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Adiabatically Changing the Phase-Space Density of a Trapped Bose Gas

P. W. H. Pinkse, A. Mosk, M. Weidemüller,* M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven*
Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65y67, 1018 XE Amsterdam, The Netherland

(Received 15 October 1996)

We show that the degeneracy parameter of a trapped Bose gas can be changed adiabatically in a
reversible way, both in the Boltzmann regime and in the degenerate Bose regime. We have performed
measurements on spin-polarized atomic hydrogen in the Boltzmann regime, demonstrating reversible
changes of the degeneracy parameter (phase-space density) by more than a factor of 2. This result is in
good agreement with theory. By extending our theoretical analysis to the quantum degenerate regime
we predict that, starting close enough to the Bose-Einstein phase transition, one can cross the transition
by an adiabatic change of the trap shape. [S0031-9007(97)02357-0]

PACS numbers: 03.75.Fi, 67.65.+z, 32.80.Pj
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The observation of Bose-Einstein condensation (BE
in magnetically trapped atomic vapors of rubidium [1
sodium [2], and lithium [3] has opened a new field
study at the intersection of atomic and condensed ma
physics. Presently, condensates are produced routin
and detailed studies of condensate properties, such as
lective excitations [4] and interaction of two condensa
[5], are being made. The BEC phase transition itsel
especially intriguing. Open questions include the kin
ics of condensate formation and the effect of interatom
interactions and finite number of particles. Thus far, m
surements have relied upon evaporative cooling to prep
the sample at the desired density below the critical te
perature. Evaporative cooling, however, is inherently
reversible since it is based on the loss of hot particles fr
the trap [6–8]. To tackle the above questions it would
extremely valuable to vary the degeneracy of the trap
gas adiabatically in a reversible manner, with a fixed nu
ber of particles, especially since nondestructive detec
methods have become available [9].

The possibility of increasing phase-space density
reaching BEC by changing the trapping potential was
vestigated by Ketterle and Pritchard [10]. For a co
sionless gas they showed that it is impossible to influe
phase-space density by manipulating the trapping po
tial. An example is cooling by adiabatic expansion in
harmonic trap: One does not lose any atoms, but one d
not get closer to BEC either.

In this paper we show that this “no pain, no gain” pri
ciple is not true for a collisional gas. We experimenta
demonstrate that the degeneracy parameter of a tra
gas can be changed adiabatically (without exchange
heat) and reversibly, without sacrificing atoms, by cha
ing the shape of the trap slowly compared to the int
nal equilibration time. Our experiments are done in t
Boltzmann regime, where the degeneracy parameternL3

coincides with phase-space density. Heren denotes the
density of the gas at the minimum of the potential, a
L ; s2p h̄2ymTd1y2 is the thermal de Broglie wavelengt
at temperatureT (with m the atomic mass and Boltz
0 0031-9007y97y78(6)y990(4)$10.00
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mann’s constantkB ­ 1). We observed a change ofnL3

by a factor of 2, which agrees well with a quantitativ
prediction based on statistical thermodynamics applied
a trapped gas. We point out that, given suitable start
conditions, this approach is also suited to cross the B
phase line. This follows from analytical expressions f
heat capacity, entropy, and condensate fraction of a B
gas as a function of the trap shape.

Our experiment is performed with atomic hydroge
in the cryogenic Ioffe trap described by Van Roije
et al. [11]. To determine quantities such as temperat
and density we measure the Lyman-a absorption spectrum
of the gas and fit calculated spectra to the experime
one (see [12] for details). It takes a measuring time
40 s to reach a10% level of accuracy under the prese
conditions. To minimize heating by photon recoil, w
used our Lyman-a source at low intensity (typically106

photons at the sample per pulse, 20 pulses per second
order to assure sufficient signal to noise ratio, we repla
the photodiode used in previous experiments [12] by
photomultiplier. This method offers a nondestructi
way to follow the evolution of a trapped gasin situ under
changing conditions.

The character of the Ioffe trap can be controlled v
the magnetic field at the trap center,B0. For mBB0 ¿ T
(with mB the Bohr magneton), the trap is essentia
harmonic. FormBB0 ø T , the trap is close to linea
in the radial direction and nearly harmonic axially. W
selected two magnetic field configurations, A and
shown in Fig. 1, that maximize the change in phase-sp
density within the constraints of our apparatus.

After loading the trap from a cryogenic dissociato
the sample is evaporatively cooled by ramping down
magnetic barrier at one of the longitudinal ends of the tr
(at z ­ 5 cm, see Fig. 1). Evaporation is then stopped
raising this barrier. Hereafter we let the sample dec
and equilibrate for about1000 s to prepare a therma
sample that is better than 95% doubly spin polariz
with typical densities at about1011 atomsycm3 [11].
This density was selected to assure negligible sam
© 1997 The American Physical Society
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FIG. 1. Magnetic field profile of traps A and B radially cut
through the field minimum (left) and cut along the principa
axis of the trap (right). The horizontal lines indicate th
measured thermal energyT . Trap A has a depth of 0.72 K
and a field minimumB0 of 226 mT. Trap B has a depth of
0.85 K and a field minimumB0 of 12 mT.

loss during measurement of the spectrum. We gradua
change from trap A to trap B or vice versa in 60 s, whic
is much slower than the average elastic collision time
5 s at this density. After each change of trap, a spectru
is measured to determine the number of atoms and
degeneracy parameter.

Changing the trap configuration from A to B, the tem
perature increased reversibly fromTA ø 46 mK to TB ø
60 mK. Both TA and TB showed an upward drift of
,10 mK to the final values mentioned above, reached a
ter 5000 s. In Fig. 2 we plot the degeneracy paramete
nL3 versus time for a sample cycled between trap A an
trap B. It can be seen that the phase-space density
fers by a constant factor2.05 6 0.13 between trap A and
trap B. The number of trapped atomsN versus time is
plotted in the lower graph of Fig. 2. AlthoughT and n

FIG. 2. Experimentally determined phase-space densities
trapped atomic hydrogen (upper graph), and number of ato
N in the trap (lower graph) as a function of time, while the
trapping potential was alternated between traps A and B. T
curves are fits to a second-order decay, with the constant ra
2.05 6 0.13 of phase-space density between the two traps.
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differ considerably between the two traps, the measu
value for N is seen to be conserved within experimen
error. The slow decay ofN was found to be describe
by Nstd ­ Ns0dyf1 1 Ns0dGtg as one would expect for a
second-order decay process. The effective rate constaG
is an average of the (field-dependent) intrinsic rate cons
g (defined such thatg ­ 2 Ùnyn2 for a uniform gas) times
a trap- and temperature-dependent factor [11]. Inver
this average is impracticable. However, the theoret
decay [13] under the conditions of trap A,g ­ 4.1 3

10215 cm3 s21, would giveG ­ 1.1s3d 3 10214 s21 for
this trap. For trap B,g ­ 2.7 3 10215 cm3 s21 which
would giveG ­ 1.3s5d 3 10214 s21. Hence the observed
G ­ 1.34s5d 3 10214 s21, for a trap alternating betwee
A and B, is consistent with intrinsic relaxation.

Our results can be understood within a dilute gas mo
for N atoms at temperatureT trapped in a deep external po
tential, so that evaporation is negligible. Collisions ke
the gas in internal thermal equilibrium. The number
particles in the gas is sufficient to enable a thermodyna
description. Since we change the trap potential slow
compared to the thermalization time, thermodynamic p
cesses proceed reversibly. Since there is no excha
of heat or particles with the environment, the thermod
namic entropyS of the gas is constant. In our experimen
the influence of quantum statistics is small and inter
tions between atoms do not influence thermodynamic
the mean-field interaction energy is much smaller thanT .
The degeneracy parameter can be expressed in terms o
single-particle partition functionZ1 and the total numbe
of particlesN asnL3 ­ NyZ1 [7].

The internal energyE can be calculated from th
partition function to give [8]

E ­ s 3
2 1 gdNT , (1)

whereg ­ sTyVed≠Vey≠T , with Ve ; Nyn ­ Z1L3 the
effective volume. HeregT is the average potential energ
per particle. For many trapping potentialsg is a constant
independent ofT and Ve scales likeT g. For example,
for a boxg ­ 0, for a harmonic trapg ­ 3y2, and for a
spherical quadrupole trapg ­ 3. The canonical partition
function ZN

1 yN! can be written as the exponential
2sE 2 TSdyT (see, e.g., [14]) to arrive at the followin
expression for the degeneracy parameter:

nL3 ­ exp

µ
5
2

1 g 2
S
N

∂
. (2)

Since in an adiabatic processS and N are constant, the
phase-space density does not change unlessg changes. It
immediately follows that many of the most obvious wa
of changing the trapping potential, such as isotropic
anisotropic scaling of a harmonic trap, donot influence
phase-space density. If we changeg adiabatically (e.g.,
experimentally, by changingB0 in an Ioffe trap),nL3 will
change aseg . In an extreme case, by slowly changin
the trap shape from square well to spherical quadrup
991
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the phase-space density in the center of the trap can
increased by as much as a factore3 ø 20.

For the two traps used in our experiment the value
g is weakly temperature dependent. For the measu
temperatures we findgA ø 1.79 for trap A and gB ø
2.53 for trap B, the differenceDg ­ gB 2 gA after
changing trap shape always being0.74 6 0.01. This
implies a change in phase-space density by a fac
expfDgg ­ 2.10 6 0.02, in good agreement with the
measured value of2.05 6 0.13.

We emphasize that it should be possible to achieve c
siderable changes in the degeneracy parameter also ar
the BEC transition. For this purpose we extend our th
retical consideration to the case of a noninteracting B
gas in the degenerate regime. This is a good approxi
tion also for a weakly interacting Bose gas as long as
gas parameterna3 ø 1, wherea is the scattering length
Below the critical temperature we have the additional co
dition thatn0Ũ ø T , with Ũ ­ 4p h̄2aym the scattering
strength andn0 is the condensate density. Expressions o
tained for the entropy of an ideal Bose gas are still go
approximations around and above the critical temperat
of a nonideal Bose gas. Interactions will change the sh
of the condensate, but its entropy will always be zero. B
cause the influence of the interactions on the entropy of
above-condensate particles is negligible in the binary co
sion regime, the interactions only become important wh
the condensate fraction becomes so large that the m
field energy of the condensate changes the effective
tential for the above-condensate particles. Gases use
current investigations, such as Rb, Li, Na, and H are s
ficiently close to this ideal gas limit that thermodynami
are essentially unaffected by interactions, unless the c
densate fraction becomes appreciable.

In the degenerate regime we continue to assume qu
classical motion of the atoms. For clarity we restrict ou
selves to the case of a power-law potential, although
expressions can easily be generalized to include the I
trap. A power-law trap is characterized by a density
states of the typersed ­ Ae1y21d (see [15] and [16] for
details). The scaling parameterA determines the size o
the trap. E.g., for a harmonic trapA ­

1
2 sh̄vd23, wherev

is the trap frequency. The parameterd governs the shape
of the trap. It can be shown that, in the Boltzmann regim
g ­ d independent ofT for all power-law traps.

The internal energy of a Bose gas in a power-la
trap above and below the critical temperatureTc [17] is
given by

E ­ NT

µ
3
2

1 d

∂
g5y21dszd
g3y21dszd

, T $ Tc , (3a)

E ­ NT

µ
3
2

1 d

∂
g5y21ds1d
g3y21ds1d

µ
T
Tc

∂3y21d

, T # Tc ,

(3b)

where the Bose-Einstein integrals are expressed
polylogarithms gasxd ­

P
`
l­1 xll2a . The fugacity
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z ­ expsmyT d with m the chemical potential [18]. Note
that as we haveT

3y21d
c ~ N, Eq. (3b) is in fact indepen-

dent of the number of atoms. AboveTc the fugacity is
given implicitly by

N ­ AT3y21dGs3
2 1 ddg3y21dszd , (4)

with Gsxd the Euler gamma function. BelowTc, z ­ 1
and the number of atoms in the condensate,N0, is given
by N0yN ­ 1 2 sTyTcd3y21d. In the high temperature
(Boltzmann) limit the parameternL3 introduced earlier
reduces to the fugacityz. The specific heat at constant
particle number and constant trap potential can now b
found by taking the derivative ofE with respect to
temperature. We obtain

C ­ N

µ
3
2

1 d

∂
f f5y21dszd 2 f3y21dszdg , T . Tc ,

(5a)

C ­ N

µ
3
2

1 d

∂
f5y21ds1d

µ
T
Tc

∂3y21d

, T , Tc ,

(5b)

where we have introducedfkszd ; kgkszdygk21szd. For
d ­ 0, 3

2 , and 3 we find f5y21ds1d ­ 1.284, 3.602, and
5.346, respectively. In Eq. (5a) the second term give
rise to a discontinuity in the heat capacity atTc as
already found by Bagnato, Pritchard, and Kleppner [16
which appears only ford . 1y2 because ford , 1y2 the
function g1y21d diverges, and hencef3y21d tends to zero,
asT ! Tc. This jump in the heat capacity was recently
observed by the JILA group [19]. The entropyS obeys
dSydT ­ CyT , and hence has a kink atTc for d . 1y2.
We find that

S ­ Nf f5y21dszd 2 lnszdg , T $ Tc , (6a)

S ­ Nf5y21ds1d
µ

T
Tc

∂3y21d

, T # Tc . (6b)

For the homogeneous casesd ­ 0d these expressions can
be found in standard statistical mechanics textbooks (e.
[18]). The entropy as a function ofTyTc is plotted in
Fig. 3.

It is noteworthy that the ideal Bose gas in a power
law trap in three space dimensions is isomorphic to th
uniform Bose gas in2d 1 3 dimensions. There is no
heat capacity jump when the effective dimension is les
than four. Remarkably, the processes which change t
degeneracy parameter are just those which correspond
adiabatic changes of dimensionality.

If one moves along an isentropic line in Fig. 3 by
increasingd, one can take a dilute gas close to BEC
through the transition. For example, by varyingd from 0
to 3 it is possible to Bose condense a gas that had initial
a temperature12 times higher than the critical temperature
for that trap and givenN . Equations (6a) and (6b) allow
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FIG. 3. Entropy of an ideal Bose gas in power-law traps a
function of TyTc (right) and, belowTc, also as a function of
the above-condensate fraction (left).

one to calculate the fraction of condensate particlesN0yN .
Starting with a Bose gas in an ideal harmonic poten
at T ­ Tc, and reversibly changing the trapping potent
to an ideal spherical quadrupole, we would arrive bel
Tc with a condensate fraction of0.33. For the Ioffe trap,
starting atT ­ Tc at the limit of high B0, we expect a
condensate fraction of 0.25 in the trap at the limit of lo
B0. Of course, in these cases,TyTc may already be so
low that the influence of interactions can no longer
neglected.

Our method allows one to control the degeneracy o
Bose gas and gently pull it acrossTc and back. Cycling
times are only limited by the elastic collision rate whic
for the alkali atoms has been demonstrated to be m
faster than for hydrogen. Combined with nondestruct
diagnostics [9] this yields the unique possibility to stud
both condensate formation and destruction and to estab
the presence or absence of asymmetries and hysteres
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