. Since equilibrium is disturbed strictly speaking the temperature
can not be defined. However, if the average energy per trapped atom is much
smaller than the evaporation threshold, most interatomic collisions lead to a
thermal redistribution of the energy over states in the range ¢ < ;. Therefore
one may assume that the remaining atoms are in quasi equilibrium, distributed
as a truncated MB distribution with a quasi-temperature 7'
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fe) = ze=*/*T x Oy — €), (4.5)

where O(e; — ¢) is the Heaviside step function. The normalization constant z
again follows from (4.3). When &, > kT the parameters T and z reduce to the
equilibrium temperature and fugacity respectively.

To assure that all atoms of energy € > ¢, leave the trap one must require
7sufficient ergodicity”. This means that the phase space distribution is only a
function of the single-particle energy e(r, p) = p?/2m + U(r). This allows us to
write

f(r,p) = ngA3ecmP)/KT o O(er — e(r,p)).- (4.6)

Sufficient ergodicity is obtained in a trap with ergodic single particle motion
[12]. If this is not the case we assume that the phase space distribution still
obeys "sufficient ergodicity” as a result of interatomic collisions.

4.3 Modeling evaporative cooling

The process of evaporation can be described using the well known Boltzmann
equation. Under conditions of sufficient ergodicity and assuming only s-wave
collisions, the Boltzmann equation reduces to an equation for the evolution of
the distribution function f(e) of a particularly simple form [13].

The group of Walraven showed by numerical solution of the Boltzmann equa-
tion that the evaporation process conserves the truncated MB distribution ac-
curately. Subsequently, adopting the truncated MB distribution, analytical ex-
pressions were derived for the rate at which atoms are scattered into the high
energy regime ¢ > ¢4 and for the energy they carry away on average. These ex-
pressions form the basis of a thermodynamical model describing the evaporation
process [13],[14].

The most detailed modeling has been done numerically using the direct
simulation Monte Carlo method [15] making no assumptions about the form of
the distribution function at all. It can be used to study evaporative cooling
in more complicated situations, for example when the elastic cross-section is
energy dependent or when the mean free path of the atoms is comparable to
the size of the gas cloud. However, the analytical treatment of Walraven gains
more insight in the evaporation dynamics. In the following we will adopt the
thermodynamical model of Walraven.

4.3.1 Thermodynamic properties
Partition function and reference volume

Once the truncated distribution (4.5) has been adopted a thermodynamical de-
scription of the atomic gas, analogous to the equilibrium case, follows naturally
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with the truncation energy as an additional thermodynamic variable. As a
starting point one writes for the normalization constant z in equation (4.5)

2z = ngA3, (4.7)

thus defining the reference density ng which, in the limit ¢, — oo, coincides with
the density in trap center n(0). From (4.3) it follows that the reference density
can be expressed as

N
ng = Wﬂ (48)
where we have defined the ”truncated” partition function
(= [ deplere T, (4.9)
0

that is the ordinary partition function with truncated region ¢ > & left out.
In analogy to the effective volume Vg = %, we can now define a reference
volume V, as

N
n

V., = — = (A3 (4.10)

o

The reference volume has very nice properties due to its simple relation to
the partition function. Therefore it is rather the reference volume V, and the
reference density ng, instead of the true density in the trap center n(0) and
effective volume Vg, that are introduced in the formalism.

The partition function ¢ is a central quantity. In the case of power-law
trapping potentials, characterized by the exponent ¢ and the constant Apj,
defined in equation (2.6), it can be explicitly calculated:

Cp=Apr / de NPT — ¢ P32 46, (411)
0

where ¢ = Apr(kT)3/?+°T'(3/2 + §) is the partition function of an infinitely
deep power law trap (7 — oo) . The gamma function I'(a) and the incomplete
gamma function P(a,n) are defined as in [16]. It is seen that the partition
function depends on the ratio of the truncation energy and temperature, i.e. on
the truncation parameter 7, explicitly.

Since the density of states in the Ioffe trap (2.7) is the sum of two power-law
contributions, one easily finds for the partition function for the Ioffe trap

§=5/2 §=3/2

C[Q =SpL +<:pL ) (4-12)
A 6=5/2 §=3/2 L
where the separate contributions ¢, '~ and (p;’" are found by substituting

§=5/2

the indicated value of ¢ into equation (4.11). The associated constants A,
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and A6P:L3/ % are determined by the trapping parameters «, 3 and Uy in the Ioffe
potential (2.3) as A‘SPZLE’/2 = Ao and A‘SP:L?’/2 = 2UpA1q, where Arg = (2mn?)
3/2 /[(2wh)32023"/?] is defined in equation (2.7).

Density distribution

The density distribution is found by integrating the distribution function in
phase space (4.6) over the momentum coordinates. The integral yields

n(7) = [ @) = moexp(-UG/KT) < PB/2 K, (413

with x(F) = (e, — U(F))/kT [13] and P(a,n) the incomplete gamma function
[16]. In the limit of large n the truncated density distribution reduces to the
equilibrium distribution n(7") = n(0) exp(—U(7)/kT).

Energy

The total energy is obtained by counting the number of atoms in a state of
energy &, multiplying with their energy and summing over all states:

E= /de ep(e)f(e). (4.14)

This can be expressed in terms of the logarithmic derivative of the partition
function to temperature as

dln¢

where the derivative is evaluated keeping the truncation energy constant. Using
the definition of the reference volume (4.10), this expression can be rewritten in
the form

E = (3/2+~)NET, (4.16)

_ (0InV,
’y: (81nT>8I" (4.17)

In the limit of large 7 the quantities %N kT and yNET can be interpreted as
the kinetic and potential energy respectively. For finite 7 this is not the case,
although their sum still is the total energy.

The parameter «y can be explicitly calculated for power-law traps using the
expression (4.11) for the partition function:

with

3/2+ Ypp — (%) — (3/2+6)RG/2+6,m),  (418)
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where R(a,n) = P(a+ 1,7n)/P(a,n). Using the relation (4.12) for the partition
function in the Ioffe, trap the parameter v for the Ioffe trap can be written as
a linear combination of yp;’s as

5=3 §=5/2

/2
Ypr T Cuap Ypr
= 4.19
Y1Q T+ Covap ) ( )

With cipap = Ch70/2 /03 = (3KT/2U0) R(3, 7). In the high temperature limit

KT > Uy our v, reduces to 7§):L5/ ? and in the limit of low temperature k7T < Uy

it reduces to 76;5’/ 2,

4.3.2 Kinetics

In the last section we have discussed some thermodynamical quantities in the
case of a truncated MB distribution. Now let’s discuss how the system evolves
in the course of the evaporation process.

During the evaporation process particles are continuously lost from the trap,
due to several distinct mechanisms. First of all particles leave trap due to
evaporation. Secondly, particles are lost by ”spilling”. Spilling results from the
fact that, as the truncation energy is ramped down, the atoms occupying states
at the truncation edge of the MB distribution are simply ”cut” away. Finally,
particles are lost due to collisions with the background gas or by processes like
dipolar relaxation and three-body recombination [17].

Summarizing, we write the rate of change of the number of trapped atoms
as well as the rate of change of the total energy as the sums of the independent
contributions of evaporation, spilling and loss mechanisms:

N = Ne’u + Nspil + N10337 (420)

E = Eev + Espil + Eloss- (421)

In this section these independent contributions will be discussed one by one.

Evaporation

By elastic collisions atoms may obtain an energy that is higher than the trun-
cation energy and evaporate from the trap. This process is described by the
Boltzmann equation. Under conditions of sufficient ergodicity and assuming
only s-wave collisions, the Boltzmann equation reduces to an equation for the
evolution of the distribution function f(e) of a particularly simple form [13].
The rate of change of the number of particles due to evaporation

Now = / (6] () de (4.22)

£t
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can then be expressed in terms of an evaporation volume V., as

Nev ev
N = —n(ﬂ’)(re*"“//e ; (4.23)
with o the cross-section for s-wave collisions and v = /8kT/mm the mean

thermal speed in equilibrium. The evaporation volume V., defined in [13],
can be calculated as a function of temperature and truncation energy once the
density of states is known. The ratio V,. /V, is for typical values of n between
5 ~ 10 of the order unity. The evaporation rate (4.23) may be interpreted as
the product of the elastic collision rate ngvo and a probability that an elastic
collision event produces an atom of energy higher than e;. This probability
critically depends on 7, because this parameter appears as an exponential in
the equation.
The total energy loss due to the evaporation of atoms

E., = /oo ep(e)f (e) de (4.24)

can be calculated introducing another volume X, :

Eev = Nev [77 + (1 - Xev/‘/ev)}kTa (425)

where the definition of the volume X, can be found in [13].The ratio X, /Vey
depends only on the density of states in the trap and may vary between zero and
one. Physically this means that the evaporating atoms carry away on average
an energy less than k7T above the truncation energy.

The evaporation volumes are explicitly calculated for power law traps. We
have

Vevpr = Moo [nP(3/2+6,m) — (5/2 + 6)P(5/2 + 6,1)) (4.26)
and
Xevpr = N3¢ P(7/2+6,7). (4.27)

For the Ioffe trap, V., and X., may be expressed as the sums two power-law
contributions:

Velg = Vol s +Vopl, (4.28)
and
XC"IQ = ‘Xv((‘,sv:]fl//2 + va:]fl/?' (4‘29)
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Spilling

When the evaporation barrier is ramped down, atoms occupying states at the
truncated edge of the truncated MB distribution are removed from the trap
without contributing to the cooling of the sample. This is called spilling. Spilling
may also occur due to other changes in the trap geometry, but here we consider
only spilling due to the lowering of the truncation energy. The spilling rate is
then given by the number of atoms occupying states near the truncated edge
times the rate at which the truncation energy is ramped down:

Nipit = plet) f(e)é. (4.30)

&t

Using the fact that p(e;) f(e;) = noA? <§—<>T and using the definition (4.10) of

the reference volume we obtain

Nspil ét
— ={—= 4.31
2t (431)

where the spilling parameter ¢ is defined by

~ (0IlnV,
¢ = <aln€t>T. (4.32)

The energy loss rate is simply given by:

Eopil = €1 Ngpil (4.33)
For power-law traps the spilling parameter & can be explicitly calculated,
$pr = (3/2+6)[1 = R(3/2+ 6,1), (4.34)

and it is interesting to note that for power-law traps £ is related to v in a
particularly simple way:

vpr +&pr = 6. (4.35)

Similar to the expression for v, , we can write for the spilling parameter
for the Ioffe trap

6=3/2 6=5/2
PL/ +ctra1)§PL/ (436)

b
1 + ctrap

$rg =

from which we easily obtain

3/2 4 (5/2)cirap
T1Q + ng - / 1 JE C{ra)bt = (437)
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Loss processes

In our atomic sample three kinds of collisions may contribute to atom loss.
These are background collisions, two-body spin-relaxation and three-body re-
combination [17]. We may assume that all the products of such collisions leave
the trap, either due to the fact that the product is in an untrapped state or
because the recoil energy, that accompanies these collisions, makes the atom
too energetic to be confined in the trap.

The rate of change of particles due to some i-body collision process is given
by

(M) S / drGy(r)n' (v), (4.38)

with G;(r) the position dependent rate constant. Neglecting the position de-
pendence of GG;, this expression can be written in the form

NOS§ ) — ‘/ie
<IT> = Gy 7, (4.39)

where we have introduced the reference volume for multibody collisions as
Vi = / dr {@} . (4.40)
ng

For two- and three-body collisions (i = 2,7 = 3 resp.), this reference volume can
be calculated numerically using the expression for the density (4.13). For back-
ground collisions (¢ = 1) this reference volume simply reduces to the ordinary
reference volume introduced in (4.10).

The energy loss due to an i-body process can be written as

(Eloss) L= (Moss) . Ei) (441)
T T
with &; the average energy of an escaping atom, that is given by:

_ _ Jdrdp n(x)'" f(r,p)e(r, P)

Ei = - 4.42
[ drdp n(r)"='f(r,p) ( )

It can be shown that this expression can be rewritten as
g = (3/24~;)kT, (4.43)

with
T [0V

= —_— . 4.44
w=a (% ) (4.44)

For background collisions we have «y; = =y, which implies that atoms that are
removed by background collisions on average carry away an amount of energy
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equal to the mean energy per atom, thus leaving the temperature of the sample
unaffected. For two- and three-body collisions we have ;3 < 75 < . Because
these processes are more likely to occur in the trap center, where the density
is the highest, the removed atoms carry away on average an amount of energy
smaller than the mean energy per remaining atom. As a result these processes
may cause heating of the sample.

4.3.3 Differential equations for the evolution of the gas

In the last sections we have discussed the processes that lead to particle and
energy loss during evaporative cooling. From a thermodynamical point of view
the decrease in energy is related to a change in the thermodynamical variables.
Formally we can write:

dE(N,T,n) (OE . (OE . (OE .
dt B (8]\[>T,n]\[jL <8T>N,77TJr (877)N,T77. (4'45)

The time derivative of the truncation parameter 7 is related to the time deriva-
tive of truncation energy and temperature as /7 = &, /e, — T/T. Here, we have
explicitly chosen 7 as the third thermodynamical variable, firstly because many
thermodynamic quantities depend explicitly on n and secondly because we ex-
pect 1 to vary only slightly when the evaporation ramp is performed efficiently.
Therefore, the term (0E/0n) 5 o7 will be small and may for some purposes be
neglected. 7

Having obtained explicit expressions for N and F in the preceding sec-
tion, we see that expression (4.45) determines the time evolution of the quasi-
temperature. Using equations (4.16) and (4.21), we rewrite (4.45) as

. ) ) . 9
CnT = Ecv + Espil + Eloss - (3/2 + ’Y)NkT — NET <8_z> 7'7, (446)
T
where we have defined the heat capacity at constant 7 as
oF O
Cr=| = =[3/2 T|(—=—| |Nk. 4.47
= (57), =Brerer ()] (4.47)

Together with equation (4.20) we have now obtained a coupled set of equations
describing the evolution of the quasi-temperature and the number of particles
during the cooling process.

4.4 The efficiency of evaporative cooling

The aim of this thesis is, among others, to optimize the evaporation ramp.
What do we mean by that 7 It may be clear that, the higher we choose the
truncation energy, the more energy each evaporating particle will carry away.
In the extreme case we would put it almost at infinity and just wait for the
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one particle containing all the energy of the sample to come along, achieving
BEC at once. Off course this is a very speculative case: we would have to wait
so long for this to happen that we would probably not live to see the event
and moreover the sample would have since long vanished due to collisional loss.
Therefore, we have to trade off between evaporation efficiency and evaporation
speed to find the optimum value of the truncation energy.

In this section we will explain how to find this optimum value at any given
instant in time with given values of N and 7. Later on the results will be used
to find the optimum trajectory of the truncation energy e;(t).

4.4.1 The efficiency parameter

The efficiency of evaporative cooling is defined as the increase in phase-space
density per particle loss. We formally define an efficiency parameter x as

_ dlnz  %/z
= TN~ TN (4.48)

Since we obtained explicit expressions for the time derivatives of N and T in
equations (4.20) and (4.46), it may be convenient to express the efficiency pa-
rameter x in terms of the decrease in temperature per particle loss. So, we
rewrite expression (4.48) as

_ dlnz(N,T,n)  (Olnz _(9nz oo Olnz .
AT dln N N Jdln N T OlnT N olmn ) nr

(4.49)
with
dinT
and
_dlnn
K= TN (4.51)

In the course of the cooling process we expect the number of particles in the
trap to decrease about two orders of magnitude, while the truncation parameter
should be approximately constant. So, unless sudden changes in the truncation
parameter occur, we may expect the parameter x to be much smaller than
unity throughout the cooling process (k < 1). Furthermore, reminding that
z= %As, we have

Olnz dln'V, _ dln'V, _
81nn4_<81n77>T4 <8ln5t>T & (452)
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which is much smaller than unity for typical values of 1 (£ < 1). Therefore we
may neglect the last term in expression (4.49) and write the efficiency parameter
in terms of the parameters v , £ and « as

x=0B/2+v+a—1. (4.53)

Since the quantity (v + &) for the Ioffe trap only slightly depends on 1 (and is
constant in the case of a pure power-law trap) the 1 dependence of  is primarily
contained in the parameter a. Therefore, optimizing o automatically optimizes
x and from now on we consider simply the optimization of a.

The parameter « in the absence of loss processes

The parameter « is found by solving for (7'/T)/(N/N) in equation (4.46), while
substituting Nc\, =N-— Nspi] — Nmss for the evaporation rate. For the simplified
case of evaporation in the absence of loss processes the parameter o can be
written as

5(]— - Xev/‘/ev) + 77%2,‘

a=a,—K O e XorfVi) (4.54)
where
- dinT 777+(1*X(‘v/‘/:‘v)*(3/2+’y)
O = <dlnN>77 T T C/NE+ €1 = Xov/Vir) (4.59)

is the parameter « for evaporation at constant truncation parameter (x = 0).
Neglecting the term of the order x in (4.54) (k < 1), we have o =~ «,,. For
power-law traps in the limit of large 7, (4.55) reduces to

_n=(3/2+96)
R

which shows that in the absence of collisions the efficiency parameter can be
made arbitrarily large by choosing a large 7 .

— 00), (4.56)

4.4.2 The role of collisions

The presence of collisional loss sets a limit to the efficiency we may achieve. In
order to have efficient evaporative cooling, substantially more atoms should be
removed by evaporation than by background or inelastic collisions. Since the
evaporation rate depends inversely exponential on 7, this poses an upper limit
to the truncation parameter for the evaporation process to dominate.

In this context we consider the ratio of evaporation rate to collision rate due
to some i-body loss process, R; = N, / Nioes. From equations (4.23) and (4.39)
we find

T Yer o1
n()UO'TG 1 ‘/ev _
Rj=— Ve — v, 4.57
nf)_le“//‘{" A Ve ( )
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no losses

Figure 4.1: The efficiency parameter « in a harmonic trap as a function of the
truncation parameter 7 for different values of the collision ratio A, i.e. the ratio
of the loss rate due to some i-body process and the elastic collision rate. Each
value of A corresponds to three curves, each curve corresponding to the case of
only one-body (7;), two-body (y,) or three-body (74) loss, where A; = A. For
decreasing A, the maximum efficiency that may be achieved increases.

where we have defined the collision ratio )\; as the ratio of the loss rate due to
an i-body process to the elastic collision rate:

4.
1/Ta vo V., (4.58)

The quantity 1/); is known as the ratio of good to bad collisions. In our
equations we now substitute for the rate of change of particles

=3
i=1

and for the rate of change of energy

=5 (3/2+ 1)

Ecv + Eloss - N‘,v [77 + (]- - Xcv/v:‘,v) + Zi:l R.

]. (4.60)
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The parameter « in the presence of loss processes

For the parameter « at constant truncation parameter including loss processes,
one finds

(= X /Ve) = (3/24 ) — ¥ TNy — )\
C/NE+ (1 — Xoy /Vor) + en¥e= SZ3[C + £(3/2+ 7, — )]\

ay (4.61)

Compared to the expression (4.55) for a,, in the absence of losses, additional
terms appear that depend exponentially on 7. For the case of a harmonic
trapping potential (6 = 3/2), «, is plotted as a function of 7 for different values
of A\ in figure 4.1. Each value of A corresponds to three curves, each curve
corresponding to the case of only one-body (7;), two-body (75) or three-body
(v3) loss, where \; = \. For low values of 7 (i.e. €”\ < 1) the terms originating
from loss processes in (4.61) are negligible. For increasing values of 1 however,
inevitably these terms will dominate (e”A > 1), causing «,, to decrease. The
smaller A, the higher is the efficiency that may be achieved.

Let’s discuss what values of A we may expect in practice. In accordance
with previously performed experiments in other groups under similar vacuum
conditions (p ~ 10~ 'mbar), we expect the lifetime in the magnetic trap due
to background collisions to be 7y, ~ 10s. (see for example [18]). For the
rate constant Gp this yields G1 = 1/ 7,, = 0.1s7!. The value of the rate
constant Gg for ’Rb atoms in the F' = 2, mp = 2 state was obtained from [19).
This calculation predicts a slightly field dependent rate constant, that may be
approximated, for the relevant field range 1-5 Gauss, by G2 ~ 9(2) * 10715
em?/s.

For the rate constant for three-body recombination Gg, different values can
be found in the literature. An analytical result was obtained by Fedichev et
al.: The rate constant was expressed by in terms of the scattering length a as
G3 = 3.9ha*/m. For 8Rb in the F = 2, mp = 2 state we have a = 109ag [11]
and thus Gz = 1.0 * 1072% cm®/s. A calculation on the basis of the Jastrow
approximation, yielded Gz = 4 * 1073%m® /s [20]. Also measurements of Gz
have been performed. It has been determined for ' Rb in the F =1, mp = —1
state in the non-degenerate gas (G3 = 4.3(1.8) * 1072%m®/s) as well as in the
Bose Einstein condensate (G§ = 5.8(1.9) * 1073%m6/s) [21]. For 87Rb in the
F = 2, mp = 2 state in the condensate the rate constant was found to be

§=1.8(1.9) x 10~ 2cm" /s [18].

On the basis of the relation G3 ~ a* one expects the rate constant for the
|2,2> state to be a factor 2.4 higher than the rate constant for the |1,-1> state
(a = 109ag,a = 88ag [22] respectively). Therefore, we estimate the constant
on the basis of the experimental value found for the |1,-1> state in the non-
degenerate regime as Gz & 2.4 x 4.3(1.8) x 10729 = 1.0(0.4) * 10728 cm®/s.

The collision ratio’s \; from equation (4.57) are plotted in figure 4.2 as a
function of density at a typical temperature of 10 K. For changing temperature
all the lines shift by the same small amount, due to the dependence of the elastic
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Figure 4.2: The collision ratio’s A; of the loss rate to the elastic collision rate for
several loss mechanisms, relevant for 8"Rb. The corresponding rate constants
are: Gy = 0.1 571, Go = 9107 cm?/s, G3 = 1% 10%® cm™3/s. For a density
ng ~ 9 % 10" | the dominant loss term originates from dipolar relaxation, for
which Ay ~ 1074, In this density regime efficient evaporative cooling is assured.

collision rate to thermal speed (7';11 ~ T ). From this picture it is very clear
that for densities around 9 x 10" em™3 evaporative cooling can be extremely
efficient. For Ay ~ 10™%, we find from figure 4.1 that oy, may reach a value of
2. Substituting this value into equation (4.53) we find an efficiency x = 5.

4.4.3 Runaway evaporation

For a typical density ng ~ 10" cm™2 at the start of the cooling process, we
see from figure 4.2 that the dominant loss term originates from background
collisions. In this case, it is of vital importance that the elastic collision rate in-
creases during the evaporation process. This will cause A1 to gradually decrease,
making the process more and more efficient as it proceeds. This is known as
run-away evaporation. The condition for run-away evaporation can formally be
written as

dInngT®
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For a power-law trap with § = 5/2, which describes well the IQ trapping po-
tential in the high temperature limit k7' > Uy, this translates to a condition
for e o > 1/2. From figure 4.1 we see that this can be easily achieved for an
initial collision ratio Ainitia < 1072, At a density ng = 10'2 cm™3 and temper-
ature T = 300 K, we find from (4.58) a minimum lifetime due to background
collisions we can allow for:

Tbg 2 1s. (463)

When this condition is satisfied, the density may increases faster and faster
as the evaporation process proceeds, making the cooling more and more effi-
cient, until eventually the maximum efficiency is achieved at densities around
9% 10'3 cm™3. Inevitably, the density continues to increase, now causing the
efficiency to decrease, since three-body recombination has become the dominant
loss mechanism. Adiabatic expansion of the trap may then be used to control
the density, an issue that is discussed in section 4.6.

4.5 Simulation of the evaporative cooling pro-
cess

The model developed in section 2.3, describes the evaporative cooling process by
the equations (4.20) and (4.46) for the time evolution of the number of atoms N
and the quasi-temperature T of the atomic cloud for a given trajectory 7(t) or
€.(t). In this section we will present numerical solutions of these equations. This
will be done for the optimum trajectory 7(t), reaching the on-set of BEC with
minimal particle loss, and for linear sweeps e:(t) = g9 — a x t of the truncation
energy. The results are expressed in phase diagrams z(N), where the explicit
time dependence z(N(t), T(t),n(t)) and N(t) is omitted. Finally, we discuss the
validity limitations of the model in the context of the experimental situation.

For numerically solving equations (4.20) and (4.46), we rewrite these equa-
tions in a dimensionless form. Dividing both sides of (4.20) by N and both
sides of (4.46) by NET, and further introducing the dimensionless time variable
T =1t/Tev, where the evaporation time 7., is defined as

. —1
Nev
Toy = — (—N > : (4.64)

we obtain the set of equations

N = T
N_f[1+;Ri | e+ (4.65)
c, T 23/2 4 T N (d
pp =l 0 XV + S g e ey (7
(4.66)
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where the dot denotes the derivative to 7. The quantities v, &, Xov /Vey, R; and
C;, appearing in the equations (4.65) and (4.66) are explicit functions of the
thermodynamic variables N,T and 7 as discussed in the preceding sections.
The quantity 7/n may be replaced by é;/e; — T/ T (this follows directly from
e+ = nkT'), depending on wether 7 or e; are specified functions of time.

4.5.1 Optimized trajectories through phase-space

In order to find the optimized trajectory through phase space one should con-
sider the exact expression (4.49) for the efficiency parameter y, a function of the
number of particles N, the temperature 7', the truncation parameter 7 and of
the rate of change of the truncation parameter 75, to minimize the total particle
loss as the degeneracy parameter increases from its initial value zy to the value
at the BEC on-set zpgpc. Formally, one should minimize the function

Inzppc
AlnN = X (N, T,n,7)dIn 2, (4.67)

In zq

under variation of the entire trajectory 7n(t).

One may assume that for any optimized trajectory 7(¢) the truncation pa-
rameter varies only slightly compared to variations in the number of particles,
ie. k= % < 1. This allows us to neglect the contribution of the variation of
7 in the efficiency parameter . Then the rather complex problem of minimizing

(4.67) reduces to minimizing

Inzpre
AInN%/ Xgl(N,T,n)dlnz, (4.68)
1

nzo

with x,, = (3/2 + v+ {)ay, — 1 and q,, given by expression (4.61).

Minimizing the integral in (4.68) was done by optimizing the parameter
o, at every time step, using a simple numerical optimization scheme: 1) An
initial optimal value il is found from the maximum of the parameter a,, at
the initial values of the number of atoms and temperature Ny and 77 . 2)
The equations are solved for a small interval in the evaporation time, keeping
7 = NL.x constant. 3) The final values Ny and Tj are substituted into a, to
find an optimum value of the truncation parameter n = 72, . 4) The equations
are solved for the same time interval, now with 7 varying linearly from 72
to n2 ... Steps 3) and 4) are repeated until the value of 12, has converged to
some specified precision. This routine is performed for successive time intervals
until the degeneracy parameter z = ngA3 has reached the value of 2.6. For our
case, using a time interval A7 = 0.1, the on-set of BEC was reached in about
20 intervals. We should stress that, although the trajectories are continued up
to the BEC transition point, the model does not include degeneracy effects and
is thus only valid for z < 1.

If the state of the thermodynamic system would be entirely specified by
N and z (or by N and T), then the approach of instantaneously optimizing

42



the parameter x, to minimize the integral in (4.68) would be exact. This can
be understood by considering the phase-space density produced by the instan-
taneously optimized trajectory zp.(N) and that of an alternative trajectory
zat(N). Since z,q is optimized at the beginning of the trajectory, initially
ANyt > ANjyg for a given increase in z. If finally AN,y < AN at the on-
set of BEC, then the two trajectories must have crossed. This can only occur if
for some value of N

_ dzalt (N) > dzinst (N)
dN dN

(4.69)

which is impossible by the construction of z,st (V). So, 2, (V) represents the
optimum trajectory [23]. As the state of the thermodynamic system does not
depend on N and z alone, but also on the truncation parameter 7, this argu-
ment strictly spoken doesn’t apply. However, since thermodynamic quantities
depend only slightly on 7 , the trajectory ziyst (V) minimizes (4.68) to a good
approximation.

The trajectories z(N) optimized for minimum particle loss using the numer-
ical scheme described above, are shown in figure 4.3 for different starting values
Ny of the number of atoms. The corresponding trajectories e;(t) are shown in
figure 4.4. For a large initial number of atoms Ny ~ 10'Y the starting density
is of the order 10 e¢m™2 for the trapping conditions described in chapter 2.
This allows very efficient cooling (x ~ 5), which shows from the steepness of the
curve. As the system approaches the BEC onset, the efficiency decreases due
to rapid loss from three body collisions. The on-set of BEC is reached at 7" ~ 4
pK and ng ~ 3 % 10'® cm ™3, which yields for the collision ratio Az ~ 2% 1073,
Due to the conditions of high density, the evaporation process is fast; the BEC
on-set is reached in about 0.5 s. For Ny = 10°, the overall efficiency is the
highest: x,,; = —Alnz/Aln N = 3.8. The BEC on-set is reached at a density
ng ~ 1%10'% cm™3 at a temperature 7' ~ 2 K and the evaporation ramp takes
about 2s. For Ny = 1% 10% cm ™3, the final values for density and temperature
are: ng ~ 1% 10" em=3, T ~ 0.5 uK for an evaporation ramp of 7 s.

When the leading loss term is background collisions, run-away evaporative
cooling manifests itself in an upward curving trajectory in phase-space. The
importance of run-away evaporation is nicely illustrated by the two trajectories
outermost to the left in figure 4.3. At Ny = 2% 107 the collision ratio \; is
just above the value allowed for run-away evaporation, while at Ny = 3 * 107
the collision ratio A\ is just below this value. The difference in the phase space
density that may finally be achieved is dramatic.

In general the optimized trajectories e.(t) are of different shape and can
not be characterized by some specific form. One might say that when the
leading loss term is background collisions, the trajectories are of exponential
form. However, for an initial number of atoms Ny = 10° the trajectory is to
a good approximation linear and for Ny > 10° the optimum trajectories are
curving downward.
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Figure 4.3: Optimized trajectories through phase- space for the Ioffe trap for
different starting values of the number of atoms Ng. The initial temperature
is 300K in each case. The trapping potential is of the form 7?7 with trapping
parameters a = 3.77 T/m, b = 162T/m? and By = 107*T. The loss rate
due to background collisions G; = (10s.)™!, the two-body rate constant Go =
9% 10 Ycm?/s. and the three-body rate constant Gz = 1 % 10~ 28cm®/s. The
elastic crossection for 87Rb in the F = 2, mp = 2 state 0 = 8.5 % 10712 cm?.

The points correspond to equal intervals in evaporation time At = 0.1.

For typical experimental conditions No = 10° the trajectories through phase-
space corresponding to a linearly decreasing truncation energy are shown in
figure 4.5. The initial value of the truncation energy e;(0) corresponds to the
initial optimum value of 77 and the slopes a are varied. Over a large range in
a the resulting trajectories through phase space are very close to the optimal
curve. The evolution of the temperature in response to the variation of the
truncation energy is such, that the truncation parameter remains close to its
optimal value. This effect is only seen for the optimized curve for starting value
Ny = 10°.

4.5.2 Applicability of the model and experimental realiza-
tion

The optimized curves look promising, in regard to the number of atoms we
should be able to condense. Assuming an initial number of atoms Ny = 10?, the
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Figure 4.4: Optimum trajectories e¢(t) corresponding to the optimized trajec-
tories through phase space in figure 4.3. The optimized evaporation ramps for
Ny = 2% 107 and Ny = 3 % 107 are only shown up to 7 seconds. The corre-
sponding curves in figure 4.3 represent evaporation ramps of 20 and 16 seconds
respectively.

simulation predicts that the on-set of BEC can be reached with more than 107
atoms remaining. This is much more than was obtained in previous BEC exper-
iments with 8"Rb, see for example [5]. However, we should make some critical
remarks concerning the experimental realization of the optimized evaporation
ramps and the applicability of the model. This will be done explicitly for the
optimized trajectory with Ng = 10°.

The first remark concerns condition (4.1), stating that for evaporation to
be efficient, the mean free path of an atom should be much larger than the
dimension of the sample. For the final density ng ~ 1 % 10'® cm™ we find for
the mean free path A = 1/ngo ~ 1 um, and at a temperature T ~ 2 K we find
for the radial dimension [ = \/kT/(a?/2Up) ~ 6 pm. Clearly condition (4.1) is
not satisfied. So, we may expect cooling to be less efficient than the numerical
simulation predicts.

Secondly, let’s consider the lifetime of our sample at the BEC on-set. This
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Figure 4.5: Trajectories through phase space for a linearly decreasing truncation
energy with different slopes a. The initial number of atoms Ny = 10° and the
initial temperature 7' = 300 pK. Over a wide range in a the trajectories are
close to the optimum trajectory.

is determined by the three-body collision rate (4.39) as

. -1 4
N Vie
Typ = — (—;B> = (ngﬁ ‘j > : (4.70)

Substituting the final density and using ‘—‘/}—(77 — 00) = 0.2 we find 733 ~ 50ms.
This lifetime is not sufficient for performiflg experiments with the condensate.

A third remark concerns the time scale of the evaporation. In spite of the
very short lifetime of the sample, the collision ratio A3 ~ 10~2 poses no serious
restrictions to the efficiency of the evaporation process under the condition that
the evaporation speed is very high. More precisely, for the optimized curve
No = 10?, the final interval in the dimensionless time A7 = 0.1 corresponds to
a true time interval At ~ 1ms. In order for the model to be applicable to the
true experimental situation, the truncation energy, i.e. the rf-frequency, should
be smoothly varying on this time scale. This is not the case for our experimental
set-up.

All three problems discussed above are directly related to the high densities
( > 10* ecm™3) that are inevitably reached when many atoms are contained in a
tight trapping potential at a phase-space density near the on-set of BEC. There-
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fore, adiabatic expansion of the magnetic trapping potential may be performed
in the final stage of the cooling process.

4.6 Adiabatic expansion of the trapping poten-
tial

As we have seen in the preceding section, several problems are encountered
when the density of the atomic gas sample rises above ~ 10'* cm™3. These
problems might be circumvented by adiabatically expanding the trapping po-
tential. Adiabatic expansion trades in density for temperature, keeping the
phase-space density constant. In this section we will give a short discussion of
the scaling of density and temperature with the trapping parameters «, 8 and
Up, and describe how an adiabatic change of the trapping parameters affects
spilling in the evaporation process. Since adiabatic expansion is only relevant
at low temperatures, we treat the case of a purely harmonic trapping potential
as the limiting case kT < Uy of the Ioffe trapping potential.

The reference density in the limit 7 — oo is found from definition (4.7)

N

= o= = NIOGT) (w.)

o

with ¢5=%/2 = 2UyA1q(kT)?T(3) the partition function of an infinitely deep
Ioffe trap in the harmonic limit k7" < Up. Here, A is given in (2.7). The
set of trapping parameters {«, 3,Up}, that we denote by 6, is contained in the
function

1 O¢2ﬁ1/2
f(e) - 27‘(‘3/2 UO

For an adiabatic change in one of the trapping parameters, phase-space density
is conserved and so T' ~ (ng)%/® during expansion. From (4.71) we then find
that the density scales as

no ~ /f(0). (4.72)
In particular, for a variation of the radial gradient «, the density scales as
ng ~ Q. (4.73)
and the temperature
T ~ o?/3, (4.74)

In regard to condition (4.1), we find that the mean free path A scales as A ~ a~*

and that the radial dimension of the sample [ ~ a=2/3.
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The parameter o can be decreased in a controlled way over several orders of
magnitude by decreasing the current through the Ioffe bars (see section 2.2). On
the basis of the scaling relation (4.73) we find that this is an effective method
to increase the lifetime of the sample at the BEC onset and to control the speed
of the cooling process. Further, it slightly improves the ratio of the mean free
path and the radial dimension of the sample.

An additional advantage of adiabatic expansion is a small reduction of the
spilling rate. The spilling of atoms for general trap changes can be derived from
the total number of quantum states 2 available [24]. In the limit of harmonic
trapping potential, the density of states p(g) ~ 2UpA ]Q€2 and so

£t 2
Qeg,0) = / de p(e) = EUOAIQE,?. (4.75)
0

The rate of change of number of atoms due to spilling is given as

P a—Qé). (4.76)

Nopit = f(ee) = f(Et)(a—Etﬁt 56

Let’s again consider the case of adiabatic expansion by reducing the radial
gradient a.. Using 22 = —22 (since A;g ~ a™2) and further % =1/3, the
spilling rate can be written as the product of the spilling rate for constant trap
parameters (4.31) and a factor that depends on the ratio of the rate of change

of a and the rate of change of ¢, :

Nopil _ghtq 24/a
N o &t 3ét/6t )

(4.77)

So, when ¢/« is of the order &;/e; the spilling rate can be significantly reduced.

However, for high values of the truncation parameter 7 ~ 8, particle loss
due to spilling is much smaller than the particle loss due to evaporation. For
example, for the optimized curve with Ny = 10° in figure 4.3, particle loss due
to spilling is only a factor ~ 1.6. Therefore, the reduction of the spilling rate
will not be of great significance to the efficiency of the cooling process.

4.7 The dimensionality of evaporation

In the discussion of evaporative cooling we have always considered ideal evap-
oration. In particular, we assumed that the selection criterion for the removal
of atoms was based on the total energy ¢ of the atom. However, for real exper-
iments this is not always the case.

In this context we introduce the notion ”effective dimension of evaporation”.
If the selection criterion for removal of atoms is based on the total energy, i.e. € >
€t, evaporation is said to be three dimensional (3D). However, if this criterion
is based on the energy for the motion in one or two particular directions, i.e.
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€y > €¢ OF €5 + €4 > €4, evaporation is called one respectively two dimensional.
The efficiency of 1D evaporation is much less compared to 3D evaporation due
to a drastic decrease in the evaporation rate by a factor ~ 47 [12].

Since the evaporation surface, determined by the resonance condition (3.1),
entirely encloses the atomic sample, rf-induced evaporation in the Ioffe trap is in
principle a 3D evaporation scheme. However, due to the gravitation potential,
the evaporation may become effectively one dimensional.

Taking into account gravitation, the total potential is no longer symmetric
in p. In particular, in the horizontal radial direction the potential energy is
given by

Vhor (p) = VB(p,0), (4.78)

with Vz(p, z) the magnetic potential (2.3), while in the vertical radial direction
one must take into account also the gravitational potential

‘/\'cr(p) - VB (Py 0) + myhLgp, (479)

with g the acceleration of gravity. The difference in potential energy AV in the
horizontal and vertical direction at the evaporation surface is thus given by

AV = Muyb GPres» (480)

with p,., determined by the resonance condition (3.1).

Evaporation is most likely to occur at the bottom of the evaporation surface,
where the effective evaporation barrier is AV lower than the evaporation barrier
to the sides of the surface. When AV is much larger than kT, evaporation in
other directions than the vertical direction are ruled out and the evaporation
will be effectively one dimensional. The condition for 3D evaporation

AV < kT (4.81)

will now be discussed for the limit k7" > Uy of linear radial potential and for
the limit kT < Uy of harmonic radial potential separately.

Linear limit

For high temperatures the magnetic potential reduces to Vg(p,0) ~ ap, as
shown in figure 4.6. The resonance position p,., can be written as p,.. = e:/«,
with e; the truncation energy assuming gravitation is absent. Condition (4.81)
now reads

My g
(0%

AV = g K ]{?T,

from which a condition for the truncation parameter n can be derived:
o
mng

As n typically varies between 5 ~ 10, evaporation can be considered to be three
dimensional in the limit of linear radial trapping potential.

n< = 25. (4.82)
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Figure 4.6: The linear trapping potential in the horizontal radial direction (Vi)
and in the vertical radial direction (Vie) for the limit £7° > Up. Vit is tilted,
due to the influence of gravitation. When the difference AV > kT evaporative
cooling will be one dimensional.

Harmonic limit

In the low temperature limit the radial trapping potential becomes effectively
harmonic, Vg ~ QO‘—U)O p?, as shown in figure 4.7. Under influence of gravitational
force, the position p, of the potential minimum is shifted in the vertical direction.
The shift Ap, is easily calculated from %ﬁf— = 0 and yields

Apy = —=— =11 um. (4.83)
@
The corresponding shift in zero-point energy Agg is very small:

2
m.w,g)” U
Agg = % = 0.05 pK. (4.84)

The position of resonance p,,, follows from %p?% = &, so that condition
(4.81) may be rewritten as

20
AV = mupgy| =3 /e < KT (4.85)
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Figure 4.7: The harmonic trapping potential in the horizontal radial direction
(Vior) and in the vertical radial direction (Vi) in the limit A7 < Up. Viert
is shifted, due to the influence of gravitation. When the difference AV > kT
evaporative cooling will be one dimensional.

Squaring both sides of condition (4.85) and dividing by k7", one finds a condition
for the temperature

2
KT > n—3 (mug)*. (4.86)

For a typical value of 1 ~ 8 one dimensional cooling sets in for 7' < 1.8 uK.

From conditions (4.82) and (4.86) it is clear that the effect of gravitation on
the dimensionality of cooling process depends strongly on the steepness of the
trapping potential: The tighter the confinement, the smaller is the influence of
gravity. Given the trapping parameters as discussed in section 2, we expect the
evaporation process to be 3D until close to the on-set of BEC.

However, as discussed in the preceding section, to obtain a Bose condensed
sample with many atoms, adiabatic expansion is necessary to increase the life-
time of the sample. In that case, inevitably cooling will become 1D, which will
cause the evaporation rate to decrease over more than one order of magnitude
as pointed out by [12]. From figure 4.2 one finds that for densities in the order
9 % 10"3cm 2 losses are dominated by dipolar relaxation, corresponding to a
very small collision ratio Ay ~ 10™*. Taking into account the decrease of the
evaporation rate by a factor 47, an effective collision ratio can be expressed as

o1



)\gﬁ ~ A9 * 4 ~ 3 % 1073, which still allows rather efficient evaporative cooling
(x ~ 3). Thus we expect that even under conditions of 1D evaporation BEC
can be reached.
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Chapter 5

Conclusion

In this thesis a study of rf-induced evaporative cooling was presented, which
was done explicitly for 8 Rb atoms in a Ioffe trapping potential. In order to de-
termine the rf-amplitude needed for efficient evaporative cooling, the transition
probability to untrapped mg states for our five level system (F = 2) was calcu-
lated for realistic experimental conditions. The amplitude of the rf-field needed
to maintain a constant efficiency close to unity was expressed as a function of
temperature. At the start of the cooling process, at a temperature of 300 pK,
we found: B¢ = 130 * 10~7 T. As the temperature decreases the amplitude of
the rf-field may decrease due to the drop in thermal speed and or temperatures
below 10 pK the amplitude may decrease even faster, due to the flattening of
the trapping potential. At the final stage of the cooling process, for a temper-
ature of 1 uK, this results in a rf-amplitude B, = 22 % 10~7 T. Apart from a
lower bound to the rf-amplitude an upper bound was considered, originating
from the condition that the atoms in the field center should not be affected by
the rf-field. We found that for temperatures below ~ 1 pK it may not be pos-
sible to efficiently remove high energetic atoms from the trap, without inducing
transitions to untrapped states in the center of the trap. Finally, the design
of the rf-circuit was considered. For a two turn coil in combination with a 17
Watt amplifier the required field amplitudes can be obtained. A controllable
attenuator will provide the necessary amplitude decrease.

The main part of this thesis is devoted to a detailed study of the dynamics of
evaporative cooling, on the basis of the analytical model of Walraven [14]. The
evaporation process was numerically simulated and we determined optimized
trajectories e:(t), reaching the on-set of BEC with minimal particle loss. The
simulation predicts that the BEC transition point can be reached with less than
two orders of magnitude particle loss, typically with ~ 107 atoms remaining.
However, the lifetime of the sample at the BEC on-set will be short due to
rapid loss from three-body recombination. Therefore, adiabatic expansion of the
trapping potential in the final stage of the evaporation ramp will be necessary
to increase the lifetime of the sample.
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