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Adiabatically Changing the Phase-Space Density of a Trapped Bose Gas
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We show that the degeneracy parameter of a trapped Bose gas can be changed adiabatically in a
reversible way, both in the Boltzmann regime and in the degenerate Bose regime. We have performed
measurements on spin-polarized atomic hydrogen in the Boltzmann regime, demonstrating reversible
changes of the degeneracy parameter (phase-space density) by more than a factor of 2. This result is in
good agreement with theory. By extending our theoretical analysis to the quantum degenerate regime
we predict that, starting close enough to the Bose-Einstein phase transition, one can cross the transition
by an adiabatic change of the trap shape. [S0031-9007(97)02357-0]

PACS numbers: 03.75.Fi, 67.65.+z, 32.80.Pj

The observation of Bose-Einstein condensation (BEC)nann’s constantg = 1). We observed a change of\3
in magnetically trapped atomic vapors of rubidium [1], by a factor of 2, which agrees well with a quantitative
sodium [2], and lithium [3] has opened a new field of prediction based on statistical thermodynamics applied to
study at the intersection of atomic and condensed mattex trapped gas. We point out that, given suitable starting
physics. Presently, condensates are produced routinelgonditions, this approach is also suited to cross the BEC
and detailed studies of condensate properties, such as cphase line. This follows from analytical expressions for
lective excitations [4] and interaction of two condensatesheat capacity, entropy, and condensate fraction of a Bose
[5], are being made. The BEC phase transition itself igyas as a function of the trap shape.
especially intriguing. Open questions include the kinet- Our experiment is performed with atomic hydrogen
ics of condensate formation and the effect of interatomidn the cryogenic loffe trap described by Van Roijen
interactions and finite number of particles. Thus far, meaet al. [11]. To determine quantities such as temperature
surements have relied upon evaporative cooling to prepai@nd density we measure the Lymarabsorption spectrum
the sample at the desired density below the critical temef the gas and fit calculated spectra to the experimental
perature. Evaporative cooling, however, is inherently ir-one (see [12] for details). It takes a measuring time of
reversible since it is based on the loss of hot particles frord0 s to reach d0% level of accuracy under the present
the trap [6—8]. To tackle the above questions it would beconditions. To minimize heating by photon recoil, we
extremely valuable to vary the degeneracy of the trappedsed our Lymanx source at low intensity (typically0°
gas adiabatically in a reversible manner, with a fixed numphotons at the sample per pulse, 20 pulses per second). In
ber of particles, especially since nondestructive detectionrder to assure sufficient signal to noise ratio, we replaced
methods have become available [9]. the photodiode used in previous experiments [12] by a

The possibility of increasing phase-space density anghotomultiplier. This method offers a nondestructive
reaching BEC by changing the trapping potential was inway to follow the evolution of a trapped gassitu under
vestigated by Ketterle and Pritchard [10]. For a colli-changing conditions.
sionless gas they showed that it is impossible to influence The character of the loffe trap can be controlled via
phase-space density by manipulating the trapping poterihe magnetic field at the trap cent®y. For ugBy > T
tial. An example is cooling by adiabatic expansion in a(with wp the Bohr magneton), the trap is essentially
harmonic trap: One does not lose any atoms, but one doémrmonic. ForugBy < T, the trap is close to linear
not get closer to BEC either. in the radial direction and nearly harmonic axially. We

In this paper we show that this “no pain, no gain” prin- selected two magnetic field configurations, A and B,
ciple is not true for a collisional gas. We experimentallyshown in Fig. 1, that maximize the change in phase-space
demonstrate that the degeneracy parameter of a trappeensity within the constraints of our apparatus.
gas can be changed adiabatically (without exchange of After loading the trap from a cryogenic dissociator,
heat) and reversibly, without sacrificing atoms, by changthe sample is evaporatively cooled by ramping down the
ing the shape of the trap slowly compared to the intermagnetic barrier at one of the longitudinal ends of the trap
nal equilibration time. Our experiments are done in the(atz = 5 cm, see Fig. 1). Evaporation is then stopped by
Boltzmann regime, where the degeneracy parametér  raising this barrier. Hereafter we let the sample decay
coincides with phase-space density. Hereenotes the and equilibrate for about000 s to prepare a thermal
density of the gas at the minimum of the potential, andsample that is better than 95% doubly spin polarized
A = (27 h%/mT)"? is the thermal de Broglie wavelength with typical densities at about0'! atoms/cm? [11].
at temperaturel’ (with m the atomic mass and Boltz- This density was selected to assure negligible sample
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FIG. 1.

Magnetic field profile of traps A and B radially cut

differ considerably between the two traps, the measured
value for N is seen to be conserved within experimental
error. The slow decay oV was found to be described
by N(r) = N(0)/[1 + N(0)Gt] as one would expect for a
second-order decay process. The effective rate conStant
is an average of the (field-dependent) intrinsic rate constant
¢ (defined such thag = —n/n? for a uniform gas) times

a trap- and temperature-dependent factor [11]. Inverting
this average is impracticable. However, the theoretical
decay [13] under the conditions of trap &,= 4.1 X
107 cm?3s™!, would giveG = 1.1(3) X 10" 4 s™! for

this trap. For trap Bg = 2.7 X 1071 cm?®s™! which

i - —14 -1
through the field minimum (left) and cut along the principal would giveG = 1.3(5) X 10 s~". Hence the observed

axis of the trap (right).

The horizontal lines indicate the G = 1.34(5) X 1074 s7!, for a trap alternating between

measured thermal enerdgy. Trap A has a depth of 0.72 K A and B, is consistent with intrinsic relaxation.

and a field minimumB, of 226 mT. Trap B has a depth of

0.85 K and a field minimunB, of 12 mT.

Our results can be understood within a dilute gas model

for N atoms at temperatufetrapped in a deep external po-
tential, so that evaporation is negligible. Collisions keep

the gas in internal thermal equilibrium. The number of
loss during measurement of the spectrum. We graduallparticles in the gas is sufficient to enable a thermodynamic

change from trap A to trap B or vice versa in 60 s, whichdescription. Since we change the trap potential slowly
is much slower than the average elastic collision time ofompared to the thermalization time, thermodynamic pro-
5 s at this density. After each change of trap, a spectrurnesses proceed reversibly. Since there is no exchange
is measured to determine the number of atoms and thef heat or particles with the environment, the thermody-
degeneracy parameter. namic entropys of the gas is constant. In our experiment,
Changing the trap configuration from A to B, the tem-the influence of quantum statistics is small and interac-
perature increased reversibly frofiy =46 mK to Tz =  tions between atoms do not influence thermodynamics as
60 mK. Both T, and T showed an upward drift of the mean-field interaction energy is much smaller tian
~10 mK to the final values mentioned above, reached afThe degeneracy parameter can be expressed in terms of the
ter 5000 s. In Fig. 2 we plot the degeneracy parametersingle-particle partition functio; and the total number
nA? versus time for a sample cycled between trap A andf particlesN asnA® = N/Z; [7].
trap B. It can be seen that the phase-space density dif- The internal energyE can be calculated from the
fers by a constant factd@.05 = 0.13 between trap A and partition function to give [8]
trap B. The number of trapped atoms versus time is

-3
plotted in the lower graph of Fig. 2. Althoudgh andn E =5+ yNT, (1)

wherey = (T/V,)dV,/dT, with V, = N/n = Z;A3 the
effective volume. Here/T is the average potential energy
5 trap A per particle. For many trapping potentialds a constant
trap B independent off and V, scales likeT?. For example,
for a boxy = 0, for a harmonic trapy = 3/2, and for a
spherical quadrupole trap = 3. The canonical partition
function Z;'/N! can be written as the exponential of
—(E — TS)/T (see, e.g., [14]) to arrive at the following
expression for the degeneracy parameter:

S axd D 4y i)

nA exp( 5 + vy v/ 2
Since in an adiabatic processand N are constant, the
phase-space density does not change unlegsanges. It
immediately follows that many of the most obvious ways
of changing the trapping potential, such as isotropic or
FIG. 2. Experimentally determined phase-space densities inisotropic scaling of a harmonic trap, deot influence
trapped atomic hydrogen (upper graph), and number of atomgpase-space density. If we changeadiabatically (e.g.
N in the trap (lower graph) as a function of time, while the . . - CRNIa
trapping potential was alternated between traps A and B. Thgxperlmentally, by changing, in an loffe trap) 2 A” will .
curves are fits to a second-order decay, with the constant ratehange as”. In an extreme case, by slowly changing
2.05 = 0.13 of phase-space density between the two traps.  the trap shape from square well to spherical quadrupole,
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the phase-space density in the center of the trap can he= exp(ux/T) with u the chemical potential [18]. Note

increased by as much as a facidr~ 20. that as we haves’>"® « N, Eq. (3b) is in fact indepen-

For the two traps used in our experiment the value ofjent of the number of atoms. Abov& the fugacity is
y is weakly temperature dependent. For the measuregiven implicitly by
temperatures we find, = 1.79 for trap A andyg = L 3/248 13
2.53 for trap B, the differenceAy = yg — ya after N = AT Iz + 8)g3/2+5(2), (4)
changing trap shape always beiig74 = 0.01. This  with I'(x) the Euler gamma function. BeloW,, z = 1
implies a change in phase-space density by a factaind the number of atoms in the condensaig, is given
exgAy] = 2.10 = 0.02, in good agreement with the by Ny/N =1 — (T/T.)***®. In the high temperature
measured value cf.05 * 0.13. (Boltzmann) limit the parametetA* introduced earlier
We emphasize that it should be possible to achieve correduces to the fugacity. The specific heat at constant
siderable changes in the degeneracy parameter also arousgkticle number and constant trap potential can now be

the BEC transition. For this purpose we extend our theofound by taking the derivative off with respect to
retical consideration to the case of a noninteracting Bosgemperature. We obtain

gas in the degenerate regime. This is a good approxima-

tion also for a weakly interacting Bose gas as long as thg = N(i + 5>[f5/2+5(z) — fa2+6(2)], T>T,,
gas parameteta® < 1, wherea is the scattering length. 2

Below the critical temperature we have the additional con- (52)
dition thatnoU < T, with U = 4xhi*a/m the scattering 3 7 \3/2+8

strength and is the condensate density. Expressionsob- ¢ = N(— + 6>f5/2+5(1)<—> , T<T,,
tained for the entropy of an ideal Bose gas are still good 2 T (5b)

approximations around and above the critical temperature
of a nonideal Bose gas. Interactions will change the shapghere we have introducgd(z) = xg.(z)/g«-1(z). For
of the condensate, but its entropy will always be zero. Bes = 0, % and3 we find fs/,+s(1) = 1.284, 3.602, and
cause the influence of the interactions on the entropy of the 346, respectively. In Eq. (5a) the second term gives
above-condensate particles is negligible in the binary collirise to a discontinuity in the heat capacity &t as
sion regime, the interactions only become important wheyjready found by Bagnato, Pritchard, and Kleppner [16],
the condensate fraction becomes so large that the meaghich appears only foé > 1/2 because fos < 1/2 the
field energy of the condensate changes the effective PQunction g /»+5 diverges, and hencg »- 5 tends to zero,
tential for the above-condensate particles. Gases used #7 — 7,. This jump in the heat capacity was recently
current investigations, such as Rb, Li, Na, and H are sufobserved by the JILA group [19]. The entrogyobeys

ficiently close to this ideal gas limit that thermodynamicss /47 = € /T, and hence has a kink @t for § > 1/2.
are essentially unaffected by interactions, unless the conwe find that

densate fraction becomes appreciable.
In the degenerate regime we continue to assume quasi-

classical motion of the atoms. For clarity we restrict our- S = N[ fspp+s(z) — In(2)], T=T., (6a)
selves to the case of a power-law potential, although our 3/2+68

expressions can easily be generalized to include the loffe S = Nf5/2+5(1)<—> , T=<T,. (6b)
trap. A power-law trap is characterized by a density of T,

states of the typg(e) = Ae!/2*9 (see [15] and [16] for For the homogeneous cas® = 0) these expressions can

details). The scaling parametérdetermines the size of be found in standard statistical mechanics textbooks (e.g.,

the trap. E.g.,for a harmonic trap= %(ﬁw)”,wherew [18]). The entropy as a function df /T, is plotted in

is the trap frequency. The parameegoverns the shape Fig. 3.

of the trap. It can be shown that, in the Boltzmann regime, It is noteworthy that the ideal Bose gas in a power-

v = 6 independent of for all power-law traps. law trap in three space dimensions is isomorphic to the
The internal energy of a Bose gas in a power-lamuniform Bose gas ir2é + 3 dimensions. There is no

trap above and below the critical temperatdie[17] is  heat capacity jump when the effective dimension is less

given by than four. Remarkably, the processes which change the
3 gs5/2+5(2) degeneracy parameter are just those which correspond to
E = NT<3 + 5) 21210(2)° T'=T., (338 adiabatic changes of dimensionality.
83/215°% 3246 If one moves along an isentropic line in Fig. 3 by
E = NT(i + 5)%‘3(1)(1) T<T increasingd, one can take a dilute gas close to BEC
2 g32+6(D)\ T, ' < through the transition. For example, by varyifidrom 0

(3b)  to3itis possible to Bose condense a gas that had initially
where the Bose-Einstein integrals are expressed iatemperaturé?2 times higher than the critical temperature
polylogarithms g.(x) = >, x'I".  The fugacity for that trap and givetv. Equations (6a) and (6b) allow
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