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Weak localization of light in hot atomic vapors
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We theoretically explore the possibility to detect weak localization of light in a hot atomic vapor, where one
usually expects the fast thermal motion of the atoms to destroy any interference in multiple scattering. To this end,
we compute the coherent backscattering peak, assuming high temperature and taking into account the quantum
level structure of the atomic scatterers. It is found that the decoherence due to thermal motion can be partially
counterbalanced by working at large laser detuning and using small atomic cells with an elongated geometry.
Under these conditions, our estimates suggest that weak localization in a hot vapor should be within reach of
experimental detection.
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I. INTRODUCTION

Light propagating through dilute ensembles of scattering
objects gives rise to interference between the fields emitted by
individual scatterers. As is well known, this interference pat-
tern is in general not a purely random superposition of fields
but may exhibit nontrivial features that survive even after an
ensemble average is performed. Those include the coherent
backscattering (CBS) effect [1,2], a manifestation of weak lo-
calization, long-range speckle correlations [3,4], or enhanced
intensity fluctuations [5], to give a few examples. Scattering
of light is also investigated in cold atomic vapors, where CBS
can be observed as well [6]. In these systems, special attention
has been paid to dense atomic clouds, where the atoms no
longer emit independently due to dipole-dipole interactions.
This impacts the optical properties of atomic vapors, leading
to resonance shifts or broadening [7–9], modifies the mean
free path and refractive index [10], and affects the transmis-
sion properties of light [11–15]. Dipole-dipole interactions
also compete with the phenomenon of Anderson localization,
to date not yet observed for light in three dimensions [16].

In all descriptions of light scattering in an atomic vapor, an
important ingredient is the temperature. While interference or
collective effects are fully at play in a cold atomic gas, this
is no longer the case in a thermal cloud, where the atomic
positions are not frozen. A central motivation for studying
light scattering in clouds of moving atoms is to clarify how
decoherence emerges when turning from a cold gas to a hot,
“classical” one. Recently, this problem has triggered much in-
terest in the context of collective scattering [17,18], metrology
[19], and quantum information [20]. A typical illustration of
the role of decoherence is provided by the weak localization
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effect, which corresponds to the interference between two
optical paths involving the same sequence of atomic scattering
events but traveled in opposite directions. When the atoms are
moving, the two interfering paths display Doppler frequency
shifts that manifest themselves as an effective decoherence
mechanism suppressing weak localization [21–23]. In hot
atomic vapors, the Doppler effect may also lead to a broad
distribution of mean free paths, triggering a phenomenon of
anomalous diffusion [24]. To explore the impact of thermal
motion on coherent light scattering, atomic scatterers offer
specific advantages compared to classical ones, such as col-
loids in suspension. A first one is the possibility to exploit the
laser detuning to turn in a controlled fashion from a regime
of resonant scattering to a far off-resonant situation. Another
one is the typical large value of the scatterer velocities in an
atomic cloud, which makes the role of decoherence signifi-
cant even at low temperature. This is in stark contrast to the
velocities of classical scatterers, always much smaller due to
the larger mass of the scattering objects. In light scattering
from suspended colloids or teflon particles, for instance, the
velocities involved are such that the motion of the scatterers is
usually irrelevant from the point of view of CBS decoherence,
even at room temperature.

While coherent light scattering at finite temperature has
been previously explored in cold gases, where the Doppler
effect remains moderate, so far hot atomic clouds have re-
ceived less attention. A main reason is the naive expectation
that in a hot atomic vapor, the fast thermal motion of the
atoms is strong enough to destroy any interference in mul-
tiply scattered light. Recently, however, it was shown that
interference involving scattering from an atom and a mirror
(“mirror-assisted coherent backscattering” [25,26]) could sur-
vive thermal motion in a hot vapor [27]. To achieve this goal,
the main idea was to work in a large detuning regime, where
scattering occurs on a timescale that is faster than the time
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taken by an atom to move over an optical wavelength. In
the present paper, we extend this idea to the mechanism of
weak localization by theoretically exploring the possibility to
detect coherent backscattering of light in a hot atomic gas.
We find that the decoherence associated with Doppler shifts
is indeed limited at large detuning. Our theory further shows
that the main contribution to CBS in a hot vapor stems from
pairs of atoms close to each other and aligned with the optical
axis, and therefore can be enhanced by using small, preferably
elongated atomic cells. Under these conditions, we provide
realistic theoretical estimates for the properties of the CBS
peak (contrast and width) and compare them to numerical
simulations, taking into account the atomic quantum level
structure. These estimates suggest that CBS should be mea-
surable in a hot vapor.

The article is organized as follows. In Sec. II, we recall
the standard theoretical description of CBS in the presence
of moving atoms in a cold vapor. The case of a hot vapor is
then addressed in Sec. III where, for the sake of pedagogy,
we model the atoms by classical dipoles and adopt a scalar
description of light scattering. In Sec. IV, we generalize this
approach to the case of a realistic atomic transition, properly
taking into account the quantum level structure and the vector
character of light. In Sec. V, we then show how the use of
smaller atomic cells, preferably of elongated shape, eventu-
ally allows one to significantly enhance the contrast of the
CBS peak while maintaining a large enough weak localization
signal. We finally summarize our results in Sec. VI.

II. COLD ATOMS

Although we are primarily concerned with light scattering
in a hot vapor, it is instructive to first recall how thermal
motion affects coherent backscattering in a cold atomic gas.
This problem, previously investigated experimentally [23], in-
deed provides insight on the strategy to counteract the impact
of decoherence on weak localization when turning to higher
temperatures. For the sake of clarity, here we deliberately stay
at a qualitative level. Further details about the description of
temperature effects on coherent backscattering in cold gases
can be found in [21–23].

Anticipating the case of a hot atomic vapor, usually con-
tained in a slab-shaped cell, we consider the geometry of
a semi-infinite atomic medium illuminated at normal inci-
dence by a plane-wave laser beam of frequency ω and wave
number k = ω/c. As is well known, CBS stems from the
interference between two wave amplitudes associated with
multiple scattering sequences that are identical but traveled
in opposite directions. This process is illustrated in Fig. 1(a),
for a given scattering sequence of N atoms, located at points
r1, . . . , rN in the half space z > 0. At each scattering event,
the optical wave vector is randomized, following the sequence
k0, . . . , kN . In this section, we focus on the CBS contrast at
backscattering, thus choosing kN = −k0. For this sequence
of N scattering events, the CBS contrast c(N ) is defined as
the ratio of the interference contribution in Fig. 1(a) to the
corresponding incoherent diagram where the two paths follow
the same sequence in the same order. At zero temperature,
the atomic positions are fixed, so that no dephasing occurs
and the interference is fully visible, c(N ) = 1. In contrast,

atom 1

atom 2

(a) (b)

FIG. 1. (a) Interference between two counterpropagating scatter-
ing paths responsible for coherent backscattering of light in a cold
atomic gas at nonzero temperature (arrows on paths refer to the
direction of propagation). In a temporal picture, each atom moves a
little in between the scattering events on the direct and reversed paths.
(b) In a hot vapor, the main contribution to coherent backscattering
involves two atoms only. In the frequency domain, thermal motion
leads to a Doppler frequency shift between the paths (see main text).

at finite temperature, an atom located at rn moves during the
time window that separates the scattering events on the direct
and reversed paths. Specifically, if one denotes by τ the time
taken by the wave to scatter from an atom to the next one,
the direct and reversed paths reach atom n at a time nτ and
(N − n + 1)τ , respectively. The dephasing between the two
trajectories is then

��N =
N∑

n=1

(kn − kn−1) · {rn(nτ ) − rn[(N − n + 1)τ ]}. (1)

The CBS contrast of the sequence is given by

c(N ) = 〈exp(i��N )〉, (2)

where the brackets refer to averaging over the atomic ve-
locities and over the scattering directions k̂i = ki/k. At the
temperatures involved in experiments on cold gases, the atoms
typically move ballistically, so that rn(t ) = vnt , with vn the
velocity of atom n. We assume these velocities to follow a
Gaussian distribution (cloud in thermal equilibrium),

p(v) = 1

(
√

2π v̄)3
exp

(
− v2

2v̄2

)
, (3)

where v̄ is the one-dimensional rms speed, related to the
temperature through kBT = mv̄2. Performing the average over
the vn using Eq. (3), we obtain

c(N ) =
〈

exp

[
−k2v̄2τ 2

2

N∑
n=1

(N − 2n + 1)2(k̂n − k̂n−1)2

]〉
.

(4)

Assuming that the atoms scatter isotropically, one has
〈k̂nk̂n−1〉 = 0, which leads to

c(N ) = exp

[
− (kv̄τ )2(N3 − N )

3

]
. (5)

This relation defines the CBS contrast for a given sequence
of N scattering events. The full CBS contrast follows by
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multiplying c(N ) by the diffusive weight 1/N3/2 of the se-
quence and summing over all possible sequence lengths:∑∞

N=1 c(N )/N3/2. We finally obtain the full CBS contrast C
by dividing this quantity by the incoherent multiple scattering
background,

∑∞
N=1 1/N3/2,

C =
∑∞

N=1 c(N )/N3/2∑∞
N=1 1/N3/2

, (6)

which can be conveniently rewritten as

C = 1 −
∑∞

N=1{1 − exp[−(kv̄τ )2(N3 − N )/3]}/N3/2∑∞
N=1 1/N3/2

. (7)

In the usual multiple scattering experiments with cold vapors,
the atoms are excited in the vicinity of resonance so to make
the scattering cross section large enough. In this regime, the
scattering time is mainly governed by the time delay accumu-
lated by light at each scattering event, i.e., τ � �−1, where
� is the spectral width of the atomic transition. At the low
temperatures where these experiments operate, one typically
has kv̄/� � 1. The sum in the numerator of Eq. (7) can then
be approximated by an integral, whose evaluation gives

C = 1 − 2�(5/6)

31/6ζ (3/2)

(
kv̄

�

)1/3

, (8)

where �(x) and ζ (x) are, respectively, the Euler gamma and
Riemann zeta functions. Atomic thermal motion therefore
leads to a reduction of the CBS interference contrast. Equation
(8) also provides a simple rule of thumb to estimate the impact
of thermal decoherence: in order for the CBS peak to be well
contrasted, the typical time λ/v̄ the atoms take to move over
a wavelength λ = 2π/k should be much longer that the time
delay �−1 associated with a scattering process. As a remark,
however, let us mention that while the (kv̄/�)1/3 scaling in
Eq. (8) is accurate, its numerical prefactor is only qualitative
due to two main approximations made in the above reasoning.
The first is the assumption of a fixed, deterministic time τ

between scattering events, and the second is the inaccurate
description of low scattering orders by a diffusive law in
Eq. (6). These two aspects will be properly addressed in the
calculation of the next section.

While Eq. (8) was derived assuming kv̄ � �, a quick look
at Eq. (5) sheds light on the fate of CBS at high temperature
kv̄ � �. Since the decoherence accumulates very rapidly with
N [23], in this regime the CBS peak becomes mainly dom-
inated by low scattering orders. Even for N = 2 though, the
contrast decays very fast with kv̄τ . At first sight, this suggests
that detecting weak localization of light in a hot atomic vapor
is hopeless. A closer look at the microscopic expression of
τ , however, reveals a possible strategy to limit the impact of
thermal decoherence. We recall that τ is the average delay
time accumulated by light during a scattering process. This
delay reflects the tendency of light to be “trapped” within the
atom when the latter is excited near resonance (corresponding
to a large τ ), whereas far from resonance, photon scattering
becomes nearly instantaneous. Note that this phenomenon
is specific for resonant scattering, as involved in the atom-
photon interaction, and is absent in classical setups where
CBS arises, e.g., from milk particles, teflon, or polystyrene
beads [1,2]. The delay time is defined by τ = ∂�/∂ω [28],

where � is the phase shift acquired by the wave during the
scattering process. For light scattering from two-level atoms,
� is the phase of the t matrix [see Eq. (12) below] and the
delay time reads [29]

τ = �/2

δ2 + (�/2)2
, (9)

where δ is the frequency detuning with respect to the
atomic resonance. This shows that by detuning the laser far
enough from resonance, |δ| � �, τ ∼ �−1(�/δ)2 becomes
much shorter than �−1. In this regime, the dephasing factor
kv̄τ � 1, and one could expect a restoration, at least partial,
of the CBS contrast. This is the idea that we explore in the
next section.

III. HOT ATOMS

A. Model and hypotheses

We now turn our attention to a hot atomic vapor, for which
kv̄ � �. From now on, we make use of a microscopic, more
quantitative description of coherent backscattering. Again we
consider a semi-infinite medium illuminated at normal inci-
dence by a plane-wave beam of incident wave vector, now
denoted by kin, with |kin| = k = ω/c. In general, the beam
can also be polarized, which we describe by a complex, unit
polarization vector ε; see Fig. 1(b). The medium is assumed
to be uniformly filled with an atomic cloud of density ρ,
excited around a resonance of frequency ω0 and spectral width
�. As before, we model the distribution of atom velocities
by the Gaussian law (3). As mentioned in Sec. II, at high
temperature, the impact of thermal motion can be reduced
by operating at large detuning δ = ω − ω0. Therefore, in the
following, we assume

|δ| � kv̄ � �. (10)

Note that this regime drastically differs from the one consid-
ered in experiments with cold atoms, where one typically has
|δ|, kv̄ � �. To calculate the CBS signal, we introduce the
bistatic coefficient γ , defined as the ratio of the light flux
scattered in a direction kout in reflection to the flux of the
incident plane wave [30],

γ = 4π

A

〈
dσ

d�
(ε kin → ε′kout)

〉
. (11)

Here, A is the illuminated surface and dσ/d� is the differ-
ential scattering cross section of the vapor in a solid angle �

around direction kout. Brackets refer to both averaging over
external degrees of freedom (atomic positions, atomic veloc-
ities) and internal degrees of freedom (population of atomic
energy levels). This definition also accounts for the possibility
to measure the reflection signal in a given polarization direc-
tion, parametrized by the unit vector ε′.

B. Coherent backscattering in the scalar approximation

As a proof of principle, we first examine coherent backscat-
tering at high temperature within a scalar description. The
latter amounts to both treating the atoms as classical dipoles
and discarding the polarization degrees of freedom. As
pointed out in Sec. II, at high temperature, Doppler phase
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shifts tend to quickly accumulate with the number of scatter-
ing events. It follows that when kv̄ � �, one expects CBS to
be essentially controlled by double scattering contributions.
Below we will confirm this conclusion by Monte Carlo nu-
merical simulations.

We thus focus our attention on double scattering CBS,
whose interference mechanism is illustrated in Fig. 1(b). In
contrast to the previous section, for convenience here we de-
scribe the thermal motion in the frequency domain rather than
in the temporal domain. The optical beam is scattered from
two atoms moving at velocities v1 and v2, and is eventually
detected at a distant point R in the far field, parametrized by
the angle �θ � 1 away from backscattering. After each scat-
tering event, the optical field gets multiplied by the so-called
atomic t matrix. Within a scalar description, the latter reduces
to a complex scalar number given, at frequency ω, by

ts(ω) = 4π

k

�/2

δ + i�/2
. (12)

In the presence of thermal motion, the frequency in the t
matrix is, in general, modified by a Doppler shift in the rest
frame of the atom. At large detuning |δ| � kv̄, however, this
modification can be neglected. For instance, the amplitude of
the incoming wave on atom 1 is, after scattering, multiplied by
ts(ω − kin · v1) = ts(ω)[1 + O(kv̄/δ)] � ts(ω) at leading or-
der. For the same reason, at large detuning, the mean free path
� = 4π/(ρ|ts(ω)|2) remains very close to its zero-temperature
value,

1

�
� 4πρ

k2

(�/2)2

δ2 + (�/2)2
. (13)

For the process of Fig. 1(b), the bistatic coefficient thus reads

γC � 4π

A
R2ρ

∫
dr1dr2dv1dv2 p(v1)p(v2)|ts(ω)|4

× �in(r1, ω)�∗
in(r2, ω)�out(R, ω′)�∗

out(R, ω′′)

× G(r2, r1, ω1)G
∗
(r1, r2, ω2). (14)

In this formulation, �in(r1, ω) refers to the field incident on
atom 1,

�in(r1, ω) = exp(ikin · r1 − z1/2�), (15)

with an analogous expression for the field �in(r2, ω) incident
on atom 2. Notice that Eq. (15) accounts for the attenuation
of the light field between the interface and the atom, governed
by the mean free path. The probability amplitude to propagate
from atom 1 to atom 2 is given by the disorder-averaged
Green’s function,

G(r2, r1, ω1) = exp{i[|k(ω1)| + i/2�]|r2 − r1|}
4π |r2 − r1| . (16)

In the rest frame of the atom, this field oscillates at the
Doppler-shifted frequency ω1 = ω + v1 · (k − kin). The re-
versed wave propagating from atom 2 to atom 1 is controlled
by the Green’s function G

∗
(r1, r2, ω2), and oscillates at

frequency ω2 = ω + v2 · (−k − kin). Finally, the (spherical)
wave emitted from atom 2 and detected in reflection is

given by

�out(R, ω′) = exp[i|kout(ω′)||R − r2| − z2/2�]

4π |R − r2| , (17)

where we used that cos �θ � 1 in writing the attenuation
factor. This field oscillates at frequency ω′ = ω + v1 · (k −
kin) + v2 · (kout − k), while the field �out(R, ω′′) emitted by
atom 1 oscillates at frequency ω′′ = ω + v1 · (k + kout) + v2 ·
(−kin − k). In the vicinity of backscattering, ω′ � ω′′, which
is an equality that we will assume from now on. By making
use of |ts(ω)|4 = (4π )2/ρ2�2 and expanding Eq. (17) in the
far field R � r1, r2, we obtain

γC � 1

4πA�2

∫
dr1dr2dv1dv2 p(v1)p(v2)

× exp{i(r1 − r2) · [kin(ω) + kout(ω
′)] − (z1 + z2)/�}

× exp{i|r1 − r2|[k(ω1) − k(ω2)] − |r1 − r2|/�}
|r1 − r2|2 . (18)

At this stage, it is worthwhile to note that all wave vectors
involved in this equation include the refractive index n of the
atomic vapor. For instance, one has k(ω) = n(ω)ω/c with

n(ω) = 1 − ρ Re ts(ω)

2k2
= 1 − 2πρ

k3

δ �/2

δ2 + (�/2)2
. (19)

With this in mind, we expand the Doppler-shifted wave vec-
tors in Eq. (18) around the laser frequency,

k(ω1) � k(ω) + v1 · [k(ω) − kin(ω)]
∂k

∂ω
. (20)

The frequency derivative of k(ω) = n(ω)ω/c is mainly con-
trolled by the frequency variation of the refractive index (19),
which, at large detuning, gives

∂k

∂ω
� πρ�

k2δ2
� 1

��
. (21)

Note that Eqs. (20) and (21) provide an explicit estimate of
the Doppler correction,

k(ω1) − k(ω)

k(ω)
∼ ρk−3 kv̄

δ

�

δ
� 1. (22)

This inequality a posteriori validates the Taylor expansion
(20) and also underlines the interest of working at large de-
tuning for limiting the impact of Doppler shifts.

Next we insert Eq. (20) and the analogous expansions
for k(ω2), kin(ω′), and kout(ω′) into Eq. (18), and perform
the Gaussian integrals over v1 and v2 using Eq. (3). This
leads to

γC � 1

4πA�2

∫
dr1dr2

exp[−(|r1 − r2| + z1 + z2)/�]

|r1 − r2|2

× exp

[
− v̄2|k − kin|2

2(��)2
(z2 − z1 + |r1 − r2|)2

]

× exp

[
− v̄2|k + kin|2

2(��)2
(z2 − z1 − |r1 − r2|)2

]

× exp[i(r1 − r2) · (kin + kout)], (23)

where all wave vectors are now evaluated at the laser fre-
quency ω. Introducing the polar angle θ [see Fig. 1(b)] and
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FIG. 2. CBS peak maximum normalized to the double scatter-
ing incoherent background, C∞(�θ = 0) = γC(�θ = 0)/γB, as a
function of kv̄/�, in the large detuning regime and in the scalar
approximation. The solid red curve is Eq. (24), and the dashed
curve is the high-temperature asymptotic law (π 3/2/25/2 ln 2)�/kv̄.
Blue dots are obtained from Monte Carlo simulations for double
scattering, taking δ = 50�.

x = |r1 − r2|/�, Eq. (23) can be rewritten as

γC � 1

2

∫ ∞

0
dx

∫ π/2

0
sin θdθ exp[−x(1 + cos θ )]

× J0(k�x sin θ�θ ) exp[−2(kv̄/�)2x2 sin2 θ ]. (24)

This is the general form of the double scattering CBS con-
tribution to the bistatic coefficient, valid at large detuning
|δ| � kv̄. Note that this expression holds for an arbitrary value
of the ratio kv̄/�, even though higher scattering orders also
come into play when kv̄ � �, as explained in Sec. II.

In the rest of this section, we normalize, for convenience,
the CBS contribution to the corresponding incoherent, double
scattering background signal, denoted by γB. Notice, however,
that γC/γB coincides with the CBS contrast only when other
scattering orders, in particular single scattering, give negligi-
ble contributions to the background. Configurations allowing
us to satisfy this condition in practice will be discussed in
Secs. IV and V. The double scattering background γB is de-
duced from the process in Fig. 1(b) by reversing one of the two
paths. This amounts to simply setting �θ = 0 and v̄ = 0 in
Eq. (24). Integrals over r and θ can then be readily performed
to give

γB = ln 2

2
. (25)

C. CBS maximum and angular profile

We first examine the CBS peak maximum, C∞(�θ = 0) =
γC(�θ = 0)/γB, where the ∞ index refers to the semi-infinite
geometry. We show this quantity in Fig. 2 as a function of
kv̄/�. As expected, C∞(0) becomes close to unity in the
low-temperature limit kv̄ � �: Doppler shifts vanish and the
coherent and incoherent contributions become equal to each
other. At high temperature, C∞(0) is reduced but we observe
that this reduction is only algebraic. This property, which is
one of the main results of the paper, can be explicitly shown by
evaluating Eq. (24) in the limit kv̄ � �. The integrals are then
dominated by the saddle point θ = 0. Expanding the integrand
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FIG. 3. Angular profile of the CBS peak at fixed kv̄ = 10�,
δ = 50�, and k� = 10 000. The solid red curve shows C∞(�θ )
computed using Eqs. (24) and (25), and the solid blue curve is
the corresponding result obtained from Monte Carlo simulations for
double scattering. The lower solid green curve is the triple scattering
CBS contribution computed from numerical simulations (precisely,
γC(�θ )/γB, with γC and γB now the bistatic coefficients for triple
scattering).

around that point, we obtain

C∞(�θ ) = γC(�θ )

γB
�

kv̄��

π3/2

25/2 ln 2

�

kv̄
F

(
�θ��

4v̄

)
, (26)

where F (x) = exp(−x2)I0(x2), with I0 the modified Bessel
function of the first kind of zero order. At �θ = 0, this
provides C∞(0) � 1.42�/kv̄, which decays as 1/

√
T . This

asymptotic limit is displayed in Fig. 2 (dashed curve). No-
ticeably, in the regime of large detuning considered here, the
contrast factor C∞(0) in turn becomes independent of δ. This
saturation implies that Doppler shifts can only be partially
counterbalanced by an increase of the detuning. This is a
marked difference with the mirror-assisted CBS effect con-
sidered in [27], where increasing δ allows one to effectively
reproduce the physics of a zero-temperature atomic gas.

Figure 3 then shows the full angular profile C∞(�θ ) of the
CBS peak, at fixed kv̄ = 10� and δ = 50�. In such a high-
temperature and large detuning regime, a good estimate of the
CBS angular width �θC is provided by Eq. (26),

�θC � 4

k�

kv̄

�
� 4πρk−3 kv̄

�

(
�

δ

)2

. (27)

Observe that the width is controlled by the competition be-
tween two terms: the disorder strength 1/k� � 1, which tends
to make the width narrow, and the Doppler factor kv̄/� � 1,
which makes it broad. Qualitatively, this broadening origi-
nates from the saddle point θ = 0 selected by the Doppler
factor in Eq. (24). The latter imposes a small interatom spac-
ing in the plane of the interface, and therefore a broad CBS
“fringe.” In any case, because of this competition, a practical
observation of coherent backscattering in this regime may
require a careful choice of the detuning and temperature, so
that �θC does not fall below the angular resolution of the
apparatus. For the parameters chosen in Fig. 3, the CBS peak
is rather broad.
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D. Numerical test

In order to test the validity of our theoretical approach,
we have performed Monte Carlo numerical simulations of
multiple scattering by the atomic vapor. This method has
been widely used in the context of multiple scattering from
cold atomic clouds [31]. In short, it amounts to following the
propagation of a photon in the effective medium by computing
sequences of the type of Eq. (14), choosing the position of a
given scatterer in a random direction and at an exponentially
distributed random distance from the previous one. In the
present case, we apply this approach to the geometry of a
semi-infinite medium, taking into account the velocity distri-
bution (3) of the atoms. The Monte Carlo method allows us
to numerically compute the bistatic coefficient corresponding
to individual scattering orders. We first show the numerical
prediction for the double scattering CBS contrast factor in
Fig. 2 (blue dots). The results are in very good agreement with
the analytical calculation (24) for all values of kv̄/�. We also
show the numerical CBS angular profile in Fig. 3. Again, the
results are well captured by Eq. (24).

An important assumption of our analytical calculations was
to neglect the contribution of higher scattering orders to CBS
in the regime of high temperature and detuning. To verify this
assumption, we have also computed, with our Monte Carlo
simulations, the contribution of triple scattering to coherent
backscattering in the hot vapor. The results are displayed
in Fig. 3. We find that the triple scattering signal is almost
invisible compared to the double scattering one. This result
confirms the idea that unlike in a cold atomic cloud, in a hot
vapor a rapid accumulation of Doppler phase shifts occurs and
makes higher scattering orders quickly negligible.

IV. ROLE OF THE QUANTUM LEVEL STRUCTURE
AND POLARIZATION

In light scattering by cold atoms, an important physical
ingredient affecting weak localization is the quantum level
structure of the atomic scatterers. In general, the quantum
selection rules of a given atomic transition give rise to an im-
balance between time-reversed scattering trajectories, which
eventually reduces the CBS peak contrast [6,32–34]. The
same phenomenon is expected to arise in a hot atomic va-
por, and therefore should be accounted for. This is the task
we accomplish in this section. The quantum selection rules
being intrinsically sensitive to light polarization, their analysis
requires one to explicitly account for the vector character of
light, i.e., to go beyond the scalar description of the previous
section. For cold atoms, the theoretical description of this
problem has been presented in previous works [31–34]. Below
we apply this formalism to the calculation of the reflection
intensity in a hot vapor, referring the reader to the aforemen-
tioned references for more details. We first provide the general
expressions for the coherent and incoherent double scattering
signals, as well as for the single-scattering contribution, which
also affects the CBS contrast. We then apply these results to
the concrete case of a hot alkali vapor excited near the D1 and
D2 lines, and provide. a reliable estimate of the contrast of the
coherent backscattering peak in a polarization configuration
where single scattering vanishes.

A. Double scattering

From now on, we assume that the light excites a two-level
atomic transition involving a ground state and an excited
state of total angular momenta J and Je, respectively. The
Zeeman degeneracy of these states is controlled by magnetic
quantum numbers m and me, which fulfill −J � m � J and
−Je � me � Je. Scattering from an atom with such a level
structure is characterized by the t matrix,

ti j = t (ω)〈Jm′|did j |Jm〉, (28)

where |J, m〉 refer to the magnetic substates of the ground
state, d is the reduced atomic dipole operator, and

t (ω) = 6π

k

�/2

δ + i�/2
. (29)

With respect to the scalar description, the disorder-averaged
Green’s function (16) is now a tensor given by G(r2, r1, ω1) =
G(r2, r1, ω1)�, where �i j = δi j − r̂i r̂ j is the projector onto
the plane perpendicular to the vector r = r2 − r1 joining the
two atoms. The scalar Green’s function G(r2, r1, ω1) is still
defined by Eq. (16), but with a mean free path now given by

1

�
= MJ

6πρ

k2

(�/2)2

δ2 + (�/2)2
, (30)

with MJ = (2Je + 1)/[3(2J + 1)] the ratio of level multiplic-
ities. With these ingredients, the CBS signal detected in a
polarization direction ε′ and for an incident beam polarized
along ε remains given by Eq. (14), up to the substitution.

|ts(ω)|4 → 〈tdir(ω)t∗
rev(ω)〉int, (31)

where

tdir(ω) = ε′∗ · t2 · � · t1 · ε (32)

for the direct path, and

trev(ω) = ε′∗ · t1 · � · t2 · ε (33)

for the reversed path. Here, t1 and t2 are the t matrices of atom
1 and atom 2, respectively, and the dot symbol denotes tensor
contraction. For instance, Eq. (32) should be understood as
tdir(ω) = ε′∗

i × (t2)i j × � jl × (t1)lk × εk , where a summation
over repeated indices is implied. In Eq. (31), 〈·〉int refers to a
statistical average over the internal Zeeman sublevels. We take
them uniformly distributed, which is a reasonable assumption
in a hot vapor. As pointed out in [32], due to the nonscalar part
of the atomic t matrix, the tensors in Eqs (32) and (33) do not
commute in general, so that tdir = trev. The average in Eq. (31)
was calculated in [32], using irreducible representations of the
rotation group. The result is

〈tdir(ω)t∗
rev(ω)〉int = |t (ω)|4M2

J PC (ε, ε′, r̂), (34)

where [32]

PC = (
w2

1 + w2
3

)|ε′∗ · � · ε|2+2w1w3(ε · � · ε∗)(ε′ · � · ε′∗)

+ (w1+ w3)w2[(ε · ε′)(ε∗ ·� · ε′∗)+ (ε∗ · ε′∗)(ε · � · ε′)]

+ 2w2
2|ε′ · ε|2. (35)

The coefficients wi are positive weights that dependent on the
specific J → Je transition considered. Applying the substitu-
tion (31) in Eq. (14) together with the definition (30) of the
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mean free path, we finally obtain

γC � 9

8

∫ ∞

0
dx

∫ π/2

0
sin θdθ exp[−x(1 + cos θ )]PC (θ )

× J0(k�x sin θ�θ ) exp[−2(kv̄/�)2x2 sin2 θ ]. (36)

Notice that as compared to the result (24) that assumed clas-
sical dipoles and scalar light, the effects of the polarization
and quantum level structure are entirely contained in the ad-
ditional prefactor 9/4PC . The calculation of the incoherent
background contribution is the same as in the scalar case,
except for the substitution

|ts(ω)|4 → 〈tdir(ω)t∗
dir(ω)〉int = |t (ω)|4M2

J PB(ε, ε′, r̂), (37)

where the incoherent polarization factor is given by [32]

PB = (
w2

1 + w2
2

)|ε′∗ · � · ε|2 + 2w1w2|ε′ · � · ε|2

+ (w1 + w2)w3[(ε∗ · � · ε) + (ε′∗ · � · ε′)] + 2w2
3 .

(38)

This readily leads to

γB � 9

8

∫ ∞

0
dx

∫ π/2

0
sin θdθ exp[−x(1 + cos θ )]PB(θ ).

(39)

As compared to the scalar description, notice that Eqs. (36)
and (39) differ even in the zero-temperature limit kv̄/� = 0,
since PC = PB in general. The equality is only recovered for
the J = 0 → Je = 1 transition, for which w1 = 1 and w2 =
w3 = 0 [32].

B. Single scattering

Before applying the above results to a concrete case, let us
say a word about the role of light scattering by a single atom.
As single-scattering processes do not have a time-reversed
counterpart, they usually decrease the CBS contrast. To avoid
this, a strategy consists in choosing a polarization configura-
tion where single scattering vanishes due to the selection rules
of the atomic transition. In the regime (10) of large detuning,
the single-scattering contribution is not affected by thermal
motion even in a hot vapor, and is given by

γS = 4π

A
R2ρ

∫
dr 〈|ε′∗ · t · ε|2〉int

× �in(r, ω)�∗
in(r, ω)�out(R, ω′)�∗

out(R, ω′), (40)

where the atom on which light is scattered is located at point
r and is characterized by the t matrix, t . The internal average
over the polarization term is given by [32]

〈|ε′∗ · t · ε|2〉int = |t (ω)|2MJPS (ε, ε′), (41)

with

PS (ε, ε′) = w1|ε′∗ · ε|2 + w2|ε′ · ε|2 + w3. (42)

Making use of Eqs. (15) and (17) and performing the integral
over r, we obtain

γS = 3

4
PS (ε, ε′). (43)

For certain atomic transitions, corresponding to specific
sets (w1,w2,w3), γS can be canceled by properly choosing
a couple of incident and detection polarizations (“polarization
channel”). This method can be successfully applied to the D
lines of alkali atoms, as we now show.

C. Application: D lines of alkali atoms

We now apply the above results to the D lines of an al-
kali vapor, frequently used in experiments on light scattering.
The D1 line refers to the transition J = 1/2 → Je = 1/2,
corresponding to weights (w1,w2,w3) = (1/3,−1/3, 1/3),
and the D2 line to the transition J = 1/2 → Je = 3/2, corre-
sponding to (w1,w2,w3) = (2/3,−1/6, 1/6) [32]. For these
two transitions, inspection of Eq. (42) reveals that the single-
scattering contribution cancels out when |ε′∗ · ε|2 = 0 and
|ε′ · ε|2 = 1, i.e., in the so-called helicity-preserving polariza-
tion channel, denoted by h||h. To maximize the contrast of
the CBS peak in a hot vapor, it is therefore this polarization
configuration that should be used. Note, however, that in order
to achieve such a cancellation, it is required that the hyperfine
level structure of the D lines plays no role, which can be
achieved by operating at a detuning larger than any hyperfine
splitting [34]. In alkali atoms, the hyperfine structure typically
involves a splitting of the ground-state level J = 1/2 into
two hyperfine levels of angular momenta F and F + 1 and
separated by a frequency �, so that single scattering will be
canceled for detuning |δ| � �. In the example of 39K, which
has a conveniently small hyperfine splitting, this condition
reads |δ| � 461 MHz.

Let us now examine the CBS contrast under these
conditions. In the h||h channel, Eqs. (35) and (38)
give PC (D1) = (1/9)(sin4 θ ), PB(D1) = (2/9) sin2 θ ,
PC (D2) = (sin2 θ/144)(25 sin2 θ − 12), and PB(D2) =
(sin2 θ/144)(20 + 9 sin2 θ ). Evaluating Eqs. (36) and (39) in
the limit kv̄/� � 1, we then find a CBS contrast,

CD1
∞ � 3π3/2

32
√

2

�

kv̄
� 0.37

�

kv̄
(44)

and

CD2
∞ � 27π3/2

440
√

2

�

kv̄
� 0.24

�

kv̄
. (45)

These results show that the D1 line is slightly more favorable
in view of a detection of weak localization in a hot vapor.
Note that this is the same conclusion as in a cold atomic gas,
kv̄ � �, for which CD1

∞ = 5/12 � 0.42 and CD2
∞ = 53/165 �

0.32 [32].

V. OPTIMIZING THE GEOMETRY

A. Amplification in elongated cells

In the previous sections, we have described the temperature
dependence of CBS at large detuning in a hot vapor and have
discussed how single scattering could be eliminated in stan-
dard atomic transitions. This led us to estimates of the CBS
contrast, i.e., Eqs. (44) and (45) for the D lines of alkali atoms.
This result, however, is clouded by two issues. The first one
concerns the contributions of higher scattering orders (triple
scattering and beyond) to the background signal. Although
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small, these contributions, neglected in Eqs. (44) and (45),
would in practice further reduce the CBS contrast. A second
issue remains the smallness of typical values of the CBS
contrast. For instance, in the recent experiment [27], a hot
rubidium vapor such that kv̄ � 45� was used, corresponding
to a CBS contrast of less than 1% according to Eqs. (44)
and (45).

These difficulties, nevertheless, can both be overcome by
an adequate choice of the sample geometry. A straightforward
way to reduce the impact of higher scattering orders, first,
consists in using a sample of thickness L < �. Indeed, in this
limit, an incoherent scattering process involving N atoms typi-
cally gives a contribution ∝ (L/�)N , the largest one thus being
obtained for N = 2 once single scattering has been elimi-
nated. The second issue, on the other hand, can be tackled
by noticing that at high temperature kv̄/� � 1, the Doppler
exponential factor entering the CBS contribution, given by
Eq. (36), naturally selects out geometric configurations such
that x2 sin2 θ � 1. The latter correspond to situations where

the two atoms are either close to each other (x � 1) or nearly
aligned along the direction perpendicular to the plane of the
interface (θ � 1). This is in contrast to the background contri-
bution (39), where no Doppler factor is present so that such a
selection does not apply. This property suggests an interesting
strategy to enhance the contrast of the CBS peak in a hot
vapor: by decreasing the thickness L and/or the transverse
width R of the atomic medium (both assumed infinite so
far), the incoherent background processes should be more
significantly reduced than the CBS signal.

To verify this qualitative argument, we now assume that
the atomic medium has the shape of a cylindrical slab of finite
thickness L and transverse radius R, as illustrated in Fig. 4(d).
This is a realistic model for the glass cells used in experiments
with hot vapors. To evaluate the bistatic coefficient in that
geometry, we come back to Eq. (23), which we rewrite in
terms of the projections of the atom positions r1 and r2 onto
the transverse plane, ρ1 and ρ2 (of radii ρ1, ρ2 and polar angles
θ1, θ2), and onto the z axis, z1 and z2 [see Fig. 4(d)],

γC(R,L,�θ ) � 9

16πA�2

∫
dρ1dρ2dz1dz2PC (ρ1, ρ2, z1, z2)

exp{−[
√

(ρ1 − ρ2)2 + (z1 − z2)2 + z1 + z2]/�}
(ρ1 − ρ2)2 + (z1 − z2)2

× exp

[
−2v̄2k2

(��)2
(ρ1 − ρ2)2

]
J0(k|ρ1 − ρ2|�θ ). (46)

Notice that we have included the factor 9/4PC associated with the quantum level structure, as explained in Sec. IV A. In this
expression, the radial integrals over ρ1 and ρ2 run from 0 to R, the longitudinal ones over z1 and z2 from 0 to L, and the transverse
surface of the medium is A = πR2. Introducing the new variables �ρ = |ρ1 − ρ2| and �z = |z1 − z2|, we simplify Eq. (46) to

γC(R,L,�θ ) � 9

16π�

∫ L

0
d�z

∫ 2R

0
�ρ d�ρ J0(k�ρ�θ ) exp[−

√
�ρ2 + �z2/�] exp

[
−2v̄2k2

(��)2
�ρ2

]

× exp(−�z/�) − exp[(�z − 2L)/�]

�ρ2 + �z2
PC (�ρ,�z)

[
4 arccos

(
�ρ

2L

)
− �ρ

L

√
4 −

(
�ρ

L

)2]
. (47)

As in the previous section, the background contribution
γB(R,L) is given by the same formula up to the substitutions
�θ = 0, v̄ → 0, and PC → PB. We show, in Fig. 4, density
plots of the calculated background [Fig. 4(a)] and CBS bistatic
coefficients [Fig. 4(b)] normalized to their corresponding val-
ues for a semi-infinite medium, i.e., γC(R,L, 0)/γC(∞) and
γB(R,L)/γB(∞) with γ (∞) ≡ γ (R = ∞,L = ∞), as a
function of R/� and L/�. For this calculation, we consider the
favorable D1 line in the helicity-preserving channel identified
in the previous section, for which PC = (1/9)[�ρ2/(�ρ2 +
�z2)]2 and PB = (2/9)�ρ2/(�ρ2 + �z2). The plots confirm
that in a finite sample, the background signal is always more
reduced than the CBS one when the cell size is decreased. We
also observe that CBS tends to be less affected by a decrease
of the radius than by a decrease of the thickness. To better
quantify this, we additionally show in Fig. 4(c) the ratio

A = γC(R,L, 0)/γC(∞)

γB(R,L)/γB(∞)
, (48)

which is simply the amplification factor of the CBS contrast
achieved with a cell of finite size with respect to a semi-

infinite medium,

C(�θ = 0) = γC(R,L, 0)

γB(R,L)
= AC∞(�θ = 0). (49)

From the figure, we find that the best amplification is obtained
for a cell of small radius. If, at the same time, one wishes to
maintain a large enough CBS signal, it can be preferable to op-
erate in a configuration where R < L, i.e., with an elongated
geometry.

B. CBS in elongated cells: Theory versus numerics

Our final prediction, given by Eq. (47), combined with
the use of an elongated and narrow cell, R < L < �, con-
stitutes the optimal configuration for observing CBS in a hot
atomic vapor where kv̄/� � 1. We recall that this optimal
configuration is realized (i) in the regime |δ| � kv̄,�, so that
the Doppler effect is maximally limited and the hyperfine
structure plays no role (see Sec. IV C), and (ii) in the h ‖ h
channel, so that single scattering is absent (note that this
would no longer be true when δ ∼ �, a regime where inelastic
processes on the hyperfine structure come into play [27,34]).
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FIG. 4. Calculated (a) background and (b) CBS signals in a
hot vapor contained in a cylindrical cell of thickness L and radius
R, shown as density plots vs R/� and L/�. Both γB(R,L) and
γC(R,L) are normalized to their values in a semi-infinite medium,
γB(∞) and γC(∞), respectively. Here we set kv̄/� = 40, and the
points are computed for the D1 line J = 1/2 → Je = 1/2 in the
helicity-preserving channel. Due to the Doppler dephasing factor that
favors configurations with atoms close to each other and aligned with
the optical axis, the CBS contribution decreases less significantly
than the background one with the cell size. (c) CBS amplification
factor achieved with a cylindrical cell with respect to a semi-infinite
medium [ratio of the plots (a) and (b)]. The star symbol corresponds
to the parameters used in Fig. 5. (d) Cell geometry considered in this
section, indicating the parametrization used in Eq. (46).

To conclude our analysis, we show in Fig. 5 a calcula-
tion of the typical CBS bistatic coefficient, γC(R,L,�θ ),
and in the inset the corresponding CBS contrast, C(�θ ) =
γC(R,L,�θ )/γB(R,L), that would be effectively measured
under these conditions in a hot vapor near a D1 line.
The curves are obtained for an elongated cell such that
(R/�,L/�) = (0.05, 0.5), corresponding to the star symbol in
Fig. 4(c). The decoherence factor is set to kv̄/� = 40, a value
close to the conditions of the experiment [27]. The figure
shows both the theoretical prediction (47) and the exact nu-
merical result obtained from Monte Carlo simulations, which
take into account the finiteness of the detuning δ and multiple
scattering contributions beyond double scattering. The good
agreement confirms the validity of our approach. The curves
also show that the CBS contrast is of several percents thanks to
the geometrical confinement, to compare with the 1% contrast
of Eq. (44) for a semi-infinite medium.
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FIG. 5. Calculated CBS bistatic coefficient (main panel) and
contrast (inset) in a hot vapor excited near a D1 line, for an elongated
cell such that (R/�,L/�) = (0.05, 0.5), corresponding to the star
symbol in Fig. 4(c). Solid red curves are the theoretical prediction
(47), and dashed blue curves are obtained from exact Monte Carlo
simulations. Here, kv̄/� = 40, δ = 400�, and k� = 160 000.

VI. CONCLUSION

In this paper, we have theoretically investigated the coher-
ent backscattering effect for light scattered in a hot atomic
vapor. This allowed us to identify the most favorable con-
ditions for observing the mechanism of weak localization at
high temperature: operating at large detuning to counteract
thermal motion, working in the helicity-preserving channel
to suppress single scattering, and using small and elongated
atomic cells to favor the coherent backscattering signal with
respect to the background one while maintaining a reasonable
signal-to-noise ratio. In our approach, we have also included
the quantum level structure of the atoms and identified the
D1 line as a slightly better option than the D2 line. With
all these conditions fulfilled, we have found that a coherent
backscattering contrast of several percents could be achieved
at high temperature, with the contrast being adjustable via the
cell geometry.

Although we cannot exclude the existence of other deco-
herence mechanisms further impacting the weak localization
interference, this estimate suggests that a detection of CBS
in a hot vapor is within reach of current experimental accu-
racy. Let us finally mention that other strategies to enhance
the CBS signal could be envisioned to counteract the impact
of the quantum level structure, such as optical pumping or
the use of a magnetic field to select a well-defined Zeeman
transition [35].
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