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Abstract

This report describes a project realized during an internship of three months
at the Van der Waals-Zeeman Instituut of the University of Amsterdam for
the validation of the first year of Master at the Institut d’Optique Graduate
school in Palaiseau. This report is divided in two parts. In the first part we
present the Fabry-Pérot interferometer. We discuss the basic theory of this
interferometer and we describe the method we used to fix one mirror at the
confocal position. In the second part, we explore different methods for locking
a laser on an optical line of 87Rb. We carry out a brief review of the concepts
which underlie the subject and we present our locking experiment which is a
kind of polarization spectroscopy based on the light-induced birefringence of
our gas cell. Theoretical and experimental results are reported, the effect of
magnetic field is also discussed.
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2.2 Theoretical study of the Fabry-Pérot etalon . . . . . . . . . . . . 4

2.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Calculation of the transmission function . . . . . . . . . . 4
2.2.3 The confocal resonator . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Gaussian transverse modes . . . . . . . . . . . . . . . . . 7

2.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Alignment procedure . . . . . . . . . . . . . . . . . . . . . 9

2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Characterization of the etalon . . . . . . . . . . . . . . . . 10
2.4.2 Measurement of the band-width of a laser diode . . . . . 12

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 General notions of spectroscopy 14
3.1 General properties of hydrogen-like atoms . . . . . . . . . . . . . 14

3.1.1 Main structure . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Selection rules for transitions . . . . . . . . . . . . . . . . 15
3.1.3 Fine structure . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Hyper-fine structure . . . . . . . . . . . . . . . . . . . . . 16
3.1.5 The example of 87Rb . . . . . . . . . . . . . . . . . . . . . 17

3.2 Interaction of an atom with an electro-magnetic wave . . . . . . 18
3.2.1 Electric dipole transition . . . . . . . . . . . . . . . . . . . 18
3.2.2 Polarization aspects . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Optical Bloch Equations . . . . . . . . . . . . . . . . . . . 19
3.2.4 Refractive index and extinction coefficient of dilute gases 21

3.3 Absorption spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Doppler broadening . . . . . . . . . . . . . . . . . . . . . 22

1



4 Locking a laser on a optical line 24
4.1 General scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Saturation spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 FM spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Polarization spectroscopy . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Dichroism: absorptive signal . . . . . . . . . . . . . . . . 26
4.3.3 Birefringence: dispersive signal . . . . . . . . . . . . . . . 27

4.4 Experimental setup of DLIB spectroscopy . . . . . . . . . . . . . 27
4.4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . 31

4.5 Magnetic aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.1 Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.2 Utilization of the Zeeman effect in spectroscopy . . . . . . 32
4.5.3 Magnetic shielding . . . . . . . . . . . . . . . . . . . . . . 33
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Chapter 1

Introduction

Bosonic particles, which include the photon as well as atoms such as helium-4,
are allowed to share quantum states with each other. Einstein speculated in
1924 that cooling bosonic atoms to a very low temperature would cause them
to fall (or ”condense”) into the lowest accessible quantum state, resulting in a
new form of matter. This transition occurs below a critical temperature Tc,
which for a uniform gas consisting of non-interacting particles with no apparent
internal degrees of freedom is given by:

Tc =
(

n

ζ(3/2)

)2/3
h2

2πmkB
, (1.1)

where n is the particle density, m the mass per boson and ζ the Riemann zeta
function (ζ(3/2) ' 2.61).

The first BoseEinstein condensate was created by Eric Cornell, Carl Wieman,
and co-workers at JILA on 1995. They did this by cooling a dilute vapor consist-
ing of approximately 2000 rubidium-87 atoms to below 170 nK using a combi-
nation of laser cooling (a technique that won its inventors Steven Chu, Claude
Cohen-Tannoudji, and William D. Phillips the 1997 Nobel Prize in Physics)
and magnetic evaporative cooling. About four months later, an independent ef-
fort led by Wolfgang Ketterle at MIT created a condensate made of sodium-23.
Ketterle’s condensate had about a hundred times more atoms, allowing him to
obtain several important results such as the observation of quantum mechanical
interference between two different condensates. Cornell, Wieman and Ketterle
won the 2001 Nobel Prize for their achievement.

Bose-Einstein condensate properties are still not completely understood and
constitutes a very active field of research. In the Van der Waals-Zeeman Insti-
tuut, the group of Pr. Walraven investigate this field and is currently working
on the study of exotic quantum phases of ultracold gases.

Bose-Einstein condensation is achieved with methods called Magneto-optical
trapping and evaporative cooling. Magneto-optical traps (MOT) make use of
optical forces in presence of a position dependent Zeeman shift. This requires to
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use lasers with a frequency stabilized with respect to an atomic transition and
with an accuracy below the natural linewidth (Γ ' 6 MHz) of the transition.

We worked first on the Fabry-Pérot interferometer, which is a nice tool to
monitor the stability of laser’s frequency. In a second part, we explored the
different methods which can be used to lock a laser on a resonant line and
realized a setup which makes use of the light-induced birefringence to lock our
DFB laser.
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Chapter 2

The Fabry-Pérot etalon

2.1 Introduction

The Fabry-Pérot interferometer or etalon is the most commonly used multiple
beam interferometer. It is typically made of a transparent plate with two re-
flecting surfaces, or two parallel highly reflecting mirrors. At the origin, the two
mirrors were plane, but nowadays spherical mirrors are most commonly used.
Etalons are widely used in telecommunications, lasers and spectroscopy for con-
trolling and measuring the wavelength of light. Recent advances in fabrication
technique allow the creation of very precise tunable Fabry-Pérot interferometers.
Fabry-Pérot interferometers also form the most common type of optical cavity
used in laser construction. In this project, we made a 150 mm long scanning
Fabry-Pérot interferometer in order to use it later to monitor lasers used for
spectroscopy of Rubidium atom in a Bose-Einstein condensate.

2.2 Theoretical study of the Fabry-Pérot etalon

2.2.1 Principle

The principle of the Fabry-Pérot is very simple. The varying transmission func-
tion of an etalon is caused by interference between the multiple reflections of
light between the two reflecting surfaces. Constructive interference occurs if the
transmitted beams are in phase, and this corresponds to high-transmission peak
of the etalon. If the transmitted beams are out-of-phase, destructive interference
occurs and this corresponds to a transmission minimum.

2.2.2 Calculation of the transmission function

For each of the two mirrors, let r be the reflection coefficient 1, and t be the
transmission coefficient. Let be A(i), A(t) and A(r) respectively the amplitudes

1Ratio of reflected and incident amplitudes

5



of the electric vector of the incident light, transmitted light and reflected light.
Let be A(t)(p) the amplitude of the light transmitted after 2p reflections. Thus

A(t)(p) = A(i)t2r2p(exp(
2iπL
λ

))2p (2.1)

Where L is the optical length of the cavity and λ is the wavelength of the
incident light 2. The amplitude of the whole transmitted light A(t) is then

A(t) =
∞∑

p=0

A(i)t2r2p(exp(
2iπL
λ

))2p (2.2)

This sum is nothing else than a infinite geometric series, finally

A(t) =
A(i)t2

1− r2 exp( 4iπL
λ )

(2.3)

We can now calculate the transmitted intensity given by I(t) = A(t)A(t)∗:

I(t) =
I(i)T 2

1 +R2 − 2R cos(δ)
=

I(i)T 2

(1−R)2 + 4R sin2(δ/2)
, (2.4)

where R = r2, T = t2 and δ = 4iπL
λ . We define the parameter F [12] by the

formula
F =

4R
(1−R)2

. (2.5)

Then we can write
I(t) =

I0

1 + F sin2(δ/2)
. (2.6)

When R approaches unity so that F is large, the intensity of the transmitted
light is very small except in the immediate neighborhood of the maxima. The
pattern in transmitted light then consists of narrow bright fringes on an almost
completely dark background (see Figure 2.1). This is why the Fabry-Pérot
interferometer is very accurate in comparison with two-beams interferometers.
The sharpness of the fringes is measured by their half-width which is the width
between the points on either side of a maximum where the intensity has fallen
to half of its maximum value. The ratio of the separation of adjacent fringes
and the half-width is called the finesse F of the fringes.

The points where the intensity is half its maximum value are at δ = 2mπ ±
ε/2. Assuming that F is sufficiently large, ε is sufficiently small that we can
write sin(ε/4) ' ε/4 then we obtain the half width as

ε =
4√
F
, (2.7)

2The incident light is assumed to be monochromatic
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Figure 2.1: Transmission function for different reflectivities

Since the separation of adjacent fringes correspond to a change of 2π in δ, the
finesse is then

F =
2π
ε

=
π
√
F

2
=

π
√
R

1−R
. (2.8)

In a Fabry-Perot interferometer, the distance (in frequency space) between ad-
jacent transmission peaks is called the free spectral range (FSR)

FSR =
c

2L
. (2.9)

2.2.3 The confocal resonator

In this project, we work on a 150 mm long Fabry-Pérot resonator, which has
to be setup at the confocal position as shown in Figure 2.2. It means that the
length d of the resonator equals the radius of curvature R1 and R2 of the two
mirrors. This is referred to as a confocal resonator because the focal points
of the two mirrors coincide which each other at the center of the resonator.
Furthermore, the confocal resonators is highly insensitive to misalignment of
either mirror because tilting either mirror still leaves the center of curvature
located on the other mirror surface [13]. At the surface of each mirror, the
radius of curvature of the Gaussian wavefront equals the radius of curvature
of the mirrors. Then we can can easily obtain the 1/e radial size of the beam
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Figure 2.2: Confocal resonator

amplitude at the waist 3:

w0 =

√
λd

2π
. (2.10)

Whereas the radial size is larger by
√

2 at the surface of the mirrors, w =
√

2w0.
The stability of optical resonators is discussed in Appendix A.3.

2.2.4 Gaussian transverse modes

A short introduction of the Gaussian beam is made in the Appendix A.1. Be-
cause of the Gouy phase shift [10] and its dependance on Hermite-Gaussian
mode number, the different transverse modes in a stable gaussian resonator
have different resonance frequencies [13]. This phenomenon induces an asym-
metric broadening of the transmission peaks when the etalon is not exactly at
the confocal position. For a given Hermite-Gaussian mode TEMmn, the Gouy
phase shift is given by (see Appendices A.1 and A.2)

φ = (m+ n+ 1)Arctg(z/zR), (2.11)

where z is the distance from the waist and zR is the Rayleigh range of the
Gaussian beam. Then the phase shift between the waist and either mirror is for
the confocal situation 4

φ = (m+ n+ 1)Arctg(1) = (m+ n+ 1)
π

4
. (2.12)

3see Appendix A.1
4for the confocal etalon, the distance between the waist and the mirrors equals the Rayleigh

range
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We have finally for one round-trip

φ� = 4φ = (m+ n+ 1)π, (2.13)

Which means that in the confocal position, the difference of phase for one round-
trip between two consecutive even modes is 2π. Then the peaks of the even
transverse modes coincide exactly with the peaks of the TEM00 longitudinal
modes. The peaks of the odd modes are placed exactly at the half-distance
between two consecutive TEM00 longitudinal modes. This results gives us a
method to align the etalon (see Section 2.4. The incoming beam is a pure TEM00

mode, then if the etalon is well aligned, the odd transverse modes cannot be
excited in the cavity and we should observe the peaks due to the odd modes to
be absent.

The line-shape of the transmission peaks depends on the length d of the
resonator. If d < 2ZR, (2.11) shows that the phase difference between two
consecutive even transverse mode will be smaller than 2π. This results in a
asymmetric broadening of the line-shape to the low frequency side. If d > 2ZR,
we will observe a broadening of the line-shape to the high frequency side. This
results gives us a method to fix the input mirror at the proper longitudinal
position (see Section 2.4).

2.3 Experimental setup

2.3.1 Context

The etalon is made of a 150 mm long invar 5 tube with an inner diameter of
0.5”. We use two identical high reflectivity mirrors with a radius of curvature
R = 150 mm and a diameter of 0.5”. The output mirror is mounted on a piezo
mount in order to scan the spectrum by varying the length of the cavity. The
reflectivity of the mirrors is R = 0.985 ± 0.0025, which means a theoretical
finesse (2.8)

F = 207.9 (178 < F < 250) (2.14)

while the free spectral range (2.6)

FSR = 1 GHz, (2.15)

which means we expect for the FWHM of the transmission peak

∆νFWHM =
FSR
F

= 4.8 MHz. (2.16)

Our optical source is a frequency stabilized extended cavity diode laser which
can emit light around 780 nm. The beam passes through an optical isolator
to prevent feedback of light into the diode. The beam is then coupled into a

5Invar has been choosen for its very low expansion coefficient (1.2 · 10−6K−1 at room
temperature)
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Figure 2.3: Schematic diagram of the experimental setup

single-mode fiber in order to produce a pure TEM00. At the output of the fiber,
the beam is collimated by a lens6. We use two mirrors in order to achieve proper
alignment between the beam from the fiber and the etalon. At the output of
the etalon, we use a photodiode connected to an oscilloscope to observe the
transmission peaks when scanning the etalon with the piezo.

2.3.2 Alignment procedure

The alignment procedure involves 4 degrees of freedom : 2 degrees for the tilt
and 2 degrees for the transverse position. In addition to that, we have to glue
the input mirror at the proper longitudinal position.

The Fabry-Pérot etalon is considered to be well aligned and at the confocal
position when the transmission peaks are perfectly symmetric 7(see Section
2.2.4) while the peaks of the odd modes are absent. When this goal is reached,
we can fix the input mirror in its position with epoxy 8.

It is very difficult to get the 4 degrees of freedom decoupled. If this is the
case, you only have to maximize the peaks on the oscilloscope independently
for each degree of freedom. In order to get the setting of the position and the

6We measured a beam at 1/e2 diameter of 1.2 mm with a razor-edge mounted on a mi-
crometer screw.

7The symmetry of the transmission peaks is achieved when the distance between the two
mirrors equals twice the Rayleigh range

8We use a 8 hour drying epoxy Stycast 1266 (Emerson & Cunning) then we get a few time
to fix the mirror in the proper position.
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Figure 2.4: Schematic diagram of the alignment method

setting of the tilt as independent as possible, we place a mirror at 10 cm from
the etalon and an other at 100 cm. We use a pinhole at the entrance of the
etalon to check the position of the beam. At the exit of the etalon we observed
the outcoming beam with a screen and a webcam. If the etalon is not properly
aligned, we observe two spots. We only have to overlap the spots by modifying
the angle of the beam to approach alignment. We reiterate this procedure until
we observe a decrease of the transmission of the odd modes. Once you have
observed this decrease, it is easy to make the odd modes vanish by adjusting
the screws of the mirrors independently.

2.4 Experimental results

2.4.1 Characterization of the etalon

We measured the finesse of our interferometer by fitting the transmission curve
with a Lorentzian as shown in Figure 2.5. The line-width of the peak is given
in the plot by the parameter w = 300 µm, we also measure a ”FSR” of 52.8
ms (which is twice the distance between the even and the odd modes shown in
Figure 2.6 ). Then we can obtain the experimental finesse of the Fabry-Pérot

F =
FSR

FWHM
=

52.8 ms
300 µs

= 176± 5%. (2.17)

We can also calculate the experimental resolution of the Fabry-Pérot

∆νFWHM =
FSR
F

= 5.7 MHz. (2.18)
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Figure 2.5: Plot of a transmission peak

Figure 2.6: Plot of the transmission function on a half FSR
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Figure 2.7: Plot of a transmission peak with the DFB Laser

2.4.2 Measurement of the band-width of a laser diode

We also tried to measure the finesse of the Fabry-Pérot using a temperature-
tunable DFB laser diode as an optical source. A plot of a transmission peak is
shown in Figure 2.7. The transmission peak broadens because the line-width
of the DFB laser is not negligible in front of the line-width of the Fabry-Pérot.
The ”transmission peak” shown in Figure 2.7 is then a convolution between
the spectrum of the DFB laser (which is roughly a Gaussian) and the ”true”
transmission peak of the etalon (which is a Lorentzian). The result of this
convolution is called a Voigt profile and cannot be expressed in a simple form.
However, we fit the transmission peak with a Voigt profile to obtain the Gaussian
component and the Lorentzian component of the transmission peak. Then we
can obtain the band-width of the laser

∆νG =
wG

∆tFSR
FSR =

150 µs
32.52 ms

.1 GHz = 4.6 MHz. (2.19)

We can also measure the finesse of the Fabry-Pérot

F =
∆tFSR

wL
=

32.52 ms
170 µs

= 191, (2.20)

which is not exactly what we expected (around 176). Although this measure-
ment is not very accurate, we can observe that we can obtain information below
the resolution of the Fabry-Pérot.
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2.5 Concluding remarks

The experimental finesse (F = 176) of the Fabry-Pérot is lower than expected.
There are a number of causes that could explain this result:

• The reflectivity of the mirrors is lower than expected.

• The line-width of the laser is not negligible in front of the line-width of
the transmission peaks.

• The roughness of the mirrors affects the finesse by scattering a small part
of the light at every reflection (see discussion at Appendix A.4).

• The distance between the two mirrors does not equal exactly the radius
of curvature of the two mirrors 9.

9However, this resulting asymmetric broadening can be suppressed by matching only the
TEM00 mode into the etalon

14



Chapter 3

General notions of
spectroscopy

We lock a laser on a optical transition of 87Rb using the properties of the light
transmitted through a 87Rb gas-cell. We describe in this chapter the basic
concepts which underlie this method. We first describe general properties of
hydrogen-like atom to understand the physics behind the quantization of energy
levels. In the second part, we briefly discuss the optical properties of those atoms
in order to understand the modification of the laser light when passing through
the gas-cell.

3.1 General properties of hydrogen-like atoms

3.1.1 Main structure

The hamiltonian of a single electron of mass m orbiting around a positively
charged nucleus is given by

H0 = − ~2

2m
∆ + V (r), (3.1)

where V (r) = −Ze2/4πε0r is the Coulomb energy. The motion of the electron
can be described by a Schródinger equation of the type

[
1

2m
(p2

r +
L2

r2
) + V (r)]ψ(r, θ, φ) = Eψ(r, θ, φ), (3.2)

where pr is the radial momentum operator, L the angular momentum opera-
tor and E the total energy of the system. Since the operators H, L2 and Lz

commute between each other, we can find a basis of the state space composed
of eigenfunction common to these three observable. These eigenfunctions must
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then satisfy the system of differential equations

Hψ(r) = Enψ(r) (3.3)
L2ψ(r) = l(l + 1)~2ψ(r) (3.4)
Lzψ(r) = m~ψ(r), (3.5)

The eigenvalues of the three operators are determined with the three quan-
tum numbers n, l and m.

• n is the principal quantum number and can take any non-negative integer
value. It determines the major energy state En of the atom by the relation

En = −EI

n2
, (3.6)

with EI depending on the properties of the atom (EI = 13.6 eV for the
hydrogen atom).

• l is the orbital quantum number which describes the magnitude of the
orbital angular momentum of the electron. It can take any integer value
between 0 and n− 1.

• m is the magnetic quantum number and describes the direction of orbital
angular momentum. It is confined by the orbital quantum number l and
may assume integer values ranging from −l to +l.

• Spin s is the intrinsic angular momentum of the electron and may assume
values − 1

2 or 1
2 .

The resolution of this system provides eigenfunctions of the form

ψ(r) = Rnl(r)Ylm(θ, φ). (3.7)

The radial wavefunction depends only on n and l, while the spherical harmonics
depends on l and m.

The Pauli exclusion principle states that two electron (which are fermions)
cannot be in the same state and then cannot have the same set of four quantum
numbers (n, m, l and s).

3.1.2 Selection rules for transitions

The transition involving a single electron are submitted to some selection rules:

• The change in orbital quantum number for an allowed transition must be
−1 or +1.

• The change in magnetic quantum number must be −1, 0 or +1.

• The change in spin must be 0.

• The change in j = |l+ s| must be 0, −1 or +1 but a transition from j = 0
to j = 0 is not allowed.
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3.1.3 Fine structure

The fine structure is due to small interactions that give small shifts and splittings
of the energy levels. They may be analyzed by means of perturbation theory.
The fine structure of hydrogen is actually two separate corrections to the Bohr
energies: one due to the relativistic motion of the electron, and the other due
to spin-orbit coupling.

Relativistic shifts

The degeneracy for levels of different l but equal n is lifted by relativistic effects.
The kinetic energy of a particle of mass m is given by

T = (c2p2 +m2c4)
1
2 −mc2 =

p2

2m
− 1

2mc2
(
p2

2m
)2 + . . . (3.8)

Then we can write the hamiltonian H = H0 + H ′, where H0 is the non-
relativistic hamiltonian. The perturbation H ′ is given by

H ′ = − 1
2mc2

(
p2

2m
)2 = − 1

2mc2
(H0 − V (r))2 (3.9)

We calculate the relativistic correction to the energy by first-order perturba-
tion theory which consists of assuming that the eigenfunction of the relativistic
hamiltonian are identical to the eigenfunctions ψn of the non-relativistic hamil-
tonian.

Spin-orbit interaction

Orbiting electron produces a magnetic field to which the spin magnetic moment
couples. This coupling is closely related to the Zeeman coupling and is know
as the spin-orbit interaction. This interaction can be estimated by considering
the velocity-induced magnetic field experienced by an electron moving through
the electric field of the nucleus. The spin-orbit term of the hamiltonian can be
written as

HSO = ξ(r)L.S (3.10)

By adding the terms due to the relativistic shift and to the spin-orbit inter-
action, one can finally obtain the the total energy shift of the fine structure

∆ETotal = ∆Erel + ∆ELS = −En
α2Z2

n2

(
3
4
− n

j + 1/2

)
, (3.11)

where α = e2/4πε0~c is the fine structure constant.

3.1.4 Hyper-fine structure

According to classical thinking, the electron moving around the nucleus has a
magnetic dipole moment, because it is charged. The interaction of this magnetic
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Figure 3.1: Energy levels scheme of the two lowest excited levels of 87Rb

dipole moment with the magnetic moment of the nucleus leads to hyperfine
splitting.

The nuclear spin I and the total electron angular momenta J = L + S get
coupled giving rise to the total angular momentum F = J+ I. According to the
Landé interval rule, the energy level is split into (J + I) − |J − I| + 1 energy
levels. These levels are represented by the quantum number F which can take
the values |J − I|, |J − I|+ 1,...,J + I.

3.1.5 The example of 87Rb

The Figure 3.1 shows the energy levels scheme of the two lowest excited levels of
87Rb. In the spectroscopic notation, 5p3/2 means n = 5, l = 1 (s,p,d,f ...) and
j = |l+s| = 3/2 (s = +1/2). The energy difference between the levels 5p1/2 and
5p3/2 is due to the fine structure (spin-orbit interaction + relativistic shifts).
The hyperfine-structure is represented by the F levels, while the sublevels are
described by the quantum number mF which can take any integer value between
−F and +F . In presence of magnetic field, those sublevels are shifted. The
Zeeman effect is described for an hydrogen atom in a uniform magnetic field in
Appendix B.2. However in the case of Rubidium, l and m must be replaced by
F and mF . The Zeeman sublevels also involve optical transitions depending on
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the polarization of the incident field (see Section 3.2.2).

3.2 Interaction of an atom with an electro-magnetic
wave

3.2.1 Electric dipole transition

The electric dipole moment of a single-electron atom is given by [15]

d = −er. (3.12)

Let be ε̂ the polarization of the incident monochromatic electric field. We can
then define the electric dipole operator HED = ε̂ · d. The matrix element
< g|HED|e > of this operator between the ground state |g > and the excited
state |e > describes the interaction between the dipole induced in the atom
and the electromagnetic field which is resonant if the frequency of the latter
corresponds to the energy difference between the initial and final states of a
transition.

< g|HED|e > = ε̂· < e|d|g > (3.13)
= ε̂ ·Deg (3.14)
= (ε̂ · r̂eg)Deg, (3.15)

where Deg = r̂egDeg is known as the transition dipole moment. Its direction
defines the direction of transition polarization, and its square determines the
strength of the transition.

3.2.2 Polarization aspects

According to the fact that the atoms are quantized along the Oz axis, we define
an orthonormal basis {ûq; q ∈ {−1, 0, 1}} for the polarization of the incident
electric field

û+1 = − 1√
2
(x̂+ iŷ) (3.16)

û0 = ẑ (3.17)

û−1 =
1√
2
(x̂− iŷ) (3.18)

û+1 and û−1 are two orthogonal circular polarizations in the xOy plane.

σ+, π and σ− transitions

We can now decompose the polarization of the electric field ε̂ in the basis {ûq; q ∈
{−1, 0, 1}}

ε̂ =
∑

q

εqûq (3.19)
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For hydrogen-like atoms, we can write the ground state |nlm > and the excited
state |n′l′m′ >, then we obtain

ε̂ ·Deg = −e
∑

q

εq < n′m′l′|ûq · r|nml > (3.20)

By using spherical harmonics, one can obtain that the term < n′m′l′|ûq ·r|nml >
has a non-zero value only if m′ − m = q. The matrix element can then be
simplified

ε̂ ·Deg = −e εm′−m < n′m′l′|ûm′−m · r|nml > . (3.21)

Only the projection of the electric field on the ûm′−m polarization interacts with
the transition.

We can consider for example the transition between the levels |100 > and
|21m > of the hydrogen atom, with an electric field polarized along û+1 (it is
called a σ+ polarization). If the frequency of the electric field is sufficiently close
to the frequency of the transition 1, an atom in the ground state |100 > can
absorb a σ+ polarized photon and then be lifted in the |211 > state. Inversely,
a photon spontaneously emitted from the state |211 > to the state |100 > will
be σ+ polarized.

We define three types of transition which depend on the value of ∆m =
m′ −m

• ∆m = +1: σ+ transition

• ∆m = 0: π transition

• ∆m = −1: σ− transition.

We can note that in the case of Rubidium, these transitions involve the
Zeeman sublevels (mF ).

3.2.3 Optical Bloch Equations

We consider in this section a single atom at rest with only two discrete non-
degenerate states, the ground state g and the first excited state e located at a
distance ~ω0 above g and having a natural width γ 2. We consider the case
where the atom interact with a monochromatic field whose frequency ω is very
close to the atomic eigenfrequency ω0.

The optical Bloch equation link the component of the density matrix which
is briefly described in Appendix B.4.1:{

ρ̇ee = − iΩ
2 (ρge − ρeg)− 2γρee = −ρ̇gg

ρ̇eg = iΩ
2 (ρgg − ρee) + (iδ − γ)ρeg = −ρ̇∗ge,

(3.22)

1We consider that the three levels |21m > have the same energy. This is not true in
presence of a magnetic field (See Appendix B.2)

2The natural width γ is related to the life time τ by the relation γ = 2/τ
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where δ = ω − ω0 is the detuning from the center of the resonance and

Ω =
E0(ε̂ ·Deg)

~
(3.23)

is the Rabi frequency of the g ↔ e coherence. The Rabi frequency does not only
depend on the amplitude of the incident electric field but also on its polariza-
tion. One can obtain the steady-state solution of the optical Bloch equations
by setting the time-derivatives to zero

ρee =
Ω2

4
1

δ2 + γ2 + 1
2Ω2

= 1− ρgg (3.24)

ρge = −Ω
2

δ − iγ

δ2 + γ2 + 1
2Ω2

= ρ∗eg. (3.25)

We define the two-level saturation parameter s0 as

s0 =
Ω2

γ2
. (3.26)

Equation 3.23 shows that Ω2 is proportional to the classical coherent incident
beam intensity Ī. We can then define the saturation intensity Īs by the relation

s0 =
Ī

Īs
. (3.27)

In the low intensity regime (s0 � 1), the fractional excited state occupation
is a Lorentzian function of the ”detuning” δ/γ

ρee '
s0/2

1 + (δ/γ)2
. (3.28)

We have moreover on resonance ρee ' s0/2.
When the saturation parameter increases, the width of the Lorentzian in-

creases while the excited state occupation tends to its maximum value ρmax
ee =

1/2.
In the case of unit-saturation (s0 = 1), we have on resonance ρee = 1/4. The

increase of the intensity beyond the saturation intensity broadens the Lorentzian
but doesn’t have much effect on the excited state occupation.

The induced electric-dipole moment of the atom is given by [14]

d(t) = −
(
ρeg(ε̂ ·Deg)e−iωt + ρge(ε̂ ·Dge)eiωt

)
(3.29)

= −eΩ
2

(ε̂ ·Deg)
(

δ − iγ

δ2 + γ2 + 1
2Ω2

e−iωt + c.c.

)
(3.30)

21



3.2.4 Refractive index and extinction coefficient of dilute
gases

Classical electric susceptibility

The electric susceptibility χ of a medium is a measure of how easily it polarizes
in response to an electric field. It is defined as the constant of proportionality
(which may be a tensor) relating an electric field E to the induced dielectric
polarization density P such that

P = ε0χE (3.31)

The electric displacement D is related to the polarization density P by

D = ε0E + P = ε0(1 + χ)E = ε0εrE, (3.32)

where εr is the relative permittivity of the medium.
However, a medium cannot polarize instantaneously in response to an ap-

plied field then we rewrite Equation 3.31 as a convolution

P(t) = ε0

∫ t

−∞
χ(t− t′)E(t′) dt′. (3.33)

In the Fourier’s space, this relation becomes

P(ω) = ε0χ(ω)E(ω). (3.34)

The complex refractive index η(ω) is related to the linear susceptibility χ(ω)
through

η2(ω) = 1 + χ(ω) (3.35)

The real part η′(ω) of η(ω) is the refractive index while its imaginary part η′′(ω)
is the extinction coefficient.

Electric susceptibility of dilute gases

Let d(t) be the averaged dipole moment per atom at time t (see Section 3.2.1).
The macroscopic polarization of the gas is then simply [14]

P(t) =
N

V
d(t), (3.36)

where N is the number of atoms and V the volume of the gas sample. Us-
ing the relations 3.29 and 3.34, one can obtain the expression for the electric
susceptibility

χ(ω) =
−eN(ε̂ ·Deg)2

2V ε0~

(
δ − iγ

δ2 + γ2 + 1
2Ω2

)
. (3.37)

In the case of dilute gases, the electric susceptibility is sufficiently small to
write

η(δ) ' 1 +
1
2
χ(ω) (3.38)

= η′(δ) + η′′(δ), (3.39)
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where

η′(δ) = 1 +
−eN(ε̂ ·Deg)2

4V ε0~

(
δ

δ2 + γ2 + 1
2Ω2

)
(3.40)

is the refractive index of the gas and

η′′(δ) =
−eγN(ε̂ ·Deg)2

4V ε0~

(
1

δ2 + γ2 + 1
2Ω2

)
(3.41)

is the extinction coefficient of the gas. The absorption of the gas is then a
Lorentzian function of the detuning while the phase shift is proportionnal to
the derivative of a Lorentzian.

3.3 Absorption spectrum

A medium’s absorption spectrum shows the fraction of incident electromagnetic
radiation absorbed by the medium over a range of frequencies. If the frequency
of the incident light cöıncide with the frequency of a certain transition, the atoms
of the medium can absorb a photon while a valence electron make transition
between the two concerned energy levels. If the frequency ω of the incident
radiation does not exactly equals the frequency of the transition, there is still
a probability that an atom absorbs a photon of energy ~ω. We show in Section
3.2.3 that this probability is a Lorentzian function of the detuning δ = ω − ω0.
This results in a broadening of the absorption line. From Equation 3.24, we see
that the FHWM 3 of the Lorentzian absorption profile is

ΓFWHM =

√
γ2 +

1
2
Ω2 (3.42)

= γ

√
1 +

1
2
s0 (3.43)

The line-width of the absorption line is then limited by the natural width γ of
the excited level. In order to perform a good S/N ratio, we would like to use
strong intensities which will unfortunately broaden the absorption line. We then
have to reach a compromise between the S/N ratio and the broadening. We can
consider that this compromise is reached around the unit saturation (s0 ≈ 1).

3.3.1 Doppler broadening

Let’s consider a planar monochromatic wave of frequency ω propagating through
a gas sample along the Oz axis. The frequency of the light experienced by an
atom of the sample is given by the relation

ω(vz) = ω · (1 +
vz

c
) (3.44)

3Full Width at Half-Maximum
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where vz is the projection of the velocity of the atom along the Oz axis. There-
fore, atoms with different velocities will absorb preferentially photons of different
frequencies. This phenomenon results in a broadening of the spectra.

In a gas sample, the probability distribution P (vz) of the velocity vz is given
by the Maxwell’s distribution:

P (vz) = (
m

2πkBT
)

3
2 e
−mv2

z
kBT (3.45)

Using Equations (3.44) and (3.45), one can obtain the width (FWHM)∆ωDoppler

of the doppler-broadened gaussian absorption spectrum

∆ωDoppler = 2ω0

√
2 ln 2

kBT

mc2
(3.46)

where we have considered that the doppler-free spectrum is a dirac centered on
ω0. A simple calculation for 87Rb at room temperature shows that the Doppler
broadening is much larger than the natural linewidth of the excited state.

∆f = 505MHz (3.47)

We need to lock our laser with an accuracy of 1 MHz, we then need to
know the frequency of the laser beyond the Doppler limit. We then use locking
methods which are freed of the Doppler broadening. Doppler-free spectroscopy
is described in Chapter 4.
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Chapter 4

Locking a laser on a optical
line

4.1 General scheme

Locking a laser means stabilizing the frequency of the laser using a reference
frequency. The difference between the frequency of the laser and the reference
frequency gives an error signal which can be used as a feedback to lock the
laser. The reference frequency can be defined by a Fabry-Pérot etalon, this is
the purpose of the Pound-Drever-Hall method [3]. This method provides the
possibility of tuning the frequency of the laser by tuning the resonance frequency
of the etalon.

We only need to be able to lock a laser on optical transition of 87Rb in order
to drive them in a magneto-optical trap to perform Bose-Einstein condensation.
We will use a gas cell containing only the 87Rb isotope. By observing the
changes in the properties of the light passing through the cell, we will be able
to compare the frequency of the laser with the frequency of the transition.

We explore in this section the methods which can be used to lock a laser on
a optical transition of the 87Rb using a gas cell.

4.2 Saturation spectroscopy

Saturation spectroscopy [2] constitutes the basis of Doppler-free spectroscopy.
Other classical methods like polarization spectroscopy actually derive from sat-
uration spectroscopy.

4.2.1 Principle

Saturation spectroscopy is based on the interaction of a pump beam and a
counter-propagating probe beam at the same frequency crossing in a cell. Let
be ω0 the frequency of the transition and ω the frequency of the pump beam

25



(and then also of the probe beam), close to ω0. Because of the Doppler effect,
the pump beam is absorbed by the atoms which belong to a certain velocity
class V(ω) defined by

Vpump(ω) = {vz, |ω(1 +
vz

c
)− ω0| 6

Γ
2
}, (4.1)

where Γ is the linewidth (FWHM) of the absorption profile of the transition (see
Section 3.3). For small intensities of the pump beam, we have Γ ' γ, where γ
is the natural linewidth of the transition. The counter-propagating probe beam
is supposed to have an intensity much smaller than the intensity of the pump
beam which is usually of the order of the saturation intensity. The probe beam
is absorbed by the atoms which belong to the velocity class

Vprobe(ω) = {vz, |ω(1− vz

c
)− ω0| 6

Γ
2
}, (4.2)

The velocity class of atom interacting simultaneously with the pump and the
probe beam V(ω) is

V(ω) = Vpump(ω) ∩ Vprobe(ω). (4.3)

We then V(ω) 6= φ differs from the empty set only if |ω − ω0| ≤ Γ
2 . In this case

we have
V(ω) = {vz, |

vz

c
| 6 |Γ

2
− |ω − ω0||}. (4.4)

Then when |ω−ω0| ≤ Γ
2 , the atoms interacting with the probe beam have been

already partially pumped into the upper state of the transition by the pump
beam. The probe beam is then less absorbed. The dip created in the absorption
spectra is called Lamb dip. The Lamb dip is centered on ω0 and has a width
(FWHM) of Γ

2 , it is then a Doppler-signal. It is an absorptive signal i.e. an
even function of the detuning δ = ω − ω0. One cannot then directly use it as
an error signal to lock the laser because it does not provide the sign of δ. In
order to lock the laser, one has to take the derivative of this signal which is
an odd function of δ (dispersive signal). This signal can be directly used as an
error signal because it is proportional to δ when δ is sufficiently small. The lines
obtained with interaction of atoms with zero longitudinal velocities are called
pure lines (PL)

Crossover lines

Crossover lines (CO) are produced when the pump and the probe beam run
different transitions of frequencies respectively ω1 and ω2. When the frequency
ω of the probe and the pump beam is exactly midway between ω1 and ω2, the
probe and the pump beam are resonant simultaneously with the same velocity
class of atoms. The atoms belonging to this velocity class have unlike for the
case of pure lines a finite value.
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4.2.2 FM spectroscopy

FM spectroscopy [4] is a method used to obtain a dispersive signal from an
absorptive signal. The probe beam is modulated in phase at radio-frequencies.
A photodiode placed after the cell give the absorptive signal. This signal is
then mixed with the modulation signal. The DC part of the mixer’s output is
proportional to the derivative of the absorptive signal and then can be directly
used to lock the laser. However, FM spectroscopy is actually more complex and
one can read the articles [3] and [4] for further comprehension.

4.3 Polarization spectroscopy

4.3.1 Principle

As in saturation spectroscopy, polarization spectroscopy is a method in which
the effect of a pump beam on the transmission of a counter-propagating beam
is exploited to provide Doppler-free signals. The pump beam is usually σ+

polarized and the probe beam is linearly polarized.

Eprobe = E0(cos(θ)x + sin(θ)y). (4.5)

The pump beam induces changes in absorption coefficient (∆α+ and ∆α−)and
refractive index (∆n+ and ∆n−), + and − corresponding to the two orthogonal
circular polarizations σ+ and σ− (See Appendix B.1). A difference ∆α+−∆α−
describes a circular dichroism which will make the probe beam linearly polarized,
and a difference ∆n+−∆n− describe a gyrotropic birefringence which will rotate
the axis of polarization.

4.3.2 Dichroism: absorptive signal

The absorption coefficients ∆α+ and ∆α−have been computed by C. Wieman
and T.W. Hänsch [1]:

∆α+ = ∆α−/d = −α0

2
I

Isat

1
1 + x2

, (4.6)

where α0 is the unsaturated background absorption, I is the intensity of the
polarizing beam, Isat is the saturation parameter, and x = (ω−ω0)/γ describes
the laser detuning from resonance. The parameter d = ∆α−/∆α+ only depends
on F , F ′ and the decay rates of both the levels. We can then obtain

∆α =
∆α+ −∆α−

2
=
−α0(1− d)

4
I

Isat

1
1 + x2

. (4.7)

Hence, the dichroism ∆α is a Lorentzian function of the detuning and cannot
be used directly to lock a laser. However, one can obtain a derivative signal
from the dichroism using FM modulation techniques.
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4.3.3 Birefringence: dispersive signal

The gyrotropic birefringence has the advantage to provide immediately a dis-
persive signal. According to the Kramers-Krönig relation which connects the
real and the imaginary part of any analytic function, we can write

∆n± =
−c
2ω

∆α±x, (4.8)

then

∆n =
∆n+ −∆n−

2
=

c

2ω
α0(1− d)

4
I

Isat

x

1 + x2
. (4.9)

Near resonance (i.e. x� 1), ∆n is proportional to the detuning x. Hence, any
signal proportional to ∆n can be used directly to lock a laser. In Appendix B.1,
we show that the gyrotropic birefringence rotates any incoming linear polariza-
tion with an angle proportional to ∆n.

To detect the light-induced birefringence, the usual scheme is to place the cell
between two crossed polarizers so as to detect the rotation of the probe beam [1].
This scheme is simple but the residual background light cannot be eliminated
and then degrades the S/N ratio. Y. Yoshikawa & al. [5] explored a slightly
modified scheme using balanced detection between two orthogonal polarization
components of the probe beam. This results in a background free spectra with an
improved S/N ratio. We use this method for our locking experiment. It is called
DLIB for Doppler-free light-induced birefringence. This is both a modulation-
free and a magnetic field-free method. However, the Zeeman shift caused by
the ambient magnetic field modifies the error signal as shown in Figures 4.1 and
4.2. Strong magnetic fields alter the shape of the DLIB spectrum (the dispersive
signals becomes absorptive); while weak fields 1 leave the global shape of the
DLIB spectrum unchanged but shift the zero crossing point(and then shift the
locking frequency). Furthermore, inhomogeneous magnetic field broadens the
dispersive signal and then must be avoided as far it is possible. The cell must
then be shielded from magnetic field, it is described in section 4.5.

4.4 Experimental setup of DLIB spectroscopy

Figure 4.3 shows the schematic diagram of the experimental setup. The angle
between the probe beam and the pump beam is emphasized in the figure 2. The
first half wave-plate is used to control the intensity of the probe and the pump
beam. The intensity of the pump beam equals roughly the saturation intensity
(1.6 mW/cm2), while the probe beam is 10 times weaker.

We encountered some difficulties while realizing the setup:

• The feedback into the DFB laser induces mode-hops which can stop the
possibility to scan the whole spectrum of Rubidium. This feedback is

1Weak field means here that the Zeeman shift is small compared to the natural linewidth
of the transition.

2The angle is actually about 3 degrees.
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Figure 4.1: Theoretical plot of the DLIB error signal vs. the frequency of the
laser with zero magnetic field
PL2 means the transition from 5S 1

2
F = 2 to 5P 1

2
F ′ = 2 and CO13 means the cross-over line

between the PL1 and PL3 line
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Figure 4.2: Theoretical plot of the DLIB error signal vs. the frequency of the
laser with presence of magnetic field (Zeeman shift of 3 MHz)
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Figure 4.3: Scheme of the setup of DLIB spectroscopy
1. DFB Laser, 2. 60 dB isolator, 3. Monomode fiber, 4. Polarizing beam splitter cube, 5.

Magnetic shield, 6. Rubidium gas cell, 7. Balancing system, 8. Locking box, 9. Current

control
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Figure 4.4: Saturation spectroscopy absorption spectrum obtained by blocking
one of the two photodiodes

especially important with the presence of a Fabry-Pérot etalon in the
setup but a 60dB-isolator is sufficient to prevent feedback.

• The optical table produces a strongly inhomogeneous magnetic field, we
had to lift the cell with 15 cm.

• The wave-plates and the beam-splitter cube must be checked carefully.

4.4.1 Experimental results

For the transition from from 5S 1
2
F = 2 to 5P 1

2
F ′ = 3 (PL3 in Figure 4.1),

we obtain a locking signal with an amplitude of 2 VPP (see Figure 4.5)while
the background noise is about 20 mV. Assuming that for the pump beam
is at the saturation intensity (s = 1) the linewidth of the locking signal is
2(1 + s)1/2Γ = 15.6 MHz, the zero-crossing point of the locking signal is then
defined with an accuracy of about 200 kHz. However, this does not prevent long-
term drifts of the frequency of the zero-crossing point. We can observe that
the experimental spectrum differs from the calculated spectrum. The CO13
and CO23 lines does not cross the zero level as expected in the calculation.
This result can be explained by the presence of a residual magnetic field. The
magnetic field can generate a background which has a dispersive shape. This
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Figure 4.5: Experimental DLIB spectrum of 87Rb D2 line

background is obtained by the substraction of two Doppler-broadened profiles
each Zeeman-shifted in opposite directions. To conclude, this method provides
a locking signal with a huge signal to noise ratio but however this method has
the disadvantage to be very sensitive to the magnetic field. Sometimes it is
more easy to produce a magnetic field than to shield against it. Those shielding
aspects are described in the next section.

4.5 Magnetic aspects

4.5.1 Zeeman effect

The Zeeman effect is the splitting of a spectral line into several components
in the presence of a static magnetic field. We show in Appendix B.2 that the
Zeeman effect changes not only the frequency, but also the polarization of the
atomic lines. Those properties can be used for spectroscopy, but for the same
reasons it can be necessary to realize a magnetic shielding to prevent from these
effects.

4.5.2 Utilization of the Zeeman effect in spectroscopy

We can cite a method [6] which makes use of the Zeeman effect to get a dispersive
signal. It is saturation spectroscopy, but the cell is immersed in a magnetic
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Figure 4.6: Scheme of the Thorlabs gas reference cell

field which induces Zeeman shifts. The σ+ and σ− components of the linearly
polarized probe beam are both generating a saturated absorption profile, each
Zeeman-shifted by the same amount but in opposite directions. The dispersive
signal is obtained by separately detecting the two components and subtracting
their signals from each other.

4.5.3 Magnetic shielding

In order to lock the Laser on a specific transition of Rubidium, we use a quartz
reference cell manufactured by Thorlabs. This cell only contains the 87Rb iso-
tope at the pressure of 4 Torr. A scheme of the cell is given in Figure 4.6. The
windows are designed with a 2 degrees wedge to eliminate the etalon effects of
parallel surfaced windows. The wedged windows are also angled to compensate
beam offset due to the index of the quartz material.

In order to prevent from magnetic perturbation such as Zeeman effect (See
Section 4.5.1)), we must protect the cell with a magnetic shield. We cover
the cell with two concentric tubes as shown in Figure 4.7. These tubes are
covered of mu-metal, a nickel-iron alloy (75% nickel, 15% iron, plus copper and
molybdenum) that has a very high magnetic permeability (µ = 4000). The
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Figure 4.7: Scheme of the shield. Lo = 200mm, Li = 120mm, Do = 50mm and
Di = 25mm

ambient magnetic field induces at the microscopic scale magnetic dipoles in
the mu-metal which tends to align with the ambient magnetic field in order
to minimize their potential energy. At the macroscopic scale, the magnetic
field induced by these dipoles counterbalance the ambient magnetic field which
produces the shielding.

The shielding factor S [16] is defined as the ratio between the external field
He and the internal field Hi:

S =
He

Hi
. (4.10)

The magnetic field in the optical table is about a few Gauss, we need to
reduce the magnetic field in the cell to less than 10 mGauss. We covered each
tube with 5 layers of mu-metal (thickness: d = 0.2 mm ). We calculated the
shielding factor of the system at the windows of the cell: S = 780 (see Appendix
B.3) which is sufficient for our experiment. So as to obtain a good shielding, we
have to demagnetize the mu-metal (i.e. aligning the randomly oriented magnetic
dipoles of the mu-metal with the ambient field). We realize this demagnetization
by applying a decreasing alternative magnetic field 3 into each tube so as to
”shake” the magnetic dipoles which can then finally align more easily with the
ambient magnetic field.

3We use coils around the tubes driven by an AC current.
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Practical remarks

We realized the shielding of the outer cylinder by juxtaposing two layers of mu-
metal of 10 cm each. We observed that the magnetic field leaked at the boarder
between the two layers. Magnetic shielding is a non-trivial science within we
can expect the unexpected.
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Appendix A

Fabry-Pérot resonator

A.1 Gaussian beams

The Figure A.1 gives us a scheme of the longitudinal section section of a Gaus-
sian beam around its focus which is called the waist. For a Gaussian beam, the
complex electric field amplitude at a distance r from its center, and a distance
z from its waist, is given by

E00(r, z) = E0
w0

w(z)
exp

(
−r2

w2(z)

)
exp

(
−ikz − ik

r2

2R(z)
+ iζ(z)

)
(A.1)

Which is a paraxial solution of the Helmoltz’s scalar equation. The geometry
and behavior of a Gaussian beam are governed by a set of beam parameters,
which are defined in the following sections.

For a Gaussian beam propagating in free space, the spot size (which is defined
by the distance from the axis where the amplitude has decreased by 1/e) w(z)
will be at a minimum value w0 at one place along the beam axis, known as the
”beam waist”. For a beam at a distance z from the beam waist, the variation
of the spot size is given by

w(z) = w0

√
1 +

(
z

ZR

)2

(A.2)

where the origin of the z-axis is defined to coincide with the beam waist, and
where

zR =
πw2

0

λ
(A.3)

is called the ”Rayleigh range”. At a distance from the waist equal to the
Rayleigh range ZR, the width of the beam is

w(±ZR) = w0

√
2. (A.4)
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Figure A.1: Gaussian beam parameters

The distance between these two points is called the confocal parameter of the
beam:

b = 2ZR =
2πw2

0

λ
. (A.5)

R(z) is the radius of curvature of the wavefronts comprising the beam. Its value
as a function of position is

R(z) = z

[
1 +

(
ZR

z

)2
]

(A.6)

The parameter w(z) approaches a straight line for z � ZR. The angle
between this straight line and the beam’s central axis is called the divergence
of the beam. It is given by

θ ' λ

πw0
(θ in radians). (A.7)

The total angular spread of the beam far from the waist is then given by :
Θ = 2θ.

The longitudinal phase delay or Gouy phase of the beam is

ζ(z) = arctan
(
z

ZR

)
. (A.8)

A.2 Hermite-Gaussian transverse modes

The Hermite-Gaussian transverse modes are a sequence of orthogonal eigen-
modes of the cavity. The amplitude of the TEMmn Hermite-Gaussian transverse
mode is

Emn(x, y, z) = E00(x, y, z)Hm(
√

2
x

w(z)
)Hn(

√
2

y

w(z)
) exp(i(m+n) arctan(

z

ZR
)),

(A.9)
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Figure A.2: Stability diagram.

where Hn is the n order Hermite polynomial defined by

Hn(x) = (−1)nex2 dn

dxn
(e−x2

). (A.10)

These polynomials are orthogonal with respect to the weight function :∫ ∞

−∞
Hn(x)Hm(x) e−x2

dx = n! 2n
√
π δnm (A.11)

A.3 Stability of optical resonators

The study of the stability of optical resonators had been realized by Kogelnik
and Li in 1966 [7]. By using ray transfer matrices, they obtained a stability
condition in the form

0 < g1.g2 < 1, (A.12)

where g1 = 1− d
R1

and g2 = 1− d
R2

. The Figure A.3 shows the stability of the
resonator versus the parameters g1 and g2. The stability condition shows that
the confocal resonator is only marginally stable because g1 = g2 = 0. When we
vary the length d of the cavity, the resonators is moving on the line ”g2 = g1”
on the Figure A.3. That is why if the radius of curvature of the two mirrors are
strictly even, the confocal resonator cannot be unstable.
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Figure A.3: Conservation of energy in an optical resonator

A.4 Effect of the losses on the efficiency of the
cavity

A.4.1 Measurement of the losses of the cavity

The figure A.3 shows a schematic diagram of a Fabry-Pérot with internal losses
which are represented by A1. Using the conservation of energy inside the Fabry-
Pérot, one can easily obtain that the maximum transmission 2 becomes [8]

Tmax = (
T

T +A
)2, (A.13)

while the finesse

F =
π
√
R

1−R
' π

T
, (A.14)

becomes
F ′ ' π

T +A
. (A.15)

We measured a transmission at the maximum of the peaks

Tmax = 0.42± 5%, (A.16)

and a finesse
F = 176± 5%, (A.17)

1A is defined by the fraction of intensity lost at each half round-trip
2ratio between the intensity of the transmitted light and the intensity of the incident light

at δ = 0
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We can obtain A and T by resolving the two simultaneous equations (A.13) and
(A.15)

T =
π
√
Tmax

F
= 0.0115, (A.18)

while

A =
π(1−

√
Tmax)

F
= 0.0063. (A.19)

A.4.2 Effect of the roughness of the mirrors

The roughness of the mirrors can spoil the efficiency of the Fabry-Pérot. Because
of the similarities between Helmoltz’s and Schrödinger’s equation, one can make
this calculation using perturbation theory [9] but it is beyond the scope of this
report.

For light normally incident on the surface of the mirror, the ratio Υ between
the intensity of the light scattered out of the specular direction and the intensity
of the incident light is given by

Υ = (
4πσ
λ

)2, (A.20)

where σ is the RMS surface roughness of the mirror [8]. Let’s assume that the
scattering of the light due to the roughness of the mirrors in entirely responsible
for the losses of the cavity then

A = Υ. (A.21)

Using (A.19) and (A.20), we obtain

σ =
λ

159
= 4.9 nm. (A.22)
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Appendix B

Spectroscopy

B.1 Polarization

B.1.1 General considerations

We consider in this section a frame (x,y, z) and a monochromatic light-wave
with a wave-vector k parallel to the z axis. Then we can write the electric field

E = E0(ξxx + ξyy)eiωt, (B.1)

Where ξx and ξy are complex values and satisfy |ξx|2 + |ξy|2 = 1. To describe
this field we use the notation

E = E0

(
ξx
ξy

)
eiωt ≡

(
ξx
ξy

)
. (B.2)

We define two orthogonal circular polarization

Σ+ =
(
−1/

√
2

−i/
√

2

)
and Σ− =

(
1/
√

2
−i/

√
2

)
(B.3)

Then we can express any linear polarization

E =
(

cos θ
sin θ

)
(B.4)

=
1√
2
[(− cos θ + i sin θ)Σ+ + (cos θ + i sin θ)Σ−] (B.5)

=
1√
2
[ie−iθΣ+ + eiθΣ−]. (B.6)
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B.1.2 Effect of gyrotropic birefringence on a linear polar-
ization

We can now consider the effect of birefringence on a linearly polarized probe
described by the quantity

∆n =
∆n+ −∆n−

2
, (B.7)

which corresponds to a difference in phase shift Φ when crossing the cell

Φ = ∆nω
L

c
. (B.8)

Then
Ein

probe =
1√
2
[ie−iθΣ+ + eiθΣ−] (B.9)

becomes after crossing the cell

Eout
probe =

1√
2
[ie−i(θ−Φ)Σ+ + ei(θ−Φ)Σ−]. (B.10)

The linearly polarized probe beam then just rotate with an angle −Φ.

B.1.3 Effect of circular dichroism on a linear polarization

So as to describe the effect of circular dichroism on a linearly polarized probe
beam, we define the quantities

αm =
∆α+ + ∆α−

2
and ∆α =

∆α+ −∆α−
2

, (B.11)

the probe beam Ein
probe then becomes after crossing the cell

Eout
probe =

e−αmL

√
2

[ie−iθe−∆αLΣ+ + eiθe∆αLΣ−]. (B.12)

Assuming that ∆αL� 1, we can linearize the expression

Eout
probe ' e−αmL[Ein

probe +
∆αL√

2
(−ie−iθΣ+ + eiθΣ−)], (B.13)

finally

Eout
probe ' e−αmL[Ein

probe +
i∆αL√

2
(ie−i(θ+π/2)Σ+ + ei(θ+π/2)Σ−)]. (B.14)

The polarization of the probe beam then becomes elliptic with a major axis
aligned with the polarization of the incoming probe beam and with a ratio
between the minor and the major axis b/a = ∆αL.
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B.2 The hydrogen atom in a uniform magnetic
field

B.2.1 Hamiltonian of the problem

The hamiltonian of a spinless particle of mass m and charge q subjected simul-
taneously to a scalar central potential V (r) and a vector potential A(r) is given
by

H =
1

2m
[p− qA(r)]2 + V (r). (B.15)

The potential vector determines the magnetic field B(r) = ∇×A(r). When the
magnetic field is uniform, the vector potential A(r) can be written

A(r) = −1
2
r×B. (B.16)

After a few algebra [11] we obtain H = H0 + H1 + H2 where H0, H1 and H2

are defined by

H0 =
p2

2m
+ V (r) (B.17)

H1 = −µB

~
L.B (B.18)

H2 =
q2B2

8m
R2
⊥, (B.19)

where µB = q~/2m is the Bohr magneton and the operator R⊥ is the projection
of R onto a plane perpendicular to B. H1 and H2 are respectively called the
paramagnetic and the diamagnetic term.

Paramagnetism

The paramagnetic term H1 = −µB/~L.B can be interpreted to be the coupling
energy between the magnetic field and the magnetic moment related to the
revolution of the electron in its orbit. A simple calculation [11] shows that for
an electron, the frequency shift due to the paramagnetic term is 1.40 MHz/gauss.

Diamagnetism

The diamagnetic term describes the coupling between the magnetic field and
the magnetic moment induced in the atom. The diamagnetic term is in general
negligible relative to the paramagnetic term.

B.2.2 The Zeeman effect

We study in this section the effect of a magnetic field on an optical line of
hydrogen which corresponds to the atomic transition between the ground state
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1s ( n = 1; l = m = 0) and the excited state 2p (n = 2; l = 1; m = +1, 0,
-1). We neglect the effect of diamagnetic and then we take H0 + H1 for the
hamiltonian. We choose the Oz axis parallel to B then

(H0 +H1)|nlm > = (H0 −
µB

~
BLz)|nlm > (B.20)

= (En −mµBB)|nlm >, (B.21)

where |nlm > are the common eigenstates of H0 (eigenvalue En = −EI/n
2),

L2 (eigenvalue l(l+ 1)~) and Lz(eigenvalue m~). For the states involved in the
resonance line we get

(H0 +H1)|100 > = (H0 − EI |100 > (B.22)
(H0 +H1)|21m > = (−EI/4−mµBB)|21m > (B.23)

= [−EI + ~(Ω +mωL)]|21m >, (B.24)

where Ω = 3EI/4~ and ωL = µBB/~ is the Larmor angular velocity. The
excited state is then split into three levels corresponding to the values m = 1, 0
and -1 of the magnetic quantum number which corresponds respectively to σ+,
π and σ− transitions.

B.3 Calculation of the magnetic shielding

B.3.1 Single cylindrical shell in static field

The calculation of the magnetic shielding of the system (See Figure 4.7) is based
on a paper of A.G. Mager [16]. The shape which produces the best shielding is
the sphere. For a permeability µ� 1, a diameter D and a thickness of the wall
d� D, the shielding factor of the spherical sphere is given by

S =
4
3
µd

D
+ 1. (B.25)

For an infinite cylinder with a transversal magnetic field the shielding factor is

ST =
µd

D
+ 1. (B.26)

The shielding is always much more effective with transverse field than with
longitudinal fields. The calculation of the shielding of the cylindrical shell for
longitudinal field is not straightforward. A cylinder with infinite length has no
shielding efficiency against static field along its axis. For finite length L, one can
obtain an estimation of the shielding factor with an ellipsoid of revolution with
the same ratio of length to diameter m = L/D. The result of this estimation is

SL = 4NST + 1, (B.27)
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where ST ' µd/D � 1 is the transverse shielding factor and N is the demag-
netization factor. The demagnetization factor for an ellipsoid of revolution has
been calculated by Osborn [17] who obtained for m� 1:

N =
1
m2

ln(2m− 1). (B.28)

For the outer cylinder 1, we obtain No = 0.075 and SL = 25. For the inner
cylinder 2, we obtain Ni = 0.06 and Si

L = 38.8.

B.3.2 Double cylindrical shell

Unfortunately, the shielding factor of a shell composed of two concentric cylin-
ders is not the product of the shielding factor of each cylinder calculated sepa-
rately. Mager gives in his paper [16] an estimation of the resultant longitudinal
shielding factor:

SL = 4NoS
o
TS

i
T

Dm

Li + 0.5Dm

4∆Dm

D2
o

+ 4No(So
T + Si

T ) + 1. (B.29)

Using this estimation, we obtain a longitudinal shielding factor SL = 856 for
our system.

B.3.3 Effect of openings

For open-ended cylinders, the field enters the cylinders with an exponential
slope. The internal magnetic field is then the sum of this field and the field
calculated above. The effect of the openings then decreases the shielding factor.
We calculated the shielding factor of our system at the windows of the cell:
STotal

L = 781.

B.4 Some mathematical objects of quantum me-
chanics

B.4.1 The density matrix

For a system whose state vector at the instant t is

|ψ(t) >=
∑

n

cn(t)|un >, (B.30)

where |un > is an orthonormal basis of the state space, we define the density
matrix ρ(t) as

ρ(t) = |ψ(t) >< ψ(t)|, (B.31)

1Lo = 200 mm, Do = 50 mm, do = 5 × 0.2 = 1 mm
2Li = 120 mm, Di = 25 mm, di = 5 × 0.2 = 1 mm
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or as
ρpn(t) = c∗n(t)cp(t). (B.32)

Obviously we have
Tr ρ(t) = 1. (B.33)

Let A be an observable, we have the relation

< A > (t) = Tr(ρ(t)A) (B.34)

Finally, one can deduce from the Schrödinger equation

i~
d
dt
ρ(t) = [H(t), ρ(t)] (B.35)

Physical meaning of the density matrix

The term ρnn represents the average probability of finding the system in the
state |un >, its is called the population of the state |un >. The non-diagonal
element ρnp expresses the interference effect between the state |un > and |up >.
The non-diagonal terms of the density matrix are called coherences.

If the kets |uk > are eigenvectors of the hamiltonian H with eigenvalues Ek,
we obtain from (B.35) {

ρnn(t) = constant
ρnp(t) = e

i
~ (Ep−En)tρnp(0).

(B.36)
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