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Abstract
We present the first experimental realization of Bose–Einstein condensation
in a purely magnetic double-well potential. This has been achieved by
combining a static Ioffe–Pritchard trap with a time orbiting potential. The
double trap can be rapidly switched to a single-harmonic trap of identical
oscillation frequencies, thus accelerating the two condensates towards each
other. Furthermore, we show that time-averaged potentials can be used as a
means to control the radial confinement of the atoms. Manipulation of the
radial confinement allows vortices and radial quadrupole oscillations to be
excited.
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1. Introduction

Bose–Einstein condensates (BEC) in dilute vapours have been
studied using magnetic [1–3] and optical [4, 5] potentials.
Magnetic traps can be divided into two classes: static and
dynamic traps. Bose–Einstein condensation was first observed
in a dynamic trap using a time orbiting potential (TOP) [1] and
shortly thereafter in a static Ioffe–Pritchard trap [6]. A TOP
trap uses a three-dimensional quadrupole field to confine the
atoms. In order to avoid Majorana losses near the centre of the
trap, a rotating homogeneous field shifts the field minimum
onto a circle around the trapped sample. At an appropriate
rotation frequency the trapping potential is simply the time
average of the orbiting potential. The Ioffe–Pritchard trap
on the other hand is designed to have a static, non-zero field
minimum. In radial (x, y) directions the atoms are confined
by a quadrupole field. On the z-axis the radial field component
is zero and the axial component is a parabola, Bz = B0 + 1

2βz2,
with a curvature β and an offset B0.

In this paper we explore the possibilities offered by
time-averaged potentials (TAP) in Ioffe–Pritchard traps. We
distinguish two cases, B0 > 0 and B0 < 0. In the first case Bz is
always positive and the axial confining potential is a parabola.
We can influence the radial and axial confinement of the atoms
by applying a linear TAP field, i.e. a homogeneous modulation
field orthogonal to the z-axis. This allows us to introduce a
radial ellipticity in the otherwise axially symmetric trap, which
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Figure 1. An absorption image of two BECs created in a
double-TOP trap. The condensates have been accelerated towards
each other by switching to a single trap. The picture was taken after
3 ms of free expansion. The figure on the right is an optical density
profile through the centre of both condensates. The solid curve is a
fit to the experimental data.

can be exploited to drive vortices or quadrupole oscillations. In
the second case (B0 < 0), Bz crosses zero at two points on the
z-axis creating an axial double-well potential. We can make a
double-TOP trap by adding a circular TAP field orthogonally
to the z-axis [1, 7]. As an example, we demonstrate Bose–
Einstein condensation in a double-TOP trap (see figure 1).

2. Trap geometry

We explored the possibilities offered by TAP fields in a Ioffe–
Pritchard coil configuration using an efficient semi-analytic
model of the trap. We calculate the magnetic field for
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the detailed geometry of each coil separately over a three-
dimensional grid around the trap centre. Two different regions
are chosen: one for the cold atom cloud and the Bose–Einstein
condensate (10 × 10 × 100 µm3) and one for the hot thermal
cloud (1 × 1 × 10 mm3). On this grid a three-dimensional
fourth-order polynomial is fitted for each of the coils. The
final field is calculated as the sum over the polynomials with
the electrical currents of the individual coils as parameters.
The frequencies and non-linearities of the trap are then simply
the appropriate coefficients of the final polynomial. Using
these polynomials any field possible with our coil configuration
can be rapidly calculated. For selected cases we also derive
simplified analytical expressions to emphasize the principles
involved.

In order to elucidate the TAP principle we write the
potential U (x, y, z) of the axially symmetric (ωρ ≡ ωx = ωy)

Ioffe–Pritchard trap in the approximation of a elongated
trapping potential (ωρ � ωz):

U (x, y, z) = µ

√
α2(x2 + y2) +

(
B0 + 1

2βz2
)2

(1)

where α is the radial gradient, µ the magnitude of the magnetic
moment of the atoms and m the atomic mass [8, 9]. For
the standard Ioffe–Pritchard trap (B0 > 0) the harmonic
frequencies are

ωρ =
√

µ

m

α2

B0
, ωz =

√
µ

m
β. (2)

2.1. Magnetic double-well potential (B0 � 0)

For a negative offset the modulus of the field becomes zero
at two points on the z-axis creating two three-dimensional
quadrupole traps. The distance �z between the two trap
centres can be controlled via B0:

�z = 2
√

2|B0|/β. (3)

Inversely, we can conveniently determine B0 from a
measurement of �z.

To eliminate depolarization near the trap minima we use
a circular TAP, creating a double-TOP configuration [7, 10].
A homogeneous field of amplitude Bm orthogonal to the z-axis
displaces the magnetic field zero by a distance

ρm = Bm/α. (4)

This expression is conveniently used to calibrate Bm .
Rotating the modulation field around the z-axis (with an

angular modulation frequency ωm) moves the zero along a
so-called ‘circle of death’. If the modulation frequency is
large compared to the oscillation frequency of the atoms in the
time-averaged trap but slow compared to the Larmor frequency
(ωρ,z � ωm � µBm/h̄), the atoms will see the time average
of the modulated potential [10]:

UTAP(x, y, z) = 1

2π

∫ 2π

0
U (x + ρm sin φ, y + ρm cos φ, z) dφ.

(5)
The harmonic trapping frequencies for both minima of the
double-well potential are

ωρ =
√

µ

m

α2

2Bm
, ωz =

√
µ

m

2β|B0|
Bm

. (6)

Note that ωz = 0 for B0 = 0 and Bm > 0. For this case the
axial confinement is governed purely by higher-order terms.

The two traps are separated by a potential barrier of

Ubarrier = µ
(√

B2
0 + B2

m − Bm

)
(7)

where the first term in the brackets corresponds to the field at
the origin and Bm to the field minimum of each of the wells.

One of the interesting aspects of this double trap is the
possibility of rapidly switching from the double-TOP trap
to a static Ioffe–Pritchard trap. This is done by removing
the TAP field and switching from B0 < 0 to B ′

0 > 0,
changing neither α nor β . The condensates then accelerate
towards each other and collide in the origin at a relative kinetic
energy of Ekin = 2µ|B0|. In a harmonic trap the shape of a
cloud is completely decoupled from its centre-of-mass motion.
Therefore, if the trapping frequencies in the single and double
traps are equal, the gas clouds move towards each other without
changing shape. It follows from equations (2) and (6) that the
axial and radial frequencies of the double and single traps are
the same if the offset and modulation fields obey

B ′
0 = 2Bm = −4B0. (8)

In our trap we can easily explore collision energies up to
1.3 mK corresponding to 7000 recoil energies at 780 nm.

Let us turn to the question of gravity. If the trap is
slightly tilted, gravity will affect the relative depth of the two
potential minima and thus the relative number of atoms in the
two traps. As the distance between the traps increases the
difference in atom numbers continues to grow. If the traps
were to remain coupled all atoms would eventually collect in
the lower trap. Therefore the two traps have to be separated
sufficiently quickly.

2.2. Magnetic single-well potential (B0 > 0)

For a positive offset we have a standard Ioffe–Pritchard po-
tential and we distinguish two types of TAP: the linear and
circular TAPs.

2.2.1. Linear TAP and radial ellipticity. If we apply a linear
TAP field in the x-direction modulating at an angular frequency
ωm we can write the TAP as

UTAP(x, y, z) = 1

2π

∫ 2π

0
U (x + ρm sin φ, y, z) dφ. (9)

The radial harmonic trap frequencies (ωx , ωy) can be
expressed in terms of the ratio b ≡ Bm/B0:

ωx = ωρ

√
E′(b)

1 + b2
, ωy = ωρ

√
K′(b), (10)

where1 K′(b) = 1
2π

∫ 2π

0 (1 + b2 sin2 φ)−1/2 dφ and E′(b) =
1

2π

∫ 2π

0 (1 + b2 sin2 φ)1/2 dφ. The axial frequency becomes

ωz = ωz

√
K′(b). (11)

1 Note that the integrals E′ and K′ used in equations (10) and (11) are
related to the elliptical integrals E and K as E′(b) = 2E(−b2)/π and
K′(b) = 2K(−b2)/π .
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For b � 1 the ellipticity is given by

ε ≡ ω2
x − ω2

y

ω2
x + ω2

y

≈ −b2/4. (12)

For b = 1, using equations (10) we calculate ε = −0.16.
Radial ellipticity can be used for example to excite

quadrupole oscillations or to create vortices in a BEC [11].
To drive the radial quadrupole oscillation, the ellipticity of
the trap has to be modulated for example by driving the
fields as Bx (t) = Bm sin(ωmt)(1 + sin 	t)/2 and By(t) =
Bm cos(ωmt)(1 − sin 	t)/2, where 	 is matched to the
frequency of the quadrupole oscillation.

Vortices can be created by rotating an elliptic trapping
potential at an angular frequency 	. This has been
demonstrated using rotating laser beams in a magnetic
trap [12, 13] and in an asymmetric TOP trap [14, 15].
We can do this by rotating the linear TAP field as Bx(t) =
Bm sin ωmt sin 	t and By(t) = Bm sin ωmt cos 	t .

2.2.2. Circular TAP and shape oscillations of a Bose–Einstein
condensate. Applying a circular TAP results in the trapping
potentials

UTAP(x, y, z) = 1

2π

∫ 2π

0
U (x + ρm sin φ, y + ρm cos φ, z) dφ.

(13)
The radial and axial harmonic trap frequencies (ωρ, ωz)

are then

ωρ = ωρ

(1 + 1
2 b2)1/2

(1 + b2)3/4
,

ωz = ωz(1 + b2)−1/4,

(14)

where ωρ and ωz are given in equation (2). We can now
control the axial and radial trapping frequencies using only the
relatively small offset and modulation fields. The modulation
b lowers the axial and radial frequencies whereas the offset B0

affects the radial confinement only. This can be used to excite
shape oscillations.

An axially symmetric shape oscillation of small amplitude
at a frequency ωs is described by

ρTF(t) = ρTF(1 + aρ cos(ωs t)),

zTF(t) = zTF(1 + az cos(ωs t)),
(15)

where ρTF and zTF are the radial and axial Thomas–
Fermi sizes. The two lowest-order axially symmetric modes
of a condensate [16–18] have frequencies of ωQ = √

5/2 ωz

and ωB � 2ωρ and oscillate with

aρ/az = −1/4 and aρ/az = ωρ/ωz (16)

respectively. We can start a pure shape oscillation by creating
a steady-state condensate in one trap and suddenly switching
to a different trap. The steady-state condensate has to fulfil
the conditions for ρTF(0) and zTF(0) of equations (15), where
the amplitudes aρ and az have to be chosen according to one
of the equations (16) depending on the choice of mode. The
steady-state Thomas–Fermi sizes in the second trap are ρTF

and zTF.

Figure 2. The coil configuration of our Ioffe–Pritchard trap. The
arrows indicate the directions of the currents in the main coils.
Modulation coils (not shown) are attached to the outside faces of the
Ioffe coils.

Since the atom numbers in the two harmonic traps are the
same, it can be shown that the frequencies in the traps and the
corresponding Thomas–Fermi sizes are related as

ω′
ρ

ωρ

=
(

zTF

z′
TF

)1/2(
ρTF

ρ ′
TF

)2

,

ω′
z

ωz
=

(
zTF

z′
TF

)3/2(
ρTF

ρ ′
TF

)
.

(17)

Let us now look at the case where we excite a shape oscillation
by switching between a TAP trap to a standard Ioffe–Pritchard
trap. For a small amplitude (aρ , az � 1), we calculate B0 for
a given modulation ratio b:

B0

B ′
0

= 1 + 1
2 b2

(1 + b2)
3
2

{
1 − 1 + 4 aρ

az

3 + 2 aρ

az

[1 − (1 + b2)
− 1

4 ]
}−2

, (18)

where, as before, B ′
0 is the offset in the non-modulated trap.

This equation simplifies for the lower-lying mode (aρ/az =
−1/4) to

B0

B ′
0

= 1 + 1
2 b2

(1 + b2)
3
2

. (19)

In this mode we can excite a 10% oscillation (az = 0.1) starting
from a normal Ioffe–Pritchard trap by adiabatically ramping
the modulation from zero to b = 0.78 and at the same time
lowering the offset to 64% of its original value (B0 = 0.64B ′

0).
Reverting quickly to the original parameters then starts an
oscillation of the condensate in the pure lower-lying axially
symmetric mode without the need to alter the large currents in
the Ioffe and compensation coils.

3. BEC in a double TOP

As an example of the use of TAP in combination with
a Ioffe–Pritchard coil configuration, we demonstrate Bose–
Einstein condensation in a double-TOP trap.

Our Ioffe–Pritchard trap is shown in figure 2 and is
described in detail in [19]. The trap consists of four Ioffe coils
producing the radial quadrupole field. The field of the pinch
coils provides the axial parabolic potential. The compensation
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Figure 3. An optical density profile along the z-axis of the thermal
cloud during the early stages of separation after a free expansion of
4 ms. The cloud contains 106 atoms at a temperature of 0.66 µK as
determined from the radial expansion. The solid curve is a
prediction from the model with the angle (0.4◦) and maximal optical
density as adjustable parameters. The inset shows the absorption
image.

coils are designed to compensate the field of the pinch coils at
the origin. The two sets of coils are connected in series in order
to reduce field noise. The offset B0 is controlled by applying
a dedicated homogeneous field (coils not shown in figure 2).
In order to be able to create the modulation fields, we have
attached modulation coils to the outer faces of the Ioffe coils.
They consist of PCB boards with one 35 µm layer of copper
on either side, connected in series. In order to maximize the
trap stability, facing modulation coils were driven in series.

The experimental path towards the BEC into the magnetic
double well is as follows. We optically pump about 6 × 109

atoms from a 87Rb MOT into the |5 2S1/2, F = 2, m F =
2〉 state. These are loaded into a matching, horizontal Ioffe–
Pritchard trap (ωρ = 2π × 8 Hz, ωz = 2π × 7 Hz and
B0 = 37 G). The circular TAP field of Bm = 0.68(3) G
rotating at a frequency of 7.0 kHz remains constant throughout
the experiment2. The transfer efficiency is about 50% and the
temperature in the trap is about 70 µK. We then compress the
trap to ωρ = 2π × 390(10) Hz and ωz = 2π × 14.8(4) Hz
by ramping the currents in the main coils from 50 A up to
their final value of 400 A and reducing the offset to B0 =
0.4 G. At this current we have3 α = 352(1) G cm−1 and
β = 266(2) G cm−2 [20].

Rapid forced evaporation using a radio-frequency sweep-
down to an intermediate value of 433 kHz above the bottom of
the trap cools the sample to a temperature of about 8 µK. At
this temperature, 90% of the atoms lie within the future circle
of death. We then ramp the offset field B0 linearly down at a
rate of −0.5 G s−1, eventually splitting the cloud.

Figure 3 shows a profile through a thermal cloud of 106

atoms at a temperature of 0.66 µK during the early stages of
the splitting process at B0 = −53(1) mG. The temperature and
atom number were determined by time-of-flight imaging. The
solid curve is calculated for the measured temperature using the

2 The modulation current of I ≈ 3 A corresponding to the modulation field of
Bm = 0.68(3) G was driven by a standard audio-amplifier (Yamaha AX-496).
3 α and β have been determined from B0 and the oscillation frequencies.
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Figure 4. An optical density profile along the z-axis of one of the
two BECs after 4 ms of free expansion. The solid curve is a fit of a
Thomas–Fermi profile to the experimental points. The BEC contains
4 × 104 atoms. The inset shows the absorption image.
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Figure 5. An axial centre-of-mass oscillation of a Bose–Einstein
condensate in a double-well trap. The solid curve corresponds to a
fit of a sine function to the data (ωz = 2π × 26.8 Hz).

semi-analytical model adjusting the maximum optical density
and the tilt angle (0.4◦) to fit the data.

After the cloud is fully split we fix the offset at B0 =
−0.63(1) G and condense the sample by lowering the radio-
frequency to 23 kHz above the bottom of the trap. Figure 4
shows a profile of an absorption image of one of the two
BECs after a free expansion of 4 ms. The solid curve is a
fit to the Thomas–Fermi distribution in a harmonic trap. The
condensate contains 4 × 104 atoms.

We excited a centre-of-mass oscillation of a BEC along
the z-axis by jumping the offset B0 from −0.43(1) to
−0.63(1) G thus shifting the traps by 115(1) µm outwards.
The condensates started to oscillate around the new trap centre
(dots in figure 5). The solid curve is a fit of a sine wave to the
data (ωz = 2π × 26.8 Hz). From our semi-analytical model
including an anharmonic shift of 0.8 Hz, we find a frequency
of 27.5(8) Hz. Hence we have agreement with the data within
the experimental error.

4. Conclusions and outlook

We explored the TAP principle as a powerful tool for
manipulating Ioffe–Pritchard traps. For a positive B0, the
radial confinement can be influenced using small modulation
fields, e.g. to excite vortices and pure shape oscillations. For

S122



Bose–Einstein condensation in a magnetic double-well potential

a negative B0, double-well potentials are obtained. These
can readily be converted to a single trap and thus used
in collision experiments with ultracold gas clouds. As an
example we used a circular TAP field to demonstrate Bose–
Einstein condensation in a double-TOP trap.
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