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We present a stand-alone interference method for the determination of the s- and
d-wave scattering amplitudes in a quantum gas. Colliding two ultracold atomic
clouds we observe the halo of scattered atoms in the rest frame of the collisional
center of mass by absorption imaging. The clouds are accelerated up to energies
at which the scattering pattern shows the interference between the s- (l = 0)

and d- (l = 2) partial waves. With computerized tomography we transform the
images to obtain the angular distribution, which is directly proportional to the

differential cross section. This allows us to measure the asymptotic phase shifts
of the s- and d-wave scattering channels. The method does not require knowledge

of the atomic density. It allows us to infer accurate values for the s- and d-

wave scattering amplitudes from the zero-energy limit up to the first Ramsauer-

Townsend minimum using only the Van der Waals C6 coefficient as theoretical
input. For the 87Rb triplet potential, the method yields an accuracy of 6%.

1. Introduction

The scattering length, the elastic scattering amplitude in the zero-energy

limit, is a key parameter in the theoretical description of quantum gases.1

The scattering length a determines the kinetic properties of these gases

as well as the bosonic mean field. Its sign is decisive for the collective

stability of the Bose-Einstein condensed state. Near scattering resonances,

pairing behavior and three-body lifetime can also be expressed in terms of

a. As a consequence, the determination of the low-energy elastic scattering
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properties is a key issue to be settled prior to further investigation of any

new quantum gas.

Over the past decade the crucial importance of the scattering length

has stimulated important advances in collisional physics.2 In all cases ex-

cept hydrogen the scattering length has to be determined experimentally as

accurate ab initio calculations are not possible.3 An estimate of the modulus

|a| can be obtained relatively simply by measuring kinetic relaxation times.4

In some cases the sign of a can be determined by such a method, provided

p- or d-wave scattering can be neglected or accounted for theoretically.5

These methods have a limited accuracy since they rely on the knowledge

of the atomic density and kinetic properties. Precision determinations are

based on photo-association,6 vibrational-Raman,7 and Feshbach-resonance

spectroscopy,8,9 or a combination of those. They require refined knowledge

of the molecular structure in ground and excited electronic states.2

In this contribution we describe a new method to determine the scatter-

ing length by studying the halo of scattered atoms after the collision of two

ultracold atomic clouds.10 We compare our results with related work.11,12

2. The accelerator

We start our experiments by loading about one billion 87Rb atoms into a

magneto-optical trap (MOT). After optical pumping into the fully stretched

|52S1/2, F = 2,mF = 2〉 hyperfine level, the atoms are transferred into a

Ioffe-Pritchard trap (21 × 477 Hz) with an offset field of B0 = +0.9 G.

We pre-cool the atomic cloud to about 6µK using forced radio-frequency

(RF) evaporation. To prepare for a collision experiment, the cloud is split

in two parts by applying a rotating magnetic field and ramping B0 down

to a negative value B−
0 . This results in two Time-averaged Orbiting Po-

tential (TOP) traps loaded with atoms.13 By RF-evaporative cooling we

reach Bose-Einstein condensation with about 105 atoms in each cloud and

a condensate fraction of ∼ 60%.

By switching off the TOP fields and ramping B0 back to positive values

we linearly accelerate the clouds until they collide with opposite horizontal

momenta at the location of the trap center. The collision energy E =

|2µBB
−
0 | = ~2k2/m (with µB the Bohr magneton and m the mass of 87Rb)

can be varied from 138 µK to 1.23 mK with an overall uncertainty of 3%

(RMS). Approximately 0.5ms before the collision we switch off the trap. A

few ms later a halo of scattered atoms is observed by absorption imaging

(see Fig. 1).



August 30, 2005 14:27 Proceedings Trim Size: 9in x 6in ICOLS2005-proceedings

3

Figure 1. Left: Scattering halo of two 87Rb condensates for collision energy E/kB =
138(4)µK (mostly s-wave scattering), measured 2.4 ms after the collision; Right: idem
but measured 0.5 ms after a collision at 1230(40) µK (mostly d-wave scattering). The
field of view of the images is ∼ 0.7× 0.7mm2.

3. Data analysis

As the atoms are scattered by a central field, the scattering pattern must

be axially symmetric around the (horizontal) scattering axis (z-axis). This

allows a computerized tomography transformation to reconstruct the radial

density distribution of the halo in cylindrical coordinates,14

n (ρ,z) =
1

4π

∫ ∞

−∞

ñ2 (κx, z) J0 (κxρ) |κx| dκx. (1)

Here ρ = (x2 + y2)1/2 is the radial coordinate and ñ2 (κx, z) the 1D Fourier

transform along the x-direction of the optical density with respect to z;

J0 (%) is the zero-order Bessel function.

From the radial density distribution of the halo we obtain the angular

scattering distribution, which (for gas clouds much smaller than the diam-

eter of the halo) is directly proportional to the differential cross section

σ (θ) = 2π |f (θ) + f (π − θ)|
2
. (2)

Here, the Bose-symmetrized scattering amplitude is given by a summation

over the even partial waves,

f (θ) + f (π − θ) = (2/k)
∑

l=even

(2l + 1)eiηlPl(cos θ) sin ηl. (3)

Given the small collision energy in our experiments, only the s- and d-wave

scattering amplitudes contribute,

fs (θ) + fs (π − θ) = (2/k)eiη0 sin η0

fd (θ) + fd (π − θ) = (2/k)(5/2)eiη2
(

3 cos2 θ − 1
)

sin η2.
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Therefore, the differential cross section is given by a quadratic expression,

σ(θ) =
8π

k2
sin2 η0

[

1 + 5 cos(η0 − η2)u+
25

4
u2

]

, (4)

with u ≡ (sin η2/ sin η0)
(

3 cos2 θ − 1
)

.

As suggested by Eq. (4), we make a parabolic fit to the measured angular

distribution plotted as a function of
(

3 cos2 θ − 1
)

. This yields directly

a pair of asymptotic phase shifts [ηexp
0 (k), ηexp

2 (k)] - defined modulo π -

corresponding to the two partial waves involved.15 The absolute value of

σ(θ) depends on quantities that are hard to measure accurately (like the

atom number) so we leave it out of consideration. We rather emphasize

that the measurement of the phase shifts allows a complete determination

of the (complex) s- and d-wave scattering amplitudes at a given energy.

4. Determination of the energy dependence

The radial wavefunctions corresponding to scattering at different (low) col-

lision energies and different (low) angular momenta should all be in phase

at small interatomic distances.16 This so-called accumulated phase is com-

mon to all low-energy wave functions and is extracted by a least-square fit

to the full data set {ηexp
0 (k), ηexp

2 (k)}. In practice, we use the experimental

phase shifts ηexp
0 (k) and ηexp

2 (k) as boundary conditions to integrate inwards

the Schrödinger equation ~2d2χ(r)/dr2 + p2(r)χ(r) = 0 for given E and l,

and obtain the radial wavefunctions χ(r)/r down to radius rin = 20 a0.

Here, p2(r) = m (E − V (r))− ~2l(l+1)/r2, where V (r) ' −C6/r
6 approx-

imates the tail of the interaction potential. At radius 20 a0, the motion of

the atoms is quasi-classical and the accumulated phase can be written as

Φ(r) ' arctan [p(r)/(~ ∂ lnχ/∂r)]. The distance 20 a0 is small enough for

Φ(rin) to be highly insensitive to small variations in E or l but also large

enough for the −C6/r
6 part of the interaction potential to be dominant

over the full range of integration.16 With a least-square procedure we es-

tablish the best value Φopt(rin) = 1.34 ± (π × 0.025) for the accumulated

phase at 20 a0. Here the error bar reflects the experimental accuracy and

not the systematic error related to the choice of C6. The d-wave scattering

resonance results in a sudden variation of ηexp
2 with the collision energy

in the vicinity of that resonance (see Fig. 2a).17 This imposes a stringent

condition on the optimization of Φopt and constrains its uncertainty.

We emphasize that Φopt has no physical significance but is valuable as

a boundary condition to integrate the Schrödinger equation back outwards

to compute ηl(k) for any desired (low) value of k and l. Fig. 2 shows the
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Figure 2. a) d-wave and b) s-wave phase shifts versus collision energy in µK; s-d inter-

ference is only observed in the gray areas. The circles are the results of the parabolic
fits for individual images. The full black lines is calculated from the accumulated phase
Φopt optimized from all data points. The grey lines show the influence of the uncertainty

of ±(π × 0.025) on Φopt. The vertical dotted line indicates the condition η0 = η2. The
first s-wave Ramsauer-Townsend minimum is found at ERT = 2.1(2) mK.

resulting phase shifts for collision energies up to 5 mK. The first Ramsauer-

Townsend minimum in the s-wave cross section is found at collision en-

ergy ERT /kB = 2.1(2) mK. The solid dots represent the ηexp
l (ki) obtained

from the parabolic fits for individual images. The three open circles cor-

respond to measurements for which the sign of the phase shifts could not

be established.10 Refinements to the procedure may account for multiple

scattering effects as well as the presence of a non condensed fraction.

Note that this procedure does not require knowledge of the density of

the clouds, unlike the stimulated raman detection scheme.18 Knowing the

phase shifts, we can infer all low-energy scattering properties. In particular,

the total elastic scattering cross section is given by

σ =

∫ π/2

0

σ (θ) sin θdθ = (8π/k2)
∑

l=even

(2l + 1) sin2 ηl. (5)
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Figure 3. s-wave (dashed line), d-wave (dotted line) and total (full black line) elastic
cross sections (in cm2) versus collision energy (in µK), computed from the optimized
accumulated phase Φopt as determined in this work. The gray lines are the total elastic
cross sections, obtained from Φopt ± (π × 0.025).

Note that the total cross section, unlike the differential cross section, does

not contain interference terms. Our results are shown in Fig. 3. The (asym-

metric) d-wave resonance emerges pronouncedly at 300(70) µK with an

approximate width of 150 µK (FWHM). Most importantly, the scattering

length follows from the k → 0 limiting behavior, η0(k → 0) = −ka. We

find a = +102(6) a0, whereas the state-of-the-art value is a = 98.99(2) a0.
19

5. Comparison with related work

Comparison of our results with the precision determinations shows that

our method is fairly accurate, although it only relies on the input of the C6

coefficient. We used the value C6 = 4.698(4) × 103 a.u..19 In the present

case, one does not need to know C6 to this accuracy. Increasing C6 by

10% results in a 1 %-change of our computed scattering length. Clearly,

the systematic error in Φopt accumulated by integrating the Schrödinger

equation inward with a wrong C6 largely cancels when integrating back

outward. However, in the case of a s-wave resonance other atomic species

may reveal a stronger influence of C6 on the calculated scattering length.

Simple numerical simulations show that the value of C6 becomes critical

only when the (virtual) least-bound state in the interaction potential has

an extremely small (virtual) binding energy (less than 10−2 level spacing).

Hence our method should remain accurate in almost any case.
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We point out that our method do not require the use of Bose-Einstein

condensed ultracold clouds. However, the use of condensates is practical as

they allow high energy resolution and analysis of the largest possible win-

dow of scattering angles. At the University of Otago similar collision experi-

ments were done with thermal clouds of 87Rb in the |52S1/2, F = 2,mF = 2〉

state.11 In these experiments the differential and total cross section were

measured directly and found to be in good agreement with theory. At this

ICOLS conference the Otago/Nist team reported interferometric observa-

tion of p-wave scattering between non-identical bosons by colliding a cloud

of 87Rb atoms in the |52S1/2, F = 1,mF = −1〉 state with a 87Rb cloud in

the |52S1/2, F = 2,mF = 1〉 state.20

We finally point to the relation between the halos observed in our ex-

periments and those observed by dissociation of 87Rb-dimers near a Fesh-

bach resonance at the Max Planck Institute for Quantum Optics (MPQ)

in Garching.12 In these experiments interference was observed between dis-

sociation halos from the s- and d-wave channels by Feshbach tuning the

dissociation energy to the value corresponding to the d-wave resonance.

Like in our experiments the final state pair wave functions can be written

in the dissociation case as

Ψ(r, t) = g(r, t)
[

eiη0

√

β0Y
0
0 + eiη2

√

β2Y
0
2 (θ)

]

, (6)

where β0 and β2 (with β0 + β2 = 1) are the branching ratios for the s- and

d-wave channels, respectively and η0 and η2 set their relative asymptotic

phase. For the collision experiments the branching ratios depend on the

phase shifts η0 and η2 and on the decomposition of the incident plane waves

into partial waves, and are given by

β0 =
sin2 η0(k)

sin2 η0(k) + 5 sin2 η2(k)
and β2 = 1− β0. (7)

In the dissociation experiments there is no incident wave, but the phase

difference η2 − η0 remains well defined and agrees with our experiments.

Therefore, the difference between the two experimental situations shows up

as a difference in branching ratios.
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