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4.7.5 Low-field limit - Landé factor gJ . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.7.6 Example for hydrogen-like atoms . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Magnetic hyperfine structure 143
5.1 Nuclear magnetic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.1.1 Nuclear Zeeman coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.1.2 Total atomic angular momentum . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Magnetic hyperfine interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.2 Three contributions to the magnetic hyperfine interaction in zero field . . . . 149
5.2.3 Magnetic dipole-dipole interaction using spherical tensor operators . . . . . 149

5.3 Hyperfine interaction in zero field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.1 Introduction - effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.2 Zero-field hyperfine shift in hydrogen-like atoms - the case l = 0 . . . . . . . 152
5.3.3 Zero-field hyperfine shift in hydrogen-like atoms - the case l > 0 . . . . . . . 153
5.3.4 Magnetic hyperfine structure of hydrogen-like atoms . . . . . . . . . . . . . . 155
5.3.5 Shift rules for the magnetic hyperfine coupling in zero field . . . . . . . . . . 156
5.3.6 Magnetic hyperfine structure of hydrogenic atoms in zero field . . . . . . . . 157
5.3.7 Transition dipole moments in the presence of hyperfine coupling . . . . . . . 158

5.4 Hyperfine structure in an applied magnetic field . . . . . . . . . . . . . . . . . . . . 159
5.4.1 Matrix elements in the uncoupled basis . . . . . . . . . . . . . . . . . . . . . 161
5.4.2 Hydrogen-like atoms with j = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . 161
5.4.3 High-field limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.4.4 Low-field limit - linear Zeeman shift and hyperfine g factor (gF ) . . . . . . . 166
5.4.5 Low-field limit - quadratic Zeeman shift . . . . . . . . . . . . . . . . . . . . . 168



vi Contents

5.5 Ground state hyperfine structure of hydrogen-like atoms . . . . . . . . . . . . . . . 169
5.5.1 Hydrogen (1H) in the electronic ground state 2S1/2 (I = 1/2) . . . . . . . . . 169
5.5.2 Deuterium (2H) and 6Li in the electronic ground state 2S1/2 (I = 1) . . . . . 171
5.5.3 The alkali atoms 7Li, 23Na, 39K, 41K and 87Rb in the electronic ground state

2S1/2 (I = 3/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.5.4 Potassium-40 in the electronic ground state 2S1/2 (I = 4) - negative hyperfine

shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6 Electric hyperfine structure 175
6.1 Electrostatic interaction of an electron with a classical nucleus . . . . . . . . . . . . 175

6.1.1 Nuclear quadrupole moment in quantum mechanics . . . . . . . . . . . . . . 179
6.1.2 Electric quadrupole interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7 Helium-like atoms 185
7.1 Heliogenic atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.1.1 Electrostatic repulsion versus screening . . . . . . . . . . . . . . . . . . . . . 187
7.1.2 Variational calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.1.3 The hydrogen negative ion H− . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.1.4 Effective potential and self-consistent mean field . . . . . . . . . . . . . . . . 192

7.2 The helium ground state in a magnetic field . . . . . . . . . . . . . . . . . . . . . . 194
7.3 Exchange degeneracy and Pauli principle . . . . . . . . . . . . . . . . . . . . . . . . 194
7.4 Expressions for the Coulomb integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4.1 Angular integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.4.2 Radial integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.4.3 The ground state of helium 1S0 . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.4.4 The ground state of metastable triplet helium 3S1 . . . . . . . . . . . . . . . 203
7.4.5 Helium-like atoms - energy levels . . . . . . . . . . . . . . . . . . . . . . . . 205

8 Central field approximation for many-electron atoms 207
8.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.1.1 Central field approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.2 Non-interacting electron atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3 The statistical atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.3.1 Thomas-Fermi central field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
8.3.2 Thomas-Fermi model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.3.3 Schrödinger equation for one-electron in the presence of screening . . . . . . 213

8.4 Hartree equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.5 Quantum defects for alkali-like atoms . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.5.1 Radial averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

9 Many-electron wavefunctions 223
9.1 Quantum correlations, Pauli principle and Slater determinants . . . . . . . . . . . . 224

9.1.1 Antisymmetric pair states for electrons . . . . . . . . . . . . . . . . . . . . . 225
9.1.2 Spinorbitals and Slater determinants . . . . . . . . . . . . . . . . . . . . . . 227
9.1.3 Slater determinants - notations and ordering convention . . . . . . . . . . . . 227
9.1.4 Slater determinants - parity and electric-dipole matrix elements . . . . . . . 229

9.2 Matrix elements of operators between Slater determinants . . . . . . . . . . . . . . 230
9.2.1 One-body operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.2.2 Two-body operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

9.3 Occupation number representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.3.2 Number states in the N -body Hilbert space . . . . . . . . . . . . . . . . . . 234



Contents vii

9.3.3 Number states in Grand Hilbert space - construction operators . . . . . . . . 235

9.3.4 Operators in the occupation number representation . . . . . . . . . . . . . . 237

9.4 Angular momentum of N -electron Slater determinants . . . . . . . . . . . . . . . . 239

9.4.1 Total orbital angular momentum L . . . . . . . . . . . . . . . . . . . . . . . 239

9.4.2 Total electronic spin S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9.4.3 Total electronic angular momentum J . . . . . . . . . . . . . . . . . . . . . . 244

10 Ground states of many-electron atoms 245

10.1 Aufbau principle and Hund’s rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

10.2 Hartree-Fock method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

10.2.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

10.2.2 Configuration mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10.2.3 Hartree-Fock equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10.2.4 Koopmans’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10.2.5 Fock operators - direct and exchange contributions . . . . . . . . . . . . . . 251

10.2.6 Energy functionals for valence electrons . . . . . . . . . . . . . . . . . . . . . 253

10.3 Atoms with zero orbital angular momentum . . . . . . . . . . . . . . . . . . . . . . 256

10.3.1 Closed shell atoms - 1S0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

10.3.2 Atoms with half-filled shells - 2J+1SJ . . . . . . . . . . . . . . . . . . . . . . 257

10.4 Atoms with one valence electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

10.4.1 Competition between electron configurations . . . . . . . . . . . . . . . . . . 258

10.4.2 Core polarization - unrestricted Hartree-Fock method . . . . . . . . . . . . . 259

10.5 Atoms with more than one valence electron - Hund’s Rule 1 & 2 . . . . . . . . . . . 260

10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

10.5.2 Partially filled shells with np2 configuration . . . . . . . . . . . . . . . . . . 260

10.5.3 Partially filled shells with nd2 configuration . . . . . . . . . . . . . . . . . . 267

10.5.4 Metastable excited state configurations . . . . . . . . . . . . . . . . . . . . . 270

10.6 Fine structure - Hund’s rule 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

10.6.1 Zeeman interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

10.6.2 Spin-orbit interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

10.6.3 Coupling schemes: LS coupling versus jj coupling . . . . . . . . . . . . . . . 274

10.6.4 Russell-Saunders coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

10.6.5 Equivalence of electrons and holes . . . . . . . . . . . . . . . . . . . . . . . . 276

10.6.6 Third Hund rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

10.7 Zeeman effect in the presence of spin-orbit interaction . . . . . . . . . . . . . . . . . 279

10.7.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

10.7.2 Description in the uncoupled basis . . . . . . . . . . . . . . . . . . . . . . . . 280

10.7.3 High-field limit - Paschen-Back effect . . . . . . . . . . . . . . . . . . . . . . . 280
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1

Quantum motion in a central potential field

The motion of particles in a central potential plays an important role in atomic and molecular
physics. To understand the properties of the hydrogen atom we rely on careful analysis of the
motion of the electron in the Coulomb field of the nucleus. Likewise, many properties related
to interactions between atoms, such as collisional properties, can be understood by analyzing the
relative atomic motion under the influence of central forces.

In view of the importance of central forces we summarize in this chapter the derivation of the
Schrödinger equation for the motion of two particles, say of masses m1 and m2, interacting through
a central potential V(r), r = |r1 − r2| being the radial distance between the particles. For such
potentials, purely depending on the relative distance between the particles, it is (in the absence of
externally applied fields) practical to eliminate the center of mass motion of the pair and represent
the relative motion by a single particle of reduced mass mr = m1m2/(m1+m2) in the same potential
field (see Appendix D.7). To further exploit the symmetry we can separate the radial motion from the
rotational motion, obtaining the radial and angular momentum operators as well as the hamiltonian
operator in spherical coordinates (Section 1.1). Knowing the Hamiltonian we can write down the
Schrödinger equation (Section 1.2) and specializing to specific angular momentum values we obtain
the radial wave equation. The radial wave equation is the central equation for the description of the
radial motion associated with specific angular momentum states.

The approach just described amounts mathematically to the method of separation of variables
for solving differential equations. This suggests to extend the discussion to cylindrical coordinates,
as this opens - with little additional effort - a window onto related problems like quantization of
electronic orbitals into Landau levels as well as the description of the flow fields of quantized vortices.
In these cases the central potential is absent but the solutions are rotational in character; hence,
show a form of central symmetry.

1.1 Hamiltonian

The classical Hamiltonian for the motion of a particle of (reduced) mass mr in the central potential
V(r) is given by the sum of the kinetic and potential energy,

H = 1
2mrv

2 + V(r), (1.1)

where v = ṙ is the velocity of the particle with r its position relative to the potential center. In
the absence of externally applied fields p = mrv is the canonical momentum of the particle and the
Hamiltonian can be written as1

H0 =
p2

2mr
+ V(r). (1.2)

1In the presence of an external electromagnetic field the non-relativistic momentum of a charged particle of mass
m and charge q is given by p = mv + qA, with mv its kinetic momentum and qA its electromagnetic momentum.
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2 Chapter 1. Quantum motion in a central potential field

To exploit the central symmetry we separate the radial motion from the angular motion by writing
the Hamiltonian in the form (see Problem 1.1)

H0 =
1

2mr

(
p2
r +

L2

r2

)
+ V(r) (r 6= 0). (1.3)

Here pr = r̂·p (see Fig. 1.1) is the radial momentum, with r̂ = r/r the unit vector in radial direction,
and L = r × p the orbital angular momentum with respect to the potential center. As Eq. (1.3)
is well-defined only outside the origin any result based on this expression should be tested for its
validity at the origin.

Problem 1.1. Derive the vector relation (see also Appendix N).

(r̂ · p)2 + (r̂× p)2 = p2. (1.4)

Solution. In the Einstein notation with summation over repeating indices the cartesian components of
r̂× p are given by (r̂× p)i = εijkr̂jpk, where i, j, k ∈ {x, y, z} and εijk is the Levi-Civita tensor

εijk =


1 for even permutations of x, y, z

0 for i = j or i = k or j = k

−1 for odd permutations of x, y, z.

(1.5)

Using the summation convention, the contraction of the Levi-Civita tensor is given by

εijkεilm = δjlδkm − δjmδkl.

Since L2 = LiLi we obtain

(r̂× p)2 = (εijkr̂jpk) (εilmr̂lpm) = (δjlδkm − δjmδkl) r̂jpkr̂lpm

= (r̂j r̂j) (pkpk)− r̂jpj r̂kpk = p2 − (r̂ · p)2 . 2

1.1.1 Quantization of the Hamiltonian - basic commutation relations

The transition from classical mechanics to quantum mechanics is made by postulating that the dy-
namical variables for position and momentum correspond to the following hermitian operators in the
position representation, p → −i~∇ and r → r.1 This is known as quantization by correspondence.
With this quantization rule, Eq. (1.2) becomes the quantum mechanical Hamiltonian and takes the
familiar form of the Schrödinger Hamiltonian for a particle in a central field,

H0 = − ~2

2mr
∆ + V(r). (1.6)

Although the quantization went smoothly in this case, in general we should watch out for ambiguities
in the application of the correspondence rules. For instance, whereas in classical mechanics the
expressions pr = r̂ · p and pr = p · r̂ are equivalent this does not hold for pr = −i~ (∇ · r̂) and
pr = −i~ (r̂ ·∇) because r̂ = r/r and −i~∇ do not commute.

Up to this point we did not make any choice of coordinate system (metric). To deal with non-
commutativity for a given coordinate system the operator algebra has to be completed with commu-
tation relations for the operators. In arbitrary orthogonal curvilinear coordinates r = r(r1, · · · rd)
of a d-dimensional euclidean vector space the gradient vector is given by

∇ = {h−1
1 ∂1, · · · , h−1

d ∂d} = ê1h
−1
1 ∂1 + · · ·+ êdh

−1
d ∂d, (1.7)

1Here we emphasized in the notation that r is the position operator rather than the position r. As this distinction
rarely leads to confusion the underscore will be omitted in most of the text.
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where the unit vectors are defined by û ≡ êu = ∂ur/|∂ur| and the scale factors by hu ≡ |∂ur|, with
u ∈ {r1, · · · rd}. Here ∂u ≡ ∂/∂ru is a shorthand notation for the partial derivative operator. Note
that ∂ur = huû.

In cartesian coordinates we have r = (r1, · · · rd) = (x, y, z). As the radius vector is given by
r = x̂x + ŷy + ẑz it follows that ∂xr = x̂, ∂yr = ŷ, ∂zr = ẑ and hx = hy = hz = 1. Note that the
property hi = 1, with i ∈ {1, · · · , d}, is valid for an euclidean vector space of arbitrary dimension
d. The commutation relations for the components of the operators ri and pj = −i~∂j are obtained
by evaluating the action of the operator [ri, pj ] on a smooth test function of position φ(rx, ry, rz),

[ri, pj ]φ = −i~ (ri∂j − ∂jri)φ = −i~ (ri∂jφ− ri∂jφ− φδij) = i~δijφ. (1.8)

Thus we derived the commutation relations

[ri, pj ] = i~δij . (1.9)

These commutation relations hold for cartesian coordinates. In general, the direction of the unit
vectors depends on position (hi 6= 1) and the commutation relations do not have this simple form.

A consequence of the commutation relations (1.9) is that r and p do not commute with the
Hamiltonian H0: for p we have [pi,H0] = [pi,V(r)] 6= 0, for r we find an important relation between
p and r

[ri,H0] =
[
ri,p

2/2mr

]
= i(~/mr)pi, (1.10)

which can be written in the form

p = −i (mr/~) [r,H0] . (1.11)

1.1.1.1 Laplacian in spherical coordinates

To explore the central symmetry of our problem we wish to write the laplacian from the Schrödinger
Hamiltonian in spherical coordinates {r, θ, φ}. The relation between the cartesian coordinates and
the spherical coordinates of a point P = P(x, y, z) = P (r, θ, φ) is given by (see Fig. 1.1)

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (1.12)

Using ∂aP = haâ, with a ∈ ({r, θ, φ}, the angular dependence of the unit vectors is given by1

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (1.13a)

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ (1.13b)

φ̂ = −x̂ sinφ+ ŷ cosφ. (1.13c)

Using P = r̂r = r we calculate hr = |∂r/∂r| = 1, hφ = |∂r/∂φ| = r(sin2 θ sin2 φ+ sin2 θ cos2 φ)1/2 =
r sin θ and hθ = |∂r/∂θ| = r(cos2 θ cos2 φ+ cos2 θ sin2 φ+ sin2 θ)1/2 = r.

Hence, in spherical coordinates the gradient operator (1.7) becomes

∇ = r̂ ∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ. (1.14)

Evaluating the inner product ∇ ·∇ we obtain for the Laplace operator (see Problem 1.2)

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
. (1.15)

1In these lecture notes we use interchangeable notations for the radial unit vector: r̂ ≡ Ω ≡ (θ, φ).
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Figure 1.1: Illustration of spherical coordinates of a point P = P(x, y, z) = P (r, θ, φ): (a) unit vector
convention; (b) vector diagram indicating the direction r̂ and amplitude pr of the radial momentum vector.

Problem 1.2. Derive the expression (1.15) for the laplacian in spherical coordinates.

Solution. Starting from the vector expression (1.14) for the gradient operator the laplacian is obtained by
evaluating the inner product

∇ · ∇ψ = r̂ ·
(
∂r r̂ ∂r + [∂rθ̂]

1

r
∂θ + [∂rφ̂]

1

r sin θ
∂φ

)
ψ

+
1

r
θ̂ ·
(

[∂θ r̂]∂r + ∂θθ̂
1

r
∂θ + [∂θφ̂]

1

r sin θ
∂φ

)
ψ

+
1

r sin θ
φ̂ ·
(

[∂φr̂]∂r + [∂φθ̂]
1

r
∂θ + ∂φφ̂

1

r sin θ
∂φ

)
ψ.

Here we dismissed many terms that yield zero due to the orthogonality of the unit operators. Using ∂r r̂ =
∂rθ̂ = ∂rφ̂ = 0 and ∂θ r̂ = θ̂, ∂θθ̂ = −r̂, ∂θφ̂ = 0 and ∂φr̂ = φ̂ sin θ, ∂φθ̂ = φ̂ cos θ, ∂φφ̂ = − r̂ sin θ− θ̂ cos θ
the expression further simplifies to

∇ · ∇ψ = ∂2
rψ +

1

r

(
∂r +

1

r
∂2
θ

)
ψ +

1

r sin θ

(
sin θ∂r + cos θ

1

r
∂θ +

1

r sin θ
∂2
φ

)
ψ.

Collecting the terms we obtain for the Laplace operator

∆ = ∂2
r +

2

r
∂r +

1

r2
∂2
θ +

cos θ

r2 sin θ
∂θ +

1

r2 sin2 θ
∂2
φ,

which can be written in the form (1.15). 2

1.1.1.2 Laplacian in cylindrical coordinates

To describe central symmetry in two-dimensional systems or systems with cylindrical symmetry it is
important to be aware of the expression for the laplacian in cylindrical coordinates P = P(x, y, z) =
P (r⊥, φ, z). As illustrated in Fig. 1.2 the relation between the cartesian coordinates and the cylin-
drical coordinates is given by the expressions

x = r⊥ cosφ, y = r⊥ sinφ, z = z. (1.16)

Using ∂aP = haâ, with a ∈ {r⊥, φ, z}, the angular dependence of the unit vectors is given by

r̂⊥ = +x̂ cosφ+ ŷ sinφ (1.17a)

φ̂ = −x̂ sinφ+ ŷ cosφ (1.17b)

ẑ = ẑ. (1.17c)
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Figure 1.2: Illustration of cylindrical coordinates of a point P = P(x, y, z) = P (r⊥, φ, z) with unit vector
convention.

Using P = r̂⊥ r⊥ + ẑ z we have P2 = r2
⊥ + z2 and calculate hr⊥ = |∂P/∂r⊥| = 1, hφ = |∂P/∂φ| =

r⊥(sin2 φ+ cos2 φ)1/2 = r⊥ and hz = |∂P/∂z| = 1.
Hence, in cylindrical coordinates the gradient operator (1.7) is given by

∇ = r̂⊥ ∂r⊥ + φ̂
1

r⊥
∂φ + ẑ ∂z. (1.18)

Evaluating the inner product we obtain for the laplacian (see Problem 1.3)

∆ =
∂2

∂r2
⊥

+
1

r⊥

∂

∂r⊥
+

1

r2
⊥

∂2

∂φ2
+

∂2

∂z2
. (1.19)

Fixing the value of z this expression also serves to describe two-dimensional systems. In the form
(1.19) the laplacian is used to describe the flow field of quantized vortices in superfluids.

Problem 1.3. Derive the expression (1.19) for the laplacian in cylindrical coordinates.

Solution. Starting from the vector expression (1.18) for the gradient operator the laplacian is obtained by
evaluating the inner product (here we set r⊥→ r for compactness of notation)

∇ · ∇ψ = r̂ ·
(
∂r r̂ ∂r + [∂rφ̂]

1

r
∂φ + [∂rẑ]∂z

)
ψ

+
1

r
φ̂ ·
(

[∂φr̂]∂r + ∂φφ̂
1

r
∂φ + [∂φẑ]∂z

)
ψ

+ ẑ ·
(

[∂zr] ∂r + [∂zφ̂]
1

r
∂φ + ∂z ẑ ∂z

)
ψ.

Here we dismissed the many terms that yield zero due to the orthogonality of the unit operators. Using
∂r r̂ = ∂rφ̂ = ∂rẑ = ∂z r̂ = ∂zφ̂ = ∂z ẑ = 0 and ∂φr̂ = φ̂ , ∂φφ̂ = −r̂ + ẑ z, ∂φẑ = 0 the expression for ∆ψ
further simplifies to

∇ · ∇ψ = ∂2
rψ +

1

r

(
∂r + ∂φ

1

r
∂φ

)
ψ + ∂2

zψ.

Thus, the Laplace operator can be written in the form (1.19). 2

1.1.2 Angular momentum operator L

To obtain the operator expression for the angular momentum L = r×p in the position representation
we use the correspondence rules p → −i~∇ and r → r. Importantly, although r and p do not
commute the transition to the quantum mechanical expression,

L = −i~ (r×∇) , (1.20)
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can be made without ambiguity because the correspondence rules yield the same result for L = r×p
and for L = −p× r. This is easily verified by using the cartesian vector components of r and p and
their commutation relations,

− (p× r)i = −εijkpjrk = −εijkrkpj = εikjrkpj = εijkrjpk = (r× p)i . (1.21)

Note that for j 6= k the operators rj and pk commute and for j = k one has εijk = 0.
Having identified Eq. (1.20) as the proper operator expression for the orbital angular momen-

tum we can turn to arbitrary orthogonal curvilinear coordinates r = r(u, v, w). In this case the
gradient vector is given by ∇ = {h−1

u ∂u, h
−1
v ∂v, h

−1
w ∂w} and the angular momentum operator can

be decomposed in the following form

L =− i~ (r×∇) =− i~

∣∣∣∣∣∣
û v̂ ŵ

ru rv rw
h−1
u ∂u h−1

v ∂v h−1
w ∂w

∣∣∣∣∣∣ . (1.22)

For spherical coordinates the components of the radius vector are rr = r and rθ = rφ = 0. Working
out the determinant in Eq. (1.22), while respecting the order of the vector components ru and h−1

u ∂u,
we find for the angular momentum operator in spherical coordinates

L = −i~ (r×∇) = i~
(
θ̂

1

sin θ

∂

∂φ
− φ̂ ∂

∂θ

)
. (1.23)

Importantly, as was to be expected for a rotation operator in a spherical coordinate system, L
depends only on the angles θ and φ and not on the radial distance r.

1.1.3 The operator Lz

The operator for the angular momentum along the z direction is a differential operator obtained by
taking the inner product of L with the unit vector along the z direction, Lz = ẑ ·L. From Eq. (1.23)
we see that

Lz = i~
(

(ẑ · θ̂)
1

sin θ

∂

∂φ
− (ẑ · φ̂)

∂

∂θ

)
. (1.24)

Because the unit vector φ̂ = −x̂ sinφ + ŷ cosφ has no z component, only the θ component of
L will give a contribution to Lz. Substituting the unit vector decomposition θ̂ = x̂ cos θ cosφ +
ŷ cos θ sinφ− ẑ sin θ we obtain

Lz = −i~ ∂

∂φ
. (1.25)

The eigenvalues and eigenfunctions of Lz are obtained by solving the equation

− i~ ∂

∂φ
Φm(φ) = m~ Φm(φ). (1.26)

Here, the eigenvalue m is called the magnetic quantum number for the projection of the angular
momentum L on the z axis.1 The eigenfunctions are

Φm(φ) = ame
imφ. (1.27)

Assuming the solutions of the Schrödinger equation to be single-valued functions of position,2

the wavefunction has to be invariant under rotation over 2π about the z axis; i.e., we have to

1In this chapter we use the shorthand notation m for the magnetic quantum numbers ml corresponding to states
with orbital quantum number l. When other forms of angular momentum appear we will use the subscript notation
to discriminate between the different magnetic quantum numbers; e.g., lml, sms, jmj , etc..

2For a discussion of the single-valuedness see [73, 48]
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impose the boundary condition eimφ = eim(φ+2π). Thus we require eim2π = 1, which implies
m ∈ {0, ±1, ±2, . . .}. In other words we quantized the rotation about the z axis. As the orienta-
tion of the coordinate system was not defined up to this point, the chosen z direction is called the
quantization axis. With the normalization

ˆ 2π

0

|Φm(φ)|2 dφ = 1 (1.28)

we find the same normalization coefficient for all values of the m quantum number, am = (2π)
−1/2

.

1.1.4 Commutation relations for Lx, Ly, Lz and L2

The three cartesian components of the angular momentum operator are differential operators satis-
fying the following commutation relations

[Li, Lj ] = i~εijkLk ⇔ [Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx and [Lz, Lx] = i~Ly. (1.29)

These expressions are readily derived with the help of some elementary commutator algebra (see
Appendix L.8). We derive the relation [Lx, Ly] = i~Lz explicitly; the other commutators are
obtained by cyclic permutation of x, y and z. Starting from the definition Li = εijkrjpk we use
subsequently the distributive rule (L.29b), the multiplicative rule (L.29d) and the commutation
relation (1.9),

[Lx, Ly] = [ypz − zpy, zpx − xpz] = [ypz, zpx] + [zpy, xpz]

= y [pz, z] px − x [pz, z] py = i~(xpy − ypx) = i~Lz. (1.30)

A scalar operator always commutes with itself. This well-known commutation rule does not hold
for vector operators. Two vector operators A and B only commute if all components of A commute
with all components of B.1 Hence, L does not commute with itself (see Problem 1.4).

The components of L commute with L2,

[Lx,L
2] = 0, [Ly,L

2] = 0, [Lz,L
2] = 0. (1.31)

We verify this explicitly for Lz. Using the relation

L2 = L · L = L2
x + L2

y + L2
z (1.32)

we obtain with the aid of the multiplicative rule (L.29c)

[Lz, L
2
z] = 0

[Lz, L
2
y] = [Lz, Ly]Ly + Ly[Lz, Ly] = −i~(LxLy + LyLx)

[Lz, L
2
x] = [Lz, Lx]Lx + Lx[Lz, Lx] = +i~(LyLx + LxLy).

By adding these terms we find [Lz,L
2] = 0 as well as [Lz, L

2
x + L2

y] = 0.

Problem 1.4. Vector operators differ from classical vectors. Show that

L× L = i~L, [L,L] 6= 0,
[
L2,L2] = 0.

1The commutator of two vectors is a second order tensor. This becomes evident in the Einstein notation [A,B]⇔
[Ai, Bj ] = AiBj −BjAi ⇔ ABT − (BAT )T , where ()T represents matrix transposition.
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1.1.5 The operators L±

The operators
L± = Lx ± iLy (1.33)

are obtained by taking the inner products of L with the unit vectors along the x and y direction,
L± = (x̂ · L)± i (ŷ · L). In spherical coordinates this results in

L± = i~
([

(x̂ · θ̂)± i(ŷ · θ̂)
] 1

sin θ

∂

∂φ
−
[
(x̂ · φ̂)± i(ŷ · φ̂)

] ∂
∂θ

)
, (1.34)

as follows directly with Eq. (1.23). Substituting the unit vector decompositions φ̂ = −x̂ sinφ+ŷ cosφ
and θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ we obtain

L± = ~e±iφ
(
i cot θ

∂

∂φ
± ∂

∂θ

)
. (1.35)

These operators are known as shift operators and more specifically as raising (L+) and lowering (L−)
operators because their action is to raise or to lower the angular momentum along the quantization
axis by one quantum of angular momentum (see Section 1.1.6).

Several useful relations for L± follow straightforwardly. Using the commutation relations (1.29)
we obtain

[Lz, L±] = [Lz, Lx]± i [Lz, Ly] = i~Ly ± ~Lx = ±~L±. (1.36)

Further we have

L+L− = L2
x + L2

y − i [Lx, Ly] = L2
x + L2

y + ~Lz = L2 − L2
z + ~Lz (1.37a)

L−L+ = L2
x + L2

y + i [Lx, Ly] = L2
x + L2

y − ~Lz = L2 − L2
z − ~Lz, (1.37b)

where we used again one of the commutation relations (1.29). Subtracting these equations we obtain

[L+, L−] = 2~Lz (1.38)

and by adding Eqs. (1.37) we find

L2 = L2
z + 1

2 (L+L− + L−L+) . (1.39)

1.1.6 The operator L2

To derive an expression for the operator L2 we use the operator relation (1.39). Substituting
Eqs. (1.25) and (1.35) we obtain after some straightforward manipulation

L2 = −~2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

]
. (1.40)

The eigenfunctions and eigenvalues of L2 are obtained by solving the equation

− ~2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

]
Y (θ, φ) = λ~2Y (θ, φ). (1.41)

Because the operators L2 and Lz commute they share a complete set of eigenstates (see Problem
F.1); i.e., the shared eigenfunctions Y (θ, φ) must be of the form Y (θ, φ) = P (θ, φ)Φm(φ), where
the function Φm(φ) is an eigenfunction of the Lz operator. Because of Eq. (1.26) this implies that
LzP (θ, φ) ≡ 0, which can only be satisfied for arbitrary value of θ if the variables θ and φ separate:
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P (θ, φ) = P (θ)Q(φ). In turn this requires LzQ(φ) ≡ 0, which can only be satisfied if Q(φ) is a
constant. Thus, we conclude that the shared eigenfunctions Y (θ, φ) must be of the form

Y (θ, φ) = P (θ)Φm(φ). (1.42)

Evaluating the second order derivative ∂2/∂φ2 in Eq. (1.41) we obtain[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

sin2 θ
+ λ

]
P (θ) = 0. (1.43)

As this equation is real its solutions are real functions of the variable θ. Introducing the notation
λ = l(l+ 1) and u ≡ cos θ (with θ restricted to the interval 0 ≤ θ ≤ π) this equation takes the form
of the associated Legendre differential equation (L.36),[(

1− u2
) d2

du2
− 2u

d

du
+ l(l + 1)− m2

1− u2

]
Pml (u) = 0. (1.44)

Since 0 ≤ θ ≤ π we have sin θ =
√

1− u2 ≥ 0. The solutions are determined up to a constant factor,
which has to be fixed by convention. For m = 0 the Eq. (1.44) reduces to the Legendre differential
equation and its normalized solutions are the Legendre polynomials, defined by

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l. (1.45)

The solution Pl(u) is a real polynomial of degree l ∈ {0, 1, 2 · · · } with l zeros in the interval −1 ≤
u ≤ 1. The Legendre polynomials of lowest degree are

P0(u) = 1, P1(u) = u, P2(u) = 1
2 (3u2 − 1). (1.46)

Note that the sign of the highest power term is chosen to be positive. For m 6= 0 the solutions are
the associated Legendre functions Pml (u), real functions which can be written as the product of a
positive function (1−u2)m/2 and a polynomial of degree (l−m), parity (−1)l−m with (l−m) zeros
in the interval −1 ≤ u ≤ 1. For m = 0 we define P 0

l (u) ≡ Pl(u). For m > 0 the Pml (u) are obtained
by differentiation of the Legendre polynomials,1

Pml (u) = (−1)m(1− u2)m/2
dm

dum
Pl(u). (1.47)

The parity of the Pml (u) is given by

Pml (−u) = (−1)l−mPml (u) (1.48)

and the above definitions fix the normalization,ˆ 1

−1

[Pml (u)]
2
du =

2

2l + 1

(l +m)!

(l −m)!
. (1.49)

As Eq. (1.44) depends on m2 we also can define solutions for m < 0. Obviously, P−ml (u) and
Pml (u) are in essence the same but for the P−ml (u) we still have to define sign and normalization.
Unfortunately, several competing conventions can be found in the literature. In this course we use
a positive sign and adhere to the convention in which the normalization (1.49) is valid for both
positive and negative m. This is realized by extending the Pml (u) to negative m by the relation

P−ml (u) ≡ (−1)m
(l −m)!

(l +m)!
Pml (u), (1.50)

where 0 ≤ m ≤ l. The inclusion of the phase factor (−1)
m

in both Eq. (1.47) and (1.50) is referred to
as the Condon and Shortley phase convention [28]. It implies that the phase factor (−1)m is present
for positive m but absent for negative m. Note that the Pml (u) are nonzero only for −l ≤ m ≤ l;
i.e., the index m can assume 2l + 1 possible values for a given value of l.

1Beware of other phase conventions for the Pml (u), they affect the recursion relations.
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1.1.6.1 Spherical harmonics - Condon and Shortley phase convention

At this point we define the spherical harmonics (cf. Section L.9.1)

Y ml (θ, φ) = AmP
m
l (cos θ)eimφ (1.51)

as the joint eigenfunctions of L2 and Lz in the position representation,

L2 Y ml (θ, φ) = l(l + 1)~2 Y ml (θ, φ) (1.52)

Lz Y
m
l (θ, φ) = m~Y ml (θ, φ). (1.53)

The prefactor Am is a normalization constant. Combining the normalization integrals (1.28) and
(L.46) we obtain

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (1.54)

with −l ≤ m ≤ l. The Condon and Shortley phase convention assures that the shift operators
satisfy the following relations

L±Y
m
l (θ, φ) =

√
(l ∓m) (l ±m+ 1) ~Y m±1

l (θ, φ)

=
√
l (l + 1)−m(m± 1) ~Y m±1

l (θ, φ), (1.55)

with a positive sign in front of the square root for all values of l and m. Eqs. (1.55) are readily
obtained with the aid of Eqs. (1.35) and the recursion relations (L.49). The parity of the Y ml (θ, φ)
under inversion in 3D, r̂ = (θ, φ)→ −r̂ = (π − θ, φ+ π), is independent of m and given by

Y ml (−r̂) = (−1)lY ml (r̂) (1.56)

as follows with Eqs. (1.54) and (1.48); i.e., the parity is even for l even and odd for l odd. This
makes parity into a property defining selection rules in atomic transitions.

1.1.7 Orbital angular momentum in Dirac notation

The observables of the orbital angular momentum are represented by the operators L2 and Lz. In
Dirac notation (cf. Appendix F.1.1) their shared basis is defined by

L2 |l,m〉 = l(l + 1)~2 |l,m〉 (1.57a)

Lz |l,m〉 = m~ |l,m〉 , (1.57b)

where the |l,m〉 are abstract state vectors in Hilbert space, with l and m the rotational quantum
numbers. The spherical harmonics

Y ml (θ, φ) ≡ Y ml (r̂) = 〈r̂|l,m〉 (1.58)

are the corresponding wavefunctions in the position representation using spherical coordinates. The
action of the shift operators L± is given by

L± |l,m〉 =
√
l (l + 1)−m(m± 1) ~ |l,m± 1〉 , (1.59)

with a positive sign in front of the square root for all values of l and m. The latter requirement
constitutes the Condon and Shortley phase convention for the eigenstates |l,m〉 (cf. Section 1.1.6.1).
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1.1.8 Radial momentum operator pr

Thus far we succeeded in quantizing the Schrödinger Hamiltonian H0 and the angular momentum
L. Let us now turn to the radial momentum pr = r̂ · p. Here we have a difficulty because the
correspondence rules are not unambiguous in this case. In classical mechanics the expressions
pr = r̂ · p and pr = p · r̂ are identities but since r̂ = r/r and −i~∇ do not commute this is not the
case for pr = −i~ (∇ · r̂) and pr = −i~ (r̂ ·∇). There is a way around this problem. Since we know

how to quantize p2 and (r̂× p)
2
, we infer with the aid of Eq. (1.4) that the radial momentum must

be given by
p2
r = (r̂ · p)

2
= p2 − (r̂× p)

2
= −~2∆− L2/r2. (1.60)

Substituting Eqs. (1.15) and (1.40) this yields

p2
rψ = −~2

(
∂2

∂r2
+

2

r

∂

∂r

)
ψ = −~2

(
∂

∂r
+

1

r

)2

ψ = −~2 1

r

∂2

∂r2
(rψ) . (1.61)

Hence, up to a sign, the radial momentum in spherical coordinates is given by

prψ = −i~
(
∂

∂r
+

1

r

)
ψ = −i~1

r

∂

∂r
(rψ). (1.62)

We shall use the sign convention of Eq. (1.62). This implies the commutation relation

[r, pr] = i~. (1.63)

Importantly, since L is independent of r and pr is independent of θ and φ, we find that p2
r commutes

with both Lz and L2, [
p2
r, Lz

]
= 0 and

[
p2
r,L

2
]

= 0. (1.64)

In Problem 1.5 it is shown that pr is only hermitian if one restricts oneself to the sub-class of
normalizable wavefunctions which are regular in the origin; i.e.,

lim
r→0

rψ(r) = 0.

This additional condition is essential to select physically relevant solutions for the (radial) wave-
function. Here we mean by physically relevant that the wavefunction satisfies not only the laplacian
in spherical coordinates (which is not defined in the origin) but also the laplacian in cartesian
coordinates (which is defined throughout space).

Problem 1.5. Show that pr is hermitian for square-integrable functions ψ(r) only if they are regular at
the origin, i.e. limr→0 rψ(r) = 0.

Solution. For pr to be hermitian we require the following expression to be zero for any wavefunction ψ
within its Hilbert space:

〈ψ, prψ〉 − 〈ψ, prψ〉∗ = −i~
ˆ [

ψ∗
1

r

∂

∂r
(rψ) +

1

r
ψ
∂

∂r
(rψ∗)

]
r2drdΩ

= −i~
ˆ [

rψ∗
∂

∂r
(rψ) + rψ

∂

∂r
(rψ∗)

]
drdΩ

= −i~
ˆ

∂

∂r
|rψ|2 drdΩ.

For this to be zero we require ˆ
∂

∂r
|rψ|2 dr =

[
|rψ|2

]∞
0

= 0.

Because ψ(r) is taken to be a square-integrable function; i.e.,
´
|rψ|2 dr = N with N finite, we have

limr→∞ rψ(r) = 0 and limr→0 rψ(r) = χ0, where χ0 is (in general) finite. Thus, for pr to be hermitian
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we require ψ(r) to be regular in the origin (χ0 = 0) on top of being square-integrable. However, square-
integrable eigenfunctions of pr can also be irregular at the origin and have complex eigenvalues, e.g.

pr
exp[−αr]

r
= − i~

r

∂

∂r
r

exp[−αr]
r

= i~αexp[−αr]
r

. 2

Problem 1.6. Show that the radial momentum operator can be written in the form

pr = 1
2

(r̂ · p + p · r̂) = − i~
2

[r
r
·∇+∇ ·

(r
r

)]
. (1.65)

Verify that in two dimensions pr cannot be written in the form given on the r.h.s..

1.2 Schrödinger equation

1.2.1 Schrödinger equation in spherical coordinates

We are now in a position to write down the Schrödinger equation of a (reduced) mass mr moving
at energy E in a central potential field V(r)[

1

2mr

(
p2
r +

L2

r2

)
+ V(r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ). (1.66)

Because the operators L2 and Lz commute with the Hamiltonian1 they share a complete set of
eigenstates with that Hamiltonian (See Problem F.1); i.e., the shared eigenfunctions ψ(r, θ, φ) must
be of the form ψ = R(r, θ, φ)Y ml (θ, φ), which implies L2R(r, θ, φ) ≡ 0 in view of Eq. (1.52). This can
only be satisfied for arbitrary values of r if the radial variable can be separated from the angular
variables, R(r, θ, φ) = R(r)X(θ, φ). In turn this requires L2X(θ, φ) ≡ 0, which implies that X(θ, φ)
must be a constant. Thus, we conclude that the shared eigenfunctions ψ(r, θ, φ) must be of the form

ψ(r, θ, φ) = Rnl(r)Y
m
l (θ, φ), (1.67)

where the quantum number n appears to allow for more than one solution of given l. Hence, using
Eq. (1.52) and substituting Eqs. (1.61) and (1.67) into Eq. (1.66) we obtain[

~2

2mr

(
− ∂2

∂r2
− 2

r

∂

∂r
+
l(l + 1)

r2

)
+ V(r)

]
Rnl(r)Y

m
l (θ, φ) = ERnl(r)Y

m
l (θ, φ). (1.68)

Here the term

Vrot(r) ≡
l(l + 1)~2

2mrr2
(1.69)

is called the rotational energy barrier and represents the centrifugal energy at a given distance from
the origin and for a given value of the angular momentum. Because the operator on the left of
Eq. (1.68) is independent of θ and φ we can eliminate the functions Y ml (θ, φ) from this equation.
The remaining equation takes the form of the radial wave equation.[

~2

2mr

(
− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2

)
+ V(r)

]
Rnl(r) = ERnl(r), (1.70)

where the solutions Rnl(r) must depend on r but be independent of θ and φ. Note that the solutions
do not depend on m because the Hamiltonian does not depend on Lz. This is a property of central
potentials.

1Note that Lz commutes with L2 (see Section 1.1.6); Lz and L2 commute with r and pr (see Section 1.1.8).
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Reduction to one-dimensional Schrödinger equation

Eq. (1.70) is the starting point for the description of the relative radial motion of any particle in a
central potential field. Introducing the quantities

ε = 2mrE/~2 and U(r) = 2mrV(r)/~2, (1.71)

Suppressing the quantum number n, Eq. (1.70) can be written in the compact form

R′′l +
2

r
R′l +

[
ε− U(r)− l(l + 1)

r2

]
Rl = 0, (1.72)

where the prime refers to a derivative with respect to r. Eq. (1.61) suggests to introduce so-called
reduced radial wavefunctions

χl(r) = rRl(r), (1.73)

which allows us to reduce the radial wave equation (1.70) to the form of a one-dimensional Schrödinger
equation

χ′′l +

[
2mr

~2
(E − V)− l(l + 1)

r2

]
χl = 0. (1.74)

The 1D-Schrödinger equation is a second-order differential equation of the following general form

χ′′ + F (r)χ = 0. (1.75)

Equations of this type satisfy some general properties. These are related to the Wronskian theorem,
which is derived and discussed in appendix L.13.

Not all solutions of the 1D Schrödinger equation are physically acceptable. The physical solutions
must be normalizable; i.e., for bound states

ˆ
r2 |R(r)|2 dr =

ˆ
|χ(r)|2 dr = N , (1.76)

where N is a finite number. However, there is an additional requirement. Because the Hamiltonian
(1.3) is only valid outside the origin (r 6= 0) the solutions of the radial wave equation are not
necessarily valid at the origin. To be valid for all values of r the solutions must, in addition to be
being normalizable, also be regular in the origin; i.e., limr→0 rR(r) = limr→0 χ(r) = 0. Although
this is stated without proof we demonstrate in Problem 1.7 that normalizable wavefunctions ψ(r)
scaling like R(r) ∼ 1/r near the origin do not satisfy the Schrödinger equation in the origin. All
this being said, only wavefunctions based on the regular solutions of Eqs. (1.70) and (1.74) can be
valid solutions for all values of r, including the origin.

Problem 1.7. Show that a normalizable radial wavefunction scaling like R(r) ∼ 1/r for r → 0 does not
satisfy the Schrödinger equation in the origin.

Solution. Next we turn to solutions ψ(r) = Rl(r)Y
m
l (θ, φ) of the Schrödinger equation for the motion of

a particle in a central field. We presume that the wavefunction is well behaved everywhere but diverges like
Rl(r) ∼ 1/r for r → 0. We ask ourselves whether this is a problem because - after all - the wavefunction is
normalizable. However, the divergent wavefunction Rl(r) is defined everywhere except in the origin. This
is more than a technicality because it implies that the Schrödinger equation is not satisfied in the origin.
Using Problem 1.9 we find (

− ~2

2mr
∆ + V(r)− E

)
ψ(r) = −4π~2

2mr
δ (r) ,

which is zero everywhere except in the origin. Apparently, by solving the Schrödinger equation after separa-
tion in radial and angular variables we have generated a solution that does not satisfy the original equation
(which is valid everywhere in space - including the origin). 2
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Problem 1.8. Show that for a normalizable radial wavefunction scaling like R(r) ∼ 1/r for r → 0 the
kinetic energy diverges in the origin.

Solution. We first write the radial wavefunction in the form R0(r) = (χ0(r)/r), where χ0(r) is nonzero in
the origin, limr→0 χ0(r) = χ0(0) 6= 0. Calculating the kinetic energy we find

−
ˆ
R0(r)Y 0

0 (θ, φ)
~2

2mr
∆R0(r)Y 0

0 (θ, φ) dr > − ~2

2mr
χ2
0(0) lim

ε→0

ˆ
V

1

4πr
∆

1

r
dr

=− ~2

2mr
χ2
0(0) lim

ε→0

ˆ
V

1

r
δ (r) dr→∞. 2

Problem 1.9. Use the Gauss theorem to demonstrate the relation ∆ (1/r) = −4πδ (r) .

Solution. We first integrate this expression on both sides over a small sphere V of radius ε centered at the
origin, ˆ

V

∆
1

r
dr = −4π.

Here we used
´
V
δ (r) dr = 1 for an arbitrarily small sphere at the origin. The l.h.s. also yields −4π as

follows with the divergence theorem (Gauss theorem)

lim
ε→0

ˆ
V

∆
1

r
dr = lim

ε→0

˛
S

dS ·∇1

r
= lim
ε→0

˛
S

dS · r̂
(
− 1

r2

)
= lim
ε→0

4πε2
(
− 1

ε2

)
= −4π. 2

1.2.2 Schrödinger equation in cylindrical coordinates

In systems with cylindrical symmetry about the z axis (see Fig. 1.2) the motion separates into motion
parallel to the z axis and motion in planes orthogonal to the z axis,

p2 = (ẑ · p)
2

+ (r̂⊥ · p⊥)
2

+ (r̂⊥ × p⊥)
2
, (1.77)

where r̂⊥ is defined in Eq. (1.17a) and ẑ is independent of position; p⊥ is the momentum in the
xy plane. The quantization rule for the linear momentum in the z direction, pzφ = ẑ · pφ →
−i~ẑ ·∇φ = −i~∂zφ, can be applied without ambiguity and we have for the p2

z operator

p2
z = (ẑ · p)

2
= −~2∂2/∂z2. (1.78)

With regard to the motion in planes orthogonal to the z axis we run into the same dilemma as
we encountered with spherical coordinates. The quantization rules for r̂⊥ · p⊥ = p⊥ · r̂⊥ are not
unambiguous since r̂⊥ ·∇⊥φ 6=∇⊥ · r̂⊥φ (the direction of the unit vector r̂⊥ depends on position).
This dilemma can be circumvented in the same way as we did for pr in Section 1.1.8. By rewriting
Eq. (1.77) in the form

p2
r⊥

= (r̂⊥ · p⊥)
2

= p2 − (r̂⊥ × p⊥)
2 − (ẑ · p)

2
(1.79)

we obtain an expression where pr⊥ is expressed in quantities for which the correspondence rules can
be applied without ambiguity: p2 → −~2∆ and r̂⊥ × p⊥ → −i~r̂⊥ ×∇⊥. Note that for cylindrical
coordinates the angular momentum along the symmetry axis, L⊥ = r⊥ × p⊥, satisfies the property

L⊥ = −i~ ∂

∂φ
= Lz. (1.80)

Replacing the dynamical variables by their operators Eq. (1.79) takes the form

p2
r⊥

= −~2

(
∆− 1

r2
⊥

∂2

∂φ2
− ∂2

∂z2

)
. (1.81)

Substituting Eq. (1.19) for the laplacian we obtain

p2
r⊥

= −~2

(
∂2

∂r2
⊥

+
1

r⊥

∂

∂r⊥

)
. (1.82)
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At this point we can quantize the Hamiltonian and starting from Eq. (1.77) the Schrödinger equation
takes the form[

− ~2

2mr

(
∂2

∂r2
⊥

+
1

r⊥

∂

∂r⊥
+

∂2

∂z2

)
+

L2
z

2mrr2
⊥

+ V(r⊥, φ, z)

]
ψ(r⊥, φ, z) = Eψ(r⊥, φ, z). (1.83)

If the potential only depends on the r⊥ variable, V(r⊥, φ, z) = V(r⊥), we have separation of variables
for the axial, radial and angular motion and we find for the radial Schrödinger equation in this case

~2

2mr

(
− d2

dr2
⊥
− 1

r⊥

d

dr⊥
+
l2

r2
⊥

+ V(r⊥)

)
Rnl(r⊥) = ERnl(r⊥). (1.84)

Reduction to one-dimensional Schrödinger equation

Suppressing the quantum number n and using the definitions (1.71) the radial wave equation (1.84)
takes the compact form

R′′l +
1

r⊥
R′l +

[
ε− U(r⊥)− m2

r2
⊥

]
Rl = 0, (1.85)

where the prime refers to a derivative with respect to r⊥. Introducing the functions

yl(r⊥) = r
1/2
⊥ Rl(r⊥), (1.86)

also in this case the radial wave equation is reduced to the form of a one-dimensional Schrödinger
equation,

y′′l +

[
2mr

~2
(E − V) +

1/4−m2

r2
⊥

]
yl = 0. (1.87)

1.3 Symmetry properties, conserved quantities and good quantum numbers

To conclude this chapter we return to the Schrödinger Hamiltonian,

H0 = − ~2

2mr
∆ + V(r), (1.88)

and discuss the main findings of the chapter against the background of the symmetry properties
of this Hamiltonian. In general, the symmetries of a physical quantity are defined by the set of
coordinate transformations that leave this quantity invariant. With each symmetry we associate an
operator that generates the corresponding coordinate transformation. The transformations may be
continuous (e.g., translation and rotation) or discrete (e.g., reflection and inversion). For instance,
an equilateral triangle is invariant under rotation over 120◦ about an axis through the center of mass
and perpendicular to the plane of the triangle; this reveals a three-fold symmetry under rotation (a
finite rotation symmetry in this case). The mathematical discipline for the investigation of symmetry
properties is called Group theory [111].

What are the symmetries of the Schrödinger Hamiltonian? For the potential energy term this is
self evident from the notation because the central potential V(r) depends only on the radial distance
r = |r| to the atomic center of mass. This manifestly being the case, V(r) is said to be manifestly
invariant under any transformation that does not affect |r|. This is the case for all rotations about
the origin, all reflections about a plane through the origin and for inversion about the origin. For
the kinetic energy term the symmetry under such operations is certainly not manifest and we need
to have a closer look.

As an example we consider the space inversion by the parity operator P. This operator transforms
the position r into position −r, which is equivalent to sign reversal of the cartesian coordinates
(x→ −x, y → −y, z → −z). As this operation conserves |r|, the potential energy is invariant under
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space inversion. To determine the inversion symmetry of the kinetic energy operator we write the
laplacian in cartesian coordinates,

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.89)

As this expression only contains second derivatives with regard to position it also is invariant under
sign reversal. In other words the Schrödinger Hamiltonian conserves parity for any interaction that
conserves parity. Note that by inverting twice we obtain the unit operator, P 2 = 1. In group theory
P and P 2 are said to be the elements of a group of order 2: the inversion group (P 2 is the identity
element). In the language of quantum mechanics we say that P commutes with the Hamiltonian.
This implies that P is a hermitian operator; hence, its eigenvalues are real. As P 2 = 1 these
eigenvalues are 1 (even parity) or −1 (odd parity). The radius vector is odd under parity (such
vectors are called polar vectors). Angular momentum is even under parity (such vectors are called
axial vectors or pseudo vectors). As P commutes with H0, also the energy eigenstates must be
parity eigenstates. This property was already noticed in Section 1.1.6.

What about rotational symmetry? From the commutation of Lz with H0 we find by using the
product rule for differentiation(

∂

∂φ
H0 −H0

∂

∂φ

)
ψ(r, θ, φ) =

(
∂H0

∂φ

)
ψ

ψ(r, θ, φ) = 0. (1.90)

Because this relation is valid for any function ψ(r, θ, φ) it implies the invariance of H0 under an
infinitesimal rotation about the z axis,

∂H0

∂φ
= 0. (1.91)

As the quantization axis was chosen in an arbitrary direction, this invariance of H0 holds for any
infinitesimal rotation about the origin. Inversely, it is this invariance that makes Lz commute with
H0, which implies that Lz is a conserved quantity (see Appendix F.2.4). The operator Lz can be
identified with the operator for an infinitesimal rotation about the z axis as introduced above. The
Hamiltonian is also invariant under any finite rotation about the origin because any such rotation
can be realized by an infinite sequence of infinitesimal rotations about the origin. The infinite set
of all rotations about the origin constitutes the elements of a continuous group: the full rotation
group.

In this course we raise awareness for the symmetry properties but do not enter into the sys-
tematics of group theory. With regard to rotation we emphasize that for the Hamiltonian H0 the
expectation values of L2 and Lz are conserved whatever the radial motion, showing that L2 and Lz
are observables (observable constants of the motion). This means that the corresponding eigenvalues
and eigenstates can be measured simultaneously to arbitrary precision and are uniquely determined
by the quantum numbers l and ml. Whenever a quantum number is conserved, it is called a good
quantum number of the Hamiltonian under consideration. As a counter example we consider p2

r. As
p2
r does not commute with r (see Section 1.1.8), it does not commute with the Hamiltonian. This

means that p2
r is not a conserved quantity and no good quantum number can be identified with the

radial kinetic energy. This is no surprise from the physical point of view because the radial motion
is oscillatory.
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Hydrogenic atoms

The notion hydrogenic refers for atomic systems in which exactly one elementary charge is orbiting
the nucleus [14]. Aside from the hydrogen isotopes hydrogen (H), deuterium (D) and tritium (T), ions
like singly ionized helium (He+), doubly ionized lithium (Li2+) and exotic atoms like positronium
and muonic hydrogen belong to this class. Hydrogen-like behavior is more common. It occurs in
one-electron atoms. This is the class of atoms in which a single electron dominates the atomic
properties. This class includes of course the hydrogenic atoms but more typically involves many-
electron atoms with one distinct outer electron, the valence electron. Many-electron atoms behave
at best hydrogen-like because the nuclear charge is partially screened by one or more shells of core
electrons. For instance, hydrogen-like behavior is observed in one-electron Rydberg atoms. These
are atoms in which the valence electron is excited to a weakly bound state. Other examples are the
alkali-like atoms. Aside from the alkali (group I) atoms lithium (Li), sodium (Na), potassium (K),
rubidium (Rb) and cesium (Cs) also the singly charged ions of “two-electron” atoms (group II) such
as the ions of magnesium (Mg+), calcium (Ca+), strontium (Sr+) and barium (Ba+) are alkali-like.

In the present chapter we focus on the non-relativistic theory of hydrogenic atoms. We analyze
the electronic motion under influence of the Coulomb interaction with a point-like nucleus; i.e., for
the so-called Bohr atom. We obtain the principal structure of the atom. The typical energy level
separation turns out to be a factor α2 smaller than the electron rest mass energy, which justifies
the non-relativistic Ansatz (α ' 1/137 is the fine-structure constant).

The subsequent task will be to include relativistic corrections. This is the subject of Chapter 4.
Relativistic effects give rise to the atomic fine structure and manifest themselves most prominently
as magnetic forces. As these forces are much weaker than Coulomb forces they may be neglected in
describing the principal structure. Importantly, being weak does not mean unimportant. Magnetism
is crucial for the understanding of many physical phenomena and of seminal importance for major
technological applications. As we show in Chapter 4 the weakness of the magnetic interaction is
convenient from the theoretical point of view because it allows an analytic description of many
magnetic properties with the aid of perturbation theory. As magnetism is intimately related to
angular momentum, the properties of angular momentum in its quantum mechanical context are
summarized in Chapter 3. Before turning to Chapter 4, also a refreshment of the operational skills
on perturbation theory (Appendix H) may prove well invested.

2.1 Hydrogenic atoms

Hydrogenic atoms consist of a single electronic charge orbiting a positively charged nucleus. It was
demonstrated by Ernest Rutherford in 1911 that the nucleus is orders of magnitude smaller than
the size of the atom [95]. After this discovery the atom was visualized as a miniature planetary
system in which the nucleus could be approximated by a point charge. The conceptual step to the
modern atom was made by Niels Bohr in 1913 [17, 18, 19]. By quantization of the planetary motion

17
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Bohr formulated the famous Bohr model for the atom which explains the optical spectrum of atomic
hydrogen and defines the principal structure of the atom. In this section we solve the Bohr atom
with the method developed by Erwin Schrödinger in 1926 [99]. To start the discussion we note that
the Coulomb interaction between electron and nucleus gives rise to a central potential. Hence, the
hamiltonian operator to calculate the energy eigenvalues in the absence of externally applied fields
is of the general form (1.6) and will be referred to as the Schrödinger Hamiltonian for the atom,

H0 =
p2

2mr
+ V(r) = − ~2

2mr
∆− Ze2

4πε0r
. (2.1)

Here r is the electron-nuclear radial distance and mr the reduced mass,

mr = me/(1 +me/M), (2.2)

with me ' 9.1× 10−31 Kg the electronic and M the nuclear rest mass. The quantity

V(r) = −eϕ(r) = − Ze2

4πε0r
(2.3)

is the electrostatic energy ; i.e., the potential energy of the electronic charge, −e, in the electromag-
netic scalar potential (Coulomb potential) of the nucleus

ϕ(r) =
Ze

4πε0r
, (2.4)

where Ze is the nuclear charge, with e being the elementary charge and Z the number of protons
in the nucleus; Z is called the atomic number or nuclear charge number. Furthermore, ε0 = 1/µ0c

2

is the vacuum permittivity,1 µ0 = 4πα~/e2c the vacuum permeability and c = 299 792 458 m s−1 the
defined value of the speed of light in vacuum. The reduced mass has typically a value close to the
mass of the free electron but can be substantially smaller for exotic atoms like positronium.

As V(r) represents a central potential energy field, the motion of the electron can be described
by a Schrödinger equation of the type (1.66)[

1

2mr

(
p2
r +

L2

r2

)
+ V(r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ), (2.5)

where pr is the radial momentum operator, L the angular momentum operator and E the total
energy of the system (see Section 1.1). The Hamiltonian commutes simultaneously with L2 and Lz.
Therefore, these operators share a complete set of eigenfunctions with the full Hamiltonian and, as
discussed in Section 1.1, can be written in the form of a product of the type

ψnlm(r, θ, φ) = Rnl(r)Y
m
l (θ, φ), (2.6)

where n is the principal quantum number for the radial motion to be determined later in this chapter.
The wavefunctions (2.6) are called atomic orbitals. Substituting this expression in Eq. (2.5) we obtain
the radial wave equation[

~2

2mr

(
− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2

)
+ V(r)

]
Rnl(r) = ERnl(r). (2.7)

The term l(l + 1)/r2 represents the centrifugal energy in electronic motion (see Section 1.1) and
Rnl(r) is called the radial wave function. There is a standard convention to refer to the value of the
orbital quantum number l

l = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
s p d f g h i k l m n o q r t u · · · (2.8)

1Since the redefinition of the SI in 2019, the vacuum permeability and vacuum permittivity are no longer constants
but depend on a measured quantity, the fine-structure constant α. This made the names magnetic constant and
electric constant obsolete.
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Table 2.1: Comparison of Hartree (27.2 eV) and Rydberg (13.6 eV) atomic units.

SI Hartree† Rydberg

length unit: m a =
4πε0~2

mre2
a =

4πε0~2

mre2

energy unit: J EH =
~2

mra2
= 2hcRM ER =

~2

2mra2
= hcRM

length: r ρ = r/a ρ = r/a

energy: E ε = E/EH ε = E/Ry

V(r): − Ze2

4πε0r
U(ρ) = −Z

ρ
U(ρ) = −2

Z

ρ

Vrot(r)
~2

2mr

l(l + 1)

r2
Urot(ρ) =

l(l + 1)

2ρ2
Urot(ρ) =

l(l + 1)

ρ2

Hrad(r) − ~2

2mr

(
d2

dr2
+

2

r

d

dr

)
Hrad(ρ) = − 1

2ρ

d2

dρ2
ρ Hrad(ρ) = −1

ρ

d2

dρ2
ρ

†Hartree a.u. correspond to setting mr = e = ~ = 1/4πε0 = 1; this implies a = EH = 1.

In this convention one refers to s orbitals (l = 0), p orbitals (l = 1), d orbitals (l = 2), etc.. This
nomenclature has its origin in atomic spectroscopy, with the first four orbital labels referring to the
terms sharp, principal, diffuse, and fundamental. When it adds to the readability of equations one
sometimes writes Rns(r), Rnp(r), Rnd(r), · · · , rather than Rn0(r), Rn1(r), Rn2(r), · · · .

2.1.1 Atomic units

The 1D Schrödinger equation is made dimensionless by turning to atomic units (a.u.). For this
purpose Eq. (1.74) is multiplied by a2, where a is a characteristic length to be determined. If we
choose a such that

mra
2

~2
V(r) = −mra

~2

Ze2a

4πε0r
= −Z

ρ
≡ U(ρ), (2.9)

where ρ = r/a is the dimensionless radius, we find that

a =
4πε0~2

mre2
= (me/mr)a0 = (1 +me/M)a0. (2.10)

where a0 = 4πε0~2/mee
2 (= α/4πR∞) ' 5.2 × 10−11 m is the Bohr radius. Note that the proton

charge radius, rp ' 8.8×10−16 m, is almost 5 orders of magnitude smaller. The characteristic length
a obtained with this procedure is called the atomic unit of length. The corresponding Hartree atomic
unit of energy is defined as

EH =
~2

mra2
=

1

4πε0

e2

a
= α2mrc

2 = 2hcRM =
2hcR∞

1 +me/M
, (2.11)

with α = e2/4πε0~c = ~/meca0 ' 1/137 being the fine-structure constant, and RM = R∞/(1 +
me/M) and R∞ = α2mec/2h the finite-mass/infinite-mass Rydberg constants, respectively. Note
that 4πα2a = µ0e

2/mr. The Hartree energy is defined as Eh = α2mec
2 ' 4.36×10−18 J ' 27.2 eV.1

1Note the difference between the Hartree a.u., EH = ~2/mra2 = Eh/(1 +me/M), and the Hartree energy, Eh.
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This shows that the characteristic energy scale of the atom is α2 times smaller the rest mass energy
of the electron. In other words, relativistic phenomena play a minor role in the description of the
orbital motion of the electron. Sometimes the Rydberg atomic unit is used,1 1Ry ' 13.6 eV, twice
as small as the Hartree and corresponding to the ionization energy of the hydrogen ground state.
Hartree and Rydberg atomic units are compared in Table 2.1. The operator for the dimensionless
radial kinetic energy Hrad(r) is given by

mra
2

~2
Hrad(r) =

mra
2

~2

~2

2mr

(
− d2

dr2
− 2

r

d

dr

)
= − 1

2ρ

d2

dρ2
ρ. (2.12)

Defining the energy of bound states as negative, ε = −κ2 (with κ > 0), we find for the energy in
the dimensionless form

ε = −κ2 =
mra

2

~2
E. (2.13)

Hence, in Hartree atomic units the radial wave equation can be written compactly as

R̃′′l /2 + R̃′l/ρ+ [Z/ρ− l(l + 1)/2ρ2 − κ2]R̃l = 0, (2.14)

where we suppressed (for the time being) the quantum number n and write

R̃l(ρ) = R̃l(r/a) ≡ a3/2Rl(r) = a3/2Rl(ρa) (2.15)

for the radial wavefunctions redefined as unit-normalized dimensionless functions of ρ,
ˆ
R2
l (r)r

2dr =

ˆ
R̃2
l (ρ)ρ2dρ = 1. (2.16)

The primes in Eq. (2.14) represent derivatives with respect to the variable ρ. Note that in Hartree

atomic units (a→ 1, ρ = r/a→ r) the expressions for Rl(r) and R̃l(ρ) coincide. A similar equation
can be based on the Rydberg atomic unit of energy, 1Ry = hcRM .

Problem 2.1. Show that in Hartree atomic units a = 1, EH = 1, c = 1/α, RM = α/4π.

2.1.2 Solving the radial wave equation

In this section we solve the radial wave equation (2.14) in dimensionless form using Hartree atomic
units. Recalling the substitution

χ̃l(ρ) = ρR̃l(ρ), (2.17)

we first reformulate Eq. (2.14) into the form of a 1D Schrödinger equation,

χ̃′′l + 2
[
Z/ρ− l(l + 1)/2ρ2 − κ2

l

]
χ̃l = 0. (2.18)

For ρ→ 0 the rotational term is dominant and the 1D equation may be approximated by

χ̃′′l +
[
−l(l + 1)/ρ2

]
χ̃l = 0, (2.19)

with solutions χ̃l(ρ) ∼ ρl+1, regular in the origin for all values of l. Likewise, for ρ → ∞ we may
neglect the Z/ρ and l(l + 1)/ρ2 terms and obtain (for all values of l)

χ̃′′l − 2κ2
l χ̃l = 0, (2.20)

with solutions χ̃l(ρ) ∼ e−κlρ
√

2, which are finite for large ρ. This suggest to write

χ̃l(ρ) = ρl+1e−κlρ
√

2w̃l(ρ) (2.21)

1Typically we use the Hartree a.u.; when occasionally using the Rydberg a.u. this is explicitly indicated.
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and search for a function w̃l(ρ) that allows us to connect the short-range expression of the wave
function to the long-range one. The desired function must satisfy the condition w̃l(0) = 1 and be
algebraic for r → ∞. Substituting the expression for χ̃l(ρ) into Eq. (2.18) we obtain the following
nonlinear differential equation for w̃l(ρ),

ρw̃′′l + 2[(l + 1)−
√

2κlρ]w̃′l + 2[Z − (l + 1)
√

2κl]w̃l = 0. (2.22)

Hence, the condition w̃l(0) = 1 implies w̃′l(0) =
√

2κlγ/(l + 1), where γ ≡ (l + 1) − Z/(
√

2κl).
Dividing Eq. (2.22) by 2

√
2κl and turning to new variables, w̃l → wl and ρ→ x, where

wl(x) = w̃l(ρ) and x = 2
√

2κlρ, (2.23)

we obtain the Kummer equation,

xw′′l + [β − x]w′l − γwl = 0, (2.24)

where β ≡ 2(l + 1). The derivatives are now with respect to the variable x and the boundary
conditions become wl(0) = 1 and w′l(0) = γ/β. For non-positive values of γ the solutions of
Eq. (2.24) are confluent hypergeometric series (Kummer functions) [1]

wl(x) = 1F1(γ|β|x) =

∞∑
p=0

Γ(γ + p)Γ(β)

Γ(γ)Γ(β + p)

xp

p!
= 1 +

γ

β

x

1!
+
γ(γ + 1)

β(β + 1)

x2

2!
+ · · · . (2.25)

If γ is a non-positive integer, γ(κn′l) = −n′, this series turns into a polynomial of degree n′ ≥ 0

wl(x) = 1F1(−n′|β|x) =

n′∑
p=0

Γ(p− n′)Γ(β)

Γ(−n′)Γ(β + p)

xp

p!
. (2.26)

For non-integer values of γ the series is not truncated and has an essential singularity for x→∞. As
we are only interested in normalizable wave functions it is conventional to use Laguerre polynomials
of degree n′ (see Appendix L.11) rather than Kummer functions,

wl(x) =
Γ(n′ + 1)Γ(β)

Γ(β + n′)
Lβ−1
n′ (x). (2.27)

The truncation condition for the series, γ(κn′l) = −n′ ≤ 0, allows us to normalize the radial
wave function and provides us with the quantization condition

γ(κn′l) = (l + 1)− Z√
2κn′l

= −n′ ≤ 0 ⇔
√

2κn′l =
Z

n′ + l + 1
. (2.28)

Note that the energy eigenvalues depend on two quantum numbers, n′ and l. The integer n′ is
known as the radial quantum number. Its value corresponds to the number of zeros of the Laguerre
polynomial; i.e., the number of nodes in the radial wavefunction outside the origin. In view of the
experimental practice since the discovery of the Balmer formula in 1885 and the prominent role
of the Bohr theory [17, 18, 19] since 1913, the radial quantum number is not used in the common
scientific literature; preference is given to the principal quantum number, a historical mix of the
quantum numbers n′ and l,

n ≡ n′ + l + 1. (2.29)

Recalling the definitions (2.23) we find with the aid of Eq. (2.28) x = 2Zρ/n. The radial wavefunction
corresponding to the quantum numbers n and l is of the form

R̃nl(ρ) = Anlρ
le−Zρ/nwl(2Zρ/n), (2.30)
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where Anl is a normalization constant. As wl(x) is a polynomial of degree n′ = n − l − 1 ≥ 0, the
orbital angular momentum quantum number satisfies the condition

l ≤ n− 1. (2.31)

Since the formulation of the Bohr theory, electrons with the same principal quantum number are
said to belong to the same electron shell. The shells are labeled K,L,M,N,O, P,Q, · · · in order of
increasing principal quantum number n = 1, 2, 3, · · · . Electrons sharing the same quantum numbers
for n and l are called equivalent electrons and occupy a (sub)shell. Specifying the number of electrons
per subshell one obtains the electron configuration. For example, with one electron in the 1s shell
the configuration of hydrogenic atoms in their ground state is (1s)

1
, usually abbreviated to 1s.

2.2 Energy levels and degeneracy

In terms of the principal quantum number the quantization condition (2.28) takes the famous form
of the Bohr formula [17],

ε = − Z2

2n2
Hartree, (2.32)

with n ≥ 1. Restoring the dimensions we obtain for the energy eigenvalues

En = −α2mrc
2 Z

2

2n2
= −α

2mec
2Z2

1 +me/M

1

2n2
= −hcRM

Z2

n2
= −Z

2

n2
Ry. (2.33)

Note that the atom has an infinite number of bound states. Writing En ' 1
2me

〈
v2
〉

we infer that

α2Z2 '
〈
(v/c)2

〉
. States with a large principal quantum number are called Rydberg states and

atoms excited to those states are called Rydberg atoms. Eq. (2.33) defines the complete spectrum of
the hydrogen atom according to the Schrödinger theory. It shows degeneracy of the energy levels,
which means that different states have the same energy. For states of given l the degeneracy is 2l+1
because the energy eigenvalues are independent of the the quantum number ml. Degeneracies of
this type are called essential. In contrast, degeneracies of states with different quantum numbers
(e.g., states of given n but differing in l) are called accidental. With the condition l ≤ n − 1 the
degeneracy of the level En is given by the arithmetic series

n−1∑
l=0

(2l + 1) = 1
2 [1 + (2n− 1)]n = n2. (2.34)

The atomic energy levels are illustrated in Fig. 2.1a along with the names of some well-known
atomic transitions between hydrogenic levels: Lyman α (Lα) and Balmer-α (Hα). In the case of op-
tically induced transitions the change in state of the atom is accompanied by a simultaneous change
of the light field. This happens through exchange of a photon between the atom and field in such
a way that the total energy and momentum are conserved. Energy-level diagrams discriminating
between various quantum numbers (like in Fig. 2.1a) are often referred to as Term diagrams.1 This
practice finds its origin in the assignment of the energy levels in optical spectroscopy (see Fig. 2.1b)
in which spectral lines are assigned to terms in a series of transitions sharing the same final (or
initial) state. The first series of this type was discovered empirically by Balmer in 1885 for the
spectral lines of hydrogen in the visible part of the spectrum. The Balmer series is defined by
all optical excitations from (or decay to) the n = 2 level. Analogously, the Lyman series involves
the transitions to (or from) the hydrogen ground state (n = 1). In 1888 Rydberg generalized the

1Term diagrams were introduced by the astrophysicist Walter Grotrian in 1928. The formal definition of the
notion Term is given in Section 4.6.2.



2.3. Eigenfunctions of the bound states 23

Figure 2.1: (a) Atomic energy level diagram (Term diagram) of hydrogen. Indicated are the first transitions
of both the Lyman series (Lα) and the Balmer series (Hα). (b) Balmer spectrum of hydrogen observed in
absorption (upper) and emission (lower).

expression for the Balmer series into the Rydberg formula, which yields the wavelength (in vacuum)
of any transition between two hydrogenic energy levels,

1

λn
= −RM

[(
1

n

)2

−
(

1

n0

)2
]
, (2.35)

where n > n0, with n0 being the principal quantum number of the common and lowest level in all
transitions considered; i.e., the defining level of the series. The corresponding energy splitting is
given by

∆En = En − E0 = hc/λn. (2.36)

If n0 refers to an initial state, the atom is excited from the common level E0 ≡ En0 to one of the
levels En under absorption of a photon of energy ~ωn = En − E0.1 In astronomy, such transitions
are observed as dark lines in the spectrum of stellar light (see Fig. 2.1b-upper) and demonstrate the
presence of cold (dark) interstellar gas between the observer and a distant star. Inversely, if n0 refers
to a final state, the atom is de-excited from one of the levels En to the level E0 under emission
of a photon of energy ~ωn = En − E0. This is observed in spectroscopic studies of glowing hot
interstellar clouds (in regions of star formation), where the emission appears as bright lines against
a dark background in the spectrum of the glow (see Fig. 2.1b-lower).

2.3 Eigenfunctions of the bound states

Combining Eqs. (2.30) and (2.27) we find for the radial wavefunctions

R̃nl(ρ) = N−1/2
nl (2Z/n)l+3/2ρle−Zρ/nL2l+1

n−l−1(2Zρ/n). (2.37)

Note that the normalization factor Anl used in Eq. (2.30) has been replaced by the normalization

factor N−1/2
nl . Substituting this expression into Eq. (2.16) and changing to the variable x = 2Zρ/n

we find with the aid of Eq. (L.83)

Nnl =

ˆ ∞
0

x2l+2e−x
[
L2l+1
n−l−1(x)

]2
dx = J1(n− l − 1, 2l + 1) =

2nΓ(n+ l + 1)

Γ(n− l)
. (2.38)

1Here we neglect the recoil shift, a small shift of the optical transition frequency with respect to the value ωn. It
results from the conservation of linear momentum in the emission of a photon.
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Figure 2.2: The lowest order hydrogenic radial wavefunctions plotted in atomic units as a function of radial
distance. Note that for a given value of the orbital quantum number l the number of nodes increases with
the principal quantum number n.

A few important cases are N1s = 2, N2p = 24, N3d = 720 and N4f = 40320. The integral
J1(n − l − 1, 2l + 1) is a generalized normalization integral as defined by Eq. (L.81). Inspecting
the solution Eq. (2.37), we find that χ̃l(ρ) ∼ ρne−Zρ/n for ρ → ∞. This is independent of l
because asymptotically the Coulomb term, 2Z/ρ , always dominates over the −l(l + 1)/ρ2 term
in the Hamiltonian (all radial wave functions behave asymptotically as s waves). For ρ → 0 the
radial wavefunction vanishes for all values l > 0. For the case l = 0 the probability density (see
Appendix F.1.1) of the radial wavefunction at the origin is

R̃2
ns(0) = 4(Z/n)3. (2.39)

As an example we calculate the lowest hydrogenic radial wavefunctions for the cases n = 1, 2, 3 and
arbitrary Z. The results for the hydrogen atom are obtained by setting Z = 1. Substituting the
quantum numbers n and l into Eqs. (2.37) and (2.38) we find

R̃1s(ρ) = Z3/22e−Zρ (2.40a)

R̃2s(ρ) = (Z/2)
3/2

(1− Zρ/2)2e−Zρ/2 (2.40b)

R̃2p(ρ) = (Z/2)
3/2
√

1/3(Zρ/2)2e−Zρ/2 (2.40c)

R̃3s(ρ) = (Z/3)
3/2 [

1− 2(Zρ/3) + 2
3 (Zρ/3)2

]
2e−Zρ/3 (2.40d)

R̃3p(ρ) = (Z/3)
3/2
√

8/9
[
1− 1

2 (Zρ/3)
]

2e−Zρ/3 (2.40e)

R̃3d(ρ) = (Z/3)
3/2
√

2/45(Zρ/3)22e−Zρ/3 (2.40f)

In all cases
´
R̃2
nl(ρ)ρ2dρ = 1. Some examples are shown (for Z = 1) in Fig. 2.2.

2.3.1 Dirac notation

In many cases it is convenient to adopt the Dirac notation |nlm〉 for the electronic orbital eigenstates
of hydrogenic atoms. In this notation the Schrödinger equation (2.5) takes the compact form

H0 |nlm〉 = En |nlm〉 . (2.41)
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Figure 2.3: Radial distribution functions for the lowest hydrogenic wavefunctions. For the 1s wavefunction
the radial distribution reaches a maximum at the Bohr radius (ρ = 1).

The relation with the eigenfunctions in the position representation is given by

ψnlm(r) = 〈r|nlm〉 = 〈r|nl〉〈r̂|lm〉, (2.42)

with 〈r|nl〉 = rRnl(r) and 〈r̂|lm〉 = Y ml (r̂).

2.4 Diagonal matrix elements

2.4.1 Radial averages

The expectation value of an operator A for an atom in eigenstate |nlm〉 is given by

〈A〉 ≡ 〈nlm|A|nlm〉 . (2.43)

In many cases of practical importance the operator A depends analytically on the radial distance
to the nucleus, A = A(ρ). Operators of this type are diagonal in the representation {|nlm〉}.
Importantly, 〈A〉 separates into the product of a radial and an angular integral,1

〈A〉nlm =

ˆ
dρ ρ2R̃nl(ρ)A(ρ)R̃nl(ρ)

ˆ
|Y ml (Ω)|2 dΩ, (2.44)

which reduces, given the normalization of the spherical harmonics, to a purely radial integral,

〈A〉nlm =

ˆ
dρA(ρ)χ̃2

nl(ρ) = 〈A〉nl. (2.45)

Here χ̃nl(ρ) is a reduced radial wavefunction as introduced in Section 1.2.1. By separating the radial
from the angular integral we obtain a reduced matrix element ; i.e., it depends on n and l but not
on m (see Problem 2.2). Like an ordinary matrix element it is an integral over the radial variable
but differs by the presence of the additional weight factor ρ2. The function

χ̃2
nl(ρ) = ρ2R̃2

nl(ρ) (2.46)

is called the radial distribution function of the state |nl〉 and expresses the radial distribution of
the probability density to find the electron at distance ρ from the origin. For the lowest radial
wavefunctions these are shown in Fig. 2.3.

1In these lecture notes we use interchangeable notations for the radial unit vector: r̂ ≡ Ω ≡ (θ, φ).
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2.4.1.1 Atomic size

As a first example we calculate the average radius of the hydrogen ground state |1s〉 with the aid of
Eq. (2.40a),

〈ρ〉1s =

ˆ
ρ[2ρe−ρ]2dρ = 4

ˆ
ρ3e−2ρdρ = 1

4

ˆ
x3e−xdx = 1

4Γ(4) = 3
2 . (2.47)

Comparing with Eq. (2.10) we find that 〈r〉1s = 3
2a, which is 50% larger than the Bohr radius,

a0 ' 5.2 × 10−11 m. As the proton size is orders of magnitude smaller, rp ' 8.8 × 10−16 m, this
justifies in hindsight our Ansatz of treating the nucleus as a point charge. Compact relations for
the radial averages

〈
ρk
〉
nl

in atomic units can be obtained by expressing Eq. (2.44) in terms of the
integrals Jν(n′, 2l + 1) defined in Eq. (L.81),

〈
ρk
〉
nl

=
1

Nnl

( n

2Z

)k ˆ ∞
0

x2l+2+ke−x
[
L2l+1
n−l−1(x)

]2
dx

=
( n

2Z

)k Jk+1(n− l − 1, 2l + 1)

J1(n− l − 1, 2l + 1)
. (2.48)

In particular we obtain for a number of important special cases with the aid of Eqs. (L.82)-(L.85)

〈ρ〉nl =
1

2Z
[3n2 − l(l + 1)] 〈ρ−1〉nl =

Z

n2
(2.49a)

〈ρ2〉nl =
1

2Z2
n2[5n2 + 1− 3l(l + 1)] 〈ρ−2〉nl =

Z2

n3

1

l + 1/2
(2.49b)

〈ρ−3〉nl =
Z3

n3

1

(l + 1) (l + 1/2) l
. (2.49c)

By substituting n = 1, l = 0, Z = 1 we regain the result 〈r〉 = 3/2a for the average radius of the
hydrogen ground state in atomic units. With Eqs. (2.49a) and (2.49b) the variance in the radial
position is calculated to be

〈(ρ− 〈ρ〉)2〉nl = 〈ρ2〉nl − 〈ρ〉2nl =
1

4Z2

[
n2(n2 + 2)− l2(l + 1)2

]
. (2.50)

As another example of a radial average we calculate the average radial kinetic energy for the
hydrogen ground state |100〉 in Hartree atomic units

〈
− 1

2ρ

∂2

∂ρ2
ρ

〉
1s

= −2

ˆ
dρ ρe−ρ

d2

dρ2
(ρe−ρ)

= 4

ˆ
ρe−2ρdρ− 2

ˆ
ρ2e−2ρdρ = Γ(2)− 1

4Γ(3) = 1
2 . (2.51)

This expression may be generalized for arbitrary hydrogenic eigenstates (see Problem 2.3).
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Problem 2.2. Show that Eq. (2.45) is a reduced matrix element in the sense of the Wigner-Eckart theorem
(cf. Appendix K.2).

Solution. The scalar operator A(ρ) is an irreducible tensor operator of rank zero. Using the sum rule of
Appendix K.2.1 the reduced matrix element is given by

|〈nl||A||nl〉|2 =

l∑
m=−l

|〈nlm|A|nlm〉|2.

Substituting Eq. (2.45) we have 2l + 1 equal terms and obtain

〈A〉2nl = |〈nl||A||nl〉|2/(2l + 1),

which is independent m and, as such, a reduced matrix element in the sense of the Wigner-Eckart theorem.
For zero-order tensors the use of this theorem is overkill because the angular integral not only factors out
of the integral but evaluates to unity - see derivation of Eq. (2.45). 2

Problem 2.3. Show that the radial kinetic energy of the state |nlm〉 is given by

〈
− 1

2ρ

∂2

∂ρ2
ρ

〉
nl

=
Z2

n2

[
1

2
− l (l + 1)

n (2l + 1)

]
a.u.. (2.52)

Solution. Changing to the variable x = 2Zρ/n we have

R̃2
nl(ρ)ρ2dρ = N−1

nl x
2l+2e−x

[
L2l+1
n−l−1(x)

]2
dx

and after angular integration we are left with the radial average,

〈
− 1

2ρ

∂2

∂ρ2
ρ

〉
nl

= − 1

2Nnl

(
2Z

n

)2 ˆ ∞
0

xl+1e−x/2L2l+1
n−l−1(x)

d2

dx2
[xl+1e−x/2L2l+1

n−l−1(x)]dx.

In view of the orthogonality relation (L.76) we have to retain only those derivatives which are proportional

to
[
L2l+1
n−l−1(x)

]2
,

[
L2l+1
n−l−1(x)

]2
xl+1e−x/2 d2

dx2
xl+1e−x/2 = x2l+1e−x

(
l(l + 1)x−1 − (l + 1) + 1

4
x
) [
L2l+1
n−l−1(x)

]2
−L2l+1

n−l−1(x)
∑n−l−2
m=0 L2l+1

m (x)
[
2xl+1e−x/2 d

dx
xl+1e−x/2

]
→ −x2l+1e−x (n− l − 1)

[
L2l+1
n−l−1(x)

]2
L2l+1
n−l−1(x)

∑n−l−2
m=0 lL2l+1

m (x)
(
xl+1e−x/2

)2
→ 0.

Here we used the expansions (L.80b) and (L.80c). Collecting the selected terms we obtain

〈
− 1

2ρ

∂2

∂ρ2
ρ

〉
nl

= − 2

Nnl
Z2

n2

ˆ ∞
0

x2l+1e−x
[
L2l+1
n−l−1(x)

]2(
l(l + 1)x−1 − n+

1

4
x

)
dx

=
Z2

n2

{
−2l(l + 1)

J−1(n− l − 1, 2l + 1)

J1(n− l − 1, 2l + 1)
+ 2n

J0(n− l − 1, 2l + 1)

J1(n− l − 1, 2l + 1)
− 1

2

}
.

Substituting the expressions for the Jν(m,α) from Appendix L.11 we find Eq. (2.52). 2
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2.4.2 Angular averages

Angular distributions can be written as an expansion over spherical harmonics Y qk (r̂) for which the
angular averages are easily calculated using the Gaunt integral (L.59),

〈Y qk (r̂)〉lm ≡ 〈lm|Y qk (r̂)|lm〉

=

ˆ
Y qk (r̂) |Y ml (r̂)|2 dr̂ (2.53)

= (−1)m (2l + 1)

√
(2k + 1)

4π

(
l k l

0 0 0

)(
l k l

−m q m

)
. (2.54)

This average is non-zero only for q = 0 and k = even in the interval 0 ≤ k ≤ 2l. See Eq. (J.21) and
the selection rules for 3j symbols.

2.4.2.1 Examples

The angular averages of the lowest-order spherical harmonics are found by using the expressions for
the Wigner 3j symbols - see Eq. (L.59),

〈lm|Y 0
0 (r̂)|lm〉 =

√
1

4π
(2.55a)

〈lm|Y 0
1 (r̂)|lm〉 = 0 (2.55b)

〈lm|Y 0
2 (r̂)|lm〉 =

l (l + 1)− 3m2

(2l + 3)(2l − 1)

√
5

4π
. (2.55c)

Problem 2.4. Show that for s orbitals 〈lm|Y qk (r̂)|lm〉 is non-zero only for k = q = 0.

Solution. To calculate the angular average of Y qk (r̂) we use Eq. (2.54). The angular average is nonzero if
the 3j symbols are nonzero; i.e., for 0 ≤ k ≤ 2l. For s orbitals (l = 0) this implies 0 ≤ k ≤ 0. Hence, for
k > 0 the angular averages all vanish. For k = 0 we find

〈00|Y 0
0 (r̂)|00〉 =

√
1/4π〈00|00〉 =

√
1/4π. 2

Problem 2.5. Show that the s-wave angular average of sin2 θ is 〈00| sin2 θ|00〉 = 2/3.

Solution. First we express sin2 θ in spherical harmonics

sin2 θ =
2

3
− 2

3

√
4π

5
Y 0
2 (θ, φ)

Then the angular average follows with Eq. (2.55c),

〈lm| sin2 θ|lm〉 =
2

3
− 2

3

l (l + 1)− 3m2

(2l + 3)(2l − 1)
.

For s waves (l = m = 0) this yields 2/3. It may speak for itself that there are simpler ways to average sin2 θ
over a sphere. This problem merely serves to demonstrate the general case. 2

2.5 Off-diagonal matrix elements

2.5.1 Transition dipole matrix elements

In this section we investigate the matrix elements 〈n′l′m′|d |nlm〉 of the electric-dipole operator

d =− er =− eaρ r̂ (2.56)
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between eigenstates of the Schrödinger Hamiltonian. The electric-dipole operator has odd parity ; i.e.,
the operator changes sign when replacing the radius vector r by −r. Since the electronic eigenstates
carry the parity of the Y ml (r̂) - see Eq. (L.53) - the expectation value of the electric-dipole operator
averages to zero, 〈nlm|d|nlm〉 = 0. This reflects the absence of a permanent electric-dipole moment
for hydrogenic eigenstates.1 Hence, the atomic-dipole matrix is off-diagonal.

The off-diagonal matrix element
Deg = 〈e|d |g〉 (2.57)

is called the transition-dipole moment of the e ↔ g transition between atomic states. As Deg is
generally a complex vector it may be written as the product of a generally complex unit vector û
and a real prefactor Deg,

Deg = Degû. (2.58)

Because the dipole operator is hermitian,2 Deg = D∗ge, we have

|Deg|2 = |Dge|2 = D2
eg. (2.59)

With regard to the eigenstates |g〉 = |nlm〉 and |e〉 = |n′l′m′〉 of hydrogenic atoms, the transition
dipole moment is given by

Dn′l′m′,nlm = −ea〈n′l′m′|ρ r̂ |nlm〉 . (2.60)

Decomposing the hydrogenic wavefunctions into the product of radial and angular states, ψg(r) =
Rnl(r)Y

m
l (r̂), the matrix elements of the transition dipole separate into a radial and an angular

contribution,
Dn′l′m′,nlm = −eaRn′l′,nl 〈l′m′| r̂ |lm〉 . (2.61)

The radial contribution is given by the integral - compare with Eq. (2.45)

Rn′l′,nl ≡
ˆ ∞

0

χ̃n′l′ρχ̃nl(ρ)dρ. (2.62)

Note the property
Rn′l′,nl = Rnl,n′l′ . (2.63)

The angular contribution is given by

〈l′m′| r̂ |lm〉 =

ˆ
Y m

′∗
l′ (r̂) r̂Y ml (r̂)dr̂. (2.64)

Note that this integral is zero if the parity of the integrand is odd. This reveals that the electric-
dipole transition requires a change of parity of the electronic state.

2.5.2 Angular matrix element - spherical basis

To find an explicit expression for the angular matrix element we decompose the radial unit vector
r̂, as defined in Eq. (1.13a), in the spherical basis 3

r̂ =
√

4π/3
[
û∗+1Y

1
1 (r̂) + û∗−1Y

−1
1 (r̂) + û∗0Y

0
1 (r̂)

]
, (2.65)

where the spherical unit vectors are defined by

û+1 = −
√

1
2 (x̂ + iŷ), û−1 = +

√
1
2 (x̂− iŷ), û0 = ẑ. (2.66)

1States sharing the same principal quantum number but differing in orbital angular momentum are degenerate
in the case of the Schrödinger Hamiltonian. Linear combinations of such states do have a permanent electric dipole
moment. This moment becomes nonstationary when the degeneracy is lifted by some perturbation.

2Note that 〈r|r|r′〉∗ = r′δ(r′ − r) = rδ(r− r′) = 〈r′|r|r〉.
3This is readily verified: û±1 · r = ∓

√
1/2 [(x̂ · r)± i(ŷ · r)] = ∓r

√
1/2 e±iφ sin θ; û0 · r = ẑ · r = r cos θ.
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The decomposition (2.65) is called the standard decomposition or spherical decomposition of the
radial unit vector r̂. Substituting Eqs. (2.66) into Eq. (2.65) we regain the cartesian decomposition
of r̂ as given in Eq. (1.13a). The orthonormality relations for the spherical unit vectors are

û∗i · ûj = δij (2.67)

with i, j ∈ {−1, 0, 1}. Note that û+1 = −û∗−1, û−1 = −û∗+1 and û0 = û∗0, which is summarized by
the expression

ûq = (−1)qû∗−q. (2.68)

The reverse transformation is given by

x̂ = −
√

1
2 (û+1 − û−1), ŷ = +

√
1
2 (û+1 + û−1) i, ẑ = û0. (2.69)

The angular matrix element is readily evaluated in the spherical decomposition. Using the integral
for the product of three spherical harmonics, see Eq. (L.59), we obtain

〈l′m′| r̂ |lm〉 =
∑1
q=−1û

∗
q 〈l′m′|

√
4π/3Y q1 (r̂) |lm〉

=
∑1
q=−1û

∗
q (−1)m

′+max(l,l′)
√

max(l, l′)

(
l′ 1 l

−m′ q m

)
δl′,l±1

= û∗m′−mAl′m′,lm, (2.70)

where the prefactor of the angular integral and given by

Al′m′,lm = (−1)m
′+max(l,l′)

√
max(l, l′)

(
l′ 1 l

−m′ m′ −m m

)
δl′,l±1. (2.71)

Note the property
Al′m′,lm = (−1)m

′−mAlm,l′m′ . (2.72)

The last step in Eq. (2.70) follows from the projection rule of 3j symbols, q + m −m′ = 0, which
implies that only one of the three terms of the spherical decomposition gives a nonzero contribution
to the matrix element 〈l′m′| r̂ |lm〉. This selection rule expresses the conservation of angular mo-
mentum along the quantization axis. The factor δl′,l±1 expresses the electric-dipole parity selection
rule for one-electron atoms,

l′ = l ± 1. (2.73)

2.5.3 Transition dipole and transition strength

Thus we established that the transition dipole can be written in the general form (2.58),

Dn′l′m′,nlm = Dn′l′m′,nlmû∗m′−m, (2.74)

where û∗m′−m is a spherical unit vector and

Dn′l′m′,nlm = −eaRn′l′,nlAl′m′,lm. (2.75)

The quantity
|Dn′l′m′,nlm|2 = D2

n′l′m′,nlm = e2a2R2
n′l′,nlA2

l′m′,lm (2.76)

is called the n′l′m′ ↔ nlm (atomic-dipole) transition strength. Note that Dn′l′m′,nlm can be written
in the form

Dn′l′m′,nlm = −ea 〈n′l′m′|
√

4π/3 ρ Y
(m′−m)
1 (r̂) |nlm〉 . (2.77)
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Figure 2.4: Depending on the change in magnetic quantum number of the atom, electric-dipole transitions
are referred to as sigma-plus (∆m = 1), sigma-minus (∆m = −1) or pi (∆m = 0) transitions.

As the operator
√

4π/3 r Y
(m′−m)
1 (r̂) is a standard component of the irreducible vector operator r

(cf. Section 2.5.2 and Appendix K.1.2) we can apply the Wigner-Eckart theorem (K.24),

Dn′l′m′,nlm = −ea (−1)l
′−m′〈n′l′||

√
4π/3 ρ Y1(r̂)||nl〉

(
l′ 1 l

−m′ m′ −m m

)
. (2.78)

Comparing Eqs. (2.78) with (2.75) and (2.71) we obtain once and for all the expression for the
reduced matrix element in the standard representation {L2, Lz}

〈n′l′||
√

4π/3 ρ Y1(r̂)||nl〉 = ±
√

max(l, l′) δl′,l±1Rn′l′,nl. (2.79)

2.5.4 Selection rules for electric-dipole transitions - spin of the photon

Since e2a2R2
n′l′,nl is positive-definite, the transition-dipole is only non-zero if Al′m′,lm is non-zero;

i.e., if the condition (
l′ 1 l

−m′ m′ −m m

)
δl′,l±1 6= 0 (2.80)

is satisfied. The parity selection rule (2.73) is enforced by the Kronecker symbol δl′,l±1. Together
with the properties of the 3j symbol Eq. (2.80) yields the selection rules for electric-dipole transitions

∆l = ±1, ∆m = 0,±1, (2.81)

where ∆l = l′− l and ∆m = m′−m. Transitions in which the magnetic quantum number increases
(decreases) are called σ+ (σ−) transitions; transitions with ∆m = 0 are called π transitions (see
Fig. 2.4).

If the transition is induced by the electromagnetic field, the change in angular momentum of the
atom is compensated by a change in angular momentum of the field (to conserve the total angular
momentum). This happens in the exchange of a photon between atom and field. From the selection
rule ∆l = ±1 we infer that the emitted (or absorbed) photon always carries a single unit of angular
momentum. This angular momentum is called the spin of the photon (s = 1). From the selection
rule ∆m = 0,±1 we infer that the quantum number ms for the projection of the photon spin on
the quantization axis of the atom is given by ms = ∆m = 0,±1. The probability to observe the
photon as a particle with polarization unit vector ε̂ is given by |ε̂ · û∗m′−m|2. Further discussion of
optical transitions is best given after the interaction of atoms with the electromagnetic field has
been introduced.

2.5.5 Examples of electric-dipole transitions in hydrogen:

2.5.5.1 Lyman transitions:

Let us calculate the radial and angular integrals for a couple of important cases. First we consider
excitation from (or decay to) the electronic ground state (np ↔ 1s). These transitions define the
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Figure 2.5: Angular contribution to the transition strength for: (a) sp transitions; (b) pd transitions. The
squared angular matrix element of the reference transition (the weakest of the set) is 1/3 (for sp) and 1/15
(for dp). Note that the sum of the transition probabilities is the same for all upper (or lower) levels.

Lyman series. Setting l = 0 in Eq. (2.80) the selection rule for these transitions becomes(
l′ 1 0

−m′m′ 0

)
6= 0. (2.82)

In other words we require l′ = 1 and m′ = −1, 0, 1.

Substituting the expressions for R̃1s(ρ) and R̃np(ρ) from Eq. (2.37) into the radial integral (2.62)
and changing to the variable x = 2Zρ/n the radial integral becomes

Rnp,1s ≡
1

Z

√
(n− 2)!

(n+ 1)!

(n
2

)2
ˆ
x4e−(n+1)x/2L3

n−2(x)dx. (2.83)

This integral is evaluated by repetitive use (3×) of the recursion relation (L.80a),

ˆ
x4e−(n+1)x/2L3

n−2(x)dx =

n−2∑
n′=0

n′∑
n′′=0

n′′∑
k=0

ˆ
x4e−(n+1)x/2Lk(x)dx. (2.84)

Note that the number of recursions required is equal to the upper index of the Laguerre polynomial.
Evaluating the integral and summations we obtain

Rnp,1s = (1/Z)24n7/2 (n− 1)n−5/2

(n+ 1)n+5/2
n ≥ 2. (2.85)

The angular integral yields (see also Fig. 2.5a)

Ap→s = A1m′,00 = (−1)m
′+1

(
1 1 0

−m′m′ 0

)
=
√

1
3 . (2.86)

In particular we find for the Lyman α transition strength (2pm′ ↔ 1s) - see Problem 2.6

D2
2p,1s = 0.554 93 e2a2/Z2. (2.87)

Note that this results holds for transitions is independent of the choice of m′.

2.5.5.2 Balmer transitions:

The second example is the Balmer series, which is defined by excitation from (or decay to) the first
excited electronic state (n = 2 level).
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np↔ 2s transitions (n ≥ 2)
Substituting the expressions for R̃2s(ρ) and R̃np(ρ) from Eq. (2.37) into the radial integral (2.62)
and changing to the variable x = 2Zρ/n the radial integral becomes

Rnp,2s ≡
1

2Z
√

2

√
(n− 2)!

(n+ 1)!

(n
2

)2
ˆ
x4(1− nx/4)e−(n+2)x/4L3

n−2(x)dx. (2.88)

The integral is evaluated by repetitive use (3×) of the recursion relation (L.80a),

ˆ
x4(1− nx/4)e−(n+2)x/4L3

n−2(x)dx =

n−2∑
n′=0

n′∑
n′′=0

n′′∑
k=0

ˆ
x4(1− nx/4)e−(n+2)x/4Lk(x)dx. (2.89)

Evaluating the integral and summations we obtain

Rnp,2s =

−(1/Z)3
√

3 n = 2

+(1/Z)28
√

2n7/2(n2 − 1)1/2 (n− 2)n−3

(n+ 2)n+3
n > 2.

(2.90)

The angular integral yields for all sp transitions (see also Fig. 2.5a)

Ap→s = A1m′,00 = (−1)m
′+1

(
1 1 0

−m′m′ 0

)
=
√

1
3 . (2.91)

In particular we find for n = 3 the 2s↔ 3p contribution to the Balmer-α transition strength,

D2
3p,2s = 3.131 e2a2/Z2. (2.92)

ns↔ 2p transitions
Substituting the expressions for R̃2p(ρ) and R̃ns(ρ) from Eq. (2.37) into the radial integral (2.62)
and changing to the variable x = 2Zρ/n the radial integral becomes

Rns,2p ≡
1

32Z
√

6
n5/2

ˆ
x4e−(n+2)x/4L1

n−1(x)dx. (2.93)

The integral is evaluated with the aid of the recursion relation (L.80a),

ˆ
x4e−(n+2)x/4L1

n−1(x)dx =

n−1∑
k=0

ˆ
x4e−(n+2)x/4Lk(x)dx. (2.94)

Evaluating the integral and summations we obtain 1

Rns,2p =

−(1/Z)3
√

3 n = 2

+(1/Z)27
√

2/3n9/2 (n− 2)n−3

(n+ 2)n+3
n 6= 2.

(2.95)

The angular integral yields for all sp transitions (see also Fig. 2.5a)

A00,1m = (−1)m+1

(
0 1 1

0−mm

)
=
√

1
3 . (2.96)

Note that for n = 1 we regain the 1s↔ 2pm (Lyman α) transition strength - see Eq. (2.87)

D2
2p,1s = e2a2R2

1s,2pA2
00,1m = 0.554 93 e2a2/Z2. (2.97)

1For n = 1 the transition is part of the Lyman series - compare with Eq. (2.85).
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Likewise, we find for n = 3 the 3s↔ 2pm′ Balmer-α transition strength,

D2
3s,2pm = e2a2R2

3s,2pA2
00,1m = 0.293 53 e2a2/Z2. (2.98)

A new aspect comes into play when dealing with incoherent sums over (initial or final) states. A
well-known example is the calculation of spontaneous emission rates from a given magnetic sublevel.
This involves a sum over the final states contributions. Summing over the magnetic sublevels of the
p level we find

A2
s→p ≡

1∑
m=−1

A2
00,1m = 1. (2.99)

Using this sum rule we obtain for the total transition probability

D2
3s,2p = e2a2R2

3s,2p

1∑
m=−1

A2
00,1m = 0.880 60 e2a2/Z2. (2.100)

nd↔ 2p transitions
Substituting the expressions for R̃2p(ρ) and R̃nd(ρ) from Eq. (2.37) into the radial integral (2.62)
and changing to the variable x = 2Zρ/n the radial integral becomes

Rnd,2p ≡ (1/Z)
1

32
√

6

√
(n− 3)!

(n+ 2)!
n3

ˆ
x6e−(n+2)x/4L5

n−3(x)dx. (2.101)

The integral is evaluated by repetitive use (5×) of the recursion relation (L.80a)

ˆ
x6e−(n+2)x/4L5

n−3(x)dx =

n−3∑
n′=0

n′∑
n′′=0

n′′∑
n′′′=0

n′′′∑
n′′′′=0

n′′′′∑
k=0

ˆ
x6e−(n+2)x/4Lk(x)dx. (2.102)

Evaluating the integral and summation we obtain

Rnd,2p = (1/Z)29
√

2/3n5(n2 − 1)
(n− 2)n−3

(n+ 2)n+3

√
(n− 3)!

(n+ 2)!
n > 2. (2.103)

The angular integral yields for d↔ p transitions

A2m′,10 = (−1)−m
′√

2

(
1 1 2

0m′ −m′

)
= (−1)−m

′

√
4−m′2

15
, (2.104a)

A2m′,1±1 = (−1)−m
′√

2

(
1 1 2

±1m′ ∓ 1m′

)
= (−1)−m

′


√

2+3m′+m′2

30 0 ≤ m′ ≤ 2√
2−3m′+m′2

30 −2 ≤ m′ ≤ 0.
(2.104b)

For the case n = 3 we find for the 3dm′ ↔ 2pm Balmer-α transition strengths - see Problem 2.6

D2
3dm′,2pm = e2a2R2

3d,2pA2
2m′,1m = 22.543A2

2m′,1me
2a2/Z2. (2.105)

Summing over the magnetic quantum numbers of the p or d level we obtain the sum rules

1∑
m=−1

A2
2m′,1m =

2∑
m=−2

A2
2m,1m′ = 2

5 . (2.106)

Interestingly, this sum is independent of the choice of the initial magnetic sublevel m′ as is illustrated
in Fig. 2.5. We return to the use of sum rules when discussing electric-dipole transitions in the
presence of fine structure (Section 4.6.4) and hyperfine structure (Section 5.3.7). For the case n = 3
we find for the 3dm → 2p and 2pm → 3d Balmer-α transition probabilities

D2
3dm,2p = D2

3d,2pm = 9.0172 e2a2/Z2. (2.107)
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Problem 2.6. Verify the general expressions for 1s ↔ np, 2s ↔ np and 2p ↔ nd transitions by direct
substitution of Eqs. (2.40) into Eq. (2.62) for the 1s↔ 2p (Lyman α), the 2s↔ 2p and 2p↔ 3d transitions
in hydrogen.

Solution. By direct substitution of Eqs. (2.40) into Eq. (2.62) we calculate

R2p,1s ≡
ˆ ∞
0

ρ3R̃2p(ρ)R̃1s(ρ)dρ = +1.29027/Z

R2p,2s ≡
ˆ ∞
0

ρ3R̃2p(ρ)R̃2s(ρ)dρ = −5.19616/Z

R2p,3d ≡
ˆ ∞
0

ρ3R̃3d(ρ)R̃2p(ρ)dρ = +4.74799/Z.

These values are used in the formulas for 1s↔ np, 2s↔ np and 2p↔ nd transitions. 2
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3

Angular Momentum

In Chapter 1 we solved the Schrödinger equation for the motion of a particle in a central potential
field. Exploiting the central symmetry we found separate equations of motion as a function of
r, θ and φ and established that the radial and angular motions are quantized. For the angular
motion this was expressed by the eigenvalue equations for the operators L2 and Lz. In the present
chapter we develop another line of reasoning. We start by demonstrating that the properties of
quantized angular momentum follow directly from the commutation relations (1.29). In particular,
the eigenvalues of L2 and Lz and the properties of L+ and L− are obtained without solving the
Schrödinger equation. This leads us to generalize the discussion: whenever we meet a vector operator
J of which the cartesian components, Jx, Jy and Jz, are hermitian operators satisfying commutation
relations of the type (1.29), the quantization properties of its observables are immediately known.
We shall find that these commutation rules define an algebra that not only reproduces the properties
obtained in Chapter 1 but also allows for different (non-classical) kinds of angular momentum. In
Section 3.2 we introduce the matrix representation for angular momentum operators in vector spaces
of arbitrary dimension. For the two-dimensional case we obtain the Pauli matrices, identifying spin
as a s = 1

2 form of angular momentum. In Section 3.4 we introduce the vector addition of two
angular momenta to form a total angular momentum. We define the coupled and the uncoupled
representation and introduce the Clebsch-Gordan transformation between these two. In Section 3.8
we investigate the relation between rotations in real space and unitary transformations in Hilbert
spaces. We find for the spin s = 1

2 case that the angular momentum operators Sx, Sy and Sz can
be written as differential operators representing infinitesimal rotations about the x, y and z axis,
respectively.

In Section 3.9 we arrive at the formal definition of the angular momentum operator Ja as
an infinitesimal rotation about the direction â. From this definition all properties of quantized
angular momentum follow in a few steps. We find that half-integral angular momenta have rotation
properties that do not exist in classical physics.

Introductions in the theory of quantized angular momentum are given by Albert Messiah [75, 76]
and in dedicated books on Angular Momentum by Morris E. Rose [94] and A.R. Edmonds [36]. The
classics by Ugo Fano and Giulio Racah on Irreducible Tensorial Sets [39] and by Eugene P. Wigner
on Group Theory [122] put emphasis on the mathematical basis of the theory.

3.1 Angular momentum algebra

In this section we demonstrate that the vector operator J has the properties of an angular momentum
operator if its cartesian components (Jx, Jy and Jz in some frame of reference S) are hermitian
operators satisfying the commutation relations

[Jx, Jy] = i~Jz, [Jy, Jz] = i~Jx and [Jz, Jx] = i~Jy. (3.1)

37
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Using the inner product rule
J2 = J2

x + J2
y + J2

z , (3.2)

it is straightforward to show that J2 commutes with Jz - see Eq. (1.31). Therefore, J2 and Jz share
a complete set of eigenstates (see Problem F.1). Adopting the Dirac notation we denote this joint
basis by {|λ,m〉} and the corresponding eigenvalue equations take the form

J2 |λ,m〉 = λ~2 |λ,m〉 and Jz |λ,m〉 = m~ |λ,m〉 , (3.3)

where the eigenvalues λ and m are real numbers still to be determined. Note that, equally well we
could have chosen the joint basis of J2 and Jx (or J2 and Jy). By selecting J2 and Jz we adopted the
z axis of our coordinate system S as the quantization axis in the real space of observation; the basis
{|λ,m〉} that diagonalizes J2 and Jz simultaneously defines the standard representation {J2, Jz}.

Like in the case of orbital angular momentum we proceed by introducing shift operators

J± ≡ Jx ± iJy. (3.4)

For convenience of reference we also give the inverse relations

Jx = 1
2 (J+ + J−) and Jy = −i 1

2 (J+ − J−). (3.5)

Note that J+ and J− are hermitian conjugates, as follows from the hermiticity of Jx and Jy,

〈χ′| J+ |χ〉 = 〈χ′| Jx |χ〉+ 〈χ′| iJy |χ〉
= 〈χ| Jx |χ′〉

∗ − i 〈χ| Jy |χ′〉
∗

= 〈χ| J− |χ′〉
∗
, (3.6)

where |χ〉 and |χ′〉 represent arbitrary angular momentum states. With the aid of the commutation
relations (3.1) it is straightforward to derive commutation relations for the shift operators - compare
Eqs. (1.36) and (1.38),

[Jz, J±] = ±~J± and [J+, J−] = 2~Jz. (3.7)

Furthermore, we can derive the following operator identities - cf. Eqs. (1.37),

J−J+ = J2 − J2
z − ~Jz (3.8a)

J+J− = J2 − J2
z + ~Jz. (3.8b)

Adding these equations we obtain the inner product rule

J2 = J2
z + 1

2 [J+J− + J−J+]. (3.9)

The shift operators are introduced because they enable us to construct the subspace Vλ of the
angular momentum Hilbert space corresponding to the eigenvalue λ. To elucidate this point we note
that J+ is an operator that raises the eigenvalue m~ by one unit of angular momentum about the
quantization axis; i.e., if |λ,m〉 is an eigenstate of Jz with the eigenvalue m~ also J+ |λ,m〉 will be
an eigenstate of Jz but with eigenvalue (m+ 1)~,

JzJ+ |λ,m〉 = (J+m~ + ~J+) |λ,m〉 = (m+ 1)~J+ |λ,m〉 . (3.10)

This follows directly from the commutation relations (3.7). Comparing Eq. (3.10) with the generic
eigenvalue relation (3.3) we find

J+ |λ,m〉 = c+ (λ,m) ~ |λ,m+ 1〉 , (3.11)

where c+ (λ,m) is a (generally complex) constant to be determined. Likewise, we find that J− is an
operator that lowers the eigenvalue by ~,

J− |λ,m〉 = c− (λ,m) ~ |λ,m− 1〉 . (3.12)
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Thus we established that for a given eigenvalue λ the operators J± act as construction operators by
which new angular momentum eigenstates of the subspace Vλ can be generated.

We are now in a position to determine the constants c± (λ,m). As we shall see this leads us
to the quantized spectrum of λ and m. First we derive a relation between c+ and c− using the
property that J+ and J− are hermitian conjugates,

c+ (λ,m) ≡ 〈j,m+ 1| (J+/~) |j,m〉 = 〈j,m| (J−/~) |j,m+ 1〉∗ = c∗− (λ,m+ 1) . (3.13)

We proceed by deriving two expressions for the expectation value 〈λ,m| J−J+ |λ,m〉. Using Eqs.
(3.11), (3.12) and (3.13) we obtain

〈λ,m| J−J+ |λ,m〉 = c− (λ,m+ 1) c+ (λ,m) ~2 = |c+ (λ,m) |2~2. (3.14)

On the other hand from Eq. (3.8a) it follows that

〈λ,m| J−J+ |λ,m〉 = 〈λ,m|J2 − J2
z − ~Jz |λ,m〉 = [λ−m(m+ 1)] ~2. (3.15)

Equating Eqs. (3.14) and (3.15) we find the condition

0 ≤ |c+ (λ,m) |2 = λ−m(m+ 1). (3.16)

Repeating the derivation starting from J+J− we obtain in a similar way

0 ≤ |c− (λ,m) |2 = λ−m(m− 1). (3.17)

To assure that the conditions (3.16) and (3.17) are not violated, the construction of the subspace Vλ
by the operators J± has to be terminated at some point; i.e., we require the existence of a maximum
and a minimum value of m, −j̄ ≤ m ≤ j. The only way in which these bounds follow logically
from the algebra is if the conditions c+ (λ, j) = 0 and c− (λ,−j̄) = 0 are simultaneously satisfied.
Together with Eqs. (3.16) and (3.17) this leads to the condition

λ = j(j + 1) = j̄(j̄ + 1). (3.18)

Hence, we find j̄ = j and since m has to vary in integral steps, the condition −j ≤ m ≤ j implies
that j and m have to be either both integers (0, 1, 2, · · · ) or half-integers ( 1

2 ,
3
2 , · · · ). Other values of

j and m are not allowed because the construction procedure would not be truncated by the algebra
and result in violation of the conditions (3.16) and (3.17). For the coefficients we find the relation

|c± (j(j + 1),m) |2 = j(j + 1)−m(m± 1). (3.19)

Simplifying the notation, c± (j(j + 1),m) → Cj,±m, and choosing the phase of Cj,m such that it
always represents a non-negative real number we obtain the coefficients in the Condon and Shortley
phase convention [28],

Cj,m ≡
√
j(j + 1)−m(m+ 1) =

√
(j −m) (j +m+ 1). (3.20)

This convention represents a generalization of the phase convention introduced in Section 1.1.6.1
to the case of arbitrary angular momenta. In view of Eqs. (3.11) and (3.12) this convention assures
that the basis states {|j,m〉} are constructed with the same relative phase.
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3.1.0.1 Summary:

A vector operator J is called angular momentum operator if its cartesian components (Jx, Jy and Jz
in some frame of reference S) are hermitian operators satisfying the following commutation relations

[Ji, Jj ] = i~εijkJk, (3.21)

with i, j, k ∈ {x, y, z}. Choosing the quantization axis along the z direction of a cartesian coordinate
system in the euclidean space of observation, the eigenvalue equations of an arbitrary angular
momentum operator J can be written in the form,

J2 |j,m〉 = j(j + 1)~2 |j,m〉 (3.22a)

Jz |j,m〉 = m~ |j,m〉 . (3.22b)

The quantum numbers j and m are called rotational quantum numbers. They are either both integral
or half-integral. The quantum number m is often referred to as the magnetic quantum number and
is restricted to the interval

− j ≤ m ≤ j. (3.23)

The kets |j,m〉 correspond to the basis vectors in the standard representation {J2, Jz} of a d = 2j+1
dimensional subspace V d of Hilbert space, with d = 1, 2, 3, · · · . Using the Condon and Shortley phase
convention the shift relations (3.11) and (3.12) become

J± |j,m〉 = Cj,±m~ |j,m± 1〉 (3.24a)

where the shift coefficients Cj,±m are non-negative and real,

Cj,±m ≡
√
j (j + 1)−m(m± 1), (3.24b)

with the symmetry properties
Cj,±m = Cj,∓m−1. (3.24c)

In this convention all sublevels |j,m〉 can be constructed from |j, j〉 by repeated action of the lowering
operator,

|j,m〉 =

√
(j +m)!

(2j)! (j −m)!

(
J−
~

)j−m
|j, j〉 . (3.24d)

This expression is readily verified by induction. Note that the shift operators conserve the phase.
Therefore, for given j, all |j,m〉 carry the same phase. Furthermore, the shift operators satisfy the
following commutation relations:

[J±, J±] = 0, [J±, J∓] = ±2~Jz, [Jz, J±] = ±~J±. (3.25)

3.1.1 Shift operators versus standard components of vector operators

With respect to the cartesian basis the angular momentum operator J can be written as

J = x̂Jx + ŷJy + ẑJz, (3.26)

where Jx, Jy, Jz are the cartesian components. An inconvenience of the cartesian decomposition is
that the properties of the angular momentum are best accessed by the operators Jz, J+ and J−.
Thus we are lead to re-express Jx and Jy in terms of the shift operators. Substituting Eqs. (3.5)
into (3.26) we find

J = 1
2 (x̂− iŷ) J+ + 1

2 (x̂ + iŷ) J− + ẑJz. (3.27)
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Here we recognize the spherical unit vectors (2.66),

J = −
√

1
2 û∗+1J+ + û∗0Jz +

√
1
2 û∗−1J−. (3.28)

Rewriting this expression in the form

J = û∗+1J+1 + û∗0J0 + û∗−1J−1 (3.29)

we obtain the standard decomposition of J. The standard components J+1, J0, J−1 are defined by 1

J0 = Jz; J±1 = ∓
√

1
2 (Jx ± iJy) = ∓

√
1
2J±. (3.30)

As the decomposition of J maps onto that of the radius vector r, see Eq. (2.65), the standard
components have the same transformation properties as the Y m1 (r̂). This implies that, with the
standard decomposition we adopt the Condon and Shortley phase convention. Operators that
transform like the Y ml (r̂) are called spherical tensor operators [93]. For l = 1 the tensor operator
is called vector operator, for l = 0 scalar operator. The standard decomposition can be applied
to any vector operator and is used in unified approaches for the calculation of matrix elements in
systems with angular momentum (see Appendix K). We return to the transformation properties of
J in Section 3.8.

3.2 Matrix representation of angular momentum

The dimension of a d = 2j + 1 dimensional subspace V d becomes most explicit in the matrix
notation, where an arbitrary state of angular momentum is represented by a normalized column
vector of dimension d and the angular momentum operators by d×d matrices. In the case of orbital
angular momentum this dimension is an odd integer because the quantum number j is an integer.
In general, the dimension of the vector space can be odd (integral angular momentum) or even
(half-integral angular momentum). In the present section we shall determine some of these matrices
starting from the eigenvalue equations (3.22). In Section 3.9 they will be rederived using a formal
generating procedure.

3.2.1 Example: the case l = 1 - spherical basis

First we discuss an example of integral angular momentum. We shall use the spherical basis {|l,ml〉},
well known from the eigenstates of orbital angular momentum. In the matrix representation the
states are represented by column vectors of odd dimension d = 2l+ 1. The example is given for the
case l = 1 where the basis vectors correspond to ml ∈ {−1, 0, 1} and are given by

|1, 1〉 =

 1

0

0

 , |1, 0〉 =

 0

1

0

 , |1,−1〉 =

 0

0

1

 . (3.31)

The angular momentum operators La, with a ∈ {±, z}, are represented by 3×3 matrices of elements
〈l′,m′l|La|l,ml〉, which can be determined with the aid of Eqs. (3.22b) and (3.24). Using Eq. (3.22b)
we find for the Lz operator

Lz = ~

 1 0 0

0 0 0

0 0 −1

 . (3.32)

1Beware of the subtle difference between J±1 and J±
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As the Lz operator is diagonal in this representation, the spherical representation is called the
diagonal representation. Using the same approach we find with Eqs. (3.24) for the shift operators

L+ =
√

2 ~

 0 1 0

0 0 1

0 0 0

 , L− =
√

2 ~

 0 0 0

1 0 0

0 1 0

 . (3.33)

The expressions for Lx and Ly follow from the definitions of the shift operators,

Lx =
~√
2

 0 1 0

1 0 1

0 1 0

 , Ly =
~√
2

 0 −i 0

i 0 −i
0 i 0

 . (3.34)

It is readily verified that these 3× 3 matrices indeed satisfy the commutation relations (3.1), (1.36)
and (1.38). Note that the operators Lu are traceless, trLu = 0, with u ∈ {x, y, z}, where the trace
of the matrix is defined by Eq. (M.5). Furthermore, it is straightforward to show with Eq. (1.39)
that L2 = 2~21, where 1 is the unit matrix. Hence, also Eq. (1.57a) is satisfied; note that L2 and
Lz are both diagonal.

3.2.2 Example: the case l = 1 - cartesian basis

Of course we are free to choose any set of three orthogonal unit vectors to span the l = 1 angular
momentum Hilbert space. For the case l = 1 the cartesian basis deserves our attention,1

|x〉 =

 1

0

0

 , |y〉 =

 0

1

0

 , |z〉 =

 0

0

1

 .

This basis is obtained from spherical basis by the same unitary transformation as the one that
separates the spherical harmonic Y m1 (r̂) into its real and imaginary part - see also Eq. (L.55)

|x〉 ≡ − 1√
2

(|1, 1〉 − |1,−1〉), |y〉 ≡ i√
2

(|1, 1〉+ |1,−1〉), |z〉 ≡ |1, 0〉. (3.35)

Note that these vectors are normalized and orthogonal. The angular momentum operators La, with
a ∈ {±, z}, are represented by 3×3 matrices of elements 〈u′|La|u〉, with u, u′ ∈ {|x〉, |y〉, |z〉}. Using
Eq. (3.22b) we find for the Lz operator:

Lz|x〉 = i|y〉, Lz|y〉 = −i|x〉, Lz|z〉 = 0. (3.36)

Having these relations it is straightforward to determine Lz operator in the cartesian representation

Lz = ~

 0 −i 0

i 0 0

0 0 0

 . (3.37)

Note that the representation is no longer diagonal. Likewise, using Eqs. (3.24) we find the following
properties for the shift operators

L+|x〉 = +|z〉, L+|y〉 = i|z〉, L+|z〉 =
√

2|1, 1〉 = −|x〉 − i|y〉 (3.38a)

L−|x〉 = −|z〉, L−|y〉 = i|z〉, L−|z〉 =
√

2|1, 1〉 = +|x〉 − i|y〉. (3.38b)

1Beware that these three unit vectors represent a basis of Hilbert space and have nothing to do with the cartesian
basis of the real space (e.g. the laboratory-fixed frame) in which the angular momentum is observed.
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From these relations we find for the shift operators in the cartesian representation

L+ = ~

 0 0 −1

0 0 −i
1 i 0

 , L− = ~

 0 0 1

0 0 −i
−1 i 0

 . (3.39)

Using the definitions of the shift operators we obtain the matrix representations of Lx and Ly,

Lx = ~

 0 0 0

0 0 −i
0 i 0

 , Ly = ~

 0 0 i

0 0 0

−i 0 0

 . (3.40)

It is readily verified that these 3× 3 matrices indeed satisfy the commutation relations (3.1), (1.36)
and (1.38). Furthermore, using Eq. (1.32) it is straightforward to demonstrate the operator identity
L2 = 2~21. Hence, also Eq. (1.57a) is satisfied. Note that the matrices Lu are again traceless,
trLu = 0, with u ∈ {x, y, z}, as they should be because the trace of a matrix is invariant under
unitary transformation.

3.2.3 Example: the case s = 1/2 - Pauli spin matrices

For the case of half-integral angular momentum we shall use (in this example) the notation |s,ms〉. In
the matrix representation the states are represented by column vectors of even dimension d = 2s+1.
In particular, for the case s = 1

2 the basis vectors correspond to ms ∈ {− 1
2 ,

1
2}. We shall meet this

case when discussing the intrinsic angular momentum of the electron, the electron spin S. It is good
to emphasize already at this point that the case s = 1

2 is of more general importance because it can
be used to describe any quantum mechanical two-level system. The basis vectors are 1

|+〉 = |�〉 ≡ |12 ,
1
2 〉 =

(
1

0

)
, |−〉 = |�〉 ≡ | 12 ,−

1
2 〉 =

(
0

1

)
. (3.41)

The operators S+, S− and Sz are given by 2 × 2 matrices, which are easy to determine using
Eqs. (3.22b) and (3.24) in accordance with the phase convention (3.20)

Sz = ~
(

1/2 0

0 −1/2

)
, S+ = ~

(
0 1

0 0

)
, S− = ~

(
0 0

1 0

)
. (3.42)

Defining
S = 1

2~σ, (3.43)

the corresponding matrices for the cartesian components of σ are given by

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (3.44)

These matrices are called the Pauli spin matrices. They are traceless, trσu = 0, idempotent, σ2
u = 1,

have negative determinant, detσu = −1, and satisfy the relation

σuσv = 1 δuv + iεuvwσw, with u, v, w ∈ {x, y, z)}. (3.45)

This combination is unique for s = 1
2 . We can also decompose the Pauli matrix σ along a quanti-

zation axis in the arbitrary direction r̂ = (θ, φ) = (x, y, z),

σr ≡ r̂ · σ = xσx + yσy + zσz, (3.46)

1In quantum information science one uses the notation |0〉 ≡ |�〉 and |1〉 ≡ |�〉 for the basis vectors that define
the possible superposition states of the qubit.
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where x = sin θ cosφ, y = sin θ sinφ and z = cos θ are the cartesian components of the unit vector
r̂, cf. Eq. (1.13a). The operator σr is said to measure the angular momentum of the s = 1

2 system in
the direction r̂. Note that with the substitution r̂→ ẑ we have x = y = 0 and z = 1, regaining σz
as we should. In terms of the spherical components σ+, σ− and σz the component σr can be written
in the form

σr = 1
2 (x− iy)σ+ + 1

2 (x+ iy)σ− + zσz. (3.47)

In matrix notation σr becomes

σr =

(
z x− iy

x+ iy −z

)
=

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)
, (3.48)

as follows immediately by substitution of the Pauli matrices into Eq. (3.46). Note that

σ2
r = 1. (3.49)

This does not come as a surprise because by choosing the quantization axis along the direction r̂ we
have σr → σz and Eq. (3.45). A valuable operator identity is (see Problem 3.1)

(σ ·A)(σ ·B) = A ·B + i σ· (A×B) , (3.50)

where A and B are vector operators that commute with σ.

Problem 3.1. Prove the relation (3.50)

Solution. Since A and B commute with σ we have in Einstein notation

(σ ·A)(σ ·B) = σuσvAuBv.

Using the property (3.45) this becomes

(σ ·A)(σ ·B) = 1δuvAuBv + iσwεuvwAuBv = 1AuBu + iσw (A×B)w ,

which can be rewritten in the desired form. 2

3.3 Vector model and polarization

In this section we elaborate on the measurement of angular momentum. We already established
that the angular momentum of a physical system is a vector quantity, which, in a cartesian frame
of reference, can be written in the form

J = x̂Jx + ŷJy + ẑJz. (3.51)

In classical physics the state of angular momentum can be determined to arbitrary precision by
measuring the magnitude, direction and sense of the vector J. For closed mechanical systems this
quantity is conserved in time (cf. Appendix D.5.4). In quantum mechanics, the best we can do is
prepare the system in an eigenstate, |j,m〉, where j defines the magnitude and m the projection
(including sense) of the angular momentum with respect to the quantization axis. The direction
remains undetermined in this process. Formally, it makes no sense to ask for the direction because
the components of J do not commute. This makes Jx, Jy and Jz into incompatible operators,
which means that (by lack of a common basis) the components of the vector operator J cannot be
determined simultaneously to arbitrary precision (cf. Appendix F.1.1).

A way to visualize the difference between angular momentum in classical physics and in quantum
mechanics is the semi-classical vector model illustrated in Fig. 3.1a. In this model, the angular
momentum is represented by a semi-classical vector of quantized magnitude,

√
〈J2〉 =

√
j(j + 1)~,

and quantized projection on the z axis, 〈Jz〉 = m~. Importantly, the same projection is obtained for
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Figure 3.1: (a) Vector model for a system with angular momentum J for the case j = 2; (b) Preparing the
system in the state |2, 2〉 the direction of the vector J is restricted to a cone of possible values, all sharing
the same quantized projection onto the z axis. The quantum numbers j and m are conserved - the direction
on the cone is uncertain. (c) The polarization of the state |2, 2〉 is given by P = 〈J/j~〉 = ẑ.

all vectors on the cone of possibilities shown in Fig. 3.1b. This indicates that, whereas any vector on
the cone corresponds to a classically distinguishable state, quantum mechanically the direction on
the cone is undetermined (all directions are equally probable). One may argue that it makes little
sense to draw a vector for a direction that cannot be determined. However, as we shall see later, the
operator J transforms under rotation exactly like the classical angular momentum vector. Although
the direction itself has no observable meaning, changes in the direction (e.g., caused by precession of
J about the quantization axis) can be (and have been) observed experimentally (cf. Section 3.9.2).
Moreover, we shall find that also the addition of angular momentum operators proceeds as in the
case of classical vectors (under the constraint of quantization - see Section 3.4.2). All this being
said, vector diagrams offer a valuable geometric tool for visualizing the addition and rotation of
angular momenta under the constraint of quantization.

In a typical (state-selective) measurement, the state in which a system is prepared is destroyed by
projection on the state of observation. So, to gain more information about the state of a system, the
best we can do with a state-selective detector (a detector that discriminates between the eigenstates)
is repeat the measurement with identically prepared systems until the desired precision is reached. In
this way we can determine the expectation values 〈Jx〉, 〈Jy〉 and 〈Jz〉, which define the components
of the polarization vector of the angular momentum state prepared,

P = 〈J/j~〉 ≡ (〈Jx/j~〉, 〈Jy/j~〉, 〈Jz/j~〉) . (3.52)

If the operators Jx, Jy and Jz commute with the Hamiltonian of the system the polarization is
conserved in time (cf. Appendix F.2).

Let us have a look at a few examples. For particles prepared in the state |2, 2〉 with respect to the
quantization axis ẑ, we calculate P = (0, 0, 1) = ẑ and the particles are said to be fully polarized in
the z direction (see Fig. 3.1c). When prepared in the state |2, 1〉 we find P = (0, 0, 1

2 ) = 1
2 ẑ; i.e., the

particles are partially polarized in the z direction. For the state |2, 0〉 we calculate P = (0, 0, 0) = 0.
In this case the particles are called unpolarized.

Problem 3.2. Calculate for the angular momentum state |j,m〉 the following quantities:

〈J2
x〉, 〈J2

y 〉, 〈J2
z 〉, 〈Jx〉, 〈Jy〉 and 〈Jz〉.

Discuss the relation 〈J2
x〉+ 〈J2

z 〉 = 〈J2〉 in the context of the semi-classical vector model.

3.3.1 Ensemble average and density matrix

Next we have a closer look at the measurement of the polarization vector. Typically one creates a
beam of particles, for the above example all prepared in the state |ψ〉 = |2, 2〉. Ideally, the particles
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are prepared one by one and observed sequentially using a detector that discriminates between the
eigenstates {|j,m〉} with respect to the quantization axis ẑ. To determine 〈Jz/j~〉 we measure the
probability density to observe the particle in the eigenstate |j,m〉,

Pm = |〈j,m|ψ〉|2, (3.53)

subject to the Parseval relation ∑
m

Pm = 1. (3.54)

This type of measurement is called a state-selective measurement (or filtration). Repeating the
measurement many times we find the polarization from the ensemble average, which is the statistical
average over a lot of quantum measurements,

P = 〈〈J/j~〉〉 ≡ (〈〈Jx/j~〉〉, 〈〈Jy/j~〉〉, 〈〈Jz/j~〉〉) . (3.55)

If all particles are prepared in the same state (as in the above example) we speak of a pure ensemble.
Pure ensembles satisfy the property 〈〈J/j~〉〉 = 〈J/j~〉. The magnitude of the polarization vector is
called the degree of polarization,

p =
√
〈〈Jx/j~〉〉2 + 〈〈Jy/j~〉〉2 + 〈〈Jz/j~〉〉2. (3.56)

This degree can vary between zero and unity, 0 ≤ p ≤ 1. For a pure ensemble prepared in the
state |ψ〉 = |2, q〉 the detector will only measure particles in the channel |2, q〉; i.e., Pm = δm,q,
which implies 〈〈Jz/j~〉〉 = q/2 and 〈〈Jx/j~〉〉 = 〈〈Jy/j~〉〉 = 0, and confirms the values obtained in
the examples given above. The degree of polarization is p = q/2.

More generally one can create beams with a mixture of particles in various angular momentum
states. In this case we speak of a mixed ensemble. The mixture may contain a bias towards certain
states or be completely random. The state may vary from particle to particle but (for a given
mixture) the statistical average remains well defined. For random ensembles all states are equally
probable, which implies 〈〈Jx/j~〉〉 = 〈〈Jy/j~〉〉 = 〈〈Jz/j~〉〉 = 0, whatever the quantization axis. In
this case the degree of polarization is zero, p = 0, and the beam is called unpolarized.

Density matrix and statistical operator

The density matrix formalism provides an alternative method for calculating the polarization of
angular momentum systems (cf. Appendix F.3). For a pure ensemble of particles prepared in the
state |ψ〉 the probability density for observing a particle in the eigenstate |j,m〉 is given by

Pm = |〈j,m|ψ〉|2 = 〈ρm〉, (3.57)

where ρm = |j,m〉〈j,m| is the density operator subject to the closure relation 1 =
∑
m ρm and

Parseval relation (cf. Appendix F.3),
tr ρ = 1. (3.58)

For the eigenstate |ψ〉 = |j, j〉 the expectation value 〈Jz〉 is given by

〈Jz〉 = tr ρJz =
∑
m

〈ψ|j,m〉〈jm|Jz|ψ〉 = j~.

When dealing with a mixed ensemble of angular momentum eigenstates, the density operator is
replaced by the statistical operator of the ensemble {|j,m〉}

% =
∑
m

wmρm, (3.59)
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where wm is the statistical weight of the state |j,m〉 from the ensemble. Without active preparation
of a specific state the ensemble is random and wm has the same value for all m in the interval
−j < m < j. For ensemble averages the Parseval relation relation is replaced by the trace over the
statistical operator,

tr % = 1. (3.60)

For a random ensemble of angular momentum states the degree of polarization is zero, p = 0 (see
Problem 3.3).

Problem 3.3. Show that for a random ensemble of angular momentum states the degree of polarization is
zero, p = 0.

Solution. Consider a random ensemble of angular momentum states. Since the ensemble is random, the
probability to observe the system in the state |j,m〉 is the same for any quantization axis and for all values
of m, wm = 1/(2j+ 1). Then, the degree of polarization is zero because the ensemble average of Jz vanishes
for any quantization axis,

〈〈Jz〉〉 = tr %Jz = wm
∑
m,q

〈j, q|j,m〉〈jm|Jz|j, q〉 = wm
∑
m

m = 0. �

3.3.2 The case s = 1/2 as a two-level system - relation with the Bloch sphere

It is appropriate to pay special attention to polarization in s = 1
2 systems, the most prominent

among the angular momentum systems. The s = 1
2 system is a two-level systems, the simplest

type of discrete quantum system. Many properties of these systems are derived in Appendix G.
An arbitrary state |χ〉 of a two-level system is determined by four parameters, three of which
correspond to observable quantities. Denoting these by θ, φ and normalization N = 1 the state |χ〉
can be written in the form - see Appendix G.2.2

|χ〉 = cos(θ/2) |�〉+ eiφ sin(θ/2) |�〉 , (3.61)

where the probablity amplitudes to observe the system in the eigenstates |�〉 and |�〉 are given by

a1 = 〈�|χ〉 = cos(θ/2) and a2 = 〈�|χ〉 = eiφ sin(θ/2). (3.62)

Here φ represents the relative phase of the two eigenstates. Furthermore, the amplitude of the spin-
up state is chosen to be real in the convention of Appendix G.2.2. The angles θ and φ correspond to
the polar and azimuthal angles of the polarization vector P, as follows by calculating the cartesian
components of its components, Pi = 〈2Si/~〉 = 〈σi〉 with i ∈ {x, y, z},

Px = 〈σx〉 = 1
2 〈χ|σ− + σ+|χ〉 = a1a

∗
2 + a∗1a2 = sin θ cosφ (3.63a)

Py = 〈σy〉 = i 1
2 〈χ|σ− − σ+|χ〉 = i(a1a

∗
2 − a∗1a2) = sin θ sinφ (3.63b)

Pz = 〈σz〉 = 〈χ|σz|χ〉 = a1a
∗
1 − a2a

∗
2 = cos θ. (3.63c)

The polarization vector P is a real three-dimensional vector pointing to a point on the surface of
the Bloch sphere - see Fig. G.1. In this context and P is called the Bloch vector of the s = 1

2 system.
Each point on the surface of the sphere corresponds to one of the spin states described by Eq. (3.61).

3.3.3 Two level system (s = 1/2) in the density matrix formalism

Let us start with the pure state |χ〉 defined by Eq. (3.61). This state can be used to represent an
arbitrary state of a two-level system. The density operator for |χ〉 is given by the 2× 2 matrix

ρ = |χ〉〈χ| = 1

2

(
1 + cos θ sin θ e−iφ

sin θ eiφ 1− cos θ

)
. (3.64)
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Note that 〈χ|ρ|χ〉 = 1. This reflects the normalization of the state. It is evident that this matrix
can be separated into a unit matrix and a traceless part,

ρ = |χ〉〈χ| = 1

2

[(
1 0

0 1

)
+

(
+ cos θ sin θ e−iφ

sin θ eiφ − cos θ

)]
. (3.65)

Recalling Eq. (3.48) we find that the density operator can be written in the compact form

ρ = 1
2 (1 + r̂ · σ) . (3.66)

Using the vector relation (3.50) we find
ρ2 = ρ. (3.67)

This idempotence of the density operator is a property of pure states (see Appendix F.3). The
components of the polarization vector are given by the trace

〈Pi〉 = tr (ρσi) = 〈�| ρσi |�〉+ 〈�| ρσi |�〉 , (3.68)

where i ∈ {x, y, z}. Substituting the density and Pauli matrices we regain Eq. (3.63) for the polar-
ization vector of |χ〉. Eq. (3.66) is the general form for the density matrix of a two-level system.

To illustrate the use of the expression (3.66) we recalculate P+ for the arbitrary spin state
(3.61). For this we need the density matrix ρ+ of the state |+〉, for which the polarization is given
by P = (0, 0, 1) = ẑ, which means that

ρ+ = 1
2 (1 + σz) . (3.69)

Using this operator we calculate with the aid of Eqs. (G.6) and (3.63c)

P+ = 〈χ|ρ+ |χ〉 = 1
2 (1 + 〈σz〉) = 1

2

(
1 + |a1|2 − |a2|2

)
= |a1|2. (3.70)

Indeed this result coincides with that of Eq. (3.74), as it should.
Specializing Eq. (3.61) to the following special directions on the Bloch sphere, x, y,−x,−y ↔

(θ = π/2, φ = 0, π/2, π, 3π/2) we obtain (see Fig. G.1)

|�〉x =
√

1
2 (|�〉+ |�〉) and |�〉−x =

√
1
2 (|�〉 − |�〉)

|�〉y =
√

1
2 (|�〉+ i |�〉) and |�〉−y =

√
1
2 (|�〉 − i |�〉).

(3.71)

For the negative z direction the result depends on the angle φ chosen for the plane of rotation.
Rotating about the positive y axis we have −z ↔ (θ = π, φ = 0) and obtain

|�〉−z ≡ |�〉 . (3.72)

The density matrices ρx� and ρy� follow directly from Eqs. (3.71) and are given by

ρx� =
1

2

(
1 1

1 1

)
and ρy� =

1

2

(
1 −i
i 1

)
. (3.73)

Note that these density matrices are idempotent and have unit trace as required for pure states.
The probability P+ can be expressed as the expectation values of the density operators ρ+ =

|�〉 〈�|,
P+ = |a1|2 = 〈χ|ρ+|χ〉 = 〈ρ+〉, (3.74)

and a similar relation holds for P−.



3.4. Addition of two angular momenta 49

Problem 3.4. Consider the state |χ〉 of a s = 1
2

angular momentum system with polarization vector P.
Show that |χ〉 is an eigenstate of the operator σr,

σr|χ〉 = |χ〉,

where σr = P · σ is the operator measuring the angular momentum in the direction r̂ = P.

Solution. Rewriting Eq. (3.66) we have

P · σ = 2ρχ − 1⇒ σr = 2|χ〉〈χ| − 1.

Hence, σr|χ〉 = (2|χ〉〈χ| − 1) |χ〉 = |χ〉. 2

3.4 Addition of two angular momenta

In many cases of practical importance, quantum mechanical systems are characterized by more
than one type of angular momentum; for instance the orbital and spin angular momenta of a single
electron, or the angular momenta of two electrons in a many-electron atom. To analyze such cases
we consider a closed mechanical system of two independent angular momenta, j1 and j2, as well as
the total angular moment of the system,

J = j1 + j2. (3.75)

As j1 and j2 act in independent sectors of Hilbert space, they satisfy the commutation relations

[j1, j2] = 0. (3.76)

The eigenstates of the angular momentum ji are specified as |jimi〉 in the standard representation
{j2
i , ji z},with i ∈ {1, 2}.

3.4.1 The uncoupled basis of j1 and j2

In view of the commutation of the operators j1 and j2 commute, also the operators j2
1, j1 z and j2

2,
j2 z have to commute and this implies the existence of a joint basis (see Problem F.1) of eigenstates
which can be written in the form of an ordered product, the tensor product

|j1m1; j2m2〉 ≡ |j1m1〉1 ⊗ |j2m2〉2, (3.77)

where the eigenstates of j1 are denoted by |j1m1〉1 and those of j2 by |j2m2〉2. This convention is
illustrated by the following examples:

j2
i |j1m1; j2m2〉 = ji(ji + 1)~2|j1m1; j2m2〉 (3.78a)

jiz |j1m1; j2m2〉 = mi~|j1m1; j2m2〉, (3.78b)

with i ∈ {1, 2}. The basis {|j1m1; j2m2〉} is called the uncoupled basis of the Hilbert space of the
pair. For given values of j1 and j2 this basis spans a (2j1 + 1)(2j2 + 1)-dimensional space, which
represents the Hilbert space of the tensor j1⊗ j2. In general, the states do not commute under the
tensor product,

|j1m1〉1 ⊗ |j2m2〉2 6= |j2m2〉2 ⊗ |j1m1〉1, (3.79)

which means that we have to specify the order of the product, which is called coupling order of j1

and j2. Importantly, for the special case m1 = j1 and m2 = j2 the tensor product is independent
of the coupling order,

|j1j1〉1 ⊗ |j2j2〉2 = |j2j2〉2 ⊗ |j1j1〉1. (3.80)

This is a property of so-called stretched states, which will be introduced in Section 3.4.2. For the
special case j1 = 1

2 and j2 = 1 their independence of the coupling order is demonstrated in the
example below. Note that, for given states |j1m1〉1 and |j2m2〉2, Eqs. (3.78) are independent of the
coupling order.
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Example 3.1. The product space in matrix notation

Consider two angular momenta, j1 and j2, acting in vector spaces of dimension d1 = 2 and d2 = 3,
respectively (i.e., j1 = 1

2 and j2 = 1). The corresponding eigenstates are given by

| 12 ,+
1
2 〉 =

(
1

0

)
, | 12 ,−

1
2 〉 =

(
0

1

)
(3.81a)

and

|1,+1〉 =

 1

0

0

 , |1, 0〉 =

 0

1

0

 , |1,−1〉 =

 0

0

−1

 . (3.81b)

In the uncoupled representation the eigenstate | 12 ,+
1
2 ; 1, 0〉 is given by the tensor product | 12 ,+

1
2 〉⊗

|1, 0〉. Note that | 12 ,+
1
2 〉 and |1, 0〉 do not commute under the tensor product,

| 12 ,+
1
2 〉 ⊗ |1, 0〉 =

(
1

0

)
⊗

 0

1

0

 6=
 0

1

0

⊗ ( 1

0

)
= |1, 0〉 ⊗ | 12 ,+

1
2 〉. (3.81c)

For the doublet state | 12 ,+
1
2 〉 the tensor product | 12 ,+

1
2 〉⊗ |1, 0〉 opens a three-dimensional subspace

for the triplet state |1, 0〉. Likely, for the triplet state |1, 0〉, the tensor product |1, 0〉⊗ | 12 ,+
1
2 〉 opens

a two-dimensional subspace for the doublet state | 12 ,+
1
2 〉. In both ways we obtain a 6-dimensional

Hilbert space (for the tensors j1 ⊗ j2 and j2 ⊗ j1, respectively). Note that the states | 12 ,+
1
2 〉 and

|1, 1〉 are special because for m1 = j1 and m2 = j2 the tensor product is independent of the coupling
order, a property of stretched states (see next section

| 12 ,+
1
2 〉 ⊗ |1, 1〉 =

(
1

0

)
⊗

 1

0

0

 =

 1

0

0

⊗ ( 1

0

)
= |1, 1〉 ⊗ | 12 ,+

1
2 〉. (3.82)

3.4.2 The coupled basis of j1 and j2

Realizing that j1 and j2 individually satisfy commutation relations of the type (3.1) and commute
with each other it is straightforward to show that also the total angular momentum, given by the
vector sum

J = j1 + j2, (3.83)

satisfies the commutation relations (3.1). This immediately implies that J satisfies all properties of
quantized angular momentum as summarized in Section 3.1. In particular we have

J2|JM〉 = J(J + 1)~2|JM〉 (3.84a)

Jz|JM〉 = M~ |JM〉, (3.84b)

with M restricted to the interval
− J ≤M ≤ J. (3.85)

At this point we have established that the vector addition is subject to the constraint that also
the resultant vector be quantized. Since j2

1 and j2
2 commute with both Jz and J2 (see Problem 4.6)

we infer that the quantum numbers j1, j2, J and M are compatible (see Section F.1.1); i.e., they
define the basis {|(j1j2)JM〉}, the so-called coupled basis of the standard representation {J2, Jz}.
With the notation (j1j2) we specify the values as well as the coupling order of the two angular
momenta (see Section 3.5.1). Often one writes {|j1j2JM〉} or, simply {|JM〉} if coupling order and
values of j1 and j2 are irrelevant or known from the context. For given values of j1, j2 and J, the
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Figure 3.2: Vector addition of quantized angular momenta. The quantization conditions limit the number
of possible resulting vectors. This is illustrated for the example of the angular momenta j1 = 2 and j2 = 1
(compare with Fig. 3.2). The state with m1 = j1 and m2 = j2 (i.e., M = j1 + j2 = 3) is called the state of
parallel coupling or the stretched state as it represents the largest total angular momentum projection that
can be constructed by quantized vector addition.

operator J acts in a (2J + 1)-dimensional subspace of the product space of the tensor j1 ⊗ j2, with
the quantum number J restricted to the interval (see Problem 3.5),

|j1 − j2| ≤ J ≤ j1 + j2. (3.86)

Denoting the lesser of j1 and j2 by j< ≡ min{j1, j2}, the quantum number J can take 2j< + 1
values (see Problem 3.6). This is illustrated geometrically in Fig. 3.2. Geometry helps to swiftly
analyze the coupling options. More subtle properties (like phase relations) require the algebra of
commutation relations - see Section 3.4.3.

Since angular momentum states of different J are orthogonal, the dimension of the 2j< + 1
allowed values of J add up to (2j1 + 1)(2j2 + 1) as is demonstrated in Problem 3.6. Formally, the
product space of j1 ⊗ j2, represented by the uncoupled basis, {|j1m1; j2m2〉}, is called reducible
because it can be decomposed into the direct sum of 2j< + 1 irreducible subspaces, one for each
allowed value of J and represented in the coupled basis {|(j1j2)JM〉}. As we shall find in Section 3.8
the irreducible subspaces of the coupled representation are invariant under rotations about a point.
Importantly, the coupled basis and the uncoupled basis are defined irrespective of the presence (or
absence) of a coupling mechanism.

Example 3.2. Angular momentum addition in matrix notation

Let us return to the example of two angular momenta, j1 and j2, acting in vector spaces of dimension
d1 = 2 and d2 = 3, respectively (j1 = 1

2 and j2 = 1) - see Example 3.1. Before we can add
the operators j1 and j2 in the matrix representation they have to be written as operators in the
d1 × d2 = 6-dimensional Hilbert space of the tensor product j1 ⊗ j2,

J = j1 ⊗ 1j2 + 1j1 ⊗ j2 = j
1

+ j
2
,

where 1j1 and 1j2 are the identity matrices of the two and three dimensional subspaces in which j1

and j2 act, respectively. In this notation the operator Jz takes the form

Jz = j
1z

+ j
2z

= ~
(

1
2 0

0 − 1
2

)
⊗

 1 0 0

0 1 0

0 0 1

+

(
1 0

0 1

)
⊗ ~

 1 0 0

0 0 0

0 0 −1

 = ~



3
2 0 0 0 0 0

0 1
2 0 0 0 0

0 0 − 1
2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 − 1
2 0

0 0 0 0 0 − 3
2


.
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Triangle inequality - stretching of angular momenta and pure states

The principle of quantized vector addition is illustrated in Fig. 3.2. The quantum numbers of the
vector J satisfy the triangle inequality. The largest possible value of J ,

Jmax = j1 + j2, (3.87)

is the result of so-called parallel coupling of the angular momenta, pictorially referred to as the state
of stretched angular momentum. Likewise, the smallest possible value,

Jmin = |j1 − j2|, (3.88)

corresponds to the state of antiparallel coupling. Hence, the allowed total angular momenta differ
in the level of stretching. Antiparallel coupling corresponds to minimal stretching and becomes zero
stretching for j1 = j2. Parallel coupling corresponds to maximal stretching. Complete stretching is
ruled out by the quantization condition, it is only possible in the classical limit. If either j1 or j2
(not both) is half-integral, J also has to be half-integral and, therefore, nonzero. In all other cases
J can also take the value zero. Note that, j1 + j2 + J is always integral.

Importantly, the eigenstates of the uncoupled basis {|j1,m1; j2,m2〉} are also eigenstates of Jz.
This implies the selection rule

M = m1 +m2. (3.89)

The maximum and minimum values of M , M = ±(j1 + j2), correspond to pure states (unique
eigenstates of the uncoupled representation with unit relative phase imposed by convention). In
particular this holds for the so-called stretched state, which is the state of largest total angular
momentum and projection along the quantization axis,

|j1 + j2, j1 + j2〉 = |j1, j1; j2, j2〉. (3.90)

Problem 3.5. Let j1 and j2 be two commuting angular momentum operators and J = j1+j2 the resulting
total angular momentum. Show that the 2j< + 1 allowed values of J satisfy the inequality

|j1 − j2| ≤ J ≤ j1 + j2.

Solution. The maximum occurring value of M is j1 + j2; i.e., M ≤ J = j1 + j2. Next we search for
the minimum value of J . Without loss of generality we presume that j1 ≥ j2. Considering first the case
of integral M , we know that for any allowed value of J the minimal value of |M | must be zero. Hence,
the degeneracy of the value M = m1 + m2 = 0 gives us 2j2 possible vector additions consistent with the
quantization rules. Hence the value M = 0 can only be realized for J ≥ (j1 + j2)− 2j2 = j1 − j2. The same
result is obtained in a similar way for half-integral M . Together, the upper and lower limits provide the
inequality. Subtracting the highest and lowest value of J the number of allowed J values is found to be

N(J) = (j1 + j2)− (j1 − j2) + 1 = 2j2 + 1 = 2j< + 1. �

Problem 3.6. Show that the coupled basis and uncoupled basis have the same dimension.

Solution. First we recall that the uncoupled basis {|j1m1; j2m2〉} spans a product space of dimension
d = (2j1 + 1)(2j2 + 1). For a given value of J the coupled basis {|(j1j2)J,M〉} spans a (2J + 1)-dimensional
subspace of this product space. Without loss of generality we presume that j1 ≥ j2. Summing over the
2j2 + 1 subspaces of this type we regain

d =

2j2∑
n=0

[2(j1 + j2 − n) + 1] = (2j2 + 1)× [2(j1 + j2) + 1]−
2j2∑
n=0

n = (2j2 + 1)(2j1 + 1). 2
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3.4.3 Commutation relations for j1 and j2

The question arises how to calculate the properties of j1 and j2 with respect to the coupled basis,
{|(j1j2)JM〉}. This is not straightforward since j1 and j2 are defined with respect to the uncoupled
basis, {|j1m1; j2m2〉}. Important insights can be obtained by deriving selection rules for the matrix
elements of jaz, ja± in the coupled basis, with a ∈ {1, 2}.

Starting from the commutation relations (3.1) we find for the commutation relations between
Jx, Jy, Jz and jax, jay, jaz

[Jx, jax] = 0 [Jy, jay] = 0 [Jz, jaz] = 0

[Jx, jay] = i~jaz [Jy, jaz] = i~jax [Jz, jax] = i~jay
[Jx, jaz] = −i~jay [Jy, jax] = −i~jaz [Jz, jay] = −i~jax,

(3.91)

with a ∈ {1, 2}. Likewise, starting from the commutation relations (3.25) we find for the commuta-
tion relations between J±, Jz and ja±, jaz, with a ∈ {1, 2},

[J±, ja±] = 0, [J±, ja∓] = ±2~jaz, [Jz, ja±] = ±~ja±. (3.92)

3.4.4 Selection rules for j1 and j2 in the coupled basis

From the commutation relations (3.91) and (3.92) we can derive the following selection rules for the
matrix elements of jaz, ja±, with a ∈ {1, 2}, in the coupled basis {|J,M〉}:

S1: The matrix elements of jaz are diagonal in M .

S2: The operators ja± raise/lower M by one.

S3: The matrix elements of jaz, and ja± are zero for |J ′ − J | > 1.

Problem 3.7. Derive selection rule S1,

〈J ′M ′|jaz|JM〉 = 0 unless M ′ = M.

Solution. Using the hermiticity of Jz the selection rule S1 follows from the commutation of Jz and jaz,

0 = 〈J ′M ′|[Jz, jaz]|JM〉 = (M ′ −M)~〈J ′M ′|jaz|JM〉. �

Problem 3.8. Derive selection rule S2,

〈J ′M ′|ja±|JM〉 = 0 unless M ′ = M ± 1.

Solution. This follows from the commutation relation [Jz, ja±] = ±~ja±. Using the hermiticity of Jz we
have

〈J ′M ′|[Jz, ja±]|JM〉 = (M ′ −M)~〈J ′M ′|ja±|JM〉 = ±~〈J ′M ′|ja±|JM〉,

which simplifies to the condition

(M ′ −M ∓ 1)~〈J ′M ′|ja±|JM〉 = 0. �
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Problem 3.9. Derive selection rule S3,

〈J ′M ′|jaz|JM〉 = 0 and 〈J ′M ′|ja±|JM〉 = 0 for |J ′ − J | > 1.

Solution. Let us assume J ′ ≥ J and write J ′ = J + n, where n ≥ 0. Using the commutation relation
[J+, ja−] = 2~jaz we have 〈J ′M ′|[J+, ja−]|J,M−1〉 = 2~〈J ′M ′|jaz|J,M−1〉. Since J+ and J− are hermitian
conjugates this relation can be rewritten in the form

CJ′,−M′〈J ′M ′ − 1|ja−|J,M − 1〉 − CJ,M−1〈J ′,M ′|ja−|J,M〉 = 2〈J ′M ′|jaz|J,M − 1〉, (a)

where the coefficients CJ,M are given by Eq. (3.24b). This relation should hold for all M and M ′ satisfying
the inequalities (b)

−J ≤M ≤ J and − J ′ ≤M ′ ≤ J ′ = J + n. (b)

Since according to selection rule S2 we have 〈J ′M ′|ja+|JM〉 = 0 unless M ′ = M + 1 and the same holds for
〈J ′M ′ − 1|ja+|JM − 1〉 = 0, we derive from the inequalities (b) the condition

M ≤ J + n− 1 ≤ J

to assure that Eq. (a) holds for nonzero matrix elements. As this is the case only for 0 ≤ n ≤ 1, we find
〈J ′M ′|jaz|JM〉 = 0 for n > 1. For J ′ ≤ J and for 〈J ′M ′|ja±|JM〉 = 0 the proof proceeds analogously. 2

3.4.5 Matrix elements of j1 and j2 in the coupled basis - phase convention for coupling

Before we can evaluate the matrix elements of j1z, j1± and j2z, j2± in the coupled basis {|J,M〉},
with |j1 − j2| ≤ J ≤ j1 + j2, we have to introduce a new phase convention. For matrix elements
diagonal in J the conditions are familiar. The operators act within a single, (2J + 1)-dimensional
subspace in which all eigenstates carry the same phase. This is assured by the lowering operator
J− in combination with the Condon and Shortley phase convention - see Eqs. (3.24). For matrix
elements off-diagonal in J the operators act between two of such subspaces and we have to settle
the relative phase by a new convention.

To elaborate on the above we consider the matrix elements of j1z. In view of the selection rule S1
these are of the type 〈J ′M |j1z|JM〉. For J ′ = J it follows from the hermiticity of j1z that the matrix
element is equal to its complex conjugate,

〈JM |j1z|JM〉 = 〈JM |j1z|JM〉∗, (3.93)

which shows that the value of 〈j1z〉 is real, a well know property of hermitian operators. For J ′ 6= J
the operator j1z acts between two subspaces of different J for which the relative phase phase is not
defined. As we shall show below, the matrix elements 〈J ′M |j1z|JM〉 can always be chosen to be
real but, depending on the relative phase of |J,M〉 and |J ′,M〉, the sign can be positive or negative.
Clearly, a new phase convention is required to remove this ambiguity.

For the matrix elements of j1+ the conditions are similar. In view of the selection rule S2 the
matrix elements are of the type 〈J ′,M+1|j1+|J,M〉. Since a given raising operator is the hermitian
conjugate of the corresponding lowering operator we have for J ′ = J

〈J,M + 1|j1+ + j2+|J,M〉 = 〈J,M + 1|j1+ + j2+|J,M〉∗ = CJ,M . (3.94)

This shows that (as a result of the Condon and Shortley phase convention) the sum of the matrix
elements 〈J,M + 1|j1+|J,M〉 and 〈J,M + 1|j2+|J,M〉 is real and positive. This condition can only
be satisfied for arbitrary J and M if the imaginary parts of these matrix elements always cancel,
which is the case if these matrix elements are real individually. For J ′ 6= J we shall find (in complete
analogy with the matrix elements of jz) that a new phase convention is required to uniquely define
the matrix elements of j1+.

So, it will be our task to extend the Condon and Shortley phase convention with a new element
to assure that the phase of the matrix elements of j1z and j1± is well-defined for J ′ 6= J in the
coupled basis. For this purpose we first derive two phase rules:
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(a) For given J and J ′, the matrix elements of j1+ carry a phase which is independent of M .
Recalling the commutation relations (3.92) we consider the equation

〈J ′,M + 2|[J+, j1+]|J,M〉 = 0. (3.95)

Since J+ and J− are hermitian conjugates this equation can be rewritten in the form

CJ′,−M−2〈J ′,M + 1|j1+|J,M〉 = CJ,M 〈J ′,M + 2|j1+|J,M + 1〉, (3.96)

where the CJ,M are shift coefficients - see Eq. (3.24b). Note that for −J ≤ M ≤ J ′ − 2 the
ratio CJ′,−M−2/CJ,M is a positive real number in the Condon and Shortley phase convention.
Hence, for given J and J ′, we find by induction the same phase for all values of M .

(b) For J ′ 6= J the matrix elements of j1z and j2z are equal in magnitude but opposite in sign.

〈J ′,M |j2z|J,M〉 = −〈J ′,M |j1z|J,M〉. (3.97)

Since Jz = j1z + j2z we have

〈J ′,M |j1z|J,M〉+ 〈J ′,M |j2z|J,M〉 = 〈J ′,M |Jz|J,M〉 = MδJ,J ′ , (3.98)

For J ′ 6= J this leads to Eq. (3.97).

At this point we introduce the following phase convention [36, 28]:

For J ′ 6= J the matrix elements of j1z are chosen to be real and non-negative,

〈J ′,M |j1z|J,M〉 ≥ 0. (3.99)

The justification of this convention requires a few steps. Our goal is to show by induction that in
the off-diagonal case (J ′ 6= J) the matrix elements 〈J ± 1,M |j1z|J,M〉 carry the opposite/same
phase as 〈J ± 1,M + 1|j1+|J,M〉. The procedure is based on the commutation relations (3.92) by
considering the following equation:

〈J ′,M + 1|[J+, j1z]|J,M〉 = −~〈J ′,M + 1|j1+|J,M〉. (3.100)

Since J+ and J− are hermitian conjugates this equation can be rewritten in the form

CJ′,−M−1〈J ′,M |j1z|J,M〉+ 〈J ′,M + 1|j1+|J,M〉 = CJ,M 〈J ′,M + 1|j1z|J,M + 1〉. (3.101)

We now consider two cases:

(a) J ′ = J − 1: The ratio CJ′,−M−1/CJ,M is a positive real number in the Condon and Shortley
phase convention (for all physically relevant values of M). It then follows from Eq. (3.101)
that, if the matrix element 〈J ′,M |j1z|J,M〉 carries the same phase as 〈J ′,M + 1|j1+|J,M〉
this is also the case for 〈J ′,M + 1|j1z|J,M + 1〉. Hence, by induction this is the case for any
relevant value of M . So, what remains to be done is show that for one particular value of J, J ′

and M, the matrix elements 〈J ′,M |j1z|J,M〉 and 〈J ′,M + 1|j1+|J,M〉 carry the same phase.
We claim that M = −J ′ − 1 is such a particular value. For this value we have CJ′,−M−1 = 0
and Eq. 3.101) reduces to

CJ,−J′−1〈J ′,−J ′|j1z|J,−J ′〉 = 〈J ′,−J ′|j1+|J,−J ′ − 1〉. (3.102)

Since the coefficient CJ,−J′−1 = CJ,J ′ is positive for J ′ = J − 1 the phase is the same on both
sides, which completes the proof by induction.

At this point we can adopt the phase convention (3.99) and find as an immediate conse-
quence that the matrix elements of j1+ are real and non-negative for J ′ = J − 1 ,

〈J − 1,M + 1|j1+|J,M〉 ≥ 0. (3.103)
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(b) J ′ = J + 1: For all relevant values of M the ratio CJ,M/CJ′,−M−1 is real and positive in the
Condon and Shortley phase convention. From Eq. (3.101) it then follows that if the phase
of 〈J ′,M + 1|j1z|J,M + 1〉 is opposite to that of 〈J ′,M + 1|j1+|J,M〉 this also applies to
〈J ′,M |j1z|J,M〉. We claim that M = J is the particular value for which this applies. Since
CJ,M = 0 for M = J , the equation (3.101) reduces to

〈J ′, J |j1z|J, J〉 = −(1/CJ′,−J−1)〈J ′, J + 1|j1+|J, J〉. (3.104)

Since the coefficient CJ′,−J−1 = CJ′,J is positive for J ′ = J+1 the matrix elements must have
opposite phase.

At this point we can adopt the phase convention (3.99) and find for the case J ′ = J + 1
that the matrix elements of j1+ are real and non-positive,

〈J + 1,M + 1|j1+|J,M〉 ≤ 0. (3.105)

In summary: the matrix elements of j1z, j1± are always real in the coupled basis. By adopting the
convention (3.99) we assure that for J ′ 6= J the matrix elements 〈J ′,M |j1z|J,M〉 are always positive
(if not zero). The sign of the matrix elements 〈J ′,M |j1+|J,M〉 cannot be chosen independently.
Under the convention (3.99) it follows that the sign of 〈J − 1,M + 1|j1+|J,M〉 is positive and that
of 〈J + 1,M + 1|j1+|J,M〉 negative. The convention (3.99) can be regarded as an extension of the
Condon and Shortly phase convention for the off-diagonal case of the coupled basis.

3.4.6 Clebsch-Gordan basis transformation

The coupled basis is related to the uncoupled basis by a basis transformation known as the Clebsch-
Gordan transformation. For a system of two spin- 1

2 particles this is demonstrated in Problem 3.10.
For arbitrary angular momenta this transformation is given by

|j1j2JM〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1; j2m2〉〈j1m1; j2m2|j1j2JM〉, (3.106)

where the use of the closure relation

1 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1; j2m2〉〈j1m1; j2m2| (3.107)

does not go unnoticed. Recall that the pair state is subject to an ordering convention. The coef-
ficients 〈j1m1; j2m2|j1j2JM〉 are called Clebsch-Gordan coefficients (CGCs). As JZ = j1z + j2z is
diagonal in both the coupled and the uncoupled representation we find the selection rule

M = m1 +m2 (3.108)

as a property of the CGCs - the so-called projection rule. The Clebsch-Gordan transformation can
be represented by a square matrix. This matrix is unitary and can be written in block-diagonal form
with one block for each physically relevant value ofM (see Problem 3.10). The inverse transformation
is given by

|j1m1; j2m2〉 =

j1+j2∑
J=|j1−j2|

J∑
M=−J

|j1j2JM〉〈j1j2JM |j1m1; j2m2〉, (3.109)

where we recognize

1 =

j1+j2∑
J=|j1−j2|

J∑
M=−J

|j1j2JM〉〈j1j2JM |. (3.110)
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The CGCs are usually written in the shorthand form

〈j1m1; j2m2|j1j2JM〉 ⇔ 〈j1m1; j2m2|JM〉, (3.111)

where the coupling order is implicitly defined by the properties of the tensor product (we return
ordering issues in Section 3.5.1).

From the inner products of Eqs. (3.106) and (3.109) with their hermitian conjugates we obtain

j1∑
m1=−j1

j2∑
m2=−j2

〈J ′M ′|j1m1; j2m2〉〈j1m1; j2m2 |JM〉 = δJ′J δM ′M δ(j1j2J) (3.112a)

j1+j2∑
J=|j1−j2|

J∑
M=−J

〈j1m′1; j2m
′
2|JM〉〈JM |j1m1; j2m2〉 = δm′1m1

δm′2m2
, (3.112b)

where δ(j1j2J) is a logical function of the property ∆(j1j2J) - see Eq. (J.12); it is true, δ(j1j2J) = 1,
if the triangle inequalities are satisfied, i.e., for ∆(j1j2J) > 0, and false, δ(j1j2J) = 0, if they are
violated, i.e., for ∆(j1j2J) = 0. Taking into account the projection rule (3.108) the Eqs. (3.112)
reduce to a set of 2J + 1 subexpressions, one for each physically relevant value of M,

j1∑
m1=−j1

〈J ′M |j1m1; j2,M −m1〉〈j1m1; j2,M −m1 |JM〉 = δJ′J δ(j1j2J), (3.113a)

j1+j2∑
J=|j1−j2|

〈j1m′1; j2,M −m′1|JM〉〈JM |j1m1; j2,M −m1〉 = δm′1m1
. (3.113b)

Problem 3.10. Find the unitary matrix U transforming the uncoupled basis {|j1m1; j2m2〉} into the
coupled basis {|j1j2JM〉} for a system of two spin- 1

2
particles. Write the matrix in block-diagonal form,

with one block for each physically relevant value of M ∈ {−1, 0, 1}.

Solution. Starting from the Clebsch-Gordan transformation (3.106) and using Table J.2 we find the unitary
matrix (UU† = 1 - see Appendix M.2.1)

|1, 1〉
|1, 0〉
|0, 0〉
|1,−1〉

 = U


|��〉
|��〉
|��〉
|��〉

 where U =


1 0 0 0

0
√

1/2
√

1/2 0

0
√

1/2 −
√

1/2 0

0 0 0 1

 . �

3.4.7 Recursion relations - the phase of Clebsch-Gordan coefficients

The orthonormality relations (3.112) leave us freedom to choose the phase of the CGCs. As it turns
out, this freedom can be used to define the CGCs as real numbers, positive or negative. We start
by showing this for the CGCs associated with stretched states. It follows from Eq. (3.90) that

• for given j1 and j2, the CGC of the stretched state is unity by convention,

〈j1j1; j2j2|Jmax, Jmax〉 = 1, (3.114)

where Jmax ≡ j1 + j2. To analyze the other CGCs we make repeated use of the shift operators. To
explain the procedure we start by deriving two recursion relations:

1. The first recursion relation is based on the operator identity J− = j1− + j2−,

〈j1,m1; j2,m2 − 1|J−|JM〉 = 〈j1,m1; j2,m2 − 1|j1− + j2−|JM〉. (3.115)
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Note that we added commas in the notation where this improved the readability. As rais-
ing and lowering are hermitian conjugate operations we obtain (using the symmetry relation
Cj2,m2−1 = Cj2,−m2

) the following recursion relation for given j1, j2 and J ,

CJ,−M 〈j1,m1; j2,m2 − 1|J,M − 1〉 = Cj1,m1
〈j1,m1 + 1; j2,m2 − 1|JM〉

+ Cj2,−m2
〈j1m1; j2m2|JM〉, (3.116)

subject to the selection rule (3.108), m1 +m2 = M .

2. The second recursion relation is based on the operator identity J+ = j1+ + j2+,

〈j1,m1; j2,m2 + 1|J+|J,M〉 = 〈j1,m1; j2,m2 + 1|j1+ + j2+|J,M〉. (3.117)

As raising and lowering are hermitian conjugate operations we obtain for given j1, j2 and J ,

CJ,M 〈j1m1; j2,m2 + 1 |J,M + 1〉 = Cj1,−m1
〈j1,m1 − 1; j2,m2 + 1|J,M〉

+ Cj2,m2
〈j1m1; j2m2|J,M〉, (3.118)

subject to the selection rule m1 +m2 = M .

To proceed we focus on two special cases:

• Recursion relation (3.116) specialized to the case m1 = j1. Since Cj1,m1
= Cj1,j1 = 0, the

relation reduces to

〈j1j1; j2,m2 − 1|J,M − 1〉 = Cj2,−m2/CJ,−M 〈j1j1; j2m2|JM〉. (3.119)

The ratio Cj2,−m2
/CJ,−M is positive in the Gordon and Shortley phase convention (for all

physically relevant values of m2 and M). Hence, for given j1, j2 and J , the phase of the
coefficients 〈j1j1; j2m2|JM〉 is independent of M .

• Recursion relation (3.118) specialized to the case to M = J . Since CJ,M = CJ,J = 0, the
relation reduces to

〈j1,m1 − 1; j2,m2 + 1|JJ〉 = −Cj2,m2
/Cj1,−m1

〈j1m1; j2m2|JJ〉, (3.120)

The ratio Cj2,m2
/Cj1,−m1

is positive in the Gordon and Shortley phase convention (for all
physically relevant values of m1 and m2). Hence, for given j1, j2 and J , the phase of the
coefficient 〈j1m1; j2m2|JJ〉 is conserved up to a sign, which alternates when changing m1 in
unit steps.

With the above findings we established the following: if one of the coefficients 〈j1m1; j2m2|J,M〉
is real, all CGCs with the same combination of j1, j2 and J are real in the Condon and Shortley
phase convention. Importantly, this condition can always be satisfied because, for given j1, j2 and
J , we have the freedom to choose the CGCs with m1 = j1 and M = J to be real and positive (sign
convention) - see Problem 3.11

〈j1j1; j2m2|J, J〉 ≥ 0, (3.121)

with m2 = J − j1. The above rules can be traced down in the tables of Appendix J.
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Problem 3.11. Show that, for given j1, j2 and J , the Clebsch-Gordan coefficient with m1 = j1 and M = J
can be chosen to be real and non-negative - see Eq. (3.121).

Solution. We start with phase rule 3.103 for the special case M = J ,

〈J + 1, J + 1|j1+|J, J〉 ≤ 0,

which is based on the Condon and Shortley phase convention. We insert the closure relation (3.107) before
and after the operator j+. Applying the selection rules J = m1 + m2 and J + 1 = m′1 + m′2, the four-fold
summation over m1, m2, m′1 and m′2 reduces to a two-fold summation over m1 and m′1, with m′2 = J+1−m′1.
As m2 is conserved by j1+ the summation over m′1 reduces to a single term, defined by m′1 = J + 1−m2 =
m1 + 1. This leaves us with the summation over m1,∑

m1

〈J + 1, J + 1|j1,m1 + 1; j2, J −m1〉〈j1,m1 + 1|j1+|j1m1〉〈j1m1; j2, J −m1|J, J〉 ≤ 0.

Note that each term of the summation has to be negative (or zero) because, in view of 3.119, all 2j1 + 1
terms carry the same phase. In particular, we have for the term with m1 = j1 − 1,

〈J + 1, J + 1|j1, j1; j2,m2〉Cj1,j1−1〈j1, j1 − 1; j2,m2|J, J〉 ≤ 0.

We now have to choose a phase convention such that this inequality is satisfied. This requires that the two
CGCs be real and have opposite sign because 〈j1,m1 +1|j1+|j1m1〉 = Cj1,m1 is real and non-negative in the
Condon and Shortley phase convention. As the two CGCs differ in m1 by one unit of angular momentum,
this is achieved by adopting the convention 3.121. 2

Problem 3.12. Show that the CGCs with M = J satisfy the following relation

〈j1,m1 − 1; j2,m2 + 1|JJ〉 = (−1)j1−m1Cj2,m2/Cj1,−m1〈j1m1; j2m2|JJ〉.

Solution. In view of the property 3.121, we know that (for given j1, j2 and J) 〈j1m1; j2,m2|JJ〉 is positive
for m1 = j1 and |j1 − j2| ≤ J ≤ j1 + j2. Since the sign alternates with m1 we find the desired relation by
writing the sign in Eq. (3.120) in the form of the phase factor (−1)j1−m1 . 2

Problem 3.13. Show that when lowering M by lowering m2 in the CGC of the stretched state we obtain

〈j1j1; j2, j2 − 1|Jmax, Jmax − 1〉 =
√
j2/(j1 + j2)〈j1j1; j2j2|JmaxJmax),

which is real and positive.

Solution. Specializing Eq. (3.119) to the stretched case (m1 = j1, m2 = j2 , M = J = Jmax = j1 + j2) we
have Cj2,−m2 = Cj2,−j2 =

√
2j2 and CJ,−M = CJ,−J =

√
2J , and obtain the desired relation. In view of

Eq. (3.114) the result is real and positive. 2

Problem 3.14. Show that the CGC for antiparallel coupling of equal angular momenta is given by

〈j,m; j,−m|00〉 =
(−1)j−m√

2j + 1
.

Solution. Antiparallel coupling of two equal angular momenta (j1 = j2 = j) corresponds to J = M = 0.
In this case all CGC are of the type 〈j,m; j,−m|00〉, with −j ≤ m ≤ j. These CGCs all have the same
magnitude but differ in sign (see Problem 3.12),

〈j,m− 1; j,−m+ 1|00〉 = (−1)j−m〈j,m; j,−m|00〉.

Secondly, using the sum rule 3.113a we find

j∑
m=−j

|〈jm; j,−m |00〉 |2 = (2j + 1)|〈j, j; j,−j|00〉|2 = 1.

Since 〈j, j; j,−j|00〉 ≥ 0 by convention (3.121), the two relations lead us to the desired result. 2
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3.5 Symmetry properties of Clebsch-Gordan coefficients

3.5.1 Coupling order and exchange symmetry

Let us have a closer look at the coupling order introduced in Section 3.4.1. To reveal its signature
we consider the matrix elements of j1z for a given coupling order

〈(j1j2)J ′M |j1z|(j1j2)JM〉. (3.122)

Let us first focus on the off-diagonal case (J ′ 6= J). Adopting the convention (3.99), the off-
diagonal matrix elements of j1z are real and non-negative,

〈(j1j2)J ′M |j1z|(j1j2)JM〉 ≥ 0. (3.123)

Furthermore, recalling Eq. (3.97) we know that the off-diagonal matrix elements of j1z and j2z are
equal in magnitude but have opposite sign,

〈(j1j2)J ′M |j2z|(j1j2)JM〉 = −〈(j1j2)J ′M |j1z|(j1j2)JM〉. (3.124)

Our task is to apply this convention to a system of two angular momenta, say ja and jb. By
assigning the values ja → j1 and jb → j2 we have for J ′ = J − 1

〈(jajb)(J − 1),M |jaz|(jajb)JM〉 ≥ 0 and 〈(jajb)(J − 1),M |jbz|(jajb)JM〉 ≤ 0. (3.125a)

On the other hand, by assigning jb → j1 and ja → j2 we have

〈(jbja)(J − 1),M |jbz|(jbja)JM〉 ≥ 0 and 〈(jbja)(J − 1),M |jaz|(jbja)JM〉 ≤ 0. (3.125b)

This shows that, by changing the coupling order, we also change the sign of the off-diagonal matrix
elements of jaz (and jbz),

〈(jajb)(J − 1),M |jaz|(jajb)JM〉 = −〈(jbja)(J − 1),M |jaz|(jbja)JM〉. (3.126)

First we consider the coupling order (jajb). What can we say about the phase of |(jajb)JM〉?
First of all, for given J , all angular momentum states carry the same phase since the phase is
independent of M in the Condon and Shortley phase convention - see Eqs. (3.24). Extending this
convention by adopting (3.99) we know that the matrix elements 〈(jajb)(J − 1),M |jaz|(jajb)JM〉
are real and positive for any physically relevant value of M . So, if the phase of |(jajb)J,M〉 is real
and positive for one particular value of J , this is also the case for the state |(jajb)(J−1),M〉 and (by
induction) for all physically relevant values of J . This particular state exists because the stretched
state |(jajb)Jmax, Jmax〉, with Jmax = ja + jb, has unit phase by convention - see Eq. (3.90).

What about the other coupling order? As in the previous case, for given J the states |(jbja)JM〉
carry the same phase (independent of M). However, in view of Eq. (3.124) the matrix elements
〈(jbja)(J − 1),M |jaz|(jbja)JM〉 are real and negative. So, if the phase of |(jbja)JM〉 is real and
positive for one particular value of J it has to be real and negative for |(jbja)(J − 1),M〉 and (by
induction) alternate between positive and negative for all physically relevant values of J . Also in the
present case this particular value exists because, recalling Eq. (3.80), the stretched state has unit
phase, irrespective of the coupling order, |(jajb)Jmax, Jmax〉 = |(jajb)Jmax, Jmax〉. Accordingly, the
phase of the states |(jbja)J,M〉 is real and alternates between positive and negative in such a way
that it is positive for the stretched state. Thus, comparing both coupling orders, we arrive at

|(jbja)J,M〉 = (−1)ja+jb−J |(jajb)J,M〉. (3.127)

About the diagonal case (J ′ = J) we can be short since the phase drops out the matrix element
(3.122). Also the off-diagonal matrix elements with |J ′ − J | > 1 do not add new conditions on the
phase. These can be disregarded as nonphysical as they violate the selection rule S3. Recalling the
equivalence (3.111) we find from Eq. (3.127) for the symmetry relation of CGCs

〈jbmb; jama|J,M〉 = (−1)ja+jb−J〈jama; jbmb|J,M〉. (3.128)
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3.5.1.1 Exchange symmetry for identical particles

The case of equal spin, j1 = j2 = j, deserves special attention in view of its importance for the
exchange symmetry of identical particles. In this case one cannot distinguish between the two
coupling orderings and we have to add the amplitudes. This can be done in two independent ways.
In particular in the form of a symmetric (+) and a antisymmetric (−) linear combination,

|jjJM〉± =
√

1
2 [|(j1j2)J,M〉 ± |(j2j1)J,M〉]

=
√

1
2

[
1± (−1)2j−J] |(j1j2)J,M〉. (3.129)

Note that the second line vanishes for certain combinations of j and J . These combinations are
excluded by the exchange symmetry. For the coupling of integer spins the value of Jmax = 2j is
always even, whereas for half-integer spins it is always odd. As a consequence, for integer spins the
even (odd) total spin states are symmetric (antisymmetric) whereas for half-integer spins this is
the case for odd (even) total spin. In particular, for half-integer spins the stretched pair states are
symmetric for odd J, whereas for integer spins this is the case for even J. These symmetry rules are
known from some well-known examples. For instance, for two identical particles without spin the
total spin is zero. In this case the spin of the pair is even and the corresponding state symmetric
under exchange. For two identical spin- 1

2 particles the total spin can be 0 or 1. In this case the spin
is half-integer. For total spin zero (which is even) the corresponding spin state is antisymmetric
under exchange; for J = 1 (which is odd) the spin state of the pair is symmetric.

Problem 3.15. For antiparallel coupling of two equal angular momenta, j1 = j2 = j , the total angular
momentum is zero, J = M = 0. Show that in this case the Clebsch-Gordan decomposition (3.106) can be
written in the form √

2j + 1|jj00〉 =
∑
m

(−1)j−m|j,m; j,−m〉.

Solution. We start from the Clebsch-Gordan decomposition (3.106) for the special case j1 = j2 = j,

|jjJM〉 =
∑

m1,m2

|jm1; jm2〉〈jm1; jm2|jjJM〉.

For antiparallel coupling the total angular momentum is zero, J = M = 0. Using the selection rule
M = m1 +m2 the decomposition takes the form

|jj00〉 =
∑
m

|j,m; j,−m〉〈j,m; j,−m|jj00〉.

Substituting

〈j,m; j,−m|00〉 =
(−1)j−m√

2j + 1

(see Problem 3.14) we arrive at the desired result. 2

3.5.2 Time-reversal symmetry

Thus far we analyzed the addition of angular momenta, j3 = j1 + j2. What about subtraction? As
suggested by the vector model (see Fig. 3.3) we would like to define j2 = j3−j1 by introducing a new
angular momentum operator j = −j, which has the properties of a “reversed” angular momentum.
As it turns out, to properly define j we have to study j under time reversal. A complicating factor
is that the transformation j 7→ j is found to be antilinear [96]. All this being said, we shall not enter
into the properties of antilinear maps because, within the Condon and Shortley phase convention,
the symmetry properties of the CGCs can be obtained algebraically from the recursion relations
3.116 and 3.118.

In this section we derive the relation

〈j2,−m2; j3,m3|j1m1〉 = (−1)j2+m2

(
2j1 + 1

2j3 + 1

)1/2

〈j1m1; j2m2|j3m3〉, (3.130)
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where quantum numbers were chosen in compliance with the vector model. The prefactor will follow
from the recursion relations.

We start by renaming J → j3 and M → m3 in the recursion relations 3.116 and 3.118. With
some rearrangement we bring these relations in the form

Cj1,m1
〈j1,m1 + 1; j2,m2 − 1|j3m3〉 = −Cj2,−m2

〈j1m1; j2m2|j3m3〉
+ Cj3,−m3

〈j1m1; j2,m2 − 1|j3,m3 − 1〉, (3.131a)

Cj1,−m1
〈j1,m1 − 1; j2,m2 + 1|j3m3〉 = −Cj2,m2

〈j1m1; j2m2|j3m3〉
+ Cj3,m3

〈j1m1; j2,m2 + 1|j3,m3 + 1〉. (3.131b)

Note that both equations satisfy the selection rule

m1 +m2 = m3. (3.132)

Now we relable the indices cyclicly, (1, 2, 3)→ (2, 3, 1),

Cj1,−m1〈j2m2; j3,m3 − 1|j1,m1 − 1〉 = Cj2,m2〈j2,m2 + 1; j3,m3 − 1|j1m1〉
+ Cj3,−m3〈j2m2; j3m3|j1m1〉. (3.133)

Note that in this process the selection rule 3.132 was replaced by m2 +m3 = m1. As suggested by
the vector model (see Fig. 3.3), the selection rule 3.132 can be restored by renaming the quantum
number m2 → −m2. However, we can do better. By renaming m2 → −m2 − 1 and m3 → m3 + 1
we not only recover the selection rule 3.132 but find that 〈j2,−m2; j3,m3|j1m1〉 satisfies, up to a
sign, the “other” recursion relation, Eq. 3.131b,

Cj1,−m1〈j2,−(m2 + 1); j3m3|j1,m1 − 1〉 = Cj2,m2〈j2,−m2; j3m3|j1m1〉
+ Cj3,m3〈j2,−(m2 + 1); j3m3 + 1|j1m1〉. (3.134)

Note that we used the symmetry rules Cj2,−m2−1 = Cj2,m2 and Cj3,−m3−1 = Cj3,m3 . To obtain full
equivalence, including the sign, we compare Eqs. (3.134) and (3.131b) term by term and add the
appropriate phase factor,

−〈j1,m1 − 1; j2,m2 + 1|j3m3〉 = (−1)j2+(m2+1)α〈j2,−(m2 + 1); j3m3|j1,m1 − 1〉 (3.135a)

〈j1m1; j2m2|j3m3〉 = (−1)j2+m2α〈j2,−m2; j3m3|j1m1〉 (3.135b)

−〈j1m1; j2,m2 + 1|j3,m3 + 1〉 = (−1)j2+(m2+1)α〈j2,−(m2 + 1); j3m3 + 1|j1m1〉. (3.135c)

Here α is a proportionality constant, independent of m1,m2 and m3. Since j2 +m2 is always integral
and the CGCs always real, α is a real number, which may still depend on j1, j2 and j3.

To determine sign and magnitude of α, we start by applying the exchange rule (3.127) to bring
Eq. (3.135b) in the form

〈j1m1; j2m2|j3m3〉 = (−1)j2+m2(−1)j2+j3−j1α〈j3m3; j2,−m2|j1m1〉. (3.136)

First we shall demonstrate that the sign of α is positive. For given j1, j2, j3, the relations (3.135)
hold for all physically meaningful values of m1,m2,m3. Therefore, we can determine the sign of α
by considering a special case. For m1 = j1 and m3 = j3, Eq. (3.136) becomes

〈j1j1; j2m2|j3j3〉 = (−1)j2+m2(−1)j2+j3−j1α〈j3j3; j2,−m2|j1j〉. (3.137)
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Figure 3.3: Vector addition diagrams; (a) diagram for j3 = j1 + j2; (b) diagram for j1 = j3 + (−j2). The
figure is very suggestive but the addition of a “reversed” angular momentum cannot be properly defined
within the vector model. This model handles the quantum numbers but does not capture the phase rules.

From the selection rule 3.132 we infer that m2 = j3− j1 and since j2 + j3− j1 is always integral the
Eq. (3.136) simplifies to

〈j1j1; j2m2|j3j3〉 = α〈j3j3, j2,−m2|j1j1〉. (3.138)

Hence, in view of the convention (3.121) we find α > 0.
To determine the magnitude of α we compare the moduli of the two sides of Eq. (3.136),

|〈j1m1; j2,m3 −m1|j3,m3〉|2 = |α|2|〈j3m3; j2,m1 −m3; |j1m1〉|2

Summing the l.h.s. over j1 and the r.h.s. over j3 we find by unitarity - see sum rule (3.113a),

j3∑
m3=−j3

δ(j1j2j3) = |α|2
j1∑

m1=−j1

δ(j1j2j3). (3.139)

Since α > 0 we find for the magnitude of α,

α =

(
2j3 + 1

2j1 + 1

)1/2

. (3.140)

Substituting this value in Eq. (3.135b) we arrive at Eq. (3.136)

〈j2,−m2; j3,m3|j1m1〉 = (−1)j2+m2

(
2j1 + 1

2j3 + 1

)1/2

〈j1m1; j2m2|j3m3〉. (3.141)

Other symmetry relations can be derived in same way but rather than presenting these separately
we introduce in the next section the Wigner 3j symbols. These are best suited to deal with the
symmetry properties of the CGCs.

It is instructive to consider the stretched case, m1 = j1, m2 = j2 and m3 = j3 = j1 + j2,

〈j2,−j2; j3, j3|j1j1〉 = (−1)2j2

(
2j3 + 1

2j1 + 1

)1/2

〈j1j1; j2j2|j3j3〉. (3.142)

This expression shows that the reversal is accompanied by a phase factor (−1)2j2 , which is unity for
integer j2 but introduces a sign change in the half-integer case. This sign change is typical for time
reversal of angular momenta without a classical analog [96].

3.5.3 Wigner 3j symbols

An inconvenience of CGCs are the non-intuitive symmetry properties, not to speak of the forest of
competing notations in the literature.1 This spoils the joy of rapid manipulation and assessment.

1A compilation of notation conventions is given by Edmonds [36].
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An important simplification results by expressing the CGCs in terms of Wigner 3j symbols. These
are obtained by treating the three angular momenta on equal footing. For this purpose we note
that the kets of the basis {|j,m〉} are related to the bras of the hermitian conjugate basis {〈j,m|}
by the transformation

〈j,m| =
∑
m′

gm,m′ |j,m′〉, (3.143)

where gm,m′ is a metric tensor,

gm,m′ =
(

j
mm′

)
= (−1)j+mδm,m′ , (3.144)

in the notation of Wigner. Note that j+m is always an integer. The kets transform as contravariant
vectors and the bras as covariant vectors. In tensor calculus the transformation (3.143) is known as
lowering of the contravariant index. By lowering of the indices m1 and m2 the CGCs take the form

〈j1m1; j2m2|j3m3〉 = (−1)j1+m1(−1)j2+m2 |j1m1〉 ⊗ |j2m2〉 ⊗ |j3m3〉. (3.145)

Since the CGCs are real constants the tensor |j1m1〉 ⊗ |j2m2 ⊗ |j3m3〉 must be a real scalar; i.e., be
invariant under rotation. We denote this scalar by the expression

(−1)−2j2
√

2j3 + 1

(
j1 j2 j3
m1 m2 −m3

)
, (3.146)

where the factor in brackets is the Wigner 3j symbol. Actually, at this point there is no reason to
put the prefactor in front of the 3j symbol and/or the minus sign in front of m3. However, we are
free to do so and as we shall see this choice maximizes the symmetry. Using the projection rule
m1 +m2 = m3 the relation between the CGC and the 3j symbol becomes

〈j1m1; j2m2|j3m3〉 = (−1)j1−j2+m3
√

2j3 + 1

(
j1 j2 j3
m1 m2 −m3

)
, (3.147)

or, equivalently, (
j1 j2 j3
m1 m2 −m3

)
=

(−1)j1−j2+m3

√
2j3 + 1

〈j1m1; j2m2|j3m3〉. (3.148)

Note that j1 − j2 +m3 is always integral.

3.5.3.1 Properties of 3j symbols

The 3j symbols inherit their principal properties from the CGCs. So, the 3j symbols are zero unless

1. The triangle inequality holds, ∆(j1j2j3) > 0 - see Eq. (J.12);

2. The sum of the angular momenta is integral, j1 + j2 + j3 ∈ Z.

3. The angular momentum projection is conserved, m1 +m2 +m3 = 0.

The symmetry properties are given by two easy-to-memorize rules:

1. Invariance under cyclic permutations of the columns

2. Phase changes by (−1)j1+j2+j3

a. under exchange of two columns
b. under inverted projection, m1,m2,m3 → −m1,−m2,−m3.

The symmetry properties 2a and 2b are derived in Problems 3.16 and 3.17.
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3.5.3.2 Sum rules

From the orthonormality relations (3.112) immediately follow the following sum rules:

j1+j2∑
j3=|j1−j2|

j3∑
m3=−j3

(2j + 3)

(
j1 j2 j3
m1 m2 m3

)2

= 1 (3.149a)

j1∑
m1=−j1

j2∑
m2=−j2

(2j + 3)

(
j1 j2 j3
m1 m2 m3

)2

= 1. (3.149b)

Note that the second summations can be eliminated by applying the projection rule.

Problem 3.16. Derive the symmetry property 2a,(
j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
.

Solution. Converting Eq. (3.128) to 3j symbols we find

(−1)j2−j1−m3
√

2j3 + 1

(
j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2−j3(−1)j1−j2−m3

√
2j3 + 1

(
j1 j2 j3
m1 m2 m3

)
.

This can be rewritten in the form(
j2 j1 j3
m2 m1 m3

)
= (−1)4j1−j1−j2−j3

(
j1 j2 j3
m1 m2 m3

)
.

Since 4j1 is always even and j1 + j2 + j3 always integral this corresponds to the desired property. �

Problem 3.17. Derive the symmetry property 2b,(
j1 j2 j3
−m1 −m2 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
.

Solution. Converting Eq. (3.130) to 3j symbols we find

(−1)j2−j3+m1
√

2j1 + 1

(
j2 j3 j1
−m2 m3 −m1

)
= (−1)j2+m2

(
2j1 + 1

2j3 + 1

)1/2

(−1)j1−j2+m3
√

2j3 + 1

(
j1 j2 j3
m1 m2 −m3

)
.

Using the projection rule, m3 = m1 +m2, this can be rewritten in the form(
j2 j3 j1
−m2 m3 −m1

)
= (−1)2m2−2j2(−1)j1+j2+j3

(
j1 j2 j3
m1 m2 −m3

)
.

Note that 2m2 − 2j2 is always even. So, after cyclic rotation of the l.h.s. and renaming m3 → −m3 this
corresponds to the desired property. �

3.5.3.3 Vector model for 3j symbols

In Fig. 3.4 the 3j symbols are illustrated by diagrams in which the vectors add up to zero (note the
difference with Fig. 3.2). With such diagrams the validity of the triangle inequality and the projection
rule are easily established. As most combinations of the indices turn out to be nonphysical, rapid
disposal of these combinations greatly enhances the efficiency of calculations. Only if a 3j symbol is
not manifestly zero it has to be evaluated. Beware that not being manifestly zero does not exclude
being zero. This happens in some high symmetry cases as a consequence of the symmetry rules.
Many properties of 3j symbols are summarized in Appendix J.
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Figure 3.4: Graphical representation of 3j symbols with j1 = 2, j2 = 1: a.) j3 = 3; b.) j3 = 2; c.) j3 = 1.
The 3j symbol is valid (i.e., not manifestly zero) if the triangle is closed and the projections onto the z axis
are quantized in integer values. This implies that the triangle inequality is satisfied, j1 + j2 + j3 is integral,
and the projections onto the z axis add up to zero, m1 + m2 + m3 = 0. The phase rules are not captured
in these diagrams.

3.6 Addition in the presence of coupling - conservation rules

Let us continue with the closed mechanical system of two angular momenta introduced above.
Let j1 and j2, with [j1, j2] = 0, be these angular momenta and H1 and H2 the Hamiltonians of
the orthogonal subsystems. As discussed in Appendix F.2.4 the angular momenta are conserved
quantities if they commute with their Hamiltonian,

[j1,H1] = 0 and [j2,H2] = 0. (3.150)

When H0 = H1 +H2 is the Hamiltonian of the combined system, it follows from the commutation
relations (3.150) that also the total angular momentum J = j1 + j2 is a conserved quantity,

[J,H0] = 0. (3.151)

This is no surprise: given the homogeneity and isotropy of free space, the linear and angular momenta
of a closed mechanical system are always conserved. Importantly, note that j1 and j2 commute with
each other, [j1, j2] = 0, but not with J (only the components along the quantization axis do). This
shows that the three conserved quantities j1, j2 and J do not share a joint basis. For this reason
the properties of j1 and j2 are most conveniently evaluated in the uncoupled basis, {|j1m1; j2m2〉},
whereas the coupled basis, {|j1j2JM〉}, is the preferred basis to analyze J.

In typical situations, the simultaneous conservation of j1, j2 and J is broken when a so-called
coupling term, H′, enters the Hamiltonian

H = H1 +H2 +H′. (3.152)

Let us analyze two examples. First we consider a case of mutual coupling,

H′ = α j1 · j2. (3.153)

Being mutual, this coupling is internal and the system remains mechanically closed, so we know
that J has to remain conserved. This is confirmed by the commutation relation [J,H] = 0, which is
valid because J commutes with j1 ·j2, although, individually, j1 and j2 do not commute with j1 ·j2

(see Problem 4.7). This shows that j1 and j2 are no longer conserved, although the magnitude of
these vectors (i.e., the quantum numbers j1 and j2) as well as their vector sum, J, still are. This is
expressed by the commutation relations

[j2
i , j1 · j2] = 0, [Jz, j1 · j2] = 0, [J2, j1 · j2] = 0 and [j2

i ,J
2] = 0, (3.154)
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Figure 3.5: Two examples of coupling of the angular momenta j1 and j2 : (a) In the presence of the mutual
coupling mechanism H′ = α j1 · j2, the angular momenta j1 and j2 precess about J = j1 + j2. This gives
rise to time-varying projections of j1 and j2 on the z-axis but J as well as the projections j1 · J and j2 · J
remain conserved. In other words: j1, j2, J and M are good quantum numbers; (b) In the presence of
coupling to an external field in the z-direction, H′ = α1j1 ·B + α2j2 ·B, the angular momenta j1 and j2
precess individually about the z-axis. Since the projections j1z and j2z remain conserved, j1, m1, j2 and
m2 are good quantum numbers. Note that only in the absence of any coupling the three angular momenta
j1, j2 and J are simultaneously conserved.

with i ∈ {1, 2} (see Problems 4.3-4.6). Hence this coupling is best analyzed in the coupled basis,
{|j1j2JM〉}. The behavior of the physical system is sketched in Fig. 3.5a: j1 and j2 precess about
J. In the semi-classical picture, the angle between j1 and j2 is conserved because the system cannot
lower its interaction energy (hamiltonian evolution is dissipation free).

As a second example we consider a coupling term of the Zeeman type (see Section 4.3.3),

H′ = α1j1 ·B + α2j2 ·B. (3.155)

In this case the angular momenta are individually coupled to the external magnetic field B. The
external field breaks the spherical symmetry of free space and by choosing the quantization axis
along B we find that only the z components of j1 and j2 remain conserved,

[j1z,H] = 0 and [j2z,H] = 0. (3.156)

The physical system is sketched in Fig. 3.5b: the angular momenta j1 and j2 precess individually
about the B field. Since j1 and j2 are no longer conserved also J is no longer conserved. In this case
only the magnitude of the vectors j1 and j2 (i.e., the quantum numbers j1 and j2) as well as their
projections (i.e., the quantum numbers m1 and m2) are constants of the motion. This behavior is
best captured by the uncoupled basis, {|j1m1; j2m2〉}.

Summary

In the absence of any coupling all three angular momenta j1, j2 and J are simultaneously conserved;
i.e., j1, m1, j2, m2 as well as J and M are good quantum numbers - whatever the quantization axis.
In the presence of pure j1 ·j2 coupling both J and Jz are conserved; i.e., J and M are good quantum
numbers - whatever the quantization axis. In the presence of pure Zeeman coupling only j1z, j2z
and Jz are conserved; i.e., m1, m2 and M = m1 + m2 are good quantum numbers with respect to
the direction of the symmetry-breaking field.

Coupling of the J levels

Note that in both of the above coupling cases the commutation relation [Jz,H] holds. So, also in
the simultaneous presence of both couplings,

H′ = α1j1 ·B + α2j2 ·B + α j1 · j2, (3.157)
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the operator Jz = j1z + j2z corresponds to a conserved quantity; i.e., M is a good quantum number.
For B → 0 the eigenstates are given by the coupled representation, {|j1j2JM〉}, whereas for B →∞
this becomes the uncoupled representation, {|j1m1; j2m2〉}, with M = m1 + m2. For intermediate
fields the basis can be denoted by {|j1j2m〉}, where H′|j1j2m〉 = εjm(B)|j1j2m〉 and the definition
of |j1j2m〉 depends on the field. Decomposing |j1j2m〉 with respect to the coupled basis we find

|j1j2m〉 =
∑
J,M

|j1j2JM〉〈j1j2JM |j1j2m〉 =
∑
J

αJ(B) |j1j2Jm〉, (3.158)

where the αJ(B) = 〈j1j2JM |j1j2m〉 are field-dependent coefficients. This shows that for intermedi-
ate fields |j1j2jm〉 can be written as a linear combination of all coupled states |j1j2JM〉 for which
M = m. This is called mixing of the J levels by the Zeeman coupling.

Problem 3.18. Let us denote two angular momenta by j1 = L and j2 = S, and their vector sum by
J = L + S. Derive the following three inner product rules,

L · S = LxSx + LySy + LzSz (3.159a)

L · S = LzSz + 1
2

(L+S− + L−S+) (3.159b)

L · S = 1
2
(J2 − L2 − S2). (3.159c)

Solution. Rule (a) is simply the definition of the inner product in cartesian coordinates. Using the defini-
tions for the shift operators we have

L+S− = (Lx + iLy) (Sx − iSy) = LxSx + LySy + i (LySx − LxSy)

L−S+ = (Lx − iLy) (Sx + iSy) = LxSx + LySy − i (LySx − LxSy) .

Adding these expressions and using rule (a) we obtain after rearrangement of terms rule (b). Note that the
LzSz operator as well as the operators L+S− and L−S+ conserve the total angular momentum along the
quantization axis mj = ml+ms. Rule (c) follows straightforwardly from the inner product J2 = (L+S)2 =
L2 + S2 + 2L · S because L and S commute (they act in independent sectors of Hilbert space). 2

3.7 Addition of three angular momenta

In the case of three angular momenta, j1, j2 and j3, acting in three independent subspaces of the
Hilbert space, the total angular momentum is given by

J = j1 + j2 + j3.

In this case there is no unique addition procedure. Defining j12 = j1 + j2, j23 = j2 + j3 and
j13 = j1 + j3 we have

|(j12j3)JM〉 =

j12∑
m12=−j12

j3∑
m3=−j3

|j12m12; j3m3〉〈j12m12; j3m3|(j12j3)JM〉, (3.160a)

where |j12m12; j3m3〉 ≡ |(j1j2)j12m12〉 ⊗ |j3m3〉 and

|j12m12〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1; j2m2〉〈j1m1; j2m2|j12m12〉. (3.160b)

Substituting (3.160b) into (3.160a) we obtain an expression for |(j12j3)JM〉. Likewise we obtain an
expression for (j1j23)J ′M ′〉.

|(j12j3)JM〉 =
∑

m1,m2,m3,m12

|j1m1; j2m2; j3m3〉〈j1m1; j2m2|j12m12〉〈j12m12; j3m3|(j12j3)JM〉, (3.161a)

|(j1j23)J ′M ′〉 =
∑

m1,m2,m3,m23

|j1m1; j2m2; j3m3〉〈j2m2; j3m3|j23m23〉〈j1m1; j23m23|(j1j23)J ′M ′〉, (3.161b)
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Figure 3.6: Graphical representation of Wigner 6-j symbols in the form of a tetrahedron. Each corner vertex
represents one of four 3j symbols. The 6j symbols are invariant under all symmetry operations, rotations
and/or reflections, of the tetrahedral group (resulting in all 4! permutations of the corner points).

where |j1m1; j2m2; j3m3〉 ≡ |j1m1〉 ⊗ |j2m2〉 ⊗ |j3m3〉. Projection of the coupling scheme (3.161b)
onto (3.161a) results in recoupling coefficient,

〈(j12j3)JM |(j1j23)J ′M ′〉 =
∑

m1,m2,m3
m12,m23

〈j1m1; j2m2|j12m12〉〈j12m12; j3m3|(j12j3)JM〉

〈j2m2; j3m3|j23m23〉〈j1m1; j23m23|(j1j23)J ′M ′〉. (3.162)

Note that the value of the recoupling coefficient is independent of M . So, aiming for maximum
symmetry we may sum over M provided we divide by 2J + 1 to correct for double counting. After
turning to 3j symbols the recoupling coefficient takes the form

〈(j12j3)JM |(j1j23)J ′M ′〉 =
∑

m1,m2,m3
m12,m23,M

(−1)ϕ
√

(2j12 + 1)(2j23 + 1)(2J ′ + 1)/(2J + 1)

×
(
j1 j2 j12

m1 m2 −m12

)(
j12 j3 J

m12 m3 −M

)(
j2 j3 j23

m2 m3 −m23

)(
j1 j23 J ′

m1 m23 −M ′

)
, (3.163)

where
ϕ = j1 − j2 +m12 + j12 − j3 +M + j2 − j3 +m23 + j1 − j23 +M ′. (3.164)

3.7.1 Wigner 6j symbols

In view of the CGC selection rules the coupling coefficient (3.163) vanishes unless m12 = m1 +m2,
m23 = m2 +m3, M = m12 +m3 = m1 +m2 +m3 = m1 +m23 = M ′. The latter condition can only
be satisfied for all values of M if also J = J ′. Wigner expressed this in the form

〈(j12j3)J ′M ′|(j1j23)JM〉 = (−1)j1+j2+j3+J
√

(2j12 + 1)(2j23 + 1)

{
j1 j2 j12

j3 J j23

}
δJ,J ′δM,M ′ , (3.165)

which includes a so-called 6j symbol. Note that j1 + j2 + j3 + J is always an integer. Like the
3j symbols also the Wigner 6j symbols offer optimized symmetry rules. By comparing Eq. (3.165)
with Eq. (3.163) the 6j symbol can be expressed in the following form - see Problem 3.19,{

j1 j2 j3
j4 j5 j6

}
=

∑
m1,m2,m3
m4,m5,m6

(−1)σ
(
j1 j2 j3
m1 m2 m3

)(
j1 j5 j6
m1 m5 −m6

)(
j2 j6 j4
m2 m6 −m4

)(
j3 j4 j5
m3 m4 −m5

)
,

(3.166)



70 Chapter 3. Angular Momentum

where σ = j4 + j5 + j6 +m4 +m5 +m6. A graphical representation is given in Fig. 3.6.

Problem 3.19. Derive Eq. (3.166).

Solution. We start from Eq. (3.165). Comparing this expression with Eq. (3.163) we obtain an expression for
the 6jsymbol. To emphasize the symmetry we relabel the following quantum numbers: (j3,m3)→ (j4,m4),
(j12,m12)→ (j3,m3), (J,M)→ (j5,m5), (j23,m23)→ (j6,m6). In this way we obtain{

j1 j2 j3
j4 j5 j6

}
=

∑
m1,m2,m3
m4,m5,m6

(−1)ϕ1

(
j1 j2 j3
m1 m2 −m3

)(
j3 j4 j5
m3 m4 −m5

)(
j2 j4 j6
m2 m4 −m6

)(
j1 j6 j5
m1 m6 −m5

)
,

where ϕ1 = 3j1 + j2 + j3 − j4 + j5 − j6 + m3 + 2m5 + m6 (note that j1 + j2 + j4 + j5 ∈ Z). To arrive at
the full symmetry of the 6j symbol we reorder the 3j symbols to match the arrangement indicated on the
tetrahedron in Fig. 3.6. For this purpose we swap the last two columns in both the third and the fourth 3j
symbol and adapt the phase accordingly,{

j1 j2 j3
j4 j5 j6

}
=

∑
m1,m2,m3
m4,m5,m6

(−1)ϕ2

(
j1 j2 j3
m1 m2 −m3

)(
j3 j4 j5
m3 m4 −m5

)(
j2 j6 j4
m2 −m6 m4

)(
j1 j5 j6
m1 −m5 m6

)
,

with ϕ2 = 4j1 + 2j2 + j3 + 2j5 + j6 + m3 + 2m5 + m6. Next we can replace the summations over m3, m4,
m5 and m6 by summations over −m3, −m4, −m5 and −m6 adapting the phase accordingly,{

j1 j2 j3
j4 j5 j6

}
=

∑
m1,m2,m3
m4,m5,m6

(−1)ϕ3

(
j1 j2 j3
m1 m2 m3

)(
j3 j4 j5
−m3 −m4 m5

)(
j2 j6 j4
m2 m6 −m4

)(
j1 j5 j6
m1 m5 −m6

)
,

with ϕ3 = 2j1 − j3 + 2j5 + j6 − m3 − 2m5 − m6 (since 2j1 + 2j2 + 2j3 is always even). To arrive at
Eq. (3.166) we apply the projection rule to the second 3j symbol and obtain for the exponent of the phase
ϕ4 = j4 + j5 + j6 + m4 + m5 + m6 + 2j1 + 2j5 −m3 −m4 − 3m5 − 2m6. Since 2ji ± 2mi is always even
and (−1)2mi = (−1)−2mi for i ∈ {1, 2, 3, 4, 5, 6} as well as the projection rules m3 + m4 − m5 = 0 and
m1 +m5 −m6 = 0 we have

(−1)ϕ4 = (−1)σ−2m1−m3−m4−m5+2m6 = (−1)σ−2m1−2m5+2m6 = (−1)σ,

where σ = j4 + j5 + j6 +m4 +m5 +m6. 2

3.7.1.1 Properties of 6j symbols

The 3j symbols inherit their properties from the CGCs. So, the 3j symbols are zero unless

1. The triangle inequality holds for all combinations ∆(jkjljm) > 0 for k, l,m ∈ {1, · · · 6}

2. The sum of the angular momenta is integral, jk + jl + jm ∈ Z for k, l,m ∈ {1, · · · 6}

Symmetry properties: 6j symbols are invariant under all symmetry operations of the tetrahedral
group - see Fig. 3.6. These result in invariance under

1. permutations of the columns; e.g.,{
j1 j2 j3
j4 j5 j6

}
=

{
j2 j1 j3
j5 j4 j6

}

2. simultaneous exchange of two opposing elements of the rows; e.g.,{
j1 j2 j3
j4 j5 j6

}
=

{
j4 j5 j3
j1 j2 j6

}
.
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3.8 Angular momentum and infinitesimal rotations

3.8.1 Rotations versus unitary transformations

In Section 3.1.1 we found that the decomposition of the angular momentum operator J maps
uniquely onto that of the radius vector r. To further explore the properties of J we ask our-
selves how this vector operator transforms into an operator J′ by changing from one quantization
axis to another. Such a change can be implemented by a proper rotation of the coordinate system
about the origin. This is a rotation in which the handedness of the coordinate system is conserved.1

A rotation of the coordinate system is called a passive rotation to distinguish it from physical ro-
tations, in which the physical system is rotated (i.e., the “contours” of the wavefunction) and the
coordinate system is fixed.

So let us consider the proper rotation R by which the right-handed cartesian coordinate system
S transforms into S ′; i.e., the direction r̂ = (x, y, z) of a vector with respect to S changes into
r̂′ = (x′, y′, z′) with respect to S ′ under conservation of the handedness of the coordinate system,

r̂′ = R r̂. (3.167)

This transformation holds, in particular, for the quantization axis. Equivalently, we can fix the
coordinate system S and apply the inverse rotation to J,

J′ = R−1J. (3.168)

The existence of the inverse is evident from a physical point of view. Mathematically, it follows
from the nonzero determinant (detR = 1 for proper rotations) - see Appendix M. Comparing the
two approaches we find the relation

J · r̂′ = J′ · r̂. (3.169)

Before we analyze the equality of these two inner products we discuss the effect of a change of
quantization axis on the angular momentum states. The new quantization axis comes with a new
set of basis states, {|j,m〉′}. These are the joint eigenstates of J′2 and J ′z and are related to the
original basis of the operators J2 and Jz, {|j,m〉}, by a norm-conserving basis transformation,

|χ〉′ = u|χ〉. (3.170)

Here |χ〉 is an arbitrary angular momentum state within the invariant subspace V 2j+1 of the oper-
ators J′ and J. The transformation u has to be norm conserving because |χ〉 and |χ〉′ represent the
same state with respect to two different bases,

〈χ|χ〉 = 〈χ|χ〉′ = 〈χ|u†u|χ〉 → u†u = 1. (3.171)

This identity shows that the transformation must be unitary, u† = u−1, which implies that the
inverse transformation is given by

|χ〉 = u†|χ〉′. (3.172)

Furthermore, as |χ〉 and |χ〉′ represent the same state (the rotation is passive) we require

〈χ|J′|χ〉′ = 〈χ|J|χ〉. (3.173)

In other words, we require that the expectation value of the operator be invariant under rotation of
the coordinate system. In particular, this should hold for observables. Substituting Eq. (3.172) in
the r.h.s. of Eq. (3.173) we obtain

〈χ|J′|χ〉′ = 〈χ|uJu†|χ〉′. (3.174)

1A proper rotation, R, is an orthogonal transformation (R−1 = RT ) with unit determinant (detR = 1) - see
Appendix M.
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Figure 3.7: (a) an arbitrary passive rotation can be decomposed into three subsequent positive rotations of
a coordinate system over the Euler angles α, β and γ called yaw, pitch and roll in aviation; (b) the same
three Euler rotations shown for a coordinate system attached to an imaginary ball for clarity of illustration.
All figures show the orientation after rotation over the angle indicated by the arrow. The right-handedness
of coordinate system and positive sense of rotation, in combination with the z− y− z rotation sequence for
the Euler angles correspond to the convention of Rose [94] (beware of other conventions in the literature).

As this expression holds for arbitrary |χ〉 we find that under the rotation (3.167) the transformation
of the operator J involves the same unitary operator as used for the states |χ〉,

J′ = uJu†. (3.175)

We now return to the two inner products of Eq. (3.169). Substituting Eq. (3.167) into the l.h.s. of
Eq. (3.169) and Eq. (3.175) into the r.h.s., we arrive at an expression relating the rotation R of the
cartesian coordinate system S (in real space) to the corresponding unitary transformation u (in
Hilbert space),

J·R r̂ = uJu† ·̂r. (3.176)

For two subsequent rotations this expression becomes

J·R2(R1 r̂) = u2(u1 Ju†1)u†2 ·̂r. (3.177)

So, once we have an expression for R (see Section 3.8.2), Eqs. (3.176) and (3.177) can serve to
determine u. This is the subject of Section 3.8.3.

Transformation of the cartesian components

Combining Eqs. (3.175) and (3.168) we obtain for the cartesian components of J′

J ′j = uJj u
† =

∑
i

[R−1]jiJi =
∑
i

[R]ijJi, (3.178)

with i, j ∈ {x, y, z}, where we used the property (M.13) of orthogonal matrices, R−1 = RT .
Eq. (3.178) shows that the components of J′ (i.e., with respect to the rotated frame) can be ex-
pressed in two ways:

• as a unitary transformation of the cartesian components of J (in Hilbert space)

• as a decomposition in terms of the cartesian components of J (in real space).

In the latter case the coefficients of the decomposition are matrix elements of the rotation matrix
R. In Section 3.9.5 we shall present a similar transformation for the spherical components.
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3.8.2 Rotation in the euclidean space - Euler angles

First we discuss rotations of the coordinate system about the origin as expressed by Eq. (3.167). In
matrix notation this passive rotation takes the formx′y′

z′

 = R

xy
z

 , (3.179)

where x, y, z and x′, y′, z′ are the cartesian coordinates of the position vector before and after the
transformation, respectively. According to the Euler rotation theorem any proper rotation of the
coordinate system S can be decomposed into three subsequent proper rotations about specified
angles and axes, as illustrated in Fig. 3.7. Throughout these lectures we adopt the z−y−z rotation
sequence convention of Rose [94] (see Fig. 3.7). First, a positive rotation Rz(α) of S to S ′ over the
angle α about the positive z direction is given by1

Rz(α) =

 cosα sinα 0

−sinα cosα 0

0 0 1

 . (3.180)

In aviation this rotation is called yaw and corresponds to a change of heading. Second, a positive
rotation Ry′(β) of S ′ to S ′′ over the angle β about the y′ axis (the y axis of S ′) is given by

Ry′(β) =

cosβ 0− sinβ

0 1 0

sinβ 0 cosβ

 . (3.181)

In aviation β is called the pitch angle. Finally, a rotation Rz′′(γ) of S ′′ to S ′′′ over the angle γ
about the z′′ axis (the z axis of S ′′) is, analogously to Rz(α), given by

Rz′′(γ) =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 . (3.182)

In aviation γ is called the roll angle. Note that Rz(α), Ry′(β) and Rz′′(γ) are orthogonal matrices
with determinant +1 (see Appendix M). Hence, in using the Euler angles, the rotations are specified
with respect to the coordinate system fixed to an observer (the pilot) experiencing the rotations,

r̂′ = R(α, β, γ) r̂ = Rz′′(γ)Ry′(β)Rz(α) r̂. (3.183)

Evaluating the matrix product we find

R =

 − sinα sin γ + cosα cosβ cos γ cosα sin γ + sinα cosβ cos γ − sinβ cos γ

− sinα cos γ − cosα cosβ sin γ cosα cos γ − sinα cosβ sin γ sinβ sin γ

cosα sinβ sinα sinβ cosβ

 . (3.184)

Interestingly, a pure pitch β about the y′ axis can be decomposed into three subsequent rotations
in the laboratory-fixed frame S (see Fig. 3.8a),

Ry′(β) = Rz(α)Ry(β)Rz(−α). (3.185)

1The sense of rotation in the direction r̂ is called positive if the coordinate system, S, rotates in the same way as
a right-handed screw advances in the direction r̂. By convention, the rotation angle increases for a positive rotation.
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Figure 3.8: (a) the Euler rotation R(β, y′), i.e., pure pitch of the coordinate system S ′ = (x′, y′, z′), is
equivalent with three subsequent rotations of the frame S = (x, y, z); (b) the Euler rotation R(γ, z′′), i.e.,
pure roll of the coordinate system S ′′ = (x′′, y′′, z′′), is equivalent with three subsequent rotations of the
frame S ′. All figures show the orientation after rotation over the angle indicated by the arrow.

Likewise, a pure roll γ about the z′′ axis can be decomposed into three subsequent rotations in the
frame S ′ (see Fig. 3.8b),

Rz′′(γ) = Ry′(β)Rz′(γ)Ry′(−β). (3.186)

Substituting Eqs. (3.185) and (3.186) into Eq. (3.183) and using the commutation of Rz(α) and
Rz′(γ) (note that the z axis coincides with the z′ axis) we find that the rotation R can also be
realized by three subsequent rotations about laboratory-fixed axes,

R(α, β, γ) = Rz(α)Ry(β)Rz(γ). (3.187)

Comparing Eqs. (3.187) and (3.183) we note that the same angles appear (α, β, γ) but in reverse
order.

To conclude this section we point out that the set of all passive rotations in real space of a sphere
about its center constitutes a group. If the general element of this group is given by R(α, β, γ), we
find that R(−γ,−β,−α) is its inverse and R(0, 0, 0) is the unit element. Furthermore, the set is
closed under the group operation and successive operations are associative. This group is called the
special orthogonal group SO(3); i.e., the group of all orthogonal coordinate transformations with
determinant +1 in the three-dimensional real space.

3.8.3 Unitary transformation in Hilbert space for the case s = 1/2

Let us now leave real space and turn to the unitary transformations (3.170) and (3.175) in Hilbert
space corresponding to the rotations R (the z axis being the quantization axis). In view of the
special importance of two-level systems we demonstrate this for the case s = 1

2 . In Section 3.9.1 our
findings will be generalized to the case of arbitrary angular momentum. For s = 1

2 Eq. (3.176) can
be written as a transformation of the Pauli matrices,

σ·R r̂ = uσ u† ·̂r. (3.188)
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To start the discussion we point out that the most general unitary 2× 2 matrix is of the form (see
Problem 3.20)

u ≡
√

∆U = ±
√

∆

(
a b

−b∗ a∗

)
, (3.189)

where aa∗ + bb∗ = 1 and ∆ ≡ detu can be expressed in the form of a phase factor (∆ = eiξ). The
matrix U , with detU = 1, is called the special unitary matrix. It is fully defined by the parameters
a and b (Cayley-Klein parameters). Substituting Eq. (3.189) into the r.h.s. of Eq. (3.188) we obtain
an expression for the most general unitary transformation of σr = σ · r̂,

uσ u† · r̂ =

(
Axx+Ayy +Azz Bxx+Byy +Bzz

(Bxx+Byy +Bzz)
∗ −(Axx+Ayy +Azz)

)
, (3.190)

where the coefficients Ai and Bi, with i ∈ {x, y, z}, are defined in terms of the matrix elements a
and b by the following fundamental expressions

Ax = ab∗ + ba∗ Ay = −i (ab∗ − ba∗) Az = aa∗ − bb∗

Bx = a2 − b2 By = −i
(
a2 + b2

)
Bz = −2ab.

(3.191)

Note from Eq. (3.190) that the phase factor ∆ = eiξ has dropped out of the analysis. This means
that we are free to choose ∆. The obvious choice is ∆ = 1, which means that the analysis can be
restricted to the special unitary matrix U .

To determine the Uz(α) corresponding to the Euler rotation Rz(α) we substitute Eq. (3.180) into
the matrix equation (3.188) and obtain after some matrix manipulation

σ ·Rz(α)r̂ =

(
z eiαx− ieiαy

e−iαx+ ie−iαy −z

)
. (3.192)

It is instructive to compare this expression with the non-rotated form of σr as given in Eq. (3.48).
Equating the matrices (3.192) and (3.190) gives Ax = Ay = 0, Az = 1 en Bx = eiα, By =
−ieiα, Bz = 0. Further comparison with the fundamental expression for Az in (3.191) yields
Az = aa∗ − bb∗ = 1. In combination with the property aa∗ + bb∗ = 1 we find b = 0. Substi-
tuting this result into the fundamental expression for Bx we find Bx = a2 = eiα. Thus, we arrive at
a = eiα/2 and obtain for the special unitary matrix corresponding to Rz(α)

Uz(α) = ±
(
eiα/2 0

0 e−iα/2

)
. (3.193)

Note that the positive and negative solution are connected by a rotation over 2π,

− Uz(α) = Uz(2π)Uz(α) = Uz(α+ 2π) = U−z(−α− 2π). (3.194)

Apparently, after rotating over 2π we evolve from one solution to the other.
Likewise, for the Euler rotation Ry(β) we obtain Ax = sinβ, Ay = 0, Az = cosβ and Bx = cosβ,

By = −i, Bz = − sinβ. Comparing the result for Bx and By with the fundamental expressions in
(3.191) we find cosβ = 2a2−1, which implies a = cos(β/2). The comparison of Ax and Ay with the
fundamental expressions in (3.191) yields sinβ = 2ab∗, which after the substitution of the result for
a leads to b = sin(β/2). Thus we obtain for the special unitary matrix corresponding to Ry(β)

Uy(β) = ±
(

cos(β/2) sin(β/2)

− sin(β/2) cos(β/2)

)
, (3.195)

which satisfies the same rotation property as Eq. (3.194),

− Uy(β) = Uy(2π)U(2π) = Uy(β + 2π) = U−y(−β − 2π). (3.196)
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Next we turn to the general case. From Eq. (3.187) we know that an arbitrary rotation of the
coordinate system can be written as the product of three proper rotations over the Euler angles α,
β and γ,

R(α, β, γ) = Rz(α)Ry(β)Rz(γ). (3.197)

The corresponding unitary transformation is found by applying the product rule (3.177) to Eq. (3.188),

U(α, β, γ) = Uz(α)Uy(β)Uz(γ) (3.198)

= ±
(
eiα/2 0

0 e−iα/2

)(
cos(β/2) sin(β/2)

− sin(β/2) cos(β/2)

)(
eiγ/2 0

0 e−iγ/2

)
. (3.199)

The set of all 2×2 unitary matrices with determinant +1 constitutes a group: the special unitary
group, SU(2). Writing the general element of this group as ±U(α, β, γ), we find for U(α, β, γ)
that U(−γ,−β,−α) is its inverse and U(0, 0, 0) is the unit element; for −U(α, β, γ) the inverse is
−U(−γ,−β,−α) and −U(2π, 2π, 2π) the unit element. For both branches, the set is closed under
the group operation and successive operations are associative. As the unitary operators U(α, β, γ)
and −U(α, β, γ) are connected by Euler rotations over 2π we can equally well work with one branch,
using either U(α, β, γ) or −U(α, β, γ) to represent the rotation, provided we double the domain of the
Euler angles from an interval of 2π to an interval of 4π. This is sometimes compared to transforming
a circular band into a Möbius band. From here on we shall use +U(α, β, γ) along with the 4π domain.
One may argue that there is a certain elegance in using U(α, β, γ) rather than −U(α, β, γ) because
the former connects to the unit matrix for α, β, γ → 0 (rather than for α, β, γ → 2π) but this is
already a matter of taste.

Eq. (3.188) defines a double-valued map from SO(3) to SU(2),

R(α, β, γ) 7→ ±U(α, β, γ).

Both branches of the map conserve the group structure of SO(3). Mathematically, there exists a
two-to-one homomorphism from SU(2) onto SO(3).1 The group SO(3) is said to be doubly covered
by SU(2). The double cover can be reduced to a single cover by extending the domain of the Euler
angles to 4π. We return to the physical significance of this double covering in Section 3.9.3.

Problem 3.20. Show that any unitary 2× 2 matrix u can be written in the form

u = ±
√

∆

(
a b

−b∗ a∗

)
,

where aa∗ + bb∗ = 1 and ∆ ≡ detu = eiξ with ξ an arbitrary phase factor.

Solution. Since u is unitary the determinant of u∗ can be expressed as ∆∗ = detu∗ = detu† = detu−1 =
∆−1. This implies |∆|2 = 1 and, hence ∆ = eiξ, generally an arbitrary phase factor. To demonstrate that
the most general unitary 2× 2 matrix can be expressed in the given form we start from

u =

(
a b

c d

)
.

Using Eq. (M.23) for the inverse we can equate u† and u−1(
a∗ c∗

b∗ d∗

)
= u† = u−1 =

1

∆

(
d −b
−c a

)
.

Thus we find d = a∗∆ and c = −b∗∆ and

u =

(
a b

−b∗∆ a∗∆

)
= ±
√

∆

(
±a∆−1/2 ±b∆−1/2

∓b∗∆1/2 ±a∗∆1/2

)
.

Redefining ±a∆−1/2 → a and ±b∆−1/2 → b we obtain the desired result. 2
1A homomorphism is a map from one space to another in which the algebraic structure is conserved.
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3.8.4 Infinitesimal rotation operators - the case s = 1/2

Let us have a closer look at the unitary transformation (3.193) corresponding to a passive rotation
over the angle α about the z axis,

Uz(α) =

(
eiα/2 0

0 e−iα/2

)
. (3.200)

Using the well-known relation e±iϕ = cosϕ± i sinϕ we can write Uz(α) in the form

Uz(α) = 1 cos (α/2) + iσz sin (α/2) . (3.201)

Note the appearance of the Pauli matrix σz. The change of Uz(α) by an infinitesimal passive
rotation about the z axis is given by the partial derivative with respect to α and evaluates to

∂Uz(α)

∂α
= (iσz/2)Uz(α). (3.202)

Since Uz(0) = 1 the above expression shows that σz satisfies the relation

iσz/2 =
∂Uz(α)

∂α

∣∣∣∣
α=0

. (3.203)

Hence, the Pauli matrix σz can be obtained from the unitary transformation Uz(α) in the limit
α→ 0. For arbitrary α the differential equation (3.202) is solved by the exponential operator

Uz(α) = eiασz/2. (3.204)

In other words, to determine Uz(α) for an arbitrary angle α all we need to know is the operator
iσz/2. For this reason iσz/2 is called the generator of rotation about the z axis. In the language of
group theory iσz/2 is one of the generators of the group SU(2) and Uz(α) is a representation of one
of the elements of this group.

Since our choice of quantization axis was arbitrary Eq. (3.204) suggests the generalization

Ur(ϕ) = eiϕσr/2, (3.205)

where Ur(ϕ) is the unitary transformation for a passive rotation (of the s = 1
2 system) over the

angle ϕ about the direction r̂, with σr ≡ r̂ · σ. The correctness of this generalization follows in a
few steps by expansion of the exponential operator - see Problem 3.21,

Ur(ϕ) = ei(ϕ/2)σr = 1 cos (ϕ/2) + iσr sin (ϕ/2) . (3.206)

Note that by specializing (3.206) to r̂ → ẑ and r̂ → ŷ we immediately regain the unitary matrices
(3.193) and (3.195), respectively. For other directions the matrices are more complicated because
σr only has a simple form along the x, y and z axes. In any case, the half-angle notation nicely
reminds us of the domain doubling of the Euler angles.

Problem 3.21. Show that the unitary operator Ur(ϕ) for the passive rotation of a s = 1
2

system over the
angle α about the direction r̂ can be written in the form

ei(α/2)σr = 1 cos (α/2) + iσr sin (α/2) .

Solution. For s = 1
2

we have

Ur(α) = eiαSr/~ = ei(α/2)σr =
∑
n

in (α/2)n σnr
n!

Since σ2
r = 1, see Eq. (3.49), we have σ2n

r = 1 and σ2n+1
r = σr and the expansion can be separated into its

even and odd terms,

ei(α/2)σr = 1
∑
n

(−1)n (α/2)2n

(2n)!
+ iσr

∑
n

(−1)n (α/2)2n+1

(2n+ 1)!
.

Recognizing the expansions for the sine and the cosine, this expression takes the desired form. 2
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3.8.5 Infinitesimal rotation operators - generalization

Let us return to Eq. (3.206). This expression holds for unitary transformations corresponding to
passive rotations over a finite angle. Its validity is restricted to the case s = 1

2 because the sine/cosine
decomposition relies on the property σ2

r = 1 of the Pauli matrix (see Problem 3.21). Interestingly,
this restriction does not hold for infinitesimal rotations. As we shall see below, an infinite product
of infinitesimal rotations also leads to the exponential relation (3.205), even if the condition σ2

r = 1
is not imposed.

To demonstrate this generalization, we analyze Ur(ϕ) as the product of n subsequent rotations
over the angle ϕ/n (about the direction r̂). For n→∞ this product becomes an infinite product of
infinitesimal rotations,

Ur(ϕ) = lim
n→∞

[Ur(ϕ/n)]
n
. (3.207)

For infinitesimal angles Eq. (3.206) reduces to

Ur(ϕ/n)|n→∞ = 1 + (iϕ/2n)|n→∞σr. (3.208)

Recalling Eq. (3.43) we substitute iσr/2 = iSr/~. Evaluating the infinite product (3.207) we find

Ur(ϕ) = lim
n→∞

(
1 + i

ϕ

n
Sr/~

)n
= eiϕSr/~. (3.209)

This result is obtained without imposing the condition σ2
r = 1 (see Problem 3.22). Rearranging

Eq. (3.208) we find that any operator iSr/~ that satisfies the relation (3.208) can be interpreted as
the operator for an infinitesimal small rotation about the direction r̂,

iSr/~ = lim
n→∞

Ur(ϕ/n)− 1
ϕ/n

=
∂Ur(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

. (3.210)

Problem 3.22. Show that the unitary operator Ur(ϕ), corresponding to a passive rotation over the angle
ϕ about the direction r̂, can be written as an exponential operator of Sr ≡ r̂ · S

Ur(ϕ) = lim
n→∞

(
1 + i

ϕ

n
Sr/~

)n
= eiϕSr/~,

irrespective of the value of the quantum number s.

Solution. The unitary operator for an infinitesimally small (but nonzero) passive rotation over the angle
(ϕ/n)|n→∞ about the direction r̂, is given by

Ur(ϕ/n)|n→∞ = 1 + (i
ϕ

n
Sr/~)|n→∞.

Substituting this expression into (3.207) we obtain

Ur(ϕ) = lim
n→∞

(
1 + i

ϕ

n
Sr/~

)n
= lim
n→∞

n∑
k=0

(
n

k

)
(iϕSr/~)k with

(
n

k

)
=

n!

k!(n− k)!
.

Substituting the values for the binomial coefficients we obtain

Ur(ϕ) = lim
n→∞

[(
1 + iϕSr/~ +

n(n− 1)

2!

1

n2
(iϕSr/~)2 +

n(n− 1)(n− 2)

3!

1

n3
(iϕSr/~)3 + · · ·

· · ·+ n
1

nn−1
(iϕSr/~)n−1 +

1

nn
(iϕSr/~)n

)
.

Rewriting this expression as an expansion in powers of (1/n) it becomes

Ur(ϕ) = lim
n→∞

(
1 + iϕSr/~ +

1

2!
(1− 1

n
) (iϕSr/~)2 +

1

3!
(1− 3

n
+

2

n2
) (iϕSr/~)3 + · · ·

)
= 1 + iϕSr/~ +

1

2!
(iϕSr/~)2 +

1

3!
(iϕSr/~)3 + · · · ,

where all terms depending on n have vanished. In the last line we recognize the expansion of the exponential
operator - see Eq. (L.31). As no presumptions are made with respect to the actual value of the spin, this
result holds for any value of s. 2
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3.9 Angular momentum

3.9.1 Introduction

In Section 3.1 we established that a vector operator J caries the properties of angular momentum
(as introduced in Chapter 1) if its cartesian components Jx, Jy and Jz are hermitian operators that
satisfy the commutation relations (3.1). In the present section we shall make a fresh start and define
angular momentum as an infinitesimal rotation imposed on a physical system. As we shall see, this
definition leads in a few steps to conditions of Section 3.1.

To set the stage, we consider a stationary state of the Schrödinger Hamiltonian, ψnlm (r), where
r = (r, θ, φ) is the position with respect to the center of rotation (in spherical coordinates). We
introduce an operator Uz (∆φ) to impose on ψnlm a passive rotation over the angle ∆φ about the z
axis. At this point Uz (∆φ) is unknown but has to be unitary in order to conserve the normalization
of the state under rotation. Then, the change of ψnlm by an infinitesimal passive rotation about
the z axis can be expressed in terms of Uz (∆φ) by evaluating the partial derivative of ψnlm with
respect to φ,

∂ψnlm (r, θ, φ)

∂φ
≡ lim

∆φ→0

ψnlm (r, θ, φ+ ∆φ)− ψnlm (r, θ, φ)

∆φ

= lim
∆φ→0

Uz (∆φ)ψnlm (r, θ, φ)− ψnlm (r, θ, φ)

∆φ

= lim
∆φ→0

Uz (∆φ)− 1

∆φ
ψnlm (r, θ, φ) . (3.211)

As this expression holds for arbitrary ψnlm (r) the partial derivative can be expressed in the form

∂

∂φ
= lim
n→∞

Uz (φ/n)− 1

φ/n
=
∂Uz(φ)

∂φ

∣∣∣∣
φ=0

. (3.212)

Here we defined ∆φ ≡ φ/n, with integer n. In this notation, the (unknown) unitary operator
Uz (φ/n) |n→∞ corresponds to a passive rotation over the infinitesimal angle δφ = (φ/n) |n→∞
about the z axis.

At this point we leave the mathematical convention of passive rotations to give preference to
physical rotations of the system. In this way we conform ourselves to the convention of Chapter 1
in which the orbital angular momentum, L = r × p, is defined as a right-handed rotation of the
physical system. This change of convention is simple to implement because a physical rotation over
the angle α about the arbitrary direction â is equivalent to a passive rotation over the angle −α
about the same axis. Then, the unitary operator Pa (α) corresponding to a physical rotation over
the angle α about the direction â is defined as

Pa (α) ≡ Ua (−α) . (3.213)

As an aside we mention that by inverting the direction of â we have

P−a (α) = Pa (−α) = Ua (α) . (3.214)

Recalling Eq. (1.25) we find that the operator for orbital angular momentum about the z axis is
given by

Lz = −i~ ∂

∂φ
= i~ lim

n→∞

Pz(φ/n)− 1

φ/n
= i~

∂Pz(φ)

∂φ

∣∣∣∣
φ=0

, (3.215)

where an explicit expression for Pz(φ) remains to be obtained. Note that Lz is hermitian.
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Figure 3.9: Infinitesimal rotations do not commute. Upper part: (a1) rotation of a ball about the y axis;
(a2) rotation about the x axis. Lower part: (b1) rotation of the ball about the x axis; (b2) rotation about
y axis; (b3) additional rotation required to obtain the same orientation as shown in (a2). All figures show
the orientation of the ball after rotation over the angle indicated by the arrow.

3.9.2 Differential operators - formal definition of angular momentum operators

In the previous section we found that orbital angular momentum can be represented by a unitary
operator which imposes an infinitesimal rotation on the wavefunction of a physical system. The
expressions (3.210) and (3.215) suggest to define any type of angular momentum in terms of a
differential operator,

− iJa/~ ≡ lim
n→∞

Pa(ϕ/n)− 1
ϕ/n

=
∂Pa(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

. (3.216)

Here Pa (ϕ/n) |n→∞ is the unitary operator corresponding to the physical rotation over the infinites-
imal angle δϕ = ϕ/n|n→∞ about the direction â and 1 is the unit operator. Inverting Eq. (3.216)
we obtain for Pa(δϕ) the operator identity

Pa (ϕ/n) |n→∞ = 1− (iϕ/n)|n→∞Ja/~. (3.217)

Note that this expression is unitary (P †a = P−1
a ) provided the operator

Ja ≡ â · J (3.218)

is hermitian (J†a = Ja). The unitary operator for a rotation over the finite angle ϕ about the
direction â is given by the following infinite product of infinitesimal operators (see Problem 3.22),

Pa(ϕ) ≡ lim
n→∞

(
1− iϕ

n
Ja/~

)n
= e−iϕJa/~. (3.219)

The significance of Eqs. (3.216)-(3.219) can hardly be over-emphasized because the properties
of angular momentum follow in a few lines from the definition (3.216). To convince ourselves,
all we need to do is show that the criteria for angular momentum operators (as introduced in
Section 3.1) are satisfied; i.e., Ja has to be hermitian (as we already established above) and the
cartesian components Jx, Jy and Jz have to satisfy the commutation relations (3.1). As we will
make no assumption about the type of system under rotation such as the dimension of the subspace
in which Pa(ϕ) operates, our definition holds for any type of angular momentum.

To obtain the commutation relations (3.1) we use a geometrical argument by noting that in-
finitesimal rotations do not commute. This is illustrated in Fig. 3.9. In the upper part of the figure
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(a1) we first rotate a ball over the angle δy = ϕy/n about the y axis and (a2) subsequently δx = ϕx/n
about the x axis. In the lower part (b1) we first rotate over the angle δx about the x axis and (b2)
subsequently δy about the y axis. Comparing (a2) and (b2) we find that in the latter case it takes
a small additional rotation δyδx = ϕxϕy/n

2 to realize the orientation of (a2). In the limit n → ∞
this additional rotation is about the z axis as indicated in (b3),

lim
n→∞

[
Px(ϕx/n)Py(ϕy/n)− Pz(ϕxϕy/n2)Py(ϕy/n)Px(ϕx/n)

]
= 0. (3.220)

Expanding the exponential operators to lowest non-vanishing order in 1/n we obtain(
ϕxϕy/n

2
)

(JyJx − JxJy)/~2 − i
(
ϕxϕy/n

2
)
Jz/~ = 0 ⇔ [Jx, Jy] = i~Jz (3.221)

and by cyclic permutation we find also the other commutation relations of the set (3.1). From this
point on all properties of angular momentum follow from the algebra developed in Section 3.1.

Example 1 - hydrogenic wavefunctions

At this point we are in the position to calculate actual rotations. First, we demonstrate this for a
rotation of the orbital wavefunction ψnlm (r, θ, φ) about the z axis. Specializing to orbital angular
momentum we calculate

Pz(ϕ)ψnlm (r, θ, φ) = e−iϕLz/~ψnlm (r, θ, φ) = e−imϕ/~ψnlm (r, θ, φ) , (3.222)

where we used Lzψnlm = −i~∂φψnlm = m~ψnlm (see Section 1.1.3). In particular, we have
Pz(2π)ψnlm (r, θ, φ) = ψnlm (r, θ, φ).

Example 2 - angular momentum states in Dirac notation

Turning to the general case, we consider the eigenstates {|j,m〉} of the angular momentum operators
J2 and Jz. In this case the effect of an arbitrary rotation about the direction â is given by

Pa(ϕ)|j,m〉 =
∑
m′

|j,m′〉〈j,m′|e−iϕJa/~|j,m〉. (3.223)

The unitary matrix
[Pa(ϕ)]m′m ≡ 〈j,m

′|e−iϕJa/~|j,m〉, (3.224)

is called a linear representation of the rotation operator, Pa(ϕ). In principle, the operators Pa(ϕ),
1 and Ja operate on vectors of the full Hilbert space of J2 and Jz but as the Pa(ϕ) do not mix
states differing in j we can restrict ourselves - for given j - to the corresponding d = 2j + 1
dimensional subspace V d of Hilbert space. This block-diagonal form of the matrix (3.224) is called
the irreducible form of the angular momentum representation. In particular, the eigenstates |j,m〉
transform in accordance with one of the irreducible representations of the full rotation group (the
one corresponding to the value j). Recalling the identity (3.213), we note that by specializing the
matrix (3.224) to the case j = 1

2 we regain the Eqs. (3.193) and (3.195).
For a given basis {|j,m〉} the unitary transformations Pa(ϕ) (corresponding to proper rotations

about the direction â in real space) can be generated with the aid of Eq. (3.224). The set of all
Pa(ϕ) constitutes a group, the group SU(2). The general element of this group is Pa(ϕ), Pa(−ϕ)
is its inverse and for ϕ = 0 we obtain the unit element. Moreover, the set is closed under the
group operation. The operators Ja are called the generators of the group. The rotation matrices
[Pa(ϕ)]m′m are called representations of the group. Depending on the dimension d = 2j + 1 of the
basis {|j,m〉} the operators Pz(ϕ) generate d = 1, 2, 3, · · · dimensional irreducible representations of
the group SU(2). Note that in Section 3.8.3 the above was already established for the special case
s = 1

2 without introducing differential operators. This case is called the fundamental representation
of the group SU(2).
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3.9.3 Integral versus half-integral angular momentum

We are now equipped to analyze the effect of a physical rotation on a system of arbitrary angular
momentum. This will lead us to an important insight in the difference between integer and half-
integer angular momenta. We consider for this purpose a system of angular momentum j, with
{|j,m〉} being the basis defined by the operators J2 and Jz. An arbitrary state |χ〉 of this system
can be decomposed in the form

|χ〉 =

j∑
m=−j

|j,m〉〈j,m|χ〉. (3.225)

Now we apply a physical rotation of this system over 2π about the z axis. Setting â → ẑ and
ϕ→ 2π in Eq. (3.219) we find for the corresponding unitary transformation

Pz(2π)|χ〉 = e−i2πJz/~|χ〉 =

j∑
m=−j

e−i2πm|j,m〉〈j,m|χ〉. (3.226)

Note that each term contains the same phase factor, +1 for integral j and −1 for half-integral j.
Thus we obtain

Pz(2π)|χ〉 =

{
|χ〉 for integral j

−|χ〉 for half-integral j.
(3.227)

Note that for integral j the rotation properties are regular; i.e., all eigenfunctions of the decom-
position are in phase after rotation of the physical system over 2π. This is readily verified for the
spherical harmonics derived from the Schrödinger equation in Section 1.1.3. In contrast, for half-
integral angular momentum we find Pz(2π+ϕ) = −Pz(ϕ) and we have to rotate over an additional
2π (4π in total) to recover the original state |χ〉. This was first demonstrated in 1975 in famous
neutron interferometry experiments [90, 121]. Obviously, in the real space of the laboratory the
range of angles 0 ≤ ϕ < 2π is not distinguishable from the range 2π ≤ ϕ < 4π. Therefore, the
unitary transformations of the group SU(2) capture a property of half-integral angular momenta
that is absent in the real space rotation matrices of the group SO(3) - spin differs from classical
rotation. For a given physical rotation over the angle ϕ (about the z axis) we can equally well choose
Pz(ϕ) or −Pz(ϕ) to describe the corresponding unitary transformation. Recall that we arrived at
same conclusion in Section 3.8.3. Apparently, the “wavefunctions” of half-integral spin systems are
double-valued functions as was first noticed by Wolfgang Pauli [80]. These wavefunctions are called
spinors to distinguish their rotation properties from those of the (single-valued) states of integer
angular momenta (the spherical harmonics). Experimentally this double valuedness is of no conse-
quence because the global phase of the state does not affect the expectation values of the angular
momentum operators. In Section 3.11 we discuss how to generate matrix representations for unitary
transformations of arbitrary angular momenta and illustrate this for the examples s = 1

2 and s = 1.
Importantly, the double covering is of no consequence for unitary transformations of the operators

because the transformation (3.175) involves U and U† symmetrically. This causes the sign of U to
drop out of the transformation; i.e., it does not affect expectation values - as expected for observables.
In contrast, the double covering has important consequences for the states as these become double
valued as expressed by Eqs. (3.194) and (3.196). So, whereas the operators transform like classical
angular momentum operators, the transformation properties of the states have no classical analogue.

3.9.4 Physical rotation of angular momentum systems - general case

Our next task is to generalize the discussion to include rotations about arbitrary axes. According
to the Euler rotation theorem, any passive rotation R can be written as three subsequent coordi-
nate rotations over the Euler angles α, β and γ: R(α, β, γ) = Rz′′(γ)Ry′(β)Rz(α). To obtain the
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corresponding physical rotation RP (α, β, γ) we invert the subsequent Euler rotations,

RP (α, β, γ) = Rz′′(−γ)Ry′(−β)Rz(−α) = R(−α,−β,−γ). (3.228)

Note that RP (α, β, γ) 6= R−1(α, β, γ) = R(−γ,−β,−α). Next, the physical rotation is expressed in
terms of rotations about laboratory-fixed axes with the aid of Eq. (3.187),

RP (α, β, γ) = R(−α,−β,−γ) = Rz(−α)Ry(−β)Rz(−γ). (3.229)

Changing to the corresponding unitary transformation (see Sections 3.8.4 and 3.9.1) we arrive at

PR ≡ P (α, β, γ) = U(−α,−β,−γ) = Pz(α)Py(β)Pz(γ) = e−iαJz/~e−iβJy/~e−iγJz/~. (3.230)

The rotation matrices Dj
m′m

Knowing the unitary matrices corresponding to the Euler rotations we can write the unitary trans-
formations corresponding to an arbitrary physical rotation as

|χ〉′ = PR|χ〉 =

+j∑
m,m′=−j

|j,m′〉〈j,m′|PR|j,m〉〈j,m|χ〉. (3.231)

The rotation matrix element is commonly denoted by

Dj
m′m(α, β, γ) ≡ 〈j,m′|PR(α, β, γ)|j,m〉. (3.232)

In view of the diagonality of Pz the rotation matrix simplifies to

Dj
m′m(α, β, γ) = 〈j,m′|e−iαJz/~Py(β)e−iγJz/~|j,m〉 = e−im

′αdjm′m(β)e−imγ , (3.233)

where the matrix djm′m(β) is given by

djm′m(β) ≡ 〈j,m′|e−iβJy/~|j,m〉. (3.234)

It is straightforward to evaluate this matrix for any integral or half-integral value of j (see Prob-
lems 3.26 and 3.27 for the case j = 1

2 ). A general formula for the matrix elements djm′m(β) was
derived by Wigner [122]

djm′m(β) =
∑
κ

(−1)κ
√

(j +m′)!(j −m′)!(j +m)!(j −m)!

(j +m′ − κ)!(j −m− κ)!κ!(κ−m′ +m)!

× [cos (β/2)]
2j+m′−m−2κ

[sin (β/2)]
2κ−m′+m

, (3.235)

where the summation runs over all values of κ for which the factorials are meaningful. Note that
the djm′m(β) are real, which explains, in hindsight, the preference for the z−y− z rotation sequence
- See Fig. 3.7. The Wigner formula is easily embedded in computer algebra to manipulate angular
momenta of arbitrary size on their generalized Bloch sphere.

Problem 3.23. Show that pure rotations about the x, y and z directions are given by

Pz(α) = P (α, 0, 0), Py(β) = P (0, β, 0), Px(β) = P (− 1
2
π, β, 1

2
π).
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3.9.5 Spherical tensor operators - irreducible tensor operators

Substituting an eigenstate into Eq. (3.231), |χ〉 → |k, q〉, we obtain an expression for the transfor-
mation of eigenstates under rotation

|k, q〉′ =
∑
q′

|k, q′〉Dk
q′q(α, β, γ). (3.236)

Turning to the position representation, 〈r̂|k, q〉 = Y qk (r̂), we obtain the transformation properties of
the Y qk (r̂),

Y qk (r̂′) =
∑
q′

Y q
′

k (r̂)Dk
q′q(α, β, γ). (3.237)

In particular, for r̂ = ẑ only the term q′ = 0 contributes to the summation - see Eq. L.55 - and we
find the following relation between the spherical harmonics and the rotation matrices:

Y qk (r̂′) =

√
2l + 1

4π
Dk

0,q(r̂
′). (3.238)

In Section 3.1.1 we established that the standard components of J transform like the Y q1 (r̂). So,
replacing in Eq. (3.237) Y qk (r̂) by Jq ∈ {J−1, J0, J+1} we find for the transformation properties of
the standard components of J

J ′q =

+1∑
q′=−1

Jq′D
1
q′q(α, β, γ). (3.239)

Combining this expression with Eq. (3.175) we obtain

J ′q = PR(α, β, γ)JqP
†
R(α, β, γ) =

+1∑
q′=−1

Jq′D
1
q′q(α, β, γ). (3.240)

The above procedure can be generalized by introducing spherical tensor operators T(k) as oper-
ators with standard components that transform like Y qk (r̂) [93]. This restricts the rank of the tensor
to integer values, k ∈ {0, 1, · · · }. Replacing in Eq. (3.237) the Y qk (r̂) by the standard components
Tk,q ∈ {Tk,−k, · · · , Tk,k} we obtain

T ′kq = PRTkqP
†
R =

+k∑
q′=−k

Tkq′D
k
q′q. (3.241)

As was first demonstrated by Giulio Racah [86] these transformation properties are valid for any
tensor operator Tkq that satisfies the following commutation relations (see Problem K.1):

[Jz, Tk,q] = q ~Tk,q (3.242a)

[J±, Tk,q] =
√
k (k + 1)− q (q ± 1) ~Tk,q±1. (3.242b)

Operators satisfying these commutation relations are called irreducible tensor operators. They act
within the invariant subspace of a pure angular momentum state (for given j, the subspace spanned
by the basis {|j,m〉}, with −j ≤ m ≤ j - see Section 3.1). Angular momentum operators are
irreducible tensor operators of rank 1 (T1,q → Jq). For these operators the commutation relations
(3.242) reduce to those of angular momentum (cf. Appendix K.1.2). The simplest class of irreducible
tensor operators are the spherical tensor operators of rank 0. These are known as scalar invariants.
They have a single component, T00, which is invariant under rotation (D0

00 = 1),

T ′00 = PRT00P
†
R = T00. (3.243)
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The Hamiltonian of systems of identical particles can only involve irreducible tensor operators of
integral rank since half-integral ranks would give rise to transitions between bosonic and fermionic
states, which contradicts the experimental observation that the statistical nature of particles is
rigorously conserved (cf. Section 3.4.6).

3.10 Composition and reduction of tensor operators

3.10.1 Composition of tensor operators

Let us return to the Clebsch-Gordan transformation for the states

|k, q〉 =

j1∑
m=−j1

j2∑
m=−j2

|j1,m1; j2,m2〉〈j1,m1; j2,m2|k, q〉. (3.244)

We recall from Section 3.9.5 that the standard components Tl,m of the spherical tensor operator
T(l) transform under rotation like the Y ml (r̂) = 〈r̂|l,m〉. Generalizing the transformation properties

to tensors of arbitrary rank, we find that starting from two irreducible tensor operators, T
(j1)
1 and

T
(j2)
2 , we can construct irreducible operators of rank k with the aid of the transformation1

[T
(j1)
1 ⊗ T

(j2)
2 ]kq =

j1∑
m=−j1

j2∑
m=−j2

T1:j1,m1
T2:j2,m2

〈j1,m1; j2,m2|k, q〉. (3.245)

Here, the [T
(j1)
1 ⊗T

(j2)
2 ]kq represent the (2k+1) standard components of the irreducible tensor operator

[T
(j1)
1 ⊗ T

(j2)
2 ](k). The operator [T

(j1)
1 ⊗ T

(j2)
2 ] is called the direct product of the Tensor operators

T
(j1)
1 and T

(j1)
2 . In matrix notation, the operator T(j) is represented by a (2j+ 1)× (2j+ 1) matrix;

i.e., it acts in a (2j + 1)-dimensional space. Turning to 3j symbols and using the projection rule
(J.5) the decomposition (3.245) takes the form

[T
(j1)
1 ⊗ T

(j2)
2 ]kq =

j1∑
m=−j1

T1:j1,mT2:j2,(q−m)(−1)j1−j2+q
√

2k + 1

(
j1 j2 k

m q −m−q

)
. (3.246)

Note that the triangle inequality for 3j symbols restricts the rank of [T
(j1)
1 ⊗T

(j1)
2 ](k) to the interval

|j1 − j2| ≤ k ≤ j1 + j2. (3.247)

The operator [T
(j1)
1 ⊗ T

(j2)
2 ] acts in a (2j1 + 1)(2j2 + 1)-dimensional space and is represented by a

(2j1 + 1)(2j2 + 1)× (2j1 + 1)(2j2 + 1) matrix, which is in index notation given by T1:j1,m1
T2:j2,m2

.

Tensor contraction - invariance

Specializing to the case j1 = j2 = j we find that for every two irreducible tensor operator T
(j)
1 and

T
(j)
2 we can construct a scalar operator (k = q = 0), which, like Y 0

0 (r̂), is invariant under pure
rotations,

[T
(j)
1 ⊗ T

(j)
2 ]00 =

j∑
m=−j

T1:j,mT2:j,−m

(
j j 0

m−m 0

)
=

j∑
m=−j

T1:j,mT2:j,−m
(−1)j−m√

2j + 1
. (3.248)

In case T
(j)
1 = T

(j)
2 = T (j) this invariant is called the Casimir invariant of the tensor T (j).

1Note that two irreducible tensor operators of the same rank have the same transformation properties; hence are
the same up to a scalar multiplyer.
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3.10.2 Reduction of products of tensor operators

We now consider the inverse Clebsch-Gordan transformation for the states,

|j1,m1; j2,m2〉 =

j1+j2∑
k=|j1−j2|

k∑
q=−k

|k, q〉〈k, q|j1,m1; j2,m2〉. (3.249)

we find by following an analogous procedure that the tensor product of two irreducible tensor
operators of rank j1 and j2 can be written as the sum of irreducible tensor operators of rank k, with
k again restricted to the interval (3.247),

T1:j1m1
T2:j2m2

=

j1+j2∑
k=|j1−j2|

T3:k,q(−1)j1−j2+q
√

2k + 1

(
j1 j2 k

m1 m2 −q

)
δq,(m1+m2). (3.250)

The T1:j1m1
T2:j2m2

are the (2j1 +1)(2j2 +1) tensor components of the tensor operator [T
(j1)
1 ⊗T

(j2)
2 ],

which is the direct product of the operators T
(j1)
1 and T

(j1)
2 . Eq. (3.250) shows that [T

(j1)
1 ⊗ T

(j1)
2 ]

can written as the direct sum of irreducible tensor operators,1

[T
(j1)
1 ⊗ T

(j1)
2 ] = [T

(j1)
1 ⊗ T

(j1)
2 ](|j1−j2|) ⊕ · · · ⊕ [T

(j1)
1 ⊗ T

(j1)
2 ](j1+j2). (3.251)

This decomposition is called reduction of the (2j1 + 1)(2j2 + 1) tensor components of [T
(j1)
1 ⊗T

(j1)
2 ]

into the direct sum of the standard components of all irreducible tensor operators [T
(j1)
1 ⊗T

(j1)
2 ](k),

(2j1 + 1)(2j2 + 1) =

j1+j2∑
k=|j1−j2|

(2k + 1). (3.252)

In the matrix representation this implies that the (2j1 + 1)(2j2 + 1) × (2j1 + 1)(2j2 + 1) matrix

representing the operator [T
(j1)
1 ⊗T

(j1)
2 ] is transformed into a block-diagonal form with (2k+1)×(2k+

1) matrices along the diagonal, each representing one of the irreducible operators [T
(j1)
1 ⊗ T

(j1)
2 ](k).

The latter are called irreducible because they cannot be reduced into blocks of lower dimension.

3.10.3 Clebsch-Gordan transformation for the rotation matrices

Sandwiching the rotation operator PR(α, β, γ) between the inverse Clebsch-Gordan transformation
(3.249) and its hermitian conjugate we obtain two expressions for the rotation matrices. On the
l.h.s. we have

Dj1
m′1,m1

Dj2
m′2,m2

= 〈j1,m′1|PR(α, β, γ)|j1,m1〉〈j2,m′2|PR(α, β, γ)|j2,m2〉

= 〈j1,m′1; j2,m
′
2|PR(α, β, γ)|j1,m1; j2,m2〉. (3.253)

On the r.h.s we find

j1+j2∑
k=|j1−j2|

k∑
q,q′=−k

〈j1,m′1; j2,m
′
2|k, q′〉(k, q′|PR(α, β, γ)|k, q)〈k, q|j1,m1; j2,m2〉 =

=

j1+j2∑
k=|j1−j2|

k∑
q,q′=−k

〈j1,m′1; j2,m
′
2|k, q′〉Dk

q′,q〈k, q|j1,m1; j2,m2〉. (3.254)

1The sum of non-intersecting maps is called the direct sum of these maps.
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Equating the two sides we obtain the Clebsch-Gordan transformation for the rotation matrices

Dj1
m′1,m1

Dj2
m′2,m2

=

j1+j2∑
k=|j1−j2|

k∑
q,q′=−k

〈j1,m′1; j2,m
′
2|k, q′〉Dk

q′,q〈k, q|j1,m1; j2,m2〉. (3.255)

Problem 3.24. Derive the Gaunt integral (L.58).

Solution. We start from Eq. (3.238) and express the spherical harmonics in terms of the rotation matrices

Y m1
j1

(r̂)Y m2
j2

(r̂) =

√
2j1 + 1

4π

√
2j2 + 1

4π
Dj1

0,m1
Dj2

0,m2
.

Applying the Clebsch-Gordan transformation (3.255) to the rotation matrices the product can be written
in the form

Y m1
j1

(r̂)Y m2
j2

(r̂) =

j1+j2∑
k=|j1−j2|

k∑
q=−k

√
2j1 + 1

4π

√
2j2 + 1

4π
Dk

0,q〈j1, 0; j2, 0|k, 0〉〈k, q|j1,m1; j2,m2〉.

Recognizing Dk
0,q =

√
4π/(2k + 1)Y qk (r̂) and expressing the CGCs in terms of 3j symbol the product becomes

Y m1
j1

(r̂)Y m2
j2

(r̂) =

j1+j2∑
k=|j1−j2|

k∑
q=−k

(−1)q
√

(2j1 + 1)(2j2 + 1)(2k + 1)

4π
Y qk (r̂)

(
j1 j2 k

0 0 0

)(
j1 j2 k

m1 m2 −q

)
.

Turning to the integral we can apply on the r.h.s. the orthonormality relation (L.51). Since only the term
with k = j3 and q = −m3 is nonzero we arrive at the desired result,

ˆ
Y m1
j1

(r̂)Y m2
j2

(r̂)Y m3
j3

(r̂) dr̂ =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

4π

(
j1 j2 j3
0 0 0

)(
j1 j2 j3
m1 m2 m3

)
. �

3.10.4 Composition of spherical tensor operators from vector operators

Specializing Eq. (3.246) to the case j1 = j2 = j = 1 we can construct spherical tensor operators of
rank 0, 1 and 2,

T3:k,q ≡ [T
(j)
1 ⊗ T

(j)
2 ]kq = (−1)q

√
(2k + 1)

1∑
m=−1

T1:1,mT2:1,(q−m)

(
1 1 k

m q −m−q

)
. (3.256)

This expression provides the algebraic underpinning of the vector model for the addition of angular
momenta as introduced in Section 3.4.1. Denoting the two rank 1 spherical tensor operators (vector
operators) by U and V we can express the standard components of the spherical tensor operators
T(0) (rank 0), T(1) (rank 1) and T(2) (rank 2) in terms of the standard components of U and V:

• standard component of T(0) in terms of the standard components of U and V

T0,0 =
√

1
3 (U+1V−1 − U0V0 + U−1V+1). (3.257)

• standard components of T(1) in terms of the standard components of U and V

T1,0 =
√

1
2 (U+1V−1 − U−1V+1) (3.258a)

T1,± = ±
√

1
2 (U±1V0 − U0V±1). (3.258b)
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• standard components of T(2) in terms of the standard components of U and V

T2,0 =
√

1
6 (U+1V−1 + 2U0V0 + U−1V+1) (3.259a)

T2,±1 =
√

1
2 (U±1V0 + U0V±) (3.259b)

T2,±2 = U±1V±1. (3.259c)

Alternatively, using Eq. (3.30) we can express the standard components of U and V in terms of
the cartesian components of U and V. Using this transformation we obtain an expression for the
standard components of the spherical tensor operators T(0), T(1) and T(2) in terms of the cartesian
components of U and V:

• standard component of T(0) in terms of the cartesian components of U and V

T0,0 = −
√

1
3 (UxVx + UyVy + UzVz). (3.260)

• standard components of T(1) in terms of the cartesian components of U and V

T1,0 = i
√

1
2 (UxVy − UyVx) (3.261a)

T1,±1 = 1
2 [(UzVx − UxVz)± i(UzVy − UyVz)]. (3.261b)

• standard components of T(2) in terms of the cartesian components of U and V

T2,0 =
√

1
6 (2UzVz − UxVx − UyVy) (3.262a)

T2,±1 = ∓ 1
2 [(UxVz + UzVx)± i(UyVz + UzVy)] (3.262b)

T2,±2 = 1
2 [UxVx − UyVy ± i(UxVy + UyVx)]. (3.262c)

3.10.5 Composition of cartesian tensor operators from vector operators

Next we turn to the cartesian components of the spherical tensors T(0), T(1) and T(2) in terms of
the cartesian components of U and V. This offers the possibility to write these tensor components
in vector notation

• cartesian component of T(0) in terms of the cartesian components of U and V

T0 = −
√

1
3 (UxVx + UyVy + UzVz). (3.263)

This shows that, in vector notation, T(0) can be written as a dot product (i.e., remains invariant
under rotation),

T(0) = −
√

1
3 U ·V. (3.264)

• cartesian components of T(1) in terms of the cartesian components of U and V. Inverting
Eqs. (3.261), using Eqs. (K.8), the cartesian components become

Tx = i
√

1
2 (UyVz − UzVy) (3.265a)

Ty = −i
√

1
2 (UxVz − UzVx) (3.265b)

Tz = i
√

1
2 (UxVy − UyVx). (3.265c)
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Using the index notation the can be compactly written in the form

Ti = i
√

1
2εijkUjUk (3.266)

which shows that, in vector notation, T(1) represents a cross product and transforms like a
vector,

T(1) = i
√

1
2

∣∣∣∣∣∣
x̂ ŷ ẑ

Ux Uy Uz
Vx Vy Vz

∣∣∣∣∣∣ = i
√

1
2 (U×V). (3.267)

• cartesian components of T (2) in terms of the cartesian components of U and V. In the index
notation the reduction of the cartesian components Tij becomes - see Problem 3.25

Tij = UiVj = 1
3U ·Vδij + 1

2 (UiVj − UjVi) + 1
2 (UiVj + UjVi)− 1

3U ·Vδij . (3.268)

This expression shows that Tij (i.e., any 3×3 matrix) can be written as the sum of a diagonal
matrix,

1
3U ·Vδij (3.269)

(fixed by the trace of the matrix), an antisymmetric matrix,

Ai,j = 1
2 (UiVj − UjVi) (3.270)

(fixed by 3 matrix elements: UxVy, UxVz and UyVz), and a symmetric matrix of zero trace,

Si,j = 1
2 (UiVj + UjVi)− 1

3U ·Vδij (3.271)

(fixed by 5 matrix elements, UxVy, UxVz, UyVz, UxUy and UyUy, with UzUz following from
the constraint of zero trace).

Problem 3.25. Derive Eq. (3.268), which shows that any 3 × 3 matrix can be written as the sum of a
diagonal matrix, an antisymmetric matrix and a zero-trace diagonal matrix.

Solution. We start from the inverse decomposition (3.250) for the case j1 = j2 = j = 1,

T1,m1T1,m2 =

2∑
k=0

Tk,q(−1)q
√

2k + 1

(
1 1 k

m1 m2 −q

)
δq,(m1+m2). (3.272)

From this expression we obtain (most conveniently with computer algebra) the reduction of the spherical
tensor components T1,m1T1,m2 = Um1Vm2 :

Um1Vm2 V+1 V0 V−1

U+1 T2,+2

√
1
2

(T2,+1 + T1,+1)
√

1
6

(T2,0 +
√

3T1,0 +
√

2T0,0)

U0

√
1
2

(T2,+1 − T1,+1)
√

1
3

(T2,0 −
√

2T0,0)
√

1
2

(T2,−1 + T1,−1)

U−1

√
1
6

(T2,0 −
√

3T1,0 +
√

2T0,0)
√

1
2

(T2,−1 − T1,−1) T2,−2

To obtain the reduction of the cartesian tensor components UiVj , with i, j ∈ {x, y, z}, we the express
the UiVj in terms of the Um1Um2 with the aid of Eqs. (K.8). Subsequently, we substitute for the Tk,q, the
decomposition in terms of the cartesian components of U and V. We demonstrate this explicitly for Txx,
Txy and Txz :

Txx = UxVx = −
√

1
3
T0,0 + 1

2
T2,−2 −

√
1
6
T2,0 + 1

2
T2,2 = 1

3
U ·V + UxUx − 1

3
U ·V

Txy = UxVy = −i(
√

1
2
T1,0 − 1

2
T2,−2 + 1

2
T2,2) = 1

2
(UxVy − UyVx) + 1

2
(UxVy + UyVx)

Txz = UxVz = − 1
2
(T1,−1 + T1,1 − T2,−1 + T2,1) = 1

2
(UxVz − UzVx) + 1

2
(UxVz + UVx).

These results all satisfy the desired expression. 2
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3.11 Generating angular momentum representations

To demonstrate the procedure for generating representations we discuss a few examples. The unitary
matrix Pz(ϕ) for a rotation over an angle ϕ about the ẑ direction is generated by the operator
e−iϕJz/~. The matrix representation follows with Eq. (3.224). For the diagonal representation this
takes a minimal effort,

[Pz(ϕ)]m′,m ≡ 〈j,m′|e−iϕJz/~|j,m〉 = e−iϕmδm′,m (3.273)

and using the definition (3.216),

Jz = i~
∂Pz(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

, (3.274)

we obtain

[Jz]m′,m = m~δm′,me−iϕm|ϕ=0 = m~δm′,m. (3.275)

This could have been written down immediately since

[Jz]m′,m ≡ 〈j,m′|Jz|j,m〉 = m~δm′,m. (3.276)

The added value of the formalism becomes evident when asking for the matrix representation of
non-diagonal angular momentum operators. For instance, the unitary operator Py(θ) corresponds
to a physical rotation over an angle θ about the ŷ direction. In this case the matrix representation
follows with the Wigner formula,

[Py(θ)]m′,m = 〈j,m′|e−iθJy/~|j,m〉 = djm′m(θ). (3.277)

and

〈j,m′|Jy|j,m〉 = i~
∂djm′m(θ)

∂θ

∣∣∣∣∣
θ=0

. (3.278)

3.11.1 Example - the case j = 1/2

To demonstrate the procedure for generating representations we first consider the example of angular
momentum j = 1

2 and rederive the results of Section 3.2.3. The unitary matrix Pz(ϕ) for a rotation
over an angle ϕ about the ẑ direction follows with Eq. (3.273). For j = 1

2 we find

Pz(ϕ) =

 e−iϕ/2 0

0 eiϕ/2

 . (3.279)

To determine Jz we turn to the definition (3.216). First, we calculate the derivative of Pz(ϕ),

∂Pz(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

=

−(i/2)e−iϕ/2|ϕ=0 0

0 (i/2)eiϕ/2|ϕ=0

 = −i

 1/2 0

0 −1/2

 . (3.280)

Substituting this result into Eq. (3.216) we obtain for the angular momentum operator

Jz = i~
∂Pz(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

= 1
2~

 1 0

0 −1

 . (3.281)
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The corresponding eigenvectors are

|�〉 =

 1

0

 , |�〉 =

 0

1

 . (3.282)

There are various equivalent ways to proceed. First of all we can use again the method demon-
strated for Jz. To determine Jy we start from the unitary operator Py(θ), representing a physical
rotation over an angle θ about the ŷ direction. For j = 1

2 the operator Py(θ) follows with Eq. (3.277)

Py(θ) = d
1/2
m′m(θ) =

 cos (θ/2) − sin (θ/2)

sin (θ/2) cos (θ/2)

 . (3.283)

Using the definition (3.216) we calculate the derivative of Pz(ϕ),

∂Py(θ)

∂θ

∣∣∣∣
θ=0

= 1
2

− sin (θ/2) |θ=0 − cos (θ/2) |θ=0

cos (θ/2) |θ=0 − sin (θ/2) |θ=0

 = 1
2

 0 −1

1 0

 . (3.284)

Substituting this result into Eq. (3.216) we obtain for the angular momentum operator

Jy = i~
∂Py(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

= 1
2~

 0 −i

i 0

 . (3.285)

3.11.1.1 Transformation of the cartesian components of J

An alternative approach to obtain Jx and Jy is by unitary transformation of Jz and Jx,

Jx = Py(π/2)JzP
†
y (π/2) (3.286a)

Jy = Pz(π/2)JxP
†
z (π/2). (3.286b)

The unitary operator Pz(ϕ) corresponds to a physical rotation over an angle ϕ about the ẑ direction -
see Eq. (3.273); for j = 1

2 it is given by Eq. (3.279). Likewise, the unitary operator Py(θ) corresponds
to a physical rotation over an angle θ about the ŷ direction - see Eq. (3.277); for j = 1

2 it is given
by Eq. (3.283). Using ϕ = π/2 in Pz(ϕ) and θ = π/2 in Py(θ) the unitary operators become

Pz(π/2) =
√

1
2

 1− i 0

0 1 + i

 , Py(π/2) =
√

1
2

 1 −1

1 1

 . (3.287)

Substituting these expressions into Eqs. (3.286) we find

Jx = 1
2~

 0 1

1 0

 , Jy = 1
2~

 0 −i

i 0

 . (3.288)

The shift operators follow from the definitions (3.4),

J+ = ~

 0 1

0 0

 and J− = ~

 0 0

1 0

 . (3.289)
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With these expressions we generated the results of Section 3.2.3. The commutation relations (3.1)
and (3.7) as well as the shift relations (3.24) are satisfied. Using Eq. (3.9) we calculate J2 = 3

4~
21,

where 1 is the unit matrix. This not only shows that Eq. (3.22a) is satisfied but also that J2 is
invariant under rotation - like any scalar operator (cf. Appendix K). This is not surprising because√
〈J2〉 is a measure for the magnitude of J. Once the matrices for Jy and Jz are known the matrix

expressions for Pz(ϕ) = Uz(−ϕ) = e−iϕJz/~ and Py(ϕ) = Uy(−ϕ) = e−iϕJy/~ can also be derived
by expansion of the exponential operators. This is demonstrated in Problems 3.26 and 3.27.

3.11.1.2 Transformation of the angular momentum eigenstates

As an example we derive some expressions for the eigenstates of the s = 1
2 system with respect an

arbitrary quantization axis starting from the states |�〉 and |�〉 defined in Eqs. (3.41). A change of
the quantization axis from ẑ = (0, 0) to r̂ = (θ, φ) is realized by a rotation of the coordinate system
over the Euler angles γ = 0, β = −θ and α = −φ. The corresponding unitary transformation is
given by

D1/2(α, β, γ) = Pz(φ)Py(θ)Pz(0). (3.290)

Substituting Eqs. (3.279) and (3.283) we obtain

D1/2(φ, θ, 0) =

 e−iφ/2 cos (θ/2) −e−iφ/2 sin (θ/2)

eiφ/2 sin (θ/2) eiφ/2 cos (θ/2)

 . (3.291)

Thus, the spin-up and spin-down states with respect to an arbitrary quantization axis in the r̂
direction are given by

|�〉r = D1/2(φ, θ, 0) |�〉 = e−iφ/2

 cos (θ/2)

eiφ sin (θ/2)

 (3.292a)

|�〉r = D1/2(φ, θ, 0) |�〉 = e−iφ/2

 − sin (θ/2)

eiφ cos (θ/2)

 . (3.292b)

Note that with Eq. (3.292a) we regained Eq. (3.61).

Problem 3.26. Show by expansion of the exponential operator eiαSz/~ that the two-dimensional unitary
transformation corresponding to a rotation over an angle α about the z axis is given by

Uz(α) =

 eiα/2 0

0 e−iα/2

 .

Solution. We start with the expansion of the exponential operator,

Uz(α) = eiαSz/~ = 1 + iαSz/~ +
1

2!
(iαSz/~)2 +

1

3!
(iαSz/~)3 + · · · .

The even and the odd terms can be factorized in a form containing a common matrix,

(iαSz/~)2n = (iα/2)2n

 1 0

0 1

 ; (iαSz/~)2n+1 = (iα/2)2n+1

 1 0

0 −1

 .
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Next we recall the expansions of the sine and the cosine,

cosϕ =

∞∑
n=0

(−1)n

2n!
ϕ2n =

∞∑
n=0

(iϕ)2n

2n!

i sinϕ =

∞∑
n=0

i (−1)n

(2n+ 1)!
ϕ2n+1 =

∞∑
n=0

(iϕ)2n+1

(2n+ 1)!
.

Summing the even and odd terms separately we obtain

Uz(α) = cos(α/2)

 1 0

0 1

+ i sin(α/2)

 1 0

0 −1

 .

Using the relation eiϕ = cosϕ+ i sinϕ we arrive at the desired expression. 2

Problem 3.27. Show by expansion of the exponential operator eiβSy/~ that the two-dimensional unitary
transformation corresponding to a rotation over an angle β about the y axis is given by

Uy(β) =

 cos (β/2) sin (β/2)

− sin (β/2) cos (β/2)

 .

Solution. The proof goes along the same lines as in Problem 3.21. We start with the expansion of the
exponential operator. In the present case the even and the odd terms factorize differently in the following
way,

(iβSy/~)2n = (iβ/2)2n

 1 0

0 1

 ; (iβSy/~)2n+1 = (iβ/2)2n+1

 0 −i

i 0

 .

Recalling the expansions of the sine and cosine we obtain after summing over the even and odd terms

Uy(β) = cosβ/2

 1 0

0 1

+ sinβ/2

 0 1

−1 0

 .

Adding the two contributions we arrive at the desired expression. 2

3.11.2 Example: l = 1 orbital angular momentum

To demonstrate the procedure for generating representations we consider the example of l = 1
orbital angular momentum and rederive Eq. (3.32). The unitary matrix Pz(ϕ) is generated by the
operator e−iϕLz/~. The matrix elements follow with Eq. (3.224),

[Pz(ϕ)]m′,m = 〈l,m′|e−iϕLz/~|l,m〉 =

 e−iϕm/~ for m′ = m

0 for m′ 6= m.
(3.293)

For l = 1 we obtain

Pz(ϕ) =


e−iϕ 0 0

0 1 0

0 0 eiϕ

 . (3.294)
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To determine Lz we turn to the definition (3.216). First, we calculate the derivative of Pz(ϕ),

∂Pz(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

=


−ie−iϕ|ϕ=0 0 0

0 0 0

0 0 ieiϕ|ϕ=0

 = −i


1 0 0

0 0 0

0 0 −1

 . (3.295)

Substituting this result into Eq. (3.216) we obtain for the angular momentum operator

Lz = i~
∂Pz(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

= ~


1 0 0

0 0 0

0 0 −1

 . (3.296)

This is indeed the expression given by Eq. (3.32).
The unitary matrix Py(ϕ) is generated by the operator e−iϕLy/~. The matrix elements follow

with Eq. (3.224),
[Py(θ)]m′,m = 〈j,m′|e−iθJy/~|j,m〉 = djm′m(θ). (3.297)

For l = 1 we obtain

Py(θ) =


1
2 (1 + cosθ) −

√
1
2 sinθ 1

2 (1− cosθ)√
1
2 sinθ cosθ −

√
1
2 sinθ

1
2 (1− cosθ)

√
1
2 sinθ 1

2 (1 + cosθ)

 . (3.298)

To determine Ly we use the definition (3.216). First, we calculate the derivative of Py(θ),

∂Py(θ)

∂θ

∣∣∣∣
θ=0

=


− 1

2 sinθ|θ=0 −
√

1
2cosθ|θ=0

1
2 sinθ|θ=0√

1
2cosθ|θ=0 −sinθ|θ=0 −

√
1
2cosθ|θ=0

1
2 sinθ|θ=0

√
1
2cosθ|θ=0 − 1

2 sinθ|θ=0

 =
√

1
2


0 −1 0

1 0 −1

0 1 0

 . (3.299)

Substituting this result into Eq. (3.216) we obtain for the angular momentum operator

Ly = i~
∂Py(θ)

∂θ

∣∣∣∣
θ=0

=
√

1
2~


0 −i 0

i 0 −i

0 i 0

 . (3.300)

Note that this is the expression given in Eq. (3.34).

3.11.2.1 Transformation of the angular momentum eigenstates

As an example we derive some expressions for the eigenstates of the l = 1 system with respect an
arbitrary quantization axis starting from the state |1, 1〉 ≡ |1, 1〉z defined in Eqs. (3.31). A change of
the quantization axis from ẑ = (0, 0) to r̂ = (θ, φ) is realized by a rotation of the coordinate system
over the Euler angles γ = 0, β = −θ and α = −φ. The corresponding unitary transformation is
given by

D1(α, β, γ) = Pz(φ)Py(θ)Pz(0). (3.301)
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Substituting Eqs. (3.294) and (3.298) we obtain

D1(φ, θ, 0) =


1
2 (1 + cosθ)e−iϕ −

√
1
2 sinθe−iϕ 1

2 (1− cosθ)e−iϕ√
1
2 sinθ cosθ −

√
1
2 sinθ

1
2 (1− cosθ)eiϕ

√
1
2 sinθeiϕ 1

2 (1 + cosθ)eiϕ

 . (3.302)

Hence, by unitary transformation we find |1, 1〉x and |1, 1〉y

|1, 1〉x = D1(0, π/2, 0 |1, 1〉 =
1

2


1 −

√
2 1

√
2 0 −

√
2

1
√

2 1




1

0

0

 =
1

2


1
√

2

1

 (3.303a)

|1, 1〉y = D1(π/2, π/2, 0) |1, 1〉 =
1

2


−i i
√

2 −i
√

2 0 −
√

2

i i
√

2 i




1

0

0

 =
1

2


−i
√

2

i

 . (3.303b)

The corresponding density matrices are ρ|1,1〉xand ρ|1,1〉y follow directly from these expressions

ρ|1,1〉x =
1

4


1
√

2 1
√

2 2
√

2

1
√

2 1

 and ρ|1,1〉y =
1

4

i
1 −i

√
2 −1

√
2 2 −i

√
2

−1 i
√

2 1

 . (3.304)

Note that these density matrices are idempotent and have unit trace as required for pure states.

3.11.2.2 Transformation of the cartesian components of J

An alternative approach to obtain Jx and Jy is by unitary transformation of Jz and Jx,

Jx = Py(π/2)JzP
†
y (π/2) (3.305a)

Jy = Pz(π/2)JxP
†
z (π/2). (3.305b)

The unitary operator Pz(ϕ) corresponds to a physical rotation over an angle ϕ about the ẑ direction -
see Eq. (3.273); for j = 1 it is given by Eq. (3.294). Likewise, the unitary operator Py(θ) corresponds
to a physical rotation over an angle θ about the ŷ direction - see Eq. (3.297); for j = 1 it is given
by Eq. (3.298). Using ϕ = π/2 in Pz(ϕ) and θ = π/2 in Py(θ) the unitary operators become

Pz(π/2) =


−i 0 0

0 1 0

0 0 i

 , Py(π/2) =
1

2


1 −

√
2 1

√
2 0 −

√
2

1
√

2 1

 . (3.306)

Substituting these expressions into Eqs. (3.305) we find

Jx =
√

1
2~


0 1 0

1 0 1

0 1 0

 , Jy =
√

1
2~


0 −i 0

i 0 −i

0 i 0

 . (3.307)
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The shift operators follow from the definitions (3.4),

J+ =
√

2~


0 1 0

0 0 1

0 0 0

 and J− =
√

2~


0 0 0

1 0 0

0 1 0

 . (3.308)

With these expressions we generated the results of Section 3.2.1.



4

Fine Structure

In Chapter 2 we introduced the term fine structure for small deviations from the principal atomic
structure. The deviation from the Bohr formula can be a small shift or involve the splitting of an
energy level. A common feature is that the shift or splitting is much smaller than the separation
from adjacent Bohr levels. Interestingly, fine-structure splittings were already recorded a century
before the Bohr formula was derived. In 1814 Joseph von Fraunhofer studied the solar spectrum
and noted the famous doublet splitting of the D lines of sodium (Na) at 589.5 nm [45]. We shall
find that in the alkali elements this splitting arises from slight differences in screening of the nuclear
charge by the core electrons (see Section 4.5).

The fine structure of atomic hydrogen has a completely different origin. Revealing this origin
has been one of the great puzzles of modern physics - competing phenomena had to be unraveled
and important new physics had to be discovered. The first step was made by Arnold Sommerfeld,
who showed in 1916 that relativistic correction of the kinetic energy gives rise to a doublet splitting
of the correct order of magnitude [104]. A rigorous relativistic description was possible only after
Paul Dirac formulated his relativistic quantum theory for the electron in 1928 [33]. In this theory
the appearance of spin and the associated magnetic moment were identified as intrinsic relativistic
phenomena. Aside from relativistic corrections also radiative corrections are essential to explain the
detailed fine structure of the hydrogen atom. In 1947 Willis Lamb and Robert Retherford measured
a small shift between the 2s and 2p level in hydrogen that could not be explained by the Dirac
theory [68]. In the same year Hans Bethe demonstrated that this so-called Lamb shift arises from
the zero-point fluctuations of the quantized electromagnetic field [13]. This has been one of the
key ingredients that led to the formulation of modern quantum electrodynamics (QED) in which
relativistic quantum mechanics and electrodynamics are unified in a single theory.

Unfortunately, both the Dirac theory and QED fall outside the scope of this introductory course.
We adopt the phenomenological point of view in which the consequences of the Dirac theory (like
spin) are postulated. This has the advantage that the elements of atomic spectroscopy can be
introduced without facing the full complexity of the atom at once. Following the historical sequence
of events we introduce the relativistic corrections to the kinetic and potential energy of the electrons
and discuss the properties of spin as well as the origin of spin-orbit coupling. This phenomenological
approach can be justified as being a mapping of the Dirac theory onto an effective Hamiltonian which
can be evaluated with perturbation theory.

Atoms consist of orbiting and spinning charges. Therefore, it is not surprising that these ingredi-
ents affect the atomic structure at the fundamental level. They manifest themselves as classical and
non-classical forms of magnetism. The best known magnetic phenomenon is the splitting of spectral
lines by an applied magnetic field. This was discovered by Pieter Zeeman in 1897 and known as the
Zeeman effect [125]. In zero field, the electronic magnetism manifests itself in spin-orbit splitting.
The importance of magnetic interactions reaches far beyond atomic physics into condensed mat-
ter physics and chemistry. Magnetic interactions between atoms are crucial for the understanding
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of molecular binding and cohesion in solids and find important applications, for instance in med-
ical imaging. Interestingly, although decisive for major applications, in atomic physics magnetic
interactions appear as weak perturbations of the principal atomic structure.

In the coming sections we introduce the atomic fine structure of one-electron atoms.. We start
with hydrogenic atoms and identify four contributions to the level shift (see Fig. 4.1). We distinguish
between orbital- and spin-related coupling to magnetic fields (Sections 4.1-4.2). The spin and orbital
dynamics are combined in spin-orbit coupling (Section 4.5). This is a velocity-induced phenomenon
and embodies the central issue of the chapter. We discuss how, in hydrogenic atoms, the various
shifts enter on equal footing (Section4.5), whereas in alkali-like atoms the spin-orbit shift dominates
the physics (Section 4.6). This is explained by the role of core electrons which effectively screen the
valence electron from the nuclear charge. The last section of the chapter deals with the competition
between spin-orbit and Zeeman coupling (Section 4.7).

4.1 Relativistic and radiative shifts

4.1.1 Relativistic mass correction

Close to the nucleus the electrons are accelerated to relativistic velocities. This gives rise to lifting
of the degeneracy of energy levels of different l but equal n. The relativistic shifts are small but
comparable to the Zeeman splitting. The relativistic Hamiltonian of a spinless particle of rest mass
m moving in a central field V(r) is given by

H =
√
c2p2 +m2c4 + V(r). (4.1)

Subtracting the rest energy mc2 and the potential energy V(r) we obtain the kinetic energy T, which
can be expanded in even powers of v/c,

T =
√
c2p2 +m2c4 −mc2 = mc2

√
1 + (

v

c
)2 −mc2

=
[
1 + 1

2 (
v

c
)2 − 1

8 (
v

c
)4 + · · · − 1

]
mc2

=
p2

2m
− 1

2mc2

(
p2

2m

)2

+ · · · ]. (4.2)

The second line shows how the mass of the moving body depends on v/c. For weakly relativistic
velocities the expansion (4.2) can be used to calculate the relativistic correction to the kinetic energy
by perturbation theory. In particular, using the reduced mass mr of the electron in a hydrogenic
atom we can write the atomic Hamiltonian in the form (H.1)

H−mrc
2 = T + V(r) =

p2

2mr
+ V(r) +Hmass

r = H0 +Hmass
r , (4.3)

where H0 is the (non-relativistic) Schrödinger Hamiltonian (2.1) with eigenstates Rnl (r) given by
Eq. (2.37). The perturbation Hmass

r can be expressed in terms of H0 and V(r)

Hmass
r = − 1

2mrc2

(
p2

2mr

)2

= − 1

2mrc2

(
p2
r

2mr
+

L2

2mrr2

)2

= − 1

2mrc2
[H0 − V(r)]

2
. (4.4)

We now calculate the splitting of the Bohr level n by the relativistic mass correction. Since Hmass
r

commutes with L2 and Lz, the relativistic mass correction is diagonal in the rotational basis {|lml〉};
i.e., l and ml are “good” quantum numbers. This makes explicit diagonalization of the perturbation
matrix superfluous and reveals the rotational basis as the optimal basis to evaluate the perturbation
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Figure 4.1: Fine-structure effects in hydrogenic atoms. From left to right are shown the unperturbed level
at E2 = − 1

4
RM and the cumulative effects of subsequently the relativistic mass correction shift ∆Emass

2 ,
the Darwin shift ∆ED

2 , the spin-orbit shifts ∆ELS2,j for j = l ± 1
2

and the Lamb shift. The latter cannot be
understood with classical fields but requires quantum electrodynamics (QED). On the far right the Balmer
transitions are shown. The dashed line is forbidden as a single photon electric-dipole transition.

(see Appendix H.3). Although states of different n are coupled by the perturbation (Hmass
r does not

commute with H0) this is of no consequence as long as the second order correction is negligible (n
is a “good quantum number to first order in perturbation theory”). The latter is satisfied as long
as the first-order shifts are small in comparison to the level separation of the principal structure.
Under these conditions the level shifts can be calculated in hydrogenic basis, {|nlml〉}, using the
well-known expression from ordinary first-order perturbation theory - see Appendix H.3.1

∆Emass
nlm = 〈nlml|Hmass

r |nlml〉. (4.5)

Using the hermiticity of H0 as well as the eigenvalues of the Schrödinger Hamiltonian we obtain

∆Emass
nlml

= − 1

2mrc2
〈nlml| [H0 − V(r)]

2 |nlml〉 (4.6)

= − 1

2mrc2
[E2
n − 2En〈nlml|V(r)|nlml〉+ 〈nlml|V2(r)|nlml〉]. (4.7)

Let us evaluate the relativistic shift ∆Emass
nlml

for hydrogenic atoms. Using the radial wavefunc-
tions given in Section 2.3 we find that the shift is independent of the quantum number ml. After
integration over the angles θ and φ it takes the form

∆Emass
nl = − 1

2mrc2

[
E2
n − 2En

ˆ ∞
0

V(r)R2
nl(r)r

2dr +

ˆ ∞
0

V2(r)R2
nl(r)r

2dr

]
. (4.8)

Before evaluating the integral we note that the electrostatic interaction can be expressed in terms
of the fine-structure constant α, V(r) = −(e2/4πε0)Z/r = −α2mrc

2Za/r. Then, using Eq. (2.33)
for En and Eqs. (2.49) for 〈1/ρ〉 and

〈
1/ρ2

〉
we obtain

∆Emass
n = −En

En
2mrc2

[1 + 2α2mrc
2Z/En 〈1/ρ〉+

(
α2mrc

2Z/En
)2 〈

1/ρ2
〉
]

= En
α2Z2

4n2

[
1− 2

2n2

Z

Z

n2
+

(
2n2

Z

)2
Z2

n3

1

l + 1/2

]

= −En
α2Z2

n2

(
3

4
− n

l + 1/2

)
. (4.9)
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This is a celebrated result - obtained by Arnold Sommerfeld in 1916 [104]. Note that it validates our
use of first-order perturbation theory because the shifts are small compared to the level spacing of the
principal structure, ∆Emass

n /En ≈ α2. More interestingly, it shows that the relativistic corrections
depend on the orbital angular momentum quantum number l and are biggest for states with low
l. This l dependence lifts the accidental degeneracy of states with different angular momentum
(see Fig. 4.1). Physically this is to be expected: the smaller the value of l, the closer the electron
approaches the nucleus, the faster the motion and the larger the relativistic shift.

4.1.2 Darwin term

The relativistic velocity of the electron close to the nucleus also affects the Coulomb interaction.
It turns out that under weakly relativistic conditions the Dirac equation can be reduced to a
Schrödinger-type equation in which the effective Coulomb interaction is weaker. This is expressed
by a correction term in the effective Hamiltonian known as the Darwin term,

HDarwin
r =

e~2

8m2
ec

2
divE. (4.10)

The Darwin term has no classical analogue but it can be made plausible. The Dirac theory has the
property that relativistic electrons exhibit a rapid quiver motion called Zitterbewegung [100, 51] over
distances of the order of the (reduced) Compton wavelength, λC = ~/mec = αa0 ' 3.86× 10−13 m.
This length is a factor α smaller than the Bohr radius, a0 ' 5.29× 10−11 m, but much larger than
the proton rms charge radius rp ' 8.78 × 10−16 m. If we postulate this Zitterbewegung we can
estimate the magnitude of the Darwin term by heuristically delocalizing the electron presuming a
centrally symmetric charge distribution %(r′) of size of the Compton wavelength and normalized
to the total charge,

´
%(r′)dr′ = −e. In this model an effective electrostatic energy is obtained by

averaging over the charge distribution. For a nucleus of charge Ze at position r the average is given
by

V(r) = Ze

ˆ
%(r′)ϕ(r− r′)dr′. (4.11)

Here

ϕ(r− r′) =
1

4πε0

1

|r− r′|
(4.12)

is a nonlocal scalar potential, nonlocal because the electron is delocalized as is accounted for by
integrating over the dummy variable r′. Obviously, the model cannot provide more than an order of
magnitude estimate. So, we simply model the electron as a homogeneously charged sphere of radius
R, with the charge density given by

%(r′) = %0 = − 3e

4πR3
. (4.13)

To evaluate the integral we choose r and r′ relative to the center of the charge distribution as
illustrated in Fig. 4.2. Using the multipole expansion (L.41) we find with the aid of the orthogonality
relation for Legendre polynomials (L.45) that for a spherical charge distribution only the l = 0
contribution is nonvanishing and obtain for the electrostatic potential (see Problem 4.1)1

ϕ(r) = − 1

4πε0

e

r
− 1

4πε0

e

2R

[
3−

( r
R

)2

− 2
R

r

]
r<R

. (4.14)

To obtain the Darwin term we rewrite the potential energy in a form introducing a short-range
correction to the pure Coulomb law

V(r) = Zeϕ(r) = − Ze2

4πε0

1

r
+ V ′(r). (4.15)

1Nonspherical nuclei are discussed in Chapter 6.
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Figure 4.2: Electrostatic scalar potential (see a) and electric field (see c) of a homogeneously charged solid
sphere of total charge q and radius R (see c). The dashed vertical arrow shows how the electrostatic potential
can be obtained by correcting the Coulomb law for distances r ≤ R.

Comparing Eqs. (4.14) and (4.15) we find that the correction is given by

V ′(r) = − Ze2

4πε0

1

2R

(
3− r2

R2
− 2R

r

)
for r ≤ R. (4.16)

We calculate the Darwin correction of the Bohr level n in the same way as the relativistic mass
correction. We use ordinary first-order perturbation theory in the hydrogenic basis {|nlml〉},

∆EDarwin
n = 〈nlml|V ′(r)|nlml〉. (4.17)

Since V ′(r) commutes with L2 and Lz this perturbation is diagonal in the rotational basis {|lml〉};
i.e., l and ml are “good” quantum numbers. Since V ′(r) does not commute with H0, states of
different n are coupled by the perturbation but this is of no consequence as long as the second-
order shift is negligible (n is a “good quantum number to first order in perturbation theory” - see
Appendix H.3). In the position representation we find

∆EDarwin ' − Ze2

4πε0

1

2R

ˆ (
3− r2

R2
− 2R

r

)
R2
nl(r)|Y

ml
l (r̂)|2dr with r ≤ R. (4.18)

Since V ′(r) has central symmetry the angular part evaluates to unity. Since r ≤ R� a0 the radial
wavefunction can be replaced by its value in the origin and the Darwin correction is given by

∆EDarwin ' − Ze2

4πε0

1

2R
R2
nl(0)

ˆ R

0

(
3− r2

R2
− 2R

r

)
r2dr =

Ze2

4πε0

R2

10
R2
nl(0). (4.19)

Importantly, this expression shows that the Darwin shift only affects s states because for nonzero
angular momentum the radial wavefunction vanishes in the origin (see Fig. 2.2). The result (4.19)
can also be obtained by using the concept of a contact interaction; i.e., an interaction for which
the strength scales with the probability density of the electronic wavefunction at the position of the
nucleus. Note that by including the following contact interaction directly into the Hamiltonian

HDarwin
r ' Ze2

ε0

R2

10
δ(r) (4.20)

we regain the Darwin shift (4.19) after averaging over the electronic wavefunction.1 With insider
knowledge of Eq. (4.10) we choose R2/10 = λ2

C/8 and obtain

HDarwin
r =

Ze2

ε0

~2

8m2
ec

2
δ(r). (4.21)

1Note the relation δ(r) = 4πδ(r)r2.
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This results also follows directly from Eq. (4.10). In the Dirac theory the electron is point like and
its Coulomb potential in the field of the nuclear charge given by ϕ(r) = Ze/4πε0r. Since E = −∇ϕ
and ∆1/r = −4πδ(r) the Darwin term (4.10) takes the form (4.21).

To conclude the section we calculate the total relativistic correction. For the Darwin correction
we use ~/mec = αa0 and recalling Eq. (2.39) for the radial wavefunction in the origin we obtain

∆EDarwin =
1

4πε0

e2

a0

Z2

2n2

α2Z2

n2
n = −En

α2Z2

n2
n. (4.22)

Combining the two relativistic corrections

Hr = Hmass
r +HDarwin

r , (4.23)

we obtain the total relativistic shift

∆Erel
n = ∆Emass

n + ∆EDarwin
n =


−En

α2Z2

n2

(
3

4
− n

l + 1/2

)
for l > 0

−En
α2Z2

n2

(
3

4
− n

)
for l = 0.

(4.24)

The relativistic splitting between the nl and ns levels is given by

∆Erel
nl−ns =

α2Z2

n3

(
2l − 1

2l + 1

)
Ry (4.25)

In atomic hydrogen the relativistic splitting between the 2p and 2s levels is ∆Erel
2p−2s = 7.296 GHz.

As we shall see in the coming sections the relativistic corrections discussed here are of the same
order of magnitude as typical magnetic corrections.

Problem 4.1. Show that for a homogeneously charged sphere (radius R, total charge q) the electrostatic
potential can be written as the sum of a pure Coulomb potential plus a correction term for distances r < R,

ϕ(r) =
1

4πε0

q

r
+

1

4πε0

q

2R

[
3−

( r
R

)2
− 2

R

r

]
r<R

.

Solution. The electrostatic potential is given by

ϕ(r) =
1

4πε0

ˆ
%(r′)

|r− r′|dr
′.

For a homogeneously charged sphere of total charge q the charge density is %0 = 3q/4πR3. As the charge
distribution is spherical we can evaluate the integral by restricting ourselves to the first term of the multipole
expansion (L.41). Thus, we obtain

ˆ
%(r′)

r>
dr′ =


%0
r

ˆ r

0

4πr′2dr′ + %04πr′dr′ =
q

2R

[
3−

( r
R

)2]
r < R

%0
r

ˆ R

0

4πr′2dr′ =
q

r
r ≥ R,

where r> = max{r, r′}. Adding and subtracting q/r for distances r < R we obtain after putting the
prefactor the desired expression (see Fig. 4.2). 2

4.1.3 Lamb shift

Quantum electrodynamics (QED) is outside the scope of this introductory text but a flavor of its
origin can be obtained from Welton’s picture for the Lamb shift. Welton argued that the zero-point
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fluctuations of the quantized electromagnetic field will give rise to quiver motion of the electrons
relative to the nucleus. This quiver motion will reduce the Coulomb interaction of the electrons
with the nucleus because, like the Zitterbewegung in the case of the Darwin correction, the zero-
point motion will tend to delocalize the electron. Thus, also in the present case we shall represent
the electron by a centrally symmetric charge distribution %(r′) normalized to the total charge,´
%(r′)dr′ = −e. Therefore, we simply presume the charge to be homogeneously distributed over a

sphere of radius RL. Hence, the Lamb shift can be estimated in the same way as the Darwin shift,
which leads to the result

∆ELamb =
Ze2

4πε0

R2
L

10
R2
nl(0). (4.26)

This means that the Lamb shift only affects the s states. Without further explanation we state that
the radius can be estimated to be RL '

√
3αλC , which means that the Lamb shift is a few percent

of the Darwin shift.

4.2 Hamiltonian for electronic motion in magnetic fields

In the presence of an externally applied magnetic field B the motion of a charged particle is affected
by the Lorentz force, F = q(v×B), with q the charge of the particle and v = ṙ its velocity. Unlike
the electrical force F = qE, the Lorentz force is a velocity dependent force. It is an example of a
generalized force for which a generalized potential function may be defined such that the canonical
description of classical mechanics remains valid (see Problem 4.2). The generalized potential function
for a particle of charge q is given by

U(r,v, t) = q(ϕ− v ·A). (4.27)

Here ϕ(r, t) is the scalar potential and A(r, t) the vector potential of the electromagnetic field, with
B =∇×A and E = −∇ϕ− ∂A/∂t expressions for the magnetic and electric fields, respectively.1

Like the force, also the momentum of charged particles is affected by the B field. The generalized
momentum is given by the canonical expression pj = ∂L/∂vj , where L = T − U is the Lagrangian,
with T the kinetic energy and U the generalized potential function of a system. Substituting
T = 1

2mv2 for the kinetic energy and Eq. (4.27) for the generalized potential energy we obtain for
the canonical momentum

p = mv + qA, (4.28)

which shows that a particle of mass m and charge q does not carry only kinetic momentum mv but
also electromagnetic momentum qA.

To calculate the energy eigenstates of the atom in the presence of magnetic fields we have to
quantize the classical Hamiltonian

H = p · v − L. (4.29)

Substituting the Lagrangian we obtain

H = mv2 + qA · v − 1

2
mv2 + q(ϕ− v ·A) =

1

2
mv2 + q ϕ(r), (4.30)

which is seen to coincide with the familiar expression (1.1). To prepare for quantization we rewrite
the classical Hamiltonian in terms of the canonical momentum

H =
1

2m
(p− qA)2 + q ϕ(r). (4.31)

1Note that the expressions for the fields indeed satisfy the Maxwell equations ∇ ·B = 0 and ∇× E = −∂B/∂t
because ∇ · (∇×A) = 0 for any vector A and ∇×∇ϕ = 0 for any scalar ϕ.
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With the identification p → −i~∇ we obtain the quantum mechanical Hamiltonian for a charged
particle in a classical electromagnetic field

H =
1

2m
(−i~∇− qA)2 + q ϕ(r). (4.32)

To obtain the well-known Zeeman Hamiltonian we write Eq. (4.32) in the form1

H = − ~2

2m
∆ +

i~q
2m

[(∇ ·A) + (A ·∇)] +
q2

2m
A2 + q ϕ(r). (4.33)

This expression may be simplified using the gauge freedom: A is not uniquely defined. Because we
have ∇ ×∇χ = 0 for any choice of scalar potential χ, any vector potential A = A′+∇χ results
with B =∇×A in the same magnetic field. Hence, by choosing ∆χ = −∇ ·A′ the vector potential
can be made divergence-free

∇ ·A = 0. (4.34)

This choice for the vector potential is called the Coulomb gauge, also known under the name radiation
gauge. It is the preferred gauge for atomic physics [27]. In the Coulomb gauge, the Hamiltonian
(4.33) takes the form

H = − ~2

2m
∆ + V(r) +

i~q
m

A ·∇+
q2

2m
A2, (4.35)

where V (r) = q ϕ(r) is the Coulomb energy of the charge q.
Specializing further to a homogeneous magnetic field the vector potential can be written as2

A = 1
2B× r. (4.36)

This relation is readily verified by direct substitution in B = ∇ ×A. Substituting Eq. (4.36) into
Eq. (4.35) we obtain3

H = H0 −
q

2m
L ·B +

q2

8m
r2
⊥B2, (4.37)

where H0 is the Schrödinger Hamiltonian, the second term stands for the orbital Zeeman coupling
(cf. Section 4.3.3) and the third term for the atomic diamagnetism (cf. Section 4.3.2). The operator
r⊥ = r sin θ represents the component of the radius vector perpendicular to the direction of B.

Problem 4.2. Show that the force F = q(E + v × B) acting on a charge q, moving at velocity v in an
electromagnetic field given by E (t) and B (t), may be described as arising from a generalized potential
function U(r,v, t) = q (ϕ− v ·A), where ϕ (r) is the scalar potential (Coulomb potential) and A(r, t) the
vector potential of the electromagnetic field.

Solution. In order to satisfy the laws of classical mechanics a system should satisfy the Lagrange equations,

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0, (4.38)

where L(qi, q̇i, t) ≡ T (qi, q̇i, t)−U(qi, q̇i, t) is the Lagrangian and {qi, q̇i, t} the generalized coordinates, with
i ∈ {1, 2, · · · , l} the coordinate index and l the number of degrees of freedom of the system. Substituting
the Lagrangian into Eq. (4.38) the Lagrange equations take the form

d

dt

∂T

∂q̇i
− ∂T

∂qi
= −∂U

∂qi
+

d

dt

(
∂U

∂q̇i

)
≡ Qi(qi, q̇i, t). (4.39)

1Note that, in general, ∇ and A do not commute, (∇ ·A)φ = φ (∇ ·A) + (A · ∇)φ.
2Note that ∇ · r = 3 and (B · ∇)r = B.
3With Eq.(1.22) we obtain 2i~A · ∇ = i~(B× r) · ∇ = B · (r× i~∇) = −B · L.

Note that (r×B)2 = r2 sin2 θ B2 = r2⊥B ·B.
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To solve our problem we turn to the case of a single body of mass m. In cartesian coordinates, the kinetic
energy of the body is given by T = 1

2
mṙ2i where ri represents its position, with i ∈ {x, y, z}, and ṙi its

velocity. Evaluating the l.h.s. of Eq. (4.39) the Lagrange equations for the motion become mr̈i = Qi(ri, ṙi, t),
which is just the Newton equation of motion if Qi is interpreted as a generalized force. Thus our task is
reduced to demonstrating that the Lorentz force is obtained by evaluating the generalized force

Qi(ri, vi, t) = −∂U
∂ri

+
d

dt

(
∂U

∂vi

)
, (4.40)

starting from the generalized potential function U(r,v, t) = q (ϕ− v ·A), which with the summation con-
vention takes the form U = q [ϕ (r)− vjAj (r, t)]. The first term of Eq. (4.40) yields

− ∂iU = q [−∂iϕ+ vj∂iAj (r, t)] . (4.41)

and the second term can be written as

d

dt

(
∂U

∂vi

)
= q

d

dt

(
∂ϕ (r, t)

∂vi
− ∂vjAj (r, t)

∂vi

)
= −q d

dt
Ai (r, t)

= −q
(
∂Ai (r, t)

∂t
+
∂Ai (r, t)

∂rj

drj
dt

)
= q [−∂tAi (r, t)− ṙj∂jAi (r, t)] . (4.42)

Combining Eqs. (4.41) and (4.42) we obtain for the generalized force

Qi = q [−∂iϕ− ∂tAi + vj∂iAj − vj∂jAi] . (4.43)

Recalling the expression for the E field in terms of the scalar and vector potentials, E = −∇ϕ− ∂A/∂t, we
recognize in the first two terms within the brackets of Eq. (4.43) the Ei-component of the E field,

Ei = −∂iϕ− ∂tAi. (4.44)

Likewise, using B =∇×A, we recognize in the last two terms the component (v ×B)i of the v×B field,

(v ×B)i = εijkvj(∇×A)k = εijkεklmvj∂lAm = vj∂iAj − vj∂jAi. (4.45)

Hence, Eq. (4.43) can be rewritten as Qi = q
[
Ei + (v ×B)i

]
, which is indeed the expression for the Lorentz

force as had to be proved. 2

4.3 Hydrogen-like atom in an external magnetic field

4.3.1 Effective magnetic moment

Let us consider a hydrogen-like atom at position r passing through an inhomogeneous magnetic field
B(r) as is sketched for a cloud of atoms in Fig. 4.3. Suppose that the atom is in eigenstate |nlm〉
with respect to the quantization axis defined by the direction of B. If this direction does not change
along the trajectory of the atom (or changes adiabatically; i.e., sufficiently slowly), the atom stays
in the same eigenstate and its energy can be regarded as a state-dependent effective potential,

U(r) = 〈H0〉nlm +
e

2mr
〈L ·B(r)〉nlm +

e2

8mr
〈r2
⊥〉nlmB2(r). (4.46)

To obtain this expression we substituted the charge q = −e and the reduced mass mr of the electron
into the Hamiltonian (4.37). The use of ordinary first-order perturbation theory in this context is
justified in Section 4.3.3. The presence of the field gradient results in a force on the atom,

F = − gradU(r) = − ∂U
∂B

gradB = µeff gradB. (4.47)
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Figure 4.3: Stern-Gerlach apparatus for determining the magnetic moment of atoms by measuring the
magnetic force induced by the gradient of |B(r)|: (a) for atoms with unit total electronic angular momentum
J = 1 three spots are observed. Note that γJ < 0; i.e., atoms with magnetic moment polarized parallel to the
magnetic field are deflected towards high field (high-field seekers); those with magnetic moment anti-parallel
towards low field (low-field seekers); in state mJ = 0 the atoms are not deflected; (b) magnet configuration
with a constant magnetic field gradient along the vertical direction in the symmetry plane.

Hence, the force depends on the gradient of the absolute value B(r) = |B(r)| and can be used to
measure µeff , the effective magnetic moment. This method is called the Stern-Gerlach method [105].
The effective magnetic moment is given by the first derivative of the effective potential

µeff = − ∂U
∂B

= −(e~/2mr)ml −
(
e2/4mr

)
〈r2
⊥〉B. (4.48)

The second derivative

αM =
∂2U
∂B2

=
(
e2/4mr

)
〈r2
⊥〉 (4.49)

is known as the magnetic polarizability (magnetizability). To obtain these results we approximated
the field as homogeneous over the size of the atom.

Eqs. (4.46) and (4.48) suggests to rewrite the Hamiltonian (4.37) in the form of an effective
Hamiltonian for a classical magnetic dipole in a magnetic field,

H = H0 − µL ·B− 1
2µdia ·B, (4.50)

where
µL = −(e/2mr)L (4.51)

represents the operator of a permanent magnetic moment and is called the orbital magnetic moment,
and

µdia = −
(
e2/4mr

)
r2 sin2 θB ≡ −αMB, (4.52)

is the operator for an induced magnetic moment known as the diamagnetic moment. As expected
for an induced moment, µdia opposes the direction of the applied magnetic field B; also µL and L
point in opposite directions, in this case caused by the negative electron charge.

The relation between the magnetic moment µL and the angular momentum L will be written in
the form 1

µL = γLL ≡ −gLµB (L/~) , (4.53)

where L/~ is the dimensionless angular momentum operator (L in units of ~). The coefficient

γL = −e/2mr ≡ −gLµB/~, (4.54)

relating the magnetic moment µL to the angular momentum L in Eq. (4.51), is called the gyromag-
netic ratio of the orbiting electron. Its value coincides with that of an orbiting classical body of
charge −e and mass mr. The quantity

µB = e~/2me (4.55)

1In these lectures we define gyromagnetic ratios always in the same way: positive if the magnetic moment is
parallel to the angular momentum. The electron g factors (gL and ge) are (traditionally) defined as positive numbers.
In contrast, the nuclear g factors will be defined to have the same sign as the nuclear gyromagnetic ratio.
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is the Bohr magneton (µB ' 9.27 × 10−24 J/T). The prefactor gL is called the orbital g factor.
Note that gL is defined as a positive dimensionless number. Specification of the g factor is the
conventional way to compare small differences in orbital magnetic moment between the elements.
The orbital g factor can be expressed in terms of the electron-to-nucleus mass ratio

gL = me/mr = (1 +me/M) ' 1. (4.56)

4.3.2 Diamagnetic coupling

Atomic diamagnetism finds its origin in the third term of the Hamiltonian (4.50),

Hdia = − 1
2µdia ·B = 1

2αMB
2. (4.57)

For hydrogenic atoms in s states, |nlml〉 = |n00〉 ≡ |ns〉, which are eigenstates of the Schrödinger
Hamiltonian H0, the magnetic polarizability can be calculated with the expression for ordinary
first-order perturbation theory

α
(ns)
M = 〈ns|αM |ns〉 = (e2/4mr)〈00| sin2 θ|00〉〈r2〉ns. (4.58)

The angular average evaluates to 〈00| sin2 θ|00〉 = 2/3 (see Problem 2.5); the reduced matrix element
for the radial average follows with Eq. (2.49). For l = 0 we obtain

α
(1s)
M =

n2

Z2

e2a2

12mr
(5n2 + 1). (4.59)

Note that the diamagnetism of the hydrogen ground state is extremely small ; for a 1T applied field
the induced moment is only µdia = (ea2/~)glµBB ' 4 × 10−6µB . However, it is important for
high-n Rydberg atoms (n & 50) because the polarizability scales with n4.

For materials, the magnetic polarizability is related to the diamagnetic susceptibility χdiam , which
is a dimensionless number determining the diamagnetic magnetization (magnetic moment per unit
volume) for a given applied field, Mdia = χdiam H. For dilute systems (in which the mutual interaction
between the atoms may be neglected) the magnetization at position r is simply the product of the
diamagnetic moment and the atomic (number) density n(r),

Mdia = n(r)µdia. (4.60)

Using Eq. (4.52) and B = µ0H we find for the diamagnetic susceptibility of dilute systems

χdiam = −µ0αM n(r). (4.61)

4.3.3 Orbital Zeeman coupling

The orbital Zeeman effect finds its origin in the second term of the effective Hamiltonian (4.50)
which is known as the orbital Zeeman Hamiltonian

HZ = −µL ·B, (4.62)

where µL is the orbital magnetic moment operator (4.53). Note that Eq. (4.62) coincides with the
expression for the energy of a classical magnetic dipole moment in a magnetic field.

Let us analyze how the degeneracy of the magnetic sublevels is lifted by applying a magnetic
field.1 Since L2 and Lz commute with H0 the orbital Zeeman Hamiltonian is diagonal in the
hydrogenic basis, {|nlml〉}; i.e., the orbital Zeeman shift is given by

∆EZ = 〈nlml|HZ |nlml〉 = 〈lml|HZ |lml〉. (4.63)

1Pure orbital Zeeman splitting is not observed in atomic systems. It always comes in combination with spin-orbit
interaction (see Section 4.5.1).
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Figure 4.4: (a) Semi-classical vector model of angular momentum for the case l = 2. The diagram shows
the 2l+1 projections of the semi-classical vector L along the direction of the magnetic field (z-direction); (b)
The (2l + 1)-fold degeneracy of the energy-levels is lifted when applying a magnetic field (Zeeman effect-in
the absence of electronic spin). For 1 Bohr magneton the splitting amounts 1.4 MHz/Gauss (67 µK/Gauss);
(c) The projections stay constant in time, also in the presence of Larmor precession which has the same
angular frequency (ωL) for all ml values.

Hence, l and ml are good quantum numbers and, for given l, the Zeeman operator acts in a (2l+1)-
dimensional sector of Hilbert space. The relativistic corrections do not affect the magnetic shifts
and diamagnetic corrections may be neglected as long as the magnetic field is sufficiently small.

Substituting Eq. (4.53) into (4.62) the Zeeman Hamiltonian becomes

HZ = −γLL ·B = gLµBB (Lz/~) , (4.64)

where the z direction is again chosen along the direction of the B field. This Hamiltonian expresses
the coupling of L to the B field (orbital Zeeman coupling). In this notation the Zeeman shifts of
the 2l + 1 magnetic sublevels are given by

∆EZ = −γLB 〈lml|Lz |lml〉 = gLµBBml. (4.65)

Comparing Eqs. (4.67) and (4.65) we note that, classically spoken, µL is never parallel to B (see
Fig. 4.4a). The quantity referred to as the magnitude of the orbital magnetic moment (short: the
orbital moment) is defined as

µL ≡ gL(e/2me) 〈ll|Lz |ll〉 = gLµBl. (4.66)

It corresponds to the maximum observable magnetic moment (for given l) and should not be confused
with the operator µL or with the semi-classical magnitude of the orbital moment,√

〈µ2
L〉 =

√
〈lml|µL · µL |lml〉 = gL(e/2me)

√
〈lml|L2 |lml〉 = gLµB

√
l(l + 1). (4.67)

As mentioned in Section 4.3.1 the effective magnetic moment of a given magnetic sublevel is defined
as the derivative of the Zeeman energy with respect to magnetic field. With Eq. (4.65) we find

µeff = −∂[∆EZ(B)]/∂B = −gLµBml. (4.68)

For the purely orbital Zeeman coupling µeff is a constant for given value of ml but in more general
cases of magnetic coupling it will depend on magnetic field (cf. Section 4.7). For an effective
magnetic moment of 1 Bohr magneton, µeff = µB ' 9.27× 10−24 J/T, the level shift corresponds to
1.4 MHz/Gauss (67 µK/Gauss). With Eq. (4.65) we have established that in a magnetic field the
(2l + 1)-fold orbital degeneracy is lifted, with the lowest energy corresponding to the lowest value
of the magnetic quantum number (ml = −l). This is illustrated in Fig. 4.4b.
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4.3.4 Larmor precession

In a semi-classical picture, the Zeeman Hamiltonian (4.62) gives rise to a torque,

dL(t)/dt = µL ×B, (4.69)

tending to line up the magnetic moment with the magnetic field giving rise to precession about B
because hamiltonian evolution is dissipation free. This is known as Larmor precession. Substitut-
ing Eq. (4.51) into Eq. (4.69) the expression for the torque describes the precession of the angular
momentum vector L about the field direction,

dL(t)/dt = γLL×B. (4.70)

Rewriting this expression in the form

dL/dt = ωL × L (4.71)

we find that the angular momentum L precesses about B at angular frequency

ωL = γLB. (4.72)

This is illustrated in Fig. 4.4c. The precession frequency is known as the Larmor frequency,

ωL ≡ |ωL| = gLµBB/~. (4.73)

In terms of the Larmor frequency the Zeeman energy can be written as

∆EZ = −~γLBml = gLµBBml = ~ωLml. (4.74)

Quantum mechanically, the precession follows from the Heisenberg equations of motion. In this
approach all time-dependence is contained in the Heisenberg operator L(t) ≡ U†(t, t0)LU(t, t0),
where U(t, t0) = exp[−i(t− t0)HZ/~] is the evolution operator (see Appendix F.2). As the Zeeman
Hamiltonian is time independent, the precession of L(t) is described by

dL(t)/dt = − (i/~) [L(t),HZ ]. (4.75)

Writing the Zeeman Hamiltonian in the form HZ = −γL L ·B the equation of motion becomes

dL(t)/dt = (i/~) γL[L(t),L(t) ·B]. (4.76)

To evaluate this expression we consider the time evolution of the angular momentum components
Li(t). With the aid of the commutation relations (1.29) and using the Einstein summation conven-
tion we have [Li, Lk] = −εijki~Lj and Eq. (4.76) becomes

dLi/dt = (i/~) γL[Li, LkBk] = (i/~) γL[Li, Lk]Bk = γLεijkLjBk. (4.77)

Returning to the vector notation this becomes

dL(t)/dt = γL [L(t)×B] . (4.78)

This expression may be rewritten in two equivalent forms

dL/dt = µL ×B and dL/dt = ωL × L. (4.79)

Here the operator L is found to be described by the well-known equation of motion (4.71) from
classical mechanics describing the precession (at angular frequency ωL about the direction n̂ =
ωL/|ωL|) of a spinning top of angular momentum L under the influence of the torque µL ×B.
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Figure 4.5: Observation of half-integral angular momentum atoms by the Stern-Gerlach method.

4.3.5 Spin

Spin was postulated by Goudsmit and Uhlenbeck in 1925 to provide a physical interpretation for the
appearance of half-integral quantum numbers in the analysis of the atomic spectra [113, 114]. At
the time of the proposal spectroscopic evidence for the existence of half integral quantum numbers
was available and particularly elegantly demonstrated in the atomic beam experiment of Stern and
Gerlach with silver atoms - see Fig. 4.5 [50]. Building on the spectroscopic evidence Pauli had already
established the double-valuedness of the electronic wavefunction (see Appendix F.1.4) which points
to the presence of an additional quantum number for the electron (a fourth degree of freedom) but
he refrained from giving an interpretation. In his words the double-valuedness was “not describable
classically” [80]. In their postulate Uhlenbeck and Goudsmit attribute this degree of freedom to
self-rotation of the electron with angular momentum 1/2 in units of ~ and a gyromagnetic ratio
twice as large as the orbital value −e/2me.

Superficially, the presence of electron spin may not come as a surprise because it is well known
from classical mechanics that an orbiting satellite will generally show solid body rotation. However,
in 1925 the modeling of the electron as some rotating cloud of charge had a two decade history of
disappointment. It was not clear what was holding the charge together and to generate the required
magnetic moment special relativity had to be violated; i.e., the cloud had to rotate so fast that
locally the speed of light was exceeded. A difficulty of all mechanical models was that they even
failed to provide a self-consistent description for the gyromagnetic ratio. The postulate of Goudsmit
and Uhlenbeck was no exception in this respect: on the one hand the g factor of the electron had
to have the value 2 (to describe the Zeeman effect in high fields - see Section 4.7.4); on the other
hand using this value to estimate the zero-field splitting the calculated value was a factor of 2 too
large (by itself this would imply a g factor of 4). Therefore, it is not surprising that the postulate
only started to gain acceptance after it was demonstrated by Thomas that the proper relativistic
analysis yields the value 2 in both cases (see Section 4.4.2) [108, 110]. However, it remained to be
explained why spin represents a fixed quantity of angular momentum (called the intrinsic angular
momentum) rather than variable amounts as observed for classical bodies.

In 1928 the mentioned properties were captured in the famous Dirac theory for the electron [33].
In this theory the spinning electron emerges as a manifestly non-classical object. It represents the
first example of an elementary particle on which the standard model is based. In this respect the
postulate marks the beginning of particle physics. The electron is an elementary particle of mass
me, elementary charge q = −e and spin s = 1

2 . Within experimental error the particle is of zero size
[46] and without electric dipole moment [59]. The particle spin, together with its magnetic quantum
number ms = ± 1

2 defines the spin state of the electron. A difficulty of the Dirac theory is that the
energy contained in the electric field of a point charge diverges. It took until 1948 before this problem
was resolved with the development of quantum electrodynamics (QED) by Tomonaga, Schwinger and
Feynman. Close to the singularity the electromagnetic energy density becomes so large that virtual
excitation (see Appendix H.2) of electron-positron pairs becomes substantial. These virtual pairs
constitute electric dipoles that live only briefly but long enough to be polarized by the electric field.
This is known as vacuum polarization. The induced electric field counteracts the Coulomb field of
the electron in such a way that the divergence can be eliminated and the experimental values of the
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electron charge and mass are obtained.
In view of the above it is evident that we should not think simplistically about the electron.

This being said, the essential atomic physics can be explained without entering in the origin of spin
and so we shall do; after all, the spin was postulated to successfully represent the properties of the
atom. An exceptionally lucent account of the early developments that led to our current notion of
spin is given in the book The Story of Spin by Tomonaga [112].

4.3.6 Spin Zeeman coupling

The spin manifests itself by its magnetic moment

µs = γeS ≡ −geµB (S/~) , (4.80)

where S is the electron-spin operator and

γe ≡ −geµB/~ (4.81)

the electron gyromagnetic ratio, γe/2π ' −2.8025 MHz/Gauss, with µB the Bohr magneton and
ge the electron g factor defined as a positive number. Hence, like µL and L also µs and S point in
opposite directions. In analogy to the orbital case (4.66) the magnitude of the intrinsic magnetic
moment (short: the intrinsic moment) is defined as the maximum observable moment,

µe ≡ 1
2geµB . (4.82)

Advanced analysis based on the Dirac theory for the electron predicts ge = 2. Experiment
shows ge to be slightly larger, ge ' 2.002 319. Therefore, the electron is said to have an anomalous
magnetic moment [67],

ge = 2(1 + ae). (4.83)

The deviation is known as the electron anomaly , ae ≡ (ge − 2) /2 ' α/2π, with numerical value
ae ' 1.159 65 × 10−3 [77]. The electron anomaly finds its origin in the zero-point fluctuations of
the electromagnetic field. The free-electron value differs slightly from that of electrons bound in
atoms. It continues to be subject of intensive experimental and theoretical research as it provides
an important test of quantum electrodynamics (QED). In contemporary experiments the spin state
of a single electron is measured without destroying the state by observing spin-flip events of a
trapped electron in real time [77, 46, 54]. This is an example of a Quantum Non Demolition (QND)
experiment. It has demolished old wisdom [82] that it is fundamentally impossible to observe the
magnetic moment of an electron by a Stern-Gerlach-like experiment [30].

Knowing the magnetic moment, the spin Zeeman Hamiltonian takes the generic form

HZ = −µs ·B. (4.84)

Substituting Eq. (4.80) we obtain

HZ = (geµB/~) S ·B = geµBB (Sz/~) , (4.85)

where the z direction is again chosen along the direction of the B field. This Hamiltonian expresses
the coupling of S to the B field (spin Zeeman coupling). The Zeeman Hamiltonian (4.84) gives rise
to a torque, which can be written in two equivalent forms

dS/dt = µs ×B and dS/dt = ωe × S, (4.86)

where ωe = γeB is the angular frequency vector. The torque tends to line up the magnetic moment
with the magnetic field but (in view of the absence of dissipation) this gives rise to precession about
B at frequency

ωe = |ωe| = geµBB/~ = (ge/gL)ωL, (4.87)
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where ωL is the Larmor frequency (4.73) and gL the orbital angular momentum g factor.

We analyze the level splitting by the spin Zeeman coupling in the same way as we did for the
orbital Zeeman coupling.1 Since S2 and Sz commute with H0, L

2 and Lz, the spin Zeeman operator
is diagonal in the hydrogenic basis extended by a spin sector {|nlml〉} → {|nlmlsms〉},

∆EZ = 〈nlmlsms|HZ |nlmlsms〉 = 〈sms|HZ |sms〉. (4.88)

Hence, s and ms are good quantum numbers, with s = 1
2 for one-electron atoms. In general, the

spin Zeeman operator acts in a (2S + 1)-dimensional sector of Hilbert space. Substituting Eq. (4.85
for HZ the spin Zeeman shift becomes

∆EZ = −γeB〈sms|Sz|sms〉 = geµBmsB = (ge/gL)ms~ωL. (4.89)

Like the orbital Zeeman energy, also the spin Zeeman energy can be expressed in a form containing
either the Bohr magneton µB or the Larmor frequency ωL. For a spin-up electron (ge ' 2 and
ms = 1

2 ) the effective magnetic moment equals 1 Bohr magneton, just like in the case of the
orbital Zeeman coupling. Thus, in this case the Zeeman shift is 1.4 MHz/Gauss.2 To observe the
characteristic two spot Stern-Gerlach image of a spin- 1

2 system (see Fig. 4.5) the effective magnetic
moment must be close to 1 Bohr magneton along the semi-classical trajectory of the atoms (in
Section 5.4.2 we show that this condition is satisfied for B > |Bhfs|, where |Bhfs| is the hyperfine
crossover field).

4.3.7 Zeeman Hamiltonian for the electron

At this point we can formulate the Zeeman Hamiltonian for the electron, which describes the in-
teraction of the electron with an externally applied static magnetic field. Combining Eqs. (4.84),
(4.62) and (4.57) we find,

HZ = −(µs + µL) ·B + 1
2αMB

2. (4.90)

Later, in Chapter 5, a nuclear contribution will be added to obtain the Zeeman Hamiltonian for
the complete atom. The Zeeman Hamiltonian is an effective hamiltonian. It can be used with
perturbation theory as long as the electronic wavefunctions are not substantially distorted by the
applied field. This is the case for a large class of experiments in atomic physics laboratories. It
breaks down under extreme conditions. Near neutron stars the magnetic field can be millions of
times stronger than the strongest fields, 100-1000 T, that can be achieved in laboratories on earth.
In these lectures we restrict ourselves to perturbative conditions.

4.4 Fine-structure Hamiltonian

4.4.1 Addition of orbital angular momentum and spin

As long as we may neglect the interaction with the environment the atom represents a closed
mechanical system and the total angular momentum is a conserved quantity. In general, this total
angular momentum is the result of several contributions. In the description of the atomic fine
structure we restrict ourselves to orbital angular momentum (L) and spin (S). The total angular
momentum is given by the vector sum

J = L + S. (4.91)

1Pure electron spin Zeeman splitting is observed in isotopes of chromium, Cr, and molybdenum, Mo (see Sec-
tion 10.3.2). In one-electron atoms spin Zeeman coupling does not occur without hyperfine interaction (see Chapter 5).

2Note that we are dealing here with level shifts, not to be confused with the Zeeman shift of spin-flip transition
frequencies, which are twice as big (for spin 1/2).
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Figure 4.6: Addition of angular momenta allowing for L · S coupling. The states (so-called LS Terms),
are written in the spectroscopic notation (Term notation) as n (2s+1)Lj , where n is the principal quantum
number, s the quantum number for the electronic spin, and j the quantum number for the total electronic
angular momentum J (which is a conserved quantity in the absence of coupling to the environment). The
symbol L stands for the total orbital angular momentum L = S, P,D, F · · · for l = 0, 1, 2, · · · , respectively.
Note that the angular momentum projections Lz and Sz are proportional to Jz. This provides the geometric
foundation of the Wigner-Eckart theorem as applied to vector operators.

Starting from the commutation relations for L and S separately it is straightforward to show that
also J obeys commutation relations of the type (1.29),

[Jx, Jy] = i~Jz, [Jy, Jz] = i~Jx and [Jz, Jx] = i~Jy. (4.92)

Recalling Section 3.1 this implies that J satisfies all properties of quantized angular momenta,

J2 |lsj,mj〉 = j(j + 1)~2 |lsj,mj〉 (4.93)

Jz |lsj,mj〉 = mj~ |lsj,mj〉 , (4.94)

with mj restricted to the interval
− j ≤ mj ≤ j. (4.95)

In many cases the values of l and s are irrelevant or obvious from the context. In such cases these
quantum numbers are usually omitted from the notation, writing simply |j,mj〉 rather than |lsj,mj〉.
As shown in Section 3.10 the value of j is restricted by the values of l and s; j can take all values
differing by one unit of angular momentum in the interval as expressed by the triangle inequality

|l − s| ≤ j ≤ l + s. (4.96)

Note that j is positive definite for half-integral spin (the vector sum can only become zero if the two
angular momenta are equal in magnitude and opposite in sense). The action of the shift operators
J± are given by (see Eq. 3.20)

J± |j,mj〉 =
√
j (j + 1)−mj(mj ± 1)~ |j,mj ± 1〉 . (4.97)

Since the components of J commute with the Schrödinger Hamiltonian, the total electronic
angular momentum is a conserved quantity. Also, when extending the Hamiltonian by a so-called
internal coupling term of the type H′ ∝ L · S the total angular momentum J remains conserved
(just as we expect for a closed mechanical system). In the latter case, L and S exert a torque
on each other, which results (given the absence of dissipation) in a joint precession of L and S
about J as is illustrated in Fig. 4.6. This is expressed by the commutation relations demonstrated
in Problems 4.3-4.6 (see also Section 3.6).
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For given value of j the operator J acts in a (2j + 1)-dimensional subspace of the (2l + 1) (2s+ 1)-
dimensional product space defined by the so-called uncoupled basis {|lmlsms〉 ≡ |lml〉⊗|sms〉}. The
sum of the (2j + 1)-dimensional subspaces of all values of j allowed by the triangular inequality can
also be represented by the so-called coupled basis {|lsjmj〉}. The coupled and the uncoupled basis
are related by a unitary transformation (see Problem 3.7).

Problem 4.3. Prove the following commutation relations [L2,L · S] = [S2,L · S] = 0.

Solution. Decomposing L·S we find [L2,L·S] = [L2, LxSx]+[L2, LySy]+[L2, LzSz] = 0 because [L2, LiSi] =
Li[L

2, Si] + [L2, Li]Si = 0 for i ∈ {x, y, z}. [S2,L · S] = 0: Idem replacing L2 by S2. 2

Problem 4.4. Prove the commutation relation [Jz,L · S] = 0.

Solution. Decomposing L ·S we find [Jz,L ·S] = 1
2
[Jz,J

2]− 1
2
[Jz,L

2]− 1
2
[Jz,S

2] = 0 because [Jz,J
2] = 0,

[Jz,L
2] = [Lz + Sz,L

2] = 0 and [Jz,S
2] = [Lz + Sz,S

2] = 0. 2

Problem 4.5. Prove the commutation relation [J2,L · S] = 0.

Solution. Decomposing J2 we find [J2,L · S] = [L2,L · S] + [S2,L · S] + 2[L · S,L · S] = 0 because
[L2,L · S] = [S2,L · S] = 0 (see Problem 4.3) and [L · S,L · S] = (L · S)2 − (L · S)2 = 0. 2

Problem 4.6. Prove the commutation relations [J2,L2] = [J2,S2] = 0, where J = L + S.

Solution. Decomposing J2 we find [J2,L2] = [L2,L2] + [S2,L2] + 2[L · S,L2] = 0 since [L · S,L2] = 0 (see
Problem 4.3); further [L2,L2] = 0 (any scalar operator commutes with itself) and [S2,L2] = 0 because S
and L operate in orthogonal vector spaces. [J2,S2] = 0: Idem replacing L2 by S2. 2

Problem 4.7. Show that [Lz,L · S] 6= 0 and [Sz,L · S] 6= 0 although [Jz,L · S] = 0.

Solution. Decomposing L · S we find (using the summation convention) [Lz,L · S] = [Lz, LνSν ] =
Lν [Lz, Sν ] + [Lz, Lν ]Sν = [Lz, Lν ]Sν . Because [Lz, Lν ] = 0 for ν = z we have [Lz,L · S] = [Lz, Lx]Sx +
[Lz, Ly]Sy = i~(LySx − LxSy) 6= 0. Likewise, we find [Sz,L · S] = i~(LxSy − LySx) 6= 0. 2

4.4.2 Velocity-induced magnetic field

As is well-known from classical electrodynamics, a particle moving at velocity v in the presence of
an electric field E experiences a velocity-induced magnetic field, which is given by

B = (E× v)/c2, (4.98)

where c is the speed of light. This follows from a special-relativistic analysis in the limit where
Lorentz contraction can be neglected (cf. Appendix D). Nonrelativistically, this result can also be
obtained with the aid of the Biot and Savart law by considering the current resulting from the
relative motion of the nucleus with respect to the electron. Taking the relativistic point of view, an
electron orbiting at velocity v in the electric field E of a nucleus will experience the velocity-induced
field and its spin magnetic moment will couple to it. This coupling is similar to the spin Zeeman
coupling and is known as spin-orbit coupling. To estimate this coupling we note that the electric
field of the nucleus at the position of the electron is given by

E = −∇ϕ(r) = −r

r

dϕ(r)

dr
, (4.99)

where ϕ(r) is the electromagnetic scalar potential of the nucleus. Substituting L = mr(r × v) for
the orbital angular momentum, the velocity-induced magnetic field can be written as

BL = − 1

mrc2
1

r

dϕ(r)

dr
L. (4.100)
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This expression holds for all hydrogen-like atoms. For hydrogenic atoms ϕ(r) is a simple Coulomb
potential. For alkali-like atoms the nuclear charge is screened by a spherical shell of core electrons
(see Section 4.6 for a phenomenological introduction of screening phenomena). A way to account
for the screening is to replace the Coulomb potential by a screened Coulomb potential 1

ϕ(r) =
e

4πε0

Znl(r)

r
, (4.101)

where eZnl(r) is called the effective nuclear charge for an electron (the spectator electron) in the
nl shell at distance r from the nucleus. Close to the nucleus screening is absent, at large distance
screening by the core electrons is maximal,

lim
r→0

Znl(r) = Z and lim
r→∞

Znl(r) = Zc ≡ Z − Zion. (4.102)

Here eZc is called the Rydberg charge of the atom/ion of ionic charge eZion. The Rydberg charge is
the effective nuclear charge in the limit of perfect screening by the core electrons and is used for the
description of atoms/ions excited to Rydberg states. For neutral atoms Zc = 1, for a singly charged
ion Zc = 2, etc.. In the hydrogenic case screening is absent at all distances; i.e., Znl(r) ≡ Z = Zc.
Since the derivative of the scalar potential determines BL it is convenient to introduce the spin-orbit
screening function Znl(r),

dϕ(r)

dr
=

e

4πε0

1

r2

(
r
dZnl(r)

dr
− Znl(r)

)
≡ − e

4πε0

Znl(r)
r2

. (4.103)

As long as Znl(r) decreases monotonically with increasing r we have

Znl(r) ≡ Znl(r)− r dZnl(r)/dr > 0, (4.104)

with Znl(r) ≡ Z in the hydrogenic case (for any state |κ〉 of the electron).
Treating the nucleus heuristically as a homogeneously charged sphere of radius rn and total

charge Ze, the electric field E(r) corresponds to a Coulomb field, for r ≤ rn attenuated proportion-
ally to r (see Fig. 4.2). Hence, the velocity-induced magnetic field can be written as

BL =


Znl(r)

µ0

4π

e

mr

L

r3
for r > rn

Z
µ0

4π

e

mr

L

r3
n

for r ≤ rn,
(4.105)

where µ0 is the magnetic permeability of vacuum.. Note that the finite core size prevents the
divergence of the E and B fields for r → 0. Classically, the field experienced by the electron as a
result of its orbital motion at nuclear distance r = a0 is large, as follows from the prefactor

µ0

4π

e

me

~
a3

0

' 12.517 T. (4.106)

Quantum mechanically we have to average over the orbital wavefunction, which results in a reduc-
tion of this field. Calculating the modulus of the velocity-induced magnetic field using first-order
perturbation theory we obtain for an electron in the state |κ〉 = |nlml〉

BL =
√
〈nlml|B2

L|nlml〉 =
µ0

4π

e~
mr
〈Z(r)/r3〉nl

√
〈lml| (L/~)

2 |lml〉. (4.107)

1We restrict ourselves to centrally symmetric screening potentials.
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Figure 4.7: Vector diagram showing the precession cone of the electron spin S in the velocity induced field
BL. Since the electron spin precesses in the same direction as the orbital motion L a reduced precession
frequency is observed in the electron rest frame.

Turning to dimensionless quantities L/~ and ρ = r/a, with a = (me/mr) a0, and neglecting the
finite size of the nucleus we obtain by substitution of Eqs. (2.49c) and (1.52) for the hydrogenic case

BL =


µ0

4π

e

mr

~
a3

Z4

n3

√
l(l + 1)

(l + 1) (l + 1/2) l
for l > 0

0 for l = 0.

(4.108)

For l > 0 Eq. (4.108) is well-behaved. For instance, for the 2P level of hydrogen (Z = 1, n = 2, l = 1)
we calculate BL ' 0.74 T. For l = 0 the internal field tends to diverge but taking into account the
nonzero nuclear size this divergence turns out to be an artifact of the pure Coulomb field. Using
Eq. (4.105) (for r < rn) the divergence is avoided and BL turns out to be zero as a result of the

angular averaging, 〈00| (L/~)
2 |00〉 = 0.

4.4.3 Thomas precession

The velocity-induced field BL results from the rectilinear motion of the electron and causes the
electron spin to precess in its non-rotating rest frame,

(dS/dt)nonrot = µs ×BL = −ge(e/2me)S×BL. (4.109)

In view of Eq. (4.100) this precession proceeds about the direction of L (see Fig. 4.7). However, in
the presence of angular momentum, the frame in which the linear motion is observed rotates at
angular velocity ωT . For weakly relativistic velocities this angular velocity is given by

ωT =
v × a

2c2
, (4.110)

where a is the acceleration and v the velocity in the laboratory-fixed frame. In the rest frame of
the electron this manifests itself as Thomas precession [108, 110]. It is a purely kinematical effect,
existing completely independently of other effects such as the Zeeman precession in a magnetic
field. To account for the Thomas precession we have to transform to the rotating rest frame of the
electron,

(dS/dt)rest = (dS/dt)nonrot − ωT × S. (4.111)

Substituting Eq. (4.109) we can write the precession rate in the form

(dS/dt)rest = −ge(e/2me)S×BL + S× ωT = −ge(e/2me)S×BLS , (4.112)

where
BLS = BL −

ωT
ge(e/2me)

(4.113)
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is the effective internal field, the spin-orbit field as experienced by the electron spin.
In the atom the acceleration is in radial direction,

a = − 1

mr
∇V(r) =

e

mr

r

r

dϕ(r)

dr
. (4.114)

Hence, the Thomas precession is given by

ωT = − e

2m2
rc

2

1

r

dϕ(r)

dr
L. (4.115)

For the spin-orbit field we find using Eqs. (4.113), (4.100), and (4.115)

BLS = −
(

1− 1

ge

me

mr

)
1

mrc2
1

r

dϕ(r)

dr
L. (4.116)

Approximating gemr/me ' 2 we notice that the Thomas precession reduces the spin-orbit field by
as much as 50%.

4.4.4 Spin-orbit interaction

Substituting the expression for the spin-orbit field (4.116) into the spin-Zeeman Hamiltonian (4.84)
we obtain the Hamiltonian describing the spin-orbit interaction

HLS = −µs ·BLS = ge(e/2me)S ·BLS = ξ(r)L · S. (4.117)

This Hamiltonian expresses the coupling between L and S (spin-orbit coupling). The function ξ(r)
is the coupling strength,

ξ(r) = − (g′e − 1)

2m2
rc

2

e

r

dϕ(r)

dr
=


ξ0
Znl(r)
r3

for r > rn

ξ0
Z

r3
n

for r ≤ rn,
(4.118)

where the prefactor can be written in various equivalent forms,

ξ0 '
1

2m2
rc

2

e2

4πε0
=
µ0

4π
2γ2
L =

1

2
α4mrc

2 a
3

~2
, (4.119)

as follows by approximating g′e = gemr/me ' 2 and the use of Eqs. (4.54), (2.11) and (2.13).
Importantly, we note that ξ(r) > 0 if Znl(r) > 0.

4.4.5 Fine structure Hamiltonian for hydrogen-like atoms

We are now in a position to write down the Hamiltonian for the magnetic fine structure of hydrogen-
like atoms; i.e., for an electron, of charge q = −e and intrinsic magnetic moment µs, moving in the
central field of the atomic nucleus and in the presence (or absence) of an externally applied magnetic
field,

H = − ~2

2mr
∆ + V (r) +Hr −

i~e
mr

(A ·∇) +
e2

2mr
A2 − µs · (B + BLS). (4.120)

This expression holds in the Coulomb gauge, ∇ ·A = 0. From left to right we recognize first the
Schrödinger Hamiltonian H0 and its relativistic correction Hr, the A ·∇ term describes the motion
of the electron in the vector potential of an externally applied magnetic field B (for a homogeneous
field A = 1

2B× r). The last term is the spin Zeeman coupling, involving both the external field B
and the spin-orbit field BLS . We start by considering the atom in the absence of an external field
(B = 0); i.e., for a vanishing vector potential (A = 0). In Section 4.7 we discuss fine structure in
the presence of an external field (B 6= 0).
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4.5 Fine structure in zero field

4.5.1 Effective Hamiltonian and spin-orbit splitting

In the absence of external fields the fine-structure Hamiltonian (4.120) reduces to the form

H = H0 +Hr + ξ(r)L · S, (4.121)

where H0 is the Schrödinger Hamiltonian and Hr stands for the relativistic correction. The spin-
orbit interaction causes the n2-fold degeneracy of the principal atomic structure to be lifted in zero
field. This is called spin-orbit splitting and is illustrated for 2P terms in Fig. 4.8. Since ξ(r) does not
commute with H0 and Hr, the spin-orbit interaction couples states of different principal quantum
number. Hence, to calculate the splitting, we have to turn to perturbation theory (of a degenerate
level). Fortunately, both ξ(r) and L · S commute with L2, S2, J2 and Jz (see Problems 4.3, 4.4,
4.5 and 4.6). This makes the spin-orbit interaction diagonal in the coupled angular momentum
basis, {|lsjmj〉}; i.e., l, s, j and mj are good quantum numbers. Since l remains a good quantum
number, the parity of the angular momentum state is not affected by the spin-orbit interaction. For
a manifolds of given n, the spin-orbit shift can be calculated using the well-known expression (H.56)
from ordinary first-order perturbation theory,1

∆ELSn,j = 〈nlsjmj |HLS |nlsjmj〉 = (ζnl/~2)〈lsjmj |L · S|lsjmj〉, (4.122)

where ζnl is a radial integral known as the spin-orbit coupling constant,

ζnl = 〈ξ(r)〉nl~2 =

{
1
2α

4mrc
2〈Z(r)/ρ3〉nl for l > 0

finite for l = 0.
(4.123)

The divergence expected for the l = 0 radial integral is avoided (ζnl = finite) provided we account
for the nonzero nuclear size. The coupling constant has the properties of a so-called reduced matrix
element: it depends on the quantum numbers n and l but not on ml (see Problem 2.2). Its numerical
value is positive (ζnl > 0) in hydrogen-like atoms. In many-electron atoms the coupling constant
can also become negative (see Section 10.6.5). The radial integral 〈Z(r)/r3〉nl can be determined
numerically but generally not without a substantial effort because the determination of Znl(r)
requires knowledge of the effective charge distribution and this in turn depends on the screening.
On the other hand, using the spin-orbit shift rules (see Section 4.5.2 below), it is straightforward
to determine the integral experimentally from a measurement of the spin-orbit splitting in zero
magnetic field.

In view of the discussion above it is convenient to write the atomic Hamiltonian in the following
approximate form,

H = H0 +Hr + (ζnl/~2)L · S, (4.124)

where the numerical constant ζnl is defined by Eq. (4.123). Eq. (4.124) is an effective fine-structure
Hamiltonian that holds for given values of the quantum numbers n and l. It has the advantage
over Eq. (4.121) that it offers the possibility to determine ζnl experimentally as a phenomenological
constant. Importantly, for the last term of the Hamiltonian (4.124) not only l but also n is a good
quantum number. This is an approximation: calculations based on Eq. (4.124) are equivalent with
calculations based on the actual Hamiltonian (4.121) as long as the principal structure of the atom
is accounted for only to first order in perturbation theory. This is a good approximation as long the
fine-structure splitting of a level of given n is small compared to the principal-level splitting, which
is the case for ζnl � En+1 −En. As this condition is satisfied in many practical cases, we shall use
the effective Hamiltonian (4.124) to describe the fine structure of hydrogen-like atoms.

1The coupling to different n levels enters only to second or higher order in perturbation theory. In first order
only the states within the manifold of given n contribute (n is a good quantum number to first order in perturbation
theory - see Appendix H.3).
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Figure 4.8: Fine-structure splitting for a n 2P Term (l = 1, s = 1
2
). Shown are the unperturbed level as

well as the spin-orbit splitting into the n 2P3/2 (stretched) and 2P1/2 manifolds. The splitting is drawn for
the regular (hydrogen-like) case (ζnp > 0). Note that the center-of-gravity of the levels is conserved in the
splitting. The magnitude of the splitting, ∆Wj , satisfies with the Landé interval rule.

4.5.2 Shift rules for spin-orbit coupling in zero field

Using the operator identity
L · S = 1

2 (J2 − L2 − S2) (4.125)

the spin-orbit shift of the LS manifold with quantum number j evaluates to

∆ELSn,j = 1
2ζnl [j(j + 1)− l(l + 1)− s(s+ 1)] . (4.126)

Note that for positive coupling constant (ζnl > 0) the energy of the LS manifolds increases with j.
This is called regular (i.e., hydrogen-like) ordering of the j levels; for ζnl < 0 the order of the j
levels is called inverted. The manifold of highest multiplicity (j = jmax = l + s) corresponds to the
so called stretched state of the LS coupling scheme. From Eq. (4.126) we derive three shift rules for
the spin-orbit manifolds of given j, l and s (see Fig. 4.8):

• the shift of the stretched state (j = jmax = l + s) is given by

∆ELSn,jmax
= ζnlls. (4.127)

• the relative shift of two adjacent j manifolds follows the Landé interval rule:

∆Wj = ∆ELSn,j −∆ELSn,j−1 = ζnlj>, (4.128)

where j> is the quantum number of the manifold with the highest multiplicity of adjacent
pairs, j> = max(j, j − 1).

• the weighted mean of the energies of all j manifolds of a given LS coupling scheme coincides
with the energy of the (2l + 1) (2s+ 1)-fold degenerate unperturbed level (see Problem 4.8),

1

(2l + 1) (2s+ 1)

l+s∑
j=|l−s|

(2j + 1) ∆ELSn,j = 0. (4.129)

This is called the center-of-gravity rule.

The fine structure of all hydrogen-like atoms is determined by the angular momentum properties of
a single electron. Hence, the electronic states are electron spin doublets (s = 1

2 ) of varying orbital
angular momentum. To facilitate verbal discussion the manifolds are usually referred to in the Term
notation; e.g., 1 2S, 2 2P, 3 2D, etc..1 In doublet terms the coupling of the spin to the orbital angular

1In the most general context a Term is defined as a manifold of states spanning the angular momentum subspace
of given L and S; for hydrogen-like atoms L = l and S = s = 1

2
.
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momentum can result in only two values of total angular momentum: j = l + 1
2 (parallel coupling;

e.g., n 2P3/2) and j′ = l − 1
2 (anti-parallel coupling; e.g., n 2P1/2). For these two cases we have

∆ELSn,j =


+ 1

2ζnll
(
j = l + 1

2

)
− 1

2ζnl(l + 1)
(
j = l − 1

2

)
}

for l > 0

0 for l = 0.

(4.130)

Note in this example that for hydrogen-like atoms (ζnl > 0) the state with the highest multiplicity
has indeed the highest energy (as mentioned above). Note further that the interval rule holds,

∆Wl+1/2 = ∆ELSn,l+1/2 −∆ELSn,l−1/2 = ζnl(l + 1
2 ). (4.131)

The sum of the level shifts is given by

∆ELSn,l+1/2 + ∆ELSn,l−1/2 = −ζnl/2 (4.132)

and the center of gravity of the levels is indeed zero,

(2l + 2) ζnll/2− 2lζnl (l + 1) /2 = 0. (4.133)

Problem 4.8. Show that the center of gravity of the fine-structure manifold coincides with the energy of
the unperturbed level.

Solution. Note that the trace is independent of the choice of representation,

tr (H
′
LS) = tr

(
U−1HLSU

)
= tr

(
UU−1HLS

)
= tr (HLS) ,

where U is a unitary transformation between the two bases and we used (in the second step) the matrix
property (M.26) that the trace of a product of operators is invariant under cyclic permutation of the
operators. Rather than working in the coupled basis {|nlsjmj〉} we choose the uncoupled basis {|nlmlsms〉}
to calculate the trace (4.129),

tr (HLS) =

s∑
ms=−s

l∑
ml=−l

(ζnl/~2)〈lmlsms|L · S|lmlsms〉.

Using the inner product rule (3.159b) and noting that only the LzSz terms are diagonal we find

tr (HLS) =

s∑
ms=−s

l∑
ml=−l

ζnlmlms = 0.

For the center of gravity we have to normalize on the (2l + 1) (2s+ 1)-fold degeneracy of the unperturbed
level but obviously this does not change the result if the center of gravity is zero. 2

4.5.3 Fine structure of hydrogenic atoms

For the special case of hydrogenic atoms the orbital integrals can be solved analytically. Setting
Znl(r) ≡ Z in Eq. (4.118) we obtain for the coupling strength

ξ(r) = 1
2α

4mrc
2 a

3

r3

Z

~2
. (4.134)

Hence, the coupling constant follows from Eq. (4.123)

ζnl =

{
1
2α

4mrc
2Z 〈ρ−3〉nl for l > 0

finite for l = 0.
(4.135)
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Figure 4.9: Term diagram showing the difference in fine structure between hydrogen and alkali-like atoms:
(a) without spin-orbit splitting, (b) with spin-orbit splitting. The hydrogen fine structure is characterized
by two levels with a splitting of only ∼ 7 GHz, whereas in the alkali case one observes three levels and the
splitting is much larger (∼ 2 eV). These differences originate in the absence or presence of screening of the
nuclear charge by core electrons (which is less effective for s electrons than for p electrons).

Evaluating the radial integral, see Eqs. (2.49), this becomes

ζnl =

 1
2α

4mrc
2Z

4

n3

1

l(l + 1/2)(l + 1)
= −α

2Z2

n
En

1

l(l + 1/2)(l + 1)
for l > 0

finite for l = 0,
(4.136)

where En is the zero-order energy given by Eq. (2.33); for l = 0 we took into account the finite
nuclear size. Thus, using Eq. (4.131) we find for the fine structure splitting

∆Wl+1/2 = −α
2Z2

n
En

1

l(l + 1)
=
α2Z4

2n3

1

l(l + 1)
Hartree for l > 0. (4.137)

The numerical value of the splitting is ∼ 11 GHz. Using Eqs. (4.130) we find for the level shifts

∆ELSn,j =


−α

2Z2

n2
En

n

(l + 1/2)(l + 1)

1

2

(
j = l + 1

2

)
+
α2Z2

n2
En

n

l(l + 1/2)

1

2

(
j = l − 1

2

)
 for l > 0

0 for l = 0.

(4.138)

Remarkably, adding Eqs. (4.24) and (4.138) brings us a single expression for the fine-structure shift
which depends on only two quantum numbers (n, j) rather that three (n, l, s),

∆En,j = ∆Erel
n + ∆ELSn = −En

α2Z2

n2

(
3

4
− n

j + 1/2

)
. (4.139)

For j = 1
2 this expression corresponds to the l = 0 relativistic shift of Eq. (4.24) whereas for j = l± 1

2
it gives the fine-structure splitting for l > 0. Interestingly, the value j = 1

2 is obtained for l = 0 but
also for l = 1 (using j = l − 1

2 ). This results in an “accidental” degeneracy of the 2P1/2 and 2S1/2

levels in hydrogenic atoms but is absent in the hydrogen-like atoms at large.

4.6 Fine structure of alkali-like atoms in zero field

4.6.1 Introduction

Historically, the accidental degeneracy of the 22P1/2 and 22S1/2 levels in hydrogen played an im-
portant role in the development of quantum mechanics. In atomic spectroscopy this degeneracy
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Figure 4.10: (a) Energy levels of the alkali atoms for different states of the valence electron next to those
of hydrogen. The data are taken from the NIST Atomic Spectra Database Levels Data [66]. Note that the
binding energies in the alkali atoms remain close to those of the hydrogenic electron in spite of enormous
differences in nuclear charge. In particular, for l → ∞ and/or n → ∞ the levels converge to those of H.
This similarity is the result of screening of the nuclear charge by the core electrons. In the data for Rb, Cs
and Fr the fine-structure splitting of the 5 2P , 6 2P and 7 2P terms becomes resolved on the eV energy scale
of the diagram. (b) Quantum defect plot of the same data [28]. Note that for l ≥ 3 the alkali atoms behave
hydrogenic; i.e., the screening by the core electrons is perfect. Furthermore, for a given atomic species the
quantum defect is independent of the principal quantum number, δnl ' δl.

manifests itself as a fine-structure splitting into two levels (2P3/2 and 2P1/2/
2S1/2, not considering

the small Lamb shift). In alkali atoms this degeneracy is absent and three levels are observed (2P3/2,
2P1/2 and 2S1/2). Furthermore, as illustrated in Fig. 4.9, the 2 2S-2 2P splitting in hydrogen is only
∼ 7 GHz (see Section 4.1.2) whereas in the alkalies it is ∼ 2 eV, more than four orders of magni-
tude larger. In hindsight, these differences had to be understood before the electron spin could be
postulated [112]. It slowed down progress and became a great scientific puzzle: why is it that two
quantum numbers suffice to describe hydrogen (n, j) but a third one is required for the alkalies (n
and l and s)?

To understand the alkali atoms we have to understand the physics of screening by core electrons.
Core electrons are present in the alkalies but absent in the hydrogenic case. Our approach will be
mostly phenomenological. Starting from the experimental values in the NIST Atomic Level Database
[66] we develop a qualitative picture of the atomic structure in which electron shells provide the
underpinning of the periodic system of the elements. This means that we shall temporarily jump
ahead, using features from the physics of many-electron atoms for which the theory will be presented
in Chapters 7 through 10. After discovering the enormous impact of the core on the principal
structure of the atom (Section 4.6.2) we turn in section 4.6.3 to the consequences for spin-orbit
coupling. Throughout the discussion of screening Hartree atomic units will be used.

4.6.2 Screening by core electrons - effect on principal structure

Alkali and alkali-like atoms differ from hydrogenic atoms by the presence of core electrons. As will
be shown in Section 10.3 the electron core is spherical, so it does not affect the central symmetry
of the atom; i.e., the rotational structure is not affected. In contrast, the radial structure changes
dramatically as the core electrons seriously modify the charge distribution within the atom. It
may speak for itself that this affects the radial distribution function of the orbitals with immediate
consequences for the binding energies of the electrons.



4.6. Fine structure of alkali-like atoms in zero field 123

Figure 4.11: (a) Energy levels of potassium (K) compared to those of hydrogen. The deviations from the
hydrogenic values are quantified by the quantum defects δs, δp, δd and δf ; (b) Quantum defects result from
incomplete screening of the nucleus by core electrons. This manifests itself as an effective nuclear charge,
Znl = Z − σnl (the nuclear charge Z lowered by the screening constant σnl). In the Rydberg limit the
screening is maximal (Znl = Zc) and the screening efficiency σ̂nl ≡ σnl/σ

max
nl becomes unity. The relation

between δnl and Znl (and σnl) follows by equating Eqs. (4.143) and (4.141) for the same energy level.

To introduce the phenomenology of screening we show in Fig. 4.10a and Fig. 4.11a the energy
levels of the valence electron in alkali atoms next to those of hydrogen.1 The levels are labeled by
the principal quantum number (n) for given value of the angular momentum (s, , p, d, · · · ). Note
that the alkali levels cover roughly the same range of energies as those of hydrogen in spite of the
enormous difference in nuclear charge: Z = 1 in hydrogen (H) and Z = 87 in francium (Fr). This
points to efficient screening of the nucleus by the core electrons. The key idea is illustrated for
potassium (K) in Fig. 4.11b. The electron core acts as a cloud of negative charge in-between the
nucleus and the valence electron. In classical electrodynamics such a charge distribution is called
space charge. In quantum mechanics the space charge arises as a mean field of negative charge
distributed according to the probability density of the electronic orbitals (see Fig. 4.12). This mean
field lowers the electrostatic potential around the nucleus, thus giving rise a screened Coulomb
potential with (in atomic units) an effective nuclear charge Znl(r) as introduced in Section 4.4.2.

4.6.2.1 Screening constant and efficiency versus quantum defect

In the simplest description of screening, for each orbital nl the amount of screening is specified by a
single number, the screening constant σnl. For an atom of nuclear charge Z, the screening constant
is related to the effective nuclear charge,

Znl ≡ Z − σnl. (4.140)

As a rule of thumb, σnl equals the number of core electrons involved in the screening. So, we expect:
Z1s ' Z (no core) Z2s ' Z − 2 (1s2 core), Z2p ' Z − 4 (1s22s2 core), Z3s ' Z − 10 (1s22s22p6

core), Z3p ' Z−12 (1s22s22p63s2 core), etc.. In terms of Znl the energies of the principal structure

1Beware that we focus on the similarities between the behavior of the valence electron in the alkalies and the
hydrogenic electron of the Bohr atom. Core electron excitations are not included in this diagram.
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Figure 4.12: Radial distribution functions of hydrogenic wavefunctions give an impression of the electronic
charge distribution. In the lithium atom (Li) the 1s orbital is a core orbital which is drawn for the unscreened
nuclear charge (Z = 3). We compare two valence electrons, both drawn for Z = Zc = 1: (a) the 2s electron
penetrates deeply into the core which points to poor screening from the nucleus; (b) the 2p electron hardly
penetrates into the core. This points to close to perfect screening. Note that screening corrections giving
rise to deviations from the hydrogenic shape are not included in this plot.

are given by

εnl = −Z
2
nl

2n2
. (4.141)

Note that binding energy of the valence electron scales quadratically with Znl/n.
Another way of characterizing screening is by specification of the quantum defect δnl (also known

as Rydberg correction). This quantity turns the principal quantum number, the integer n, into an
effective principal quantum number, the positive real number

n∗l = n− δnl. (4.142)

The quantum defect is a measure for the deviation from the hydrogenic distribution of levels. A list
of quantum defects for valence electron levels in alkali atoms is given in Table 4.1. Note that, for
a given alkali species, δnl shows little dependence on the principal quantum number, δnl ' δl > 0.
On the other hand δl decreases rapidly with l as is illustrated in Fig. 4.10b. Hence, by measuring a
few quantum defects (δs, δp, δd, · · · ) the whole level diagram can be reconstructed using the Bohr
formula for the binding energies but with n∗l replacing n,

εnl = − Z2
c

2n∗2l
= − Z2

c

2n2

1

(1− δl/n)2
. (4.143)

Here Zc stands for the Rydberg charge introduced in Section 4.4.2; for neutral atoms Zc = 1, for
singly charged ions Zc = 2, etc..

Interestingly, for n � 1 the ratio of the level shift (with respect to the hydrogenic value) over
the level separation value goes to a constant. The limiting value is called the Rydberg limit. This
limit can be determined by expanding Eq. (4.143) to leading order in powers of δnl/n. For the level
shift with respect to the hydrogenic value we find

δεnl =
Z2
c

n3
δnl + · · · (n� 1). (4.144)

Since δnl ' δl for n� 1, the level separation, ∆εnl ≡ ε(n+1)l − εnl, is given by

∆εnl =
Z2
c

2(n− δl)2
− Z2

c

2(n+ 1− δl)2
=
Z2
c

n3
+ · · · (n� 1). (4.145)

In the Rydberg limit the ratio δεnl/∆εnl converges to the quantum defect,

lim
n→∞

δεnl
∆εnl

= δl. (4.146)
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Table 4.1: Fine-structure-avaraged quantum defects for selected atomic energy levels. The table is based
on the NIST Atomic Spectra Database Levels Data [66]. Metastable helium (He∗) will be discussed in
Section 7.4.4.

El. ns n∗s δs Zns σ̂s np n̄∗p δ̄p Znp σ̂p nd n̄∗d δ̄d Znd σ̂d

H 1 1.000 0.000 1 1 − − − − − − − − − −
He∗ 2 1.689 0.311 1.18 0.82 2 1.938 0.062 1.03 0.97 − − − − −
Li 2 1.589 0.411 1.26 0.87 2 1.959 0.041 1.02 0.99 − − − − −

3 2.596 0.404 1.16 0.92 3 2.956 0.044 1.02 0.99 3 2.999 0.001 1.000 1

Na 3 1.627 1.373 1.84 0.92 3 2.117 0.883 1.42 0.96 3 2.990 0.010 1.003 1

4 2.643 1.357 1.51 0.95 4 3.133 0.867 1.28 0.97 4 3.988 0.012 1.003 1

K 4 1.770 2.230 2.26 0.93 4 2.234 1.766 1.79 0.96 3 2.854 0.146 1.051 1

5 2.801 2.199 1.79 0.96 5 3.265 1.735 1.53 0.97 4 3.797 0.203 1.054 1

Rb 5 1.805 3.195 2.77 0.95 5 2.288 2.712 2.19 0.97 4 2.767 1.233 1.446 0.99

6 2.845 3.155 2.11 0.97 6 3.325 2.675 1.80 0.98 5 3.706 1.294 1.349 0.99

Cs 6 1.869 4.131 3.21 0.96 6 2.351 3.649 2.55 0.97 5 2.552 2.448 1.959 0.98

7 2.920 4.080 2.40 0.97 7 3.395 3.605 2.06 0.98 6 3.534 2.466 1.698 0.99

The screening constant is a good absolute measure for screening but often a relative measure is
desired. As maximal screening is obtained for valence electrons in the Rydberg limit,

σnl = Z − Znl ≤ Z − Zc ≡ σmax
nl ,

a good relative measure for the screening is the screening efficiency , defined as

σ̂nl ≡ σnl/σmax
nl = (Z − Znl)/(Z − Zc). (4.147)

This quantity varies from 0 in the absence of screening to 1 for perfect screening. The screening
efficiencies for the valence electron of the alkali atoms are included in Table 4.1. For the ground
state of lithium (Li), with only two screening electrons, it is 87%. For all other alkali states the
screening is over 90% and increases with increasing values of n and l. The latter does not come as a
surprise because for large n and l the valence electron resides at larger distances from the nucleus
and the charge overlap with the electron core will be small.

The relation between the effective nuclear charge, Znl, and the quantum defect, δnl, follows by
equating Eqs. (4.141) and (4.143),

Znl = Zc/(1− δnl/n). (4.148)

Since εnl scales quadratically with Znl/n the levels become hydrogenic (with respect to Zc) for
n� 1. Furthermore, since δl decreases for increasing l the binding energy also becomes hydrogenic
for l � 1. This means that, for large l and/or n, the screening of the nucleus by the core electrons
becomes close to perfect and the energy levels can be calculated by replacing Z with Zc in the Bohr
formula. In Section 8.3.3.1 a simple screened Coulomb potential is constructed which shows the
absence of a dependence on n (for given Z) as well as the decline of screening with increasing l. At
the advanced level, the quantum defect is a key element in the theory of Rydberg atoms [47].

In terms of the quantum defect the screening efficiency is given by

σ̂nl = 1− Zc
Z − Zc

δnl/n

1− δnl/n
. (4.149)

This expression shows that, for given Z, Zc and n, a smaller quantum defect corresponds to better
screening efficiency, with the screening becoming perfect for l� 1 and/or n� 1. When comparing
configurations differing in Z and Zc and/or n, the correspondence is not so intuitive. For the neutral
lithium (Li) atom and the calcium ion (Ca+) in the same electron configuration, the same screening
efficiency is obtained for a smaller quantum defect in the ion (see Problem 4.9).
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Figure 4.13: (a) Energy levels of the alkaline-earth ions for different states of the valence electron next
to those of hydrogenic helium. The data are taken from the NIST Atomic Spectra Database Levels Data
[66]. Note that the binding energies remain close to that of the hydrogenic electron in He+ as the result of
screening by the core electrons. In particular, for l→∞ and/or n→∞ the levels converge to those of He+;
(b) Quantum defect plot of the same data. For l ≥ 3 the ions behave hydrogenic; i.e., the screening by the
core electrons is maximal. Note the close similarity with Fig. 4.10; i.e., the alkaline-earth ions behave alkali
like. A qualitative difference with the alkali atoms is the appearance of the metastable 2D levels in Ca+,
Sr+ and Ba+ which can be used to create optical qubits for quantum information processing [98].

4.6.2.2 The phenomenology of screening

Equipped with the tools for characterizing the screening we are prepared to analyze the level dia-
grams of Fig. 4.10. We start with the example of lithium (Li). In this case we have Z = 3 and the
valence electron is screened from the nucleus by the 1s2 core (σnl ' 2, for n ≥ 2). Hence, for perfect
screening we expect for the effective nuclear charge Znl = Z − σnl ' Zc = 1. The experimental
values are found in Table 4.1. Apparently, the screening is close to perfect for the 2p, 3p and 3d
orbitals (Znl ' 1) but incomplete for the 2s and 3s orbitals. This is consistent with the mean field
picture because s orbitals extend all the way to the nucleus (where screening is negligible), whereas
orbitals with higher angular momenta (p, d, f, · · · ) fall off towards the characteristic central node
(see Section 2.3). As illustrated in Fig. 4.12, the radial distribution of the 2p electron surrounds
the 1s core like a halo whereas the 2s electron electron has a sizable overlap with the core. This
points to incomplete screening for the 2s electron which explains the stronger binding in Fig. 4.10.
As visible in Fig. 4.9 the corresponding difference in binding energy is typically 2 eV for the alkalies.

This preferential binding of electrons in s orbitals (or better: low-l orbitals) becomes manifest
when studying the level ordering for the entire group of alkalies in Fig. 4.10. In hydrogenic atoms
the binding energy decreases with increasing principal quantum number but this ordering is lost in
the heavier alkalies. In the case of Na the binding of the 4s orbital is stronger than that of the 3d
orbital (ε4s < ε3d), for K this becomes ε4s, ε4p < ε3d and even ε5s < ε3d. These deviations from the
hydrogenic ordering have important consequences for the ground state configurations of the alkali
atoms and, more in general, for the structure of the periodic system (cf. Chapter 10).

What would happen to the screening if we could increase the nuclear charge? It may speak
for itself that the atom would contract but is the ordering of the energy levels affected? Questions
like this can be answered by studying the level diagram of the singly ionized alkaline-earth ions
shown in Fig. 4.13. These ions are isoelectronic (i.e., have the same number of electrons) with the
adjacent alkali atom in the periodic system but the nuclear charge has increased from Z in the atom
to Z+ = Z + 1 in the ion. In the simplest model for screening also the effective nuclear charge
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Table 4.2: Fine-structure-averaged quantum defects of the valence electrons in isoelectronic pairs of alkali-
like atoms. The table is based on the NIST Atomic Spectra Database Levels Data [66].

El. ns n∗s δs Zns/ns σ̂s np n̄∗p δ̄p Znp/np σ̂p nd n̄∗d δ̄d Znd/nd σ̂d

Li 2 1.589 0.411 0.63 0.87 2 1.959 0.041 0.51 0.99 − − − − −
Be+ 2 1.729 0.271 1.16 0.84 2 1.954 0.046 1.02 0.98 − − − − −
B2+ 2 1.797 0.203 1.67 0.83 2 1.958 0.042 1.53 0.97 − − − − −
Na 3 1.627 1.373 0.61 0.92 3 2.117 0.883 0.47 0.96 3 2.990 0.010 0.33 0.999

Mg+ 3 1.903 1.097 1.05 0.88 3 2.265 0.735 0.88 0.94 3 2.970 0.030 0.67 0.998

Al2+ 3 2.075 0.925 1.45 0.87 3 2.372 0.628 1.27 0.92 3 2.950 0.050 1.02 0.995

K 4 1.770 2.230 0.56 0.93 4 2.234 1.766 0.45 0.96 3 2.854 0.146 0.35 0.997

Ca+ 4 2.141 1.859 0.93 0.90 4 2.497 1.503 0.80 0.93 3 2.312 0.687 0.86 0.97

Sc2+ 4 2.382 1.618 1.26 0.89 4 2.682 1.318 1.12 0.92 3 2.225 0.775 1.35 0.94

Ti3+ 4 2.557 1.443 1.56 0.87 4 2.822 1.178 1.42 0.91 3 2.244 0.756 1.78 0.93

V4+ 4 2.693 1.307 1.86 0.87 4 2.931 1.069 1.77 0.90 3 2.284 0.716 2.19 0.91

Cr5+ 4 2.802 1.198 2.14 0.86 4 3.020 0.980 1.99 0.89 3 2.326 0.674 2.58 0.90

Rb 5 1.805 3.195 0.55 0.95 5 2.288 2.712 0.44 0.97 4 2.767 1.233 0.36 0.99

Sr+ 5 2.221 2.779 0.90 0.93 5 2.604 2.396 0.77 0.95 4 2.432 1.569 0.82 0.96

Cs 6 1.869 4.131 0.53 0.96 6 2.351 3.649 0.43 0.97 5 2.552 2.448 0.39 0.98

Ba+ 6 2.332 3.668 0.86 0.94 6 2.721 3.279 0.74 0.96 5 2.415 2.585 0.83 0.96

increases by one: Z+
nl ' Znl + 1. The corresponding relative increase, Z+

nl/Znl = (Znl + 1)/Znl, is
largest for the outer orbitals because Znl falls off towards Zc in the Rydberg limit,

Z+
c /Zc > Z+

nl/Znl > (Z + 1)/Z. (4.150)

The ratio Z+
nl/Znl > 1 implies a contraction of the electronic orbitals of the ion relative to that of

the atom (in the same electron configuration). Recalling Eq. (2.49b) the inequalities 4.150 suggest
that the contraction increases progressively (i.e., more than linearly) with growing distance from
the nucleus, the largest contraction being expected for the valence orbitals. The emerging physical
picture is one in which the valence electron is pulled towards/into the electron core (if present).

To further explore the phenomenology of screening we have a closer look at the singly ionized
alkaline-earth ions. For these ions we have Z+

c = 2, like in hydrogenic helium, He+. This means that
the Rydberg charge has doubled with respect to the neutral atom; i.e., to first approximation the
binding energy of the valence electron has to increase by a factor 4. This is confirmed by Fig. 4.13.
For comparison the levels of the He+ ion are included in the figure. Apart from the larger binding
energies, the level diagram is quite similar to that of the alkali atoms. For the l dependence this
becomes evident by comparing Figs. 4.10b and 4.13b. The hydrogenic-helium limiting behavior is
implicit in Eq. (4.143) because it depends on Z+

c (not on Z) : δnl → 0 for l � 1 and δnl/n→ 0 for
n� 1.

A numerical comparison between atoms and ions (see Table 4.2) shows that in all cases the
screening efficiency, as defined by Eq. (4.149), is smaller in the ions. This is in accordance with
the physical picture of progressive contraction in which the valence electron is pulled into the core.
Closer inspection of Table 4.2 reveals some interesting differences between atoms and ions. For the
lowest d levels the quantum defect increases (i.e., the ion is less hydrogenic than the atom) but for
the lowest s and p levels the opposite occurs. So, aside from the tendency of pulling the valence
electron into the electron core another physical mechanism comes into play. This mechanism has
to be substantial because for the heavy ions calcium (Ca+), strontium (Sr+) and barium (Ba+) the
energy of the lowest d level drops below that of the lowest p level (Znd/nd > Znp/np). For the
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light ions, beryllium (Be+) and magnesium (Mg+), this is not the case. As we shall see this points
to differences in screening properties between the inner core (1s2, 2s2, 2p6) and outer core electrons
(3s2, 3p6, etc.) which has the net effect of expelling valence charge away from the nuclear region.
We illustrate this phenomenon with a few examples:

• In the case of the lithium isoelectronic sequence Li, Be+ and B2+ only the 1s2 core is present.
Table 4.2 reveals that the screening efficiency of the 2s valence orbital is modest. It decreases
from 87% to 83% while the orbital becomes more hydrogenic when increasing the nuclear
charge (δ2s decreases by 50% from 0.411 to 0.203). The preferential binding decreases from
(Zns/Znp)

2 = 1.53 in Li to 1.19 in B2+. The increase in nuclear charge does not affect the 2p
orbital which remains close to hydrogenic, also in the ions (δ2p ' 0.041). All this is plausible
because the radial distribution function of the 1s core has little overlap with that of the 2p
orbital as shown in Fig. 4.12b.

• Also for the sodium isoelectronic sequence Na, Mg+ and Al2+ the outer core is absent. The in-
ner core consists of closed 1s2, 2s2 and 2p6 shells. Table 4.2 shows that the screening efficiency
of the 3s valence orbital (92% in Na) is better than that of the 2s orbital. Not surprisingly,
because we have 10 rather than 2 core electrons involved in the screening. However, the 3s
orbital is clearly less hydrogenic although this improves ionic charge (δ3s decreases by 33%
from 1.373 to 0.925). The preferential binding decreases from (Zns/Znp)

2 = 1.68 in Na to 1.30
in Al2+. To a lesser extent this trend is also present for the 3p orbital (δ3p decreases with 39%
from 0.883 to 0.628). The screening of the valence electron in the 3d orbital remains close
to perfect (> 99%). Although the quantum defect remains small it becomes less hydrogenic
(δ3d increases from 0.01 to 0.05). All this is plausible when comparing the radial distribution
function (2.46) for the 2p orbital with Zc = Z − 4 = 8 with that of the 3s, 3p and 3d orbitals
for which Zc = 2. For the 3s and 3p orbitals the overlap is substantial, for the 3d orbital it is
small.

• The perfect screening of the 3d orbital in Na, Mg+ and Al2+ is lost when turning to the
potassium isoelectronic sequence K, Ca+, · · · Cr5+. This has to do with the presence of the
outer core (3s2 and 3p6 shells). The outer core contracts with respect to the inner core because
the increase in effective nuclear charge is largest for the outer shells. Increasing Z from 19
in K to 20 in Ca+ the 1s2 core contraction is small because Z+

1s/Z1s ' 1.05. Also for the
2s2 and 2p the core contraction is small: Z+

2s/Z2s ' 1.06 and Z+
2p/Z2p ' 1.07. These estimates

are made for maximal screening by the inner-lying shells: Z+
nl/Znl = (Z − σnl + 1)/(Z − σnl)

with σ1s = 0, σ2s = 2 and σ2p = 4. For the outer core electrons the core contraction is larger,
Z+

3s/Z3s ' 1.11 (σ3p = 10) and Z+
3p/Z3p ' 1.14 (σ3p = 12). Table 4.2 shows that the 4s valence

orbital becomes more hydrogenic (δ4s decreases by 1.032). To a lesser extent this is also the
case for the 4p orbital (δ4p decreases by 0.786). As the 3d orbital has much less overlap with
the core electrons the increase in Zc leads to a reduction in screening, the orbital becoming less
hydrogenic (δ3d increases by 0.528). Hence, the binding of the 3d electron grows relative to
that of the 4s and 4p electrons. Further increasing Zc by turning to doubly ionized scandium
(Sc2+) the 3d orbital contracts even further and its energy even drops below that of the 4s
level, thus restoring the hydrogenic ordering of the levels. The contraction of the 3d orbital
with growing nuclear charge is sometimes referred to as the collapse of the 3d shell. We return
to this feature in Chapter 10.

In summary: we identified two opposing mechanisms which affect the screening of the valence
electron. The increase in Z pulls the valence electron towards the nucleus, which always results
in increased binding (Zc doubles). In the presence of an outer core, the valence electron is pulled
into the core electron cloud which further increases the binding by a decrease of screening. On the
other hand, the same increase in Z results in a contraction of the electron core. This decreases the
binding of those valence electrons that penetrate deeply into the core, the valence electrons in s
orbitals and (to a lesser extent) p orbitals.
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Table 4.3: Fine structure splitting of hydrogen and alkali atoms. The hydrogen and deuterium data are
taken from [61]; those of lithium from [24, 97]; the rest of the table is based on the NIST Atomic Spectra
Database Levels Data [66].

E(n 2S) E(n 2P ) λvac(D2) λvac(D1) ∆W3/2

n n∗s (Ry) n̄∗p (Ry) (nm) (nm) (GHz) (Ry) Z Zi

H 2 2.000 −0.25 2.000 −0.25 121.567 121.567 10.969 0 3.3× 10−6 1 1

D 2 2.000 −0.25 2.000 −0.25 121.534 121.534 10.972 0 3.3× 10−6 1 1
6Li 2 1.590 −0.40 1.961 −0.26 670.977 670.992 10.052 8 3.1× 10−6 3 1
7Li 2 1.589 −0.40 1.959 −0.26 670.962 670.977 10.053 4 3.1× 10−6 3 1

Na 3 1.627 −0.38 2.117 −0.22 589.158 589.756 515.521 1.6× 10−4 11 7

K 4 1.770 −0.32 2.234 −0.20 766.700 770.108 1 730.11 5.3× 10−4 19 15

Rb 5 1.805 −0.31 2.293 −0.19 780.241 794.979 7 122.92 2.3× 10−3 37 31

Cs 6 1.869 −0.29 2.362 −0.18 852.347 894.593 16 609.67 5.1× 10−3 55 49

Fr 7 1.828 −0.30 2.373 −0.18 718.185 817.166 50 562.67 15.4× 10−3 87 84

D1 : n 2P1/2 − n 2S1/2; D2 : n 2P3/2 − n 2S1/2; ∆W3/2 = E(n 2P3/2)− E(n 2P1/2)

Problem 4.9. Consider a hydrogen-like isoelectronic pair of an atom and a singly charged ion in states
with the same quantum numbers n and l. Show that the screening efficiency of the valence electron in atom
and ion are equal if the following condition is satisfied:

δ+nl = 1
2
δnl

1− δ+nl/n
1− δnl/n

,

where δnl and δ+nl are the quantum defects of the atom and ion, respectively, and δnl/n � 1. The relation
shows that in a general comparison between two isoelectronic states with equal n and l, a smaller quantum
defect is not always equivalent with better screening.

Solution. For δnl/n � 1 the screening efficiency is given by Eq. (4.149). For the atom the nuclear charge
number is Z and the Rydberg charge number Zc = 1; for the isoelectronic singly charge ion these quantities
increase by one, Z+1 = Z + 1 and Z+

c = Zc + 1. Substituting this into Eq. (4.149) for atom and ion we find
for equal screening:

σ̂+
nl = 1− Z+

c

Z+ − Z+
c

δ+nl/n

1− δ+nl/n
= 1− Zc + 1

Z − Zc
δ+nl/n

1− δ+nl/n
= 1− Zc

Z − Zc
δnl/n

1− δnl/n
= σ̂nl.

Since Zc = 1 we have Zc + 1 = 2Zc and this leads to the desired condition. 2

4.6.3 Screening by core electrons - effect on fine structure

An alternative view on screening can be obtained by analyzing the influence of core electrons on
the magnitude of the spin-orbit splitting. To introduce this alternative we present in Table 4.3 the
spin-orbit splitting of the (lowest-n) 2P term, ∆W3/2, as observed in the alkali atoms, together with
the Lyman α splitting in hydrogen (H) and deuterium (D). This 2P splitting is usually referred to as
the doublet splitting in hydrogen-like atoms. Included in the table are further the binding energies of
the (lowest-n) 2S and 2P levels (represented by their effective principal quantum number as well as
in Ry atomic units) along with the corresponding wavelength of the optical transitions to the 2S1/2

ground states. For the alkalies these transitions are referred to as the D1 and D2 lines, respectively
(see Fig. 4.14). The D1, D2 doublet shows up as a characteristic feature in the optical window of
the alkali spectra.

Note that the magnitude of the doublet splitting grows by orders of magnitude when the atomic
number increases from Z = 1 in hydrogen to Z = 87 in francium (Fr) but in all cases this splitting
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Figure 4.14: Fine structure and electric-dipole transitions in hydrogen-like atoms. Left: Lyman-α and
Balmer-α transitions in atomic hydrogen; Middle and Right : The D1, D2 doublet structure observed in the
spectra of alkali atoms is closely related to the rotational structure of the Lyman-α doublet in hydrogen.
The fine structure of the 2D3/2,5/2 levels is regular (hydrogen-like) in lithium but anomalous (inverted) in
rubidium. Such anomalies arise from kinematic correlations between the electrons (see Chapter 8) but do
not affect the selection rules.

remains much smaller than the n 2S − n 2P splitting (which is roughly 2 eV - see Fig. 4.9). The
increase of the doublet splitting with Z may be large in absolute terms, it does not match the
enormous increase predicted by the Z4 scaling of the hydrogenic formula (4.137). As we are aware
of the screening by core electrons this does not come as a surprise. Heuristically, the core electrons
reduce the effective nuclear charge, which leads to a reduction of the velocity-induced magnetic
field and the spin-orbit coupling accordingly. An impression of the influence of screening on the
spin-orbit interaction can be obtained using a semi-empirical expression discovered by Landé [70].
This expression follows by substituting the observed binding energies, as given by Eq. (4.143), into
Eq. (4.137) for the doublet splitting,

∆Wl+1/2 = α2 Z2
cZ

2
i

2n̄∗3l l(l + 1)
Hartree. (4.151)

Here Zc is the Rydberg charge, Zi the internal charge and n̄∗l is the doublet-averaged effective
principal quantum number of the 2P doublet. In hydrogen Zi = Z and n̄∗l = n. For the 2P doublets
in the alkalies, Zi can be calculated with Eq. (4.151) using the experimental values for l, n∗l and
∆Wl+1/2; the results are listed in Table 4.3. Note that (Z − Zi) increases only modestly from ∼ 2
in Li to ∼ 6 in Cs with Z increasing from 3 to 58. This suggests that only the innermost core
electrons are effective in suppressing the spin-orbit field. Roughly speaking, we have Zi ' Z − 4 for
p electrons. Francium differs because relativistic effects dominate. We return to these issues when
discussing many-electron atoms.

Note that the D1 and D2 transition frequencies depend slightly on the isotope under consider-
ation. In Table 4.3 this is demonstrated for the light isotopes, hydrogen, deuterium and lithium
(6Li and 7Li). For sodium (Na) and the heavier alkalies this isotope shift is too small to be visible
at the wavelength resolution presented. The origin of the isotope shift is found in two isotope-
dependent phenomena that affect the binding energy: (a) the reduced mass correction, introduced
in Section 2.1; (b) the nuclear volume correction to be discussed in Section 6.1. For the hydrogen
isotopes the nuclear volumes are small and the reduced mass correction large; i.e., the latter com-
pletely dominates the shift (see Problem 4.10). For the lithium isotopes the two corrections come
in on equal footing. Knowledge of the mass related corrections are essential for the determination
of the Lamb shift, crucial for precision tests of quantum electrodynamics. Note that, aside from
the isotope effect on the binding energy of the 2P1/2 and 2P3/2 levels, there is also a small isotope



4.6. Fine structure of alkali-like atoms in zero field 131

effect of the doublet splitting itself. The latter has to be small because the mentioned corrections
are predominantly common to the 2P1/2 and 2P3/2 levels. It is a challenge for theoreticians and
experimentalists alike to attain the required precision for a consistent determination of the isotope
effects on the D1 and D2 lines as well as that on the spin-orbit splitting [97].

Problem 4.10. The Lyman-α isotope shift between hydrogen and deuterium is ∆λ = 0.033 nm (see
Table 4.3). Show that this shift is (mostly) explained by the reduced mass correction.

Solution. Using the Rydberg formula (2.35) we find that the Lyman-α wavelength ratio is inversely pro-
portional to the ratio of Rydberg constants

λH
λD

=
RD
RH

=
1 +me/mp

1 +me/md
' 1.000272,

where mp = 1.007276466812 amu is the proton mass and md = 2.013553212712 amu the deuteron mass.
Hence, we calculate λH to be 0.0272% larger than that of deuterium, which corresponds to a reduced mass
correction of 0.0330 57 nm and explains the observed isotope shift. 2

4.6.4 Transition dipole moments in the presence of spin-orbit coupling

In the presence of spin-orbit coupling the ml is no longer a good quantum number and this has
consequences for the calculation of the transition-dipole elements of the electric-dipole operator. In
this case the states are written as |nlsjmj〉 and the transition dipole is of the form

Deg = Degû
∗
q (4.152)

where e = |n′l′s′j′m′〉, g = |nlsjm〉 and

Deg = −ea 〈n′l′s′j′m′|
√

4π/3ρY q1 (r̂) |nlsjm〉 (4.153)

is the transition dipole moment, with q = m′−m. In this case we immediately turn to the canonical
approach. Because the operators

√
4π/3 erY q1 (r̂) are irreducible vector operators we can apply the

Wigner-Eckart theorem (K.24) and obtain

Deg = −ea(−1)j
′−m′〈n′l′s′j′||

√
4π/3ρY1(r̂)||nlsj〉

(
j′ 1 j

−m′ q m

)
. (4.154)

In this case the reduced matrix element can be further reduced to the standard representation
{L2, Lz,S

2, Sz}. For this we use the repeated reduction formula (K.62),

〈n′l′s′j′||
√

4π/3ρY1(r̂)||nlsj〉 = (−1)j+l
′+s+1δs,s′

× 〈n′l′||
√

4π/3ρY1(r̂)||nl〉
√

(2j + 1) (2j′ + 1)

{
l′ j′ s

j l 1

}
. (4.155)

Substituting Eq. (2.79) this becomes

〈n′l′s′j′||
√

4π/3ρY1(r̂)||nlsj〉 = (−1)j+s+1+max(l,l′)δs,s′δl′,l±1Rn′l′,nl×

×
√

max(l, l′)
√

(2j + 1) (2j′ + 1)

{
l′ j′ s

j l 1

}
. (4.156)

Writing the transition dipole moment in the form

Dn′l′s′j′m′↔nlsjm = −eaRn′l′,nlAl
′ls
j′m′jmδs,s′δl′,l±1, (4.157)
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we find for the angular contribution (after reordering the 3j symbol)

Al
′ls
j′m′jm = (−1)−m

′+s+max(l,l′)
√

max(l, l′)
√

(2j + 1) (2j′ + 1)

{
l′ j′ s

j l 1

}(
j 1 j′

m q −m′

)
. (4.158)

The selection rules for fine-structure transitions (determined by the 3j symbol) are:

∆m = 0,±1 for π, σ± − transitions (4.159a)

∆j = 0,±1 (excluding j = 0↔ j′ = 0). (4.159b)

These selection rules come on top of the electric-dipole parity selection rule (2.73),

∆l = ±1 ∆s = 0 . (4.160)

In addition also the triangular inequalities ∆ (l, s, j) and ∆ (l′sj′) must be satisfied. Note that the
case j = j′ = 0 is excluded because the triangular inequality ∆ (j, j′, 1) cannot be satisfied. The
rule ∆s = 0 is trivial because in one-electron atoms the total spin is s = 1

2 , which is the intrinsic
spin of the electron and cannot change. The allowed electric-dipole transitions between lower levels
of hydrogen-like atoms are sketched in Fig. 4.14.

4.6.4.1 Example: sp transitions in hydrogen-like atoms (s = 1/2)

The result for the angular matrix elements of p → s transitions in the presence of fine-structure
coupling

(
j′ = 1

2 ,
3
2 → j = 1

2

)
depends, for given j′, on m′ ≡ mj′ ,

Al
′ls
3
2m
′, 12±

1
2

= (−)
3
2−m

′√
8

{
1 3

2
1
2

1
2 0 1

}(
1
2 1 3

2

± 1
2 m′ ∓ 1

2 −m
′

)
= (−)

3
2−m

′ 1
3

√
3
2 ±m′, (4.161a)

Al
′ls
1
2m
′, 12±

1
2

= (−)
3
2−m

′√
8

{
1 1

2
1
2

1
2 0 1

}(
1
2 1 1

2

± 1
2 m′ ∓ 1

2 −m
′

)
= (−)

3
2−3m′ 1

3

√
3
2 ∓m′. (4.161b)

Summing over the magnetic quantum numbers of the j = 1
2 level (which is the only s level) we

obtain
1/2∑

m=−1/2

A2
j′m′, 12m

= 1
3 . (4.162)

Note that (for given l′, l, and s) this sum is independent of j′ and m′; i.e., the sum is same for all
values of the magnetic quantum number of the p level. This is illustrated in Fig. 4.15. This sum
rule can be understood from the physical point of view when considering electric-dipole transitions.
Since the electric-dipole operator does not couple to the spin (it acts in a different sector of Hilbert
space), the spin cannot affect the total electric dipole transition rate. It only distributes the rate
over the available final states in the form of σ+, σ− and π contributions.

4.7 Fine structure in an applied magnetic field

4.7.1 Introduction

In the presence of an externally applied magnetic field B the vector potential is nonzero, A = 1
2B×r

(presuming the field to be homogeneous across the atom), and using the results of Sections 4.2 and
4.3, the Hamiltonian for the magnetic fine structure (4.120) can be written in the form of an effective
Hamiltonian valid to first order in perturbation theory for given values of n and l - compare with
Eq. (4.124)

H = H0 +Hr + (ζnl/~2)L · S− (µs + µL) ·B. (4.163)
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Figure 4.15: The angular contributions to the transition strength between two angular momentum levels (l′

and l) is independent of the presence (or absence) of fine structure. This is illustrated for p→ s transitions
in hydrogen-like atoms with fine structure: (a) in principal structure (see also Fig. 2.4); (b) from j′ = 1

2

level; (c) from j′ = 3
2

level. Note that the sum of the probabilities starting from any of the mj′ levels, always
yields the same value (normalized to unity, not counting a common prefactor - here 1/3 in all three cases).

HereH0 is the Schrödinger Hamiltonian (2.1) andHr is the relativistic correction given by Eq. (4.23).
Substituting Eqs. (4.53) and (4.80) for the magnetic moments the Hamiltonian takes the form

H = H0 +Hr + (ζnl/~2)L · S + (gLµBL + geµBS) ·B/~. (4.164)

We write this as H = H0 +Hr +H′, where

H′ = HLS +HZ (4.165)

is the perturbation to be considered, with

HLS = (ζnl/~2)L · S and HZ = (gLµBLz + geµBSz)B/~. (4.166)

representing the spin orbit coupling and the orbital and Zeeman terms, respectively, with the quan-
tization axis (z axis) chosen along the magnetic field direction.

We calculate the splitting of a fine-structure level of given n and l using first-order perturbation
theory for a degenerate level. Unlike the zero-field case, for finite fields the perturbation theory does
not reduce to ordinary first-order perturbation theory. Although L · S and HZ commute separately
with H0 +Hr, they do not commute mutually (see Problem 4.7). Therefore, the operators do not
share a basis. Physically, there is competition between the mutual coupling between L and S and
the coupling of L and S individually with the external B field. In low fields the L · S coupling is
dominant, whereas in high fields it is replaced by the L ·B and S ·B couplings. This crossover from
low-field to high-field behavior is known as the Paschen-Back effect [78]. In intermediate fields the
Hamiltonian is neither diagonal in the {|nlsjmj〉} (coupled) representation nor in the {|nlmlsms〉}
(uncoupled) representation and to calculate the level shifts to first order we have to diagonalize the
perturbation matrix. This is equivalent to solving the secular equation (I.24),

|H′i,j − εδi,j | = 0, (4.167)

where H′i,j are the matrix elements of the perturbation H′ in the representation of choice.
Also for many-electron atoms, with total orbital angular momentum L and total spin S, the

above diagonalization procedure can be used to describe the fine structure. This is the case if the
perturbation can be written in the form (4.165) and is known as LS coupling or Russell-Saunders
coupling (cf. Section 10.6.4)

4.7.2 Matrix element in the uncoupled basis

To solve the secular equation in the uncoupled representation we use the inner product rule (3.159b)
to write the perturbation in the form

H′ = (ζnl/~2)
[
LzSz + 1

2 (L+S− + L−S+)
]

+ (gLµBLz + geµBSz)B/~. (4.168)
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Note that this Hamiltonian conserves the total angular momentum along the z axis; i.e., ml +ms is
a good quantum number (Jz commutes with the Hamiltonian) for all values of the magnetic field.
This quantum number will be denoted by mj . The diagonal matrix elements of the perturbation
H′ in the uncoupled basis {|nlmlsms〉} and for given values of mj = ml +ms are given by

〈nlmlsms|H′|nlmlsms〉 = 〈nl(mj −ms)sms|H′|nl(mj −ms)sms〉
= ζnl(mj −ms)ms + [gLmj + (ge − gL)ms]µBB

≡ 〈mjms|H′|mjms〉 ≡ H′mjmsms , (4.169)

with ζnl the spin-orbit coupling constant. Note that in these matrix elements the states {|nlmlsms〉}
share fixed values for the quantum numbers n, l and s; only the values of ml and ms vary. Using
the relation ml = mj −ms we gave preference to specification of mj and ms rather than ml and
ms. Turning to the shorthand notation |nlmlsms〉 → |mjms〉 the matrix elements take the form
〈mjm

′
s|H′|mjms〉. Since mj is conserved by H′ the notation can be condensed to H′mjm′sms . The

terms 1
2 (ζnl/~2) (L+S− + L−S+) give rise to off-diagonal elements and are calculated using the shift

operators (1.59) and the conservation of mj ,

〈nlm′lsm′s|H′|nlmlsms〉 = 〈nl(mj −ms ± 1)s(ms ∓ 1)|H′|nl(mj −ms)sms〉
= 1

2ζnl
√
l(l + 1)− (mj −ms)(mj −ms ± 1)

√
s(s+ 1)−ms(ms ∓ 1)

≡ H′mj(ms∓1)ms
.

(4.170)

Hence, the perturbation couples states differing in ms such that ∆ms = ±1 while ml + ms = mj

remains conserved. For the coupled basis {|nlsjmj〉} this implies that the perturbation couples
states differing in j such that ∆j = ±1 while mj remains conserved. In the description of the field
dependence preference will be given to expressing coupled states in terms of uncoupled states, rather
than the other way around, because in the uncoupled representation the expressions for the limiting
cases of low and high field remain intuitively transparent. In the coupled representation the latter
is only the case for the low-field limit.

4.7.3 Diagonalization of the perturbation matrix for hydrogen-like atoms

For hydrogen-like atoms the solution of the secular equation (4.167) can be obtained analytically for
arbitrary magnetic fields because the electronic states are electron spin doublets

(
s = 1

2

)
. As shown

in Section 4.5 the spin-orbit shifts in zero field can be expressed as

∆ELSn,j =

{
+ 1

2ζnll
(
j = l + 1

2

)
− 1

2ζnl(l + 1)
(
j = l − 1

2

) for l 6= 0, (4.171)

where the manifold with the highest (lowest) multiplicity has the highest (lowest) energy. In the
absence of orbital angular momentum (l = 0) this shift is absent. For l > 0 the perturbation matrix
takes the form

H′ =



H′M�� 0 0 · · · 0 0 0

0 H′(M−1)�� H
′
(M−1)�� · · · 0 0 0

0 H′(M−1)�� H
′
(M−1)�� · · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · H′(−M+1)�� H
′
(−M+1)�� 0

0 0 0 · · · H′(−M+1)�� H
′
(−M+1)�� 0

0 0 0 · · · 0 0 H′−M��


, (4.172)
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where M ≡ l + 1
2 and � is the usual short hand notation for ms = 1

2 (and � for ms = − 1
2 ). The

quantum number mj varies within the range −M ≤ mj ≤ M . Note that the matrix is a d × d
matrix, where d = (2l + 1)(2s + 1) is the dimension of the angular momentum subspace in which
L and S operate. The characteristic equation is of the asymmetric type (cf. Appendix H.3) and
factorizes into a product of two determinants of size (1×1) and 2l determinants of size (2× 2), each
characterized by its own value of mj = ml +ms, with −M ≤ mj ≤M . With the aid of Eqs. (4.169)
and (4.170) the matrix elements are found to be

H′mj�� = + 1
2ζnl

(
mj − 1

2

)
+ gLµBmjB + 1

2µ
′
BB (4.173a)

H′mj�� = − 1
2ζnl

(
mj + 1

2

)
+ gLµBmjB − 1

2µ
′
BB (4.173b)

H′mj�� = + 1
2ζnl(l + 1

2 )(1− m̃2
j )

1/2 = H′mj��, (4.173c)

where

µ′B ≡ (ge − gL)µB ' µB (4.174a)

m̃j ≡ mj/(l + 1
2 ) with − 1 ≤ m̃j ≤ 1. (4.174b)

4.7.3.1 Pure states

Note that for mj = ±(l + 1
2 ), the coupling term vanishes, H′mj�� = 0. Therefore, the corresponding

states are called pure states. They are also known under the name stretched states because the
orbital and spin angular momentum spins are coupled “parallel” and have maximum projection
along the quantization axis,

|jmax,±(l + 1
2 )〉 =

∣∣l,±l; s,± 1
2

〉
. (4.175)

The corresponding energies are

ε± = 1
2ζnll ± (µL + µe)B for mj = ±(l + 1

2 ). (4.176)

Here µL ≡ gLµBl and µe ≡ geµBs are, respectively, the orbital and intrinsic magnetic moment of
the electron (cf. Sections 4.3.3 and 4.3.5).

4.7.3.2 Mixed states

The other states, mj 6= ±(l + 1
2 ), are called mixed states because they involve linear combinations

of the uncoupled basis states,

|jmax,mj〉 = + cosα|l,
(
mj − 1

2

)
; s, �) + sinα|l,

(
mj + 1

2

)
; s, �) (4.177a)

|jmin ,mj〉 = − sinα|l,
(
mj − 1

2

)
; s, �) + cosα|l,

(
mj + 1

2

)
; s, �). (4.177b)

With this choice of coefficients the states |jmax,mj〉 and |jmin,mj〉 form an orthonormal pair. The
states labeled jmax (jmin) are taken to be part of the manifold with highest (lowest) multiplicity.
In the limit B → 0 the Zeeman energy vanishes and j becomes a good quantum number, jmax →
j = l + 1

2 and jmin → j = l − 1
2 . In this limit the Eqs. (4.177) take the form of the Clebsch-

Gordan decomposition (J.45), where the phase factors satisfy the Clebsch-Gordan phase convention
introduced in Section 4.4.1. We have chosen the phase factors also for non-zero fields in accordance
with this convention. Because Eq. (4.177a) corresponds in the limit B → 0 to a state of maximal
j (parallel coupling) the phase factors are unity. The energies of the mixed states are given by
solutions of the secular equation for given value of mj ,

W±(mj) = 1
2

(
H′mj�� +H′mj��

)
± 1

2

√
(H′mj�� −H

′
mj��)2 + 4|H′mj��|2. (4.178)
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Figure 4.16: Fine structure diagram for the 2P3/2 and 2P1/2 electronic states and magnetic energy of the
various magnetic sublevels from zero field to the Paschen-Back regime as calculated with Eqs. (4.179). The
magnetic energy is given in units of the spin-orbit coupling constant ζnl and the magnetic field in units of
the fine-structure crossover field, |Bfs|. The dashed lines correspond to the high-field approximations - see
Eq. (4.190). The dotted lines correspond to the low-field approximation - see Eq. (4.199). The states of equal
mJ are LS coupled. The limiting behavior is: (a) B → ∞ : sinα, sinβ → 0; (b) B → 0 : cos2 α → 2/3,
cos2 β → 1/3.

This equation can be written in the form of the Breit-Rabi formula,1

ε±(mj) = gLµBmjB − 1
4ζnl ±

1
2ζnl(l + 1

2 )
√

1 + 2m̃jB/Bfs + (B/Bfs)2. (4.179)

The characteristic magnetic field,
Bfs ≡ ζnl(l + 1

2 )/µ′B , (4.180)

with µ′B defined by Eq. (4.174a), is called the fine-structure field. It represents an effective internal
magnetic field (as if the external field cannot be completely switched off) and is a measure for the
spin-orbit splitting in magnetic field units. Its absolute value,2 |Bfs|, is the fine-structure crossover
field - the intersection point of the low-field and high-field asymptotes of the magnetic field depen-
dence of the energy levels. For the 2p level of atomic hydrogen Bfs ' 0.8 T (see Problem 4.11).
With Eq. (4.179) we have obtained an expression for the magnetic field dependence of the spin-orbit
shift of atomic states with given values of l and mj = ml+ms 6= ±(l+ 1

2 ). It describes the crossover
from zero field to the high magnetic field limit. In Fig. 4.16 this is illustrated for 2P3/2 and 2P1/2

atomic states with the magnetic field given in units of the crossover field |Bfs|.
To obtain the eigenstates corresponding to the energies ε+ and ε− we have to determine the

coefficients in Eqs. (4.177). This is done by the procedure described in Appendix H.3. For hydrogen-
like atoms (ζnl > 0) we have ε+ > ε−; i.e., ε+ (ε−) corresponds to the upper (lower) branch of the
doublet. From the limit B → 0 analyzed in Section 4.5 we know that ε+ corresponds to |jmax ,mj〉
and ε− to |jmin ,mj〉. The amplitudes of the coefficients, A+ ≡ cosα and A− ≡ sinα, follow by
substitution of the matrix elements (4.173a)-(4.173c) into Eq. (G.51)

A2
± =

1− m̃2
j(

m̃j +B/Bfs ∓
√

1 + 2m̃jB/Bfs + (B/Bfs)2
)2

+ 1− m̃2
j

. (4.181)

1The name refers to the work of Breit and Rabi in relation to the hyperfine structure of atomic hydrogen [22].
2Note that Bfs can become negative in many-electron atoms (see Section 10.6.5).
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High-field limit (B � |Bfs|): In high magnetic fields we can expand the Breit-Rabi formula
(4.179) in powers of Bfs/B. Retaining only the terms up to first order in Bfs/B we obtain

ε±(mj) = gLµBmjB − 1
4ζnl ±

1
2µ
′
BB(1 + m̃jBfs/B). (4.182)

The leading terms of this expression corresponds to the high-field asymptotes indicated by the dashed
lines in Fig. 4.16. Using a similar expansion Eq. (4.181) takes the form

A2
− = sin2 α ' 1

4 (1− m̃2
j )(Bfs/B)2 → 0. (4.183)

This is an example of weak coupling (strong asymmetry) as defined in Appendix G.3.4.

Low-field limit (B � |Bfs|): For low magnetic fields we can expand Eq. (4.179) in powers of
B/Bfs. Retaining only the terms up to second order in B/Bfs we obtain

ε±(mj) = gLµBmjB − 1
4ζnl ±

1
2ζnl(l + 1

2 )[1 + m̃jB/Bfs + 1
2 (1− m̃2

j )(B/Bfs)
2 + · · · ]. (4.184)

The linear and quadratic contributions are referred to as linear and quadratic Zeeman effects.
The linear terms correspond to the low-field tangents indicated by the dotted lines in Fig. 4.16.
Expanding Eq. (4.181) to first order in B/Bfs we obtain

A2
± ' 1

2 (1± m̃j) [1± (1∓ m̃j)B/Bfs + · · · ] . (4.185)

Note that this is not an example of the strong coupling limit (weak asymmetry) as defined in
Appendix H.3. This would be the case for mj = 0 but this value does not occur in hydrogen-like
atoms.

Crossover field (B = |Bfs|): Equating Eqs. (4.182) and (4.184) for the high- and low-field tangents
we obtain the following expression for the intersection point,

µ′BB(1 + m̃jBfs/B) = ζnl(l + 1
2 )(1 + m̃jB/Bfs). (4.186)

Solving for B we find for the intersection point B = |Bfs| = |ζnl|(l + 1
2 )/µ′B . This point marks the

crossover between the low-field and high-field regions. Note that the crossover field does not depend
on mj .

Problem 4.11. Calculate the fine-structure field Bfs for the 2p level of hydrogen.

Solution. Using Eqs. (4.180), (4.136) and (2.33) we obtain the following expression for the fine-structure
field in hydrogenic atoms

Bfs ' α2Z
4

n4

hcRM
µB

(l + 1/2)n

l(l + 1/2)(l + 1)
.

For the 2p state of hydrogen (n = 2, l = 1 and Z = 1) this implies 1
16
α2hcRM/µB ' 0.8 T. 2

4.7.4 High-field limit - Paschen-Back effect

For magnetic fields much higher than the fine-structure field (B � |Bfs|) the spin-orbit coupling is
weak as compared to the Zeeman interaction. This causes the Zeeman coupling of L and S individ-
ually to the external field to dominate over the spin-orbit coupling between L and S - see Fig. 4.17.
For increasing magnetic field, this manifests itself as a crossover from spin-orbit coupling of L and
S (B � |Bfs|) to Zeeman coupling of L and S individually to the magnetic field (B � |Bfs|).
This crossover is known as the Paschen-Back effect. Therefore, in the high-field limit the atomic
Hamiltonian

H = (H0 +Hr +HZ) +HLS (4.187)
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Figure 4.17: Precession of angular momenta in an externally applied magnetic field for the example l = 1,
s = 1

2
. In low fields L and S are strongly spin-orbit coupled (by HLS) to form the total electronic angular

momentum J = L+S, which precesses slowly about the field direction as a result of a weak Zeeman coupling,
HZ = −µJ ·B; this is most conveniently described in the coupled basis {|j,mj〉}. In high fields L and S are
predominantly Zeeman coupled to the external field, HZ = −(µL+µS) ·B, and precess independently about
the field direction; this is best described in the uncoupled basis {|l,ml, s,ms〉}. Note that mj = ml +ms is
a good quantum number in both limits.

is best analyzed in the uncoupled representation {|nlmlsms〉}, where HZ is diagonal and HLS acts
as the perturbation. In this basis and for given value of n, l, s the perturbation matrix is given by

HLSm′lm′s;mlms = (ζnl/~2)〈lm′lsm′s|L · S|lmlsms〉, (4.188)

which can be written in the form

HLSm′lm′s;mlms = (ζnl/~2)〈lm′lsm′s|LzSz + 1
2 (L+S− + L−S+) |lmlsms〉. (4.189)

As only the diagonal matrix elements of a weak perturbation contribute to first order in pertur-
bation theory (see Appendix G.3.4 - weak coupling), in high fields the spin-orbit shift is given
by ∆ELSn;mlms

= ζnlmlms and the asymptotic field dependence (dashed lines in Fig. 4.16) can be
expressed as

∆En;mlms = (gLml + gems)µBB + ζnlmlms. (4.190)

Note that the derivation of this expression is valid for arbitrary values of l and s. Moreover,
Eq. (4.190) may be generalized to the case of many-electron atoms under conditions of Russell-
Saunders coupling using the arguments presented in Section 4.7.1 (cf. Section 10.6.4).

4.7.4.1 Hydrogen-like atoms

For hydrogen-like atoms the high-field limit is illustrated in Fig. 4.16 for the case l = 1, s = 1
2 ,

assuming gL = 1 and ge = 2. The stretched cases ml = 1, ms = 1
2 and ml = −1, ms = − 1

2
correspond to

∆En;±ml±ms = 1
2ζnl ± 2µBB (4.191)

and coincide with the straight solid lines in Fig. 4.16. The ml = 0 cases ms = ± 1
2 correspond to

∆En;±ml±ms = ±µBB (4.192)

and are represented by the inclined dashed lines in Fig. 4.16. The antiparallel cases ml = −1,
ms = 1

2 and ml = 1, ms = − 1
2 correspond to

∆En;±ml±ms = − 1
2ζnl (4.193)

and are shown as the horizontal dashed line in Fig. 4.16.
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4.7.5 Low-field limit - Landé factor gJ

For magnetic fields much lower than the fine-structure field (B � |Bfs|) the angular momenta L
and S are spin-orbit coupled (by HLS) to form the total electronic angular momentum J = L + S
(see Fig. 4.17). Under these conditions the atomic Hamiltonian

H = (H0 +Hr +HLS) +HZ (4.194)

is best analyzed in the coupled representation, {|nlsjmj〉}, where L · S is diagonal and HZ acts as
the perturbation. In this basis and for given values of n, l, s, j the perturbation matrix is given by

HZj′mj′ ;jmj = 〈j′mj′ |gLLz + geSz |jmj〉µBB/~. (4.195)

Limiting ourselves to the diagonal terms, we obtain the following expression for the energy shift
(Zeeman shift)

∆EZj,mj = 〈jmj |gLLz + geSz |jmj〉µBB/~. (4.196)

This expression is valid to only first order in perturbation theory because HZ is in not diagonal in
the coupled representation: only the diagonal matrix elements of a weak perturbation contribute
to first order (see Appendix G.3.4 - weak coupling). Interestingly, the operators Lz and Sz cannot
change ml and ms and, therefore, have to conserve mj . This is a consequence of the mj selection
rule (3.89), mj = ml +ms. However, Lz and Sz do not conserve j (see Problem 4.12). Only in low
fields the perturbation can be made sufficiently weak to neglect the off-diagonal terms; i.e., to regard
both j and mj as good quantum numbers of the atomic Hamiltonian (4.194).. Furthermore, using
the arguments given in Section 4.7.1, also the analysis of the low-field limit may be generalized to
the case of many-electron atoms under conditions of Russell-Saunders coupling (cf. Section 10.6.4).

Intuitively the situation is also clear: for sufficiently low fields the magnetic moment of the atom
will scale with the total electronic angular momentum J,

µJ ≡ γJJ ≡ −gJµB (J/~) for B → 0. (4.197)

Note that γJ and gJ are defined with opposite sign, just as we did for γL and γe. The value of gJ
will turn out to be positive. In terms of µJ the Zeeman energy can be described by the effective
Hamiltonian

HZ = −(µL + µs) ·B = −µJ ·B for B → 0. (4.198)

This Hamiltonian yields a Zeeman shift on top of the zero-field spin-orbit shift ∆ELSnj (for given
values of n, l, s, j):

∆EZj,mj = gJµBB〈jmj |(Jz/~)|jmj〉 = gJµBmjB for B → 0. (4.199)

This expression corresponds to the low-field tangents indicated by the dotted lines in Fig. 4.16. As
was to be expected, also the effective Hamiltonian (4.198) is diagonal in the {|nlsjmj〉} basis if the
quantization axis is chosen along the direction of the B field. Our task is of course to determine the
value of gJ .

Problem 4.12. Show that the fine-structure levels of a one-electron atom are coupled by the Zeeman
interaction.

Solution. We show this for the orbital Zeeman interaction. Since Lz conserves mj = ml + ms, we have
to show 〈j′m|Lz|jm〉 6= 0 for j′ 6= j, where m = mj′ = mj . First we do a Clebsch-Gordan decomposition
to the uncoupled representation using the triangle inequality l − 1

2
≤ j ≤ l + 1

2
as well as the projection

conservation rule (J.5),

|jm〉 = |l(m− 1
2
); 1

2
1
2
〉〈l(m− 1

2
); 1

2
1
2
|jm〉+ |l(m+ 1

2
); 1

2
− 1

2
〉〈l(m+ 1

2
); 1

2
− 1

2
|jm〉.

Using this decomposition we obtain for the matrix element

〈j′m|Lz|jm〉 = (m− 1
2
)〈j′m|l(m− 1

2
); 1

2
1
2
〉〈l(m− 1

2
); 1

2
1
2
|jm〉

+ (m+ 1
2
)〈j′m|l(m+ 1

2
); 1

2
− 1

2
〉〈l(m+ 1

2
); 1

2
− 1

2
|jm〉,

which is nonzero if j′ = l ± 1
2

for j = l ∓ 1
2
, with m = ±j or m = ∓j′. 2
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4.7.5.1 Wigner-Eckart theorem

To understand the relation between Eqs. (4.196) and (4.199) we recall the vector diagram in Fig. 4.6.
The slow precession of J = L + S about the direction of a weak probe field (just serving to define a
quantization axis) does not affect the projections of the angular momentum operators. As Lz and
Sz commute with Jz these operators are invariant under rotation about the z axis; i.e., diagonal in
the {|nlsjmj〉} basis. The matrix elements of Lz and Sz can be written in the form

〈nlsjmj |Lz |nlsjmj〉 = 〈lsj ‖L‖ lsj〉 〈jmj | Jz |jmj〉 (4.200a)

〈nlsjmj |Sz |nlsjmj〉 = 〈lsj ‖S‖ lsj〉 〈jmj | Jz |jmj〉 , (4.200b)

where the proportionality constants 〈lsj ‖L‖ lsj〉 and 〈lsj ‖S‖ lsj〉 are known as reduced matrix
elements. They deserve special attention because they turn out to be independent of mj . Since
Jz = Lz + Sz we find by adding Eqs. (4.200a) and (4.200b) that the reduced matrix elements add
up to unity,

〈lsj ‖L‖ lsj〉+ 〈lsj ‖S‖ lsj〉 = 1 = 〈lsj ‖J‖ lsj〉. (4.201)

The above is intuitively clear from the vector diagram in Fig. 4.6. The projections of L and S along
the total angular momentum vector J, i.e. L · J and S · J, are conserved while J precesses about B,

〈nlsjmj |Lz |nlsjmj〉 =
〈lsjmj | (L · J) Jz |lsjmj〉
〈lsjmj |J2 |lsjmj〉

. (4.202)

Since L · J and Jz are both diagonal in the low-field basis (see Problem 4.13) we can factorize the
matrix element into the form (4.200a), where the mj-independent part is given by

〈lsj ‖L‖ lsj〉 =
〈lsjmj |L · J |lsjmj〉
〈lsjmj |J2 |lsjmj〉

=
j(j + 1) + l(l + 1)− s(s+ 1)

2j(j + 1)
. (4.203)

An alternative derivation of this expression (not relying on the geometric argument presented here)
is given in Problem 4.14. Eqs. (4.200) and similar expressions for the other vector components
(including the shift operators) follow from the Wigner-Eckart theorem of group theory for the case
of vector operators (cf. Appendix K.3.4). Importantly, the three components of the vector operators
share the same reduced matrix element,

〈nlsjmj |Lz |nlsjmj〉 = 〈lsj ‖L‖ lsj〉 〈jmj | Jz |jmj〉 (4.204a)

〈nlsj(mj ± 1)|L± |nlsjmj〉 = 〈lsj ‖L‖ lsj〉 〈j(mj ± 1)| J± |jmj〉 . (4.204b)

These expressions embody the vector projection rule of coupled angular momenta.

4.7.5.2 Landé factor gJ

In search for gJ we return to Eqs. (4.196) and (4.199). With the aid of the Wigner-Eckart theorem
(4.200) as well as the relation (4.201) we obtain the expression

gJ = gL〈lsj ‖L‖ lsj〉+ ge〈lsj ‖S‖ lsj〉
= 1

2 (gL + ge) + 1
2 (gL − ge) [〈lsj ‖L‖ lsj〉 − 〈lsj ‖S‖ lsj〉] . (4.205)

Substituting the expressions for the reduced matrix elements (see above or Problem 4.14)

〈lsj ‖L‖ lsj〉 =
j(j + 1) + l(l + 1)− s(s+ 1)

2j(j + 1)
(4.206a)

〈lsj ‖S‖ lsj〉 =
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
(4.206b)
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Table 4.4: Relative deviation from the free-electron g-value for hydrogen-like atoms; differences between
isotopes of a given atom are at the ppb level [11, 4].

H Li Na K Rb Cs units

gJ/ge − 1 −17.4 −20.9(1) −23.4(1) −24.3(1) 5.9(1) 98.5(1) ppm

we obtain for the gJ factor,

gJ = 1
2 (gL + ge) + 1

2 (gL − ge)
l(l + 1)− s(s+ 1)

j(j + 1)
. (4.207)

Approximating gL = 1 and ge = 2 we find that gJ takes the form

gJ = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
. (4.208)

This expression is called the Landé factor. Note that just like the expressions for the high-field limit
also the derivation of the expressions for the low-field limit is valid for arbitrary values of l and s.
For the hydrogen-like atoms we have s = 1

2 and the Landé factor reduces to the compact form

gJ =

 1± 1

2l + 1

(
j = l ± 1

2

)
for l > 0

2 for l = 0.
(4.209)

Note that in this important case the gJ factor is always positive (gJ > 0) and largest for the state
with the largest multiplicity (highest j).

In the important case of electronic s states Eq. (4.207) reduces to gJ = ge as expected for the
absence of an orbital moment. However, due to confinement of the electron inside the atom, gJ
differs slightly from the free-electron ge value. These deviations are summarized for hydrogen-like
atoms in Table 4.4. For the hydrogen atom gJ(H)/ge − 1 = −17.4(1.0) × 10−6, which means that
in hydrogen the electron g factor is reduced by 17.4 ppm [7]. The value of gJ cannot be determined
without consideration of the nuclear properties because of coupling of the electronic and nuclear
magnetic moments (see Chapter 5). Therefore, precision measurement of gJ requires analysis of the
atomic hyperfine structure [11].

Problem 4.13. Derive the operator identity

L · J = 1
2
[J2 + L2 − S2].

Solution. Since J = L + S we find

L · J = L2 + L · S = L2 + 1
2
[J2 − L2 − S2] = 1

2
[J2 + L2 − S2]. 2

Problem 4.14. Derive the relation

〈lsj ‖L‖ lsj〉 =
j(j + 1) + l(l + 1)− s(s+ 1)

2j(j + 1)
.

Solution. To determine 〈lsj ‖L‖ lsj〉 we evaluate the operator S2 = (J− L)2 = J2 +L2− 2J ·L (note that
J · L = L · J) in the coupled representation,

〈lsjmj |S2 |lsjmj〉 = 〈lsjmj |J2 + L2 − 2L · J |lsjmj〉 .

Comparing the left-hand with the right-hand side we obtain

s(s+ 1) = j(j + 1) + l(l + 1)− 2 〈lsjmj |L · J |lsjmj〉 /~2.
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With the aid of the inner-product rule (3.159b) and using Wigner-Eckart theorem (4.204) this relation
becomes

s(s+ 1) = j(j + 1) + l(l + 1)− 2 〈lsjmj |LzJz + 1
2
[L+J− + L−J+] |lsjmj〉 /~2

= j(j + 1) + l(l + 1)− 2〈lsj ‖L‖ lsj〉〈lsjmj |J2
z + 1

2
[J+J− + J−J+] |lsjmj〉 /~2

= j(j + 1) + l(l + 1)− 2〈lsj ‖L‖ lsj〉〈lsjmj |J2 |lsjmj〉 /~2

= j(j + 1) + l(l + 1)− 2〈lsj ‖L‖ lsj〉j(j + 1).

Solving for 〈lsj ‖L‖ lsj〉 we obtain the desired relation. 2

4.7.6 Example for hydrogen-like atoms

In Fig. 4.16 the low-field limit can be recognized for the case l = 1, s = 1
2 , assuming gL = 1 and

ge = 2. For j = l − s = 1
2 we calculate the Landé result gJ = 2/3; for j = l + s = 3

2 we have
gJ = 4/3. As shown by the solid lines in Fig. 4.16, in low field (B → 0) we note that

• the 4-fold degeneracy of the 2P3/2 level is lifted in accordance with

∆En,j=3/2,mj ' ∆En,3/2 + 4
3µBmjB, (4.210)

where mj = ± 1
2 ,±

3
2 . Decomposing |j,mj〉 =

∑
mlms

|lml; sms〉〈lml; sms|jmj〉 the corre-
sponding eigenstates can be written as

| 32 ,±
3
2 〉 = |1,±1; 1

2 ,±
1
2 〉 (4.211)

| 32 ,±
1
2 〉 =

√
2/3|1, 0; 1

2 ,±
1
2 〉+

√
1/3|1,±1; 1

2 ,∓
1
2 〉, (4.212)

where the Clebsch-Gordan coefficients (lml; sms|jmj〉 are taken from Appendix J.2.1 for the
case of (1× 1/2) coupling. Here the phase factors are unity because this is a case of maximal
j. Note that the correct amplitudes of the coefficients are also obtained using Eq. (4.185) in
the limit B → 0. Hence, as we now have also established the sign, the full field dependence of
the coefficients is known.

• the two-fold degeneracy of the 2P1/2 level is lifted like

∆En,j=1/2,mj ' ∆En,1/2 + 2
3µBmjB, (4.213)

with mj = ± 1
2 . In this case the eigenstates are

| 12 ,±
1
2 〉 = ∓

√
1/3|1, 0; 1

2 ,±
1
2 〉 ±

√
2/3|1,±1; 1

2 ,∓
1
2 〉, (4.214)

where the Clebsch-Gordan coefficients (lmlsms|jmj〉 are again taken from Appendix J.2.1 for
the case of (1× 1/2) coupling. Also in this case the amplitude of the coefficients are obtained
using Eq. (4.185) in the limit B → 0.
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Magnetic hyperfine structure

The term hyperfine structure is reserved for features of the atomic structure that arise from prop-
erties of the nucleus. From Chapter 1 we recall the effective mass correction, which accounts for
the influence of the nuclear mass on the size of the electronic orbits. Likewise, the nuclear vol-
ume correction corrects for the non-zero nuclear volume (see Problem 4.1). The most prominent
hyperfine features result from the magnetic dipole moment and electric quadrupole moment of the
nucleus. The magnetic dipole moment, µI , is related to the nuclear spin, I, and gives rise to the
magnetic hyperfine structure. The electric quadrupole moment, Q, arises from the nuclear shape
and contributes to the electric hyperfine structure.

The existence of nuclear spin was conjectured by Wolfgang Pauli in 1924 in relation to observa-
tions of hyperfine structure in optical spectra [79]. The related phenomenology was demonstrated
by Back and Goudsmit in 1928 [6]. However, as hyperfine shifts and splittings can be as much
as a factor 1000 smaller than those of the fine structure, spectral resolution becomes an issue for
precision measurements. Therefore, it took the invention of radio-frequency spectroscopy in atomic
beams by Isodor Rabi in 1939 [84] before the hyperfine structure could be fully explored. The
Rabi method was turned into a modern precision method by Norman Ramsey in 1949 [88, 87]. For
the alkali atoms the experimental status was reviewed in 1977 [4]. Since the invention of optical
frequency combs by Theodore Hänsch [55] and John Hall [53], hyperfine structure is studied with
high-resolution optical spectroscopy (see e.g. [97]).

Although the nuclear properties are determined by the constituent particles (nucleons - protons
and neutrons) and their orbits inside the nucleus, remarkably little detailed knowledge of nuclear
and high-energy physics is required to understand a lot of the atomic hyperfine structure. For atomic
spectroscopy it is important to know that the forces between the nucleons conserve parity in almost
all practical cases. In exceptional cases the weak interaction (which does not conserve parity) plays
a role. In any case, we do not have to deal with many other challenging issues of the nucleus. For
instance, the structure of the nucleons is highly non-trivial because the interactions between the
quarks (the building blocks of the nucleons) cannot be treated perturbatively. In this respect, the
name proton spin puzzle of quantum chromodynamics (QCD) speaks for itself [2]: why is the spin
of the proton 1/2 ? The quark spins (each spin- 1

2 ) turn out to account for only some 30% of its
value, and the largest contribution is attributed to a combination of the gluon spin (spin-1) and the
orbital motion of quarks and gluons.

In this chapter we introduce the magnetic hyperfine structure of one-electron atoms. As for
the fine structure we focus on atomic systems in which a single electron dominates the electronic
angular momentum properties. Hence, the electronic states remain electron spin doublets (s = 1

2 )
of varying orbital angular momentum. However, also non-hydrogen-like features arise. Aside from
the spin of the valence electron, also the spin of the core electrons (core polarization - see Section
10.4.2) as well as the nuclear spin (this chapter) and shape (next chapter) play a role.

In view of the above we introduce the atomic hyperfine structure in two rounds. In the present
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chapter we focus on the magnetic hyperfine structure as observed in the hydrogen atom and in the
ground states of the alkali elements. In the former case the core does not have to be addressed
because core electrons are simply absent, in the latter the core may affect the results quantitatively
but qualitatively the hyperfine structure remains hydrogen like. Further we comment on cases in
which the core cannot be neglected such as for the l > 0 excited states (2P , 2D terms) of the
alkali elements. In Chapter 6 we shall focus on the electric hyperfine structure. As we shall find,
in hydrogen (I = 1

2 ) the electric hyperfine structure is absent because the nucleus is spherical. For
I > 1

2 (as is the case for many alkali atoms) the nuclei are nonspherical. This affects the hyperfine
structure but is of no consequence for the electronic ground states of the alkali atoms because the
electronic charge distribution is spherical (2S terms) and the coupling to electric multipole moments
averages to zero.

Thus the present chapter serves to introduce the principal features of the magnetic hyperfine
structure, including the Zeeman effect. We emphasize the formal similarity with the phenomenology
of the fine structure. In Chapter 6 we turn to the electric hyperfine structure. These two chapters
cover the backbone of the non-relativistic theory for the hyperfine structure of free atoms. This
being said we should be aware that interesting anomalies immediately arise once we deviate from
the elementary picture of a non-relativistic one-electron atom with a homogeneously charged classical
nucleus. A comprehensive introduction falls outside the scope of this introductory text but can be
found in the book by Lloyd Armstrong [5].

5.1 Nuclear magnetic coupling

5.1.1 Nuclear Zeeman coupling

Any charged particle with angular momentum gives rise to a magnetic moment and the atomic
nucleus is no exception to this rule. Therefore, just as we associated the electronic spin Zeeman
energy to the electron spin, the nuclear spin gives rise to a nuclear spin Zeeman contribution. Writing
the Hamiltonian for the magnetic energy in the generic form of a Zeeman interaction we have

HZ = −µI ·B, (5.1)

where
µI = γII ≡ gIµN (I/~) (5.2)

is the nuclear magnetic moment, with I the nuclear spin, γI the gyromagnetic ratio of the nucleus,
gI the nuclear g factor and

µN ≡ e~/2mp = (me/mp)µB (5.3)

the nuclear magneton, µN ' 5×10−27 J/T. Note that e~/2mp is the gyromagnetic ratio of a classical
rotating body of charge e and mass equal to the proton mass mp. The gI can be positive or negative,
which is an important indicator that the nucleus is more than a simple rotating cloud of positive
charge; aside from the rotational motion, also the intrinsic spins of the nucleons contribute to the
moment. The quantum numbers I and mI define the nuclear spin state. In analogy to the orbital
case (4.66) the magnitude of the nuclear magnetic moment (short: the nuclear moment) is defined
as the maximum observable nuclear moment (i.e., the value obtained for mI = I),

µI ≡ gIµNI. (5.4)

For the nuclear spin quantum number I we shall use capitals rather than the lower-case notation
used for the angular momentum quantum numbers of a single electron (s, l and j). The g factor is
related to the gyromagnetic ratio of the nucleus,

γI ≡ gIµN/~. (5.5)
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Table 5.1: Nuclear spin, nuclear moments and ground-state hyperfine constant and crossover field for selected
isotopes [4] (Ca data from [12]). In the literature authors often avoid the nuclear magneton and use a different
sign convention for the nuclear g factor: g′I = −gI(me/mp).

I gI µI γI/2π Q ahfs gJ Bhfs

(µN ) (MHz/T) (barn) (MHz) (Gauss)

H 1/2 5.5857 2.79285 42.578 - 1420.405 752 2.002284 507
2H 1 0.8574 0.85744 6.536 0.0029 327.384 353 2.002284 175

3He 1/2 −4.2550 −2.12750 −32.434 - - -
4He 0 - - - - - -
6Li 1 0.8226 0.82257 6.270 −0.0008 152.136 841 2.002301 82
7Li 3/2 2.1710 3.25646 16.548 −0.041 401.752 043 2.002301 287
9Be 3/2 −0.7852 −1.1778 −5.9853 0.053 - -

20,22Ne 0 - - - - - -
21Ne 3/2 −0.4412 −0.66180 −3.3631 0.103 - -
23Na 3/2 1.4784 2.21766 11.270 0.101 885.813 064 2.002296 633

24,26Mg 0 - - - - - -
25Mg 5/2 −0.3422 −0.85545 −2.6083 0.201 - -

36,38,40Ar 0 - - - - - -
39K 3/2 0.2601 0.39147 1.989 0.049 230.859 860 2.002294 165
40K 4 −0.3245 −1.29810 −2.474 −0.061 −285.730 800 2.002294 −459
41K 3/2 0.1433 0.21489 1.092 0.060 127.006 935 2.002294 90

40,··· ,48
even Ca 0 - - - - - -

43Ca 7/2 −0.3765 −1.31764 −2.8697 −0.049 −806.402 072 2.002257 −1151
78,··· ,86
even Kr 0 - - - - - -

83Kr 9/2 −0.215 7 −0.97067 −1.6442 0.253 - -
85Rb 5/2 0.5413 1.35335 4.126 0.23 1011.910 813 2.002331 1084
87Rb 3/2 1.8345 2.75182 13.984 0.127 3417.341 306 2.002331 2441

84,86,88Sr 0 - - - - - -
87Sr 9/2 −0.2430 −1.09360 −1.8524 0.335 - -

133Cs 7/2 0.7380 2.58291 5.625 −0.004 2298.157 943 2.002540 3284
130,··· ,138
even Ba 0 - - - - - -

135Ba 3/2 0.5586 0.837943 4.258 0.160 - -
137Ba 3/2 0.6249 0.937365 4.634 0.245 - -

As we do not enter into the internal structure of the nucleus we simply treat γI as an empirical
value. Recalling the discussion of Section 4.3.4 we infer that the torque on the nuclear spin is given
by

dI(t)/dt = µI ×B. (5.6)

This torque gives rise to precession of I about B at angular frequency

ωI = γIB. (5.7)

For a free proton the gyromagnetic ratio is given by γp = gp(e/2mp) = gpµN/~, with γp/2π '
4.26 kHz/Gauss and gp ' 5.5857 being the proton g factor. Likewise, for the deuteron gd ' 0.8574
and we calculate with γd = gdµN/~ for the gyromagnetic ratio γd/2π ' 0.653 59 kHz/Gauss. For
some selected isotopes the values are tabulated in Table 5.1. Note that the nuclear magneton is
a factor µB/µN = mp/me ' 1836.2 smaller than the Bohr magneton. Therefore, the nuclear-spin
Zeeman coupling is typically three orders of magnitude weaker than the electronic-spin Zeeman
coupling introduced in Section 4.3.5. As a result this coupling only weakly perturbs the atomic
fine structure discussed in Chapter 4. Substituting Eq. (5.2) into the Zeeman Hamiltonian (5.1) the
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nuclear Zeeman term takes the form

HZ = −γII ·B = −gIµNB (Iz/~) , (5.8)

where the z direction is again chosen along the direction of the B field. This Hamiltonian expresses
the coupling of I to the B field (nuclear Zeeman coupling).

We analyze the level splitting by the nuclear spin Zeeman coupling in the same way as we
did for the electron spin Zeeman coupling using ordinary first-order perturbation theory.1 For
the nuclear spin Zeeman term this is done in the hydrogenic basis further extended by a spin
sector {|nlmlsms〉} → {|nlmlsmsImI〉}, ∆EZ = 〈nlmlsmsImI |HZ |nlmlsmsImI〉. Since I2 and Iz
commute with H0, L2, Lz, S2 and Sz the nuclear spin Zeeman operator acts in a 2I+1 dimensional
sector of Hilbert space and is diagonal in the spin basis {|ImI〉}; i.e., I and mI are good quantum
numbers. The nuclear-Zeeman energy shift is given by

∆EZ = −γIB〈I,mI |Iz|I,mI〉 = −gIµNmIB. (5.9)

5.1.2 Total atomic angular momentum

As long as we may neglect the interaction with the environment (i.e., in zero field) the atom repre-
sents a closed mechanical system and the total angular momentum is a conserved quantity. In the
presence of hyperfine interaction this quantity is denoted by F. In hydrogen-like atoms it results
from the contribution of three angular momenta,

F = L + S + I. (5.10)

Since the addition of three angular momenta can be done in different ways it is an important
simplifying factor that the coupling of the nuclear spin to the other angular momenta is weak, much
weaker than the coupling between L and S. Therefore, we may (and shall) presume that the nuclear
spin couples only to the total electronic angular momentum J = L + S rather than to L and S
separately. In this way the hyperfine structure of the atom can be obtained by considering the
coupling of only two angular momenta,2

F = J + I. (5.11)

Starting from this expression it is straightforward to show that F obeys commutation relations of
the type (1.29),

[Fx, Fy] = i~Fz, [Fy, Fz] = i~Fx and [Fz, Fx] = i~Fy. (5.12)

Therefore, F satisfies all properties of quantized angular momenta,

F2 |jIF,mF 〉 = F (F + 1)~2 |jIF,mF 〉 (5.13)

Fz |jIF,mF 〉 = mF~ |jIF,mF 〉 , (5.14)

with mF restricted to the interval
− F ≤ mF ≤ F. (5.15)

In many cases the specification of j and I is irrelevant because their value is obvious from the
context. In such cases these quantum numbers are usually omitted in the notation, writing simply
|F,mF 〉 rather than |jIF,mF 〉. For given values of j and I the value of F can vary from |j − I| to
j + I in steps of unit angular momentum in accordance with the triangle inequality

|j − I| ≤ F ≤ j + I. (5.16)

1Pure nuclear spin Zeeman splitting is observed in isotopes of closed shell atoms (e.g., the inert gases). In one-
electron atoms nuclear spin Zeeman coupling does not occur without hyperfine interaction (see later in this chapter).

2In heavy many-electron atoms the identity J = L+S is not satisfied (see jj coupling - Section 10.6.3). However,
irrespective of the detailed coupling scheme, J remains well defined and Eq. (5.11) remains valid in zero field.
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Figure 5.1: Addition of angular momenta in the presence of nuclear spin, presuming L · S coupling at the
fine-structure level. The precession along the z axis occurs when the symmetry is broken by a non-zero
magnetic field in this direction.

Note that F can become zero (unlike j in the case of the fine structure of hydrogen-like atoms).
This happens for j = I. The actions of the shift operators F± are given by Eq. (3.24),

F± |F,mF 〉 =
√
F (F + 1)−mF (mF ± 1)~ |F,mF ± 1〉 . (5.17)

Since j, I and F are quantized the coupling of I and J cannot exist without their joint precession
about F as is illustrated in Fig. 5.1. In view of this precession I and J are clearly not conserved.
The conservation of F is lost when a nonzero magnetic field B breaks the symmetry. This gives rise
to a precession of F about the field direction as is also indicated in Fig. 5.1.

The operator F acts in a (2F + 1)-dimensional subspace of the full (2j + 1) (2I + 1)-dimensional
product space defined by the so-called uncoupled basis {|jmjImI〉 ≡ |jmj〉 ⊗ |ImI〉}. Together
the (2F + 1)-dimensional subspaces of all possible values of F allowed by the triangular inequality
provide the so-called coupled basis {|jIFmF 〉} of the same (2j + 1) (2I + 1)-dimensional product
space. Since Fz commutes with both Jz and Iz we know that these operators are diagonal in both
bases and, since Fz = Jz + Iz, the magnetic quantum numbers are related by

mF = mj +mI . (5.18)

Note that this is the selection rule (3.89).

5.2 Magnetic hyperfine interaction

5.2.1 Introduction

The magnetic hyperfine interaction finds its origin in the coupling of the magnetic moment of the
nucleus to the degrees of freedom of the electron and to the external magnetic field B. Approximating
the nucleus by a point dipole, µI , its contribution to the vector potential is given by

AI (r) =
µ0

4π

µI × r

r3
, (5.19)

where r is the usual operator for the position of the electron relative to the nucleus (see Fig. 5.2).
The corresponding magnetic field is the nuclear magnetic dipole field (see Problem 5.1),

BI (r) = ∇×AI (r) =
µ0

4π

1

r3
[3 (µI · r̂) r̂− µI ] + 2

3µ0µIδ (r) . (5.20)

This field consists of two contributions: the first term is the ordinary nuclear dipole field, observable
outside the nucleus; the second term accounts for the field inside the nucleus.
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In the Coulomb gauge, ∇·A = 0, the atomic Hamiltonian, including hyperfine interaction, takes
the form

H = − ~2

2mr
∆ + V(r) +Hr −

i~e
mr

A ·∇+
e2

2mr
A2 − µs · (BLS + BI + B)− µI ·B. (5.21)

The latter two terms are related to the postulated spins of electron and nucleus. They represent
the interaction of µs with the spin-orbit field (BLS), the nuclear dipole field (BI) and the external
field (spin Zeeman term), and further the interaction of µI with the external field (nuclear Zeeman
term). The A ·∇ term represents the sum of the orbital Zeeman coupling (coupling of the orbital
motion of the electron to the external field B - see Section 4.2) and the nuclear-spin-orbit coupling
(coupling of the orbital motion to the nuclear field BI). Separating the principal structure and
fine-structure terms from the rest of the Hamiltonian, Eq. (5.21) can be expressed as the sum of 5
contributions

H = H0 +Hr +HLS +Hhfs +HZ , (5.22)

where H0 is the Schrödinger Hamiltonian, Hr the relativistic correction term, HLS the spin-orbit
Hamiltonian (4.117),

HZ = −(µL + µs + µI) ·B (5.23)

the Zeeman Hamiltonian and

Hhfs = − i~e
mr

AI ·∇+
e2

2mr
A2
I − µs ·BI (5.24)

the magnetic hyperfine contribution. The A2
I term may be neglected because its contribution is

much smaller than the contribution of the terms linear in AI . A similar approximation was made
in the case of the fine structure; at a distance of the Bohr radius from the nucleus the nuclear field
in hydrogen is far too weak to induce any appreciable magnetic polarization, BI (a0) ' 10−2 T.

Problem 5.1. The magnetic field of a point dipole is given by

BI =
µ0

4π

1

r3
[3 (µI · r̂) r̂− µI ] + 2

3
µ0µIδ(r).

Derive this expression starting from the expression for the vector potential of the dipole field outside a
homogeneous magnetized sphere, AI = (µ0/4π) (µI × r) /r3, and the vector potential A = 1

2
(B × r) of a

homogeneous field inside the sphere (see Fig.5.2).

Solution. (a) Using Eq. (N.9) the magnetic field BI = ∇ ×AI of the nuclear magnetic moment outside
the nucleus can be written as

(4π/µ0)BI =∇× (µI × r) /r3 = −(µI ·∇)r/r3 + µI(∇ · r/r
3).

This can be reformulated in the form

(4π/µ0)BI = −r−3(µI ·∇)r− r
(
µI ·∇r

−3)+ r−3µI(∇ · r) + µI
(
r ·∇r−3) .

Using Eqs. (N.13), (N.11) and (N.18) we obtain after collecting terms the first two terms of the expression
for the dipole field.
(b) At the surface of a homogeneously magnetized sphere of radius R the vector potential becomes

A|r=R = 1
2
(B× r)|r=R = (µ0/4π) (µI × r) /r3|r=R,

which implies B = (µ0/2π)µ0µI/R
3. Integrating the field over the volume of the sphere we obtain

ˆ (4/3)πR3

0

B(r)dr = 2
3
µ0µI .

The same result is obtained for a point dipole by choosing B = 2
3
µ0µIδ(r). 2
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Figure 5.2: Left : Electron moving in the magnetic field of the nuclear magnetic dipole. Right : Not only the
dipole field outside the nucleus but also the field inside the nucleus contributes to the hyperfine interaction.
The latter contribution is estimated in the text by treating the nucleus as a homogeneously magnetized
sphere of vanishing size (point dipole).

5.2.2 Three contributions to the magnetic hyperfine interaction in zero field

Substituting Eq. (5.19) into the Hamiltonian (5.24) we find that the magnetic hyperfine interaction
can be written as the sum of three terms,

Hhfs = HIL +Hdd +HFermi , (5.25)

which are sufficient to calculate the level shifts in hydrogen-like atoms.

• the first term follows from HIL = −(i~e/mr)AI ·∇ and represents the nuclear-spin-orbit in-
teraction of the moving electron with the magnetic field of the nucleus. Substituting Eq. (5.19)
and using Eqs. (N.1), (4.54), (4.81) and (5.2) this term takes the form 1

HIL = 2
gL
ge

µ0

4π

γI |γe|
r3

I · L ' µ0

4π

γI |γe|
r3

I · L, (5.26)

where we recalled that 2gL/ge ' 1.

• the second and third term both follow from −µs · BI(r). Substituting Eq. (5.20) and using
Eqs. (4.80) and (5.2) we obtain the magnetic dipole-dipole interaction

Hdd =
µ0

4π

γI |γe|
r3

[3 (I · r̂) (S · r̂)− I · S] (5.27a)

• as well as the Fermi contact interaction

HFermi = 2
3µ0γI |γe|δ (r) I · S. (5.28)

5.2.3 Magnetic dipole-dipole interaction using spherical tensor operators

Note that the operatorsHdd andHFermi are symmetric in the role of the nuclear spin and the electron
spin. In other words, we can equally well can say that the electron spin probes the magnetic field
of the nucleus or that the nucleus probes the magnetic field of the electron spin. In view of the
importance of the interaction between two magnetic dipoles we derive - as an intermezzo - an
expression for this interaction in which the central symmetry of the atom is optimally exploited.
For two magnetic dipoles, denoted by µI = γII and µS = γSS, the dipole-dipole interaction takes
the following well-known form

Hdd =
µ0

4π

1

r3
[3 (µI · r̂) (µS · r̂)− µI · µS ] . (5.29)

1Note that −i~ (µI × r) ·∇ = −i~µI · (r×∇) = µI · L.
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The difficulty in evaluating this operator is related to the inner products of the dipoles with the radial
direction operator. These inner products complicate the separation of the position dependence from
the dependence on angular momentum. For a system of central symmetry this separation is best
achieved by decomposition of Hdd in terms of the standard components Tm2 of a rank 2 spherical
tensor (see Problem 5.2),

Hdd =
µ0

4π

γSγI
r3

√
4π

5

2∑
m=−2

(−1)mY −m2 (r̂)Tm2 . (5.30)

The operators Tm2 can be expressed in terms of the standard components I±1, I0 and S±1, S0 of the
constituent rank 1 tensors (the vector operators I and S). Actually, in order to facilitate evaluation
of the matrix elements of Hdd in the {|sms, ImI〉} representation, we do not use the standard
components I±1, I0 and S±1, S0 but rather Iz and Sz and the shift operators I± and S±,

T 0
2 = 2IzSz − 1

2 (I−S+ + I+S−) , (5.31a)

T±1
2 = ∓ (I±Sz + IzS±)

√
3/2, (5.31b)

T±2
2 = I±S±

√
3/2. (5.31c)

Note that the Tm2 satisfy the commutation relations (K.3), as required for spherical tensor operators.
The inclusion of the phase factor (−1)m in Eq. (5.30) assures that the Tm2 transform like the Y m2 ,
hence satisfy the Condon and Shortley phase convention.

Problem 5.2. Verify the tensor decomposition (5.30).

Solution. We first we express the inner products I · r̂ and S · r̂ in spherical coordinates (θ and φ):

I · r̂ = Iz cos θ + Ix sin θ cosφ+ Iy sin θ sinφ = Iz cos θ + 1
2
I− sin θeiφ + 1

2
I+ sin θe−iφ.

Replacing I by S we obtain S · r̂. For the product of these inner products we find

(I · r̂) (S · r̂) = IzSz cos2 θ + 1
4
(I−S+ + I+S−) sin2 θ

+ 1
2
(IzS− + I−Sz) sin θ cos θ eiφ + 1

2
(IzS+ + I+Sz) sin θ cos θ e−iφ

+ 1
4
I−S− sin2 θe2iφ + 1

4
I+S+ sin2 θe−2iφ.

Recalling the inner product rule (3.159b) we have I · S = IzSz + 1
2

(I+S− + I−S+) and recognizing the
spherical harmonics Y ±1

2 (r̂) and Y ±1
2 (r̂) we obtain

3 (I · r̂) (S · r̂)− I · S = IzSz(3 cos2 θ − 1) + 1
4

(I+S− + I−S+) (3 sin2 θ − 2)

+
√

4π/5
[
− (IzS− + I−Sz)Y

1
2 (r̂) + (IzS+ + I+Sz)Y

−1
2 (r̂)

]√
3/2

+
√

4π/5
[
I−S−Y

2
2 (r̂) + I+S+Y

−2
2 (r̂)

]√
3/2.

At this point we identify the (−1)qT q2 with the prefactors of Y −q2 (r̂) for q = ±1,±2. Since 2 − 3 sin2 θ =
3 cos2 θ − 1 = 2

√
4π/5Y 0

2 (r̂) we finally identify T 0
2 with the prefactor of Y 0

2 (r̂). 2

5.3 Hyperfine interaction in zero field

5.3.1 Introduction - effective Hamiltonian

In the previous section we identified three mechanisms through which the angular momentum of the
electron can couple to that of the nucleus. Before continuing with the derivation of the associated
coupling coefficients and hyperfine shifts we summarize the main results to be obtained later in this
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chapter. We shall establish that the three contributions of the magnetic hyperfine interaction add
up to a single effective Hamiltonian,

Hhfs = (Ahfs/~2) I · J, (5.32)

where Ahfs is called the hyperfine coupling constant. Note that this Hamiltonian is of the same
general form as the spin-orbit Hamiltonian. Within the framework of first-order perturbation theory
Hhfs acts in the (2j + 1)(2I + 1)-degenerate subspace of the fine-structure level n 2s+1Lj . Within
this approximation j, I, F and mF are good quantum numbers, with −F ≤ mF ≤ F (note that J2,
I2, F2 and Fz commute with Hhfs). For the electronic ground state the approximation is excellent
because the hyperfine splitting is small as compared to the splitting of the principal structure. For
the electronically excited states the approximation is only good as long as the fine-structure splitting
is sufficiently large. For the time being we distinguish two cases:

• Hydrogen-like atoms: For zero orbital angular momentum (l = 0) only the Fermi contact
interaction contributes. In this case we have J = S and one uses the lower case notation for
the coupling constant, Ahfs → ahfs. In this notation Eq. (5.32) takes the form

Hhfs = (ahfs/~2) I · S, (5.33)

where the coupling constant for the n 2s+1Lj fine-structure level is given by

ahfs

(
n 2s+1Lj

)
=
µ0

4π

2

3
γI |γe|

~2

a3
R̃2
ns(0) (l = 0) . (5.34)

• Hydrogenic atoms: For l > 0 the Fermi contact interaction does not contribute and the form
(5.32) follows from the addition of HIL and Hdd. In this case the coupling constant is written
in the upper case notation. For the n 2s+1Lj fine-structure level it is given by

Ahfs

(
n 2s+1Lj

)
=
µ0

4π
γI |γe|

~2

a3
〈nl||ρ−3||nl〉 l(l + 1)

j(j + 1)
(l > 0) , (5.35)

where ρ = r/a is the reduced distance to the nucleus, a = (me/mr)a0 being the atomic unit
of length and mr the reduced mass of the electron.

Note thatHhfs is an effective Hamiltonian because the radial dependence of the hyperfine interaction
is averaged over the orbital wavefunction, thus neglecting the coupling to other manifolds with
different principal quantum number. Therefore, it is valid only to first-order in perturbation theory.
For reasons of compactness of notation in most cases we do not specify the fine-structure Term
but simply write Ahfs (for l > 0) or ahfs (for l = 0) for the coupling constant. Importantly, the
expressions for Ahfs and ahfs are both proportional to γI . As all other quantities in the definition
of the coupling constant are positive the hyperfine shift is positive for atoms with positive nuclear
gyromagnetic ratio and negative for atoms where this ratio is negative.1 For selected isotopes the
observed ground state coupling constants ahfs are listed in Table 5.1.

To finish this introduction we compare the hyperfine coupling with fine-structure coupling in
hydrogenic atoms. Rewriting Eq. (4.135) with the aid of Eq. (4.119) the fine-structure coupling
takes the form

ζnl =
µ0

4π
2γ2
L

~2

a3
Z 〈nl||ρ−3||nl〉. (5.36)

1In many-electron atoms Ahfs can become negative for positive gI (see Fig. 5.3). This arises as a result of
polarization of the electron core (see Section 10.4.2). Core polarization also affects the value of the ground state
hyperfine splitting of alkali atoms but is not strong enough to affect its sign. Hence, the ground state hyperfine
splitting of the alkali atoms is hydrogen like. For this reason these ground states are discussed in the context of the
present chapter.
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Comparing this expression with Eq. (5.35) we find for the ratio of the coupling constants

Ahfs

(
n 2s+1Lj

)
ζnl

' γI
|γL|

l(l + 1)

j(j + 1)

1

Z
(l > 0) . (5.37)

Here we approximated γe ' 2γL. Since γI/|γL| ' gIme/mp we find that the hyperfine coupling
constant is typically a factor 1000 smaller than the corresponding constant for the fine structure.

5.3.2 Zero-field hyperfine shift in hydrogen-like atoms - the case l = 0

We start the derivation of magnetic hyperfine shifts with hydrogen-like atoms of zero orbital angular
momentum (s states) in the absence of external fields. This case is of considerable importance
because all hydrogen-like atoms have l = 0 ground states. Note that in the absence of orbital
angular momentum also the spin-orbit coupling is absent, which means that only the electronic and
nuclear spins contribute to the total angular momentum,

F = S + I. (5.38)

As the Schrödinger Hamiltonian, H0, commutes with I · S the orbital wavefunctions separate from
the spin part, suggesting the basis {|nlml; sIFmF 〉} to calculate the perturbation. Interestingly,
as we shall see, to obtain Eq. (5.34) the Fermi contact term (5.28) suffices: ∆Ehfs = ∆EFermi.
Factoring out the orbital matrix element 〈nlml|δ (r) |nlml〉 = 〈n00|δ (r) |n00〉 and recalling the
relation δ(r) = 4πδ(r)r2, we obtain to first order in perturbation theory

∆Ehfs(n
2s+1S1/2) = (ahfs/~2)〈sIFmF |I · S|sIFmF 〉, (5.39)

where the hyperfine coupling constant is given by

ahfs(n
2s+1S1/2) = 2

3µ0γI |γe|~2〈n00|δ (r) |n00〉

=
µ0γI |γe|~2

a3

2

3

ˆ
δ (ρ) R̃2

ns(ρ)
∣∣Y 0

0 (ρ̂)
∣∣2 dρ

=
µ0

4π

γI |γe|~2

a3

2

3
R̃2
ns(0) (l = 0) (5.40)

with ρ = r/a being the radial distance in atomic units a = (me/mr)a0 (see Section 2.1). This
completes the derivation of Eq. (5.34). A special feature of the delta function is that it does not
couple states with different principal quantum number. Hence, with regard to contact interactions
n is a good quantum number.

5.3.2.1 Fermi contact suffices for l = 0

What about the other terms of the hyperfine Hamiltonian? They turn out to vanish. We shall
demonstrate that for s states neither HIL nor Hdd contribute to the hyperfine shift. For this
purpose we choose the basis {|nlml; sIFmF 〉} in which L is decoupled from F = S + I. Note that
this choice of basis is both possible and logical for subspaces in which orbital angular momentum is
absent; i.e., for l = ml = 0. In this basis the absence of an energy shift is straightforward for the
nuclear-spin-orbit interaction HIL,

∆EIL(n 2s+1Lj) = 2
gL
ge

µ0

4π
γI |γe|〈n00; sIFmF |

I · L
r3
|n00; sIFmF 〉 = 0, (5.41)

because all components of L yield zero when acting on a state of zero orbital angular momentum.
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A bit more effort is required to show that the magnetic dipole-dipole operator (Hdd) does not con-
tribute to the l = 0 hyperfine shift. We shall find that its contribution averages to zero for spherical
orbitals. For this purpose we consider the first-order shift in the {|n00; sIFmF 〉} representation,

∆Edd(n
2s+1Lj) =

µ0

4π
γI |γe|〈n00; sIFmF |

1

r3
[3 (I · r̂) (S · r̂)− I · S] |n00; sIFmF 〉. (5.42)

To separate the position dependence from the spin dependence we express the Hdd in terms of
second-order spherical harmonics - see Eq. (5.30)

Hdd =
µ0

4π

γeγI
r3

2∑
m=−2

Tm2 Y −m2 (r̂), (5.43)

where the tensor components Tm2 are defined by Eqs. (5.31). Thus we obtain

∆Edd(n
2s+1Lj) =

µ0

4π
γIγe

2∑
m=−2

〈n00|Y −m2 (r̂)/r3|n00〉〈sIFmF |Tm2 |sIFmF 〉. (5.44)

Note that because the Tm2 are independent of r we could factor out the r dependent matrix element

〈n00|Y m2 (r̂)/r3|n00〉 =

ˆ
[Rns(r)]

2

r3
Y m2 (r̂)|Y 0

0 (r̂)|2dr. (5.45)

This integral vanishes as follows by evaluating the angular part. Rather than using direct integration,
which is straightforward, we demonstrate this with the aid of the general formula (L.58),

ˆ
Y m2 (r̂)|Y 0

0 (r̂)|2dr̂ =

√
5

4π

(
0 2 0

0 0 0

)(
0 2 0

0m 0

)
= 0. (5.46)

Here the 3j symbols are zero because the triangle inequality is violated. Hence, there is no need for
any further integration, all matrix elements of Hdd vanish in the {|n00; sIFmF 〉} representation.
Note that this holds not only for the diagonal matrix elements but also for the off-diagonal matrix
elements of the Tm2 . Actually, along the same lines of reasoning also the coupling to s states with
different principal quantum number vanishes. This shows that also in second order a dipole-dipole
contribution to the hyperfine shift of s levels is absent. Although we set out to show that ∆Edd = 0
to first order in perturbation theory we found that this equation holds quite rigorously. Only when
the spherical shape of the s orbitals is lost (e.g., in an external electric field) the dipole-dipole shift
no longer vanishes.

5.3.3 Zero-field hyperfine shift in hydrogen-like atoms - the case l > 0

For electrons of non-zero orbital angular momentum the Fermi contact contribution is absent because
any radial wavefunction with l > 0 is zero at the origin: Rnl(0) = 0 for l > 0. Unfortunately, this
does not mean that we can forget about the contact interaction for all valence electrons in non-
spherical orbital states. As it turns out, in many-electron atoms, polarization of the electron core
by the valence electrons give rise to an induced Fermi contact interaction which can be so strong
that it affects even the sign of Ahfs, in particular for alkali atoms in electronically excited states.
The phenomenon of core polarization is discussed in Section 10.4.2. In hydrogen, core electrons
are absent and the simple rule holds: for electrons with nonzero orbital angular momentum the
contact interaction vanishes and HIL and Hdd fully determine the hyperfine shift. For this reason,
the results to be obtained in the current section apply to the hydrogenic case.
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So let us focus on the contributions of HIL and Hdd to the hyperfine shift. Rather than consid-
ering these contributions independently we calculate their sum,

HIL +Hdd =
µ0

4π

γI |γe|
r3

[3 (I · r̂) (S · r̂) + I · (L− S)]. (5.47)

Actually, we approximated 2gL/ge ' 1, which is a good approximation since (ge − 2)me/M ' 10−6.
The shift follows with

∆Ehfs(n
2s+1Lj) =

µ0

4π
γI |γe|〈nlsjIFmF |

1

r3
[3 (I · r̂) (S · r̂) + I · (L− S)]|nlsjIFmF 〉. (5.48)

To calculate the matrix elements we rewrite the equation in the form

∆Ehfs(n
2s+1Lj) = γI〈nlsjIFmF |I ·BJ |nlsjIFmF 〉, (5.49)

where

BJ =
µ0

4π

|γe|
r3

[3r̂ (S · r̂) + (L− S)] (5.50)

may be interpreted as the effective magnetic field generated by the electron at the position of the
nucleus. Since BJ is a vector operator acting in the space spanned by the spin-orbit basis {|nlsjmj〉},
we can apply the Wigner-Eckart theorem to its components,

〈nlsjmj |BJz |nlsjmj〉 = 〈nlsj||BJ ||nlsj〉〈jmj |Jz |jmj〉 (5.51a)

〈nlsj(mj ± 1)|BJ± |nlsjmj〉 = 〈nlsj||BJ ||nlsj〉〈j(mj ± 1)|J± |jmj〉 . (5.51b)

Here we have written both the diagonal and the off-diagonal matrix elements of BJ to emphasize
that the same reduced matrix element applies to both cases (reduced matrix elements do not depend
on magnetic quantum numbers). This property gives us the freedom to determine 〈nlsj||BJ ||nlsj〉
by considering only diagonal matrix elements (irrespective of the operator being diagonal or not).
To determine 〈nlsj||BJ ||nlsj〉 we choose to use the diagonal matrix elements of the operator J ·BJ ,

〈nlsjmj |J ·BJ |nlsjmj〉 = 〈nlsj||BJ ||nlsj〉〈jmj |J2 |jmj〉 . (5.52)

As shown in Problem 5.3 the evaluation of the matrix elements yields for hydrogen-like atoms (s = 1
2 )

〈nlsj||BJ ||nlsj〉 =
µ0

4π
|γe|〈nl||r−3||nl〉 l(l + 1)

j(j + 1)
. (5.53)

The expression for the hyperfine shift is obtained by returning to Eq. (5.48). We temporarily de-
compose the matrix elements for the hyperfine shift in the {|ImIjmj〉} basis. This enables us to
apply Eqs. (5.51),

∆Ehfs = γI
∑

m′Im
′
j ,mImj

〈FmF |jm′jIm′I〉〈nlsjm′jIm′I |I ·BJ |nlsjmjImI〉〈jmjImI |FmF 〉

= γI〈nlsj||BJ ||nlsj〉
∑

m′Im
′
j ,mImj

〈FmF |jm′jIm′I〉〈jm′jIm′I |I · J|jmjImI〉〈jmjImI |FmF 〉

= γI〈nlsj||BJ ||nlsj〉〈nlsjIFmF |I · J|nlsjIFmF 〉. (5.54)

Substituting the reduced matrix element (5.53) we obtain

∆Ehfs(n
2s+1Lj) = (Ahfs/~2)〈jIFmF |I · J|jIFmF 〉, (5.55)
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where the coupling constant is given by

Ahfs(n
2s+1Lj) =

µ0

4π
γI |γe|~2〈nl||r−3||nl〉 l(l + 1)

j(j + 1)
. (5.56)

Writing the radial matrix element in dimensionless form using ρ = r/a, with a = (me/mr)a0

being the atomic unit of length, we see that Eq. (5.56) coincides exactly with the expression for
the hyperfine coupling constant announced in Eq. (5.35). Since I · J is diagonal in the {|jIFmF 〉}
basis the perturbation theory has been reduced to ordinary perturbation theory. This makes the
analysis of the hyperfine structure into a straightforward exercise (as we demonstrate later in this
chapter). This being said it should be remembered that the result is based on the assumption that
the hyperfine coupling is much weaker than the spin-orbit interaction. If this is not satisfied the
primary coupling of L and S into J cannot be justified. Furthermore, since the radius operator
does not commute with the Schrödinger Hamiltonian we should be aware that states of different
principal quantum number contribute in second order.

Problem 5.3. Show that for s = 1
2

the reduced matrix element of the electronic field at the nucleus is
given by

〈nlsj||BJ ||nlsj〉 =
µ0

4π
|γe|〈nl||r−3||nl〉 l(l + 1)

j(j + 1)
.

Solution. Starting from Eq. (5.52) we have

〈nlsj||BJ ||nlsj〉 =
〈nlsjmj |J ·BJ |nlsjmj〉

〈jmj |J2 |jmj〉

=
µ0

4π

|γe|
j(j + 1)~2

〈nlsjmj |
1

r3
{3 (J · r̂) (S · r̂) + J · (L− S)}|nlsjmj〉.

Noting that J · r̂ = S · r̂ because L · r̂ = (r×p) · r̂ = 0 we obtain, using the tensor decomposition (5.30) and
retaining only the terms conserving mj ,

〈nlsj||BJ ||nlsj〉 =
µ0

4π

|γe|
j(j + 1)~2

〈nlsjmj |
1

r3
{[3 (S · r̂)2 − S2] + L2}|nlsjmj〉

=
µ0

4π

|γe|
j(j + 1)~2

〈nlsjmj |
1

r3
{[

4S2
z − (S−S+ + S+S−)

]
Y 0
2 (r̂) + L2} |nlsjmj〉

=
µ0

4π

|γe|
j(j + 1)~2

〈nlsjmj |
1

r3
{

(6S2
z − 2S2)Y 0

2 (r̂) + L2} |nlsjmj〉.

Decomposing the states |nlsjmj〉 to the uncoupled basis {|lmlsms)} we find, using s = 1
2
, that the electron-

spin contribution vanishes

〈lsjmj |6S2
z − 2S2|lsjmj〉 =

∑
mlms

(lmlsms|6S2
z − 2S2|lmlsms〉〈lmlsms|lsjmj〉2 = 0.

Hence, factoring out the angular-independent part we obtain

〈nlsj||BJ ||nlsj〉 =
µ0

4π

|γe|
j(j + 1)~2

〈nl||r−3||nl〉〈lsjmj |L2|lsjmj〉,

which results in the requested expression when substituting 〈lsjmj |L2|lsjmj〉 = l(l + 1)~2. 2

5.3.4 Magnetic hyperfine structure of hydrogen-like atoms

At this point we formulate the effective spin Hamiltonian for hydrogen-like atoms including magnetic
hyperfine interaction (5.32),

H = H0 +Hr + (ζnl/~2) L · S + (Ahfs/~2) I · J. (5.57)
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Figure 5.3: Zero-field hyperfine splittings of the lowest electronic states of 7Li [11, 23] and 87Rb [15, 124, 8].
As both species have the same nuclear spin

(
I = 3

2

)
the level diagrams are similar. Note that 87Rb behaves

like hydrogen whereas 7Li does not (inversion of the hyperfine structure of the 2P3/2 level; cf. Section 10.4.2).

This Hamiltonian suffices to calculate magnetic hyperfine shifts for hydrogen-like atoms of given n,
l and j. For hydrogenic atoms the constants ζnl and Ahfs can be calculated from first principles.
For alkali-like atoms in their electronic ground state ζnl and Ahfs can be regarded as empirical. For
the excited states of alkali-like atoms they become non-hydrogen-like because the Ahfs coefficients
can become negative (cf. Section 10.4.2). As examples we show in Fig. 5.3 the hyperfine splitting of
n 2S1/2, n 2P1/2 and n 2P3/2 terms of 7Li and 87Rb.

To calculate the hyperfine splitting we use perturbation theory for degenerate levels. After split-
ting off the perturbation H′ = Hhfs we calculate the energy shifts relative to the fine-structure levels
n 2s+1Lj , characterized by n, l, s and j. As long as the hyperfine shifts remain small compared to the
fine-structure splitting the quantum numbers n, l and j may be considered as “good quantum num-
bers to first-order in perturbation theory of a degenerate level” - see Eq. (H.56). The mathematical
justification for this is that the second-order contribution to the energy shift (H.63) is negligibly
small because the energy denominator of Eq. (H.63) is large. Physically, the quantum number j
remains a good quantum number because the fine-structure coupling is much stronger than the
hyperfine couplings. The fine-structure Hamiltonian (4.124) commutes with both J2 and I2 and
because these operators also commute with I · J we know that j and I are good quantum number
of the full Hamiltonian (5.57). Furthermore, as F = J + I and F2 = J2 + I2 + 2I · J we find that F2

and Fz = Jz + Iz commute with both the fine-structure and the hyperfine Hamiltonian. Therefore,
also F and mF are good quantum numbers and Hhfs is diagonal in the joint basis {|n(ls)jIFmF 〉}
of L · S, F2 and Fz; i.e., for given values of n, l and j the quantum numbers F and mF are good
quantum numbers (s and I are always good quantum numbers in atomic physics because these
represent intrinsic properties of the electron and the nucleus, respectively). The level shift caused
by the hyperfine interaction depends on F and is then given by

∆EIJF (n 2s+1Lj) =
(
Ahfs/~2

)
〈jIFmF |I · J|jIFmF 〉, (5.58)

where Ahfs is the hyperfine coupling constant for given quantum numbers n, l and j.

5.3.5 Shift rules for the magnetic hyperfine coupling in zero field

Using the operator identity
I · J = 1

2 (F2 − I2 − J2) (5.59)

the hyperfine shift of the manifold with quantum number F takes the form

∆EIJF (n 2s+1Lj) = 1
2Ahfs [F (F + 1)− j(j + 1)− I(I + 1)] . (5.60)
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Importantly, for negative Ahfs the multiplet structure is inverted. As the form of Eq. (5.60) is
identical to that of Eq. (4.126) derived for the fine-structure splitting this leads again to three shift
rules of the type introduced in Section 4.5.2:

• the shift of the stretched state is given by

∆EIJFmax
(n 2s+1Lj) = Ahfs jI. (5.61)

Recall that the stretched state corresponds to the F manifold with the largest multiplicity,
F = Fmax = j + I.

• the relative shift of two adjacent F manifolds follows an interval rule of the Landé type:

∆WF = ∆EIJF (n 2s+1Lj)−∆EIJF−1(n 2s+1Lj) = AhfsF>, (5.62)

where F> is the quantum number of the manifold with the highest multiplicity of adjacent
pairs, F> = max(F, F − 1).

• the hyperfine manifolds satisfy the center-of-gravity rule:

1

(2I + 1) (2j + 1)

j+I∑
F=|j−I|

(2F + 1) ∆EIJF (n 2s+1Lj) = 0, (5.63)

where (2I + 1) (2j + 1) is the degeneracy of the unperturbed n 2s+1Lj level.

5.3.6 Magnetic hyperfine structure of hydrogenic atoms in zero field

For hydrogenic atoms the orbital parts in Eqs. (5.35) and (5.34) can be expressed analytically; using
Eqs. (2.37) and (2.49c) we obtain

ahfs =
µ0

4π

8

3

γI |γe|~2

[(1 +me/mp)a0]3
Z3

n3
(l = 0) (5.64a)

Ahfs =
µ0

4π

γI |γe|~2

[(1 +me/mp)a0]3
Z3

n3

1

j(j + 1)(l + 1/2)
(l > 0). (5.64b)

For all hydrogen-like atoms in s levels the hyperfine states are spin doublets
(
j = 1

2

)
. In such systems

coupling of the nuclear spin I to the total electronic angular momentum J can result in only two
values of total angular momentum: F = I + 1

2 (parallel coupling) and F ′ = I − 1
2 (anti-parallel

coupling). For these two cases we have

∆EIJF (n 2s+1L1/2) =


+ 1

2ahfsI
(
F = I + 1

2

)
− 1

2ahfs(I + 1)
(
F = I − 1

2

)
}

for F > 0

0 for F = 0.

(5.65)

For γI > 0 (γI < 0) the state with the highest multiplicity has the highest (lowest) energy.

5.3.6.1 Hydrogen in its electronic ground state 1 2S1/2

The electronic ground state of atomic hydrogen is the 1 2S1/2 state. With nuclear spin I = 1
2 the

hyperfine levels correspond to F = 0, 1. Starting from Eq. (5.64) the hyperfine splitting may be
rewritten in terms of fundamental constants,

∆νhfs = ahfs/h = 4
3gp(1 + ae)α

4me

mp

mec
2/h

(1 +me/mp)3
, (5.66)
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where ae = (ge − 2) /2 = 1.159 652 180 91(26) × 10−3 is the electron anomaly (see Section 4.3.6),
gp = 5.585 694 702(17) the proton g factor, α = 7.297 352 5664(17)×10−3 the fine-structure constant,
me = 9.109 383 56(11) × 10−31 kg the electron rest mass me/mp = 5.446 170 213 52(52) × 10−4 the
electron-proton mass ratio and c = 299 792 458 m s−1 the defined value for the speed of light in vac-
uum. With the quoted values for the fundamental constants we calculate ∆νhfs ' 1.420 49 GHz. The
experimental value is [118]

∆νhfs = 1 420 405 751.770(3) Hz. (5.67)

Remarkably, the simple theory presented here already gives agreement at the level 1 : 104. With
the most advanced theories one, possibly two additional digits can be accounted for. When not
accounting for the electron anomaly agreement is worse, about 1 : 103. Historically, this discrepancy
gave rise to the suggestion of the existence of the electron anomaly and its relevance in relation to
quantum electrodynamics [21]. The experimental precision became possible with the development
of the hydrogen maser, the first example of an atomic clock [89]. The precision of the hydrogen
maser is better than the actual accuracy, which is limited by collisions of the hydrogen atoms in the
clock. Beware that the hyperfine structure of deuterium (nuclear spin I = 1) is complicated by the
presence of a nuclear electric quadrupole moment (see Chapter 6).

Hyperfine transitions in ground state hydrogen are also well-known from radio astronomy as
they give rise to electromagnetic radiation at 1.420 GHz, (wavelength 21 cm). This wavelength is
not absorbed in the earth atmosphere. The 21 cm radiation of cosmic origin is famous because it
was used to reveal, for the first time, the spiral structure of our galaxy [117].

5.3.7 Transition dipole moments in the presence of hyperfine coupling

In the presence of hyperfine coupling mj is no longer a good quantum number and this has con-
sequences for the calculation of the transition-dipole moment of the electric-dipole operator. The
eigenstates of the Hamiltonian are given by the basis |nlsjIFM〉 and the transition dipole is of the
form

Deg = Degû
∗
q , (5.68)

where e = |n′l′s′j′I ′F ′M ′〉, g = |nlsjIFM〉 and

Deg = −ea 〈n′l′s′j′I ′F ′M ′|
√

4π/3ρY q1 (r̂) |nlsjIFM〉 (5.69)

is the transition dipole moment, with q = M ′−M . Starting again with the Wigner-Eckart theorem
we have

Deg = −ea(−1)F
′−M ′〈n′l′s′j′I ′F ′||

√
4π/3ρY1(r̂)||nlsjIF 〉

(
F ′ 1 F

−M ′ q M

)
. (5.70)

In this case the reduced matrix element 〈n′l′s′j′I ′F ′||
√

4π/3ρY1(r̂)||nlsjIF 〉 can be further reduced.
Therefore, we turn to the reduction formula (K.62),

〈n′l′s′j′I ′F ′||
√

4π/3ρY1(r̂)||nlsjIF 〉 = (−1)F+j′+I+1δI,I′×

× 〈n′l′s′j′||
√

4π/3ρY1(r̂)||nlsj〉
√

(2F + 1) (2F ′ + 1)

{
j′ F ′ I

F j 1

}
. (5.71)

Substituting Eq. (4.156) this becomes

〈n′l′s′j′I ′F ′||
√

4π/3ρY1(r̂)||nlsjIF 〉 = (−1)F+j′+I+j+s+max(l,l′)Rn′l′,nlδl′,l±1δs,s′δI,I′

×
√

max(l, l′) (2j + 1) (2j′ + 1) (2F + 1) (2F ′ + 1)

{
l′ j′ s

j l 1

}{
j′ F ′ I

F j 1

}
. (5.72)
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Writing the transition dipole moment in the form

Deg = −eaRn′l′,nlAl
′ls
j′IF ′M ′,jIFMδl′,l±1δs,s′δI,I′ , (5.73)

we find for the angular contribution (after reordering the 3j symbol)

Al
′ls
j′IF ′M ′,jIFM = (−1)−M

′+j′+j+I+s+1+max(l,l′)

×
√

max(l, l′) (2j + 1) (2j′ + 1) (2F + 1) (2F ′ + 1)

{
l′ j′ s

j l 1

}{
j′ F ′ I

F j 1

}(
F 1 F ′

M q −M ′

)
. (5.74)

The selection rules for hyperfine transitions (determined by the 3j symbol) are:

∆M = 0,±1 for π, σ± − transitions (5.75a)

∆F = 0,±1 (excluding F = 0↔ F ′ = 0) (5.75b)

These selection rules come on top of those of the fine structure

∆j = 0,±1 (excluding j = 0↔ j′ = 0) (5.76a)

∆l=±1 ∆s = 0 ∆I = 0. (5.76b)

In addition also the triangular inequalities ∆ (l, s, j), ∆ (l′sj′), ∆ (I, j, F ) and ∆ (I, j′, F ′) must be
satisfied. Note that the cases F = F ′ = 0 and j = j′ = 0 are excluded because the triangular
inequalities ∆ (F, F ′, 1) and ∆ (j, j′, 1) cannot be satisfied.

5.3.7.1 Example: sp transitions in hydrogen-like atoms (s = 1/2) with I = 3/2

The result for the angular contributions to the strength of p → s transitions between two fine-
structure levels (j′ → j) and in the presence of hyperfine coupling (F ′ = 4, 3, 2, 1, 0→ F = 2, 1)
depends, for given I, F ′, on F and M ′ ≡ MF ′ . Summing over the magnetic quantum numbers of
the F = 1, 2 levels (which are the only two s levels) we obtain

2∑
F=1

F∑
M=−F

A2
3
2 IF

′M ′, 12 IFM
= 1

3 . (5.77)

Note that (for given I) this sum is independent of F ′ and M ′; i.e., the sum is same for all values
of the magnetic quantum number of the p level. This is illustrated in Fig. 5.4. The sum rule can
be understood from the physical point of view by considering electric-dipole transitions. Since the
electric-dipole operator does not couple to spin degrees of freedom (it acts in a different sector of
Hilbert space), the spins cannot affect the total electric dipole transition rate. It only distributes
the rate over the available final states in the form of σ+, σ− and π contributions. For transitions
from the F ′ = 2 level 50 % passes through the F ′ = 2 → F = 2 channel and 50 % passes through
the F ′ = 2→ F = 1 channel. Likewise, for transitions from the F ′ = 1 level 1/6 passes through the
F ′ = 1→ F = 2 channel and 5/6 passes through the F ′ = 1→ F = 1 channel.

5.4 Hyperfine structure in an applied magnetic field

Adding to the Hamiltonian (5.57) the Zeeman Hamiltonian (5.23) we obtain the effective Hamilto-
nian for the hyperfine-structure of hydrogen-like atoms in an externally applied magnetic field,

H = H0 +Hr + (ζnl/~2) L · S + (Ahfs/~2) I · J− (µL + µs + µI) ·B, (5.78)
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Figure 5.4: The angular contributions to the transition strength between two angular momentum levels
(l′ and l) is independent of the presence (or absence) of hyperfine structure. This is illustrated for p → s
transitions in hydrogen-like atoms with both fine structure and hyperfine structure (the example of 87Rb):
(a) in principal structure (see also Figs. 2.4 and 4.15); (b) from F ′ = 3 level; (c) and (d) from F ′ = 2 level;
(e) and (f) from F ′ = 1 level and (g) from F ′ = 0 level. Note that the sum of the probabilities starting
from any of the MF ′ levels, always yields the same value (unity, not counting the common prefactor 1/3).

which can be written in the form

H = Hfs + (Ahfs/~2) I · J + [gJ(e/2me)J− gI(e/2mp)I] ·B , (5.79)

where Hfs represents the zero field fine-structure Hamiltonian (see Section 4.5.1),

Hfs = H0 +Hr + (ζnl/~2) L · S. (5.80)

Eq. (5.79) is a suitable Hamiltonian for use in “first-order in perturbation theory of a degenerate
level” as long as n, l and j are good quantum numbers; i.e., for magnetic fields much smaller than
the fine-structure crossover field (B � |Bfs|). Choosing the quantization axis (z axis) along the
magnetic field direction Eq. (5.79) can be written in the form

H = Hfs + (Ahfs/~2) I · J + (gJµBJz − gIµNIz)B/~. (5.81)

In analogy with Eq. (4.164) we write the Hamiltonian in the form H = Hfs +H′, where

H′ = Hhfs +HZ , (5.82)

is the perturbation to be considered, with

Hhfs = (Ahfs/~2) I · J and HZ = (gJµBJz − gIµNIz)B/~ (5.83)

representing the hyperfine coupling and the (electronic plus nuclear) Zeeman terms, respectively.
Although both I·J andHZ commute separately withHfs, mutually they do not commute. Physically,
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there is competition between the mutual coupling of J and I and the coupling of J and I individually
with the external B field. In low fields the hyperfine coupling is dominant, whereas in the high field
limit it may be neglected (better: gives a field-independent contribution). This is called the Back-
Goudsmit effect [6], the exact analogue of the Paschen-Back effect [78] in the atomic fine structure in
which L and S decouple (see also [79]). As the fine-structure coupling is stronger than the hyperfine
coupling, the Paschen-Back decoupling typically takes place at higher fields than the hyperfine
decoupling. In intermediate fields the perturbation H′ is neither diagonal in the {|nlsjIFmF 〉}
(coupled) representation nor in the {|nlsjmjImI〉} (uncoupled) representation and we have to solve
a secular equation of the type (I.24) just as in the case of the atomic fine structure (Section 4.7).

5.4.1 Matrix elements in the uncoupled basis

To solve the secular equation in the uncoupled representation we use the inner product rule (3.159b)
to write the perturbation in the form

H′ = (ahfs/~2)
[
IzJz + 1

2 (I+J− + I−J+)
]

+ (gJµBJz − gIµNIz)B/~. (5.84)

Note that this Hamiltonian conserves the total angular momentum along the z axis; i.e., mj +mI =
mF is a good quantum number (Fz commutes with the Hamiltonian) for all values of the magnetic
field. The diagonal matrix elements are for a given value of mF

〈nImIjmj |H′|nImIjmj〉 = 〈nI (mF −mj) jmj |H′|nI (mF −mj) jmj〉
= ahfs (mF −mj)mj − gIµNmFB + (gJµB + gIµN )mjB

≡ 〈mFmj |H′ |mFmj〉 ≡ H′mFmjmj , (5.85)

with me/mp = µN/µB being the electron-proton mass ratio. Note that in these matrix elements the
states {|nlsjmjImI〉} share fixed values for the quantum numbers n, l, s, j and I; only the values
of mj and mI vary. Using the relation mI = mF −mj we gave preference to specification of mF

and mj rather than mj and mI . Turning to the shorthand notation |nlsjmjImI〉 → |mFmj〉 the
matrix elements take the form (mFm

′
j |H′|mFmj〉. Since mF is conserved by H′ the notation can

be condensed to H′mFmjmj . The terms 1
2

(
ahfs/~2

)
(I+J− + I−J+) give rise to off-diagonal elements

and are calculated using the shift operators (1.59) and the conservation of mF ,

〈nIm′Ijm′j |H′|nImIjmj〉 = 〈nI (mF −mj ± 1) j (mj ∓ 1) |H′|nI (mF −mj) jmj〉
= 1

2ahfs

√
I (I + 1)− (mF −mj) (mF −mj ± 1)

√
j (j + 1)−mj(mj ∓ 1)

≡ 〈(m (mj ∓ 1) |H′|mFmj〉 ≡ H′mF (mj∓1)mj
.

(5.86)

Hence, the perturbation couples states differing in mj such that ∆mj = ±1 while mI + mj = mF

remains conserved. For the coupled basis {|nIjFmF 〉} this implies that the perturbation couples
states differing in F such that ∆F = ±1 while mF remains conserved. In the description of the
field dependence preference will be given to expressing coupled states in terms of uncoupled states,
rather than the other way around, because in the uncoupled representation the expressions for the
limiting cases of low and high field remain intuitively transparent. In the coupled representation
the latter is only the case for the low-field limit.

5.4.2 Hydrogen-like atoms with j = 1/2

For hydrogen-like atoms in states with j = 1
2 and F = I ± 1

2 the solution of the secular equation
can be obtained analytically for arbitrary magnetic field. This case applies to the electronic ground
states of hydrogen (1 2S1/2) and all the alkali atoms (n 2S1/2 with n = 2 − 7). As we are dealing
with s orbitals the orbital magnetic moment is zero and gJ coincides with the free-electron g value,
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gJ = ge. The 2S1/2 states behave like the spin doublets discussed in Section 4.7.3. The hyperfine
shifts in zero field were obtained in Section 5.3.4,

∆E
I1/2
I±1/2(n 2S1/2) =

{
+ 1

2ahfsI forF = I + 1
2

− 1
2ahfs (I + 1) for F = I − 1

2 .
for F > 0. (5.87)

However, unlike the spin doublets discussed in Section 4.7.3 the state with the lowest multiplicity is
not necessarily the state with the lowest energy but this depends on the sign of ahfs and therefore
on the sign of the nuclear gyromagnetic ratio γI . For γI > 0 (γI < 0) the state of lowest multiplicity
has the lowest (highest) energy, as illustrated in Fig. 5.5. In the absence of nuclear spin (I = 0) this
shift is absent. For I > 0 the perturbation matrix takes the form

H′ =



H′M�� 0 0 · · · 0 0 0

0 H′(M−1)��H
′
(M−1)�� · · · 0 0 0

0 H′(M−1)��H
′
(M−1)�� · · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · H′(−M+1)��H
′
(−M+1)�� 0

0 0 0 · · · H′(−M+1)��H
′
(−M+1)�� 0

0 0 0 · · · 0 0 H′−M��


, (5.88)

where M ≡ I + 1
2 and � is the short hand notation for mj = 1

2 (and � for mj = − 1
2 ). The quantum

number mF varies within the range −M ≤ mF ≤M . Note that the matrix is a d× d matrix, where
d = (2I + 1)(2j+ 1) is the dimension of the angular momentum subspace in which I and J operate.
The secular equation is of the asymmetric type (cf. Appendix H.3) and factorizes into a product of
two (1× 1) and I + 1 (2× 2) determinants, each characterized by its value of mF = mj +mI . With
the aid of Eqs. (5.85) and (5.86) the matrix elements are found to be

H′mF �� = + 1
2ahfs

(
mF − 1

2

)
− gIµNmFB + 1

2µ+B (5.89a)

H′mF �� = − 1
2ahfs

(
mF + 1

2

)
− gIµNmFB − 1

2µ+B (5.89b)

H′mF �� = + 1
2ahfs(I + 1

2 )(1− m̃2
F )1/2 = H′mF ��, (5.89c)

where

µ± ≡ gJµB ± gIµN (5.90a)

m̃F ≡ mF /(I + 1
2 ) with − 1 ≤ m̃F ≤ 1. (5.90b)

Note that the symbol µ− is not relevant in the present context. It is included in the definition
(5.90a) for future convenience.

5.4.2.1 Pure states

For mF = ±(I+ 1
2 ) the coupling term vanishes, H′mF �� = 0. These cases correspond to the stretched

states,

|Fmax,±(I + 1
2 )〉 =

∣∣s,± 1
2 ; I,±I

〉
. (5.91)

The corresponding energies are

ε± = 1
2ahfsI ∓ gIµN (I + 1

2 )B ± 1
2µ+B for mF = ±(I + 1

2 ). (5.92)

Note that the last term dominates the field dependence.
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Figure 5.5: Magnetic energy versus magnetic field in units of the hyperfine field |Bhfs|. Left: positive
hyperfine shift. Right: negative hyperfine shift. We adopt the convention sinα → 0 for B � |Bhfs|. The
dashed (dotted) lines correspond to the high-field (low-field) tangents of the energy curves.

5.4.2.2 Mixed states

The other states (−1 < m̃F < 1) are mixed states because they involve linear combinations of the
uncoupled basis states. Depending on the sign of γI we write this linear combination in the form
(see Fig. 5.5)

γI > 0

{
|Fmax,mF 〉 = + cosα| �, I,

(
mF − 1

2

)
〉+ sinα | �, I,

(
mF + 1

2

)
〉

|Fmin ,mF 〉 = − sinα | �, I,
(
mF − 1

2

)
〉+ cosα| �, I,

(
mF + 1

2

)
〉 (5.93a)

γI < 0

{
|Fmin ,mF 〉 = − cosα| �, I,

(
mF − 1

2

)
〉+ sinα | �, I,

(
mF + 1

2

)
〉

|Fmax,mF 〉 = + sinα | �, I,
(
mF − 1

2

)
〉+ cosα| �, I,

(
mF + 1

2

)
〉. (5.93b)

In both cases the states |Fmax,mF 〉 and |Fmin,mF 〉 are seen to form an orthonormal pair. The
difference in notation between the two cases is introduced solely to improve the readability of the
expressions (5.93a) and (5.93b); it implies that sinα ' α → 0 in the limit of high magnetic fields,
irrespective of the value of γI . This notation offers the convenience of indicating which uncoupled
state can be neglected in high magnetic fields. From the limit B → 0 we know that for γI > 0 the
upper branch of the spin doublets must correspond to the Fmax manifold; likewise, for γI < 0 the
lower branch of the spin doublets must correspond to the Fmin. In the B → 0 limit the Zeeman
energy vanishes and F becomes a good quantum number

(
Fmax → F = I + 1

2 , Fmin → F = I − 1
2

)
and the Eqs. (5.93a) and (5.93b) take the form of a Clebsch-Gordan decomposition - compare with
Eq. (J.45). The phase factors are chosen in accordance with the Condon and Shortley phase con-
vention, where the phase factors are unity for the branch of maximal F and mF = F (parallel
coupling).

The energies of the mixed states are given by solutions of the secular equation for given value of
mF ,

W± = 1
2

(
H′mF �� +H′mF ��

)
± 1

2

√
(H′mF �� −H′mF ��)2 + 4|H′mF ��|2. (5.94)

This equation can be expressed in the form of the Breit-Rabi formula [22],

ε±(mF ) = −gIµNmFB − 1
4ahfs ± 1

2 |ahfs|(I + 1
2 )
√

1 + 2m̃FB/Bhfs + (B/Bhfs)2. (5.95)

Since |m̃F | < 1, the discriminant is always positive. The modulus |ahfs| assures that ε+ always
represents the largest of the two roots (ε+ ≥ ε−); i.e., corresponds the upper branch of the hyperfine
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doublet. Eq. (5.95) expresses the magnetic field dependence of the hyperfine shift for hydrogen-like
atoms with j = 1

2 and for given values of F and mF = mI +mj 6= ±(I+ 1
2 ). The characteristic field

Bhfs = ahfs(I + 1
2 )/µ+ (5.96)

is called the hyperfine field with µ+ defined by Eq. (5.90a); Bhfs is an effective internal magnetic
field which can be positive or negative depending on the sign of ahfs. Its absolute value, |Bhfs|, is
the hyperfine crossover field and corresponds to the intersection point of the low-field and high-
field asymptotic expressions for the hyperfine energy. For the ground state of atomic hydrogen the
crossover field is Bhfs ' 50.7 mT, much smaller than the fine-structure crossover field estimated
in Section 4.7.3. Thus, in many cases of practical interest the high-field limit is reached for the
hyperfine coupling when the atom is still in the low-field limit for the fine structure (|Bhfs| � |Bfs|).
If this comfortable separation of energy scales is absent one has to diagonalize the combined secular
equations for the fine structure and the hyperfine structure, which is already a task for which
computers are best suited. Actually, some will say: why bother about analytic solutions at all when
computer diagonalizations are swift and flawless even in complicated cases! In this respect it is
good to be aware that the proper assignment of the basis vectors and a consistent phase convention
remains an issue for which analytic understanding remains indispensable.

To obtain the eigenstates corresponding to the energies ε+ and ε− we have to determine the
coefficients in Eqs. (5.93). This is done by the procedure described in Appendix H.3. The amplitudes
of the coefficients, A+ ≡ cosα and A− ≡ sinα, follow by substitution of the matrix elements (5.89a)-
(5.89c) into Eq. (G.51),

γI > 0 :A2
±

γI < 0 :A2
∓

}
=

1− m̃2
F(

m̃F +B/Bhfs ∓
√

1 + 2m̃FB/Bhfs + (B/Bhfs)2
)2

+ 1− m̃2
F

. (5.97)

Clock states (mF = 0): A special class of mixed hyperfine states are clock states, states with
mF = 0. Near zero field these states are insensitive for small variations in magnetic field which
explains their importance for precision time and frequency measurements. For mF = 0 the Breit-
Rabi formula takes the form

ε±(0) = − 1
4ahfs ± 1

2 |ahfs|(I + 1
2 )
√

1 + (B/Bhfs)2. (5.98)

The amplitudes are given by

A2
± =

(
B/Bhfs ∓

√
1 + (B/Bhfs)2

)−2
. (5.99)

High-field limit (B � |Bhfs|): In high magnetic fields we can expand the Breit-Rabi formula
(5.95) in powers of Bhfs/B. Retaining only the terms up to first order in Bhfs/B we obtain

ε±(mF ) = −gIµNmFB − 1
4ahfs ± 1

2µ+B(1 + m̃FBhfs/B). (5.100)

This expression corresponds to the high-field asymptotes indicated by the dashed lines in Fig. 5.5.
Using a similar expansion Eq. (5.97) takes the form

A2
− = sin2 α ' 1

4 (1− m̃2
F )(B/Bhfs)

2 → 0. (5.101)

This is an example of weak coupling (strong asymmetry) as defined in Appendix G.3.4.

Low-field limit (B � |Bhfs|): For low magnetic fields we can expand Eq. (5.95) in powers of
B/Bhfs. Retaining the terms up to second order in B/Bhfs we obtain

ε±(mF ) = −gIµNmFB − 1
4ahfs

± 1
2 |ahfs|(I + 1

2 )[1 + m̃FB/Bhfs + 1
2 (1− m̃2

F )(B/Bhfs)
2 + · · · ]. (5.102)



5.4. Hyperfine structure in an applied magnetic field 165

The linear and quadratic contributions are referred to as linear and quadratic Zeeman effects. The
linear terms correspond to the low-field tangents indicated by the dotted lines in Fig. 5.5. Note
that the quadratic shift is strongest for small |mF |, in particular for mF = 0. The quadratic shift is
always positive for the upper (+) and negative for the lower (−) manifold as is evident from Fig. 5.5.
Restricting ourselves to the leading terms we distinguish two cases:

a.) 0 < |mF | < I + 1
2 : In this case the linear terms are dominant,

ε±(mF ) = −gIµNmFB − 1
4ahfs ± 1

2 |ahfs|(I + 1
2 )(1 + m̃FB/Bhfs) + · · · . (5.103)

This expression corresponds to the low-field tangents indicated by the dotted lines in Fig. 5.9.
Expanding Eq. (5.97) to first order in B/Bhfswe find

A2
± ' 1

2 (1± m̃F ) [1± (B/Bhfs)(1∓ m̃F ) + · · · ] . (5.104)

b.) mF = 0 : Clock states correspond to the case of strong coupling (weak asymmetry) as defined
in Appendix H.3. The Breit-Rabi formula takes a quadratic field dependence

ε±(0) = − 1
4ahfs ± 1

2 |ahfs|(I + 1
2 )± 1

4 |ahfs|(I + 1
2 )(B/Bhfs)

2 + · · · . (5.105)

The absence of a linear field dependence in the limit B → 0 makes these levels insensitive
to small magnetic fields, which explains their importance for application in atomic clocks.
Expanding Eq. (5.99) in powers of B/Bhfs we note that the linear term is absent and the
amplitudes of the coefficients can be approximated by

A2
± ' 1

2

[
1± (B/Bhfs)

2 + · · ·
]
. (5.106)

Crossover field (B = |Bhfs|): Equating the expressions (5.100) and (5.103) for the high- and
low-field tangents we obtain an expression for the intersection point,

µ+B(1 + m̃FBhfs/B) = |ahfs|(I + 1
2 )(1 + m̃FB/Bhfs). (5.107)

Solving for B we find for the intersection point B = |Bhfs| = |ahfs|(I + 1
2 )/µ+. This point marks the

crossover between the low-field and high-field regions.

5.4.3 High-field limit

For magnetic fields much higher than the hyperfine field but much lower than the fine-structure field
(|Bhfs| � B � |Bfs|) the hyperfine coupling is weak compared to the Zeeman interaction whereas
the fine-structure coupling is still strong. For increasing magnetic field, this manifests itself as a
crossover from the hyperfine coupling between J and I (B � |Bhfs|) to Zeeman coupling of J and
I individually to the magnetic field (B � |Bhfs|) - see Fig. 5.7. This crossover is known as the
Back-Goudsmit effect and is similar to the Paschen-Back effect in the fine structure. Therefore, in
the high-field limit the atomic Hamiltonian

H = (Hfs +HZ) +HIJ (5.108)

is best analyzed in the uncoupled hyperfine representation {|nlsjmjImI〉} in which HZ is diagonal
and HIJ is the perturbation. In this basis and for given values of n, l, s, j the perturbation matrix
is given by

HIJm′jm′I ;mjmI
= (ahfs/~2)〈jm′jIm′I |I · J|jmjImI〉, (5.109)

which can be written in the form

HIJm′jm′I ;mjmI
= (ahfs/~2)〈jm′jIm′I |IzJz + 1

2 (I+J− + I−J+) |jmjImI〉. (5.110)
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Figure 5.6: Crossing of the nuclear Zeeman levels at at B ' 16.7 T in hydrogen. This happens when the
nuclear Zeeman shift equals the hyperfine spitting. Note that the figure is not to scale (the nuclear moment
was chosen to be artificially large to show both the hyperfine splitting and the crossing in one plot).

As only the diagonal matrix elements of a weak perturbation contribute to first order in pertur-
bation theory (see Appendix G.3.4 - weak coupling), in high fields the hyperfine shift is given by
∆EIJmjmI

(
n 2s+1Lj

)
= ahfsmImj and the asymptotic field dependence (dashed lines in Fig. 5.5) can

be expressed as

∆EmjmI
(
n 2s+1Lj

)
= ahfsmImj + (gJµBmj − gIµNmI)B. (5.111)

Note that this expression is valid for arbitrary values of j and I.

5.4.3.1 Very-high-field limit (B > ahfsmj/gIµN )

The levels in the hyperfine manifold with the largest multiplicity will cross when the nuclear Zeeman
shift becomes larger than the zero-field hyperfine splitting (see Fig. 5.6). This happens for gIµNB >
ahfsmj > 0 (presuming j to be a good quantum number). Beyond the crossing the ordering of the
nuclear sublevels is the same in the lower and upper manifold, as is to be expected in sufficiently
high field. Interestingly, at B = ahfsmj/gIµN the overall hyperfine shift is independent of mI ,
∆EmjmI

(
n 2s+1Lj

)
= gJµBmjB. This means that all mI levels of a manifold with mj > 0 coincide,

which is an example of accidental degeneracy. For the ground states of atomic hydrogen, deuterium
and tritium this happens in the manifolds with ms = 1

2 at B ' 16.7 T.

5.4.4 Low-field limit - linear Zeeman shift and hyperfine g factor (gF )

For magnetic fields much lower than the hyperfine field (B � |Bhfs|) the angular momenta J and I
are strongly hyperfine coupled (by HIJ) to form the total electronic angular momentum F = J + I
(see Fig. 5.7). Under these conditions the atomic Hamiltonian

H = (Hfs +HIJ) +HZ (5.112)

is best analyzed in the coupled representation {|nlsjIFmF 〉}, where L ·S and J · I are diagonal and
HZ is the perturbation. In this basis and for given values of n, l, s, j, I, F the perturbation matrix
is given by

HZF ′mF ′ ;FmF = 〈F ′mF ′ |gJµBJz − gIµNIz |FmF 〉B/~. (5.113)
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Figure 5.7: Precession of angular momenta in an externally applied magnetic field for the example j = 2, I =
1. In low fields J and I are hyperfine coupled to form the total atomic angular momentum F = J+ I, which
precesses slowly about the field direction as a result of a weak Zeeman coupling, HZ , to the magnetic field;
this is most conveniently described in the coupled basis {|F,mF 〉}. In high fields J and I are predominantly
Zeeman coupled to the external field and precess mostly independently about the field direction; this is best
described in the uncoupled basis {|j,mj , I,mI〉}. Note that mF = mj + mI is a good quantum number in
both limits.

Expressing the nuclear magneton into the Bohr magneton, µN ≡ (me/mp)µB , and limiting ourselves
to the diagonal terms, we obtain the following expression for the energy shift (Zeeman shift)

∆EZF,mF
(
n 2s+1Lj

)
= 〈jIFmF |gJJz − gIIz(me/mp) |jIFmF 〉µBB/~, (5.114)

This expression is valid to only first order in perturbation theory because HZ is in not diagonal in
the coupled representation: only the diagonal matrix elements of a weak perturbation contribute to
first order (see Appendix G.3.4 - weak coupling). As the operators Jz and Iz cannot change mj

and mI , the quantum number mF has to be conserved. This is a consequence of the mF selection
rule (3.89), mF = mj +mI . However, Jz and Iz do not conserve F (compare Problem 4.12). Only
in low fields the perturbation can be made sufficiently weak to neglect the off-diagonal terms and
treat both F and mF as good quantum numbers of the atomic Hamiltonian (4.194).

The physics in low field is completely analogous to the low-field limit of the fine-structure: in
sufficiently low fields the magnetic moment of the atom will scale proportionally to the total atomic
angular momentum F,

µF ≡ γFF ≡ −gFµB (F/~) for B → 0 and F > 0. (5.115)

Note that γF and gF are defined with opposite sign, just as we did for γL, γe and γJ ; as will be
shown the sign of gF can be positive or negative depending on F . We only have to address the case
F > 0 because for F = 0 the magnetic moment must be absent. Hence, the Zeeman energy can be
described by the effective Hamiltonian HZ = −µF ·B. This Hamiltonian yields a Zeeman shift on
top of the fine- and hyperfine structure shifts determined by the quantum numbers n, l, s, j, I, F :

∆EZF,mF = gFµBB〈FmF |(Fz/~) |FmF 〉 = gFµBmFB for B → 0 . (5.116)

This expression corresponds to the low-field tangents indicated by the dotted lines in Fig. 5.5. Note
that the effective Hamiltonian is diagonal in the {|nlsjIFmF 〉} basis.

In search for gF we compare Eqs. (5.114) and (5.116) and obtain for F > 0

gF = gJ〈jIF ||J ||jIF 〉 − gI(me/mp)〈jIF ||I||jIF 〉. (5.117)

To arrive at this result we applied the Wigner-Eckart theorem. As Jz, Iz and Fz are diagonal in the
{|nlsjIFmF 〉} basis, the matrix elements of Jz and Iz become for F > 0

〈nlsjIFmF | Jz |nlsjIFmF 〉 = 〈jIF ‖J‖ jIF 〉 〈FmF |Fz |FmF 〉 (5.118a)

〈nlsjIFmF | Iz|nlsjIFmF 〉 = 〈jIF ‖I‖ jIF 〉 〈FmF |Fz |FmF 〉 , (5.118b)
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where the proportionality constants 〈jIF ‖J‖ jIF 〉 and 〈jIF ‖I‖ jIF 〉 are reduced matrix elements
and independent of mF . Note that since Fz = Jz + Iz we find by adding Eqs. (5.118a) and (5.118b)
that the reduced matrix elements add up to unity,

〈jIF ||J ||jIF 〉+ 〈jIF ||I||jIF 〉 = 1 = 〈lsj ‖F‖ lsj〉 (for F > 0). (5.119)

With the aid of this expression we obtain for F > 0

gF =

{
−gI(me/mp) + [gJ + gI(me/mp)]〈jIF ||J ||jIF 〉 ' gJ〈jIF ||J ||jIF 〉 for j 6= 0

−gI(me/mp) for j = 0.
(5.120)

Note that the derivation is valid for arbitrary values of J and I. For hydrogen-like atoms the
condition j 6= 0 is always satisfied. The projections of I and J along the total angular momentum
vector F, i.e. I · F and J · F, are conserved while F precesses about B,

〈nlsjIFmF | Jz |nlsjIFmF 〉 =
〈jIFmF | (J · F)Fz |jIFmF 〉
〈jIFmF |F2 |jIFmF 〉

. (5.121)

Since J · F is diagonal in the low-field basis,

J · F = J2 + J · I = J2 + 1
2 [F2 − J2 − I2] = 1

2 [F2 + J2 − I2],

we find by comparison with Eq. (5.118a)

〈jIF ||J ||jIF 〉 =
〈jIFmF |J · F |jIFmF 〉
〈jIFmF |F2 |jIFmF 〉

=
F (F + 1) + j(j + 1)− I(I + 1)

2F (F + 1)
for F > 0. (5.122)

which is independent of mF , as it should for a reduced matrix element. The same result can be
obtained with the algebraic procedure demonstrated in Problem 4.14.

For the important special case j = 1
2 the expression (5.120) reduces to the form

gF ' ±gJ
1

2I + 1
(F = I ± 1

2 ; j = 1
2 ; F > 0). (5.123)

For F = 0 also mF = 0 and gF has no meaning. Note that gF is always negative for the state
with the smallest multiplicity

(
F = I − 1

2 > 0
)
, i.e. for electronic and nuclear spins coupled in

opposite directions. This is intuitively clear because for I ≥ 1 the nuclear spin dominates the
angular momentum of the j = 1

2 atom whereas the electron determines the magnetic moment.
Hence the atoms behave like a classically spinning ball of positive charge. For similar reasons, gF
is always positive for the state with the highest multiplicity

(
F = I + 1

2

)
. The sign of the nuclear

gyromagnetic ratio is irrelevant in this context because the contribution of the nuclear magnetic
moment is negligibly small anyhow.

5.4.5 Low-field limit - quadratic Zeeman shift

In the expansion (5.102) we obtained the expression for the quadratic Zeeman shift for the special
case j = 1

2 .1 For arbitrary value of j the quadratic shift can be calculated with the aid of second-
order perturbation theory,

∆E
(2)Z
F,mF

(
n 2s+1Lj

)
=
∑
F ′

|〈IjF ′mF |gJµBJz − gIµNIz|IjFmF 〉B/~|2

EF,mF − EF ′,mF
. (5.124)

1This quadratic shift is not to be confused with the diamagnetic contribution, which is much weaker but quadratic
in B at the level of the Hamiltonian.
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Note that this contribution indeed scales like B2. As Jz and Iz conserve mF the Zeeman operator
couples states of different F ′ ∈ {|I − j|, · · · , I + j} for given value of mF .

We demonstrate the procedure for the special case j = 1
2 , in which only two hyperfine levels are

coupled and the result is already known from Eq. (5.102). The energy splitting may be approximated
by its zero-field value; i.e., by the interval rule (5.62), ∆WF = ahfsF = ahfs(I + 1

2 ); note that the
energy splitting also has a field dependence but as this leads to a cubic shift it is not included here.
The quadratic shifts of the upper (F = I + 1

2 ) and lower (F = I − 1
2 ) hyperfine levels (of given mF )

only differ in the sign, with the quadratic shifts of the upper manifold all positive and those of the
lower manifold all negative. For the upper/lower manifold the quadratic shift becomes

∆E
(2)Z
F,mF

(
n 2s+1Lj

)
= ±|〈IjF

′mF |gJµBJz − gIµNIz|IjFmF 〉B/~|2

ahfs(I + 1
2 )

. (5.125)

where F ′ = I + 1
2 refers to the upper and F = I − 1

2 to the lower manifold. Adding and subtracting
gIµNJz and using the orthogonality relation 〈IjF ′mF |IjFmF 〉 = 0 as well as the definitions (5.90a)
and (5.90b) the Eq. (5.125) can be reduced to

∆E
(2)Z
F,mF

(
n 2s+1Lj

)
= ±ahfs(I + 1

2 ) (B/Bhfs)
2 |〈IjF ′mF |Jz/~|IjFmF 〉|2. (5.126)

The matrix element follows by Clebsch-Gordan decomposition

〈IjF ′mF |Jz/~|IjFmF 〉 =
∑
mj ,mI

mj〈F ′mF |ImIjmj〉〈ImIjmj |FmF 〉. (5.127)

Noting that mI = mF −mj and turning to 3j symbols (using the property that 2I+ 1 +F +F ′ and
2I − 2mF are always even) we find

〈IjF ′mF |Jz/~|IjFmF 〉 =
∑

mj=±1/2

mj

√
2(I + 1)2I

(
I I + 1

2
1
2

(mF −mj)−mF mj

)(
I I − 1

2
1
2

(mF −mj)−mF mj

)
.

(5.128)
Using Eqs. (J.17) this becomes

〈IjF ′mF |Jz/~|IjFmF 〉 =
∑

mj=±1/2

(−1)mj−
3
2

1

2

√
I + 1± (mF −mj)

(2I + 1)

√
I ∓ (mF −mj)

(2I + 1)
. (5.129)

Both the mj = − 1
2 and the mj = 1

2 contribution yield the same result and adding these we obtain

〈IjF ′mF |Jz/~|IjFmF 〉 = 1
2

√
1− m̃2

F . (5.130)

Substituting this expression into Eq. (5.126) we arrive at

∆E
(2)Z
F,mF

(
n 2s+1Lj

)
= ± 1

4ahfs(I + 1
2 ) (B/Bhfs)

2
(1− m̃2

F ). (5.131)

Note that we indeed regained the quadratic term of Eq. (5.102). Since m̃2
F ≤ 1 we re-established that

the quadratic Zeeman shift is largest for the state of smallest |mF |. This is important in particular
for phenomena which are insensitive for the linear Zeeman effect (see e.g. [60]).

5.5 Ground state hyperfine structure of hydrogen-like atoms

5.5.1 Hydrogen (1H) in the electronic ground state 2S1/2 (I = 1/2)

The electronic ground state of atomic hydrogen is the 1 2S1/2 state. In Fig. 5.8 the low-field limit

can be recognized for the case of the ground state of atomic hydrogen ( j = s = I = 1
2 ; l = 0).
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Figure 5.8: Breit-Rabi diagram for the hyperfine structure of atomic hydrogen in its ground state 12S1/2.
Indicated is the clock transition (λ = 21 cm) on which the hydrogen maser is based and famous for its
astrophysical importance. The dotted lines correspond to the high-field asymptotes - see Eq. (5.111). The
magnetic field is given in units of the hyperfine splitting ahfs/µ+ = 507 Gauss. Note that the upper
(lower) branches correspond in high fields with electron spin up (down). The zero-field hyperfine splitting
is calculated to an accuracy of 1 : 104 in Section 5.3.6. The limiting behavior is: a) B →∞ : sinα→ 0; b)
B → 0 : cos2 α→ 1/2. The upper two levels cross at B ≈ 16.7 T.

Because l = 0 there is no orbital magnetic moment and gJ = ge ' 2. For F = I + s = 1 we observe
the splitting into a triplet and using Eq. (5.120) we calculate for the effective g factor gF ' 1. For
the stretched spin state mF = 1 the Zeeman shift is given by ∆EZ

F,mF
' µBB, which is exactly

what we expect because neglecting the nuclear spin we are left with the contribution of the electron
spin, ∆EZ

s,ms = geµBmsB ' µBB.
Accurate expressions for the field dependence of the hyperfine levels are obtained with Eqs. (5.92)

and (5.105). For nuclear spin I = 1
2 , electronic spin s = 1

2 and γI > 0 we obtain (see Fig. 5.8)

ε±(mF ) =

{
+ 1

4ahfs ± 1
2µ−B mF = ±1

− 1
4ahfs ± 1

2ahfs

√
1 + (B/Bhfs)2 mF = 0 ,

(5.132)

The hyperfine field is Bhfs = ahfs/µ+ ' 507 Gauss. For mF = 0 the coupled eigenstates are1

|Fmax, 0〉 = + cosα| ��-〉+ sinα | ��-〉, (5.133a)

|Fmin , 0〉 = − sinα | ��-〉+ cosα| ��-〉. (5.133b)

The phase factors determining the sign of the coefficients are chosen in accordance with the phase
convention for the (I = 1

2 × S = 1
2 ) Clebsch-Gordan decomposition of Appendix J.2.1. The field

dependence of the coefficients is given by Eq. (5.99), which reduces for small magnetic fields to

A2
± ' 1

2

[
1± (B/Bhfs)

2
+ · · ·

]
(B � |Bhfs|). (5.134)

Using this procedure we find for the coupled states |a〉, |b〉, |c〉 and |d〉 (in order of increasing energy)

|d〉= | ��-〉
|c〉 = + cosα| ��-〉+ sinα| ��-〉
|b〉 = | ��-〉
|a〉= − sinα| ��-〉+ cosα| ��-〉.

(5.135)

1In this notation |�〉 =
∣∣s,+ 1

2

〉
and |�〉 =

∣∣s,− 1
2

〉
refer to the electron spin and |�-〉 =

∣∣I,+ 1
2

〉
and |�-〉 =

∣∣I,− 1
2

〉
,

to the proton spin.
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Figure 5.9: Hyperfine structure of the 2S1/2 electronic ground states of deuterium (D) and 6Li. The magnetic
field is given in units of the hyperfine splitting, 175 Gauss for D and 81.4 Gauss for 6Li. The dotted lines
correspond to the high-field asymptotes - see Eq. (5.111). Note that the lower manifold (F = 1

2
) is inverted

because its g-factor is negative (gF = −2/3). The limiting behavior is: a) B → ∞ : sinα, sinβ → 0; b)
B → 0 : cos2 α, cos2 β → 2/3, 1/3.

For B → 0 : α = π/4, i.e. sin2 α = cos2 α = 1/2 and |a〉 = |0, 0〉, |b〉 = |1,−1〉, |c〉 = |1, 0〉 and
|d〉 = |1,+1〉. For B →∞ : α→ 0, i.e. sinα ' α ' 0 and cosα ' 1.

5.5.2 Deuterium (2H) and 6Li in the electronic ground state 2S1/2 (I = 1)

The heavy hydrogen isotope deuterium (2H) has one electron. Like hydrogen the ground state
configuration is 1s and the spin-orbit type is 1 2S1/2. The 6Li atom in its electronic ground state has
configuration 1s22s and is of the spin-orbit type 2 2S1/2. With orbital angular momentum L = 0,

electronic spin s = 1
2 and nuclear spin I = 1 the quantum number for the total angular momentum

can have the values F = I± 1
2 = 3

2 ,
1
2 . Both elements have a positive gyromagnetic ratio. Hence, the

Fermi contact interaction is positive (ahfs > 0) and the hyperfine structure regular; i.e., the manifold
with the highest multiplicity

(
F = 3

2

)
has the highest energy. Since γI > 0 the energies of the states

are given by

ε±(mF ) =

−gIµNmFB − 1
4ahfs + 3

4ahfs(1±B/Bhfs) mF = ± 3
2

−gIµNmFB − 1
4ahfs ± 3

4ahfs

√
1 + 4

3mFB/Bhfs + (B/Bhfs)
2
mF = ± 1

2 .
(5.136)

The hyperfine crossover field Bhfs = (I + 1
2 )ahfs/µ+ ' 175 Gauss in the case of deuterium and 81.4

Gauss in the case of 6Li (see Table 5.1). The Breit-Rabi diagram for this case is shown in Fig. 5.9.
The upper manifold is regular

(
gF = 2

3

)
. The lower manifold (F = 1

2 ) is inverted because its g factor

is negative
(
gF = − 2

3

)
. The phase factors determining the sign of the coefficients are in accordance

with the (1× 1/2) Clebsch-Gordan decomposition of Appendix J.2.1. Because mF = mI +ms is a
good quantum number the eigenstates can be expressed for any field in the form

|Fmax,mF 〉 = + cosα| �; 1,
(
mF − 1

2

)
〉+ sinα | �; 1,

(
mF + 1

2

)
〉 (5.137a)

|Fmin ,mF 〉 = − sinα | �; 1,
(
mF − 1

2

)
〉+ cosα| �; 1,

(
mF + 1

2

)
〉. (5.137b)
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Figure 5.10: Hyperfine structure of 2S1/2 electronic ground states with I = 3
2
. The magnetic field is given

in units of the hyperfine splitting, 287 G for 7Li, 633 G for 23Na, 165 G for 39K, 90 G for 41K and 2.44
kG for 87Rb. The dotted lines correspond to the high-field asymptotes - see Eq. (5.111). Note that the
lower manifold (F = 1) is inverted because its g-factor is negative, gF = − 1

2
. The limiting behavior is: a)

B →∞ : sinα, sinβ, sin γ → 0; b) B → 0 : cos2 α, cos2 β, cos2 γ → 3/4, 2/4, 1/4.

Here we use the notation of Eq. (5.93a). The field dependence of the coefficients is given by Eq.
(5.97), which reduces for small magnetic fields to

A2
± '

1

2

(
1± 2

3mF

) [
1±B/Bhfs

(
1∓ 2

3mF

)
+ · · ·

]
(B � |Bhfs|) . (5.138)

5.5.3 The alkali atoms 7Li, 23Na, 39K, 41K and 87Rb in the electronic ground state 2S1/2

(I = 3/2)

The electronic ground state configuration of these alkali atoms is [He]2s for 7Li, [Ne]3s for 23Na,
[Ar]4s for 39K and 41K, and [Kr]5s for 87Rb. In all cases the term type is 2S1/2. With orbital

angular momentum L = 0, electronic spin s = 1
2 and nuclear spin I = 3

2 the quantum number for
the total angular momentum can have the values F = I ± 1

2 = 2, 1. All elements mentioned have
a positive gyromagnetic ratio. Hence, the Fermi contact interaction is positive (ahfs > 0) and the
hyperfine structure regular; i.e., the manifold with the highest multiplicity (F = 2) has the highest
energy. For nuclear spin I = 3

2 , electronic spin s = 1
2 and γI > 0 the energies of the coupled states

are given by

ε±(mF ) =


−gIµNmFB − 1

4ahfs + ahfs(1±B/Bhfs), mF = ±2

−gIµNmFB − 1
4ahfs ± ahfs

√
1 +mFB/Bhfs + (B/Bhfs)

2
, mF = ±1

−gIµNmFB − 1
4ahfs ± ahfs

√
1 + (B/Bhfs)

2
, mF = 0 .

(5.139)

The hyperfine crossover field Bhfs = (I + 1
2 )ahfs/µ+ ' 287 G in the case of 7Li, 633 G in the

case of 23Na, 165 G in the case of 39K, 90 G in the case of 41K and 2.44 kG in the case of 87Rb
(see Table 5.1). The Breit-Rabi diagram for this case is shown in Fig. 5.10. The upper manifold
(F = 2) is regular

(
gF = 1

2

)
. The lower manifold (F = 1) is inverted because its g factor is negative(

gF = − 1
2

)
. The phase factors determining the sign of the coefficients are in accordance with the
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Figure 5.11: Example of an inverted hyperfine structure: the electronic ground state 2S1/2 of 40K
(I = 4, γN < 0). The magnetic field is given in units of the hyperfine splitting, 459 G for 40K. Note that the
manifold with the smallest multiplicity (F = 7

2
) is also inverted because its g-factor is negative, gF = −2/9.

The limiting behavior is: a) B →∞ : sinα, · · · , sin ζ → 0; b) B → 0 : cosα, · · · , cos ζ → 8/9, · · · , 1/9.

(3/2 × 1/2) Clebsch-Gordan decomposition of Appendix J.2.1. Because mF = mI + ms is a good
quantum number the eigenstates can be expressed for any field in the form

|Fmax,mF 〉 = + cosα+| �; 3
2 ,
(
mF − 1

2

)
〉+ sinα+| �; 3

2 ,
(
mF + 1

2

)
〉 (5.140a)

|Fmin ,mF 〉 = − sinα+| �; 3
2 ,
(
mF − 1

2

)
〉+ cosα+| �; 3

2 ,
(
mF + 1

2

)
〉. (5.140b)

Here we use the notation of Eq. (5.93a). For 0 < |mF | < 2 the field dependence of the coefficients is
given by Eq. (5.97), which reduces for small magnetic fields to

A2
± ' 1

2

(
1± 1

2mF

) [
1±B/Bhfs

(
1∓ 1

2mF

)
+ · · ·

]
(B � |Bhfs|) . (5.141)

For mF = 0 the coefficients are given by Eq. (5.99) and become in low field

A2
± ' 1

2

[
1± (B/Bhfs)

2
+ · · ·

]
(B � |Bhfs|) . (5.142)

5.5.4 Potassium-40 in the electronic ground state 2S1/2 (I = 4) - negative hyperfine shift

The final example to be discussed in this section on the hyperfine interaction in hydrogen-like systems
is the electronic ground state of 40K. This case is special because the 40K nucleus has a negative
gyromagnetic ratio, which implies that also the Fermi contact interaction is negative (ahfs < 0). Like
the other atomic isotopes of potassium the electronic ground-state configuration is [Ar]4s with term
type 2S1/2. With orbital angular momentum L = 0, electronic spin s = 1

2 and nuclear spin I = 4

the quantum number for the total angular momentum can have the values F = I ± 1
2 = 9

2 ,
7
2 . The

manifold with the lowest multiplicity
(
F = 7

2

)
has the highest energy because the hyperfine shift is

negative (ahfs < 0). This is called an inverted hyperfine structure. For nuclear spin I = 4, electronic
spin s = 1

2 and γI < 0 the energies are given by

ε±(mF ) =

−gIµNmFB − 1
4ahfs + 9

4ahfs(1±B/ |Bhfs|), mF = ± 9
2

−gIµNmFB − 1
4ahfs ± 9

4 |ahfs|
√

1 + 4
9mFB/Bhfs + (B/Bhfs)2 |mF | = 1

2 , · · ·
7
2 .

(5.143)
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Figure 5.12: Stern-Gerlach imaging of the hyperfine states of 40K. From left to right the atoms are first
transferred (using radio waves) from the upper half to the lower half of the lower hyperfine manifold (F = 9

2

- see Fig. 5.11). Subsequently, the atoms are removed from the | 9
2
,− 7

2
〉 state in two steps: first they are

transferred from the state | 9
2
,− 7

2
〉 to the state | 7

2
,− 5

2
〉 of the upper hyperfine manifold from which they are

“blown away” with resonant light on the 4S → 4P transition.

The hyperfine crossover field Bhfs = (I + 1
2 )ahfs/µ+ ' −459 G (see Table 5.1). The Breit-Rabi

diagram for this case is shown in Fig. 5.11. An example of a corresponding Stern-Gerlach image is
shown in Fig. 5.12.

The upper manifold (F = 7
2 ) is inverted because its g factor is negative

(
gF = − 2

9

)
. The lower

manifold (F = 9
2 ) is regular

(
gF = 2

9

)
. The phase factors determining the sign of the coefficients

are in accordance with the (4 × 1/2) Clebsch-Gordan decomposition of Appendix J.2.1. Because
mF = mI +ms is a good quantum number the eigenstates can be expressed for any field in the form

|Fmin ,mF 〉 = − cosα| �; 4,
(
mF − 1

2

)
〉+ sinα | �; 4,

(
mF + 1

2

)
〉 (5.144a)

|Fmax,mF 〉 = + sinα | �; 4,
(
mF − 1

2

)
〉+ cosα| �; 4,

(
mF + 1

2

)
〉. (5.144b)

Here we use the notation of Eq. (5.93b). The field dependence of the coefficients is given by Eq.
(5.97), which reduces for small magnetic fields to

A2
± ' 1

2

(
1± 2

9mF

) [
1±B/Bhfs

(
1∓ 2

9mF

)
+ · · ·

]
(B � |Bhfs|) . (5.145)
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Electric hyperfine structure

Up to this point we treated the atomic nucleus as a simple electric point charge. This picture has its
limitations because the nucleus has internal structure and a finite size. The electrostatic interaction
of the electrons with the nucleus not only depends on the nuclear charge but also on its size and
structure. The resulting deviations from the ideal Coulomb field give rise to the electric hyperfine
structure of the atom.

In the semi-classical picture the nuclear structure manifests itself in the finite nuclear size and
deviations from the spherical shape. From the quantum mechanical point of view the nuclear
structure arises from the distribution and internal structure of the nucleons. As we shall find, in
hydrogen (I = 1

2 ) the electric hyperfine structure is absent because the nucleus is spherical. As we
shall find the nuclei are nonspherical for I > 1

2 . This is the case for many alkali atoms but is of no
consequence for the electronic ground states because the electronic charge distribution is spherical
(2S terms) and the coupling to electric multipole moments averages to zero.

6.1 Electrostatic interaction of an electron with a classical nucleus

In this section we restrict ourselves to the semi-classical picture in which the nuclear structure
manifests itself only in the nuclear size and shape. To discuss the role of the nuclear structure we
introduce the unit-normalized nuclear charge-density distribution n(r′), with

´
n(r′)dr′ = 1, where

r′ is the position inside the nucleus defined with respect to the nuclear center of mass. In terms
of n(r′) the electrostatic potential at position r (also relative to the nuclear center) is given by (cf.
Appendix E.3)

ϕ(r) =
Ze

4πε0

ˆ
n(r′)

|r− r′|
dr′. (6.1)

The corresponding potential energy of an electron at position r in the electric field of the nucleus
becomes

V(r) = − Ze2

4πε0

w n(r′)

|r− r′|
dr′. (6.2)

To evaluate integrals of the type appearing in Eqs. (6.1) and (6.2), we apply the cosine rule to
express the relative distance |r − r′| in terms of the radial distances r and r′ with respect to the
nuclear center of mass,

1

|r− r′|
=

1√
r′2 + r2 − 2r′r cosϑ

. (6.3)

Here ϑ is the angle enclosed by the directions r̂ and r̂′ as illustrated in Fig. 6.1. We first expand
Eq. (6.3) in powers of the ratio (r</r>), where r< = min{r, r′} is the lesser and r> = max{r, r′}

175
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Figure 6.1: Nuclear charge-density distribution ρ(r′) = Zen(r′) with definition of the electron position r
and nucleon position r′ relative to the nuclear center. Note that ϑ is the angle enclosed by r and r′, whereas
θ is the angle of r′ with respect to the z axis.

the greater of r and r′

1

|r− r′|
=

1

r>

∞∑
k=0

(
r
<

r>

)k
Pk(cosϑ). (6.4)

The expansion is called the multipole expansion, with the subsequent terms referred to as the
monopole (k = 0), dipole (k = 1), quadrupole (k = 2), in general 2k-pole contribution to the
expansion. The expansion coefficients Pk(u) are Legendre polynomials of degree k (cf. Appendix
L.9). Only the monopole contribution is centrally symmetric. As only s electrons substantially
penetrate the nucleus, only for s orbitals we meet conditions in which r < r′. For all other orbitals
the penetration is negligible we may assume r′ ≪ r; i.e., r> = r and r< = r′. In view of the
orthogonality of the Legendre polynomials the s orbitals only sample the k = 0 term and the
expansion can be written in the form

1

|r− r′|
=

1

r
>

+
r′

r2
P1(cosϑ) +

r′2

r3
P2(cosϑ) + · · · . (6.5)

The relative angle ϑ can be expressed in terms of the absolute directions r̂ and r̂′ using the spherical
harmonic addition theorem (L.56),

Pk(cosϑ) =
4π

2k + 1

k∑
q=−k

(−1)qY −qk (r̂)Y qk (r̂′) (6.6)

=

k∑
q=−k

Qqk(r̂′)F qk (r̂) ≡ Q(k) · F(k), (6.7)

where Qqk(r̂′) and F qk (r̂) are the standard components of the rank-k spherical tensors Q(k) and F(k),
respectively, with Q(k) representing the k-pole moment and F(k) the field to which the moment
couples. Using the multipole expansion the potential energy of an electron in the electric field of the
nucleus can be written as the sum of a pure Coulomb contribution (point charge Ze at the nuclear
center of mass) plus a series of correction terms,

V(r) = − Ze2

4πε0

1

r
+HNV +HED +HEQ + · · · . (6.8)

The subsequent terms are

• the electric-monopole contribution

HC = − Ze2

4πε0

1

r
. (6.9)

This operator provides the (unscreened) Coulomb interaction between a point-like nucleus and
an electron at position r. To elucidate the systematics of the multipole expansion we start by
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separating the r and r′ dependence by using the addition theorem (6.6),

HC = − e

4πε0

1

r

√
4πY 0

0 (r̂)M0 = Q0
0F

0
0 (6.10)

where the standard component

M0 ≡ Q0
0 =

ˆ
ρ(r)dr = Ze (6.11)

is the nuclear electric-monopole moment, with

ρ(r) = Zen(r) (6.12)

the nuclear charge-density distribution. For a given electronic state |nlm〉 the field is the scalar
potential field of the electrons at the position of the nucleus,

Enlsjm = 〈nlsjm|F 0
0 |nlsjm〉 = − e

4πε0

〈
1

r

〉
nl

. (6.13)

• the nuclear volume correction,

HNV = − Ze2

4πε0

ˆ rn n(r′)

r>
dr′ +

Ze2

4πε0

1

r
, (6.14)

with r> = r for r′ ≤ r and r> = r′ for r′ > r. This correction accounts for the deviation from
the pure 1/r field inside the nucleus. To estimate its importance we use the same approach
as used in Section 4.1.2 for estimating the Darwin correction. We replace the nucleus by a
homogeneously charged sphere of radius rn and charge density %0 = 3Ze/4πr3

n. Then, the
integral evaluates to (see Problem 4.1)

HNV = − Ze2

4πε0

1

2rn

[
3−

(
r

rn

)2

− 2
rn
r

]
r<rn

. (6.15)

In calculating the correction for a given electronic orbital, ∆ENV = 〈nlm|HNV|nlm〉, we note
that rn � a0. Therefore, he radial wavefunction can be replaced by its value in the origin and
the correction becomes

∆ENV ' −
Ze2

4πε0

1

2rn
R2
nl(0)

ˆ rn

0

(
3− r2

r2
n

− 2
rn
r

)
r2dr =

1

4πε0

Z

10

e2r2
n

a3
R̃2
nl(0). (6.16)

• the electric-dipole interaction,

HED = − Ze2

4πε0

1

r2

ˆ
r′P1(cosϑ)n(r′)dr′. (6.17)

This integral averages to zero because the electric-dipole moment (EDM) vanishes.1 To demon-
strate this we separate the r and r′ dependence using the addition theorem (6.6),

HED = − e

4πε0

1

r2

√
4π

3

1∑
q=−1

(−1)qY −q1 (r̂)Qq1, (6.18)

1More generally all odd-k electric-multipole moments vanish for similar reasons.
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where

Qq1 ≡
ˆ
r
√

4π/3Y q1 (r̂)ρ(r)dr (6.19)

stands for the standard components of the nuclear electric-dipole tensor. Since the parity of
Y q1 (r̂) is odd, see Eq. (L.53), the Qq1, with −1 ≤ q ≤ 1, average to zero unless the parity of
the nuclear charge-density distribution is also odd. The latter means that the center of charge
is shifted with respect to the center of mass, which is incompatible with the electromagnetic
and strong forces among the nucleons.1 The weak interaction is not parity conserving but too
weak to give rise to a measurable permanent nuclear electric-dipole moment.

A good measure for the strength of the electric-dipole tensor is the electric-dipole moment,

D ≡ Q0
1 =

ˆ
r cos θ ρ(r)dr, (6.20)

where θ (not to be confused with ϑ) is the polar angle with respect to the direction of axial
symmetry. Since the parity of r cos θ is odd, the dipole moment averages to zero unless the
parity of the nuclear charge distribution is also odd.

• the electric quadrupole interaction,

HEQ = − Ze2

4πε0

1

r3

ˆ
r′2P2(cosϑ)n(r′)dr′. (6.21)

Using the addition theorem (6.6) this expression can be rewritten in the form

HEQ = − e

4πε0

1

r3

√
4π

5

2∑
q=−2

(−1)qY −q2 (r̂)Qq2, (6.22)

where the Qq2 represent the spherical components of a rank 2 tensor, the nuclear quadrupole
tensor. For a (unit-normalized) classical charge distribution n(r) the component Qq2 is of form

Qq2 ≡
ˆ
r2
√

4π/5Y q2 (r̂)ρ(r)dr, (6.23)

with ρ(r) being the the nuclear charge-density distribution (6.12). The quadrupole moment of
such a classical distribution ρ(r) is defined as

Q ≡
ˆ
r2(3 cos2 θ − 1)ρ(r)dr, (6.24)

where the angle θ (not to be confused with ϑ) is the polar angle with respect to the direction
of axial symmetry. Comparing Eqs. (6.23) and (6.24) we find

Q0
2 = 1

2Q. (6.25)

In Fig. 6.2a we show three examples of classical bodies, two with and one without a quadrupolar
deformation. In all three cases the symmetry axis is chosen along the z direction. The
quadrupole moment is positive for shapes elongated along the axial direction; i.e., for cigar-like
(prolate) shapes. It is negative for axially compressed spheres; i.e., for pancake-like (oblate)
shapes. Spherical bodies have no (i.e., zero) quadrupole moment.

∆E = − e

4πε0

1

r3

2∑
q=−2

(−1)q
√

4π/5Y −q2 (r̂)Qq2 =

2∑
q=−2

Qq2F
q
2

1Here we pass by on the possibility that the nucleons carry an EDM. Thus far these have not been observed but
EDM searches are important in search for physics beyond the standard model [38, 40, 116].
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Figure 6.2: Nuclei with spins I > 1/2 can have an electric quadrupole moment: a.) sketch of a classical charge
distribution spinning along the direction of axial symmetry. The quadrupole moment Q can be determined
by measuring the aspect ratio of the principal axes. Spherical nuclei have no quadrupole moment (Q = 0).
The quadrupole moment is defined as positive (Q > 0) for shapes elongated along the axial direction
(prolate); it is negative (Q < 0) for pancake-like (oblate) deformations. b.) Quantum mechanically nuclei
have angular momentum in their ground state (the nuclear spin I) and it is impossible to fully align the
spin along the quantization axis. To measure the quadrupole moment we have to polarize the nucleus in the
state of maximum spin projection mI = I and determine the expectation value of the quadrupole operator.

where

F q2 = − e

4πε0

1

r3
(−1)q

√
4π/5Y −q2 (r̂)

〈nlsjm|F q2 |nlsjm〉 = − e

4πε0
(−1)j+m+q〈r−3〉nl〈lsj||

√
4π/5Y2(r̂)||lsj〉

(
j 2 j

m q −m

)
(6.26)

This immediately shows that 〈nlsjm|F q2 |nlsjm〉 = 0(
j 2 j

m q −m

)
= 0

if q 6= 0 and for 2j < 2

6.1.1 Nuclear quadrupole moment in quantum mechanics

The quantization of the Coulomb interaction was straightforward, we simply had to replace the
dynamical variable r by the operator r. This enabled us to obtain the nuclear volume correction
(6.16) without using any information about the internal structure of the nucleus. The quantization
of electric quadrupole interaction is more demanding in this respect because the quadrupole moment
cannot be observed without at least orienting the nucleus and for this we need information about
the nuclear state. Fortunately, in atomic physics we are dealing with nuclei in their ground state
and to understand the electronic structure all we need to know is the state of the nuclear spin
I. Without control over the spin we cannot orient the nucleus and the observable quadrupole
moment is zero. The nuclear spin represents the total angular momentum of the nucleus. Therefore,
without addressing the nuclear structure it will be impossible to trace down the origin of this spin.
Interestingly, this lack of information does not prevent us from establishing the nuclear quadrupole
moment (or higher multipole moments) because (for a free nucleus) the total angular momentum
offers the only reference direction of the nucleus that can be conserved in time. Although it is
impossible to fully align the vector I along the z direction (see Fig. 6.2b), we can polarize the
nucleus in the state of maximum spin projection, |α; I,mI〉 = |α; I, I〉, and use the quantization axis
as the only available reference axis to define the nuclear moments. Here α stands for all “other”
quantum numbers of the nucleus. As these have to be invariant under rotation of the nucleus
about the quantization axis, they have to correspond to the quantum mechanical eigenvalues of
operators that commute with both I2 and Iz. For the electric quadrupole moment this leads us to
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search for a spherical tensor operator of rank 2, the quadrupole operator Q2, of which the standard
components Qq2 transform like the Y q2 (r̂) and satisfy the commutation relations (K.3) with respect
to the standard components of I. In particular, the q = 0 standard component Q0

2 matches our
criteria for the quadrupole moment operator

Q0
2 ≡

√
4π/5 r2Y 0

2 (r̂) (6.27)

because it commutes with both I2 and Iz. By analogy with Eq. (6.23) the nuclear quadrupole moment
Q is defined by

〈α; I, I|Q0
2|α; I, I〉 ≡ 1

2Q. (6.28)

The prefactor 1
2 serves to conform to the convention (6.24) used for the classical quadrupole moment.

Interestingly, although we did not introduce explicit expressions for the components Qq2, we can
already find out a lot about their properties because we know that they have to transform like
one of the standard components of a rank 2 spherical tensor operator; i.e., they have to satisfy the
Wigner-Eckart theorem (K.23),

〈αIm′|Qq2|αIm〉 = (−1)I+m
′
I 〈αI||Q2||αI〉

(
I 2 I

m q −m′

)
. (6.29)

This theorem holds for any value of m and m′, and (in view of our current interest in the quadrupole
moment) in particular for the case m = m′ = I and q = 0. Using Eq. (J.19a), we obtain

1
2Q = 〈α, I, I|Q0

2|α, I, I〉 = (−1)2I〈αI||Q2||αI〉

√
I(2I − 1)

(I + 1)(2I + 3) (2I + 1)
. (6.30)

With this expression we immediately establish that Q = 0 unless I ≥ 1; i.e., nuclei with spin
I = 0 or I = 1

2 cannot have a quadrupole moment in quantum mechanics. Furthermore, it can
serve to eliminate the unknown reduced matrix element 〈αI||Q2||αI〉 from Eq. (6.30). Actually,
this procedure amounts to replacing one unknown quantity by another unknown quantity: the
quadrupole moment Q,

〈αI||Q2||αI〉 = (−1)2I Q

2I(2I − 1)

√
(2I − 1)I(I + 1)(2I + 1)(2I + 3), (6.31)

with Q/2I(2I − 1) = 0 for I ≤ 1
2 . The quadrupole moment covers all nuclear properties except

those related to the nuclear spin (in particular it contains the radial integral over the nuclear charge
distribution). The strategy is clear: even in the absence of a theory for the nuclear quadrupole
moment we can search for its signature in experiments and determine Q empirically. Some numerical
values are listed in Table 5.1.

Substituting Eq. (6.31) into (6.30) we obtain a closed expression for the standard components of
the quadrupole moment,

〈αIm′I |Q
q
2|αImI〉 = (−1)m

′
I−I Q

2I(2I − 1)

√
(2I − 1)I(I + 1)(2I + 1)(2I + 3)

(
I 2 I

mI q −m′I

)
, (6.32)

with Q/2I(2I−1) = 0 for I ≤ 1
2 . At this point we can calculate all matrix elements of the type (6.32)

and it should be possible to distill from this expressions for the operators Qq2. As a first example we
focus again on the operator Q0

2 for which the matrix elements are only nonzero if mI = m′I . Using
Eq. (J.19a) we obtain

〈ImI |Q0
2|ImI〉 = Q

3m2
I − I (I + 1)

2I(2I − 1)
, (6.33)
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with Q/2I(2I − 1) = 0 for I ≤ 1
2 . The operator that satisfies this property is easily recognized; for

a spin-I nucleus we have

Q0
2 =

Q

2I(2I − 1)
(3I2

z − I2). (6.34)

with Q/2I(2I − 1) = 0 for I ≤ 1
2 . It is readily verified that Q0

2 commutes with I2 and satisfies
the commutation relations (K.3); i.e., Q0

2 indeed represents a standard component of the spherical
tensor operator Q2. Note further that Q0

2 is hermitian and since Iz and I2 commute with the fine-
structure Hamiltonian it is also an observable. With Eq. (6.34) we established that the operator Q0

2

can be expressed in terms of the components of the vector operator I. The rank 2 tensor operators
Qq2 transform like the Y m2 , just like vector operators (rank 1 tensors) transform like Y m1 . Thus,
comparing with Eqs. (L.55) or (5.31) we immediately find relations for Q±1

2 and Q±2
2 ,

Q±1
2 = ∓ Q

2I(2I − 1)
(I±Iz + IzI±)

√
3/2 (6.35)

Q±2
2 =

Q

2I(2I − 1)
I±I±

√
3/2, (6.36)

with Q/2I(2I − 1) = 0 for I ≤ 1
2 . These expressions also satisfy the commutation relations (K.3)

and we easily verify that Qq2 and Q−q2 are hermitian conjugates. Note the similarity with Eqs. (5.31).
The electric quadrupole field of the electrons at position of the nucleus is also given by a spherical

tensor operator of rank 2,
qq2 ≡

√
4π/5 r−3Y q2 (r̂) (6.37)

since the Y q2 (r̂) and satisfy the commutation relations (K.3) with respect to the standard components
of L. This is explicitly shown in Eqs. (K.17). In particular, the q = 0 standard component q0

2 matches
our criteria for the quadrupole moment operator

q0
2 ≡

√
4π/5 r−3Y 0

2 (r̂) (6.38)

because it commutes with both L2 and Lz. By analogy with Eq. (6.23) the nuclear quadrupole
moment Q is defined by

〈α; I, I|q0
2 |α; I, I〉 ≡ 1

2q. (6.39)

The prefactor 1
2 is again conventional. Although we did not introduce explicit expressions for the

components qq2, we can already find out a lot about their properties because we know that they have
to transform like one of the standard components of a rank 2 spherical tensor operator; i.e., they
have to satisfy the Wigner-Eckart theorem (K.23),

〈nlm′|qq2|nlm〉 = (−1)l+m
′
〈r−3〉nl〈l||

√
4π/5Y (2)(r̂)||l〉

(
l 2 l

m q −m′

)
. (6.40)

Here we separated the radial from the angular part. The angular part can be determined by
comparing with the Gaunt integral. In this way we obtain - see Section K.3.3

〈nlm′|qq2|nlm〉 = (−1)l+m
′+1〈r−3〉nl

√
l(l + 1)(2l + 1)

(2l + 3)(2l − 1)

(
l 2 l

m q −m′

)
.

〈nlm′|q0
2 |nlm〉 = (−1)2(l+m′)+1〈r−3〉nl

3m2 − l(l + 1)

(2l + 3)(2l − 1)
.

In particular, this theorem hold for the case m = m′ = l and q = 0. Using Eq. (J.19a), we obtain

1
2q = 〈nll|q0

2 |nll〉 = 〈r−3〉nl
l(l + 1)

(2l + 3)(2l − 1)
.
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6.1.2 Electric quadrupole interaction

Using the quadrupole operators the electric quadrupole interaction (6.21) takes the form

HEQ = − Ze2

4πε0

1

r3

√
4π

5

2∑
q=−2

(−1)qY −q2 (r̂)Qq2. (6.41)

This Hamiltonian represents the interaction between the electric quadrupole fields of the nuclear
and the electronic charge distributions. The nuclear electric quadrupole operator given by the rank
2 tensor

T
(2)
1 (r̂′) = Ze

√
4π

5
Y2(r̂′).

Likewise, the electric quadrupole operator for the electronic charge distribution is given by the rank
2 tensor

T
(2)
2 (r̂) = −e 1

r3

√
4π

5
Y2(r̂).

Thus, using first order perturbation theory for a hyperfine state of given nlsjIF , the quadrupole
shift is given by

∆EEQ(n 2s+1Lj) = 〈nlsjIFMF |HEQ|nlsjIFMF 〉. (6.42)

The electric quadrupole interaction is given by

HEQ = − Ze2

4πε0

1

r3

√
4π

5

2∑
q=−2

(−1)qY −q2 (r̂)Qq2. (6.43)

Thus, using first order perturbation theory for a hyperfine state of given nlsjIF , the quadrupole
shift is given by

∆EEQ(n 2s+1Lj) = 〈nlsjIFMF |HEQ|nlsjIFMF 〉. (6.44)

∆EEQ(n 2s+1Lj) =
1

4
Bhfs

3K(K + 1)− 4I(I + 1)j(j + 1)

2I(2I − 1)j(2j − 1)
, (6.45)

where K ≡ F (F + 1)− j(j + 1)− I(I + 1) is a shorthand notation and

Bhfs = −2j − 1

2j + 2

e2

4πε0a3
Q〈ρ−3〉nl. (6.46)

For given n, l, s and I our interest concerns matrix elements of the type

〈nlsj′IF ′M ′|HEQ|nlsjIFM〉 = − Ze2

4πε0

1

r3

√
4π

5

2∑
q=−2

(−1)q〈nlsj′IF ′M ′|Y −q2 (r̂)Qq2|nlsjIFM〉.

(6.47)
Separating the matrix elements into two parts (by inserting a complete set of angular momentum
states) we obtain

〈nlsj′IF ′M ′|HEQ|nlsjIFM〉 =

=
e2

4πε0

1

a3

∑
F ′′,M ′′

2∑
q=−2

(−1)q〈ρ−3〉nl〈nlsj′IF ′M ′|qq2|nlsjIF ′′M ′′〉〈jIF ′′M ′′|ZQ
q
2|jIFM〉, (6.48)

where
ZQq2 ≡ Z

√
4π/5 ρ′2Y q2 (r̂′) (6.49)
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is the nuclear electric quadrupole operator and

qq2 ≡ −
√

4π/5 ρ−3Y q2 (r̂) (6.50)

electric quadrupole operator for the electronic orbital (in atomic units). Applying to each of these
parts the Wigner-Eckart theorem for spherical tensor operators, see Eq. (K.24), we obtain

〈nlsj′IF ′M ′|HEQ|nlsjIFM〉 =
e2

4πε0

1

a3

∑
F ′′,M ′′

2∑
q=−2

(−1)q+F
′−M ′+F ′′−M ′′

〈j′IF ′||q2||jIF ′′〉〈jIF ′′||Q2||jIF 〉
(

F ′ 2 F ′′

−M ′ −q M ′′

)(
F ′′ 2 F

−M ′′ q M

)
. (6.51)

In view of the 3j projection rule we have q = M ′′−M ′ and (−1)q+F
′−M ′+F ′′−M ′′ = (−1)F

′+F ′′−2M ′ .
Adding and subtracting F ′ in the exponent and noting that 2(F ′ −M ′) is always even, the matrix
element becomes, after rearrangement of the first 3j symbol (exchange two columns and apply the
sign rule in the lower row),

〈nlsj′IF ′M ′|HEQ|nlsjIFM〉 =
e2

4πε0

1

a3

∑
F ′′

(−1)F
′′−F ′

〈j′IF ′||q2||jIF ′′〉〈jIF ′′||Q2||jIF 〉
F ′′∑

M ′′=−F ′′

2∑
q=−2

(
F ′′ 2 F ′

−M ′′ q M ′

)(
F ′′ 2 F

−M ′′ q M

)
. (6.52)

Applying the 3j orthogonality relation (J.6) we find that F and M are conserved by the quadrupole
coupling and the matrix element simplifies to

〈nlsj′IF ′M ′|HEQ|nlsjIFM〉 =

=
e2

4πε0

1

a3

∑
F ′′

(−1)F
′′−F ′〈j′IF ′||q2||jIF ′′〉〈jIF ′′||Q2||jIF 〉

δF,F ′δM,M ′

2F + 1
. (6.53)

Since q2 acts in the subspace of j and Q2 acts in the subspace of I we can apply the expression
(K.62) for repeated reduction,

〈jIF ′′||Q2||jIF 〉 = (−1)F+I+j〈I||Q2||I〉
√

(2F ′′ + 1)(2F + 1)

{
I F ′′ j

F I 2

}
, (6.54)

〈j′IF ′||q2||jIF ′′〉 = (−1)F
′′+j′′+I〈lsj′||q2||lsj′′〉

√
(2F ′ + 1)(2F ′′ + 1)

{
j′ F ′ I

F ′′ j 2

}
. (6.55)

Substituting these equations into Eq. (6.53) we obtain

〈nlsj′IF ′M ′|HEQ|nlsjIFM〉 =
e2

4πε0

1

a3
(−1)F+F ′′+j+j′′+2I

〈lsj′||q2||lsj〉〈I||Q2||I〉δF,F ′δM,M ′

∑
F ′′

(−1)F
′′
(2F ′′ + 1)

{
j′ F I

F ′′ j 2

}{
I F ′′ j

F I 2

}
. (6.56)

Next we rearrange the 6jsymbols to apply the sum rule (J.34)

〈nlsj′IF ′M ′|HEQ|nlsjIFM〉 =
e2

4πε0

1

a3
(−1)F+j+I

〈lsj′||q2||lsj′′〉〈I||Q2||I〉δF,F ′δM,M ′

∑
F ′′

(−1)F
′′+j′+I(2F ′′ + 1)

{
F I j′

j 2 F ′′

}{
I j F ′′

F 2 I

}
. (6.57)
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Thus we arrive at

〈nlsj′IF ′M ′|HEQ|nlsjIFM〉 =

=
e2

4πε0

1

a3
(−1)F+j+I〈lsj′||q2||lsj〉〈I||Q2||I〉

{
j I F

I j′ 2

}
δF,F ′δM,M ′ . (6.58)

asd

〈nl|ρ−3Y −q2 (r̂)|nl〉 = 〈ρ−3〉nl
ˆ
Y −q2 (r̂)|Y ml (r̂)|2dr̂ =

l(l + 1)− 3m2

(2l + 3)(2l − 1)



7

Helium-like atoms

Once we have more than one electron around the nucleus the Hamiltonian for the electronic motion
rapidly becomes more complicated. Aside from the attraction by the nuclear charge we have to
account for the electrostatic repulsion among the electrons. At a more refined level we not only have
to deal with the spin-orbit interaction between the spin and the orbit of the individual electrons but
also with the interaction of the spin of one electron with the orbit of the other electrons; i.e., the
spin-other-orbit interaction. Likewise we have magnetic-dipole interaction between the spins of the
various electrons and magnetic-orbit-orbit interaction between the orbital moments of the electrons.
Needless to say that even a glance at the Hamiltonian shows that we are facing a formidable task.

Fortunately a lot can be understood about many-electron atoms without pursuing the precision
possible for hydrogen. Actually, bearing in mind that the electrostatic interaction is by far the
strongest interaction in the atom, it is pointless to consider refinements before we have a theory at
hand in which the electronic charge is distributed over the atom in the best possible way. If the
electronic wavefunction is known this requirement is of course implicitly satisfied but, unfortunately,
for atoms with more than one electron exact analytical solutions cannot be obtained. We shall find
that at a given stage we have to rely on some semiclassical approximation to obtain a result for the
electrostatic energy. Furthermore, the distribution of the charge is strongly affected by a quantum
phenomenon completely absent in hydrogenic atoms: exchange. The exchange phenomenon is not
captured in the Hamiltonian but has to be added to the theory as a completely new element. It
strongly affects all many-electron systems. In atoms it tends to align the electron spins in a parallel
fashion, in molecules anti-parallel, in many-body systems like gases and solids it gives rise to various
forms of magnetism.

Exchange emerges as an effective electrostatic interaction resulting from kinematic correlations
between the electrons. These correlations have a purely quantum mechanical origin and only occur
between identical particles. As these are indistinguishable the Hamiltonian is manifestly invariant
under exchange of two of these particles [31]. So the exchange operator commutes with the Hamil-
tonian which implies that the symmetry under exchange is a conserved quantity (see Appendix
F.2.4). The eigenstates of the exchange operator are either symmetric or antisymmetric [31]. Im-
portantly, linear combinations of these (so called mixed statistics) are not observed. To distinguish
between the two cases the particles are referred to as bosons (symmetric) or fermions (antisym-
metric) [31]. As the quantum correlations affect the probability of occupation of the single particle
states, their presence demands new statistics, quantum statistics, different for bosons and fermions
[31]. Electrons behave like fermions. This was discovered by Wolfgang Pauli, when he realized that
the magnetic fine structure of the optical spectra of the elements could be explained by excluding
atomic states in which more than one electron in a given spin state would occupy a given atomic
orbital. He formulated this observation in his famous exclusion principle: double occupation of a
given single-electron state has to be excluded [81]. At a more abstract level this is a consequence of
Fermi-Dirac statistics (short: Fermi statistics) [31]. In contrast, in Bose-Einstein statistics (short:

185
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Bose statistics) double/multiple occupation is possible and even favored. Bose statistics plays no
role in theoretical descriptions of atoms simply because the electrons are fermions and the atom
only has a single nucleus. By studying the helium atom we meet the phenomenology essential for
the conception of the Pauli principle.

7.1 Heliogenic atoms

To introduce the physics of atoms with more than one electron we turn to the element helium, the
archetype of the heliogenic atoms. The notion heliogenic refers to atomic systems with exactly two
elementary charges orbiting about the nucleus. Aside from the helium isotopes 3He and 4He, also
the negative ion of hydrogen, H−, and the positive ions Li+, Be++, etc., as well as exotic atoms like
muonic helium belong to this class.

We start by calculating the principal structure of a heliogenic atom/ion with two electrons. In
constructing the Hamiltonian, the essential difference with the hydrogenic case is that we have to
account for the electrostatic repulsion between the electrons,

H =
∑
i=1,2

(
− ~2

2me
∇2
i −

Ze2

4πε0ri

)
+

e2

4πε0r12
. (7.1)

The first term gives the summation over the Schrödinger Hamiltonians of the two electrons orbiting in
the Coulomb field of a nucleus of charge Ze. The second term represents the electrostatic repulsion,
where ε0 is the electric permittivity of vacuum, me the rest mass of the electron, ri the position
of electron i relative to the atomic nucleus and r12 = |r1 − r2| the inter-electronic distance. Small
corrections related to fine- and hyperfine structure are not considered for the time being.

Before starting the actual work we have a look at the symmetry properties of H. Like the
Schrödinger Hamiltonian also H is invariant under space inversion, which means that the parity of
the electronic states is conserved in time (see Appendix F.2.4). As H is also invariant under rotation
of the spatial coordinates about the origin, also the total orbital angular momentum L = l1 + l2
and its projection Lz are conserved quantities,

[L2,H] = 0 and [Lz,H] = 0. (7.2)

In other words, L and ML are good quantum numbers, also in the presence of the repulsion term in
the Hamiltonian. The commutation of L2 and Lz with the repulsion term is demonstrated explicitly
in Problem 7.1.

To calculate the energy levels of the atom we start by crudely neglecting the electrostatic repul-
sion term of Eq. (7.1). In this way we regain a structure similar to that of the hydrogen atom. We
obtain the hydrogenic eigenstates |nlml〉 and the eigenvalues are given by

En = −α2mec
2 Z

2

2n2
= −hcR∞

Z2

n2
. (7.3)

Here n, l,ml are the quantum numbers of the principal atomic structure and R∞ is the Rydberg
constant for an electron bound to a nucleus of infinite mass. As, in the given approximation, the
Hamiltonian for the electron pair does not contain the Coulomb coupling between the orbital motions
of the electrons the pair wavefunction ψa(r1, r2) = (r1, r2|u, v) can be represented by products of
two hydrogenic states |u〉 = |nlml〉 and |v〉 = |n′l′ml′〉,

ψa (r1, r2) = ϕu (r1)ϕv (r2) . (7.4)

The corresponding energy of the non-interacting electronic pair follows from solving the Schrödinger
equation for the noninteracting hamiltonian

H0 =
∑
i=1,2

(
− ~2

2me
∇2
i −

Ze2

4πε0ri

)
. (7.5)
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Figure 7.1: Radial distribution function for the electrons in the ground state of the helium atom. The drawn
line corresponds to a 1s2 configuration without interaction. The dashed line shows the effect of inflation
of the charge distribution caused by the Coulomb repulsion. The curve corresponds to an effective atomic
number Z1s = 27/16.

The solutions are given by

E(0)
a = Enu + Env = −hcR∞

(
Z2

n2
u

+
Z2

n2
v

)
, (7.6)

which is simply the sum of the energies of the individual electrons in the Coulomb field of the
bare nucleus. For example, the helium atom in its electronic ground state consists of a doubly
charged nucleus (Z = 2) and two equivalent electrons in the configuration 1s2, both occupying the
|u〉 = |nlm〉 = |100〉 orbital of hydrogenic helium shown as the solid line in Fig. 7.1. With Eq. (7.6)
we calculate for the total energy of the electronic ground state

E
(0)
1s2 = −8hcR∞ (Z = 2, n = 1) , (7.7)

which is twice the energy of hydrogenic helium.

Problem 7.1. Show that for the orbital angular momentum L = l1 + l2, where lν = −i~ (rν ×∇ν) with
ν ∈ {1, 2}, the following commutation relations hold:

[Lz, 1/r12] = 0 and [L2, 1/r12] = 0,

where r12 = |r1 − r2| is the inter-electronic distance.

Solution. The first commutation relation will be derived for the more general case of an arbitrary cartesian
component, [Li, 1/r12] = 0 with i ∈ {x, y, z}; i.e., [L, 1/r12] = 0. Since L is a linear differential operator
acting on the variables r and r′ we find

[L, 1/r12]ψ = L(ψ/r12)− (1/r12)Lψ = ψL(1/r12) = ψ (l1 + l2) (1/r12) = 0,

where we used l1(1/r12) = −l2(1/r12) as follows with Eq. (N.21). The second commutation relation follows
with the aid of the first relation. Using the Einstein summation convention we find

[L2, 1/r12] = [LiLi, 1/r12] = [Li, 1/r12]Li + Li[Li, 1/r12] = 0. 2

7.1.1 Electrostatic repulsion versus screening

Not surprisingly the approximation of non-interacting electrons is rather poor. Electrostatic repul-
sion tends to inflate the 1s orbitals as illustrated by the dashed line in Fig. 7.1. This reduces the
binding energy of the electrons because the average distance to the nucleus increases. Another way
to look at this is that one electron will partly screen the nuclear charge for the other electron. This
effectively reduces the nuclear charge Ze, which also results in a reduction of the binding energy.
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Using Eq. (7.6), i.e., without the interaction term, we calculate for the first ionization energy of the
atom 54.4 eV (4 Rydberg), whereas the measured value is only 24.6 eV. Clearly, the screening is
important.

To calculate the effect of screening we turn to perturbation theory; it may be that for this purpose
the repulsive term is not sufficiently small but at least it will reveal the trend. We first make the
Hamiltonian dimensionless by multiplying Eq. (7.1) with mea

2
0/~2 = 1/ (2hcR∞), thus switching to

Hartree atomic units,

H = H0 +
1

ρ12
, (7.8)

where

H0 =
∑
i=1,2

h
(i)
0 , with h

(i)
0 = − 1

2∇
2
i −

Z

ρi
. (7.9)

Note that h
(i)
0 is the Schrödinger Hamiltonian of electron i ∈ {1, 2} in the Coulomb field of the

bare nucleus, ρi = ri/a0 being its distance to the nucleus (in Bohr radii) and ∇i the gradient
operator with respect to ρi. We will treat H0 as the unperturbed Hamiltonian. The second term
of Hamiltonian (7.8),

H′ =
1

ρ12
, (7.10)

acts as the perturbation by the electrostatic repulsion.

To first-order in perturbation theory, ∆ε1s = ∆ε
(1)
1s , the energy shift is given by

∆ε1s = 〈1s, 1s|H′|1s, 1s〉. (7.11)

Let us postpone the actual evaluation of this expression until Section 7.4.3 and simply use the result:

∆ε1s =

ˆ ∞
0

U1s(ρ)R̃2
1s(ρ)ρ2dρ, (7.12)

where R̃1s(ρ) = Z3/22e−Zρ is the 1s radial wavefunction and

U1s(ρ) =
1

ρ

[
1− (1 + Zρ)e−2Zρ

]
, (7.13)

is the expectation value of the Coulomb repulsion energy of the atom with one electron fixed at
position ρ. Note that the form (7.12) suggests to interpret U1s(ρ) semiclassically as some kind of
effective potential field for one of the 1s electrons (the spectator electron) in the electrostatic field
of the other 1s electron (the screening electron),

∆ε1s = 〈1s|U1s(ρ)|1s〉. (7.14)

The effective potential U1s(ρ) is called the potential energy of screening (short: screening potential),
a notion from classical electrostatics used to account for the field associated with a charge-density
distribution. In the present context the charge density arises from a semiclassical approximation
in which the charge of the 1s electron, −e, is distributed in space proportional to the probability
density of the wavefunction. In the upper panel of Fig. 7.2a the screening potential is plotted for
the helium ground state. It is instructive to write the screening potential in the form

U1s(ρ) = σ1s(ρ)/ρ, (7.15)

where σ1s(ρ) is the screening charge at distance ρ from the nucleus. This screening charge can be
regarded as a generalization of the screening constant introduced in Section 4.6.2.1. As shown in
Fig. 7.2b σ1s(ρ) grows from zero at ρ = 0 to unity for ρ � 1. Accordingly, far from the nucleus
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Figure 7.2: (a) Effective central field potential UCF(ρ) = Z1s(ρ)/ρ and screening potential U1s(ρ) for the
helium atom (Z = 2) in its ground state. For comparison also the −1/ρ hydrogenic Coulomb potential is
shown (short dash) as well as the−2/ρ potential of the unscreened helium nucleus (long dash), demonstrating
that for an electron at distances ρ � 1 a full elementary charge of the nucleus is screened by “the other”
electron; (b) Screening charge σ1s(ρ) corresponding to the screening potential U1s(ρ).

U1s(ρ) falls off like 1/ρ. Apparently, for the spectator electron at large distance a full elementary
charge of the nucleus is screened by the other electron, which is intuitively correct. Close to the
nucleus the screening potential reaches the constant value Z,

U1s(ρ) = Z − 2
3Z

3ρ2 + · · · for ρ� 1. (7.16)

The constant Z represents the mean electrostatic repulsion energy (in atomic units) between the
spectator electron close to the nucleus and the surrounding cloud of electronic charge. The precise
value depends on the charge distribution but it being constant implies that the screening can be
neglected close to the nucleus (where the nuclear scalar potential diverges as −Z/ρ). This is in
accordance with the absence of screening charge, σ1s(0) = 0, and certainly also intuitively correct.

Combining U1s(ρ) with the potential energy of the spectator electron in the Coulomb field of
the nucleus we obtain the effective central potential field shown in the lower panel of Fig. 7.2a,

UCF(ρ) = −Z
ρ

+ U1s(ρ) = −1

ρ
[Z − σ1s(ρ)] = −Z1s(ρ)

ρ
. (7.17)

The function Z1s(ρ) is the effective nuclear charge for a 1s electron at distance r from the nucleus
as introduced in Section 4.4.2,

Z1s(ρ) = (Z − σ1s) =

{
Z − Z ρ+ 2

3Z
3ρ3 + · · · for ρ� 1

1 + · · · for ρ� 1.
(7.18)

Sometimes preference is given to a multiplicative screening correction to the Coulomb field,

UCF(ρ) = −Z
ρ
F̃ (ρ), (7.19)

The correction factor,
F̃ (ρ) ≡ Z(ρ)/Z, (7.20)
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is called the screening function for a given charge-density distribution Z(ρ). A famous example is
the Thomas-Fermi function - see Section 8.3.1.

So, screening by an s electron conserves the central symmetry (hence also the rotational structure
derived in Chapter 1 for central potentials). The potential UCF(ρ) is the first example of a class of
electrostatic potentials which are central but do not have the familiar 1/ρ dependence of the Coulomb
potential. Close to the nucleus the effective nuclear charge, Z(ρ), approaches the bare nuclear charge,
Z. Far from the nucleus, Z(ρ) approaches unity because the nucleus can be screened by all electrons
but not by the spectator electron itself. Although the concept of an effective potential is attractive
from the computational point of view it should be remembered that it represents a semiclassical
approximation in which correlations in the relative motion of the electrons are neglected. Such
correlations have to be present in view of the strong Coulomb repulsion between two 1s electrons
at short distance.1 The concept of the central electrostatic potential is the stepping stone toward
the description of many-electron atoms and we return to this concept in Chapter 8.

To conclude this section we evaluate the screening integral (7.12),

∆ε1s =

ˆ ∞
0

[
1− (1 + Zρ)e−2Zρ

] [
Z3/22e−Zρ

]2
ρdρ = 5

8Z. (7.21)

Hence, the total energy of a helium-like atom is found to be

E
(1)
1s2 = E

(0)
1s2 + ∆E1s = hcR∞

[
−2Z2 + 5

4Z
]
. (7.22)

Here we restored the dimension by multiplying with the Hartree, EH = 2hcR∞. For the helium

ground state (Z = 2) this implies E
(1)
1s2 = −(11/2)hcR∞ = −74.8 eV. The energy shift ∆E1s of

the ground state level is illustrated in the Term diagrams of Fig. 7.3. Adding the perturbation
reduces the binding by 34.4 eV, which is the screening effect we are looking for. Comparing the
energy obtained for the ground state of He with the energy of the ground state of the He+ ion,
E1s = −4hcR∞ = −54.4 eV, we see that to first-order in perturbation theory the ionization energy

of the second electron is −E(0)
1s −∆E1s = hcR∞

[
Z2 − 5

4Z
]

= 20.4 eV, less than the measured value
of 24.6 eV but much better than the 54.4 eV obtained in zero order (without screening). Apparently
the screening correction of 34.4 eV overestimates the experimental value (29.8 eV) by 4.2 eV (14%),
actually not bad for a first try but of course poor as compared to the results obtained for hydrogen.

7.1.2 Variational calculation

At this point we have established that first order perturbation theory is inadequate to provide a
satisfactory description of even the simplest many-electron atom. We could proceed by calculating
the second order terms but this turns out to make little sense because the convergence of the
perturbation series is too slow. Apparently, the effective potential U1s(ρ) in combination with the
1s wavefunction of the unperturbed atom does not properly represent the actual charge distribution
in the atom. This observation suggests to try a different approach and use Eq. (7.11) as an Ansatz to
minimize the energy using the variational procedure of Appendix I.2.1. We vary the 1s wavefunction,

R̃1s(ρ) = Z3/22e−Zρ,

treating Z as the variational parameter. Interestingly, note that in this variational procedure both
the 1s shape and the normalization remain conserved. To avoid confusion with the variational
parameter (Z) the nuclear charge number is denoted by Z. Using Eqs. (2.52) and (2.49) we obtain

E
(0)
1s2 = 2〈1s| − 1

2ρ

∂2

∂ρ2
ρ+

l (l + 1)

2ρ2
− Z
ρ
|1s〉 = 2

(
Z2 − 2ZZ

)
hcR∞. (7.23)

1Note that we tacitly assume a paired spin state (Pauli principle satisfied).
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Figure 7.3: Energy level diagram for the ground state of helium showing the effect of electrostatic screening:
(a) 1s2 configuration without the electrostatic interaction between the electrons; (b) 1s2 configuration with
electrostatic screening calculated by first-order perturbation theory (E∗m is the binding energy of the second
electron); (c) diagram experimental values; (d) 1s configuration of the He+ ion. Comparison with experiment
for the helium ground state shows that even first-order perturbation theory gives a reasonable estimate for
the electrostatic screening. Also the energy of metastable triplet helium (He∗) is indicated.

Adding to this the screening energy as given by Eq. (7.21) we find for the total energy

E
(1)
1s2 = E

(0)
1s2 + ∆E1s = 2

[
Z2 + (5/8− 2Z)Z

]
hcR∞. (7.24)

Taking the derivative with respect to Z we find that the energy E
(1)
1s2 reaches its minimum value for

Z = Zeff ≡ Z − 5/16. Substituting this result into Eq. (7.24) we obtain

E
(1)
1s2 = −2 (Z − 5/16)

2
hcR∞. (7.25)

For the helium ground state (Z = 2) we find E
(1)
1s2 = −2(27/16)2hcR∞ = −77.4 eV, which

corresponds to a binding energy of 23.0 eV and Z1s = 27/16 = 1.69. The corresponding wavefunction
is shown as the dashed line in Fig. 7.1. As expected the 1s orbitals are inflated in comparison to
the unscreened states. This variational result still deviates from the experimental value by 1.6 eV
but is clearly better than the 4.2 eV discrepancy obtained by first-order perturbation theory. The
screening correction is reduced to 31.4 eV, still overestimating the experimental value by 5.4%.

7.1.3 The hydrogen negative ion H−

The substantial improvement in binding energy obtained with the variational method is encouraging,
in particular since there is no reason why the 1s shape of the wavefunction would be the best. Hence,
further improvement is to be expected with more sophisticated variational wavefunctions. We discuss
this for the hydrogen negative ion, H−, which is a negatively charged helium-like atom consisting
of two electrons bound to a proton. In chemistry the H− ion is sometimes called the hydride ion.
Experimentally, H− is found to be weakly bound with a binding energy

E
(exp)
1s2 ≈ −1.055hcR∞, (7.26)

i.e., the second electron is bound by 0.75 eV to the neutral atom. As hydrogen is the most abundant
atom in the universe the existence of a stable negative ion of hydrogen is of obvious astrophysical
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significance [25]. In theoretical physics the ion is not of less significance because its existence cannot
be demonstrated without taking into account the electronic correlations.

Neglecting the correlations, we regain (by first-order perturbation theory) the result (7.22) for
the binding energy of the ground state of helium-like atoms,

E
(1)
1s2 = hcR∞

[
−2Z2 + 5

4Z
]
. (7.27)

For the H− ion (Z = 1) this implies E
(1)
1s2 = − 3

4 hcR∞, which is larger than E1s = −hcR∞ of the
neutral hydrogen atom. Hence, according to first-order perturbation theory the proton cannot bind

two electrons. To have binding of two electrons one requires E
(1)
1s2 < E1s = −hcR∞ (which is the

case for Z > 1.08). With the variational principle we can do better than first-order perturbation
theory; with Eq. (7.25) we find for Z = 1

E
(1)
1s2 = −2 (11/16)

2
hcR∞ = −0.945 31hcR∞. (7.28)

Although this variational result is better it is still not good enough to bind the ion.
To achieve binding the calculation has to account for the presence of correlations in the electron

motion because these tend to increase the average distance between the electrons. This obviously
lowers the electrostatic repulsion and, therefore increases the binding energy. The key idea of
accounting for such correlations (even without sacrificing the central symmetry) was published in a
famous paper by Chandrasekhar [25]. The average distance between the electrons can be increased
by writing the two-electron wavefunction as the product state of two s electrons with different Bohr
radius,

ψ(ρ1, ρ2) = e−aρ1−bρ2 + e−bρ1−aρ2 . (7.29)

Using the variational principle (see Appendix I.2.1) the lowest energy for the ground state is obtained
for a = 1.03925 and b = 0.28309 and the binding energy is

E
(var)
1s2 ≈ −1.026 6hcR∞. (7.30)

The actual calculation represents a substantial two-dimensional variational problem, which is not
reproduced here. The result is quite intuitive. One electron remains almost hydrogenic with its Bohr
radius only slightly compressed. The other electron is largely inflated (the Bohr radius increases by
a factor 3.5). This is exactly what we expect. As the nuclear charge is strongly shielded by the first
electron, the second electron has its largest probability far from the nucleus and has to be weakly
bound. It may speak for itself that by choosing a still more sophisticated variational wavefunction
the ground state energy can be further lowered. In this way high precision can be obtained for
helium-like atoms [35].

7.1.4 Effective potential and self-consistent mean field

The success of the variational method calls for a systematic approach to optimize the shape of the
ground state wavefunction in the presence of screening. What is the best shape? To answer this
question, let us suppose that the ground state is a product state of the form |u1, u2) = |u1〉1⊗|u2〉2,
with electron-1 in s-orbital u1 and electron-2 in s-orbital u2; i.e., for the time being the electrons
are treated as distinguishable. In this notation the energy of the state |u1, u2) is given by the
expectation value of the Hamiltonian (7.8),

ε = (u1, u2|H|u1, u2) =

2∑
i=1

〈ui|h0|ui〉+ (u1, u2|
1

ρ12
|u1, u2). (7.31)

We dropped the particle index on the Schrödinger operators, h
(i)
0 → h0, with i ∈ {1, 2}, because (for

identical particles) there can be no confusion about the integral to be evaluated. Since the orbitals
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u1 and u2 are still to be determined the expectation value ε can be regarded as a functional of u1

and u2. To optimize the orbitals ui we minimize the energy functional (7.31)

Hi(u1, u2) = 〈ui|h0|ui〉+ (u1, u2|
1

ρ12
|u1, u2) (7.32)

by variation of 〈ui| using the variational procedure of Appendix I.1.3 starting from hydrogenic s
orbitals. Introducing the effective potential of screening of electron i by electron j, with i 6= j
∈ {1, 2},

Uscr(ρi) = 〈uj |1/ρij |uj〉 (7.33)

the functional Hi(u1, u2) can be written in the form

Hi(u1, u2) = 〈ui|h(ρi)|ui〉, (7.34)

where
h(ρi) = h

(i)
0 + Uscr(ρi). (7.35)

For s orbitals Uscr(ρi) is a central potential as will be shown in Section 7.4.3. To conserve the
normalization of the states, Hi has to be minimized under the constraint 〈ui|ui〉 = 1, with i ∈ {1, 2}.
Hence, the lagrangian for the variation of 〈ui| is

Li(u1, u2, λi) = 〈ui|h(ρi)|ui〉+ λi [〈ui|ui〉 − 1] , (7.36)

where λi is the Lagrange multiplier for the constraint 〈ui|ui〉 = 1, with i ∈ {1, 2}.1 As discussed in
Appendix I.1.3, after minimization of the lagrangian (8.60) under variation of 〈ui| the state |ui〉 is
found as the solution with eigenvalue εi = −λi of an effective single-electron Schrödinger equation,

hui(ρ) = εiui(ρ). (7.37)

This expression corresponds to a set of 2 integro-differential equations, one for each electron and
coupled by the screening integrals Uscr(ρ1) and Uscr(ρ2).

Note that the ground state energy is not simply the sum of the optimized single electron energies
ε 6= ε1 + ε2 because the functionals H1 and H2 both contain the same repulsion term. Comparing
with Eq. (7.31) we find that the energy of the ground state follows from

ε = ε1 + ε2 − (u1, u2|1/ρ12|u1, u2). (7.38)

To solve Eqs. (7.37) we start with hydrogenic 1s wavefunctions, ui(ρ) = 〈ρ|ui〉 = R
(i)
1s (ρ)Y 0

0 (r̂),
and calculate the screening potentials. With these potentials we can solve Eqs. (7.37) numerically
and obtain improved expressions for the wavefunctions. This, of course, gives rise to an inconsistency
because the new wavefunctions imply different screening, modifying the effective single-electron
Schrödinger equation to be solved. Thus the procedure has to be repeated until a self-consistent
solution is reached for the mean field. The principal drawback of this approach is that by con-
structing the semiclassical effective field, correlations in the relative motion of the electrons are
neglected. This approximation is best suited to describe large atoms because the concept of a local
charge density becomes exact in the classical limit. Mean field methods based on variation of the
wavefunction are known as Hartree (see Chapter 8) or Hartree-Fock (see Chapter 10) theories.

Actually, the observation that the Coulomb interaction is the dominant interaction in the atom
suggests a semiclassical approach in which the wavefunction does not appear at all but a quantum
statistical model is used to calculate the distribution of the electronic charge (or, equivalently, the
electrostatic potential). Statistical methods for these semiclassical quantities are called density
functional or potential functional methods. They work best for atoms with a large number of
electrons because in this case the concept of a local charge density is best justified. We return to
semiclassical approaches in Chapter 8. Whatever the quantity being varied (wavefunction, density
distribution or effective potential), the general idea is that the calculation of the atomic energy levels
can be strongly improved by the proper optimization procedure.

1Note that for this lagrangian the normalization of the orbitals is enforced but their orthogonality is not.
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7.2 The helium ground state in a magnetic field

A lot can be learned by analyzing the behavior of the 4He atom in an externally applied magnetic
field B. Remarkably, this is because little happens! A small diamagnetic shift may be observed but
no Zeeman splitting, in spite of the presence of two electrons each carrying a Bohr magneton. A
priori this is surprising. As we are dealing with s orbitals the orbital angular momentum of the
atom is zero. Because the nuclear spin of 4He is also zero all angular momentum has to come from
the electronic spin. The conserved quantity is the total angular momentum S = s1 + s2. Because
s1 = s2 = 1/2 we have two possibilities for coupling of these spins, parallel (S = 1) or anti-parallel
(S = 0). In a sufficiently weak probe field we expect Zeeman coupling of the total spin to the field
as described by a Hamiltonian of the spin-Zeeman type,

HZ = gSµBB (Sz/~) , (7.39)

where gS is the g factor for the total spin S. The Zeeman shifts are obtained with first-order
perturbation theory, just as in the case of the low-field limit of the fine- or hyperfine structure,

Ez = gSµBMSB. (7.40)

Hence for S = 1 we expect the ground state to split into a triplet. For S = 0 we expect a singlet,
no splitting and no Zeeman shift. As mentioned above only the singlet is observed. Apparently the
triplet option, in which both electrons are in the same (orbital + spin) state, has to be excluded.
Also in strong magnetic fields the degeneracy is not lifted, which points to s1 · s2 coupling because
for this type of coupling MS = ms1 +ms2 is conserved in accordance with the commutation relation
[Sz, s1 · s2] = 0. Pauli generalized similar observations into his exclusion principle.

7.3 Exchange degeneracy and Pauli principle

If two electrons are in different orbitals, |u〉 = |nlml〉 and |v〉 = |n′l′ml′〉, the same pair energy is
obtained irrespective of which of the two electrons is in state |u〉 and which in state |v〉,

(u, v|H0|u, v) = Enu + Env (7.41a)

(v, u|H0|v, u) = Env + Enu . (7.41b)

This phenomenon is called exchange degeneracy. It implies that any linear combination of the type

ψuv (r1, r2) =
1√

|c1|2 + |c2|2
{c1ϕu (r1)ϕv (r2) + c2ϕv (r1)ϕu (r2)} (7.42)

represents a properly normalized energy eigenstate of the pair; hence, for any choice of c1 and c2 we
can construct an orthogonal pair state with the same energy.

Note that if the electrons would have a slightly different mass their hydrogenic energies would
be different, Enu1 6= Enu2, and the exchange degeneracy would be absent, Enu1 + Env2 6= Env1 +
Enu2. Exchange degeneracy arises if the particles to be exchanged cannot be distinguished. As a
consequence the Hamiltonian (7.1) is invariant under interchange of the electrons.

Let us analyze how the exchange degeneracy (7.41a) is lifted by the Coulomb term (7.10) using
perturbation theory for a doubly degenerate level (see Appendix H.3). Like in Section 7.1 we split
the Hamiltonian (7.8) in the form

H = H0 +H′, (7.43)

where H0 is again as unperturbed Hamiltonian and the electrostatic repulsion, H′ = ρ−1
12 , is the

perturbation. For each pair of hydrogenic states |u〉 and |v〉 an exchange degenerate pair can be
defined, |a) = |u, v) and |b) = |v, u). It is straightforward to show that H′aa = (a|H′|a) = (b|H′|b) =
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Figure 7.4: Exchange tends to “align” the electron spins in atoms. The energy level diagram shows the
direct and exchange shifts for helium atoms with two nonequivalent electrons. Because K is always positive
the antisymmetric orbital has always the lowest energy. Experiments show that the lowest pair state is
always a spin triplet and the highest pair state a spin singlet.

H′bb ≡ J . Furthermore we have H′ab = (a|H′|b) = (b|H′|a) = H′ba ≡ K, as follows from the
hermiticity of H′. The overlap integrals Sab introduced in Appendix H.3 are zero because the
hydrogenic eigenstates are orthogonal, Sab = (a|b) = (b|a) = Sba = 0. Solving the secular equation
(H.70) we find the result of first order perturbation theory of a two-fold degenerate level (symmetric
case of strong coupling),

E
(1)
± = E(0)

uv + ∆E±, (7.44)

where ∆E± can be written in the form of Eqs. (G.38) and (G.55),

∆E± = J ±K. (7.45)

The ∆E± represent the energy level shifts caused by the electrostatic repulsion. The integrals

J (u, v) = (u, v|ρ−1
12 |u, v) (7.46a)

K(u, v) = (u, v|ρ−1
12 |v, u) (7.46b)

are called the direct (J ) and the exchange (K) contribution to the energy shift. Note the properties

J (u, v) = J (v, u) and K(u, v) = K(v, u). (7.47)

The eigenstates corresponding to the shifts (7.45) are

ψ±u,v (r1, r2) =
√

1
2 {ϕu (r1)ϕv (r2)± ϕv (r1)ϕu (r2)} , (7.48)

which correspond to the symmetric (+) and antisymmetric (−) linear combinations of the pair states
|u, v) and |v, u). The situation is sketched in Fig. 7.4. The matrix elements J and K are called the
Coulomb integrals of the electrostatic repulsion.

Two important features should be pointed out for the antisymmetric pair state |ψ−〉. First we
note that |ψ−〉 has the lowest energy. This is intuitively clear because the electrostatic repulsion
is largest when the electrons come close to each other and precisely this probability is excluded by
the antisymmetric form. The probability of finding two electrons at the same position is identically
zero. This follows directly by substituting r1 = r2 = r into the antisymmetric form of the pair
wavefunctions (7.48),

ψ−u,v (r, r) =
√

1
2 {ϕu (r)ϕv (r)− ϕv (r)ϕu (r)} ≡ 0. (7.49)

Hence the electrostatic repulsion is smallest in the antisymmetric case. This increases the binding
energy of the electron pair and lowers the total energy of atoms in antisymmetric states with respect
to atoms in the corresponding symmetric states.
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A second point to note holds for two electrons in the same orbital, |u〉 = |v〉, for instance the 1s2

configuration of the helium ground state discussed in Section 7.1. In this case the antisymmetric
wavefunction is also identically zero, whatever the positions of the two electrons,

ψ−u,u (r1, r2) =
√

1
2 {ϕu (r1)ϕu (r2)− ϕu (r1)ϕu (r2)} ≡ 0. (7.50)

For two electrons in the same orbital only the symmetric state is an option,

ψu,u (r1, r2) = ϕu (r1)ϕu (r2) . (7.51)

Note that this wavefunction is both symmetrized and normalized to start with. Actually, the explicit
symmetrization (7.48) yields the wrong normalization as ψ± were derived for the case u 6= v; i.e.,
for the presence of exchange degeneracy. For electrons in the same orbital exchange degeneracy is
absent and the energy shift caused by electrostatic repulsion between the electrons is given by the
direct shift only

∆Escr = J = (u, u|H′|u, u). (7.52)

Thus we arrived at two important conclusions: (a) two electrons in an antisymmetric orbital pair
state have zero probability to be found at the same position; (b) two electrons in the same orbital
state are represented by the simple product state (7.51) and not by Eq. (7.42). Pauli noticed that in
two-electron atoms (Pauli studied the alkaline-earth elements) the antisymmetric orbital is always a
spin triplet (S = 1) whereas the symmetric orbital always a spin singlet (S = 0).1 This is illustrated
in Fig. 7.4. As the spin triplet is symmetric and the spin singlet antisymmetric under exchange of
the two electrons (see Problem 7.2), this shows that the overall electron pair state (orbital + spin)
must be antisymmetric under exchange of the two electrons; i.e., electrons are fermionic particles.
Pauli summarized these and other observations in his famous exclusion principle: no two electrons
can occupy the same (orbital + spin) state [82].

The symmetric spin state is energetically favored over the antisymmetric spin state. Phenomeno-
logically, this emerges as the result of some effective magnetic interaction which tends to align the
spins in atoms. This effective interaction is called the exchange interaction. It is much stronger
than a truly magnetic interaction because its origin is electrostatic and not magnetic at all.

Problem 7.2. Show that the spin triplet is symmetric and the spin singlet antisymmetric under exchange
of two s = 1

2
particles.

Solution. The symmetry of the total spin state under exchange of the two s = 1
2

particles is found by
Clebsch-Gordan decomposition,

|S,M〉 =
∑

m1,m2

|s,m1; s,m2〉〈s,m1; s,m2|S,M〉. (7.53)

Using Table J.2.1 for the Clebsch-Gordan coefficients (in the Condon and Shortley phase convention) we
obtain

|1,+1〉
|1, 0〉
|1,−1〉

= |��〉
=
√

1/2 [|��〉+ |��〉]
= |��〉

 (S = 1)

|0, 0〉 =
√

1/2 [|��〉 − |��〉] (S = 0) ,

(7.54)

which demonstrates the requested symmetry. �

1The other combination (symmetric orbital state with spin singlet and antisymmetric orbital state with spin
triplet) is not observed although this would be expected given the angular momentum addition rules.
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Figure 7.5: Doubly-charged nucleus with electrons at positions indicated by the vectors r1 and r2 (enclosing
the angles θ12) as well as the vector for the relative position r12.

7.4 Expressions for the Coulomb integrals

Rather than evaluating a special case we derive in this section general expressions for the diagonal
and off-diagonal matrix elements of the electrostatic repulsion between atomic orbitals. In Hartree
atomic units the electrostatic repulsion between two electrons is given by

H′(ρ12) =
1

ρ12
=

1

(ρ2
1 + ρ2

2 − 2ρ1ρ2 cos θ12)1/2
. (7.55)

Here the cosine rule is used to express the relative distance between the electrons, ρ12 = |ρ1 − ρ2|,
in terms of the absolute positions ρ1 and ρ2 relative to the nucleus and the angle θ12 enclosed by the
directions r̂1 and r̂2 (see Fig. 7.5). This is important for the calculation of matrix elements because
the electronic wavefunctions are defined in terms of the variables ρ1 and ρ2. Recalling the radial
averages (2.49) we expand Eq. (7.55) in powers of the ratio (ρ

<
/ρ

>
), where ρ

<
= min{ρ1, ρ2} is the

lesser and ρ
>

= max{ρ1, ρ2} the greater of ρ1 and ρ2,

H′(ρ12) =
1

ρ
>

∞∑
k=0

(
ρ
<

ρ
>

)k
Pk(cos θ12). (7.56)

The functions Pk(u) are Legendre polynomials of order k (see Appendix L.9). What remains to be
done is to express the relative angle θ12 into absolute position angles r̂1 and r̂2 of the individual
electrons. This is done with the aid of the spherical harmonic addition theorem (L.56),

Pk(cos θ12) =
4π

2k + 1

k∑
m=−k

Y m∗k (r̂1)Y mk (r̂2). (7.57)

Substituting this expression into the expansion (7.56) the perturbation takes the form of a multipole
expansion, which is suited for evaluation with hydrogenic wavefunctions,

H′(ρ12) =
1

ρ>

∞∑
k=0

(
ρ
<

ρ>

)k
4π

2k + 1

k∑
m=−k

Y m∗k (r̂1)Y mk (r̂2). (7.58)

This form is optimal for the evaluation of the Coulomb integrals (7.46). Using the multipole expan-
sion the integrals J and K can be expressed in the form

J = (nlml;n
′l′ml′ |

1

ρ12
|nlml;n

′l′ml′) =
∞∑
k=0

ak(lml; l
′ml′)F

k(nl;n′l′) (7.59a)

K = (nlml;n
′l′ml′ |

1

ρ12
|n′l′ml′ ;nlml) =

∞∑
k=0

bk(lml; l
′ml′)G

k(nl;n′l′), (7.59b)

The coefficients ak(lml; l
′ml′) and bk(lml; l

′ml′) represent the angular parts and F k(nl;n′l′) and
Gk(nl;n′l′) the radial parts of the direct (J ) and exchange (K) contribution to the energy shift.
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7.4.1 Angular integrals

The angular integrals can be expressed in 3j symbols (see Problem 7.3),

ak(lml; l
′ml′) =

4π

2k + 1

k∑
m=−k

〈lml|Y m∗k (r̂1)|lml〉〈l′ml′ |Y mk (r̂2)|l′ml′〉

= (−)ml+ml′ (2l + 1)(2l′ + 1)

(
l k l

0 0 0

)(
l k l

−ml 0ml

)(
l′ k l′

0 0 0

)(
l′ k l′

−ml′ 0ml′

)
(7.60a)

bk(lml; l
′ml′) =

4π

2k + 1

k∑
m=−k

〈l′ml′ |Y m∗k (r̂1)|lml〉〈lml|Y mk (r̂2)|l′ml′〉

= (2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)2(
l k l′

−ml (ml −ml′)ml′

)2

≥ 0 (7.60b)

where, in view of the properties of the 3j symbols,

ak(lml; l
′ml′) = 0 unless k = even and 0 ≤ k ≤ 2l

<
(7.61)

bk(lml; l
′ml′) = 0 unless k + l + l′ = even and |l − l′| ≤ k ≤ l + l′, (7.62)

with l
<

= min{l, l′} (the lesser of l and l′). The ak coefficients can be positive, negative or zero. The
bk coefficients are positive or zero. Note that ak and bk coincide for electrons in the same state of
angular momentum: ak(lml; lml) = bk(lml; lml). Note further the symmetry under state reversal:
ak(lml; l

′ml′) = ak(l′ml′ ; lml) and bk(lml; l
′ml′) = bk(l′ml′ ; lml). The ak and bk coefficients are

readily calculated with a symbolic manipulation program like Mathematica. For the configurations
s2, sp, p2, sd, pd, d2 and f2 the results are given in Table 7.1. The special cases ak(00; lml) and
bk(00; lml) are discussed in Problems 7.10 and 7.11.

Problem 7.3. Derive equation 7.60a:

ak(lml; l
′ml′) = (−)ml+ml′ (2l + 1)(2l′ + 1)

(
l k l

0 0 0

)(
l k l

−ml 0 ml

)(
l′ k l′

0 0 0

)(
l′ k l′

−ml′ 0 ml′

)
.

Solution. Using Eq. (L.53) and Eq. (L.59) for the integral over three spherical harmonics we obtain

〈lml|Y m∗k (r̂1)|lml〉 = (−1)ml+m(2l + 1)

√
(2k + 1)

4π

(
l k l

0 0 0

)(
l k l

−ml −mml

)

〈l′ml′ |Y mk (r̂2)|l′ml′〉 = (−1)ml′ (2l′ + 1)

√
(2k + 1)

4π

(
l′ k l′

0 0 0

)(
l′ k l′

−ml′ mml′

)
.

Multiplying these two expressions we find

4π

2k + 1
〈lml|Y m∗k (r̂1)|lml〉〈l′ml′ |Y mk (r̂2)|l′ml′〉 =

= (−1)ml+ml′+m(2l + 1)(2l′ + 1)

(
l k l

0 0 0

)(
l k l

−ml −mml

)(
l′ k l′

0 0 0

)(
l′ k l′

−ml′ mml′

)
.

which is only nonzero for 0 ≤ k ≤ 2l< and m = 0 because

(
j1 j2 j3
m1 m2 m3

)
= 0 unless |j1 − j3| ≤ j2 ≤ j1 + j3

and m1 +m2 +m3 = 0 (see Appendix J). 2
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Table 7.1: List of ak and bk coefficients for the ss, sp, pp, sd, pd, dd and ff configurations. For reasons
of transparency the common denominators of the elements of the table are only printed at the top of the
columns (of more than 3 rows); {ml,ml′} = {±a,∓b} stands for {ml,ml′} = {{+a,−b} or {−a,+b}}.

ak(lml; l
′ml′) = ak(l′ml′ ; lml) bk(lml; l

′ml′) = bk(l′ml′ ; lml)

ml m′l k = 0 k = 2 k = 4 k = 6 k = 0 k = 2 k = 4 k = 6

ss 0 0 1 1

pp

±1 ±1 1 1/25 1 1/25

±1 0 1 −2 0 3

±1 ∓1 1 1 0 6

0 0 1 4 1 4

sd

0 ±2 1 0 1/5

0 ±1 1 0 1/5

0 0 1 0 1/5

dd

±2 ±2 1 4/49 1/441 1 4/49 1/441

±2 ±1 1 −2 −4 0 6 5

±2 0 1 −4 6 0 4 15

±2 ∓1 1 −2 −4 0 0 35

±2 ∓2 1 4 1 0 0 70

±1 ±1 1 1 16 1 1 16

±1 0 1 2 −24 0 1 30

±1 ∓1 1 1 16 0 6 40

0 0 1 4 36 1 4 36

ff

±3 ±3 1 25/225 9/1089 25/184041 1 25/225 9/1089 25/184041

±3 ±2 1 0 −21 −150 0 25 30 175

±3 ±1 1 −15 3 375 0 10 54 700

±3 0 1 −20 18 −500 0 0 63 2100

±3 ∓1 1 −15 3 375 0 0 42 5250

±3 ∓2 1 0 −21 −150 0 0 0 11550

±3 ∓3 1 25 9 25 0 0 0 23100

±2 ±2 1 0 49 900 1 0 49 900

±2 ±1 1 0 −7 −2250 0 15 32 2625

±2 0 1 0 −42 3000 0 20 3 5600

±2 ∓1 1 0 −7 −2250 0 0 14 9450

±2 ∓2 1 0 49 900 0 0 70 12600

±1 ±1 1 9 1 5625 1 9 1 5625

±1 0 1 12 6 −7500 0 2 15 8750

±1 ∓1 1 9 1 5625 0 24 40 10500

0 0 1 16 36 10000 1 16 36 10000

ml m′l k = 0 k = 2 k = 4 k = 1 k = 3 k = 5

sp
0 ±1 1 1/3

0 0 1 1/3

pd

±1 ±2 1 2/35 6/15 3/245

±1 ±1 1 −1 3 9

±1 0 1 −2 1 18

±1 ∓1 1 −1 0 30

±1 ∓2 1 2 0 45

0 ±2 1 −4 0 15

0 ±1 1 2 3 24

0 0 1 4 4 27
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Problem 7.4. Show that
a0(lml; l

′ml′) = 1.

Solution. Using Eq. (J.16) we have

(−)ml(2l + 1)

(
l 0 l
0 0 0

)(
l 0 l
−ml 0ml

)
= 1.

Using this relation twice in Eq. (7.60a) we obtain a0(lml; l
′ml′) = 1. 2

Problem 7.5. Show that
l∑

m=−l

ak(lm; l′m′) = 0 for k 6= 0.

Solution. This result follows immediately by applying the shell-summation formula (J.20) to Eq. (J.16)(
l k l
0 0 0

) l∑
m=−l

(−)m
(

l k l
−m 0 m

)
= 0. 2

Problem 7.6. Show that
l∑

m=−l

bk(lm; l′m′) = (2l + 1)

(
l k l′

0 0 0

)2

.

7.4.2 Radial integrals

The direct
(
F k
)

and exchange
(
Gk
)

radial integrals are given by

F k(nl;n′l′) =

ˆ ∞
0

{
1

ρk+1
1

ˆ ρ1

0

ρk2

[
R̃nl(ρ2)

]2
ρ2

2dρ2 +

+ ρk1

ˆ ∞
ρ1

1

ρk+1
2

[R̃nl(ρ2)]2ρ2
2dρ2

}[
R̃n′l′(ρ1)

]2
ρ2

1dρ1 (7.63a)

Gk(nl;n′l′) =

ˆ ∞
0

{
1

ρk+1
1

ˆ ρ1

0

ρk2R̃nl(ρ2)R̃n′l′(ρ2)ρ2
2dρ2 +

+ ρk1

ˆ ∞
ρ1

1

ρk+1
2

R̃nl(ρ2)R̃n′l′(ρ2)ρ2
2dρ2

}
R̃nl(ρ1)R̃n′l′(ρ1)ρ2

1dρ1. (7.63b)

Note that the radial integrals coincide for equivalent electrons, F k(nl;nl) = Gk(nl;nl). Furthermore,
it is important to note that (like the ak and bk coefficients) the radial integrals are symmetric under
state reversal, F k(nl;n′l′) = F k(n′l′;nl) and Gk(nl;n′l′) = Gk(n′l′;nl). The integrals can be
reformulated in a more convenient and insightful form by introducing two screening potentials,

UkF (ρ) =
1

ρk+1

ˆ ρ

0

%k
[
R̃nl(%)

]2
%2d%+ ρk

ˆ ∞
ρ

1

%k+1

[
R̃nl(%)

]2
%2d% (7.64a)

UkG(ρ) =
1

ρk+1

ˆ ρ

0

%kR̃nl(%)R̃n′l′(%) %2d%+ ρk
ˆ ∞
ρ

1

%k+1
R̃nl(%)R̃n′l′(%) %2d%, (7.64b)

where UkF (ρ) is called the potential for direct screening and UkG(ρ) the potential for exchange screen-
ing (note the change of notation: ρ1 → ρ ; ρ2 → %). With the aid of these potentials the radial
integrals take the convenient form

F k(nl;n′l′) =

ˆ ∞
0

UkF (ρ)
[
R̃n′l′(ρ)

]2
ρ2dρ, (7.65a)

Gk(nl;n′l′) =

ˆ ∞
0

UkG(ρ)R̃nl(ρ)R̃n′l′(ρ)ρ2dρ. (7.65b)

For hydrogenic wavefunctions these integrals are conveniently calculated with a symbolic manipu-
lation program like Mathematica.
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Table 7.2: Coulomb integrals for orbitals corresponding to a zero-order Laguerre polynomial.

F k(nl2)/Z k = 0 k = 2 k = 4 k = 6

1s2 5
8

2p2 93
512

45
512

3d2 3965
46 080

2093
46 080

1365
46 080

4f2 184331
3670016

103275
3670016

69003
3670016

51051
3670016

Equivalent electrons

Some valuable exact solutions can be obtained for equivalent electrons. These are interesting in
their own right but also prove valuable as benchmarks for numerical calculations. For equivalent
electrons the integrals (7.65) coincide and simplify to the form (see Problem 7.7)

F k(nl;nl) = 2

ˆ ∞
0

dρ

ˆ ρ

0

d%
%k+2

ρk−1
[R̃nl(%)R̃nl(ρ)]2. (7.66)

Note that this expression is positive definite, F k(nl;nl) > 0. Changing to the variables x = 2Zρ/n
and y = 2Zρ%/n this can be rewritten as

F k(nl;nl) = (2Z/n)
2

N 2
nl

ˆ ∞
0

dxx2l+1−ke−x[L2l+1
n−l−1(x)]2

ˆ x

0

dy y2l+2+ke−y[L2l+1
n−l−1(y)]2. (7.67)

Since L2l+1
0 (x) ≡ 1 further simplification occurs for the case l = n − 1; i.e., for the configurations

1s2, 2p2, 3d2 and 4f2. In these cases the Coulomb integrals further simplify to

F k(nl;nl) = (2Z/n)
2

N 2
nl

ˆ ∞
0

dxx2l+1−ke−x
ˆ x

0

dy y2l+2+ke−y. (7.68)

These integrals are easily evaluated in Mathematica. For the configurations 1s2, 2p2, 3d2 and 4f2

the results are summarized in Table 7.2. Note that the following inequality is satisfied:

F k(nl2) < F k−2(nl2). (7.69)

Importantly, this inequality holds for any radial wavefunction; i.e., also in the non-hydrogenic case.
Note that Problem 7.8 is helpful in this context.

Problem 7.7. Derive Eq. (7.66).

Solution. Starting from Eq. (7.65a) and (7.64a) we find for equivalent electrons

F k(nl;nl) =

ˆ ∞
0

dρ

ˆ ρ

0

d%
%k

ρk+1
[χ̃nl(%)χ̃nl(ρ)]2 +

ˆ ∞
0

dρ

ˆ ∞
ρ

d%
ρk

%k+1
[χ̃nl(%)χ̃nl(ρ)]2,

where χ̃nl(ρ) = ρR̃nl(ρ). Next we change the order of integration of the second term

ˆ ∞
0

dρ

ˆ ∞
ρ

d%
ρk

%k+1
[χ̃nl(%)χ̃nl(ρ)]2 =

ˆ ∞
0

d%

ˆ %

0

dρ
ρk

%k+1
[χ̃nl(%)χ̃nl(ρ)]2.

This leads to the desired result by a change of dummy indices, ρ→ % and vice versa. 2
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Problem 7.8. Show that UkF (ρ) > Uk+1
F (ρ).

Solution. We rewrite UkF (ρ)− Uk+1
F (ρ) using the substitution z = x/ρ:

UkF (ρ)− Uk+1
F (ρ) = ρ2

ˆ 1

0

[
R̃nl(ρz)

]2
zk+2 (1− z) dz + ρ2

ˆ ∞
1

[
R̃nl(ρz)

]2(1

z

)k
(z − 1) dz > 0

This is positive definite because [
R̃nl(ρz)

]2
zk+2 (1− z) ≥ 0 for 0 ≤ z ≤ 1[

R̃nl(ρz)
]2

(1/z)k (z − 1) ≥ 0 for z ≥ 1. 2

Problem 7.9. Show that for equivalent electrons the exchange integral is positive definite, K > 0.

Solution. For equivalent electrons we have Gk(nl;nl) = F k(nl;nl) and Eq. (7.59b) can be rewritten in the
form

K(nlml;nlm
′
l) =

∞∑
k=0

bk(lml; lm
′
l)F

k(nl;nl).

Since bk(lml; l
′ml′) ≥ 0 and F k(nl;nl) > 0 for all values of k, we have K(nlml;nlm

′
l) > 0. 2

7.4.3 The ground state of helium 1S0

As a first example we analyze the ground state of 4He, which consists of two electrons in the 1s2

configuration and Z = 2. The energy shift caused by the repulsion between the electrons in the
same state is to first order in perturbation theory given by

∆ε1s ' (1s, 1s|H′|1s, 1s) = J . (7.70)

Using Eq. (7.59a) this can be written in the form

∆ε1s = a0(00; 00)F 0(1s; 1s). (7.71)

Since a0(00; 00) = 1, see Problem 7.10, we find for the energy shift of one 1s electron by the other
1s electron

∆ε1s = F 0(1s; 1s) = 〈1s|U0
F (ρ)|1s〉. (7.72)

Here UkF (ρ) is the potential of direct screening of one of the 1s electrons by the other; i.e., U0
F (ρ) =

U1s(ρ) in the notation of Section 7.1.1. Substituting R̃1s(ρ) = Z3/22e−Zρ in Eq. (7.64a) for the
wavefunction of the screening electron in a helium-like atom with nuclear charge Ze, we find with
k = 0,

U0
F (ρ) =

1

ρ

ˆ ρ

0

[
R̃1s(%)

]2
%2d%+

ˆ ∞
ρ

1

%

[
R̃1s(%)

]2
%2d% =

1

ρ

[
1− e−2Zρ(1 + Zρ)

]
= U1s(ρ). (7.73)

Substituting this expression into Eq. (7.65a) we obtain with Z = 2 for the direct integral

∆ε1s = F 0(1s; 1s) = 32

ˆ ∞
0

[
1− e−4ρ(1 + 2ρ)

]
e−4ρρdρ = 5

4 . (7.74)

Note that this result also can be obtained directly from Table 7.2 because the 1s2 configuration
involves only zero-order Laguerre polynomials. Restoring the dimension the energy shift is found to
be ∆E1s ' 5

2hcR∞ = 34.0 eV, to be compared with the value 29.8 eV based on experiment. This
shows that the perturbation theory overestimates the screening by 14% as was discussed in Section
7.1.1. It is straightforward to show with the aid of the closure approximation (see Section H.2) that
the second order correction overshoots the proper value, which means that the multipole expansion
(7.58) converges too slowly for an accurate determination of the screening.
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Figure 7.6: Energy-level diagram of the 1snl excited state configurations of helium. Left : singlet levels
(S = 0) also known as parahelium; Right : triplet levels (S = 1) also known as orthohelium. Note that the
highly-excited states give rise to hydrogenic energy levels, which means the screened nuclear charge is unity.

7.4.4 The ground state of metastable triplet helium 3S1

The level diagram of the 1snl excited state configurations of helium is sketched in Fig. 7.6. Our
special interest concerns the 1s2s configuration, a typical example of a lifted exchange degeneracy
in a system with two non-equivalent electrons. The 3S1 excited state of this configuration with total
spin S = 1 is famous because it is metastable against de-excitation to the 1S0 ground state with
a radiative lifetime of 8000 s. The atom is called metastable triplet helium with the notation He∗.
Neglecting the electrostatic repulsion between the electrons the energy of the system is given by

E
(0)
1s 2s = −hcR∞

(
Z2

n2
+
Z2

n′2

)
= −5hcR∞ (Z = 2, n = 1, n′ = 2) . (7.75)

The radial distribution functions of the R̃1s(ρ) and R̃2s(ρ) radial wavefunctions are shown as the
drawn lines in Fig. 7.7. The 2s orbital appears as a charged halo enclosing the 1s orbital with little
overlap in the charge distribution. Therefore, in view of the discussion of electrostatic screening
in Section 7.1.1 we expect this screening to be more or less maximal for the 2s outer electron
(Z2s ' Z − 1) and minimal for the 1s inner electron (Z1s ' Z). The 2s charge distribution for the
case Z2s = 1 is shown as the dashed line in Fig. 7.7.

The energy shift caused by the repulsion between the electrons is to first order in perturbation
theory given by Eq. (7.45), ∆E− = J − K, where in view of Eq. (7.60) only the k = 0 terms
contribute to the direct and exchange integrals,

J = (2hcR∞) a0(00; 00)F 0(1s; 2s) (7.76a)

K = (2hcR∞) b0(00; 00)G0(1s; 2s). (7.76b)

With Eqs. (7.79) and (7.80) we obtain a0(00; 00) = b0(00; 00) = 1. Substituting the expressions for
the R̃1s(ρ) and R̃2s(ρ) hydrogenic wavefunctions we find, using Eqs. (7.64) with k = 0, for the 1s
direct screening and the 1s2s exchange screening potentials

U0
F (ρ) = (1/ρ)

[
1− e−2Zρ(1 + Zρ)

]
= U1s(ρ) (7.77a)

U0
G(ρ) = (2/27)

√
2Ze−3Zρ/2 [2 + 3Zρ] = X1s2s(ρ). (7.77b)

Substituting these expressions into Eqs. (7.65) we obtain with Z = 2 for the direct and exchange
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Figure 7.7: Radial distribution function for the 1s2s excited state configuration of the helium atom. In this
case the effect of inflation is small because the 1s and 2s orbitals show little overlap. The dominant effect
is screening, which reduces the effective charge of the nucleus for the 2s electron to the value Z ≈ 1. In this
case the 2s orbital inflates to more or less its value in the hydrogen atom.

radial integrals of the He∗ atom

F 0(1s; 2s) =

ˆ ∞
0

U0
F (ρ)

[
R̃2s(ρ)

]2
ρ2dρ = 34/81 (7.78a)

G0(1s; 2s) =

ˆ ∞
0

U0
G(ρ)R̃1s(ρ)R̃2s(ρ)ρ2dρ = 32/729. (7.78b)

Hence, the energy shift is found to be ∆ε2s = F 0(1s; 2s) − G0(1s; 2s). Restoring the units this
becomes ∆E2s = (548/729)hcR∞ = 10.2 eV and the estimate for the energy of the state to first

order in perturbation theory is E
(1)
1s 2s = E

(0)
1s 2s + ∆Escr = −57.8 eV. The experimental value is

E1s 2s = −59.2 eV. Comparing to the energy −54.4 eV of the He+ ion the state is calculated to
be bound with an ionization energy of 3.4 eV. The experimental value for the ionization energy
of 4He∗ is 4.8 eV (see Fig. 7.6). Thus, like for the 1s2 configuration, also in the 1s2s case the
perturbation theory underestimates the screening, 15.9% of 8.8 eV for 4He∗. For the singlet-triplet
splitting we calculate 2K = (64/729) 2hcR∞ = 2.39 eV, to be compared with the experimental value
2K = 0.80 eV. The modest agreement is not surprising since the R̃2s(ρ) wavefunction does not have
the long-range behavior corresponding to an effective nuclear charge Z2s = 1. Obviously, this leaves
room for a lot of improvement but this falls outside the scope of the course.

Problem 7.10. Show that for the configuration nsn′l the ak coefficient is given by

ak(00; lml) =

{
1 for k = 0
0 for k > 0

. (7.79)

Solution. In view of Eqs. (7.60) ak(00, lml) = 0 for k > 0. For k = 0 we have

ak(00; lml) = (2l + 1)

(
0 0 0
0 0 0

)2(
l 0 l
0 0 0

)(
l 0 l
−ml 0ml

)
= 1

because (see Appendix J) (
0 0 0
0 0 0

)
= 1 and

√
2l + 1

(
l 0 l
−ml 0ml

)
= (−1)−1. 2

Problem 7.11. Show that for the configuration nsn′l the bk coefficient is given by

(2l + 1)bk(00; lml) =

{
1 for k = l
0 for k 6= l

. (7.80)
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Figure 7.8: Energy levels of helium and helium-like atoms (the alkaline earth elements) for nl excitation
of one of the s electrons from the 1S0 ground state. The data are taken from the NIST Atomic Spectra
Database Levels Data [66]. In the Sr data the fine-structure splitting of the 5 3P term is just visible in the
plot; for Ba this is the case for both the 6 3P and 5 3D terms. Levels associated with two-electron excitations
are not included in the diagram.

Solution. In view of Eqs. (7.60) bk(00, lml) = 0 for k 6= l. For k = l we have

bk(00; lml) = (2l + 1)

(
0 l l
0 0 0

)2(
0 l l
0−ml ml

)2

=
1

(2l + 1)
,

because (see Appendix J)
√

2l + 1

(
0 l l
0−ml ml

)
= (−1)l−ml . 2

7.4.5 Helium-like atoms - energy levels

It is instructive to compare the energy-level diagram of helium with those of other helium-like atoms.
In Fig. 7.8 this is done for the alkaline-earth elements. The level energies are determined by optical
spectroscopy. Note that the helium-like behavior is evident; in all cases we have a n 1S0 electronic
ground state and a similar structure of excited states featuring only singlet and triplet terms. The
latter points to effective two-electron behavior. Apparently, the principal effect of the core electrons
is to screen the nucleus. This shows up as a reduction of the ground-state binding energy with
increasing Z. Aside from the strong similarities there are also important differences. For instance,
only in the helium case (n = 1) we find a metastable (n + 1) 3S1 level (He∗). In all other cases
the lowest triplet term is n 3P or even n 3D. The exceptional case of helium can be traced back to
the non-existence of 1p orbitals. Optical transitions between singlet and triplet terms are referred
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to as intercombination lines. These lines are weak because the transitions are spin forbidden. The
helium 2 3S1 state is special because the 1 1S0 ↔ 2 3S1 transition is doubly forbidden (spin as well
as dipole forbidden). With increasing Z some of the intercombination lines become weakly allowed.
This has to do with the increasing importance of spin-orbit coupling as will be explained in Section
10.6 (crossover from LS coupling to jj coupling). The growing importance of fine-structure effects
are even visible on the rough energy scale of Fig. 7.8, where the fine-structure splitting becomes just
visible in the strontium (Z = 38) and barium (Z = 56) data.
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Central field approximation for many-electron atoms

The description of atoms with more than two electrons builds on the concepts introduced for the
helium atom in Chapter 7: central symmetry, screening, Pauli principle and exchange. Just as in
the helium case also the Hamiltonian for many-electron atoms is invariant under space inversion as
well as under rotation of the spatial coordinates about the origin; i.e., the parity of the electronic
wavefunction as well as the total orbital angular momentum are conserved in time. Recalling from
the helium discussion the concept of electrostatic screening of the nuclear charge and the convenience
of the centrally symmetric mean field, we simply presume that also in the many-electron case central
forces dominate the motion of the individual electrons. This central field approximation allows the
separation of variables, which makes it possible to continue the practice of describing the atoms in
terms of single-electron orbitals specified by the quantum numbers n and l. This means that the
atomic state can be characterized by specifying the electron configuration. The configuration with
the lowest energy (strongest binding) corresponds to the ground state. For hydrogenic atoms the
possible configurations are: 1s, 2s, 2p, 3s, 3p, 3d, · · · . For atoms with more than one electron the
Pauli principle limits the occupation of the orbitals. In this way the helium configurations become
1s2, 1s2s, 1s2p, 2s2, · · · , for lithium we have 1s22s, 1s22p, · · · , and so forth. So, in the configuration
we group the electrons into shells of equivalent electrons, where electrons are called equivalent if
they carry the same quantum numbers n and l (irrespective of the magnetic quantum numbers ml

and ms). A shell containing the maximum number of electrons consistent with the Pauli principle
is called closed or fully filled.

As was established before, the Coulomb interaction dominates by orders of magnitude over
all other terms in the atomic Hamiltonian (α2 ≈ 5 × 10−5). Therefore, to calculate the ground
state energy the electronic charge has to be distributed across the atom as accurately as possible.
In atomic systems this is best done with the self-consistent mean field method (Hartree method)
introduced in the previous chapter. Other approaches to search for the optimal charge distribution
are density-functional theory and potential-functional theory [37]. These are variational methods
in which the variation is not done at the level of the wavefunction but by varying the probability
charge density or its potential field, respectively. The archetype of such statistical theories is the
Thomas-Fermi method, which will be introduced in the present chapter. Density functional theory
plays an important role in chemistry and condensed matter physics, more in general in the physics
of many-body systems which are too big for an ab initio quantum mechanical approach like the
self-consistent mean field method [64]. Interestingly, the evolution of the density-functional and
potential-functional methods into a fundamental theory was remarkably slow. It took half a century
before it became main stream in the 1980’s (in particular for the modeling of heavy molecules) which
may explain its modest role (if not absence) in traditional atomic physics textbooks.

In this chapter we explore the central field concept and will introduce the central field approxima-
tion. In Section 4.7 we already discussed how this concept can be used to describe alkali-like atoms,
where a single valence electron surrounds the electronic core. In the present chapter we discuss four
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examples of central field approximations: the non-interacting electron atom, the Thomas-Fermi
model, the Hartree mean field method and the quantum-defect approach of Bates and Damgaard.
The central field approximation provides - in hindsight - the justification for treating the alkali atoms
as hydrogen-like atoms as was done in previous chapters, in particular in discussing the hyperfine
structure (Chapter 5).

8.1 Hamiltonian

The Hamiltonian for the principal structure of a N -electron atom is given by a generalization of the
Hamiltonian (7.1)1

H =

N∑
i=1

(
− ~2

2me
∇2
i −

Ze2

4πε0ri

)
+

1

2

N∑
i,j

′ e2

4πε0rij
, (8.1)

where the first sum is the Hamiltonian for noninteracting electrons, ri the position of electron i
relative to the atomic nucleus, rij = |ri − rj | the distance between the electrons i and j, with
i, j ∈ {1, · · · , N}, and ε0 is the electric permittivity of vacuum. The factor 1/2 in front of the
double summation is to correct for double counting and the prime indicates that the case i = j is
excluded. For neutral atoms we have N = Z.

8.1.1 Central field approximation

Recalling the concept of screening of the nuclear charge as discussed for the helium atom we rewrite
the Hamiltonian (8.1) in the form

H=

N∑
i=1

(
− ~2

2me
∇2
i −

Ze2

4πε0ri
+ Vscr(ri)

)
+

1

2

N∑
i,j

′ e2

4πε0rij
−

N∑
i=1

Vscr(ri), (8.2)

where for each electron i we both added and subtracted a centrally symmetric potential energy term
Vscr(ri), which can be regarded as a generalization of the screening potential (7.13) introduced for
helium. By this procedure the Hamiltonian separates into two parts, H = HCF +H′.

The first term,

HCF ≡
N∑
i=1

(
− ~2

2me
∇2
i + VCF(ri)

)
, (8.3)

is called the central field Hamiltonian. It is the sum of N one-electron Hamiltonians, a generalization
of the Hamiltonian (7.5) but it accounts for screening because

VCF(ri) = − Ze2

4πε0ri
+ Vscr(ri) = − e2

4πε0

Zeff(ri)

ri
(8.4)

is the potential energy of electron i in the (centrally symmetric) electrostatic potential of the nucleus
screened by the other (N − 1) electrons. It is the effective central field potential for the N -electron
problem, a generalization of the Eq. (7.17) used for helium. The quantity Zeff(ri) is the effective
nuclear charge for electron i at distance ri from the nucleus introduced in Eq. (4.101). Close to the
nucleus the screening is negligible and VCF(r) must approach the potential energy of an electron in

1In the literature one finds two equivalent notations for the sum over all different pairs with i, j ∈ {1, · · ·N}:

1
2

N∑
i,j=1

′ ≡
N∑
i>j

.

Here the prime indicates the exclusion of the terms i = j and the factor 1
2

corrects for double counting. Alternatively,
one can sum over all pairs with i > j.
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the unscreened nuclear charge Ze. Far from the nucleus all but the Rydberg charge Zc e is shielded.
This imposes onto the Zeff(r) the boundary conditions limr→0 Zeff(r) = Z and limr→∞ Zeff(r) = Zc,
with Zc = 1 for neutral atoms.

The second term of Eq. (8.2),

H′ ≡ 1

2

N∑
i,j=1

′ e2

4πε0rij
−

N∑
i=1

Vscr(ri), (8.5)

represents the residual Coulomb interactions that cannot be included in the centrally symmetric
screening field. This term can be regarded as a (non-central) perturbation on HCF and accounts for
Coulomb correlations in the relative motion of the electrons. For optimal screening potentials this
perturbation is minimal. Neglecting H′ we obtain the central field approximation,

H = HCF. (8.6)

A first estimate for the importance of the Coulomb correlations can be obtained by perturbation
theory with respect to the central field solutions.

8.2 Non-interacting electron atoms

A lot can already be said about many-electron atoms by simply ignoring the interaction between
the electrons. For non-interacting-electron atoms only the Coulomb interaction with the nucleus
remains and the atoms can be constructed using configurations of hydrogenic wavefunctions. The
configuration energies are determined by the energies of the single-electron hydrogenic levels. The
Pauli principle is included to assure that no orbital level is occupied more than twice. Many of
the configurations will be degenerate but adding electrons in order of increasing orbital angular
momentum the Z dependence of the configuration energy has the following order:

[H] = 1s [He] = 1s2

[Li] = [He]2s, [Be] = [He]2s2, [Bo] = [He]2s22p1, · · · , [Ne] = [He]2s22p6

[Na] = [Ne]3s, [Na] = [Ne]3s2, [Al] = [Ne]3s23p1, · · · , [Ar] = [Ne]3s23p6 .

This is in agreement with the periodic system of Mendeleev (see Table A.1) but at Z = 18 this
agreement ends. At Z = 19, rather than the expected configuration

[Ne]3s23p63d

we find in the periodic system [K] = [Ar]4s. In this respect only the first three rows of the periodic
table show the character of non-interacting-electron atoms. Of course we could try to add fine
structure corrections but such refinements makes no sense because even the dominant corrections
(electrostatic repulsion and exchange) are not included.

Despite the obvious shortcomings, non-interacting electron atoms provide valuable information
about the scaling of atomic properties with Z. Since the degeneracy of states of given principal
quantum number is n2 - see Eq. (2.34) - the total number of electrons in closed shells, N , can be
expressed in terms of nmax, which is the principal quantum number of the highest occupied shell,

N =

nmax∑
n=1

2n2 = 1
3nmax(nmax + 1)(2nmax + 1). (8.7)

For neutral atoms the number of electrons is equal to the number of protons in the nucleus,

N = Z. (8.8)
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Along similar lines we can obtain an expression for the total binding energy of closed shell atoms.
Using Hartree atomic units we calculate

− ε =

nmax∑
n=1

2n2 Z
2

2n2
= Z2nmax. (8.9)

Eliminating nmax = ε/Z2 from Eqs. (8.7) and (8.9) we can express ε as a function of N and Z (see
Problem 8.1)

− ε/Z2 = − 1
2 + (3N/2)

1/3
+ 1

12 (3N/2)
−1/3

+ · · · . (8.10)

Comparing this expression with a numerical inversion of Eq. (8.7) we find that approximating ε/Z2

by the first three terms of the expansion is accurate to the ppm level for N ≥ 2; i.e., the three-term
approximation holds for all many-electron atoms or ions of the periodic system. We recall that
Eq. (8.10) was derived for closed shell atoms but, as nmax is eliminated from the expressions, it also
offers an interpolation procedure to interpolate for half-filled shells. For neutral atoms (N = Z)
Eq. (8.10) becomes

− ε = − 1
2Z

2 + c7/3 Z
7/3 + c5/3 Z

5/3 + · · · , (8.11)

where c7/3 = (3/2)
1/3 ≈ 1.145 and c5/3 = (3/2)

−1/3
/12 ≈ 7.280 × 10−2. For instance, for the

ground state of 4He we calculate ε = −4.00012 Hartree, which is already an excellent approximation
of the exact value (−4 Hartree for non-interacting electrons). It only gets better for larger Z.

Problem 8.1. Derive the expansion (8.10).

Solution. We first rewrite the sum (8.7) in the form

N = 2
3
(nmax + 1

2
)3 − 1

6
(nmax + 1

2
),

which is equivalent to nmax + 1
2

= (3N/2)1/3
[
1 + 1

4
(nmax + 1

2
)/ (3N/2)

]1/3
. Expanding the cubic root we

obtain
nmax = − 1

2
+ (3N/2)1/3 + 1

12
(nmax + 1

2
) (3N/2)−2/3 + · · · .

Iterating nmax we obtain the desired expression. 2

8.3 The statistical atom

8.3.1 Thomas-Fermi central field

The concept of a screened Coulomb potential may be intuitively attractive from the physical point of
view, properly defining it mathematically is another matter. A source of inspiration in this context
is the mean field approach introduced for two-electron atoms in Chapter 7. For heliogenic atoms
the potential energy of one 1s electron in the Coulomb field of the nucleus screened by the other 1s
electron is given (in SI units) by

VCF(r) = − 1

4πε0

Ze2

r
+

1

4πε0

e2

r

[
1− (1 + Zρ)e−2Zρ

]
(8.12)

with ρ = r/a0 and Z = 2 for the helium atom. This expression is obtained by putting one electronic
charge (−e) in the electrostatic scalar potential

ϕCF(r) =
1

4πε0

e

r

[
(Z − 1) + (1 + Zρ)e−2Zρ

]
. (8.13)

This scalar potential can be written as the product of a pure Coulomb field and a monotonically
decreasing screening function,

ϕCF(r) =
1

4πε0

Ze

r
F (r). (8.14)
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Note that that F (r) is dimensionless. Recalling the definitions of the effective nuclear charge Zeff(r)
and the screening charge σeff(r), see Section 7.1.1, the screening function can be expressed in the
form

F (r) =
Zeff(r)

Z
=
Z − σeff(r)

Z
. (8.15)

This function falls off from unity (no screening) close to the nucleus, limr→0 F (r) = 1, to (Z−Zc)/Z
(full screening by Z−Zc electrons) at large distance, limr→∞ F (r) = (Z−Zc)/Z. For neutral atoms
the Rydberg charge is unity and the limiting value at large distance becomes (Z−1)/Z (full screening
by Z − 1 electrons), with limr→∞ F (r) = 1/2 (full screening by 1 electron) for helium (Z = 2).

Although Eq. (8.13) has the proper limiting behavior for screening by a single 1s electron in heli-
ogenic atoms there is no reason to expect that the charge distribution of the 1s orbital is necessarily
the best choice to describe the screening in general. Insight into screening in N -electron atoms can
be obtained with the quantum-statistical method of Llewellyn Thomas and Enrico Fermi. Thomas
and Fermi imposed the condition that the semi-classical distribution of charge within the atom be
in accordance with the Poisson equation of classical electrostatics [109, 41],

∆ϕ(r) = −%e(r)/ε0 r 6= 0. (8.16)

Here ϕ(r) represents the electrostatic scalar potential at position r and %e(r) is the charge density
of the electron cloud surrounding the nucleus, %e(r) = −e n(r), with n(r) being the Thomas-Fermi
number density of electrons. For neutral atoms we have

´
n(r)dr = Z. For central symmetry,

%e(r) = %e(ρ)/4π, it is advantageous to turn to spherical coordinates and to remove the angular
dependence by integrating both sides of the Poisson equation over θ and φ. In this way we obtain
(cf. Sections 1.2.1 and 1.1.8)

1

r

∂2

∂r2
rϕCF(r) = −%e(r)/ε0 r 6= 0. (8.17)

Note that the Thomas-Fermi approach does not distinguish between spectator and screening elec-
trons, it includes all Z electrons in the screening.

The idea of calculating screening by distributing the electronic charge according to a probability
distribution is well known from classical physics (space charge distribution). It is expected to work
best for many electron atoms in which n(r) can be obtained as the average density of electrons at
position r. Interestingly, again the helium atom provides us with an indication that this approach
can be stretched to atoms with a small number of electrons because the effective electrostatic
potential (8.13), derived for screening by only a single 1s electron, turns out to satisfy the Poisson
equation if one uses for the average density the probability density of the electronic wavefunction,
n(r) = |ψ1s(r)|2 - see Problem 8.2.

Problem 8.2. Show that the effective electrostatic potential

ϕ̃CF(ρ) = (1/ρ)
[
(Z − 1) + (1 + Zρ)e−2Zρ

]
derived for a 1s electron and a nuclear charge Ze satisfies the Poisson equation of electrostatics.

Solution. In atomic units, the Poisson equation is given by ∆ϕ̃CF = −4π%̃e, where ∆ is the laplacian with
respect to ρ, ϕ̃CF(ρ) the scalar potential and %̃e(ρ) the charge density, in atomic units. In particular, the
charge density of the electron cloud is given by %̃e(ρ) = −a30n(r) atomic units. For the 1s electron the charge
distribution is spherically symmetric and in atomic units given by %̃e(ρ) = −R̃2

1s(ρ)/4π = −4e−2ZρZ3/4π,
where ρ = r/a0. In view of the spherical symmetry the angular and radial variables separate and (using the
same approach as taken for the derivation of the 1D Schrödinger equation) the Poisson equation becomes

O2ϕ̃CF =
∂2ϕ̃CF

∂ρ2
+

2

ρ

∂ϕ̃CF

∂ρ
=

1

ρ

∂2

∂ρ2
ρ ϕ̃CF = 4e−2ZρZ3.

Integrating twice and putting the boundary condition limρ→0 ρ ϕ̃CF(ρ) = Z (no screening near the nucleus)
and limρ→∞ ρ ϕ̃CF(ρ) = Z − 1 (full screening by Z − 1 electrons) we obtain the given expression for the
electrostatic potential ϕ̃CF(ρ). 2
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8.3.2 Thomas-Fermi model

Thomas and Fermi applied the central field concept in the Thomas-Fermi model for the atom
[109, 41]. One may argue that this model is merely of historical interest because it does not offer
the precision that can be obtained by advanced variational methods like the Hartree-Fock method
(cf. Section 10.2.3). However, aside from being the first example of a density functional method, the
Thomas-Fermi model continues to be educationally valuable for at least three reasons: (a) it points
to the existence of Madelung ordering in the periodic system of the elements, often emphasized in
elementary texts on chemistry; (b) it offers an Ansatz for more advanced variational methods; (c)
it attracts renewed interest in view of the application of the Thomas-Fermi approximation in the
mean-field description of ultracold atomic gases [83].

The Thomas-Fermi model is the simplest model that accounts for the quantum-statistical cor-
relations of the electrons in many-electron atoms. It is a semi-classical model in which the electron
cloud is represented by a degenerate Fermi gas at zero temperature. The cloud is supposed to be
centrally symmetric and to have a well-defined local density n(r), distributed in accordance with
the Poisson equation (8.16). The use of quantum statistics in combination with a local density
approximation is known as the Thomas-Fermi approximation. Because the electron gas is fully de-
generate its compressibility is determined by the Pauli exclusion principle. Together with the space
charge of the electron cloud this fixes the total number of electrons that can be contained in the
Coulomb potential of the nucleus. Being fully degenerate the phase-space density is 2 electrons per
unit volume of phase space - (2π~)3; i.e., wherever the density in configuration space is high the
density in momentum space has to be low and vice versa. For instance, as close to the nucleus the
electron density is high, the density in momentum space has to be low. This means that the mo-
mentum spread has to be large, which is possible without ionization because (close to the nucleus)
the ionization energy is high. On the other hand, far from the nucleus the ionization energy is small
and because the electrons are bound also the uncertainty in momentum has to be small. This means
that the density in momentum space has to be high, which is possible because (far from the core)
the electron density is small.

The screening function, F (r), can be related to local density, n(r), through the chemical po-
tential of the atom, µ. The latter is the energy required to add one electron to the electron cloud
at zero temperature. In the Thomas-Fermi approximation the chemical potential is taken to be
constant across the atom. It can be expressed as the sum of the local kinetic- and potential energy
contributions,

µ =
~2

2me

[
3π2n(r)

]2/3 − eϕCF(r). (8.18)

The kinetic energy of the least-bound electron at distance r from the nucleus is approximated by
the Fermi energy of a degenerate Fermi gas of density n(r); the potential energy of this electron is
determined by the screening of the nucleus by the centrally symmetric charge distribution

%e(r) = −en(r). (8.19)

Starting from a bare nucleus of charge Ze we can supply electrons to the electron cloud until µ = 0.
Hence, the electronic density distribution of a neutral atom follows from Eq. (8.18) by setting µ = 0,

n(r) =
1

3π2

[
2me

~2
eϕCF(r)

]3/2

. (8.20)

At this point we impose the Poisson equation for the centrally symmetric case - see Eq. (8.17)

1

r

∂2

∂r2
rϕCF(r) = en(r)/ε0. (8.21)

To assure the absence of screening near the nucleus we require limr→0 rϕCF(r) = Z. For neutral
atoms we require full screening of the nucleus at large distance, limr→∞ rϕCF(r) = 0. By substituting
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Eq. (8.14) into Eqs. (8.21) and (8.20) we obtain two relations between the screening function and
the local density,

Z

r

∂2

∂r2
F (r) = 4πn(r) and n(r) =

1

3π2a3
0

[
2a0

Z

r
F (r)

]3/2

. (8.22)

Eliminating n(r) from these equations and changing to new variables (F → F̌ , r → x) we obtain
the Thomas-Fermi equation for screening,

F̌ ′′ = x−1/2F̌ 3/2. (8.23)

Here F̌ (x) is called the Thomas-Fermi function and x = bZ1/3ρ the Thomas-Fermi variable, with
b = 2( 4

3π)2/3 ' 1.13. The function F̌ (x) has to satisfy the boundary conditions limx→0F̌ (x) =

1 (no screening near nucleus) and limx→∞xF̌ (x) = 0 (normalizable density distribution). The
normalization condition implies that for x→∞ the screening function decays sufficiently fast. This
requirement is stronger than the condition of full screening at large distance. Setting F̌ = 1 in the
r.h.s. of Eq. (8.23) we find the following functional behavior near the nucleus (x� 0):

F̌ (x) = 1−Bx+ Cx3/2 + · · · . (8.24)

The Thomas-Fermi equation is a non-linear second-order differential equation. As it cannot be
solved analytically F (x) has to determined numerically, which is a simple task in Mathematica. The
boundary conditions are satisfied for B = 1.58807097266316554. The full numerical result is shown
in Fig. 8.1. Note that F̌ (x) is monotonically decreasing, as it should be for a screening function. The
Thomas-Fermi function represents a universal scaling solution. The function is universal because
F̌ (x) is independent of Z; i.e., the shape of the function is the same for all atoms. It is a scaling
solution because the variable x depends on Z1/3; i.e., the radial profile of the effective charge,
Žeff(x) = ZF̌ (x), scales with the atomic size. In atomic units this expression becomes

F̌ (x) = F̃ (ρ) = 1− bB Z1/3ρ+ C Z1/2(bρ)3/2 + · · · . (8.25)

The corresponding radial distribution function is (see Fig. 8.1)

ρ2ñ(ρ) =
ρ2

3π2a3
0

[
2
Z

ρ
F̃ (ρ)

]3/2

∼ Z4/3x2 [F (x)/x]
3/2

. (8.26)

Calculating the screening potential using Eqs. (7.17)-(7.20) we find for ρ� 1

Uscr(ρ) =
Z

ρ
[bB Z1/3ρ+ C Z1/2(bρ)3/2 + · · · ] = 1.79Z4/3 + b3/2C Z3/2ρ1/2 + · · · . (8.27)

As in the case of the self-consistent mean field (derived in Chapter 7 for the helium atom in its
ground state) the leading term is a constant. It represents the electrostatic repulsion energy of an
electron close to the nucleus with the surrounding electronic cloud. Comparing Eqs. (8.27) and (7.16)
we note that in the Thomas-Fermi case this electrostatic repulsion energy is larger, 1.79Z4/3 > Z.
Apparently, the charge is distributed closer to the nucleus.

8.3.3 Schrödinger equation for one-electron in the presence of screening

It is of particular interest to analyze how the motion of an electron changes when we add isotropic
screening to a Coulomb potential. As the potential remains central all we have to do is replace Z
by Zeff(ρ) in Eq. (2.18); i.e., in Hartree atomic units the 1D-Schrödinger equation becomes

χ̃′′l + 2
[
Zeff(ρ)/ρ− l(l + 1)/2ρ2 − εl

]
χ̃l = 0. (8.28)
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Figure 8.1: The Thomas-Fermi function (left) and the corresponding radial distribution function (right).

For the limiting behavior of the effective charge we require limρ→∞ Zeff(ρ) = 1 and limρ→0 Zeff(ρ) =
Z. These conditions lead to the same limiting expressions for the radial wave equation as in the
case of hydrogenic atoms. Thus, using the procedure of Section 2.1.2, we introduce a function w̃l(ρ)
to connect the short-range tail to the long-range tail of the hydrogenic wavefunction,

χ̃l(ρ) = ρl+1e−ρ
√

2εlw̃l(ρ), (8.29)

with the condition that w̃l(0) = 1 and χ̃l(ρ) be algebraic for ρ → ∞. Substituting this expression
into Eq. (8.28) we find

ρw̃′′l + 2[(l + 1)−
√

2εlρ]w̃′l + 2[Zeff(ρ)− (l + 1)
√

2εl]w̃l = 0. (8.30)

This is just Eq. (2.22) with Z replaced by Zeff(ρ). In the present case the screening by the Z − 1
“other” electrons of the atom is accounted for by the functional dependence of Zeff(ρ). Of course, the
art is to find the best expression for Zeff(ρ). The price to pay is that the 1D-Schrödinger equation
can no longer be solved analytically.

Fortunately, already a lot can be learned by analyzing the effective potential energy

Ul(ρ) = −Z
ρ
Zeff(ρ)/Z +

l(l + 1)

2ρ2
, (8.31)

which should at least have a single bound state. The simplest one is to choose for Zeff(ρ)/Z simply
the universal (Z independent) Thomas-Fermi screening function Φ̃(ρ),

Ul(ρ) = −Z
ρ
F̃ (ρ) +

l(l + 1)

2ρ2
. (8.32)

This expression has the obvious flaw of overestimating the screening because it includes self-screening
(note that Zeff(ρ) → 0 for ρ → ∞). However, this error will decrease with increasing Z, so the
approximation is useful at least for large atoms. For l > 0 this potential energy curve is always
positive unless Z is sufficiently large. So we can determine the value of Z at which the curve starts
to run negative by setting Ul(ρ) = 0. Changing to the Thomas-Fermi variable x = bZ1/3ρ, with
b ' 1.13, the potential energy curve has a local minimum which touches on the zero energy axis at

Z(x) =
4

3π

[
l(l + 1)

xF̌ (x)

]3/2

. (8.33)

This function has a universal (l independent) minimum at x ≈ 2.14; i.e., xF̌ (x) ≈ 0.486. For l =
1, 2, 3, 4 we calculate Z = 3.5, 18.4, 52, 112, respectively. These values represent lower bounds, for
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actual binding Z has to be somewhat larger. From the periodic table we know that the experimental
Z values at which the first p, d and f appear are Z = 5, 21, 58. Further, g electrons do not appear
at all in the range of elements shown in the periodic system. Hence, already with this simple model
the trend emerges satisfactorily. Solving the radial equation numerically we find Z = 6.6, 26, 66,
134. In other words the model overestimates the charge required for binding, which is not surprising
because the model overestimates the screening. Moreover the model also neglects the exchange,
which also implies an overestimate of the screening. In any case the model exposes the relevant
physics and is rewarding in the sense that it shows the Madelung order in the appearance of angular
momentum in the periodic system.

8.3.3.1 Quantum defects

A simple model of screening explaining the properties of the quantum defect can be obtained by
writing the effective principal quantum number in the form

n∗l = n′ + l∗ + 1. (8.34)

Here n′ is the radial quantum number introduced in Section 2.1.2 and l∗ is defined by

l∗ ≡ l − δl. (8.35)

The form (8.34) suggests to interpret n∗l as the principal quantum number of the solutions of the
following 1D Schrödinger equation

χ̃′′l∗ + 2
[
Zc/ρ− l∗(l∗ + 1)/2ρ2 − κ2

l∗
]
χ̃l∗ = 0. (8.36)

To reveal the physics behind this model we rewrite Eq. (8.36) in the form

χ̃′′l∗ + 2
[
Zc/ρ+A(Z)/2ρ2 − l(l + 1)/2ρ2 − κ2

l∗
]
χ̃l∗ = 0, (8.37)

where A(Z) is a Z-dependent constant following from the relation

A(Z)− l(l + 1) = −l∗(l∗ + 1). (8.38)

Comparing Eq. (8.37) with the 1D Schrödinger equation (2.18) we note that the Coulomb interaction
from the hydrogenic equation is replaced by an screened Coulomb interaction of the form

Zl(ρ)/ρ =
1

ρ
[Zc + 1

2A(Z)/ρ]. (8.39)

Far from the nucleus, for ρ� 1
2A(Z)/Zc, the effective charge Zl(ρ) approaches the Rydberg charge,

Zl(ρ) → Zc, exactly as we expect for screening. On the other hand, for ρ → 0 the effective charge
diverges which is nonphysical. However, this objection is of little consequence for our purpose
because the valence orbitals of alkali atoms hardly probe the region close to the nucleus (in particular
those with nonzero angular momentum). In any case the model shows that, in the presence of
screening, states of given n but differing in l are nondegenerate, unlike in the hydrogenic case.
Solving for δl we find

δl = 1
2 (2l + 1)± 1

2

√
(2l + 1)2 − 4A(Z). (8.40)

For small A(Z) the decaying branch may be approximated by

δl '
A(Z)

2l + 1
, (8.41)

which shows that for given Z the quantum defect δl decreases for increasing l as observed in exper-
iment.
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8.4 Hartree equations

Another way to deal with screening of the nuclear charge by the core electrons is the self-consistent
mean field method introduced by Hartree in 1928 [56, 57]. In this section we derive the Hartree
equations with the aid of the variational principle as was first demonstrated by Fock and by Slater
in 1930 [102, 43]. We turn to (Hartree) atomic units by setting me = e = ~ = 1/4πε0 = 1 in the
Hamiltonian (8.1),

H =

N∑
i=1

h
(i)
0 + 1

2

N∑
k,l=1

′ 1

ρkl
. (8.42)

Here we adopted the notation introduced for helium in which

h
(i)
0 = − 1

2∇
2
i −

Z

ρi
(8.43)

represents the Schrödinger Hamiltonian of electron i in the bare field of the nucleus - see Eq. (7.9).
Recalling the use of product wavefunctions for the description of the ground state of the helium
atom we again look for ground state solutions of the Schrödinger equation in the form of a product
state of single-electron orbitals. This is the approach of Hartree [56, 57]. In Dirac notation the
product state is written as

|ψu) = |u1, · · ·uN ) ≡ |u1〉1 ⊗ |u2〉2 ⊗ · · · |uN 〉N , (8.44)

where particle 1 is in state u1, particle 2 in state u2, etc.; by convention the state of particle 1 always
appears at the first (most left) position, the state of particle 2 always at the second position, etc..
Sometimes, when addressing a subset of the particles, we cannot use this implicit convention and
attach the particle index and ordering explicitly,

|uκ, uν)i,j ≡ |uκ〉i ⊗ |uν〉j . (8.45)

The indices κ and ν are called state indices, and i and j particle indices. In the product state
(8.44) each electron is assigned a particular orbital in accordance with the electron configuration.
Exchange effects are left out of consideration. This is of course an approximation but irrelevant for
our goal of introducing the Hartree method. To first order in perturbation theory the energy of the
N -electron state |ψu) is given by

ε(u1, · · ·uN ) = (ψu|H|ψu) =

N∑
i=1

〈ui|h(i)
0 |ui〉i + 1

2

N∑
k,l=1

′(ukul|
1

ρkl
|ukul)kl. (8.46)

Note that in this expression the particle index and state index coincide, a direct consequence of
Eq. (8.44). Since the outcome of the integrals only depends on the orbitals involved we can drop
the particle indices and write the expression in the form

ε(u1, · · ·uN ) =

N∑
κ=1

〈uκ|h0|uκ〉+ 1
2

N∑
κ,ν=1

′(uκuν |
1

ρ12
|uκuν). (8.47)

Applying the variational procedure of Appendix I.1.3 we require that the energy be stationary under
arbitrary norm-conserving variations of any of the orbitals uκ while keeping the other orbitals fixed
[102, 43]. For this purpose we consider the energy ε(u1, · · ·uN ) as a functional of the electronic
orbitals. For the orbital uκ this functional is

Hκ(u1, · · · , uN ) = 〈uκ|h0|uκ〉+ 1
2

N∑
ν=1

′
[
(uκuν |

1

ρ12
|uκuν) + (uνuκ|

1

ρ12
|uνuκ)

]
, (8.48)
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where the prime indicates ν 6= κ. Using the equality (uκuν |1/ρ12|uκuν) = (uνuκ|1/ρ12|uνuκ) the
functional becomes

Hκ(u1, · · · , uN ) = 〈uκ|h0|uκ〉+

N∑
ν=1

′(uκuν |
1

ρ12
|uκuν), (8.49)

which represents the sum of the unscreened one-electron contribution plus the pair contribution
of the Coulomb interaction between the uκ electron and all other electrons. The total energy
ε(u1, · · ·uN ) is stationary if the functionals Hκ(u1, · · · , uN ) are simultaneously stationary under
variation of the uκ. The optimized values are denoted by

ε = ε(u1, · · · , uN )|opt and εκ = Hκ(u1, · · · , uN )|opt. (8.50)

Importantly, the total energy is not simply sum of the Hκ(u1, · · · , uN )|opt,

ε 6=
N∑
κ=1

εκ =

N∑
κ=1

〈uκ|h0|uκ〉+

N∑
κ,ν=1

′(uκuν |
1

ρ12
|uκuν), (8.51)

because this would amount to double counting of the interactions. The proper expression is found
by subtracting the interaction energy,

ε =

N∑
κ=1

εκ − 1
2

N∑
µ,ν=1

′(uµuν |
1

ρ12
|uµuν). (8.52)

This expression also follows from a comparison of Eqs. (8.47) and (8.49).
Adopting the notation of Eq. (7.46a) we can write Eq. (8.52) in the form

ε =

N∑
κ=1

εκ − 1
2

N∑
µ,ν=1

′J (uκ, uν) (8.53)

and the optimized form of Eq. (8.49) becomes

εκ = 〈uκ|h0|uκ〉+

N∑
ν=1

′J (uκ, uν). (8.54)

Substituting this expression into Eq. (8.53) we regain Eq. (8.47) but now in the form

ε =

N∑
κ=1

〈uκ|h0|uκ〉+ 1
2

N∑
κ,ν=1

′J (uκ, uν). (8.55)

At this point we could use the procedure of Section 7.4 to evaluate the integrals J (uκ, uν)
using hydrogenic wavefunctions and even obtain analytic expressions. However, there is no reason
why hydrogenic orbitals would be the optimal choice in many-electron atoms. On the contrary.
Therefore, we proceed with the derivation of the Hartree equations. First we write Hκ(u1, · · · , uN )
as the expectation value of the one-electron Hamiltonian hκ for an electron in the state |uκ〉,

Hκ(u1, · · · , uN ) = 〈uκ|hκ|uκ〉, (8.56)

where

hκ = − 1
2∇

2 − Z

ρ
+ Jκ(ρ). (8.57)
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Here Jκ(ρ) represents the potential energy of screening at position ρ approximated by an average of
the Coulomb energy over the orbitals of all other electrons (i.e., skipping the one in the orbital κ),

Jκ(ρ1) =

N∑
ν=1

′〈uν |
1

ρ12
|uν〉. (8.58)

This is a generalization of the screening function (7.14) derived for the screening of one s electron by
the other s electron in helium. The average amounts to a local density approximation in which the
effects of correlations in the relative motion of the electrons are neglected. In view of this average
the Uκ(ρ) are called a mean fields or effective fields.

〈uκ|Jκ|uκ〉 =

N∑
ν=1

′J (uκ, uν). (8.59)

We are now prepared to determine the mean-field energy for the ground state with the aid of
the variational principle. The lagrangian for the variation of Hκ under the constraint 〈uκ|uκ〉 = 1
is given by

Lκ(u1, · · · , uN , λκ) = 〈uκ|hκ|uκ〉+ λκ [〈uκ|uκ〉 − 1] , (8.60)

where λκ is the Lagrange multiplier. Note that in this lagrangian the orthogonality of the orbitals
is not enforced by a constraint. As discussed in Appendix I.1.3, for hermitian operators it suffices
to minimize the lagrangian (8.60) through variation of 〈uκ|,

δLκ = 〈δuκ|hκ|uκ〉+ λκ〈δuκ|uκ〉 = 0. (8.61)

With this procedure the orbital uκ is found as the stationary solution corresponding to the eigenvalue
εκ = −λκ of the effective single-electron Schrödinger equation

hκ|uκ〉 = εκ|uκ〉. (8.62)

This expression represents a set of N differential equations known as the Hartree equations, one for
each orbital uκ, and coupled through the mean field potentials. This result is quite intuitive. The
Schrödinger equation for electronic motion in the bare nuclear field (as used for hydrogenic atoms) is
replaced by a set of Hartree equation for electrons moving in the mean field of the nucleus screened
by the other electrons, [

− 1
2∇

2 − Z

ρ
+ Jκ(ρ)

]
uκ(ρ) = εκuκ(ρ). (8.63)

These equations have to be solved iteratively by numerical integration until self-consistency is
reached between the orbitals uκ and the corresponding screening functions 8.58. The energy εκ
can be interpreted as the energy (in atomic units) required for the instant removal of an electron in
the orbital |uκ〉. In experiments the observed ionization energy will generally be different because
the removal of one electron will also affect the screening of the other electrons. We return to the
interpretation of εκ in Section 10.2.4 when discussing Koopmans’ theorem in the context of the
Hartree-Fock equations.

Example: Because the central field Hamiltonian is invariant under rotations, n, l and ml remain
good quantum numbers and, like in the case of hydrogen, the orbital wavefunctions must be of the
general form

ψnlm(ρ) = Pnl(ρ)Y ml (r̂). (8.64)

The Hartree wavefunctions Pnl(ρ) satisfy the radial wave equation[
1

2

(
− d2

dρ2
− 2

ρ

d

dρ
+
l(l + 1)

ρ2

)
− Z

ρ
+ Jnl(ρ)

]
Pnl(ρ) = εnlPnl(ρ) (8.65)



8.5. Quantum defects for alkali-like atoms 219

and differ of course from the hydrogenic one because the screening distorts the electrostatic potential
into a non-Coulomb form. The set of N equations (8.62) are called the Hartree equations, one for
each electron. They have to be solved iteratively using numerical integration. Starting from the
hydrogenic wavefunctions R̃nl(ρ) of the electron configuration we obtain an educated guess for the
potential energy of screening Uscr(ρ) of the electron under consideration in the screened field of the
nucleus. Then we can solve the Hartree equations and obtain new radial wavefunctions Pnl(ρ) for
the electrons and recalculate the screening integral. This procedure is repeated until self consistency
is reached.

The Hartree method has been used a lot in the past in spite of the neglect of exchange. The
practical importance of the method has essentially vanished because the relative simplicity of the
Hartree wavefunctions is no longer important from the computational point of view. Without much
additional effort one can replace the Hartree wavefunctions by Hartree-Fock wavefunctions, which
properly take into account the required antisymmetry of the many-electron wavefunction under
interchange of two electrons. We return to the many-electron wavefunctions in Chapter 9.

8.5 Quantum defects for alkali-like atoms

For another example of a central field approximation we consider many-electron atoms with a single
outer electron such as the alkali atoms or singly charged ions of “two-electron” atoms, like Ba+.
Also all atoms with a single highly excited electron, called Rydberg atoms, fall in this class. In these
cases it still is possible to use the formalism developed for hydrogen because at large distances from
the core the outer electron will observe a core charge equal to the elementary charge, just like in
the case of hydrogen. Obviously, within the cloud of core electrons screening of the nuclear charge
must be taken into account. For this purpose we introduce an effective nuclear charge Zeff(ρ), which
is a function of the distance to the nucleus. The radial wave equation can be written in the form
(8.65) and, introducing the reduced radial wavefunction χ̃nl(ρ) = ρR̃nl(ρ), also in the form of a
1D-Schrödinger equation

χ̃′′nl + 2
[
Zeff(ρ)/ρ− l(l + 1)/2ρ2 − εnl

]
χ̃nl = 0. (8.66)

In view of the limiting behavior of the effective charge, limρ→∞ Zeff(ρ) = 1 and limρ→0 Zeff(ρ) = Z,
we expect the same limiting expressions for the radial wave equation as in the case of hydrogenic
atoms. For ρ→∞ the Eq. (8.66) may be approximated by

χ̃′′nl − 2εnlχ̃nl = 0, (8.67)

with solution χ̃nl(ρ) ∼ e−ρ
√

2ε. For ρ→ 0 the limiting expression is

χ̃′′nl −
[
l(l + 1)/ρ2

]
χ̃nl = 0, (8.68)

with solution χ̃nl(ρ) ∼ ρl+1e−ρ
√

2ε. Thus, like in the case of hydrogen, the wavefunction is of the
form

χ̃nl(ρ) = ρl+1e−ρ
√

2εnlw̃nl(ρ), (8.69)

where w̃nl(ρ) is some crossover function between the expression of the wavefunction at short range
and at large range. The remaining difficulty is that the binding energies εnl are not known. At this
point we cannot calculate these values because the electrostatic potential of the central field is not
known.

Interestingly, Bates and Damgaard found a semi-empirical approach by which we can bootstrap
ourselves to an approximate solution in which detailed knowledge of the central field is not necessary
[9]. Rather than calculating the energy levels the experimental values are used. As long as the levels
are only shifted slightly, the number of nodes in the radial wavefunction remains unaffected; i.e.,
n′ = n− l − 1 remains unchanged.
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Table 8.1: Transition dipole moments and transition strengths for hydrogen, metastable helium and the
alkali atoms.

El. Transition

|g〉 → |e〉 n∗s n∗p Deg(a.u.) D2
eg(a.u.)

H 1s→ 2p 1.000 2.000 0.745 0.555

He∗ 2s→ 2p 1.689 1.938 2.59 6.452

Li 2s→ 2p 1.589 1.959 2.40 5.532

Na 3s→ 3p 1.627 2.117 2.29 5.978

K 4s→ 4p 1.770 2.235 2.71 8.077

Rb 5s→ 5p 1.805 2.293 2.77 8.509

Cs 6s→ 6p 1.869 2.362 2.95 9.567

To represent a proper set of eigenfunctions the wavefunctions must be orthonormal and this is
the case for Eq. (2.37). Bates and Damgaard found that a normalized wave function with the correct
asymptotic behavior for ρ→∞ is obtained by using hydrogenic wavefunctions (2.37) in which the
principal quantum number n is replaced by n∗ and the angular momentum quantum number l by
l∗,

R̃n∗,l∗(ρ) = N−1/2(2Z/n∗)l
∗+3/2ρl

∗
e−Zρ/n

∗
iL2l∗+1

n∗−l∗−1 (2Zρ/n∗) , (8.70)

with normalization constant

N =
2n∗Γ(n∗ + l∗ + 1)

Γ(n∗ − l∗)
. (8.71)

Note that n∗ − l∗ = n − l. Inspecting the solution Eq. (8.70), we find that the wave function
remained normalized because the boundary condition near the origin was properly adjusted, χ̃l(ρ) '
ρl+1−δl for r → 0. This means that close the origin the wavefunctions are inaccurate but for many
applications this is not important. For instance, for the valence electron in alkali atoms the radial
integrals with ν ≥ 1 are given to good approximation by

〈ρν〉 =

ˆ
ρ2+ν [R̃n∗l∗(ρ)]2dρ. (8.72)

Although this integral cannot be evaluated analytically like in the case of hydrogen straightforward
numerical calculation is possible. Importantly, wavefunctions of the type Eq. (8.70) offer a good ap-
proximation to calculate optical transition strength for the alkali atoms on the basis of the quantum
defects tabulated above.

8.5.1 Radial averages

In the case of the alkali atoms the radial integrals cannot be evaluated analytically because the
quantum defects give rise to non-integer values of the quantum numbers,

〈ρν〉 =

ˆ
ρ2+ν [R̃n∗l∗(ρ)]2dρ. (8.73)

However, the eigenfunctions given in Section 2.4 still allow straightforward numerical evaluation
with Mathematica, at least as long as the principal quantum numbers are not too large.

For s-p transitions we have with Eq. (8.70)

R̃ni0(ρ) = N−1/2
i (2Z/n∗)−δs+3/2ρ−δse−ρ/n

∗
iL1−2δs

n∗i+δs−1(2ρ/n∗i ) (8.74)

R̃nf1(ρ) = N−1/2
f (2Z/n∗f )−δp+5/2ρ1−δpe−ρ/n

∗
fL

3−2δp
n∗f+δp

(2ρ/n∗f ), (8.75)
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where the normalizations are given by Eq. (8.71). In Table 8.1 we give the results for the first
optically allowed transitions (s-p transitions) of some atomic systems from their ground state.
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9

Many-electron wavefunctions

To introduce the subject of many-electron wavefunctions, we first recall the consequences of the
indistinguishability of identical particles in quantum mechanics. Two particles are called identical
if there is no physical way to establish whether or not the particles have been exchanged. This
condition is satisfied for particles with identical internal structure because, in quantum mechanics,
it is fundamentally impossible to label a particle by tracking its motion along an orbit. The latter
is only possible in classical mechanics as it requires the simultaneous determination of position and
momentum. The state of the pair is represented by the pair wavefunction

ψ (r1, σ1; r2, σ2) , (9.1)

where r1 and r2 are the position coordinates and σ1 and σ2 the spin coordinates, respectively (see
Appendix F.1.4). The squared modulus of the wavefunction,

|ψ (r1, σ1; r2, σ2) |2, (9.2)

corresponds to the probability of observing one particle (say particle 1) at position r1 in spin state
σ1 with the other particle (say particle 2) at position r2 in spin state σ2. With this procedure we
labeled the particles by the position of observation. It does not mean that we observe a labeled
particle. The latter is only possible for particles with a difference in internal structure (the “label”).
Next we allow for interchange of particles before doing the measurement. Formally this is realized
by introducing the exchange operator P12,

P12ψ (r1, σ1; r2, σ2) ≡ ψ (r2, σ2; r1, σ1) . (9.3)

As “tracking” is fundamentally impossible in quantum mechanics, we have no physical means to
establish whether or not two identical particles have been exchanged. This means that the proba-
bility to observe particle 2 at position r1 in spin state σ1 with particle 1 at position r2 in spin state
σ2 is equal to that of observing particle 1 at position r1 in spin state σ1 with particle 2 at position
r2 in spin state σ2 :

|ψ (r1, σ1; r2, σ2) |2 = |ψ (r2, σ2; r1, σ1) |2. (9.4)

This shows that P12 has to be norm-conserving,

〈ψ|P †12P12|ψ〉 = 〈ψ|ψ〉 = 1, (9.5)

but also that the particle indices, 1 and 2, have no physical significance.
Let us have a closer look at the exchange operator. Because P12 is norm-conserving, we have

P †12P12 = 1 (9.6)

223
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and
P12|ψ〉 = e−iθ|ψ〉. (9.7)

Furthermore, exchanging the particles twice must leave the pair state unchanged. Rewriting the
phase angle in the form θ = nπ + ϕ (which can be done without loss of generality) we find from
Eq. (9.7)

P 2
12|ψ〉 = e−i2ϕ|ψ〉. (9.8)

So the question arises for what value of ϕ the pair state is invariant under all possible ways to
exchange the particles twice. For 3D systems (and in the absence of topological excitations)1 this
is the case only for ϕ = 0; i.e., for

P 2
12 = 1. (9.9)

Writing P †12 = P †12P
2
12 = P12 we see that P12 is hermitian; i.e., the eigenvalues of P12 are real an

take the values ±1. In view of the definition (9.3) these eigenvalues correspond to pair wavefunctions
which are either symmetric (+1) or antisymmetric (−1) under exchange of the particles.

As, by definition, the pair Hamiltonian H is invariant under exchange of identical particles, P12

commutes with H, which implies that P12 and H share a complete set of eigenstates. Therefore,
the eigenstates of P12 span the full Hilbert space of the pair and P12 is not only hermitian but also
an observable. In nature, particles of a given species are always found in states showing the same
symmetry under exchange, corresponding to only one of the eigenvalues of P12. Apparently, for
identical particles the pair wavefunction has to be an eigenfunction of the exchange operator; i.e.,
the exchange symmetry is conserved in time. If the wavefunction is symmetric under exchange of
two particles the particles are called bosons, if antisymmetric they are called fermions. The division
of particles into bosons and fermions points to a rigorously enforced underlying principle, which is
found in relativistic quantum field theory in the form of the spin-statistics theorem. Discussion of
this fundamental theorem falls outside the scope of this course. We accept it as a postulate in which
bosons always carry integral total spin and fermions half-integral total spin. Taking into account
the spin-statistics theorem, the action of the exchange operator is summarized by the expression

P12ψ (r1, σ1; r2, σ2) = e−i2πsψ (r1, σ1; r2, σ2) , (9.10)

where s is the (integral or half-integral) spin of the particle.

Problem 9.1. Show that any pair wavefunction can be written as the sum of a part symmetric and a part
antisymmetric under exchange of the particles of the pair.

Solution. For any pair state we have |ψ〉 = 1
2

(1 + P12) |ψ〉 + 1
2
(1 − P) |ψ〉, where P12 is the exchange

operator, P 2
12 = 1. The first term is symmetric, P12 (1 + P12) |ψ〉 =

(
P12 + P 2

12

)
|ψ〉 = (1 + P12) |ψ〉, and the

second term is antisymmetric, P12 (1− P12) |ψ〉 =
(
P12 − P 2

12

)
|ψ〉 = − (1− P12) |ψ〉. 2

9.1 Quantum correlations, Pauli principle and Slater determinants

Let us specialize to the case of two s = 1
2 fermions in the pair state ψ (r1, σ1; r2, σ2). Eq. (9.10)

shows that the pair state must be antisymmetric under exchange of the particles,

ψ (r2, σ2; r1, σ1) = −ψ (r1, σ1; r2, σ2) . (9.11)

For two fermions in the same spin state (σ2 = σ1 = σ) and at the same position (r1 = r2 = r)
this condition becomes ψ (r, σ; r, σ) = −ψ (r, σ; r, σ). So, it follows that these fermions have zero

1The general case was analyzed by Jon Leinaas and Jan Myrheim in 1977 [71]. In 2D (or 3D in the presence of
vorticity), the phase angle θ corresponds to a rotation angle, with θ1 = nπ + ϕ being equivalent to θ2 = −(nπ − ϕ).
This implies that exchange with θ1 + θ2 = 2ϕ 6= 0 is a physical option. It gives rise to quantum statistics with its
own type of identical particle called anyon (with fractional spin defined by θ = 2πs) [123].
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probability to be at the same position; i.e., they avoid each other. Apparently, for two fermions in
the same spin state the motion is correlated as a result of the symmetry conditions. These kinematic
correlations are purely quantum mechanical in origin and clearly not the result of potential forces
(e.g., electrostatic) between the particles. The correlations affect the distribution over position and
momentum with major consequences for statistical treatments of quantum many-body systems (in
our case Fermi-Dirac statistics). In particular, the condition that two fermions in the same spin
state cannot be at the same position excludes the possibility that they are in the same state. This
is known as the Pauli exclusion principle.

9.1.1 Antisymmetric pair states for electrons

As an important example of s = 1
2 fermions we consider the case of two electrons. With one electron

in state |α1〉 and the other in state |α2〉, the standard method to form a pair state is by constructing
the product state

|α1, α2) ≡ |α1〉1 ⊗ |α2〉2, (9.12)

where the ket |ακ〉i represents electron i in state |ακ〉. However, this state state does not qualify as a
proper two-electron state because it is not antisymmetric under exchange as is required for fermionic
particles. The simplest pair state with the proper symmetry has the form of a 2× 2 determinant,1

|α1, α2〉 =
√

1
2 [|α1, α2)− |α2, α1)] =

√
1
2

∣∣∣∣ |α1〉1 |α2〉1
|α1〉2 |α2〉2

∣∣∣∣ . (9.13)

By construction determinants are antisymmetric under exchange of the rows (particle index) or,
equivalently, the columns (state index),

P12|α1, α2〉 = −|α2, α1〉. (9.14)

For equal states, |α1〉 = |α2〉, the determinant vanishes in accordance with the Pauli principle.
Now we apply this symmetrization procedure to spinorbitals, the single electron eigenstates.

These are defined by specifying both the orbital u and the spin state (|�〉 or |�〉 of the electron. In
search for a compact notation we decorate the orbital with a dot for spin-up and with a bar for
spin-down,

|u̇〉 ≡ |u�〉 ≡ |u〉 ⊗ |�〉 and |u〉 ≡ |u�〉 ≡ |u〉 ⊗ |�〉 . (9.15)

In this notation any properly symmetrized state of two electrons in the orbitals u and v can be
written as a linear combination of an orthonormal set of four 2× 2 determinants,

|u̇, v̇〉 , |u̇, v〉 , |u, v̇〉 , |u, v〉 . (9.16)

Because the sign of the determinants depends on the ordering of the rows and columns we fix the
phase by convention. We shall use alphabetic ordering of the orbitals (u precedes v) followed by up
precedes down.

9.1.1.1 Coulomb repulsion integrals for electron pairs

The determinants of the basis (9.16) are properly symmetrized but they are not the singlet and
triplet eigenstates obtained in Section 7.3 for the Coulomb repulsion energy in the helium atom.
The reason is that the 2 × 2 determinants are eigenstates of the exchange operator P12 but not of
the atomic hamiltonian of two electrons moving in the central potential −Z(ρ)/ρ,

H =

2∑
i=1

[
− 1

2∇
2
i − Z(ρi)/ρi

]
+ ρ−1

12 . (9.17)

1Note the use of curved brackets for product states and angled brackets for symmetrized states.
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As all electrons are identical and the Coulomb repulsion only depends of the interparticle distance,
H is manifestly invariant under exchange of the electrons. Hence, P12 commutes with H and the
operators P12 and H must share a complete set of eigenstates. This means that, like the states
(9.16), also the energy eigenstates can be written in a form antisymmetric under exchange of the
electrons. The difficulty is that, in general, this cannot be done using a single 2× 2 determinant. In
search for the proper linear combinations we write the perturbation H′ = ρ−1

12 in the basis (9.16),

H′ =


J −K

J K
K J

J −K

 . (9.18)

Let us verify this for the matrix elements of the spin-up stretched state |u̇, v̇〉 = |u, v〉 |��). Expanding
the determinant, |u̇, v̇〉 = 1√

2
[|uv)− |vu)] |��), we obtain for the diagonal contribution

〈u̇, v̇| ρ−1
12 |u̇, v̇〉 = 1

2

[
(uv|ρ−1

12 |uv)− (uv|ρ−1
12 |vu)− (vu|ρ−1

12 |uv) + (vu|ρ−1
12 |vu)

]
= J −K, (9.19)

where J and K are the direct and exchange integrals defined in Eqs. (7.46a) and (7.46b), respectively.
The off-diagonal contributions of |u̇, v̇〉 are all zero because because at least one of the electrons is in
a down-spin state. The matrix elements of the non-stretched states are calculated in Problems 9.2
and 9.3. Diagonalizing the Hamiltonian we obtain the singlet and triplet eigenvalues

E0,0(u, v) = J (u, v) +K(u, v) = ∆E+ (9.20a)

E1,1(u, v)

E1,0(u, v)

E1,−1(u, v)

 = J (u, v)−K(u, v) = ∆E−. (9.20b)

These energies correspond to the Coulomb repulsion shift with respect to the energy of two nonin-
teracting electrons moving in the central potential −Z(ρ)/ρ. These shifts were also obtained (for
Z(ρ) ≡ 2) in Section 7.3. The corresponding eigenstates are (in standard ordering)

|ψ−u,v; 1, 1〉= |u̇, v̇〉
|ψ−u,v; 1, 0〉= 1√

2
[|u̇, v〉+ |u, v̇〉] |ψ+

u,v; 0, 0〉 = 1√
2

[|u̇, v〉 − |u, v̇〉] .
|ψ−u,v; 1,−1〉= |u, v〉

(9.21)

Problem 9.2. Show that for the matrix elements of the type 〈u̇v|ρ−1
12 |u̇v〉 the exchange terms vanish,

〈u̇v|ρ−1
12 |u̇v〉 = (uv|ρ−1

12 |uv) = J .

Solution. Using the determinant |u̇, v〉 = 1√
2

[|u̇v)− |vu̇)] the matrix element becomes

〈u̇v|ρ−1
12 |u̇v〉 = 1

2

[
(u̇v|ρ−1

12 |u̇v)− (u̇v|ρ−1
12 |vu̇)− (vu̇|ρ−1

12 |u̇v) + (vu̇|ρ−1
12 |vu̇)

]
= 1

2

[
(uv|ρ−1

12 |uv) + (vu|ρ−1
12 |vu)

]
= J ,

where J is the direct integral (7.46a). Note that (u̇v|ρ−1
12 |vu̇) = (�� |��)K = 0 and (vu̇|ρ−1

12 |u̇v) = (�� |��)K =
0, where K is the exchange integral (7.46b). 2

Problem 9.3. Show that for the matrix elements of the type 〈u̇, v|ρ−1
12 |v̇, u〉 the direct terms vanish,

〈u̇v|ρ−1
12 |v̇u〉 = (uv|ρ−1

12 |vu) = K.

Solution. Using the determinants |u̇v〉 = 1√
2

[|u̇v)− |vu̇)] and |v̇u〉 = 1√
2

[|v̇u)− |uv̇)] the matrix element
becomes

〈u̇v|ρ−1
12 |u̇v〉 = 1

2

[
(u̇v|ρ−1

12 |v̇u)− (u̇v|ρ−1
12 |uv̇)− (vu̇|ρ−1

12 |v̇, u) + (vu̇|ρ−1
12 |uv̇)

]
= 1

2

[
(uv|ρ−1

12 |vu) + (vu|ρ−1
12 |uv)

]
= K,

where K is the exchange integral (7.46b). Note further that (u̇v|ρ−1
12 |u, v̇) = (�� |��)J = 0 and (vu̇|ρ−1

12 |v̇, u) =
(�� |��)J = 0 is the direct integral (7.46a). 2
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9.1.2 Spinorbitals and Slater determinants

An important tool to deal with many-electron systems is the Slater determinant. Its discovery by
John Slater marks a true milestone in many-body physics [101]. The Slater determinant is the
simplest generalization of the product wavefunction with the proper symmetry under interchange
of any two electrons and consistent the Pauli principle. For N fermions the Slater determinant is
written as

ψα (r1, σ1; · · · ; rN , σN ) =

√
1

N !

∣∣∣∣∣∣∣
ϕα1

(r1, σ1) · · · ϕαN (r1, σ1)
... · · ·

...

ϕα1 (rN , σN ) · · · ϕαN (rN , σN )

∣∣∣∣∣∣∣ . (9.22)

Indeed, the property of determinants to vanish when two columns or two rows are equal assures that
the wavefunction vanishes when two electrons are in the same state α or share the same (position and
spin) coordinates (ri, σi), while exchanging two rows or two columns yields the minus sign required
for anti-symmetric wavefunctions. In Dirac notation the antisymmetrized form of N fermions in
states α1, · · · , αN is given by

|ψα〉 ≡ |α1, · · · , αN 〉 ≡
√

1

N !

∑
P

(−1)pP |α1, · · ·αN ), (9.23)

where
|α1, · · ·αN ) ≡ |α1〉1 ⊗ |α2〉2 ⊗ · · · |αN 〉N ≡ |ψα) (9.24)

is the N -body ordered product of the single-particle states |ακ〉i, where κ ∈ {1, · · · , N} is the
state index and i ∈ {1, · · · , N} the particle index. The sum runs over all permutations P of the
particles, p being the parity (number of transpositions; i.e., binary interchanges) required to realize
the permutation starting from an initial ordering fixed by convention. As the sum runs over all
permutations, it makes no difference whether we permute all particles or permute all states of the
particles. We choose the permutation operator P to act on the state index (κ) and not on the
particle index (i). With this choice, the interchange of the states of particles 1 and 2 is written as

P |α1, α2, · · ·αN ) = |α2, α1, · · ·αN ) = |α2〉1 ⊗ |α1〉2 ⊗ · · · |αN 〉N . (9.25)

To assure a uniquely defined sign of the Slater determinants we shall adopt the standard order-
ing convention of atomic configurations (see later). The state labeling α1, · · · , αN refers to the
spinorbitals introduced in Dirac notation in Eqs. (9.15). The spinorbital ϕu� (ri, σi) = ϕu (r)χ� (σ)
corresponds to spin-up electron in the motional state ϕu (r).

9.1.3 Slater determinants - notations and ordering convention

The rows of the Slater determinant (9.22) differ only in the particle index and the columns only in
the state index. Note that is a matter of convention because determinants are invariant under trans-
position - see property M.21. Whatever our preference and without loss of information, Eq. (9.22)
can be written in the short-hand form for the singlets.

ψα (r1, σ1; · · · ; rN , σN ) = det(α1, · · · , αN ). (9.26)

We will use the Dirac notation, in which the N -electron state |ψα〉 = |α1, · · · , αN 〉 is constructed
from one-electron spinorbitals

|ακ〉 = |nκlκmκ
l s
κmκ

s 〉 = |uκ〉 ⊗ |sκmκ
s 〉, (9.27)

where κ ∈ {1, · · ·N} is the state index. Using the arrow notation for spin, the N -electron state for
the spinorbitals |u�〉, |v�〉, · · · |w�〉 can be written as (again without loss of information)

|ψα〉 = |u�, v�, , · · · , w�〉 ≡ |u̇, v̇, · · · , w̄〉, (9.28)
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Figure 9.1: Configuration plot for the ground state of Strontium. Note that the arrow notation is a short-
hand notation for Slater determinants as explained in the text. The slicing of the arrows has no significance
other than offering a compact notation.

where the spin “up” and “down” are indicated by putting a dot or a bar, respectively.
For equivalent electrons the states differ in the magnetic quantum numbers,

|ακ〉 = |mκ
l m

κ
s 〉nl. (9.29)

For two equivalent s electrons the only possible determinant consistent with the Pauli principle is
|0̇, 0̄〉ns2 ≡ |��−〉ns2 , e.g. the ground state of the helium atom is 1

|ψHe〉 = |1ṡ, 1s̄〉 ≡ |0̇, 0̄〉1s2 ≡ |��−〉1s2 . (9.30)

If we have more than one occupied shell consisting the full state is represented by a joined determi-
nant of order equal to the total number of electrons. Thus we obtain for beryllium

|ψBe〉 = |1ṡ, 1s̄, 2ṡ, 2s̄〉 ≡ |(0̇, 0̄)1s2(0̇, 0̄)2s2〉 = |(��−)1s2(��−)2s2〉 (9.31)

and for neon

|ψNe〉 = |1ṡ, 1s̄; 2ṡ, 2s̄; 2ṗ1, 2p̄1, 2ṗ0, 2p̄0, 2ṗ−1, 2p̄−1〉 (9.32a)

= |(0̇, 0̄)1s2(0̇, 0̄)2s2(1̇, 1̄, 0̇, 0̄,−1̇,−1̄)2p6〉 ≡ |(��−)1s2(��−)2s2(��− ��− ��−)2p6〉. (9.32b)

In this way we can write the state of any closed shell configuration in the form of a single Slater
determinant: the determinant for which the states satisfy the exclusion principle (i.e., the determi-
nant is non-zero). The example of Strontium is given in Fig. 9.1. Note that the notation with the
arrows is the most compact and used in the well-known configuration plots for the various elements.
The state notation

|2ṗ1, 2p̄1, 2ṗ0, 2p̄0, 2ṗ−1, 2p̄−1〉 = |1̇, 1̄, 0̇, 0̄,−1̇,−1̄〉2p6 (9.33)

is written conform the standard ordering convention for the sign of the determinant: high ML pre-
cedes low ML and spin up precedes spin down in the non-permuted product state |1̇, 1̄, 0̇, 0̄,−1̇,−1̄).

With partially filled shells the situation is more complicated because - in general - they cannot
be represented by a single Slater determinant. In the case of two-electron atoms we are dealing
with two valence electrons in ns2, np2, nd2 or nf2 configurations orbiting about an atomic core
presenting at large distance from the nucleus a net positive charge 2e. For the ns2 configurations
one distinguishes helium-like atoms and alkaline-earth-like atoms.2 The helium-like atoms were
discussed in Chapter 7. Alkaline-earth-like atoms are many-electron atoms consisting of two outer

1Sliced arrows are used for convenience of notation but have no physical significance.
2The alkaline-earth elements are to be distinguished from the alkaline earths, which are the oxides of the elements.

Historically, the notion earths was used for water-insoluble substances that do not burn in fire.
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electrons in a ns2 configuration and a doubly charged central core, thus resembling a two-electron
atom like helium. Aside from the alkaline-earth elements (group II) atoms Be, Mg, Ca, Sr and Ba
this class also includes the ions of the “three electron atoms” (group III atoms), B+, Al+, Ga+,
In+ and Ti+. The group IV atoms have configuration np2 (C, Si, Ge, Sn, Pb). The nd2 atoms (Ti,
Zr, Hf, Rf) are transition metals. For each electron in a nl2 configuration there are ν = 2(2l + 1)
possible states |nlmlsms〉. For non-equivalent electrons this implies ν2 possible pair states; i.e., each
electron can be paired with an electron in any of the ν possible states. For equivalent electrons we
have to exclude the occurrence of two electrons in the same state. This leaves

1

2
ν(ν − 1) =

ν!

2!(ν − 2)!
=

(
ν

2

)
(9.34)

combinations consistent with the Pauli principle. This procedure is readily generalized to x equiv-
alent electrons in a nlx configuration. To avoid identical pairs we have to choose x out of ν, which
can be done in (

ν

x

)
=

ν!

x!(ν − x)!
(9.35)

different ways as is well known from combinatorics. Thus, Eq. (9.35) provides the total number of
different x-body states consistent with the Pauli principle in nlx configurations. We return to these
cases in Chapter 10.

Problem 9.4. Show that Slater determinants are invariant under unitary transformations.

Solution. To demonstrate this property we write the Slater determinant |ψα′〉 in the form

|ψα′〉 =

√
1

N !

∣∣∣∣∣∣∣
|α′1〉1 · · · |α

′
1〉N

... · · ·
...

|α′N 〉1 · · · |α
′
N 〉N

∣∣∣∣∣∣∣ =

√
1

N !
det(α′).

Next we consider the subspace defined by the spinorbitals |α′1〉, · · · |α′N 〉. Let |α1〉, · · · |αN 〉 be an alternative
basis for the same subspace. Using the closure relation we define the basis transformation

|α′j〉 =

N∑
i=1

|αi〉〈αi|α′j〉 =

N∑
i=1

Uij |αi〉.

Since 〈α′j |αi〉 = 〈αi|α′j〉∗ this is a unitary transformation. Applied to the matrix α′ we have

α′ = Uα =

 〈α1|α′1〉 · · · 〈αN |α′1〉
... · · ·

...
〈α1|α′N 〉 · · · 〈αN |α′N 〉


 |α1〉1 · · · |α1〉N

... · · ·
...

|αN 〉1 · · · |αN 〉N

 .

Using the properties of determinants (see Appendix M.2) we find

det(α′) = det(Uα) = det(U) det(α) = eiξ det(α),

where ξ is a real number. This expression shows that (up to a phase factor) the Slater determinant is
invariant under unitary transformation, |ψα′〉 = eiξ|ψα〉; the phase factor is of no consequence because it
does not affect the expectation values. 2

9.1.4 Slater determinants - parity and electric-dipole matrix elements

In Section 2.5.1 we found that electric-dipole transitions require a change parity of the atomic
state. This selection rule was derived for one-electron atoms. For many-electron atoms this can be
different. Therefore, we reconsider the dipole operator as well as the parity of many-electron states.



230 Chapter 9. Many-electron wavefunctions

The electric-dipole operator of an N electron atom is given by

D =− e
N∑
i=1

ri = −eaρ
N∑
i=1

r̂i. (9.36)

Changing the radius vectors of all electrons from ri to −ri, with i ∈ {1, N}, we find that the total
dipole operator has odd parity; i.e., also in the many-electron electron case electric-dipole transitions
require a change parity of the atomic state.

Turning to the states, we note that Slater determinants are linear combinations of products of
single particle spinorbitals. As the parity of spinorbital |ακ〉 is (−1)lκ , the parity of the full Slater
determinant is given by

(−1)
∑
κ l.κ =

∏
κ

(−1)lκ . (9.37)

This expression shows that the parity of Slater determinant is even unless
∑
κ l.κ = odd. Phrased

differently, the parity is even except for atoms with an odd number of electrons in odd-parity states.
Only in the case of one-electron atoms the total angular momentum is decisive for the parity of the
many-electron state. For this reason, in the case of many-electron atoms, the parity of odd-parity
total angular momentum states is explicitly indicated in the spectroscopic notation by an upper
index o. In the case of even parity the notation remains unchanged; e.g.,

1s22p 2P → 1s22p 2P o (9.38a)

npnd 3D → npnd 3Do and np2 3D → np2 3D. (9.38b)

9.2 Matrix elements of operators between Slater determinants

Dealing with systems of more than one electron means dealing with many-body operators and
antisymmetrized N -body states. At first sight it may seem a complicating factor to deal with
wavefunctions in the form of Slater determinants and in a way it is, but fortunately a number
of simplifying expressions may be derived relating the properties of N -body states to those of
single electrons, pairs, triples, etc.. It is the purpose of the present section to derive a number of
such expressions for future use. We consider the matrix elements for common operator types in
combination with antisymmetric N -electron basis states |ψα〉 = |α1, · · · , αN 〉, where the ακ, with
κ ∈ {1, · · · , N}, correspond to one-electron spinorbitals.

9.2.1 One-body operators

First we consider the matrix elements of a sum of one-body operators,

Q1 =

N∑
i=1

qi, (9.39)

where the operator qi acts only on the electron with index i ∈ {1, · · · , N}. A good example of
an operator of this type is the Schrödinger Hamiltonian for electrons in the unscreened Coulomb
field of the nucleus. Using Eq. (9.23) the most general matrix element of Q1 with determinantal
wavefunctions is of the form

〈ψα′ |Q1|ψα〉 =
1

N !

N∑
i=1

∑
P,P ′

(−1)p+p
′
(ψα′ |P ′qiP |ψα), (9.40)

where |ψα) ≡ |α1, · · · , αN ) is the non-symmetrized product state in standard order; p and p′ are the
parities of the permutations P and P ′, respectively. In view of the orthogonality of the spinorbitals
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|ακ〉 the matrix elements (ψα′ |P ′qiP |ψα) ≡ (α1, · · · , ακ′ , · · ·αN |P ′qiP |α1, · · · , ακ, · · ·αN ) are zero
for all possible permutations P and P ′ whenever |ψα〉 and |ψα′〉 differ in more than one pair of
spinorbitals.

• Off-diagonal matrix elements differing in one pair. Let |ψα〉 and |ψα′〉 differ in one pair of spin
orbitals, ακ and ακ′ . Then, for every value of i ∈ {1, · · · , N} there are (N − 1)! permutations
P ′|α1, · · · , ακ′ , · · ·αN ) for which ακ′ appears on position i. For each of these permutations
there is exactly one permutation P |α1, · · · , ακ, · · ·αN ) for which also ακ appears on position
i while, in addition, (ψα′ |P ′qiP |ψα) 6= 0. For this permutation the N -body matrix elements
(ψα′ |P ′qiP |ψα) reduce to a one-body matrix element involving only electron i,

(ψα′ |P ′qiP |ψα) = 〈ακ′ |qi|ακ〉i. (9.41)

Importantly, the sign (−1)p+p
′

corresponding to P and P ′ has the same value for all values of i,
+1 or −1 depending on the ordering convention. Further, also the matrix elements 〈ακ′ |qi|ακ〉i
are the same for all electrons; hence, without loss of generality we can drop the particle index
and write1

〈ακ′ |qi|ακ〉i = 〈ακ′ |q|ακ〉. (9.42)

Summing (ψα′ |P ′qiP |ψα) over i ∈ {1, · · · , N} and over all permutations P, P ′ we arrive at
N(N−1)! = N ! nonzero contributions of equal value (−1)p+p

′〈ακ′ |q|ακ〉 and Eq. (9.40) reduces
to a single one-body matrix element,

〈ψα′ |Q1|ψα〉 = 〈ακ′ |q|ακ〉
1

N !

N∑
i=1

∑
P

′(−1)p+p
′

= ±〈ακ′ |q|ακ〉, (9.43)

where the sign depends on the ordering convention. The prime indicates that the permutation
sum excludes, for a given value of i, all permutations P in which ακ appears on position i
but (ψα′ |P ′qiP |ψα) = 0. We thus established that an operator of the type Q1 can couple
two one-electron states. Note that the corresponding matrix element does not depend on the
particle index. This reflects the indistinguishability of identical particles.

• Diagonal matrix elements. In this case |ψα〉 = |ψα′〉. Adopting the same approach as for
the off-diagonal elements we note that in the diagonal case the N -body matrix elements
are only nonzero if P ′ = P . Again we find that for every value of i ∈ {1, · · · , N} there
are (N − 1)! permutations P |α1, · · · , ακ, · · ·αN ) for which ακ appears on position i while
(ψα|PqiP |ψα) 6= 0 but in the present case this is possible for each value of κ ∈ {1, · · · , N}.
For each set of (N − 1)! permutations the N -body matrix elements reduce to the same one-
body matrix element, (ψα|PqiP |ψα) = (−1)2p〈ακ|q|ακ〉 = 〈ακ|q|ακ〉. Summing (ψα|PqiP |ψα)
over i ∈ {1, · · · , N} and over all permutations P we have this time for each κ ∈ {1, · · · , N}
again N(N − 1)! = N ! nonzero terms of equal value 〈ακ|q|ακ〉 and Eq. (9.43) is replaced by

〈ψα|Q1|ψα〉 =

N∑
κ=1

〈ακ|q|ακ〉. (9.44)

This result is intuitively clear: the expectation value of the operator Q1 represents the sum of
the contributions of all spin-orbitals contained in the many-body state |α1, · · · , αN 〉. Again
the result is independent of the particle indices as expected for identical particles.

1For example for the hydrogenic ns orbitals we calculate 〈ns|Z/ρi|ns〉 =
´
|φns(ρi)|2ρidρi = Z2/n2.
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9.2.2 Two-body operators

Next we consider the matrix elements of a sum of two-body operators,

Q2 = 1
2

N∑
i,j=1

′qij =

N∑
i>j

qij , (9.45)

where the operator qij acts only on the electrons with indices i, j ∈ {1, · · · , N} and the sum runs
over all different pairs. The prime excludes the case i = j and the factor 1

2 corrects for double
counting of pairs. Alternatively one can sum over all pairs with i > j. A good example of such
an operator is the electrostatic repulsion (7.10) between electrons in an atom. Using Eq. (9.23) the
most general matrix element of Q2 with determinantal wavefunctions is of the form

〈ψα′ |Q2|ψα〉 =
1

N !

1

2

N∑
i,j=1

′
∑
P,P ′

(−1)p+p
′
(ψα′ |P ′qijP |ψα), (9.46)

where |ψα) ≡ |α1, · · · , αN ) is the N -body product state in standard order. In view of the orthog-
onality of the spin-orbitals we have (ψα′ |P ′qijP |ψα) = 0 for all possible permutations P and P ′

whenever |ψα〉 and |ψα′〉 differ in more than two pairs of spin orbitals.

• Off-diagonal matrix elements differing in two pairs. Let |ψα〉 and |ψα′〉 differ by two pairs
of spinorbitals, ακ, αν and ακ′ , αν′ , respectively. For each pair of indices i, j ∈ {1, · · · , N}
with i 6= j, there are 2 (N − 2)! permutations |α1, · · · , ακ, αν , · · ·αN ) = P |α1, · · ·αN ) for
which ακ appears on the position i and αν on j (those we call P1) or vice versa (those we
call P2). For each of these permutations there is exactly one permutation, P ′1 or P ′2, for
which ακ′ and αν′ appear, respectively, on the position i and j in (ψα′ |P ′, while in addition,
(ψα′ |P ′qijP |ψα) 6= 0. With these two permutations the N -body matrix element reduces to
two two-body matrix element for the electrons i and j. The first is

(ψα′ |P ′1qijP1|ψα) = (−1)p+p1 (ακ′ , αν′ |qij |ακ, αν)i,j

= (−1)p+p1(ακ′ , αν′ |q12|ακ, aν). (9.47)

The permutation P2 gives (−1)p+p2(ακ′ , αν′ |q12|αν , aκ). The sign (−1)p+p2 = −(−1)p+p1 has
the same value for all values of i. Summing (ψα′ |P ′qijP |ψα) over the 1

2N(N − 1) different
pairs i, j ∈ {1, · · · , N} and over all permutations P, P ′ we obtain 1

2N (N − 1) 2(N − 2)! = N !
equal nonzero terms and Eq. (9.46) becomes

〈ψα′ |Q2|ψα〉 = [(ακ′ , αν′ |q12|ακ, αν)− (ακ′ , αν′ |q12|αν , ακ)]
1

N !

1

2

N∑
i,j=1

′
∑
P

′(−1)p+p
′
1 (9.48)

= ± [(ακ′ , αν′ |q12|ακ, αν)− (ακ′ , αν′ |q12|αν , ακ)] , (9.49)

with the overall sign depending on the ordering convention. The prime on the permutation
sum indicates that the sum excludes, for given values of i and j, all permutations P in which
ακ and αν appear on the positions i or j but (ψα′ |P ′qiP |ψα) = 0. We thus found that an
operator of the type Q2 can couple two pairs of spinorbitals and that the corresponding matrix
elements do not depend on the particle indices of the electrons involved.

• Off-diagonal matrix elements differing in one pair. Let |ψα〉 and |ψα′〉 differ by one pair of
spin orbitals, αν and αν′ . For each pair i, j ∈ {1, · · · , N} with i 6= j and each κ ∈ {1, · · · , N}
we have, like in the previous case, 2 (N − 2)! permutations |α1, · · · , ακ, αν , · · ·αN ) = P |ψα)
for which ακ appears on the position i and αν on j (those we call again P1) or vice versa
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(those we call again P2). For each of these permutations there is exactly one permutation,
P ′1 or P ′2, for which ακ and αν′ appear, respectively, on the position i and j in (ψα′ |P ′,
while in addition, (ψα′ |P ′qijP |ψα) 6= 0. The corresponding two two-body matrix elements are
(ψα′ |P ′qijP |ψα) = (−1)p+p1(ακ, αν′ |q12|ακ, αν) and −(−1)p+p1(ακ, αν′ |q12|αν , ακ). Summing
(ψα′ |P ′qijP |ψα) over the 1

2N(N − 1) different electron pairs (i, j) and over all permutations
P, P ′ we have this time for each κ ∈ {1, · · · , N} again 1

2N (N − 1) 2(N−2)! = N ! equal terms
and Eq. (9.49) is replaced by

〈ψα′ |Q2|ψα〉 = ±
N∑
κ=1

[(ακ, αν′ |q12|ακ, αν)− (ακ, αν′ |q12|αν , ακ)] , (9.50)

with the overall sign depending again on the ordering convention. We found that an operator
of the type Q2 can also give rise to the coupling of one pair of spinorbitals.

• Diagonal matrix elements. In this case |ψα〉 = |ψα′〉. Continuing with the approach adopted
above we note that for each pair of electron indices i, j ∈ {1, · · · , N} with i 6= j and each pair
of state indices κ, ν ∈ {1, · · · , N} there are 2 (N − 2)! permutations |α1, · · · , ακ, αν , · · ·αN ) =
P |ψα) for which ακ appears on the position i and αν on j (those we call again P1) or vice versa
(those we call again P2). For each of these permutations there is exactly one permutation,
P ′1 or P ′2, for which ακ and αν appear, respectively, on the position i and j in (ψα′ |P ′, while
in addition, (ψα′ |P ′qijP |ψα) 6= 0. The corresponding two two-body matrix elements give rise
to a direct and an exchange contribution, given by (ψα|P ′qijP |ψα) = (ακ, αν |q12|ακ, αν) and
−(ακ, αν |q12|ακ, αν), respectively. Summing (ψα|P ′qijP |ψα) over the 1

2N(N−1) different elec-
tron pairs (i, j) and over all permutations P, P ′ we have this time for each κ, ν ∈ {1, · · · , N},
with κ 6= ν, again 1

2N (N − 1) 2(N − 2)! = N ! equal contributions and obtain

〈ψα|Q2|ψα〉 = 1
2

N∑
κ,ν=1

[(ακ, αν |q12|ακ, αν)− (ακ, αν |q12|αν , ακ)] . (9.51)

Interestingly, for ν = κ the direct and exchange terms are equal. Therefore, the terms with
ν = κ can be excluded from the summation,

〈ψα|Q2|ψα〉 = 1
2

N∑
κ,ν=1

′ [(ακ, αν |q12|ακ, αν)− (ακ, αν |q12|αν , ακ)] ,

≡
N∑
κ>ν

[(ακ, αν |q12|ακ, αν)− (ακ, αν |q12|αν , ακ)] . (9.52)

which shows that the expectation value of the operator Q2 represents the sum of the contri-
butions of the 1

2N(N − 1) possible pairs of states.

Problem 9.5. Two electrons are said to be in a paired spin state if one of the electrons has spin up, |�〉,
and the other spin down, |�〉. Show that for paired spins the exchange terms cancel for a spin-independent
two-body interaction,

(ακ, αν |q12|αν , ακ) = 0 for mκ
s 6= mν

s .

Solution. For a spin-independent two-body interaction the spin dependence factors out,

(ακ, αν |q12|αν , ακ) = (uκ, uν |q12|uν , uκ)δmκs ,mνs .

Hence, for paired spins (mκ
s 6= mν

s ) the matrix element vanishes. 2
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9.3 Occupation number representation

9.3.1 Introduction

The notation of the previous section calls for simplification. This is realized by introducing construc-
tion operators which satisfy an algebra that enforces the quantum statistics. The first construction
operators were introduced by Paul Dirac in 1927 [32]. Starting from Maxwell’s equations, Dirac
quantized the electromagnetic field by treating the eigenmodes of the field as independent harmonic
oscillators. The excitation level of the oscillator represents the mode occupation of the field. The
raising (lowering) operators of the oscillator serve to construct the field by creation (annihilation)
of photons, the quanta of the radiation field, which occupy the modes. The commutation relations
between the operators define the algebra that enforces the Bose statistics of the field. This marks
the start of quantum field theory. In the same year Pascual Jordan and Oskar Klein showed that
the method could be extended to describe quantum many-body systems of bosons satisfying the
Schrödinger equation [62]. Adapting the algebra, Jordan and Wigner further extended the method
to describe quantum many-body systems of interacting fermionic particles [63]. The above sequence
of seminal papers is not complete without the name of Vladimir Fock, who emphasized in 1932
the use of field operators (construction operators for configuration space) [44]. This approach leads
to an operator identity resembling the Schrödinger equation, which explains the unfortunate name
second quantization for the construction operator formalism. In following sections we give a concise
introduction into the construction operator formalism for quantum many-body systems. As elec-
trons are fermions, we focus on the fermionic case. For a systematic introduction the lecture notes
of Jan de Boer are recommended [29].

9.3.2 Number states in the N-body Hilbert space

We start by introducing a new representation, the occupation number representation. In this repre-
sentation we keep track of the occupation of the spinorbitals. To introduce this notation we start
with a seemingly innocent change in notation of the Slater determinants,

|ψα〉 ≡ |αr, · · · , αs, · · · , αt〉 = |1r, · · · , 1s, · · · , 1t〉, (9.53)

where by 1r, · · · we indicate that we have 1 electron in the spinorbitals |αr〉, · · · , given in standard
order. If we have N electrons we have

1r + · · ·+ 1s + · · ·+ 1t = N. (9.54)

If the state |αν〉 is not occupied we are of course free to write 0ν to indicate an empty orbital. At
first sight this may not appear as particularly useful but, as we shall see, an enormous simplification
of notation can be realized by introducing a representation in which we specify the occupation
numbers of all possible spinorbitals (given in standard order). In this representation an arbitrary
N -electron Slater determinant |ψγ〉 is written as

|ψγ〉 ≡ |n1, n2, · · · 〉, (9.55)

where ns ∈ {0, 1} is the occupation number of the state |αs〉, with nr + ns + · · ·+ nt = N . In this
notation the states are called number states, which are the basis states of the occupation number
representation (see next section). The N -electron number states have normalization

〈n′1, n′2, · · · |n1, n1, · · · 〉 = δn1,n′1
δn2,n′2

· · · (9.56)

and closure ∑
n1,n2···

′ |n1, n2, · · · 〉 〈n1, n2, · · · | = 1, (9.57)

where n1, n2, · · · is either 0 or 1 and the prime indicates that the sum over all occupations equals
the total number of particles, n1 + n2 + · · · = N . This is called closure within HN .
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9.3.3 Number states in Grand Hilbert space - construction operators

An important generalization of number states is obtained by interpreting the occupation numbers
n1, n2, · · · as the eigenvalues of the number operators n̂1, n̂2, · · · ,

n̂s|n1, n2, · · · , ns, · · · 〉 = ns|n1, n2, · · · , ns, · · · 〉, (9.58)

where n1, n2, · · · is either 0 or 1. The eigenstates |n1, n2, · · · , ns, · · · 〉 form the basis of the occupation
number representation. With this definition the expectation value of n̂s is exclusively determined
by the occupation number ns of the state |s〉; it is independent of the occupation of all other states;
i.e., independent of N . Therefore, the number operators may be interpreted as acting in a Grand
Hilbert space, also known as Fock space, which is the direct sum of the Hilbert spaces of all possible
atom number states of a gas cloud, including the vacuum,

HGr = H0 ⊕H1 ⊕ · · · ⊕HN ⊕ · · · .

By adding an atom we shift from HN to HN+1, analogously we shift from HN to HN−1 by removing
an atom. As long as this does not affect the occupation of the single-particle state |s〉 the operator n̂s
yields the same result. Hence, the number states from HN may be reinterpreted as number states
|n1, n2, · · · 〉 within HGr by specifying the occupations of all single-particle states. For example, for
the N -electron state |ψα〉 ≡ |αr, · · · , αs, · · · , αt〉 we have nr = 1, ns = 1, · · · , nt = 1 and all other
occupation numbers are zero.

The basic operators in Grand Hilbert space are the construction operators. In particular the
operator â†s is called a creation operator and defined by

â†s|1r, · · · , 0s, · · · , 1t〉 = |1s, 1r, · · · , 0s, · · · , 1t〉 = (−1)
p |1r, · · · , 1s, · · · , 1t〉 (9.59a)

â†s|1r, · · · , 1s, · · · , 1t〉 = 0, (9.59b)

where (−)p yields +1 or −1 depending on whether it takes an even or an odd permutation P
between occupied states to bring the occupation number 1s to the empty position in the normal
order of states; with the second line we assure that the state |αs〉 cannot be occupied more than
once. Likewise the operator âs is called an annihilation operator and defined by

âs |1r, · · · , 1s, · · · , 1t〉 = (−1)
p
âs |1s, 1r, · · · , 0s, · · · , 1t〉 = (−1)

p |1r, · · · , 0s, · · · , 1t〉 (9.60a)

âs |1r, · · · , 0s, · · · , 1t〉 = 0, (9.60b)

where (−)p yields +1 or −1 depending on whether it takes an even or an odd permutation P between
occupied states to bring the occupation number 1s the first position in the Slater determinant
(without changing the order of the other states); the second line assures that an electron cannot
be cannot be removed from the state |αs〉 more than once. Let us have a look at a few examples:
with the creation operators we obtain â†s |0q, 0s, · · · 〉 = + |0q, 1s, · · · 〉, â†s |1q, 0s, · · · 〉 = − |1q, 1s, · · · 〉,
where we used the alphabetic order to represent the normal order. Analogously, we obtain with the
annihilation operators âs |0q, 1s, · · · 〉 = |0q, 0s, · · · 〉 and âs |1q, 1s, · · · 〉 = − |1q, 0s, · · · 〉.

The basic actions of the construction operators can be summarized as

â†s|ns, · · · 〉 ≡
√
ns + 1|ns + 1, · · · 〉 (9.61a)

âs|ns, · · · 〉 ≡
√
ns|ns − 1, · · · 〉, (9.61b)

with ns ∈ {0, 1}. The creation operators transform an antisymmetrized N -body eigenstate in HN

into an antisymmetrized N + 1 body eigenstate in HN+1. Analogously, the annihilation operators
transform an antisymmetrized N -body eigenstate in HN into an antisymmetrized N − 1 body
eigenstate in HN−1. Further, we introduce the commutation relations 1

{âr, â†s} = δrs ; {âr, âs} = {â†r, â†s} = 0, (9.62)

1Note that we use the curly bracket convention for the anti-commutator: {a, b} = ab+ ba.
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which serve to enforce the Pauli principle as embodied by Eq. (9.59b) and reflect the antisymme-
try of the Slater determinants. From Eqs. (9.61) and (9.62) follow the following properties of the
construction operators and the number states:

• the construction operators â†s and âs are hermitian conjugates,

〈ns + 1|â†s|ns〉 = 〈ns|âs|ns + 1〉∗ =
√
ns + 1. (9.63)

Hence, when acting on the bra side â†s and âs change their role, â†s becomes the annihilation
operator and âs the creation operator. Note that Eq. (9.63) only has physical significance for
ns = 0 because double occupation of electronic states violates the Pauli principle.

• the number operator is given by n̂s = â†sâs,

n̂s|ns, · · · 〉 = â†sâs|ns, · · · 〉 ≡
√
nsâ
†
s|ns − 1, · · · 〉 = ns|ns, · · · 〉. (9.64)

• an absent particle cannot be annihilated. This is embodied by Eq. (9.60b),

âs|ns, · · · 〉 ≡
√
ns|ns − 1, · · · 〉 = 0 for ns = 0. (9.65)

• the Pauli principle is satisfied. This is embodied by Eq. (9.59b),

âsâ
†
s|ns, · · · 〉 = (1− â†sâs)|ns, · · · 〉 = (1− ns)|ns, · · · 〉 = 0 for ns = 1. (9.66)

• any N -body state |ψγ〉 = |1r, · · · , 1s, · · · , 1t〉 can be constructed by repetitive use of a set of
creation operators

|ψγ〉 =
∏
s∈γ

â†s |0〉 , (9.67)

where the index s ∈ γ = {q, · · · , r, · · · , t} points to the set of one-body states to be populated
in normal order and |0〉 ≡ |01, 02, · · · 〉 is called the vacuum state.

• also the vacuum state is unit normalized,

〈0|0〉 =
〈
1s|â†sâs|1s

〉
= 〈1s|n̂s|1s〉 = 〈s|s〉 = 1, (9.68)

where αs is an arbitrary orbital.

• the number states created from the vacuum are antisymmetric. This follows from the commu-
tation relation {â†r, â†s} = 0,

|1r, 1s〉 = â†râ
†
s |0〉 = −â†sâ†r |0〉 = −|1s, 1r〉. (9.69)

Thus we have obtained the occupation number representation. By extending HN to HGr the defini-
tion of the number states and their normalization has remained unchanged,

〈n′1, n′2, · · · |n1, n2, · · · 〉 = δn1,n′1
δn2,n′2

· · · . (9.70)

Importantly, by turning to HGr the condition on particle conservation is lost. This has the very
convenient consequence that in the closure relation (9.57) the restricted sum may be replaced by an
unrestricted sum, thus allowing for all possible values of N ,∑

n1,n2···
|n1, n2, · · · 〉 〈n1, n2, · · · | = 1, (9.71)

where n1, n2, · · · can take the values 0 or 1. This is called closure within HGr.

Problem 9.6. Show that the following commutation relations hold[
n̂q, â

†
s

]
= +â†sδqs and [n̂q, âs] = −âsδqs . (9.72)



9.3. Occupation number representation 237

9.3.4 Operators in the occupation number representation

The real added value of the occupation number representation is in the calculation of the interaction
terms of the atomic Hamiltonian. In the present section we show that the extension of one-body
operators into Grand Hilbert space is given by

Q1 =
∑
i

qi → Q̂1 =
∑
s,s′

〈s′|q|s〉â†s′ âs, (9.73)

where the sum in the expression for Q1 runs over the particle index and the sums in the expression
for Q̂1 run over the state index of all one-body states (occupied or not) and â†s and âs are the
construction operators that change the occupation of the state |αs〉. Likewise the extension of
two-body operators is given by

Q2 = 1
2

∑
i,j

′qij → Q̂2 = 1
2

∑
t,t′

∑
s,s′

(s′, t′|q12|s, t)â†s′ â
†
t′ âtâs. (9.74)

To demonstrate the validity of these simple expressions we rederive the expression of Sections 9.2.1
and 9.2.2. As we shall see, in the occupation representation these expressions are obtained with a
minimal effort by straightforward application of the operator algebra. The key idea is based on the
orthonormality relation

〈ψα′ |ψα〉 = 〈n′1, n′2, · · · |n1, n2, · · · 〉 = δn1,n′1
δn2,n′2

· · · . (9.75)

In the language of the occupation number representation for N -electron atoms this means that the
inner product is zero unless every state that is created on the ket side is annihilated on the bra side,

〈α1, · · ·αN |α1, · · ·αN 〉 = 〈0|âN · · · â1â
†
1 · · · â

†
N |0〉 = 1. (9.76)

9.3.4.1 One-body operators:

• Diagonal matrix elements.

〈ψα|Q̂1|ψα〉 =
∑
s,s′

〈s′|q|s〉〈0|âN · · · â1â
†
s′ âsâ

†
1 · · · â

†
N |0〉.

In view of the diagonality any one-body state that is destroyed has to be recreated, otherwise
the matrix element will be zero by orthonormality of the one-body states. This means that
only the following terms contribute:

Q̂1 =
∑
s

〈s|q|s〉â†sâs =
∑
s

〈s|q|s〉n̂s, (9.77)

which is readily evaluated by summing the contributions of the occupied states {|κ〉},

〈ψα|Q̂1|ψα〉 =
∑
κ

〈ακ|q|ακ〉. (9.78)

Here we regained Eq. (9.44).

• Off-diagonal matrix elements differing in one pair of states (the pair 〈κ′| and |κ〉). The only
way in which such matrix elements can be nonzero is if we destroy the state |κ〉 and create
the state |κ′〉. This means that only one term contributes,

Q̂1 = 〈κ′|q|κ〉â†κ′ âκ, (9.79)
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which is readily evaluated to yield,

〈ψα′ |Q̂1|ψα〉 = (−)pκ+pκ′ 〈ακ′ |q|ακ〉, (9.80)

which coincides with the result (9.43) with pκ and pκ′ representing the orders of the permu-
tations that bring the states |ακ〉 and |ακ′〉 to the first position in the Slater determinant.

• Off-diagonal matrix elements differing in more than one pair of states. In this case we always
have

〈ψα′ |Q̂1|ψα〉 = 0 (9.81)

because the operator Q̂1 can at most replace one state by an other.

9.3.4.2 Two-body operators:

• Diagonal matrix elements 〈ψα|Q̂2|ψα〉. In view of the diagonality, any one-body state that
is destroyed has to be recreated. If we annihilate two one-body states, we have two options,
first annihilate |s〉 and then |t〉 or vice versa (note that asat|ψα〉 6= 0 implies atas|ψα〉 6= 0).
Exploiting this symmetry we obtain the sum of two terms, which leaves us with a single option
to recreate the states. We implement this option by first recreating 〈t| and subsequently 〈s|
(the inverse order yields the same result by renaming s↔ t). Summing over all different pairs
s and t we obtain

Q̂2 = 1
2

∑
t,s

′[(s, t|q12|s, t)â†sâ
†
t âtâs + (s, t|q12|t, s)â†sâ

†
t âsât], (9.82)

where the prime on the summation stands for t 6= s. Switching to the number operators,
n̂t = â†t ât, and using the fermionic commutation relations {âs, â†t} = 0 and {ât, âs} = 0 we

have â†sâ
†
t âtâs = â†sâsâ

†
t ât = n̂sn̂t and â†sâ

†
t âsât = −â†sâsâ

†
t ât = n̂sn̂t the expression for Q̂2

becomes
Q̂2 = 1

2

∑
t,s

′ [(s, t|q12|s, t)− (s, t|q12|t, s)] n̂sn̂t. (9.83)

This operator is readily evaluated by summing the contributions of the occupied pairs of states
{|ακ〉, |αν〉},

〈ψα|Q̂2|ψα〉 = 1
2

∑
κ,ν

′ [(ακ, αν |q12|ακ, αν)− (ακ, αν |q12|αν , ακ)] . (9.84)

Here we regained Eq. (9.52).

• Off-diagonal matrix elements differing in one pair of states (the pair 〈ν′| and |ν〉). If we
annihilate two occupied one-body states, we have two options, first |κ〉 and then |ν〉 or vice
versa, before creating the state 〈ν′| and recreating 〈κ|. This means that for each value of κ
only two terms contribute:

Q̂2 =
∑
κ

′[(κ, ν′|q12|κ, ν)â†κâ
†
ν′ âν âκ + (κ, ν′|q12|ν, κ)â†κâ

†
ν′ âκâν ]. (9.85)

Switching to the number operators, n̂s = â†sâs, and using the commutation relations {â†κ, â
†
ν′} =

{â†κ, âν} = 0 (note that ν′ 6= κ and ν 6= κ) we have â†κâ
†
ν′ âν âκ = â†ν′ âν n̂κ and â†κâ

†
ν′ âκâν =

−â†ν′ âν n̂κ this becomes

〈ψα′ |Q2|ψα〉 = (−)pκ+pν
∑
κ

[(ακ, αν |q12|ακ, αν)− (ακ, αν |q12|αν , ακ)] , (9.86)
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which coincides with the result (9.50) with pν and pν′ representing the orders of the permu-
tations that bring the states |αν〉 and |ακ〉, respectively, to the first column position in the
Slater determinant.

• Off-diagonal matrix elements differing in two pairs of states (the pairs 〈κ′|, |κ〉 and 〈ν′|, |ν〉).
If we annihilate two occupied one-body states, we have two option, first |κ〉 and then |ν〉 or
vice versa, before creating the states 〈ν′| and 〈κ′|. This means that only two terms contribute:

Q̂2 = (κ′, ν′|q12|κ, ν)â†κ′ â
†
ν′ âν âκ + (κ′, ν′|q12|ν, κ)â†κ′ â

†
ν′ âκâν . (9.87)

Switching to the number operators, n̂s = â†sâs, and using the commutation relations {â†κ′ , â
†
ν′} =

{â†κ′ , âν} = 0 (note that ν′ 6= κ′ and ν 6= κ′) we have â†κ′ â
†
ν′ âν âκ = â†ν′ âν â

†
κ′ âκ and â†κ′ â

†
ν′ âκâν =

−â†ν′ âν â
†
κ′ âκ this becomes

〈ψα′ |Q2|ψα〉 = (−)pκ+pν [(ακ, αν |q12|ακ, αν)− (ακ, αν |q12|αν , ακ)] , (9.88)

which coincides with the result (9.49) with pν and pν′ representing the orders of the permu-
tations that bring the states |αν〉 and |ακ′〉, respectively, to the first column position in the
Slater determinant.

• Off-diagonal matrix elements differing in more than two pairs of states. In this case we always
have

〈ψα′ |Q̂2|ψα〉 = 0 (9.89)

because the operator Q̂2 can annihilate and create at most replace two states.

9.4 Angular momentum of N-electron Slater determinants

9.4.1 Total orbital angular momentum L

Having established a procedure to calculate the matrix elements of one-body and two-body operators
for properly symmetrized N -electron basis states |ψα〉 = |α1, · · · , αN 〉, where |ακ〉 = |nκlκmκ

l sm
κ
s 〉

with κ ∈ {1, · · ·N} and s = 1
2 being one-electron eigenstates of the spin-orbital type, we are in a

position to determine the properties of the total orbital angular momentum operator

L =

N∑
i=1

li (9.90)

on the basis {|ψα〉}. Obvious questions involve the action of the operators Lz, L± and L2 on a given
many-body basis state |ψα〉. Using the closure relation the action of any operator G can be written
in the form of an expansion in the basis functions

G|ψα〉 =
∑
α′

|ψα′〉〈ψα′ |G|ψα〉 (9.91)

and we shall use this relation to investigate Lz, L± and L2. Importantly, we shall find that Slater
determinants are not necessarily eigenstates of the operators L± and L2.

• The operator Lz. The operator Lz =
∑
i l

(i)
z is of the diagonal one-body type. It conserves the

angular momentum and its projection along the z axis is diagonal in the {|ψα〉} representation.
Thus, the expansion (9.91) reduces to a single term

Lz|ψα〉 = |ψα〉〈ψα|Lz|ψα〉 = |ψα〉
N∑
κ=1

〈lκmκ
l |lz|lκmκ

l 〉〈smκ
s |smκ

s 〉 = Mα
L~ |ψα〉, (9.92)
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where we factored out the spin part, 〈smκ
s |smκ

s 〉 = 1, and where

Mα
L =

N∑
κ=1

mκ
l (9.93)

is the magnetic quantum number of the total orbital angular momentum of the state |ψα〉.

• The operator L±. The operator L± =
∑
i l

(i)
± is of the off-diagonal one-body type. It raises

or lowers the mκ
l of one of the electrons of the state |ψα〉 by one unit of angular momentum.

Thus, if {|ψγ〉} represents the subset (of N elements) of {|ψα′〉} for which mκ
l (and Mα

L ) change
by one, the expansion (9.91) reduces to

L±|ψα〉 =
∑
γ

|ψγ〉〈ψγ |L±|ψα〉 =

N∑
κ=1

|ψα(mκ
l ± 1)〉〈lκ(mκ

l ± 1)|l±|lκmκ
l 〉

=
N∑
κ=1

√
lκ(lκ + 1)−mκ

l (mκ
l ± 1) ~ |ψα(mκ

l ± 1)〉. (9.94)

Again the spin part has been factored out, 〈smκ
s |smκ

s 〉 = 1. With the notation |ψγ〉 = |ψα(mκ
l ±

1)〉, with κ ∈ {1, · · ·N}, we mean that the state |ακ〉 = |nκlκmκ
l sm

κ
s 〉 has been replaced by

|α′κ〉 = |nκlκ(mκ
l ± 1)smκ

s 〉. With this choice of ordering of the many-body state the phase
factor is always unity, (−1)2p = 1. The meaning of |ψα(mκ

l ± 1)〉 = |α′κ〉 is best expressed in
the occupation number representation

|α′κ〉 = â†α′κ âακ |ακ〉. (9.95)

• The operator L2. This operator L2 = (
∑
i li)

2 can be written in the form

L2 =
∑
i

l2i +
∑
i,j

′li · lj =
∑
i

l2i +
1

2

∑
i,j

′[2l(i)z l(j)z + (l
(i)
+ l

(j)
− + l

(i)
− l

(j)
+ )]. (9.96)

Since l
(i)
− and l

(j)
+ commute for i 6= j and the indices run over the same set of values, i, j ∈

{1, · · ·N}, the expression for L2 reduces to

L2 =
∑
i

l2i +
∑
i,j

′[l(i)z l(j)z + l
(i)
+ l

(j)
− ]. (9.97)

The first term is of the diagonal one-body type and the second of the diagonal two-body type.
The remaining term is of the off-diagonal two-body type with differences in two pairs. In view

of the off-diagonality of the l
(i)
+ l

(j)
− operator, the direct terms vanish. Along the same lines as

above the action of the operator L2 is given by

L2|ψα〉 =

{
N∑
κ=1

lκ(lκ + 1) +
N∑

κ,κ′=1

′mκ
l m

κ′

l

}
~2 |ψα〉+

+

N∑
κ,κ′=1

′
√
lκ(lκ + 1)−mκ

l (mκ
l + 1)

√
lκ′(lκ′ + 1)−mκ′

l (mκ′
l − 1) ~2 |ψα(mκ

l + 1)(mκ′

l − 1)〉,

(9.98)

where the notation

|ψγ〉 = |ψα(mκ
l + 1)(mκ′

l − 1)〉 ≡ |ψα(mκ′

l − 1)(mκ
l + 1)〉, (9.99)
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with κ, κ′ ∈ {1, · · ·N}, indicates that the state |ακ〉 = |nκlκmκ
l sm

κ
s 〉 has been replaced by

|α′κ〉 = |nκlκ(mκ
l + 1)smκ

s 〉 and the state |ακ′〉 = |nκ′ lκ′mκ′

l sm
κ′
s 〉 by |α′κ′〉 = |nκ′ lκ′(mκ′

l −
1)smκ′

s 〉. Note that

|ψα(mκ
l + 1)(mκ′

l − 1)〉 = −|ψα〉 for mκ′

l −mκ
l = 1. (9.100)

The meaning of |ψα(mκ
l + 1)(mκ′

l − 1)〉 is best expressed in the occupation number represen-
tation

|ψα(mκ
l + 1)(mκ′

l − 1)〉 = |α′κ, α′κ′〉 = â†α′κ â
†
α′
κ′
âακ′ âακ |ακ, ακ′〉. (9.101)

There are
(
N
2

)
different states of this type and these correspond to all different pair combina-

tions of κ, κ′ ∈ {1, · · ·N} with κ 6= κ′. Note that for these states 〈ψγ |Lz|ψγ〉 = 〈ψα|Lz|ψα〉.
As demonstrated in Problem 9.8 Eq. (9.98) can be strongly simplified for stretched states of
N equal angular momenta l, where both the total angular momentum and its projection are
maximized (L = ML = Nl).

9.4.1.1 Example:

Let us further clarify the notation |ψα(mκ
l + 1)(mκ′

l − 1)〉. For the state

|ψα〉 = |ακ, ακ′〉 = |mκ
l ,m

κ′

l 〉nd2 = |1̇, 0̇〉nd2 (9.102)

we have |ακ〉 = |nκlκmκ
l sm

κ
s 〉 = |n, 2, 1, 1

2 ,
1
2 〉 and |ακ′〉 = |nκ′ lκ′mκ′

l sm
κ′
s 〉 = |n, 2, 0, 1

2 ,
1
2 〉. The

states

|ψγ〉 = |ψα(mκ
l + 1)(mκ′

l − 1)〉 = |α′κ, α′κ′〉 = |2̇,−1̇〉nd2 (9.103a)

|ψ′γ〉 = |ψα(mκ
l − 1)(mκ′

l + 1)〉 = |α′κ, α′κ′〉 = |0̇, 1̇〉nd2 = −|1̇, 0̇〉nd2 (9.103b)

correspond to, respectively

|α′κ〉 = |nκlκ(mκ
l + 1)smκ

s 〉 = |n, 2, 2, 1
2 ,

1
2 〉

|α′κ′〉 = |nκ′ lκ′(mκ′

l − 1)smκ′
s 〉 = |n, 2,−1, 1

2 ,
1
2 〉

}
(9.104a)

|α′κ〉 = |nκlκ(mκ
l − 1)smκ

s 〉 = |n, 2, 0, 1
2 ,

1
2 〉

|α′κ′〉 = |nκ′ lκ′(mκ′

l + 1)smκ′
s 〉 = |n, 2,+1, 1

2 ,
1
2 〉

}
. (9.104b)

Problem 9.7. Calculate the total orbital angular momentum of the Slater determinant |1̇, 0̇〉np2 .

Solution. For two equivalent electrons we have N = 2 and the expression for L2 becomes

L2|1̇, 0̇〉np2 =
{

2l(l + 1) + 2m
(1)
l m

(2)
l

}
~2 |1̇, 0̇〉np2

+

√
l(l + 1)−m(1)

l (m
(1)
l + 1)

√
l(l + 1)−m(2)

l (m
(2)
l − 1) ~2 |ψα(m

(1)
l + 1)(m

(2)
l − 1)〉

+

√
l(l + 1)−m(2)

l (m
(2)
l + 1)

√
l(l + 1)−m(1)

l (m
(1)
l − 1) ~2 |ψα(m

(2)
l + 1)(m

(1)
l − 1)〉

Substituting l(1) = l(2) = l = 1, m
(1)
l = 1 and m

(2)
l = 0 we calculate m

(1)
l m

(2)
l = 0 and

m
(1)
l (m

(1)
l + 1) = 2 m

(2)
l (m

(2)
l − 1) = 0 |ψα(m

(1)
l + 1)(m

(2)
l − 1)〉 = |2̇,−1̇〉np2

m
(2)
l (m

(2)
l + 1) = 0 m

(1)
l (m

(1)
l − 1) = 0 |ψα(m

(2)
l + 1)(m

(1)
l − 1)〉 = −|1̇, 0̇〉np2

Thus we obtain
L2|1̇, 0̇〉np2 = {2l(l + 1)− 2}~2 |1̇, 0̇〉np2 = 2~2 |1̇, 0̇〉np2

and with L(L+ 1) = 2 we calculate L = 1. 2
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Problem 9.8. Show that eigenstates with L = ML = Nl, i.e. with stretched total orbital angular mo-
mentum, can be represented by a single N -body Slater determinant |ψllα〉 = |α1, · · · , αN 〉 of spin-orbitals
|ακ〉 = |nκllsmκ

s 〉 with κ ∈ {1, · · ·N}. For N > 2 the spin-orbitals must differ in the quantum numbers nκ

and/or mκ
s .

Solution. Setting lκ = mκ
l = l in Eq. (9.92) and (9.98) these expression evaluate to

Lz|ψllα〉 = Nl~ |ψllα〉

L2|ψllα〉 =
[
N l(l + 1) +N(N − 1)l2

]
~2|ψllα〉 = Nl(Nl + 1)~2|ψllα〉,

where Nl = L = ML and |ψllα〉 is the Slater determinant we are looking for. Analogous expressions can be
derived for stretched spin states. 2

9.4.1.2 Commutation relations

Starting from L =
∑N
i=1 li and Lz =

∑N
i=1 l

(i)
z it is straightforward to derive the following commu-

tation relations (see Problems 9.9 and 9.10)

[L2, l2i ] = 0 and [Lz, l
2
i ] = 0 (9.106a)

[L2, l(i)z ] 6= 0 but [L2, Lz] = 0. (9.106b)

Problem 9.9. Prove the commutation relations (9.106b)

[L2, l(i)ν ] 6= 0 but [L2, Lν ] = 0 for i ∈ {1, · · ·N} and ν ∈ {x, y, z}.

Note that this is a generalization of the commutation relation (4.8).

Solution. Let us choose ν = z (proof analogous for ν ∈ {x, y}). Using Eq. (9.97) we find

[L2, l(i)z ] =
∑
j

[l2j , l
(i)
z ] +

∑
j,k

′
(

[l(j)x l(k)x , l(i)z ] + [l(j)y l(k)y , l(i)z ] + [l(j)z l(k)z , l(i)z ]
)

= [l2i , l
(i)
z ] +

∑
j

′
(
l(j)x [l(i)x , l(i)z ] + l(j)y [l(i)y , l(i)z ]

)
+
∑
k

′
(

[l(i)x , l(i)z ]l(k)x + [l(i)y , l(i)z ]l(k)y

)
,

where the prime indicates that j 6= i 6= k. Changing dummy index k → j and using the commutation
relation (1.36) this results in [

[L2, l(i)z ] = 2
∑
j

′
(
l(j)x [l(i)x , l(i)z ] + l(j)y [l(i)y , l(i)z ] + l(j)z [l(i)z , l(i)z ]

)
= 2~

∑
j

′
(
−l(j)x l(i)y + l(j)y l(i)x

)
6= 0.

This shows that L2 and l
(i)
z do not commute. Summing the l

(i)
z to Lz we obtain

[L2, Lz] =
∑
i

[L2, l(i)z ] = 2~
∑
i,j

′
(
l(j)y l(i)x − l(j)x l(i)y

)
= 0

because i and j run over the same range of values i, j ∈ {1, · · ·N}. 2

Problem 9.10. Prove the commutation relations (9.106a)

[L2, l2i ] = 0 and [Lν , l
2
i ] = 0 for i ∈ {1, · · ·N} and ν ∈ {x, y, z}.

Note that this is a generalization of the commutation relation (4.7).

Solution. Using Eq. (9.96) we have

[L2, l2i ] =
∑
j

[l2j , l
2
i ] +

∑
j,k

′[lj · lk, l2i ]
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The first term vanishes because
∑
j [l

2
j , l

2
i ] = [l2i , l

2
i ] = 0. Also the second term is zero because

∑
j,k

′[lj · lk, l2i ] =
∑

ν=x,y,z

∑
j,k

′
(

[l(j)ν , l2i ]l
(k)
ν + l(j)ν [l(k)ν , l2i ]

)
,

=
∑

ν=x,y,z

∑
k

′[l(i)ν , l2i ]l
(k)
ν +

∑
ν=x,y,z

∑
j

′l(j)ν [l(i)ν , l2i ] = 0

because [l
(i)
ν , l2i ] = 0 for ν ∈ {x, y, z}; the prime indicates that j 6= i 6= k. Hence, L2 and l2i indeed commute.

In view of the definition of Lν we have

[Lν , l
2
i ] =

∑
j

[l(j)ν , l2i ] = [l(i)ν , l2i ] = 0. 2

9.4.2 Total electronic spin S

The properties of the total spin angular momentum operator

S =
∑
isi (9.107)

acting on the basis {|ψα〉} is rapidly derived from the expressions for the orbital angular momentum
derived above. The spin case is somewhat simpler because the spin of the individual electrons is
always s = 1

2 and the magnetic quantum number can only take the values ms = ±1/2. Thus we
obtain

• The operator Sz =
∑
i s

(i)
z . In analogy with Eq. (9.92) we find

Sz|ψα〉 = Mα
S ~ |ψα〉, (9.108)

where Mα
S =

∑
κm

κ
s is the total magnetic quantum number of the state |ψα〉.

• The operator S± =
∑
i s

(i)
± . In analogy with Eq. (9.94) we find

S±|ψα〉 =
∑
κ

√
s(s+ 1)−mκ

s (mκ
s ± 1) ~ |ψα(mκ

s ± 1)〉. (9.109)

• The operator S2 = (
∑
i si)

2. In analogy with Eq. (9.98) we find

S2|ψα〉 =

∑
κ

s(s+ 1) +
∑
κ,κ′

′mκ
sm

κ′

s

 ~2 |ψα〉+

+
∑
κ,κ′

′
√
s(s+ 1)−mκ

s (mκ
s + 1)

√
s(s+ 1)−mκ′

s (mκ′
s − 1) ~2 |ψα(mκ

s + 1)(mκ′

s − 1)〉.

(9.110)

9.4.2.1 Commutation relations

Analogous to the commutation relations for the orbital angular momentum it is straightforward to
derive the following commutation relations for the total electronic spin

[S2, s2
i ] = 0 and [Sz, s

2
i ] = 0; [S2, s(i)

z ] 6= 0 but [S2, Sz] = 0. (9.111)
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9.4.3 Total electronic angular momentum J

To conclude this chapter we also consider the total electronic angular momentum,

J =
∑
i(li + si). (9.112)

Since J = L + S we can derive the following commutation relations,

[J2, l2i ] = 0 and [Jz, l
2
i ] = 0. (9.113)

Problem 9.11. Prove the commutation relations (9.113)

[J2, l2i ] = 0 and [Jz, l
2
i ] = 0 for i ∈ {1, · · ·N}.

Solution. Using the first commutation relation (9.106a) we obtain

[J2, l2i ] = [L2 + S2 + L · S, l2i ] = [L · S, l2i ]

and using the second commutation relation (9.106a) we find

[L · S, l2i ] = [LxSx + LySy + LzSz), l
2
i ]

= [Lx, l
2
i ]Sx + [Ly, l

2
i ]Sy + [Lz, l

2
i ]Sz = 0. 2
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Ground states of many-electron atoms

The structure of the electronic ground state of all atomic elements can be predicted by a set of
rules, commonly referred to under the name Aufbau principle and first formulated by Niels Bohr in
the beginning of the 1920’s [20]. It was known since the work of Dmitry Mendeleev in 1869 that
the elements can be grouped systematically in order of growing nuclear charge (Z) in the form of a
periodic table [72]. The Aufbau principle explains the periodic structure of the table and provides
us with the electron configuration of the atomic ground state as well as with the angular momentum
properties of the elements. The interpretation of the table evolved over the years but its periodic
structure remained a defining feature. As shown in Table A.1 the elements are collected in seven
periods (rows) subdivided in groups (columns). The periods correspond to shells of electrons with
the period number defining the principal quantum number of the least bound s shell. Within a
period, the group number reflects the filling of the shells. For instance, the 1s2 configuration of the
helium ground state consists of two equivalent s electrons with ml = 0 and ms = ± 1

2 and represents
the fully filled 1s shell. Likewise, the 1s22s22p6 configuration of the neon ground state consists of
closed shells, with two equivalent s electrons in the 1s and the 2s shells with ml = 0 and ms = ± 1

2
and six equivalent p electrons in the 2p shell with ml = 0,±1 and ms = ± 1

2 . One distinguishes
between short periods (group I through VIII), long periods (group 1 through 18, which include 10
groups of transition elements) and extra-long periods (which include an additional 14 groups of
rare-earth elements - lanthanides and actinides).1 The transition elements involve filling of the d
shells and the rare-earth elements filling of the f shells.

Together, the shells of equivalent electrons provide the atomic shell structure of the atom, which is
the backbone of the Aufbau principle. In X-ray spectroscopy one uses the shell notation K,L,M, · · ·
for the principal quantum numbers n = 1, 2, 3, · · · . The rotational substructure is represented by
an index; e.g., L1, L2, L3. Although this notation is valuable for the innermost shells it is not
practical for the outer shells of large atoms. In the latter case shells of different n can have similar
binding energy. Therefore, we shall refer to shells by specifying always both n and l. When n and
l no longer represent good quantum numbers the picture of a single relevant electron configuration
breaks down. This happens when two configurations are approximately degenerate and a mixed
configuration results in stronger binding. This being said, for most elements, a single electron
configuration is a good starting point.

In ground state atoms the closed shells form a spherically symmetric core of electrons surrounded
by typically one or two incomplete shells of valence electrons. In Section 4.6 we found that the core
gives rise to substantial screening of the nuclear charge, in such a way that at large distance the
valence electrons behave similar to the electrons of one-, two-, three-,· · · electron atoms with a
singly-, doubly-, triply-,· · · charged nucleus, respectively. The success of describing atoms in terms
of electron configurations points to the presence of a mostly central effective field similar to the

1The rare-earth elements are often referred to with the plural rare earths. Strictly speaking this term is reserved
for the oxides of these elements.

245
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Hartree self-consistent field introduced in Section 8.5. The Pauli principle and exchange phenomena
can be incorporated into the Hartree method by representing the electron configuration by a Slater
determinant. This is known as the Hartree-Fock approach (Section 10.2).

10.1 Aufbau principle and Hund’s rules

The valence electrons are of special importance for the Aufbau principle because their configuration
determines the atomic ground state. The name valence points to the number of electrons partici-
pating in chemical bonding. This context also explains the names donor shell (for shells with less
than half filling) and acceptor shell (for shells with more than half filling). As the binding energy
of the valence electrons increases with shell filling, closed shells are least favorable for chemical
bonding. Almost filled shells carry the angular momentum of the vacant electron(s). Such vacan-
cies behave like electrons of positive charge and negative mass and are referred to as holes in the
closed shell. Neglecting spin-orbit coupling, we can use the angular momentum addition rules to
determine all possible values of the total orbital angular momentum and the total spin of a given
electron configuration,

L =
∑
i

li and S =
∑
i

si. (10.1)

Thus we identify one or more so called LS terms, each consisting of (2L + 1)(2S + 1) degenerate
energy levels sharing the quantum numbers L and S. The energy of the LS terms depends on the
electrostatic repulsion between the spinorbitals. For this reason we speak of electrostatic coupling
of the single-electron orbital angular momenta {li} and of the single-electron spins {si} into states
of well-defined L and S.

Closed shells can be represented by a single non-degenerate LS term (L = 0, S = 0). This means
that only the valence electrons determine the atomic angular momentum; i.e., the valence electrons
suffice to determine the LS term of the electronic ground state. The latter can be established by
a sequence of three semi-empirical rules of thumb, the Hund rules, for which we shall establish the
physical underpinning. The first two Hund rules are designed to select the LS term with smallest
electrostatic repulsion between the spinorbitals:

Rule 1 Choose the maximum value of S consistent with the Pauli principle

Rule 2 Choose the maximum value of L consistent with the Pauli principle.

For a given LS term we can still have several possible values of the total electronic angular momen-
tum J , which is the conserved quantity of the electron cloud (neglecting the hyperfine interaction
with the nuclear spin) and ranges in integer steps from |L − S| to L + S, thus adding up to the
above mentioned (2L + 1)(2S + 1) degenerate levels. The third Hund rule discriminates between
these values:

Rule 3 Choose J =

{
Jmin = |L− S| for shells less than half-filled

Jmax = L+ S for shells more than half-filled.

To appreciate the third Hund rule we have to understand how the degeneracy of the LS terms is
lifted by the spin-orbit interaction. In one-electron atoms this originates in the velocity-induced
coupling of the spin s of the electron with its own orbital angular momentum l into the total
electronic angular momentum j. In many-electron atoms we have to deal with competition between
the electrostatic coupling and the spin-orbit coupling. This gives rise to different coupling schemes
depending on Z.
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10.2 Hartree-Fock method

10.2.1 Hamiltonian

The Hund rules offer a simple procedure to predict the electronic ground state of the elements, at
least in most cases. Therefore, it is important for our understanding of the periodic system to be
aware of the general principles behind these rules. To identify these principles we shall introduce
the Hartree-Fock method, which is a self-consistent field method that captures most of the physics
determining the atomic ground state. It differs from the Hartree method because it accounts for
exchange. It also provides insight in the limitations of the Hund rules.

We start from the Hartree Hamiltonian (8.42) for N electrons with mutual repulsion and moving
in the electrostatic field of the nucleus of charge Ze,

H =

N∑
i=1

h
(i)
0 + 1

2

N∑
i,j=1

′ 1

ρij
. (10.2)

We recall from Chapters 7 and 8 that the repulsion term can be interpreted as giving rise to a
mostly centrally symmetric screening potential about the nucleus. Following up on this result we
start the discussion by simply presuming that also in the present case central symmetry dominates
the motion of the individual electrons. This enables us to use separation of variables, which implies
that the individual electrons occupy spinorbitals of well-defined angular momentum (just as in the
hydrogenic wavefunctions). Importantly, H is invariant under rotation of the spatial coordinates
about the origin. Therefore, the total orbital angular momentum (L) is a conserved quantity (i.e.,
L and ML are good quantum numbers - see also Problem 7.1). Moreover, as H is spin independent,
also the total spin (S) is conserved and S and MS are good quantum numbers. In other words,
the Hamiltonian H is diagonal in the |LML, SMS〉 representation. Later we shall analyze how the
spin-orbit interaction breaks this symmetry.

Knowing the number of electrons we use the periodic system to guess the electron configuration.
To assure orthogonality of the single-electron wavefunctions the N -electron state |ψα〉 is constructed
in the form of a Slater determinant

|ψα〉 = |α1, · · ·αN 〉 (10.3)

of one-electron spinorbitals

|ακ〉 = |nκlκmκ
l sm

κ
s 〉 = |uκ〉 ⊗ |smκ

s 〉, (10.4)

with κ ∈ {1, · · ·N} being the state index. As the electron configuration of partially filled shells leaves
freedom in choosing the magnetic quantum numbers ml and ms usually several Slater determinants
qualify for our purpose and the ground state will generally be a linear combination of those.

The Hartree-Fock method is a mean-field method in which a single Slater determinant of spin
orbitals, |ψα〉, is used as a variational trial function to search for the electronic ground-state energy
of many-electron atoms [102, 43]. In Hartree atomic units the energy of the state |ψα〉 is given by

ε = ε(α1, · · ·αN ) = 〈ψα|H|ψα〉 =

N∑
i=1

〈ψα|h(i)
0 |ψα〉+ 1

2

N∑
i,j=1

′〈ψα|
1

ρij
|ψα〉. (10.5)

This expression is valid to first order in perturbation theory. The Schrödinger Hamiltonians h
(i)
0 in

the first summation are operators of the one-body diagonal type and the Coulomb repulsions 1/ρij
in the second summation are of the two-body type. To first order in perturbation theory we are only
interested in the diagonal matrix elements of the latter. Thus, it follows with the aid of Eqs. (9.44)
and (9.52) that the energy of the state |ψα〉 can be written as summations over the state indices,

ε =

N∑
κ=1

〈uκ|h0|uκ〉+ 1
2

N∑
κ,ν=1

′
[
(uκ, uν |

1

ρ12
|uκ, uν)− (uκ, uν |

1

ρ12
|uν , uκ) δmκs ,mνs

]
. (10.6)
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Note that the spinorbitals are separated in their spin and orbital parts, |ακ〉 = |uκ〉 ⊗ |smκ
s 〉. The

last term of Eq. (10.6) is the exchange term and shows that the Coulomb repulsion is reduced for
electrons in the same spin state because these cannot be at the same position; they avoid close
proximity as a result of the quantum correlations of Fermi-Dirac statistics.

10.2.2 Configuration mixing

Importantly, the Coulomb repulsions 1/ρij can also couple the Slater determinant |ψα〉 of the con-
figuration α to Slater determinants |ψβ〉 of the configurations β as long as these configurations differ
in not more than two spinorbitals. Thus, the configurations become coupled in accordance with
Eq. (H.28) of second-order time-independent perturbation theory,

|ψn〉 ' |ψα〉+
∑
β

′|φβ〉
〈ψβ | 12

∑′
i,j ρ

−1
ij |ψα〉

E0
α − E0

β

. (10.7)

Fortunately, in many cases the configuration energies E0
α and E0

β differ sufficiently to render the
second-order admixture negligible. Therefore we shall restrict the discussion to first order.

10.2.3 Hartree-Fock equations

To best approximate the energy of the ground state we search for the set {ακ} of N spinorbitals that
minimize 〈ψα|H|ψα〉 under the constraints 〈ακ|ακ〉 = 1 and 〈ακ|αν〉 = 0 for κ 6= ν; i.e., in addition
to the conservation of normalization (as required for the Hartree equations) we also enforce the
orthogonality of all orbitals in order to maintain the structure of the Slater determinants [102, 43].
For this purpose we consider the energy ε(α1, · · ·αN ), see Eqs. (10.5) and (10.6), as a functional of
the spinorbitals α1, · · ·αN . In particular, for the spinorbital ακ the functional dependence on the
other spinorbitals (αν , with ν 6= κ) is given by

Hκ(α1, · · ·αN ) ≡ 〈uκ|h0|uκ〉+

N∑
ν=1

′
[
(uκ, uν |

1

ρ12
|uκ, uν)− (uκ, uν |

1

ρ12
|uν , uκ) δmκs ,mνs

]
, (10.8)

where the prime indicates ν 6= κ. Repeating the procedure of Section 8.5 the double summation in
Eq. (10.6) has been reduced to a single summation Eq. (10.8) and the factor 1/2 disappears; i.e., we
sum over all pairs of orbitals involving one electron in the spinorbital |ακ〉. The result is the sum
of the unscreened one-electron contribution plus the pair contribution of the Coulomb interaction
between the electron in state |ακ〉 and all other electrons while taking into account the exchange
correlations. Note that the latter only play a role for mκ

s = mν
s ; i.e., among electrons in the same

spin state (cf. Problem 9.5).

To optimize the state |uκ〉 we construct the lagrangian for the variation of Hκ(α1, · · ·αN ) un-
der the constraints 〈ακ|ακ〉 = 〈uκ|uκ〉 = 1 and 〈αν |ακ〉 = 〈uν |uκ〉〈mν

s |mκ
s 〉 = 0, where uν , uκ ∈

{u1, · · ·uN},

Lκ(α1, · · ·αN , λκ1, · · ·λκN ) = Hκ(α1, · · ·αN ) +
∑
ν

λκν [〈uν |uκ〉〈mν
s |mκ

s 〉 − δν,κ] . (10.9)

Here λκκ is the Lagrange multiplier for the normalization constraint 〈uκ|uκ〉 = 1 and λνκ, with ν 6= κ,
is the Lagrange multiplier for the orthogonality constraint 〈uν |uκ〉〈mν

s |mκ
s 〉 = 0 . Furthermore,

comparing Eq. (10.9) with its hermitian conjugate we find that λνκ = λ∗κν , which means that the
matrix (λνκ) is hermitian. Applying the procedure of Appendix I.1.3 it suffices to minimize the
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lagrangian (10.9) with respect to 〈uκ|,

δLκ = 〈δuκ|h0|uκ〉

+
∑
ν

′
[
(δuκ, uν |

1

ρ12
|uκ, uν)− (δuκ, uν |

1

ρ12
|uν , uκ) δmκs ,mνs

]
+
∑
ν

λκν [〈δuν |uκ〉〈mν
s |mκ

s 〉 − δν,κ]. (10.10)

With this procedure the orbital uκ is found as the solution of a set of N coupled integro-differential
equations, the Hartree-Fock equations,

h0uκ(ρ1) +
∑
ν

′
[
〈uν |

1

ρ12
|uν〉uκ(ρ1)− 〈uν |

1

ρ12
|uκ〉 δmκs ,mνs uν(ρ1)

]
= −

∑
ν

λνκ〈mν
s |mκ

s 〉uκ(ρ1).

(10.11)
Just like the Hartree equations, the Hartree-Fock equations have to be solved iteratively until self-
consistency is reached between the orbitals uκ and their screening potentials. The solution is not
unique because the determinant |ψα〉 = |α1, · · ·αN 〉 is invariant under a unitary transformation U of
the spinorbitals (see Problem 9.4). This freedom can be exploited to diagonalize the matrix (λκν),
which is always possible because it is hermitian. If we suppose that this goal is realized by the
operator Ũ and results in the states |ũκ〉 = Ũ |uκ〉, with κ ∈ {1, · · ·N}, Eq. (10.11) is replaced by

h0ũκ(ρ1) +
∑
ν

′
[
〈ũν |

1

ρ12
|ũν〉ũκ(ρ1)− 〈ũν |

1

ρ12
|ũκ〉 δmκs ,mνs ũν(ρ1)

]
= εκũκ(ρ1), (10.12)

where we defined εκ ≡ −λκ. Since 〈ũν |ρ−1
12 |ũν〉 = 〈uν |ρ−1

12 |uν〉 this set of equations reduces to the
Hartree equations (8.63) by omitting the exchange terms. Since we can drop the tilde in Eqs. (10.12)
we shall continue from this point on (without loss of generality) by using the symbol uκ also for the
diagonalized equations. In hindsight we come to the conclusion that the orthogonality condition is
not an intrinsic requirement of the Hartree-Fock method but could have been omitted by a clever
choice of basis in the first place.

The total energy ε(α1, · · ·αN ) is stationary if the functionals Hκ(α1, · · ·αN ) are simultaneously
stationary under variation of the uκ. The optimized values are denoted by

ε = ε(α1, · · ·αN )|opt and εκ = Hκ(α1, · · ·αN )|opt. (10.13)

Importantly, the total energy is not simply the sum of the Hκ(α1, · · ·αN )|opt,

ε 6=
N∑
κ=1

εκ =

N∑
κ=1

〈uκ|h0|uκ〉+

N∑
κ,ν=1

′
[
(uκ, uν |

1

ρ12
|uκ, uν)− (uκ, uν |

1

ρ12
|uν , uκ) δmκs ,mνs

]
, (10.14)

because this would amount to double counting of the interactions. Hence, the proper expression is
obtained by subtracting the interaction energy,

ε =

N∑
κ=1

εκ − 1
2

N∑
κ,ν=1

′ [J (uκ, uν)−K(uκ, uν) δmκs ,mνs
]
. (10.15)

In this notation, the optimized form of Eq. (10.8) becomes

εκ = 〈uκ|h0|uκ〉+

N∑
ν=1

′ [J (uκ, uν)−K(uκ, uν) δmκs ,mνs
]
. (10.16)
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Substituting this expression into (10.15) we regain the form of Eq. (10.6) for the total energy,

ε =

N∑
κ=1

〈uκ|h0|uκ〉+ 1
2

N∑
κ,ν=1

′ [J (uκ, uν)−K(uκ, uν) δmκs ,mνs
]
, (10.17)

but with the hydrogenic states replaced by Hartree-Fock-optimized orbitals. Recalling Problem 7.9
we know that (for equivalent electrons) the exchange integral is positive definite, K(uκ, uν) > 0.
Therefore, the energy is minimal if S is maximized, just as phrased in Hund’s first rule. Phe-
nomenologically the exchange terms manifest themselves as a strong interaction that tends to align
the spins. This is called ferromagnetic exchange. It is much stronger than typical magnetic in-
teractions as it originates from spin-dependent differences in electrostatic screening of the nuclear
charge.

10.2.4 Koopmans’ theorem

The energy εκ of an electron in the spinorbital |ακ〉 of a many-electron atom represents the total
energy of this electron when taking into account the Coulomb field of the nucleus and the screening
by all other electrons of the atom (in the mean field approximation). Note that this is the energy for
instant removal of an electron from this state. This is equal to the ionization energy of the electron
under the conjecture that rearrangement of the remaining charge (during removal of the electron)
may be neglected,

εκ = (εatom − εion) + · · · . (10.18)

This relation is known as Koopmans’ theorem [65]. The theorem is best satisfied for ionization of
inner core electrons in large atoms.

Koopmans’ theorem is important because it enables a comparison between Hartree-Fock theory
and experiment. To obtain the theorem in a more formal way we consider the total energy εN of
an N -electron atom. The energy of the ion created by removal of one electron is denoted by εN−1.
We presume the central field approximation to be well justified in both cases. In the Hartree-Fock
approximation the energies of atom and ion can be expressed, respectively, as

εN =

N∑
µ=1

〈uµ|h0|uµ〉+ 1
2

N∑
µ,ν=1

′ [J (uµ, uν)−K(uµ, uν)δmµs ,mνs
]

(10.19)

εN−1 =

N−1∑
µ=1

〈uµ|h0|uµ〉+ 1
2

N−1∑
µ,ν=1

′ [J (uµ, uν)−K(uµ, uν)δmµs ,mνs
]
. (10.20)

In this notation it is the electron in state |uN 〉 that is removed. Subtracting the two expressions we
obtain

εN − εN−1 = 〈uN |h0|uN 〉+ 1
2

N−1∑
ν=1

[
J (uN , uν)−K(uN , uν)δmNs ,mνs

]
+ 1

2

N−1∑
µ=1

[
J (uµ, uN )−K(uµ, uN )δmNs ,mνs

]
. (10.21)

This result is obtained without loss of generality because any of the occupied orbitals |uκ〉, with
κ ∈ {1, · · ·N}, can be labeled |uN 〉. However, in writing these expressions we assume that the
Coulomb integrals between two orbitals uµ and uν are not affected by the removal of an electron
from the orbital uκ. This is known as the frozen frozen orbital approximation. It is only partially
satisfied because the removal affects the nuclear screening for all other electrons and therefore the
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radial distributions of their orbitals. Using the properties of the Coulomb integrals the difference
becomes - see Eq. (7.47)

εN − εN−1 = 〈uκ|h0|uκ〉+

N−1∑
ν=1

[
J (uκ, uν)−K(uκ, uν)δmNs ,mνs

]
= εκ, (10.22)

which confirms the theorem for the case of instant removal.

10.2.5 Fock operators - direct and exchange contributions

The notation of the Hartree-Fock equations can be simplified to the form[
− 1

2∇
2 − Z

ρ
+ Jκ(ρ)−Kκ(ρ)

]
uκ(ρ) = εκuκ(ρ). (10.23)

With this expression we regained the familiar form of the Hartree equations but have the advan-
tage that the Pauli principle is implicitly satisfied. The expression has the appearance of a set
of Schrödinger equations for electrons in the orbitals uκ but formally this is not the case because
the operators are not one-electron Hamiltonians but give rise to coupling between the equations.
By comparison with Eq. (10.12) we find that the operators Jκ(ρ) and Kκ(ρ) are defined by the
expressions

Jκ(ρ)|uκ〉 = |uκ〉
∑
ν

′〈uν |
1

ρ12
|uν〉 (10.24a)

Kκ(ρ)|uκ〉 =
∑
ν

′|uν〉〈uν |
1

ρ12
|uκ〉δmκs ,mνs . (10.24b)

The operators Jκ(ρ) andKκ(ρ) represent effective operators for, respectively, the direct and exchange
contributions to the Coulomb repulsion energy of an electron in the orbital uκ. Importantly, only
electrons in the same spin state as the electron under consideration contribute to the exchange. In
Dirac notation the Hartree-Fock equations takes the form

Fκ|uκ〉 = εκ|uκ〉, (10.25)

where Fκ ≡ h0 + Jκ(ρ) − Kκ(ρ). The operators Fκ are called Fock operators. Their expectation
value, εκ = 〈uκ|Fκ|uκ〉, is given by Eq. (10.16).

Hartree-Fock-Slater approximation

Slater discovered an approximation of the Hartree-Fock method that is particularly valuable to gain
physical insight in the meaning of the exchange terms [103]. For two electrons in the same state
(κ = ν) the difference of the direct and the exchange terms vanishes,

(uκ, uν |
1

ρ12
|uκ, uν)− (uκ, uν |

1

ρ12
|uν , uκ) δmκs ,mνs = 0 for κ = ν. (10.26)

This has the interesting consequence that we can drop the prime in the derivation of the Hartree-
Fock equations as the omitted term yields zero anyhow. In the position representation Eqs. (10.24)
become

Jκ(ρ)uκ(ρ1) = uκ(ρ1)
∑
ν

〈uν |
1

ρ12
|uν〉 = uκ(ρ1)UD(ρ1) (10.27a)

Kκ(ρ)uκ(ρ1) =
∑
ν

uν(ρ1)〈uν |
1

ρ12
|uκ〉δmκs ,mνs = uκ(ρ1)UX(ρ1). (10.27b)
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where UD(ρ1) represents an effective interaction potential, called the direct screening potential ,

UD(ρ1) =
∑
ν

ˆ
1

ρ12
u∗ν(ρ2)uν(ρ2)dρ2 (10.28)

and UX(ρ) is another effective interaction potential, known as the exchange interaction

UX(ρ1) =
∑
ν

δmκs ,mνs
u∗κ(ρ1)uν(ρ1)

|uκ(ρ1)|2

ˆ
1

ρ12
u∗ν(ρ2)uκ(ρ2)dρ2. (10.29)

In terms of these potentials the Hartree-Fock equations turn into the Hartree-Fock-Slater equations,[
− 1

2∇
2 − Z

ρ
+ UD(ρ)− UX(ρ)

]
uκ(ρ) = εκuκ(ρ), (10.30)

where both UD(ρ) and UX(ρ) vanish at large distance from the nucleus. With this expression we
regained the familiar form of the Hartree equations but with the advantage that the Pauli principle
is implicitly satisfied.

To elucidate the significance of the effective energy potentials UD(ρ) and UX(ρ) we start by
noting that the number density of electrons at position r is obtained by summing over the probability
densities of all occupied orbitals at position r,

n(r) =
∑
ν

|uν(r)|2. (10.31)

This is the total electron density at position r. Integrating over this distribution we obtain the
total number of electrons,

´
n(r)dr = N . Thus, the direct contribution to the potential energy of

an electronic charge at position ρ1 in the Coulomb field of all electrons (including the one under
consideration; i.e., the one in the orbital uκ) can be written as

UD(ρ1) =
∑
ν

〈uν |
1

ρ12
|uν〉 =

ˆ
1

ρ12
n(ρ2)dρ2. (10.32)

Clearly, by summing over all orbitals we overestimate the Coulomb repulsion because we include
the repulsion of the probe electron in the state |uκ〉 with its own mean field. This is called the self
energy contribution to UD(ρ1) and is of course nonphysical.

Next we show that the mentioned overestimate is exactly compensated by the exchange terms.
For this purpose we start from the orthonormality of the electronic orbitals,

´
u∗ν(r)uκ(r)dr = δν,κ.

Summing over all occupied orbitals (including the one under consideration) we find exactly unity,∑
ν

ˆ
u∗ν(r)uκ(r)dr = 1. (10.33)

This is not surprising because all orbitals with ν 6= κ are orthogonal. The expression (10.33)
suggest to switch summation and integration and to introduce a quantity which is called the electron
exchange density at position r2 for electrons in the spinorbital ακ and at position r1,

nex(r1, r2) =
∑
ν

u∗ν(r2)u∗κ(r1)uκ(r2)uν(r1)

|uκ(r1)|2
δmκs ,mνs . (10.34)

For electrons in different spin states (mκ
s 6= mν

s ) the exchange density vanishes, nex(r1, r2) ≡ 0. For
electrons in the same spin state (mκ

s = mν
s ) the exchange density is

nex(r, r) =
∑
ν

u∗ν(r)uν(r)δmκs ,mνs = n��(r). (10.35)



10.2. Hartree-Fock method 253

Figure 10.1: Schematic diagram of the separation into core and valence electrons: (a) inter-shell interaction
between the valence orbital |κ〉 and the core orbitals {µ}; (b) intra-shell interaction between the valence
orbitals |κ〉 and |κ′〉 in a partially filled shell.

Note that n��(r)/n(r) is the fraction of the electron density with the same spin and at the same
position r as a probe electron in the spinorbital under consideration, ακ(r). In view of Eq. (10.33)
the exchange density satisfies the property

ˆ
nex(r1, r2)dr2 = δmκs ,mνs

u∗κ(r1)uν(r1)

|uκ(r1)|2
∑
ν

ˆ
u∗ν(r2)uκ(r2)dr2 = δmκs ,mνs . (10.36)

For ν 6= κ the integral over r2 yields zero; for ν = κ the integral yields unity and the prefactor
equals 1 provided the two electrons are in the same spin state. In other words, with this integral
over the position of the second electron (which can be in any of the occupied states - including the
one under consideration) we extract in total exactly one electron with spin parallel to that of the
spinorbital under consideration). This is as it should be because two electrons in the same spin
state cannot be found at the same position. Thus, in Slater’s picture each electron of the atom is
surrounded by an exchange hole (also called Fermi hole) in which electrons in the same spin state
are excluded. The exchange contribution to the potential energy of an electronic charge at position
r1 in the Coulomb field of all electrons can be written as

UX(ρ1) =
∑
ν

〈uν |
1

ρ12
|uκ〉

u∗κ(ρ1)uν(ρ1)

|uκ(ρ1)|2
δmκs ,mνs =

ˆ
1

ρ12
nex(ρ1,ρ2)dρ2. (10.37)

10.2.6 Energy functionals for valence electrons

In this section we have a special look at the valence electrons; i.e., the electrons in one or more
partially filled shells {ακ}. Let ακ be the spinorbital of one of these valence electrons. This electron
will interact with the other valence electrons ακ′ as well as with the core electrons {αµ}; i.e., the
energy functional (10.8) can be written in the form (see Fig. 10.1)

Hκ(u1, · · ·uN ) ≡ 〈uκ|h0|uκ〉+

core∑
µ

E(ακ, αµ) +

valence∑
κ′

′E(ακ, ακ′). (10.38)

Here E(ακ, αµ) is the Coulomb repulsion energy between the spinorbitals ακ and αµ. In terms of
the direct and exchange integrals (7.46) this energy becomes

E(ακ, αµ) =
[
J (uκ, uµ)−K(uκ, uµ)δmκs ,m

µ
s

]
. (10.39)

Let us calculate the contribution to the core summation of a single closed shell, the shell nl (see
Fig. 10.1a),

Enl2(2l+1)(ακ) ≡
nl shell∑
µ

E(ακ, αµ). (10.40)
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The spinorbitals of this shell are |αµ〉 = |nlmlsms〉, with −l ≤ ml ≤ l and ms = ± 1
2 , so the

summation can be written as

Enl2(2l+1)(ακ) =

1/2∑
ms=−1/2

l∑
ml=−l

[J (nlml, n
κlκmlκ)−K(nlml, n

κlκmlκ)δmsmκs ] (10.41)

=

l∑
ml=−l

[2J (nlml, n
κlκmlκ)−K(nlml, n

κlκmlκ)]. (10.42)

With the aid of Eqs. (7.59) the Coulomb integrals J and K can be expressed in terms of the
angular integrals ak and bk and the radial integrals F k and Gk. Using the properties of ak and
bk (see Problems 7.4, 7.5 and 7.6) the summation over ml can be evaluated and turns out to be
independent of ml and ms,

Enl2(2l+1)(ακ) =
∑
k

l∑
ml=−l

[2ak(lml, l
κmlκ)F k(nl, nκlκ)− bk(ml,mlκ)Gk(nl, nκlκ)]

=
∑
k

2(2l + 1)F k(nl, nκlκ)− (2l + 1)

(
l k lκ

0 0 0

)2

Gk(nl, nκlκ)

 . (10.43)

This expression can be written in the form of a potential energy integral using Eqs. (7.63a),

Enl2(2l+1)(ακ) =

ˆ ∞
0

U
(κ)
nl (ρ)

[
R̃nκlκ(ρ)

]2
ρ2dρ, (10.44)

where

U
(κ)
nl (ρ) ≡

∑
k

2(2l + 1)UkF (ρ)− (2l + 1)

(
l k lκ

0 0 0

)2
R̃nl(ρ)UkG(ρ)R̃nκlκ(ρ)

R̃nl(ρ)R̃nl(ρ)

 (10.45)

is the screening potential of the shell nl for valence electrons in the shell nκlκ.

Repeating the above procedure for all shells of the core we write the energy functional

Hκ(u1, · · ·uN ) ≡
∑
nl

〈uκ|h0 + U
(κ)
nl (ρ)|uκ〉+

valence∑
κ′

′E(ακ, ακ′), (10.46)

where the sum runs over all closed shells of the atom. This is an important result. Although two
equivalent valence electrons of nonzero angular momentum can have different charge distributions,
as expressed by |Y ml (θ, φ)|2, the screening by the electronic core is the same; i.e., independent of
the magnetic quantum number mlκ . In Problem 10.1 this is explicitly verified for the electrostatic
interaction of p valence electrons with a closed d shell. This result becomes intuitively clear if we
realize (cf. Section 10.3) that the electronic core has a spherical charge distribution and all spherical
harmonics have the same normalization.

An important consequence of the screening by the core being independent of the magnetic
quantum numbers mlκ and msκ of the valence electrons is that only the interactions within a valence
shell determine which valence state has the lowest energy. The core electrons affect the binding of
the valence electrons through screening of the nuclear charge and this can favor one valence shell
over another but among equivalent electrons the core has no influence on the actual valence state
with the lowest energy. The latter (i.e., the ground state) is determined by the Coulomb repulsion
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Table 10.1: Coulomb repulsion energies of closed shells and of closed shells with a single valence electron.

Ens2 = F0(ns2)

Enp6 = 15F0(np2)− 30F2(np2) F2 = F 2/25

End10 = 45F0(nd2)− 70F2(nd2)− 630F4(nd2) F2 = F 2/49 F4 = F 4/441

Ens2(n′s) = 2F0(ns, n′s)−G0(ns, n′s)

Ens2(n′p) = 2F0(ns, n′p)−G1(ns, n′p) G1 = G1/3

Ens2(n′d) = 2F0(ns, n′d)−G2(ns, n′d) G2 = G2/5

End10(n′p) = 10F0(nd, n′p)− 10G1(nd, n′p)− 105G3(nd, n′p) G1 = G1/15 G3 = G3/245

between the valence electrons (see Fig. 10.1b). The contribution of the valence electrons to the
binding energy of the atom can be written in the form

εval =
∑
κ

I(ακ) +
∑
κ,µ

E(ακ, αµ) + 1
2

∑
κ,κ′

′E(ακ, ακ′), (10.47)

where I(ακ) = 〈uκ|h0|uκ〉 is the hydrogenic energy of the valence electron in spinorbital αµ and the
summations represent the sum over all valence (κ) and core (µ) electrons. The core contribution to
the binding energy is

εcore =
∑
µ

I(αµ) + 1
2

∑
µ,µ′

′E(αµ, αµ′). (10.48)

By summing over the angular integrals the Coulomb repulsion energy on entire configurations can be
expressed in terms of a small set of Coulomb integrals, which can be evaluated numerically starting
from the Hartree-Fock solutions. Some of these compact expressions are presented in Table 10.1.
Once the Coulomb integrals are known it is straightforward to calculate the binding energy of the
elements. For a one-electron atom (boron) this is demonstrated in Problem 10.2.

Problem 10.1. Show by explicit calculation that the electrostatic interaction of one p valence electron with
a closed d shell is independent of the magnetic quantum numbers ml and ms of the p electron and given by

End10(n′p) = 10F0(nd, n′p)− 10G1(nd, n′p)− 105G3(nd, n′p).

Solution. Since the d shell is closed we have End10(pu) = End10(ṗu) = End10(pu), with u ∈ {1, 0,−1}. Let
us first calculate the electrostatic repulsion energy for a ṗ1 electron:

End10(ṗ1) = E(ṗ1, ḋ2) + E(ṗ1, ḋ1) + E(ṗ1, ḋ0) + E(ṗ1, ḋ−1) + E(ṗ1, ḋ−2)

+ E(ṗ1, d̄2) + E(ṗ1, d̄1) + E(ṗ1, d̄0) + E(ṗ1, d̄−1) + E(ṗ1, d̄−2).

Using Table 7.1 we have

E(ṗ1, ḋ2) + E(ṗ1, d̄2) = 2J (p1, d2)−K(p1, d2) = 2F0 + 4F2 − 6G1 − 3G3

E(ṗ1, ḋ1) + E(ṗ1, d̄1) = 2J (p1, d1)−K(p1, d1) = 2F0 − 2F2 − 3G1 − 9G3

E(ṗ1, ḋ0) + E(ṗ1, d̄0) = 2J (p1, d0)−K(p1, d0) = 2F0 − 4F2 −G1 − 18G3

E(ṗ1, ḋ−1) + E(ṗ1, d̄−1) = 2J (p1, d−1)−K(p1, d−1) = 2F0 − 2F2 − 30G3

E(ṗ1, ḋ−2) + E(ṗ1, d̄−2) = 2J (p1, d−2)−K(p1, d−2) = 2F0 + 4F2 − 45G3.

Adding up these contribution we find End10(ṗ1) = 10F0 − 10G1 − 105G3, where F0 = F 0, F2 = F 2/35,
G1 = G1/15 and G3 = G3/245. The same result is obtained for End10(ṗ−1). What remains to be shown is
that this result is also obtained for End10(p0). For this purpose we calculate

E(ṗ0, ḋ−2) + E(ṗ0, d̄−2) + E(ṗ0, ḋ2) + E(ṗ0, d̄2) = 4F0 − 16F2 − 30G3

E(ṗ0, ḋ−1) + E(ṗ0, d̄−1) + E(ṗ0, ḋ1) + E(ṗ0, d̄1) = 4F0 + 8F2 − 6G1 − 48G3

E(ṗ0, d0) + E(ṗ0, d̄0) = 2F0 + 8F2 − 4G1 − 27G3.

Adding up these contribution we indeed find again End10(p0) = 10F0 − 10G1 − 105G3. 2
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Problem 10.2. Derive an expression for the ground state energy of boron (B).

Solution. Boron is a group III atom with electron configuration 1s22s22p; i.e., with the 2p electron as the
only valence electron. The Coulomb energy of the ground state can be written as

ε(1s2, 2s2, 2p) = 2I(1s) + 2I(2s) + I(2p) + E1s2 + E2s2 + E1s2(2s2) + E1s2(2p) + E2s2(2p),

where I(nl) = 〈nl|h0|nl〉 is the hydrogenic energy of a single electron. The Coulomb repulsion energies are
found with Table 7.1: E1s2 = E(1ṡ, 1s̄) = F0(1s2), E2s2 = F0(2s2), E1s2(2s2) = E1s2(2ṡ) + E1s2(2s̄) =
4F0(2s, 1s)−2G0(2s, 1s), E1s2(2p) = 2F0(2p, 1s)−G1(2p, 1s) and E2s2(2p) = 2F0(2p, 2s)−G1(2p, 2s), with
F0 = F 0, G0 = G0 and G1 = G1/3. Adding the various terms the Coulomb energy becomes

ε(1s22s22p) = 2I(1s) + 2I(2s) + I(2p) + F0(1s2) + F0(2s2)

+ 4F0(2s, 1s)− 2G0(2s, 1s) + 2F0(2p, 1s)−G1(2p, 1s) + 2F0(2p, 2s)−G1(2p, 2s). 2

10.3 Atoms with zero orbital angular momentum

At this point we can start the search for the physics underlying the Hund rules. It will be our goal to
predict the angular momentum of the ground state of an arbitrary element of the periodic system.
The period and group of the element provides an Ansatz for the atomic ground state configuration,
adequate in most cases but with some interesting exceptions. To determine the state of angular
momentum of the ground states we proceed in steps. First we consider atoms with a ground-state
configuration of only closed shells. Then we look at half-filled shells. In subsequent sections we add
new aspects to the analysis until we can handle the most general case. The Hund rules turn out not
to be of general validity but nevertheless provide valuable guidance to sharpen our understanding
of the physics that determines the ground states of atomic systems.

10.3.1 Closed shell atoms - 1S0

We start with atoms composed of only closed (sub)shells. For closed shells of given values of n and
l, only a single nonzero Slater determinant can represent the angular momentum state of the atom,

|l̇, l̄, · · · , 0̇, 0̄, · · · ,−l̇,−l̄〉nl2(2l+1) . (10.49)

Moreover, the magnetic quantum numbers of the spinorbitals add up to zero,

ML = 2
∑
ml

ml = 0 and MS = 0. (10.50)

Hence, the angular momentum Hilbert space is one-dimensional, which means that the total orbital
and the total spin angular momentum have to be zero (L = 0, S = 0); i.e., closed-shell atoms are
characterized by a 1S0 term. The charge distribution is spherical as can be made explicit with the
aid of the addition theorem (L.56) for the case r̂ = r̂′,

2

l∑
m=−l

|Y ml (r̂)|2 = 2
(2l + 1)

4π
. (10.51)

This is known as Unsöld’s theorem [115].
There are several types of neutral atoms with only closed shells. Best known are of course

the inert gases (group VIII) helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe) and
radon (Rn). Secondly, the two-electron atoms. These include the alkaline-earth elements (group
II) beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra).
Further, the transition elements zinc (Zn), cadmium (Cd) and mercury (Hg) (group 12) and the



10.3. Atoms with zero orbital angular momentum 257

Figure 10.2: Ionization energies and electron affinities of the elements.

rare-earth elements ytterbium (Yb) and nobelium (No). In all these cases the electron affinity (i.e.,
the ionization energy of the negative ion with the strongest binding energy) is either zero or small
as is shown in the upper panel of Fig. 10.2 (cf. Appendix C). The difference is in the ionization
energies, which are largest for the inert gases as can be seen in the lower panel of Fig. 10.2. This
difference arises from the difference in occupation of the shells. For the alkaline-earth elements only
two electrons in ns shells share the Coulomb attraction of the nucleus, whereas the filled 2p shell
(Ne) contains 6 electrons, the filled 3d shell (Zn) 10, etc.. For a growing number of electrons in a
given shell, the binding increases because for neutral atoms the nuclear charge increases with the
shell occupation; hence also the ionization energy. So, it takes more energy to pull an electron from
a shell of 6 than from a shell of 2 electrons. This effect is counteracted by the electrostatic repulsion
of the electrons within a shell, which is large in small shells and small in large shells. As the relative
increase in binding is largest for small Z, the differences in ionization energy are most pronounced
in the first few rows of the periodic system.

For the inert gases Ne and Ar both the s shell and the p shell are closed; for Kr and Xe this holds
for the s, p and d shells; for Rn for the s, p, d and f shells. As the screening efficiency by the core
electrons increases with increasing Z the ionization energy of the inert gases decreases accordingly;
i.e., Rn is much less inert than He.

10.3.2 Atoms with half-filled shells - 2J+1SJ

Let us next turn to atoms with a ground-state configuration of closed shells plus one half-filled shell
of given values of n and l. In this case again only a single nonzero Slater determinant can represent
the angular momentum state of the atom. This is the fully symmetric spin state, which can only be
combined with an antisymmetric orbital state for the Pauli principle to be satisfied,

|l̇, · · · , 0̇, · · · ,−l̇〉nl(2l+1) . (10.52)

As discussed for the helium atom, antisymmetric orbital states minimize the Coulomb repulsion
between the electrons, exactly as we require for atomic ground states. In other words, the total spin
is maximized by quantum correlations since alignment of the spins minimizes the Coulomb repulsion
within the shell. The magnetic quantum numbers of the state (10.52) add up to

ML =
∑
ml

ml = 0 and MS = 1
2 (2l + 1) = S. (10.53)
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Figure 10.3: Example of three isoelectronic systems (K , Ca+ and Sc++) with one valence electron outside
the core configuration of argon. With increasing nuclear charge the screening of the 4s electron by the 3d
electron becomes more effective up to the point that the 3d electron is energetically favored; i.e., the ground
state is no longer alkali like.

Hence, also in the case of half-filled shells the orbital angular momentum subspace is one-dimensional
and the total orbital angular momentum has to be zero (L = 0). As a consequence also the charge
distribution is spherical. The ground-state terms are of the type 2J+1SJ , with J = S = l + 1

2 .
Let us look at a few examples: all ground states with three equivalent p electrons are of the type

4S3/2. This holds for nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi).
Likewise, we have for five equivalent d electrons 6S5/2. This holds for manganese (Mn), technetium
(Tc) and rhenium (Re). For the seven equivalent f electrons of europium (Eu) we have 8S7/2

(cf. Appendix C). Chromium (Cr) and molybdenum (Mo) are special because in these cases both
an s shell and a d shell are half filled.

10.4 Atoms with one valence electron

10.4.1 Competition between electron configurations

We found that in closed shells both L and S are zero. This immediately implies that for all one-
electron atoms the total angular momentum is equal to the angular momentum of the valence
electron. Interestingly, in potassium (K) the 4s shell starts to be populated rather than the 3d
shell. The same preference holds for the 5s shell over the both the 4d and 4f shells. This is the
case of rubidium (Rb). In indium (In) the occupation of the 5p shell is preferred over the 4f shell.
These preferences originate in differences of penetration of the various nl orbitals of the valences
electrons into the closed shells of core electrons. The Rns(ρ) wavefunctions penetrate all the way
to the nucleus. Therefore, the electron core is less effective in screening the nucleus for s electrons
than for p, d, f electrons.

Anomalies occur in the periodic table when two configurations have approximately the same
energy. This holds for instance for the [Ar]3d54s1 and [Ar]3d44s2 configurations of chromium (Cr)
and for the [Ar]3d104s1 and [Ar]3d94s2 configurations of copper (Cu). In both cases the occupation
of the 3d shell is marginally favored over that of the 4s shell (cf. Appendix C). Other examples
are the [Kr]4p64d45s and [Kr]4p64d35s2 configurations of niobium (Nb) and the [Xe]4f145d96s and
[Xe]4f145d86s2 configurations of platinum (Pt). In such cases it is more difficult to estimate the
ground state energy because the electronic wavefunction cannot be properly approximated by a single
configuration. This phenomenon is referred to as configuration interaction. In theories it is accounted
for by using a linear combination of configurations for the electronic state (cf. Section 10.2.2).

As an example of the arguments that come into play when discussing configuration interaction



10.4. Atoms with one valence electron 259

we compare the configuration of potassium (K) with that of copper (Cu). Starting from the closed
shell configuration [Ar] we note that the 4s electron is favored over the 3d electron. However, starting
from the closed shell configuration [Zn], we note that the 4s hole is favored over the 3d hole. How
can this be if the 4s electron state is preferentially bound? This paradox shows that, apparently, the
preferred binding of the 4s electron observed in K is lost in the case of Cu. This can be understood
by considering the strong increase in nuclear charge along the 4th period, from ZK = 19 to ZCu = 29.

As screening is always incomplete, the increase in Z tends to increase the binding of all electrons
but the actual increase depends on screening details of the individual orbitals:

• Screening by the core: As the core electrons of potassium (1s, 2s, 2p, 3s) are least screened,
the increase in binding energy with increasing Z is strongest for these electrons. This results
in core contraction. The contraction of the 3d orbital (and to a lesser extent the 4p orbital)
is more pronounced than that of the 4s orbital (because the 4s electron always probes the
nucleus). This phenomenon is sometimes referred to as the collapse of the 3d shell. We can
convince ourselves about this effect by comparing the energy levels of potassium (K), singly
ionized calcium (Ca+) and doubly ionized scandium (Sc2+), which are isoelectronic (i.e., have
the same number of electrons) but differ in the nuclear charge - see Fig. 10.3. Actually, the
electronic ground state configurations of the transition-metal ions Sc2+, Ti3+, V4+, etc., are all
[Ar]3d1. This shows that even a modest increase in nuclear charge from ZK = 19 to ZSc = 21
is sufficient to remove the penetration advantage of the 4s electron and favor the 3d electron.

• Screening by the valence electrons: The collapsed 3d shell acts as an additional screening layer
for the 4s electrons. Therefore, with growing 3d occupation (along the 4th period) the binding
of the 4s electron erodes by 3d screening up to the point that a 3d electron is favored. This
first happens for chromium (Cr) and later in the period for copper (Cu). Beyond Cr the 4s
electron is again favored because all 3d orbitals are already occupied once and screening of
an additional 3d electron by the others is more effective at double occupation (not reduced
by quantum correlations). Yet, as the increase in Z continues along the 4th period the story
repeats itself: with the 4s shell closed the 3d occupation resumes and the 4s binding erodes
until the 3d electron is again favored at Z = 29. This manifests itself as the 4s hole in the
configuration of Cu.

10.4.2 Core polarization - unrestricted Hartree-Fock method

Thus far in calculating Coulomb repulsion we presumed that all electrons of a closed shell have the
same radial wavefunction. In Section 7.1.3 we briefly abandoned this restriction and found that to
achieve binding of H− the two electrons of the 1s shell should have different Bohr radii; i.e., half
of the shell is compressed and the other half is inflated. In the case of H− this arises from the
correlation in the electron motion, which tends to keep the inter-electronic separation as large as
possible. We now consider a similar phenomenon but with quantum correlations at its origin. The
principle is illustrated in Fig. 10.4 where we show a schematic diagram in which the 3s electron of
sodium (Na) interacts with the 2p6 core shell. The Coulomb repulsion energy between the valence
electron and the 2p6 shell is given by a part which includes exchange

E(3ṡ, 2ṗ1) + E(3ṡ, 2ṗ0) + E(3ṡ, 2ṗ−1) = 3F0 − 3G1, (10.54)

where G1 = G1/3 and a part which does not include exchange (see Problem 9.5)

E(3ṡ, 2p̄1) + E(3ṡ, 2p̄0) + E(3ṡ, 2p̄−1) = 3F0. (10.55)

As the Coulomb repulsion is less in the former case, the up-spin part of the core will be less
compressed by the valence electron than the down-spin part. To allow for this effect one has to use
different orbitals for spin-up and spin-down in the Hartree-Fock optimization. This is known as the
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Figure 10.4: Principle of core polarization by a spin-up valence electron. The Coulomb repulsion by the core
shell differs for spin-up and spin-down core electrons due to the presence (spin-up) or absence (spin-down)
of the exchange contribution. In the diagram this is illustrated by splitting the 2p6 core shell into two shells
of slightly different diameter.

unrestricted Hartree-Fock method. This approach requires the use of twice as many core orbitals as
in the ordinary Hartree-Fock method introduced in Section 10.2.3. The latter is called the restricted
Hartree-Fock method because all electrons within a closed shell are forced to have the same radial
wavefunction, irrespective of the spin state. An important consequence of the separation of the core
shells in a spin-up and a spin-down part is the appearance of a spin density which is globally balanced
but locally not. This is called local polarization of the electron core. Of particular importance is
core polarization of s shells as this gives rise to a nonzero electron spin density at the nucleus, which
is rigorously absent in the restricted Hartree-Fock picture. This gives rise to an induced Fermi
contact interaction. This contact interaction can also be induced by valence electrons with l 6= 0.
As the induced spin at the nucleus is opposite to the spin of the polarizing valence electron it tends
to suppress the hyperfine splitting for parallel coupling (j = l + s) and to enhance the splitting for
antiparallel coupling (j = l − s). This can give rise to a level inversion of the hyperfine levels as is
illustrated for the 2 2P1/2 and 2 2P3/2 fine-structure doublet of 7Li in Fig. 5.3.

10.5 Atoms with more than one valence electron - Hund’s Rule 1 & 2

10.5.1 Introduction

Thus far we have been dealing with an unambiguous angular momentum state of the atom. Once we
have more than one valence electron in a partially filled shell (but not half filled) matters complicate
considerably because by coupling of angular momenta more than one angular momentum state can
be associated with a given electron configuration. So, it takes an additional effort to determine
which angular momentum state (LS term) corresponds to the electronic ground state of a given
electron configuration. The first two Hund rules provide us with a rapid assessment of the LS term
corresponding to the electronic ground state.

In the present section we determine for a given electron configuration which LS terms are
consistent with Fermi-Dirac statistics; i.e., can be expressed as a linear combination of (nonzero)
Slater determinants. Once we know the relevant LS terms we calculate their electrostatic energies
and demonstrate that the first two Hund rules correctly predict (in practically all cases) the LS term
of lowest electrostatic repulsion between the valence electrons, which corresponds to the electronic
ground state of a given electron configuration.

10.5.2 Partially filled shells with np2 configuration

As the first case of a partially filled shell with two electrons we consider the np2 configuration. This
is the case of the group IV atoms C, Si, Ge, Sn and Pb. In the absence of the Pauli principle the
electronic pair state |ψ12〉 can be expressed as a linear combination of the (2l + 1)2(2s + 1)2 = 36
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Table 10.2: Example np2 configuration: (top) uncoupled representation - the 15 linearly independent pair
states consistent with the Pauli principle; (bottom) coupled representation - all LS terms (including degen-
eracy these yield 36 linearly independent states).

np2 MS deg.

uncoupled 1 0 -1 15

2 |1̇, 1〉 1

1 |1̇, 0̇〉 |1̇, 0̄〉|1̄, 0̇〉 |1̄, 0̄〉 4

ML 0 |1̇,−1̇〉 |1̇,−1̄〉|0̇, 0̄〉|1̄,−1̇〉 |1̄,−1̄〉 5

-1 |0̇,−1̇〉 |0̇,−1̄〉|0̄,−1̇〉 |0̄,−1̄〉 4

-2 | − 1̇,−1̄〉 1

np2 L deg.

coupled 0 1 2 36

S 0 1S0
1P1

1D2 9

1 3S1
3P2,

3P1,
3P0

3D3,
3D2,

3D1 27

basis states of the uncoupled representation {|nlml1sms1〉 ⊗ |nlml2sms2〉} with l = 1 and s = 1
2 .

Using a basis transformation this basis can be reexpressed into a basis of(
6

2

)
= 15 (10.56)

fully antisymmetric and 21 partly or fully symmetric linearly independent states. For equivalent
electrons the 21 partly or fully symmetric basis states have to be excluded on the basis of the Pauli
principle. The leaves a 15-dimensional Hilbert space consistent with the Pauli principle. The 15
linearly independent antisymmetric states are readily identified in the Slater determinant notation.
In Table 10.2 they are grouped by the values of ML = ml1 +ml2 and MS = ms1 +ms2 .

Further insight into the role of the Pauli principle for partially filled shells is obtained by analyzing
the np2 configuration in the coupled representation of the total orbital angular momentum L = l1+l2
coupled with the total spin S = s1 + s2 into the total angular momentum J = L + S. In a potential
field of central symmetry J is a good quantum number. For the np2 configuration the total orbital
angular quantum number can take the values L = 0, 1, 2 with possible total spin S = 0, 1. In the
coupled representation {|JMJ〉} we have 9 singlet states (S = 0) and 27 triplet states (S = 1); i.e.,
together again 36 atomic states can be identified. In the absence of spin-orbit coupling these are all
degenerate. In the LS-term notation these 36 states are also given in Table 10.2. Three questions
immediately arise:

1. which of these LS terms are consistent with the Pauli principle?

2. what is the relation between the LS terms and the Slater determinants?

3.which term has the lowest energy?

10.5.2.1 Determination of LS terms consistent with Pauli principle

To answer the first question we are guided by the knowledge that the dimension of the anti-symmetric
subspace is independent of the choice of basis. Hence we search for 15 basis states in the coupled
representation. This is done with the aid of a decision table. For the np2 configurations this is Table
10.3.

We start with the angular momentum state of the largest multiplicity, i.e., the 3D sector of the
coupled representation. This sector is not contained in the anti-symmetric subspace because for
L = 2 and S = 1 the 3D sector must include the Slater determinant |1̇, 1̇〉, which corresponds to
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Table 10.3: Decision table for np2 configurations using the known LS-term degeneracy to determine the
spin-orbit Terms consistent with the Pauli principle for two equivalent p-electrons.

MS ML Slater determinants † LS terms

Pauli allowed: options accept excl.

2 ��−−− 0 3D - 3D

1 1 �− �−− 1 3P 3P -

0 �−− �−,− ��−− 1 3P,3S - 3S

2 ��−−− 1 1D 1D -

0 1 �− �−− (2×) 2 3P,1D,1P - 1P

0 �−− �− (2×),− ��−− 3 3P,1D,1S 1S -
†The sliced-arrow notation has no significance other than being compact.

ML = ml1 + ml2 = 2 and MS = ms1 + ms2 = 1. But this determinant violates the Pauli principle
and therefore has to be excluded.

Continuing with the triplet manifolds, we turn to the 3P sector, which is the largest of the
remaining sectors. Since L = 1 and S = 1, the 3P sector must include the Slater determinant
|1̇, 0̇〉, which corresponds to ML = ml1 + ml2 = 1 and MS = ms1 + ms2 = 1. Hence, we identify:
|1̇, 0̇〉 = |3P ;ML = 1,MS = 1〉. In Problem 9.7 we calculated L with the algebraic method of Eq. 9.98
(which requires a larger effort than the dimensional analysis of the present section). Because the
determinant |1̇, 0̇〉 is consistent with the Pauli principle it must be within the anti-symmetric part
of the Hilbert space. Actually, this must hold for the whole 3P sector because all eigenstates of
this sector can be generated from |1̇, 0̇〉 with the shift operators L± and S± and these preserve
the antisymmetric symmetry - see Eq. (9.94) and question b.). Furthermore, because the 3P sector
represents a 3 × 3-fold degenerate manifold, also 9 linearly independent determinants are required
to represent the 3P sector for all combinations of MS = 1, 0,−1 and ML = 1, 0,−1. These 9
possibilities are collected in Table 10.4 along with the basis states of the 1D and 1S sectors, which
are also Pauli-allowed (compare with Table 10.4-top).

Next we turn to the 3S sector, for which L = 0 and S = 1. This sector has to be excluded
because there is only a single Slater determinant with MS = 1 and ML = 0 consistent with the
Pauli principle but this one was already assigned as part of the 3P manifold. So, we proceed with
the singlet sectors. First 1D (L = 2;S = 0), this 1 × 5-fold degenerate sector includes the Slater
determinant |1̇, 1̄〉, which is allowed by the Pauli principle. Thus the 1D sector must be part of the
subspace spanned by 5 linearly independent Slater determinants corresponding to all combinations
of MS = 0 and ML = 2, 1, 0,−1,−2 (these 5 possibilities are collected Table 10.4).

At this point we assigned 9 + 5 = 14 of the 15 basis states, which leaves only a single non-
degenerate sector; i.e., a 1S0 term (also collected in Table 10.4). The same result is also obtained by
continuing the procedure of Table 10.3 until we decided on all LS terms. Note that in view of the
symmetry of the table only the non-positive (or the non-negative) MJ = ML + MS values suffice
to assign all LS terms. We found that only the 3P , 1D and 1S sectors are consistent with the Pauli
principle. In the coupled representation this implies the terms 3P2, 3P1, 3P0, 1D2 and 1S0. Including
their degeneracies we recover again the 5+3+1+5+1 = 15-dimensional subspace of antisymmetric
states identified at the beginning of this section (see Table 10.5).

10.5.2.2 The LS terms decomposed as linear combinations of Slater determinants

Let us turn to the second question. At this point we have identified all LS terms of the np2

configurations consistent with the Pauli principle. It would be nice if a unique mapping would
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Table 10.4: Multiplicity analysis of the upper part of Table 10.2 to identify the 15 linearly independent LS
terms of the np2 configuration consistent with the Pauli principle. Note the 3 × 3 block of the 3P sector,
the 1× 5 block of the 1D sector and the 1× 1 block of the 1S sector.

|2S+1L;ML,MS〉 MS deg.

(coupled) 1 0 -1 15

2 |1D; 2, 0〉 1

1 |3P ; 1, 1〉 |3P ; 1, 0〉|1D; 1, 0〉 |3P ; 1,−1〉 4

ML 0 |3P ; 0, 1〉 |3P ; 0, 0〉|1S; 0, 0〉|1D; 0, 0〉 |3P ; 0,−1〉 5

-1 |3P ;−1, 1〉 |3P ;−1, 0〉|1D;−1, 0〉 |3P ;−1,−1〉 4

-2 |1D;−2, 0〉 1

exist onto the Slater determinants. Unfortunately this is generally not the case. Exceptions are the
LS-term states |LML, SMS〉 ≡ |2S+1L;ML,MS〉 for which a single LS term combines with a single
determinant in Table 10.3,

|3P ; 1, 1〉 = |1̇, 0̇〉np2 (10.57)

|1D; 2, 0〉 = |1̇, 1̄〉np2 . (10.58)

The first example corresponds to a stretched spin state (MS = S = 2s = 1), the second with
a stretched orbital angular momentum state (ML = L = 2l = 2). Being stretched states these
examples represent eigenstates of the total spin and the total angular momentum, respectively
(see Problem 9.8). To find the other basis states of the 3P sector in the Hilbert space of the np2

configuration we compare the action of the spin lowering operator S− in both representations,

S±|ψα〉 =


√
S(S + 1)−MS(MS ± 1) ~ |ψα(MS ± 1)〉∑
κ

√
s(s+ 1)−mκ

s (mκ
s ± 1) ~ |ψα(mκ

s ± 1)〉.
(10.59)

Starting from the stretched spin state (10.57) we calculate

S−|3P ; 1, 1〉=
√

2 ~ |3P ; 1, 0〉

S−|1̇, 0̇〉np2 = ~ |1̄, 0̇〉np2 + ~ |1̇, 0̄〉np2

→ |3P ; 1, 0〉 =
√

1
2

[
|1̇, 0̄〉np2 + |1̄, 0̇〉np2

]
. (10.60)

Although it is a bit laborious we may convince ourselves explicitly with Eqs. (9.98), (9.92), (9.110)
and (9.108) that the r.h.s. of Eq. (10.60) is indeed an eigenstate of L2, Lz,S

2 and Sz. To find the

Table 10.5: Coupled and uncoupled basis states for np2 configurations. In both cases we can identify 15
linearly independent pair states spanning the antisymmetric subspace in which the Pauli principle is satisfied.

uncoupled coupled

ML |J,MJ 〉

2 1 0 −1 −2 1D2
3P2

3P1
3P0

1S0

|1̇, 1̄〉 |1̇, 0̇〉 |2, 2〉 |2, 2〉 2

MJ

|1̇, 0̄〉|1̄, 0̇〉 |1̇,−1̇〉 |2, 1〉 |2, 1〉 |1, 1〉 1

|1̄, 0̄〉 |1̇,−1̄〉|0̇, 0̄〉|1̄,−1̇〉 |0̇,−1̇〉 |2, 0〉 |2, 0〉 |1, 0〉 |0, 0〉 |0, 0〉 0

|1̄,−1̄〉 |0̇,−1̄〉|0̄,−1̇〉 |2,−1〉 |2,−1〉 |1,−1〉 −1

|0̄,−1̄〉 | − 1̇,−1̄〉 |2,−2〉 |2,−2〉 −2
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basis of the 1D sector in the Hilbert space of the np2 configuration we compare the action of the
orbital lowering operator L− on both representations

L±|ψα〉 =


√
L(L+ 1)−ML(ML ± 1) ~ |ψα(ML ± 1)〉∑
κ

√
lκ(lκ + 1)−mκ

l (mκ
l ± 1) ~ |ψα(mκ

l ± 1)〉.
(10.61)

Starting from the stretched orbital angular momentum state (10.58) we obtain

L−|1D; 2, 0〉= 2~ |1D; 1, 0〉

L−|1̇, 1̄〉np2 =
√

2 ~ |0̇, 1̄〉np2 +
√

2 ~ |1̇, 0̄〉np2

→ |1D; 1, 0〉 =
√

1
2

[
|1̇, 0̄〉np2 − |1̄, 0̇〉np2

]
. (10.62)

The minus sign appeared when the determinantal state |0̇, 1̄〉np2 was brought to standard order.
Note that the states |3P ; 1, 0〉 and |1D; 1, 0〉 are orthogonal eigenstates of L2, Lz,S

2 and Sz, both
composed of the same Slater determinants.

To express the basis state |1S; 0, 0〉 of the 1S sector in Slater determinants we have to take a
different approach because this sector does not contain a stretched state. However, we can use
the L− operator to construct the states |3P ; 0, 0〉 and |1D; 0, 0〉, which both must be orthogonal to
|1S; 0, 0〉. For the state |3P ; 0, 0〉 we find with the aid of Eqs. (10.60) and (9.94)

L−|3P ; 1, 0〉=
√

2 ~ |3P ; 0, 0〉

L−

√
1
2

[
|1̇, 0̄〉np2 + |1̄, 0̇〉np2

]
= ~ |1̇,−1̄〉np2 + ~ |1̄,−1̇〉np2

→
→ |3P ; 0, 0〉 =

√
1
2

[
|1̇,−1̄〉np2 + |1̄,−1̇〉np2

]
. (10.63)

Analogously we find with the aid of Eq. (10.62) for the state |1D; 0, 0〉

L−|1D; 1, 0〉=
√

6 ~ |1D; 0, 0〉

L−

√
1
2

[
|1̇, 0̄〉np2 − |1̄, 0̇〉np2

]
= 2~ |0̇, 0̄〉np2 + ~ |1̇,−1̄〉np2 − ~ |1̄,−1̇〉np2

→
→ |1D; 0, 0〉 =

√
1
6

[
2|0̇, 0̄〉np2 + |1̇,−1̄〉np2 − |1̄,−1̇〉np2

]
. (10.64)

What remains to be done is to find the coefficients that orthonormalize the linear combination
|1S; 0, 0〉 = a|0̇, 0̄〉np2 + b|1̇,−1̄〉np2 + c|1̄,−1̇〉np2 with respect to both |3P ; 0, 0〉 and |1D; 0, 0〉. To

be orthogonal to |3P ; 0, 0〉 we require
√

1/2 b +
√

1/2 c = 0 ⇒ b = −c. To be also orthogonal to

|1D; 0, 0〉 the coefficients should satisfy the relation
√

2/3 a−
√

1/6 c−
√

1/6 c = 0⇒ a = c. Thus, the
normalized linear combination is

|1S; 0, 0〉 =
√

1
3

[
|0̇, 0̄〉np2 − |1̇,−1̄〉np2 + |1̄,−1̇〉np2

]
. (10.65)

10.5.2.3 The first Hund rule

The remaining question concerns the energies of the LS terms. First of all we note that all the
terms identified in Table 10.3 have the same energy in the screened Coulomb field of the nucleus,

Ec(np
2) = −2× hcR∞Z2

np/n
2, (10.66)

where Znp has to be determined experimentally, or theoretically by numerical integration of the
radial Schrödinger equation for a p-electron (l = 1) in the screened Coulomb field of the nucleus.
Therefore, the electrostatic repulsion between the electrons determines which LS term has the lowest
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energy and this repulsion is smallest for the largest average separation between the electrons. In
view of Pauli exclusion of close approach of identical fermions, we may argue that the symmetric
spin states (the states with the largest total spin S) are energetically most favorable (like in the
helium ground state). This insight provides the physics behind the first Hund rule:

The Coulomb repulsion between the valence electrons of an atomic ground state config-
uration is minimal for the maximum (Pauli-allowed) value of the total spin, S.

For the np2 configuration the terms with the largest spin (S = 1) are the triplet terms 3P2,1,0. The
ground state of carbon is indeed a 3P term: 3P0 (cf. Appendix C). To decide among the terms 3P2,
3P1 and 3P0 we need the third Hund rule. This rule originates in the spin-orbit interaction and will
be discussed in Section 10.6.

Calculation of Term energies: Let us explicitly verify the validity of the first Hund rule by
calculating the energy of the three LS terms identified above. Because in zero field the energy is
independent of the magnetic quantum numbers it can be determined for any value of ML and MS .
First we calculate the energy for the stretched states. In Hartree atomic units the electrostatic
repulsion energy of the 3P term is given by

E(3P ) = 〈1̇, 0̇| 1

ρ12
|1̇, 0̇〉np2 . (10.67)

This is a diagonal matrix element of a two-body operator and using Eq. (9.52) we find

E(3P ) = (p1, p0|
1

ρ12
|p1, p0)− (p0, p1|

1

ρ12
|p1, p0) = J −K, (10.68)

where J = (p1, p0|ρ−1
12 |p1, p0) and K = (p0, p1|ρ−1

12 |p1, p0) are the Coulomb integrals defined by
Eqs. (7.46). For two p electrons Eq. (10.68) reduces to

E(3P ) =
∑
k=0,2

[
ak(p1, p0)F k(np2)− bk(p1, p0)Gk(np2)

]
. (10.69)

Substituting the values for ak(p1, p0) and bk(p1, p0) for k = 0, 2 from Table 7.1 the electrostatic
repulsion can be written as the sum of two F integrals (note that F k = Gk for equivalent electrons),

E(3P ) = F0 − 2F2 − 3G2 = F0 − 5F2. (10.70)

In accordance with convention the common denominators of the ak and bk coefficients were elimi-
nated by redefining the F integrals: F0 ≡ F 0, F2 ≡ F 2/25.

Also the 1D term represents a stretched angular momentum state (orbital angular momentum
in this case),

E(1D) = 〈1̇, 1̄| 1

ρ12
|1̇, 1̄〉np2 . (10.71)

This case is even simpler than the 3P term because the exchange term vanishes; as the orbital part is
stretched it is manifestly symmetric - note also the antisymmetric spin part. Looking up ak(p1, p1)
for k = 0, 2 from Table 7.1 the expression for the electrostatic repulsion takes the form

E(1D) =
∑
k=0,2

ak(p1, p1)F k(np2) = F0 + F2. (10.72)

Note that E(1D) > E(3P ), in accordance with the first Hund rule.
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Figure 10.5: Fine-structure diagram of atoms from the carbon group (group 14) as an example of a np2

valence configuration.

10.5.2.4 Slater sum rule

The electrostatic repulsion energy is more difficult to calculate for the 1S term because it does not
represent a stretched angular momentum state. In such cases the direct and exchange integrals do
not suffice to calculate the energy with the straightforward way used above. Slater formulated a
sum rule that enables to work around this complication. It is based on the invariance of the trace
of the matrix of an operator H under a unitary transformation, H′ = U−1HU , from the coupled to
the uncoupled representation,

tr (H′) = tr (U−1HU) = tr (UU−1H) = tr (H). (10.73)

This invariance follows from property (M.26) of square matrices. Secondly, the sum rule is based on
the degeneracy of all magnetic sublevels MS and ML of a given LS term in zero field. Together with
the states |3P ; 0, 0〉 and |1D; 0, 0〉 the state |1S; 0, 0〉 spans a 3 dimensional subspace. The electrostatic
repulsion is diagonal in this basis and summing the diagonal matrix elements we obtain for the trace
of the 3× 3 matrix

tr (3× 3) = E(3P ) + E(1D) + E(1S) = 2F0 − F2 − 3G2 + E(1S), (10.74)

where we used the MS and ML independence of the LS term energies. The same subspace is spanned
by the determinantal states |0̇, 0̄〉np2 , |1̇,−1̄〉np2 and |1̄,−1̇〉np2 . The trace of the corresponding
matrix is given by1

tr (3× 3) = 〈0̇, 0̄| 1

ρ12
|0̇, 0̄〉np2 + 〈1̇,−1̄| 1

ρ12
|1̇,−1̄〉np2 + 〈1̄,−1̇| 1

ρ12
|1̄,−1̇〉np2

= (F0 + 4F2) + (F0 + F2) + (F0 + F2) = 3F0 + 6F2. (10.75)

Here the three matrix elements were calculated by looking up the ak terms with the aid of Table
7.1. Comparing Eqs. (10.74) and (10.75), we find

E(1S) = F0 + 7F2 + 3G2 = F0 + 10F2. (10.76)

Note that E(1S) > E(3P ), again in accordance with the first Hund rule.

1For diagonal matrix elements of the type 〈u̇, v|ρ−1
12 |u̇, v〉 the exchange terms do not contribute - see Problems 9.2

and 9.5.
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Table 10.6: Example nd2 configuration: (top) uncoupled representation - pair states consistent with the
Pauli principle; (bottom) coupled representation - all LS terms.

nd2 MS deg.

uncoupled 1 0 -1 45

4 |2̇, 2〉 1

3 |2̇, 1̇〉 |2̇, 1̄〉|2̄, 1̇〉 |2̄, 1̄〉 4

2 |2̇, 0̇〉 |2̇, 0̄〉|1̇, 1̄〉|2̄, 0̇〉 |2̄, 0̄〉 5

1 |2̇,−1̇〉|1̇, 0̇〉 |2̇,−1̄〉|1̇, 0̄〉|1̄, 0̇〉|2̄,−1̇〉 |2̄,−1̄〉|1̄, 0̄〉 8

ML 0 |2̇,−2̇〉|1̇,−1̇〉 |2̇,−2̄〉|1̇,−1̄〉|0̇, 0̄〉|1̄,−1̇〉|2̄,−2̇〉 |2̄,−2̄〉|1̄,−1̄〉 9

-1 |1̇,−2̇〉|0̇,−1̇〉 |1̄,−2̇〉|0̄,−1̇〉|0̇,−1̄〉|1̇,−2̄〉 |1̄,−2̄〉|0̄,−1̄〉 8

-2 |0̇,−2̇〉 |0̄,−2̇〉| − 1̇,−1̄〉|0̇,−2̄〉 |0̄,−2̄〉 5

-3 | − 1̇,−2̇〉 | − 1̄,−2̇〉|1̇,−2̄〉 | − 1̄,−2̄〉 4

-4 | − 2̇,−2̄〉 1

nd2 L deg.

coupled 0 1 2 3 4 100

S 0 1S0
1P1

1D2
1F3

1G4 25

1 3S1
3P2,

3P1,
3P0

3D3,
3D2,

3D1
3F4,

3F3,
3F2

3G5,
3G4,

3G3 75

10.5.3 Partially filled shells with nd2 configuration

As a second example of a partially filled shell we consider the nd2 configuration. This is the case
of Ti, Zr, Hf and Rf. In the absence of the Pauli principle the electronic pair state |ψ12〉 can be
expressed as a linear combination of the (2l + 1)2(2s + 1)2 = 100 basis states of the uncoupled
representation {|nlml1sms1〉 ⊗ |nlml2sms2〉}, with l = 2 and s = 1

2 . In this case we obtain(
10

2

)
= 45 (10.77)

linearly independent antisymmetric states consistent with the Pauli principle. In Table 10.6 they
are grouped by the values of ML = ml1 +ml2 and MS = ms1 +ms2 .

Like in the case of the np2 configuration we proceed by analyzing the nd2 configuration in the
coupled representation of the total orbital angular momentum L = l1 +l2 coupled with the total spin
S = s1 + s2 into the total angular momentum J = L + S. In a potential field of central symmetry
J is a good quantum number. For the nd2 configuration the orbital angular quantum number can
take the values L = 0, 1, 2, 3, 4 with possible spin S = 0, 1. In the coupled representation {|JMJ〉}
again a total of 100 atomic states can be identified. In the LS-term notation these 100 states are
also given in Table 10.6.

10.5.3.1 Determination of LS terms consistent with Pauli principle

Next we have to select the LS terms consistent with the Pauli principle. We start again with
the terms of the highest multiplicity; i.e., with 3G. Since L = 4 and S = 1 the 3G manifold
must include the Slater determinant |2̇, 2̇〉, which corresponds to ML = 4 and MS = 1. But this
determinant violates the Pauli principle and therefore has to be excluded. Continuing with the
triplet manifolds, we turn to the 3F terms, where L = 3 and S = 1. Therefore, the 3F manifold
must include the Slater determinant |2, 1〉, which corresponds to ML = 3 and MS = 1. Because this
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Table 10.7: Decision table using the known LS-term degeneracy to determine the spin-orbit Terms consistent
with the Pauli principle for two equivalent d-electrons .

MS ML Slater determinants † LS terms

Pauli allowed: options accept excl.

4 ��−−−−− 0 3G - 3G

3 �− �−−−− 1 3F 3F -

1 2 �−− �−−−,− ��−−−− 1 3F, 3D - 3D

1 �−−− �−−,− �− �−−− 2 3F, 3P 3P -

0 �−−−− �−,− �−− �−−,−− ��−−− 2 3F, 3P,3S - 3S

4 ��−−−−− 1 1G 1G -

3 �− �−−−− (2×) 2 3F, 1G, 1F - 1F

0 2 �−− �−−− (2×),− ��−−−− 3 3F, 1G, 1D 1D -

1 �−−− �−− (2×),− �− �−−− (2×) 4 3F, 3P, 1G, 1D, 1P - 1P

0 �−−−− �− (2×),− �−− �−− (2×),−− ��−−− 5 3F, 3P, 1G, 1D, 1S 1S -
†The sliced-arrow notation has no significance other than being compact.

determinant is consistent with the Pauli principle it must be within the fully anti-symmetric part
of the Hilbert space. Further, because the 3F terms represent a 21-fold degenerate manifold, also
21 linearly independent determinants are required to represent the 3F sector of Hilbert space for all
combinations of MS = 1, 0,−1 and ML = 2, 1, 0,−1,−2.

In Table 10.7 the determinants are assigned. Next we proceed with the 3D term, where L = 2
and S = 1. It has to be excluded because there is only one linearly independent Slater determinant
with MS = 1 and ML = 2 consistent with the Pauli principle and this one has to be assigned to the
3F manifold. The next manifold is 3P , which can be accepted because it must include the Slater
determinant |1̇, 0̇〉 and we have two determinants with MS = 1 and ML = 1 consistent with the
Pauli principle, one was already assigned to the 3F manifold, but the other serves our purpose.
To represent the full 3P manifold 9 linearly independent determinants are required. The 3S has to
be excluded because only two Slater determinants with MS = 1 and ML = 0 are consistent with
the Pauli principle and these have to be assigned to the 3F and the 3P manifolds. We proceed by
turning to the singlet manifolds, first the 1G term (L = 4;S = 0). This 9-fold degenerate manifold
must include the Slater determinant |2̇, 2̄〉, which is allowed by the Pauli principle. Thus the 1G
sector must be part of the anti-symmetric part of Hilbert space spanned by 9 linearly independent
Slater determinants corresponding to all combinations of MS = 0 and ML = 2, 1, 0,−1,−2. This
procedure is continued until we decided on all LS terms. As illustrated in Table 10.7 only the terms
3F4,3,2, 3P2,1,0, 1G4, 1D2 and 1S0 are consistent with the Pauli principle. Adding their degeneracies
we recover the 45-dimensional Hilbert space of antisymmetric states identified above.

10.5.3.2 The second Hund rule

The relative energies of the LS terms of the nd2 configuration may be estimated using the guidelines
given for the np2 configuration. All terms identified in Table 10.3 have the same energy in the
screened Coulomb field of the nucleus

Ec(nd
2) = −2× hcR∞Z2

nd/n
2, (10.78)

where Znd is to be determined experimentally, or theoretically by numerical integration of the
radial Schrödinger equation for a d-electron (l = 2) in the screened Coulomb field of the nucleus.
The electrostatic repulsion between the electrons is lowest for the state with the largest average



10.5. Atoms with more than one valence electron - Hund’s Rule 1 & 2 269

Figure 10.6: Fine-structure diagram of atoms from the titanium group (group 4) as an example of a nd2

valence configuration.

separation. In view of Pauli exclusion of close approach this is the case for terms of maximum S
(Hund’s first rule).

The decision procedure of Table 10.7 resulted for the nd2 configuration in two terms with S = 1:
3F and 3P . These terms differ in the coupling of the orbital angular momenta of the d electrons,
parallel for the 3F4,3,2 terms and antiparallel for the 3P2,1,0 terms. If the angular momenta are in
the same direction the electrons meet less than if they rotate in opposite direction. Therefore, the
electrostatic repulsion is less in the state of maximum L. This exposes the physics behind the second
Hund rule:

The Coulomb repulsion between the valence electrons of an atomic ground state config-
uration (of maximal Pauli-allowed S) is minimal for the maximal (Pauli-allowed) value
of the total orbital angular momentum, L.

Thus, the symmetric spin state with the largest angular momentum has the lowest energy. For
the nd2 configuration this corresponds to one of the triplet terms 3F4,3,2. The ground state of Ti
is indeed a 3F term: 3F2 (cf. Appendix C). To decide among the terms 3F4, 3F3 and 3F2 we need
Hund’s third rule, which will be discussed in Section 10.6.

Calculation of Term energies: To conclude this section we verify that also the second Hund rule
is confirmed by explicit calculation of the energy. Because in zero field the energy is independent of
the magnetic quantum numbers we calculate the energy starting from the stretched spin states with
the largest L, which can be written as a single nonzero Slater determinant, |3F ; 3, 1〉 = |2̇, 1̇〉nd2 . In
Hartree atomic units the energy shift caused by electrostatic repulsion of this 3F term is given by

E(3F ) = 〈2̇, 1̇| 1

ρ12
|2̇, 1̇〉nd2 . (10.79)
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This is a diagonal matrix element of a two-body operator and using Eq. (9.52) we find

E(3F ) = (d2, d1|ρ−1
12 |d2, d1)− (d1, d2|ρ−1

12 |d2, d1) = J −K, (10.80)

where J = (d2, d1|ρ−1
12 |d2, d1) and K = (d1, d2|ρ−1

12 |d2, d1) are the Coulomb integrals defined by
Eqs. (7.46). As we are dealing with equivalent electrons we have F k = Gk and Eq. (10.79) reduces
to

E(3F ) =
∑

k=0,2,4

[
ak(d2, d1)F k(nd2)− bk(d2, d1)Gk(nd2)

]
. (10.81)

Substituting the values for ak(d2, d1) and bk(d2, d1) for k = 0, 2, 4 from Table 7.1 the electrostatic
repulsion can be written as the sum of three F integrals (note that F k = Gk for equivalent electrons),

E(3F ) = F0 − 2F2 − 4F4 − 6G2 − 5G4 = F0 − 8F2 − 9F4. (10.82)

Here, the common denominators of the ak and bk coefficients where eliminated by redefining the
F integrals: F0 ≡ F 0, F2 ≡ F 2/49 and F4 ≡ F 4/441. The |3P ; 1, 1〉 term cannot be written as a
single determinant. Thus we turn to the Slater sum rule and using the degeneracy of all magnetic
sublevels MS and ML of a given LS term in zero field we obtain

tr (2× 2) = E(3F ) + E(3P ) = F0 − 8F2 − 9F4 + E(3P )

tr (2× 2) = 〈2̇,−1̇|ρ−1
12 |2̇,−1̇〉nd2 + 〈1̇, 0̇|ρ−1

12 |1̇, 0̇〉nd2 = 2F0 − F2 − 93F4

→
→ E(3P ) = F0 + 7F2 − 84F4. (10.83)

Thus E(3P )− E(3F ) = 15F2 − 75F4 and the second Hund rule is satisfied if

E(3P ) > E(3F ) ⇔ 5F4/F2 = (245/441)F 4/F 2 < 1. (10.84)

This is the case because F 4 < F 2 for a given screened potential - see Eq. (7.69).

10.5.4 Metastable excited state configurations

Before proceeding to the Hund’s rule 3 we first have a look at some examples of excited states.
Although the focus of the present chapter is on the determination of the electronic ground states
the general formalism introduced in Chapter 9 can be applied to calculate the LS term energies
of any electron configuration; i.e., also the energies of excited state configurations. In this section
we shall demonstrate this for the nsn′s and nsn′p configurations. In this way we can practice
the procedure of Section 10.5 to calculate the Coulomb integrals for many-electron configurations.
Thus, we consider the low-lying states of helium-like atoms; in particular, the 1S0 and 3S1 states of
helium and the 1P1 and 3P0,1,2 states of the alkaline-earth atoms. The triplets terms are of special
significance because they can represent metastable atomic states.

10.5.4.1 Metastable helium (He∗)

Let us first convince ourselves that the general formalism leads to the same results as derived in
Chapter 7 for the excited states of helium. The configuration of the ground state is 1s2. Exciting
one of the 1s electrons to the 2s level we obtain the 1s2s configuration, which is compatible with 1S0

(non-degenerate) and 3S1 (three-fold degenerate) angular momentum terms, which are both Pauli
allowed (because the electrons are non-equivalent). To calculate the electrostatic repulsion energy
we turn to the uncoupled representation for which the 1s2s subspace can represented by the Slater
determinants given in Table 10.8. As all 3S1 levels are degenerate we can calculate the electrostatic
repulsion energy in the 3S1 term by by choosing the determinant of the spin-stretched state,

E(3S) = 〈1ṡ, 2ṡ|ρ−1
12 |1ṡ, 2ṡ〉 = F0 −G0, (10.85)
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Table 10.8: Example nsn′s configuration: (top) uncoupled representation - the 4 linearly independent pair
states consistent with the Pauli principle; (bottom) coupled representation.

nsn′s MS deg.

uncoupled 1 0 -1

ML 0 |nṡ, n′ṡ〉 |nṡ, n′s̄〉 |ns̄, n′ṡ〉 |ns̄, n′s̄〉 4

|2S+1L;ML,MS〉 MS deg.

coupled 1 0 -1

ML 0 |3S; 1, 0〉 |3S; 0, 0〉 |1S; 0, 0〉 |3S;−1, 0〉 4

with F0 = F 0 and G0 = G0/3. The electrostatic repulsion energy in the 1S0 term follows most
conveniently with the Slater sum rule,

E(3S) + E(1S) = tr (2× 2) = 〈1ṡ, 2s̄|ρ−1
12 |1ṡ, 2s̄〉+ 〈1s̄, 2ṡ|ρ−1

12 |1s̄, 2ṡ〉 = 2F0. (10.86)

Thus, the electrostatic repulsion energy in the 1S0 term is

E(1S) = tr (2× 2)− E(3S) = F0 +G0. (10.87)

Comparing this result with the result of Section 7.3 we identify J = F0 and K = G0 (see Fig. 7.4).
The average energy of the 1S0 - 3S1 manifold is

Ē(1s, 2s) = [3(F0 −G0) + (F0 +G0)]/4 = F0 −G0/2. (10.88)

10.5.4.2 Alkaline earth elements - lowest energy P manifolds

To discuss the low-lying excited states of the alkaline-earth elements we consider in particular the
group 2 atoms, which all have a ground state configuration [inertgas]ns2. The lowest-exited state
configuration is [inertgas]nsnp, which is compatible with 1P1 (three-fold degenerate) and 3P0,1,2

(nine-fold degenerate) angular momentum terms, which are all Pauli allowed. The calculation of
the term energies goes analogously to the case of helium. First we do the decomposition into Slater
determinants, see Table 10.9. As all 3P levels are degenerate we can calculate the electrostatic
repulsion energy in the 3P term by choosing the determinant of the fully stretched (spin and orbit)
state,

E(3P ) = 〈nṡ, nṗ1|ρ−1
12 |nṡ, nṗ1〉 = F0 −G1, (10.89)

with F0 = F 0 and G1 = G1/3. Using the Slater sum rule,

E(3P ) + E(1P ) = tr (2× 2) = 〈nṡ, np̄0|ρ−1
12 |nṡ, np̄0〉+ 〈ns̄, nṗ0|ρ−1

12 |ns̄, nṗ0〉 = 2F0, (10.90)

Table 10.9: Example nsnp configuration: in the uncoupled representation we have 12 linearly independent
pair states, all consistent with the Pauli principle

nsnp MS deg.

uncoupled 1 0 -1 12

1 |nṡ, nṗ1〉 |nṡ, np̄1〉 |ns̄, nṗ1〉 |ns̄, np̄1〉 4

ML 0 |nṡ, nṗ0〉 |nṡ, np̄0〉 |ns̄, nṗ0〉 |ns̄, np̄0〉 4

−1 |nṡ, nṗ−1〉 |nṡ, np̄−1〉 |ns̄, nṗ−1〉 |ns̄, np̄−1〉 4
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Figure 10.7: Coulomb splitting of nsnp excited-state configuration of the alkaline-earth atoms (compare
with Fig. 7.8).

we find for the electrostatic repulsion in the 1S term

E(1P ) = tr (2× 2)− E(3P ) = F0 +G1. (10.91)

Hence, the structure of the shift diagram is like that of metastable helium but the exchange integral
is a different one, G1 rather than G0 (see Fig. 10.7). The average energy of the 1P1 - 3P0,1,2 manifold
is

Ē(nṗ, nṡ) = [9(F0 −G1) + 3(F0 +G1)]/12 = F0 −G1/2. (10.92)

Since the Coulomb splitting is 2G1, the value of G1 can be readily determined by atomic spec-
troscopy. From the data used for the level diagram 7.8 we can immediately determine the exchange
integrals for the alkaline earth elements: Be: G1(2s, 2p) = 1.28 eV, Mg: G1(3s, 3p) = 0.82 eV, Ca:
G1(4s, 4p) = 0.52 eV, Sr: G1(5s, 5p) = 0.43 eV, Ba: G1(6s, 6p) = 0.31 eV. Note that the value
drops by a factor 4 along the series which reflects the decreasing importance of the electrostatic
interaction between the outer orbitals for growing atomic size (see also Table 10.10).

Problem 10.3. Show that the central field contribution to the electrostatic energy of the 1s22s2p excited
state configuration of beryllium (see Fig. 10.7) is given by

Ēc(1s
22s2p) = 2I(1s) + I(2s) + I(2p) + F0(1s, 1s) + 2F0(2s, 1s)−G0(2s, 1s)

+ 2F0(2p, 1s)−G1(2p, 1s) + Ē(2p, 2s).

Solution. The energy of the 1s22s2p excited state configuration of beryllium can be written as

Ēc(1s
22s2p) = 2I(1s) + I(2s) + I(2p) + E1s2 + E1s2(2s) + E1s2(2p) + Ē(2p, 2s),

where Ē(nṗ, nṡ) is energy average (10.92). Further we have E1s2 = F0(1s2), E1s2(2s) = 2F0(2s, 1s) −
G0(2s, 1s) and E1s2(2p) = 2F0(2p, 1s) − G1(2p, 1s), where F0 = F 0, G0 = G0 and G1 = G1/3. Collecting
the terms we obtain the desired expression. 2

10.6 Fine structure - Hund’s rule 3

10.6.1 Zeeman interaction

The Zeeman Hamiltonian of a many-electron atom is given by the sum of the Zeeman contributions
of the individual electrons,

HZ =
∑

i
[gL(e/2me)li + ge(e/2me)si] ·B, (10.93)
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where gL ' 1 is the effective g factor of the orbital motion and ge ' 2 the anomalous g factor of
the electron spin. In the absence of spin-orbit coupling the total orbital and spin angular momenta

L =
∑
i

li and S =
∑
i

si (10.94)

are conserved quantities. Using the definition of the Bohr magneton µB = e~/2me = 9.274 0154(31)×
10−24 J/T the Zeeman Hamiltonian can be written in the form

HZ = [gLµB (L/~) + geµB (S/~)] ·B. (10.95)

Choosing the quantization axis (z axis) along the magnetic field direction this expression becomes

HZ = [gLLz + geSz]µBB/~. (10.96)

This Hamiltonian is diagonal in the uncoupled representation {|nLMLSMS〉}. The Zeeman shift is
given by

∆EZ = 〈nLMLSMS |HZ |nLMLSMS〉 = [gLML + geMS ]µBB. (10.97)

10.6.2 Spin-orbit interaction

In this section we return to spin-orbit coupling, introduced in Section 4.4 for hydrogen-like atoms.
Now it is our task is to generalize this subject to the case of many-electron atoms. The analysis starts
with the presence of a velocity-induced magnetic field whenever a particles is moving transversely to
an electric field. In particular, electrons orbiting at velocity v in the electric field E of the partially
shielded nucleus experience such a velocity-induced magnetic field, B = (E × v)/c2, where c is
the speed of light (cf. Appendix E). The spin-orbit coupling is the coupling of the spin magnetic
moment of the electron to this magnetic field. In the central-field approximation the electric field
at the position of the electron is given by

E = −∇ϕCF(r) = −r

r

dϕCF(r)

dr
, (10.98)

where ϕCF(r) is the central-field scalar potential. Including the Thomas precession the spin-orbit
field takes the form

BLS ' −
1

2mec2
1

r

dϕCF(r)

dr
l, (10.99)

where l = me(r × v) is the orbital angular momentum operator of the electron. The Hamiltonian
describing the spin-orbit interaction of an individual electron is

Hls = ge(e/2me)s ·BLS = ξ(r)l · s. (10.100)

The function ξ(r) is the coupling strength,

ξ(r) ' − 1

2m2
ec

2

e

r

dϕCF(r)

dr
. (10.101)

As long as the screened Coulomb potential, ϕCF(r), is a monotonically decreasing function of r, the
coupling strength has to be positive,

ξ(ρ) ' − 1

2m2
ec

2

e2

a2

1

ρ

d[Zscr(ρ)/ρ]

dρ
≡ 1

2m2
ec

2

e2

a3

Z(ρ)

ρ3
> 0 , (10.102)

where Z(ρ) ≡ Zscr(ρ)−ρdZscr(ρ)/dρ is the spin-orbit screening function introduced in Section 4.4.2.
Summing the contributions of individual electrons we arrive at the Hamiltonian for the total

spin-orbit interaction of the atom

HLS =

N∑
i=1

ξi(r)li · si, (10.103)

where i ∈ {1, · · ·N} is the particle index of a system of N electrons.
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10.6.3 Coupling schemes: LS coupling versus jj coupling

Adding the spin-orbit interaction to the central field Hamiltonian (8.3) we obtain the Hamiltonian

H = HCF +HLS ,

which suffices to calculate the ground states of most many-electron atoms. Recalling that closed
subshells of equivalent electrons contribute zero angular momentum to the atom, the spin-orbit
contribution can be calculated by restricting the particle-index summation in Eq. (10.103) to the
valence electrons. In one-electron atoms this is particularly simple. The spin-orbit coupling results
from the coupling of the spin s of the only valence electron with its own orbital angular momentum,
l. In Section 4.5.3 we found that the strength of this coupling scales with Z4 for hydrogenic atoms
in the weakly relativistic limit; for the alkalies we found it to increase by more than three orders
of magnitude (in spite of the screening) when comparing cesium with lithium (see Section 4.6, in
particular Table 4.3). It is straightforward to extend this analysis to one-electron atoms with one p
electron (group III) or one d electron (group 3) in the ground state. Matters change when turning
to two-electron atoms, two p electrons (group IV) or two d electrons (group 4) or to three-electron
atoms, three d electrons (group 5) or three f electrons (praseodymium). In these cases not only the
coupling strength but also the coupling scheme depends on Z but, whatever the coupling scheme,
the total electronic angular momentum J is conserved (neglecting hyperfine structure).

• For small Z the electrostatic splitting between the LS terms is larger than the fine-structure
splitting within the terms. In this case the various li couple into a total orbital angular
momentum L and the si into a total spin S, and these couple into the total electronic angular
momentum

J = L + S. (10.104)

This coupling is known as LS coupling or Russell-Saunders coupling. In the presence of
strong Russell-Saunders coupling the degeneracy of the LS terms is lifted by the spin-orbit
interaction into levels differing in J . As long as this splitting remains small it can be calculated
by perturbation theory with respect to the desired LS term. The Russell-Saunders coupling
scheme applies typically to the atoms in the upper part of the periodic system.

• For large Z the spin-orbit interaction of the individual electrons dominates over the elec-
trostatic coupling. This gives rise to a primary coupling into total angular momenta of the
individual electrons, ji = li + si, and a subsequent coupling into the total electronic angular
momentum of the atom,

J =
∑
i

ji.

This coupling scheme is known as jj coupling. The jj coupled levels differ in spin-orbit
coupling energy. As long as the electrostatic interaction energy is small as compared to the
splitting of the J levels it can be calculated by perturbation theory with respect to the jj
coupled level. This coupling tends to reduce the spin-orbit splitting until the Russell-Saunders
limit is reached in which all J levels are degenerate. The jj coupling scheme applies to the
heaviest atoms of the periodic table.

• For the middle part of the periodic system the coupling is said to be intermediate between LS
and jj coupling.

10.6.4 Russell-Saunders coupling

In this course we mostly restrict ourselves to LS coupling and calculate the spin-orbit shift in the
coupled representation with first-order perturbation theory. This is allowed as long as the spin-orbit
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splitting is much smaller than the LS-term splitting. This approximation is valid except in cases of
configuration interaction. For a given LS term, |LSJMJ〉, the spin-orbit shift is given by

∆ELSn,J = 〈nLSJMJ |HLS |nLSJMJ〉, (10.105)

where it remains to be shown that the matrix is diagonal. Decomposing the LS term to the uncoupled
representation we obtain

∆ELSn,J =
∑

ML,M ′L

∑
MS ,M ′S

〈nLSJMJ |nLM ′LSM ′S〉

〈nLM ′LSM ′S |HLS |nLMLSMS〉〈nLMLSMS |nLSJMJ〉. (10.106)

Because the operators li operate on the orbital states and si on the spin states we can factor out
the spin part from the orbital part, and the matrix elements take the form

〈nLM ′LSM ′S |HLS |nLMLSMS〉 =
∑
i

〈nLM ′LSM ′S |ξi(r)li · si|nLMLSMS〉 (10.107)

= (ζnl/~2)
∑
i

〈LM ′L|li|LML〉 · 〈SM ′S |si|SMS〉, (10.108)

where the summation runs over all equivalent electrons in the partially filled shell and ζnl is the
spin-orbit coupling constant of the electrons in the shell under consideration. Recalling the Wigner-
Eckart theorem we know that the components of li and si are proportional to the corresponding
components of L and S,

〈LM ′L|li|LML〉 = 〈L||li||L〉〈LM ′L|L|LML〉 (10.109a)

〈SM ′S |si|SMS〉 = 〈S||si||S〉〈SM ′S |S|SMS〉. (10.109b)

Introducing the Russell-Saunders coupling constant,

ζnLS = ζnl
∑
i

〈L||li||L〉〈S||si||S〉, (10.110)

the Russell-Saunders matrix element becomes

〈nLM ′LSM ′S |HLS |nLMLSMS〉 = ζnLS/~2〈LM ′LSM ′S |L · S|LMLSMS〉. (10.111)

With the aid of the projection theorem the reduced matrix element 〈L||li||L〉 can be written in the
form

〈L||li||L〉 =
〈LML|li · L|LML〉
〈LML|L2|LML〉

. (10.112)

A similar expression for 〈S||si||S〉 follows analogously. Returning to Eq. (10.111) and substituting
this expression into Eq. (10.106) we obtain (after transforming back to the coupled representation)
the following expression for the spin-orbit shift

∆ELSn,J =
(
ζnLS/~2

)
〈LSJMJ |L · S|LSJMJ〉. (10.113)

Here we used the inner product rule (3.159a) to establish that, in Russell-Saunders coupling, the
spin-orbit interaction is indeed diagonal in the coupled representation. For the spin-orbit shift we
find,

∆ELSn,J = 1
2ζnLS [J(J + 1)− L(L+ 1)− S(S + 1)] . (10.114)

For positive coupling constant (ζnLS > 0) the LS term with the lowest J has the lowest energy.
Likewise, for negative coupling constant (ζnLS < 0) the lowest energy is obtained for the highest
value of J . With Eq. (10.114) we have obtained for the case of many-electron atoms the same
expression for the spin-orbit shift as derived in Chapter 4 for hydrogen-like atoms. In the present
context this expression is valid for the case of LS coupling of arbitrary L and S.
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Table 10.10: Fine-structure splitting ratio ∆W2/∆W1 of 3P terms for increasing value of Z. For pure
Russell-Saunders coupling this ratio is 2. Deviations from this value point to the presence of other coupling
mechanisms. In the absence of nuclear spin (I = 0) and for large Z this points to a crossover to jj-coupling.
This is confirmed by comparing the decrease in Coulomb integral G1 (see Section ) with the increase in
fine-structure splitting ∆W1.

element Be Mg Ca Sr Ba Ra unit

Z 4 12 20 38 56 88

G1 1.28 0.82 0.52 0.43 0.31 0.33 eV

∆W1 8× 10−5 0.002 0.006 0.023 0.046 0.114 eV

∆W2/∆W1 3.6357 2.0297 2.0298 2.1100 2.3695 2.9200

10.6.4.1 Shift rules for Russell-Saunders coupled angular momenta

As introduced in Section 4.5.2 expressions of the type (10.114) imply three shift rules for the spin-
orbit manifolds of given J , L and S:

• the shift of the stretched state (J = Jmax = L+ S) is given by

∆ELSn,Jmax
= ζnLSLS. (10.115)

• the relative shift of two adjacent LS-coupled manifolds follows the Landé interval rule:

∆WJ = ∆ELSn,J −∆ELSn,J−1 = ζnLSJ, (10.116)

where J is the quantum number of the manifold with the highest multiplicity of the pair.

• the weighted mean of the energies of all manifolds of a given LS coupling scheme satisfies the
center-of-gravity rule:

1

(2L+ 1) (2S + 1)

L+S∑
J=|L−S|

(2J + 1) ∆ELSn,J = 0, (10.117)

where (2L+ 1) (2S + 1) is the degeneracy of the unperturbed level.

The shift rules are illustrated for the case L = 1, S = 1 in Fig. 10.8. In the absence of hyperfine
interaction (I = 0), breakdown of the interval rule is an indicator for the breakdown of pure LS
coupling. For 3P terms this shows up as a deviation of the pure LS splitting ratio ∆W2/∆W1 = 2.
In Table 10.10 this is illustrated for the Z dependence of ∆W2/∆W1 for the lowest 3P terms of the
alkaline-earth elements (see also Fig. 7.8).

10.6.5 Equivalence of electrons and holes

Let us consider a closed nl shell and remove one of the electrons. This leaves us with a partially
filled shell occupied by 2(2l+ 1)− 1 electrons, total orbital angular momentum L and total spin S.
As closed shells have zero angular momentum, we know that the angular momenta of the partially
filled shell and that of the vacant electron have to add up to zero, L + l = 0 and S + s = 0. In
other words, the angular momenta of the partially filled shell are opposite to those of the electron
removed,

L = −l and S = −s. (10.118)

This simple result of what could have been a serious calculation (see Section 10.5) suggests to assign
properties to a lacking electron. The configuration behaves like a closed shell in which an imaginary
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Figure 10.8: The shift rules for spin-orbit coupling in the Russell-Saunders limit plotted for the example
L = 1, S = 1. Triplets of this type are observed in the ground state of low-Z group-12 atoms like carbon
and in ns→ np excited states of low-Z helium-like atoms like calcium.

particle, called the hole, cancels all properties of the electron filling the vacancy. So, rather than
removing an electron from the shell we add a hole. The hole has to be always at the position of
the vacancy filling electron (i.e., move at the same velocity) and have opposite charge (q = +e) and
mass (mh = −me). Apparently the hole has orbital angular momentum lh ≡ L = −l and spin
sh ≡ S = −s. In search for more properties of the hole we return to the nl shell with one vacancy.
Rewriting Eq. (10.113) with the aid of Eq. (10.110) we obtain for the spin-orbit shift

∆ELSn,J = ζnl

2(2l+1)−1∑
i=1

〈L||li||L〉〈S||si||S〉〈nLSJMJ |L · S|nLSJMJ〉, (10.119)

Adding and subtracting the contribution of the lacking electron and using Eqs. (10.118) we find for
the spin-orbit shift of a shell with a single hole

∆ELSn,J = −
(
ζnl/~2

)
〈nLSJMJ |l · s|nLSJMJ〉 = −

(
ζnl/~2

)
〈nLSJMJ |L · S|nLSJMJ〉, (10.120)

where
ζnl = 〈nl||ξ(r)||nl〉~2 > 0 (10.121)

is the spin-orbit coupling constant of a single nl electron moving in the shielded nuclear potential.
Comparing Eqs. (10.120) and (10.113) we find

ζnLS = −ζnl = −〈nl||ξ(r)||nl〉~2. (10.122)

In view of Eq. (10.101) this expression represents the coupling constant of a single positive charge
q = +e moving in a nl orbital through the shielded field of the nuclear charge. For the intrinsic
magnetic moment we require

µh = gh(e/2mh)sh = ge(e/2me)s = −µs, (10.123)

which implies gh = ge. Since the electron and hole are at the same position r and move with the
same velocity v (i.e., have opposite momentum) we find

lh = −l = −me(r× v) = mh(r× v). (10.124)

10.6.6 Third Hund rule

Eq. (10.122) may be generalized to hold for the ground state of a partially filled shell of configuration
nlx. Let us suppose that we are interested in the Russell-Saunders coupling constant ζnLS of a given
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LS term of this configuration. Since the coupling constant is independent of J we are free to select
the most convenient J manifold to find a relation between ζnLS and ζnl. This turns out to be the
manifold of the stretched state, J = Jmax = L+ S, because in this case the shift rule is particularly
simple - see Eq. (10.115),

∆ELSn,Jmax
= 〈nLSJmaxMJ |HLS |nLSJmaxMJ〉 = ζnLSLS. (10.125)

Moreover, this is the manifold which contains the pure state, which is the state with MJ = J .
It is called pure because it maps uniquely onto the ML = L, MS = S sublevel of the uncoupled
representation (see Section 4.7.3). In other words, we can equally well calculate the matrix element

∆ELSn,Jmax
= 〈nLLSS|HLS |nLLSS〉. (10.126)

As this matrix element is diagonal we only have to evaluate the diagonal part of HLS as is confirmed
by the actual calculation,

∆ELSn,Jmax
= 〈nLLSS|ζnLSLzSz|nLLSS〉 = ζnLSLS. (10.127)

Next we make the connection with the spin-orbit terms of the individual electrons. For the
ground state we know that the first two Hund rules are satisfied. This means that the LS term of
the ground state carries the largest values of S and L consistent with the Pauli principle. For such
terms the subspace with MS = S and ML = L can be represented by a single Slater determinant
(corresponding to the stretched electron - or hole - spin state)

|nLLSS〉 = |m1
lm

1
s, · · ·mN

l m
N
s 〉nl, (10.128)

where

MS =

N∑
κ=1

mκ
s = S and ML =

N∑
κ=1

mκ
l = L. (10.129)

In terms of the Slater determinants the spin-orbit shift takes the form

∆ELSn,Jmax
= 〈m1

lm
1
s, · · ·mN

l m
N
s |HLS |m1

lm
1
s, · · ·mN

l m
N
s 〉nl

=

N∑
i=1

〈m1
lm

1
s, · · ·mN

l m
N
s |ξi(r)li · si|m1

lm
1
s, · · ·mN

l m
N
s 〉nl. (10.130)

Hence, we have to evaluate the diagonal matrix elements of the one-body operators ξi(r)li ·si. With
the aid of Eq. (9.44) we obtain

∆ELSn,Jmax
= ζnl/~2

N∑
κ=1

〈lmκ
l sm

κ
s |l · s|lmκ

l sm
κ
s 〉 = ζnl

N∑
κ=1

mκ
l m

κ
s . (10.131)

Comparing the expressions (10.125) and (10.131) we find the following expression for the coupling
constant,

ζnLS =
ζnl
LS

N∑
κ=1

mκ
l m

κ
s . (10.132)

At this point we distinguish between two cases:

a.) Shells less than half full. In this case we have MS = S = x/2 (Hund’s rule 1), ML = L (Hund’s
rule 2), with mκ

s = 1
2 for κ ∈ {1, · · ·N}. Substituting these quantum numbers into Eq. (10.132)

we obtain

ζnLS =
1

2

ζnl
LS

N∑
κ=1

mκ
l =

1

2

ζnl
LS

ML = +
ζnl
2S

. (10.133)
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Figure 10.9: Magnetic energy versus magnetic field in units of the fine-structure field Bfs. Left: positive
spin-orbit shift (one p electron - ground state of Indium). Right: negative spin-orbit shift (one p hole -
ground state of Iodine).

b.) Shells more than half full. In this case we have MS = S = (2l+1)−x/2 (Hund’s rule 1), ML = L
(Hund’s rule 2), with mκ

s = 1
2 for κ ∈ {1, · · · 2l + 1} and mκ

s = − 1
2 for κ ∈ {2l + 2, · · ·N}

ζnLS =
1

2

ζnl
LS

2l+1∑
κ=1

mκ
l −

1

2

ζnl
LS

N∑
κ=2l+2

mκ
l = −1

2

ζnl
LS

ML = −ζnl
2S

. (10.134)

The first summation yields zero because L = 0 for half-filled shells. The second summation
yields ML = L.

Together with Eq. (10.114) the expressions (10.133) and (10.134) provide the scientific underpinning
of the third Hund rule:

The most negative spin-orbit shift is obtained for the valence electrons of an atomic
ground state configuration (of maximal Pauli-allowed S and L) if the total electronic
angular momentum, J, is (a) minimal for less-than-half-filled shells; (b) maximal for
more-than-half-filled shells.

In Fig. 10.9 the two cases are illustrated by the ground-state fine-structure diagrams of Indium and
Iodine. Note that the third Hund rule plays no role in the case of half-filled shells because in this
case only a single J value (J = S) needs to be considered.

10.7 Zeeman effect in the presence of spin-orbit interaction

10.7.1 Hamiltonian

The Hamiltonian describing the fine-structure of many-electron atoms is given by

H = HCF +HLS +HZ , (10.135)

where HCF is the central-field Hamiltonian (8.3), HZ the Zeeman Hamiltonian (10.93) and HLS the
spin-orbit Hamiltonian (10.103). We write this as H = H0 +H′, where

H′ = HLS +HZ (10.136)

is the perturbation to be considered. Because in weak magnetic fields 〈H′〉 � 〈HCF〉 we look for
a perturbative solution using perturbation theory for degenerate levels. The Hamiltonian HLS is
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diagonal in the {|nLSJMJ〉} (coupled) representation and HZ in the {|nLMLSMS〉} (uncoupled)
representation. Physically, there is competition between the mutual coupling of L and S and the
coupling of L and S individually with the external B field. In low fields the spin-orbit coupling is
dominant, whereas in the high field limit it may be neglected. Thus, also for many electron atoms
we have a Paschen-Back effect. In intermediate fields the Hamiltonian is neither diagonal in the
coupled nor in the uncoupled representation and we have to solve the secular equation (I.24),

|H′µ,ν −Wn| = 0, (10.137)

where H′µ,ν are the matrix elements of the perturbation in the representation of choice. Note that
the overlap integral in Eq. (I.24) vanishes when using orthonormal basis states.

10.7.2 Description in the uncoupled basis

To solve the secular equation in the uncoupled representation within a given LS term we use one of
the inner product rules to write the perturbation in the form

H′ = ζnLS
[
LzSz + 1

2 (L+S− + L−S+)
]

+ (gLµBLz + gSµBSz)B/~. (10.138)

Note that this Hamiltonian conserves the total angular momentum along the z axis; i.e., Ml +MS

is a “good” quantum number (Jz commutes with the Hamiltonian) for all values of the magnetic
field. This quantum number will be denoted by MJ . The diagonal matrix elements for given values
of MJ = Ml +MS are given by

H′MJMSMS
= 〈L (MJ −MS)SMS |ζnLSLzSz + (gLµBLz + gSµBSz)B/~|L (MJ −MS)SMS〉
= ζnLS (MJ −MS)MS + [gLMJ + (gS − gL)MS ]µBB, (10.139)

where ζnLS is the spin-orbit energy given by Eq. (10.133) or (10.133). The off-diagonal elements are
found using the shift operators (1.59) and the conservation of MJ ,

H′MJ (MS∓1)MS
= 1

2ζnLS〈L (MJ −MS ± 1)S (MS ∓ 1) |L±S∓|L (MJ −MS)SMS〉

= 1
2ζnLS

√
L (L+ 1)− (MJ −MS) (MJ −MS ± 1)

√
S (S + 1)−MS(MS ∓ 1).

(10.140)

As demonstrated in Section 4.7 for hydrogen-like atoms, the solution of the secular equation
(10.137) can be obtained analytically for arbitrary magnetic fields because the electronic states are
electron spin doublets S = s = 1

2 ) and J = j = l ± 1
2 . In this case, the characteristic equation is of

the asymmetric type (cf. Appendix H.3) and factorizes into a product of two (1×1) and l+1 (2× 2)
determinants, each characterized by its own value of MJ = Ml+MS . In Fig. 10.9 the magnetic field
dependence based on these solutions is plotted for both positive and negative coupling constants.

For many-electron atoms the factorization of the secular equation into (d×d) determinants will in
general also contain determinants with d > 2, for which the diagonalization is best done numerically
with Mathematica. For the

10.7.3 High-field limit - Paschen-Back effect

In high magnetic fields the spin-orbit coupling is weak as compared to the Zeeman interaction. This is
known as the Paschen-Back effect and best analyzed in the uncoupled representation {|nLMLSMS〉}
in which case the atomic Hamiltonian including the Zeeman interaction, H0 +HZ , is diagonal. In
this basis the spin-orbit matrix elements are given by

HLSM ′LM ′S ;MLMS
= ζnLS〈LM ′LSM ′S |LzSz + 1

2 (L+S− + L−S+) |LMLSMS〉 . (10.141)
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As only the diagonal matrix elements of a weak perturbation contribute to leading order in pertur-
bation theory, in high fields the spin-orbit shift is given by ∆ELSn;MLMS

= ζnLSMLMS and the field
dependence can be expressed as

∆En;MLMS
= ζnLSMLMS + (gLML + gSMS)µBB. (10.142)

Note that this expression is valid for arbitrary values of L and S.

10.7.4 Low-field limit - Landé factor

For magnetic fields much lower than the fine-structure field (B � Bfs) the angular momenta L and
S are coupled into the total electronic angular momentum J = L + S. Under these conditions the
atomic Hamiltonian

H = (HCF +HLS) +HZ (10.143)

is best analyzed in the coupled representation {|nLSJMJ〉}, where the first two terms of Eq. (10.143)
are diagonal and HZ acts as the perturbation. In this basis and for given values of n,L, S, J the
perturbation gives rise to an energy shift

∆EZJ,MJ
= 〈JMJ |gLLz + geSz |JMJ〉µBB/~ (10.144)

Note that the operators LZ and SZ are diagonal in the {|nLSJMJ〉} basis because they conserve
ML and MS and, in view of the MJ selection rule (3.89), also ML+MS = MJ . Hence, in sufficiently
low fields J and MJ are “good” quantum numbers for the atomic Hamiltonian (10.143).

Intuitively this situation is also clear: for sufficiently low fields the magnetic moment of the atom
will scale with the total electronic angular momentum J,

µJ = −gJµB (J/~) for B → 0. (10.145)

Hence, the Zeeman energy can be described by the effective Hamiltonian HZ = −µJ · B. This
Hamiltonian yields a Zeeman shift on top of the zero-field spin-orbit shift ∆ELSnJ (for given values
of n,L, S, J):

∆EZJ,MJ
= gJµBB〈JmJ |(Jz/~) |JMJ〉 = gJµBMJB for B → 0. (10.146)

As was to be expected, also this effective Hamiltonian is diagonal in the {|nLSJMJ〉} basis if the
quantization axis is chosen along the direction of the B field. Our task is of course to determine the
value of gJ .

10.7.4.1 Wigner-Eckart theorem

To understand the relation between Eqs. (10.144) and (10.146) we recall the vector diagram in
Fig. 4.6. The slow precession of J = L + S about the direction of a weak probe field (just serving
to define a quantization axis) does not affect the projections of the angular momentum operators
Lz, Sz and Jz. In other words these operators are invariant under rotation about the z axis. As all
three are diagonal in the {|nLSJMJ〉} basis, the matrix elements of Lz and Sz can be written in
the form

〈nLSJMJ |Lz |nLSJMJ〉 = 〈lsJ ‖L‖ lsJ〉 〈JMJ | Jz |JMJ〉 (10.147a)

〈nLSJMJ |Sz |nLSJMJ〉 = 〈lsJ ‖S‖ lsJ〉 〈JMJ | Jz |JMJ〉 , (10.147b)

where the proportionality constants 〈LSJ ‖L‖LSJ〉 and 〈LSJ ‖S‖LSJ〉 are known as reduced ma-
trix elements and are independent of MJ . Since Jz = Lz +Sz we find by adding Eqs. (10.147a) and
(10.147b) that the reduced matrix elements add up to unity,

〈LSJ ‖L‖LSJ〉+ 〈LSJ ‖S‖LSJ〉 = 1 = 〈LSJ ‖J‖LSJ〉. (10.148)
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The projections of L and S along the total angular momentum vector J, i.e. L · J and S · J, are
conserved while J precesses about B,

〈nLSJMJ |Lz |nLSJMJ〉 =
〈LSJMJ | (L · J) Jz |LSJMJ〉
〈LSJMJ |J2 |LSJMJ〉

. (10.149)

comparing with Eq. (10.147a) we find

〈LSJ ‖L‖LSJ〉 =
〈LSJMJ |L · J |LSJMJ〉
〈LSJMJ |J2 |LSJMJ〉

=
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)
, (10.150)

which is indeed independent of MJ . Analogously we find

〈LSJ ‖S‖LSJ〉 =
〈LSJMJ |S · J |LSJMJ〉
〈LSJMJ |J2 |LSJMJ〉

=
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (10.151)

10.7.4.2 Landé factor gJ

In search for gJ we return to Eqs. (10.144) and (10.146). With the aid of the Wigner-Eckart theorem
(10.147) as well as the relation (10.148) we obtain the expression

gJ = gL〈LSJ ‖L‖LSJ〉+ ge〈LSJ ‖S‖LSJ〉
= 1

2 (gL + ge) + 1
2 (gL − ge) [〈LSJ ‖L‖LSJ〉 − 〈LSJ ‖S‖LSJ〉] . (10.152)

Substituting the expressions for the reduced matrix elements (10.150) and (10.151) we obtain for
the gJ factor,

gJ = 1
2 (gL + ge) + 1

2 (gL − ge)
L(L+ 1)− S(S + 1)

J(J + 1)
. (10.153)

In the important case of S terms gJ = ge as is intuitively clear for the absence of an orbital
moment. Approximating gL = 1 and ge = 2 we find that gJ takes the form of the Landé factor

gJ = 1 +
[J(J + 1) + S(S + 1)− L(L+ 1)]

2J(J + 1)
. (10.154)

Note that just like the expressions for the high-field limit also the expressions for the low-field limit
are valid for arbitrary values of L and S.

10.7.5 Low-field limit - quadratic Zeeman shift

For arbitrary value of S the quadratic shift can be calculated with the aid of second-order pertur-
bation theory,

∆E
(2)Z
J,M

(
n 2s+1LJ

)
=
∑
J′

|〈LSJ ′M |gLµBLz + gSµBSz|LSJM〉B/~|2

EJ,M − EJ′,M
. (10.155)

Note that this contribution indeed scales like B2. As Lz and Sz conserve M , the Zeeman operator
couples states of different J ∈ {|J − S|, · · · , J + S} for given value of M .

We demonstrate the procedure for the special case in which two fine-structure levels, J ′ and
J = J ′ − 1, are coupled by the spin-orbit interaction. At sufficiently low fields, the energy splitting
may be approximated by its zero-field value; i.e., by the interval rule (4.128), ∆WJ = ζnLSJ

′. The
energy splitting also has a field dependence but if gJ = gJ′ the associated shift contributes in third
or higher order. In any case, this field dependence is not included here. The quadratic shifts of the
upper, J ′, and lower, J = J ′ − 1, fine-structure levels (of given M) only differ in the sign, with the
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quadratic shifts of the upper manifold positive and those of the lower manifold negative. For the
upper/lower manifold the quadratic shift becomes

∆E
(2)Z
J′/J,M

(
n 2s+1LJ′/J

)
= ±|〈LSJ

′M |gLLz + gSSz|LSJM〉µBB/~|2

ζnLSJ ′
. (10.156)

Adding and subtracting gLµBSz and using the orthogonality relation 〈LSJ ′M |LSJM〉 = 0 as well
as the definitions (4.174a) and (4.180) the Eq. (10.156) can be reduced to

∆E
(2)Z
J′/J,M

(
n 2s+1Lj

)
= ±ζnLSJ ′ (B/Bfs)

2 |〈LSJ ′M |Sz/~|LSJM〉|2, (10.157)

where
Bfs ≡ ζnLSJ ′/µ′B , (10.158)

with µ′B ≡ (gS − gL)µB , is the fine-structure crossover field. Evaluating the matrix element we find
(see Problem 10.4)

∆E
(2)Z
J′/J,M

(
n 2s+1Lj

)
= ± 1

4ζnLSJ
′ (B/Bfs)

2
(

1− M̃2
)
R(LSJ ′) (10.159)

where M̃ = M/J ′ and

R(LSJ ′) ≡ (L+ S + 1 + J ′)(J ′ − L+ S)(J ′ + L− S)(L+ S + 1− J ′)
(2J ′ − 1)(2J ′ + 1)

. (10.160)

For L = 1 and s = 1
2 with J ′ = L + S = 3

2 and J = L − S = 1
2 we calculate R(LSJ ′) = 1 and we

regain the result from Eq. (4.184). Note that we indeed regained the quadratic term of Eq. (5.102).

Since M̃2 ≤ 1 we note that the quadratic Zeeman shift is largest for the state of smallest |M |.
Problem 10.4. Derive the expression for the matrix element

〈LSJ ′M |Sz/~|LSJM〉 =

√(
1− M̃2

) (L+ S + 1 + J ′)(J ′ − L+ S)(J ′ + L− S)(L+ S + 1− J ′)
4(2J ′ − 1)(2J ′ + 1)

.

Solution. The matrix element is evaluated for arbitrary J ′ and J = J ′−1 using the Wigner-Eckart theorem
- see Eq. (K.24),

〈LSJ ′M |Sz/~|LSJM〉 = (−1)J
′−M 〈LSJ ′||S||LSJ〉

(
J ′ 1 J

−M 0M

)
,

where, in analogy with Eq. (K.62),

〈LSJ ′||S||LSJ〉 = (−1)J+L+S〈S||S||S〉
√

(2J + 1) (2J ′ + 1)

{
S J ′ L

J S 1

}
,

with 〈S||S||S〉 =
√
S(S + 1)(2S + 1) - see Eq. (K.50). Combining these expressions we find

〈LSJ ′M |Sz/~|LSJM〉 =

(−1)J+J
′+L+S−M√S(S + 1)(2S + 1) (2J + 1) (2J ′ + 1)

(
J ′ 1 J

−M 0M

){
S J ′ L

J S 1

}
.

Since J ′ = J + 1 we can use the special case (J.13) to evaluate the 3j-symbol,(
J ′ 1 J ′ − 1

−M 0 M

)
= (−1)−J

′+M

√
(J ′ +M) (J ′ −M)

J ′(2J ′ + 1)(2J ′ − 1)
,

and special case (J.33b) to evaluate the 6j-symbol,{
S J ′ L

J ′ − 1 S 1

}
= (−1)J+L+S

√
2(L+ S + 1 + J ′)(J ′ − L+ S)(J ′ + L− S)(L+ S + 1− J ′)

2S(2S − 1)(2S + 1)(2J ′ − 1)2J ′(2J ′ + 1)
.

Substituting the Wigner symbols we obtain the desired expression. 2
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10.8 jj coupling

10.8.1 Introduction

To discuss the limit of jj coupling we start from electron configurations of l · s coupled spinorbitals

|β1〉 = |nlsjmj〉, (10.161)

which can be combined into Slater determinants of the type

|ψβ〉 = |β1, · · ·βN 〉 (10.162)

in order to satisfy Fermi-Dirac statistics. On the other hand we can use the angular momentum
addition rules to determine all possible values of the total angular momentum

J =
∑
i

ji

In the case of jj-coupled configurations it is our task to determine for a given electron configuration
which jj-coupled states are consistent with Fermi-Dirac statistics; i.e., can be expressed as a linear
combination of (nonzero) Slater determinants. Once we know the relevant jj-coupled states we can
calculate their spin-orbit splitting.

10.8.2 Partially filled shells with np2 configuration

As the first example of jj-coupled states we return to the np2 configuration; i.e., we return to the
Hilbert space of dimension (2l+ 1)2(2s+ 1)2 = 36 for pairs of electrons. In the present context the
pair states have to be expressed in terms of the basis of the ls-coupled representation {|nlsj1mj1〉⊗
|nlsj2mj2〉} with j1, j2 ∈ { 1

2 ,
3
2} since l = 1 and s = 1

2 . Using a unitary transformation this basis can
be reexpressed in terms of a basis of 15 fully antisymmetric and 21 partly or fully symmetric linearly
independent states. The 15 linearly independent antisymmetric states are readily identified by
applying the Pauli principle on Slater determinants of ls-coupled orbitals, |β1, β2〉 = |j1mj1 , j2mj2〉.
In the upper part of Table 10.11 they are grouped by the values of j1, j2 and MJ = mj1 +mj2 .

In a potential field of central symmetry the total electronic angular momentum J = j1 + j2

is a conserved quantity; i.e., J is a good quantum number. So, let us have a closer look at the
jj-coupled representation. For the np2 configuration the total orbital angular quantum number can
take the values J = 0(2×), 1(4×), 2(3×), 3(1×); i.e., together again 36 angular momentum states
can be identified, which we denote by

(j1, j2)J = ( 1
2 ,

1
2 )0, (

1
2 ,

1
2 )1, (

1
2 ,

3
2 )1, (

1
2 ,

3
2 )2, (

3
2 ,

1
2 )1, (

3
2 ,

1
2 )2, (

3
2 ,

3
2 )0, (

3
2 ,

3
2 )1, (

3
2 ,

3
2 )2, (

3
2 ,

3
2 )3. (10.163)

These 36 jj-coupled states replace the 36 LS-coupled states of the Russell-Saunders limit: 1S0, 3S1,
1P1, 3P0,1,2, 1D2 and 3D1,2,3; 15 of these states are consistent with the Pauli principle and can be
identified with a decision table analogously as we did for the LS terms. The Pauli-consistent terms
are given in the lower part of Table 10.11.

To calculate the energy of electronic pair states we rely on the many-body formalism of Chapter
9 by which we can calculate matrix elements between determinantal states. Thus we use the same
approach as we did for the LS terms and search for the determinant within a given degenerate
manifold that can be evaluated most conveniently. For instance, the jj manifold np2( 3

2 ,
3
2 )2 contains

the sublevel |j1, j2; JMJ〉 = | 32 ,
3
2 ; 2, 2〉np2 which can be represented by the single Slater determinant

|n1l1sj1mj1 ;n2l2sj2mj2〉 = | 32 ,
3
2 ; 3

2 ,
1
2 〉np2 . This can be done for several manifolds and these can be

identified with the aid of Table 10.3,

np2( 3
2 ,

3
2 )2 → | 32 ,

3
2 ; 2, 2〉np2 = | 32 ,

3
2 ; 3

2 ,
1
2 〉np2 (10.164)

np2( 3
2 ,

1
2 )2 → | 32 ,

1
2 ; 2, 2〉np2 = | 32 ,

3
2 ; 1

2 ,
1
2 〉np2 (10.165)

np2( 3
2 ,

1
2 )0 → | 12 ,

1
2 ; 0, 0〉np2 = | 12 ,

1
2 ; 1

2 ,−
1
2 〉np2 . (10.166)
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Table 10.11: Example np2 configuration: (top) uncoupled representation - the 15 linearly independent pair
states consistent with the Pauli principle; (bottom) coupled representation - all jj-coupled angular momenta
consistent with the Pauli principle (again 15 linearly independent states - including degeneracy).

np2 j, j′ deg.

uncoupled 3
2
, 3
2

3
2
, 1
2

1
2
, 1
2

15

|mj ,mj′〉

2 | 3
2
, 1
2
〉 | 3

2
, 1
2
〉 2

1 | 3
2
,− 1

2
〉 | 3

2
,− 1

2
〉| 1

2
, 1
2
〉 3

MJ 0 | 3
2
,− 3

2
〉| 1

2
,− 1

2
〉 | 1

2
,− 1

2
〉| − 1

2
, 1
2
〉 | 1

2
,− 1

2
〉 5

-1 | − 3
2
, 1
2
〉 | − 3

2
, 1
2
〉| − 1

2
,− 1

2
〉 3

-2 | − 3
2
,− 1

2
〉 | − 3

2
,− 1

2
〉 2

np2 deg.

coupled (j, j′)J 15

0 ( 3
2
, 3
2
)0 ( 1

2
, 1
2
)0 2

J 1 ( 3
2
, 1
2
)1 3

2 ( 3
2
, 3
2
)2 ( 3

2
, 1
2
)2 10

Once the energy of these manifolds is known the energy of the remaining manifolds, np2( 3
2 ,

3
2 )0 and

np2( 3
2 ,

1
2 )1, can be determined using the Slater sum rule.

Let us apply this strategy to calculate the spin-orbit energy of the 5 Pauli-consistent jj manifolds

(j1, j2)J = ( 1
2 ,

1
2 )0, ( 3

2 ,
1
2 )1, ( 3

2 ,
1
2 )2, ( 3

2 ,
3
2 )0 and ( 3

2 ,
3
2 )2

of the np2 configuration. For this purpose we write the spin-orbit Hamiltonian in the form

HLS =
∑
i

ξi(r)li · si =
1

2

∑
i

ξi(r)[j
2
i − l

2
i − s2

i ], (10.167)

where we recognize a sum over one-body operators which are diagonal in the {|jimji〉} representa-
tion. For the determinantal state |j1mj1 , j2mj2〉np2 the spin-orbit shift is given by

∆Enp2(j1, j2)J = 〈j1mj1 , j2mj2 |HLS |j1mj1 , j2mj2〉np2

= 1
2

∑
i

〈j1mj1 , j2mj2 |ξi(r)[j
2
i − l

2
i − s2

i ]|j1mj1 , j2mj2〉np2 . (10.168)

Changing from summation over particle index to summation over state index, see Eq. (9.44), we
obtain

∆Enp2(j1, j2)J = 1
2ζnp

∑
κ

〈jκmκ
j |j

2 − l2 − s2|jκmκ
j 〉np

= 1
2ζnp

∑
κ

[jκ(jκ + 1)− l(l + 1)− s(s+ 1)], (10.169)

where l = 1 and s = 1
2 . Note that this result is independent of the magnetic quantum numbers,

which make the application of the Slater sum rule particularly simple in this case. After evaluation
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we obtain for the 5 Pauli-consistent jj terms

∆Enp2( 3
2 ,

3
2 )0

∆Enp2( 3
2 ,

3
2 )2

}
= ζnp (10.170)

∆Enp2( 3
2 ,

1
2 )2

∆Enp2( 3
2 ,

1
2 )1

}
= − 1

2ζnp (10.171)

∆Enp2( 1
2 ,

1
2 )0 = −2ζnp, (10.172)

where the Slater sum rule was used to calculate ∆Enp2( 3
2 ,

3
2 )0 and ∆Enp2( 3

2 ,
1
2 )1.

10.8.3 Coulomb shift of the jj-coupled states

In this section we consider the Coulomb interaction between the electrons as a perturbation of
the jj-coupled manifolds. The calculation proceeds in a few steps. We demonstrate this for the
np2( 3

2 ,
3
2 )2 term,

∆E
[
np2( 3

2 ,
3
2 )2

]
= 〈 32

3
2 ,

3
2

1
2 |ρ
−1
12 | 32

3
2 ,

3
2

1
2 〉np2

= ( 3
2

3
2 ,

3
2

1
2 |ρ
−1
12 | 32

3
2 ,

3
2

1
2 )np2 − ( 3

2
3
2 ,

3
2

1
2 |ρ
−1
12 | 32

1
2 ,

3
2

3
2 )np2 . (10.173)

To evaluate the Coulomb integrals we have to turn from the {|nlsjmj〉} to the {|nlmlsms〉} repre-
sentation using the Clebsch-Gordan decomposition

|j1mj1〉 =
∑
ml,ms

|lmlsms〉〈lmlsms|j1mj1〉. (10.174)

We demonstrate this for |j1mj1〉 = | 32 ,
3
2 〉np and |j1mj1〉 = | 32 ,

1
2 〉np; using the Clebsch-Gordan

Table J.2.1 (1× 1/2) we obtain

| 32 ,
3
2 〉np = |p1〉 (10.175)

| 32 ,
1
2 〉np =

√
2/3|p0〉+

√
1/3|p̄1〉. (10.176)

The corresponding unsymmetrized pair states are

| 32 ,
1
2 ; 3

2 ,
3
2 )np2 =

√
2/3|p0, p1) +

√
1/3|p̄1, p1) (10.177)

| 32 ,
3
2 ; 3

2 ,
1
2 )np2 =

√
2/3|p1, p0) +

√
1/3|p1, p̄1). (10.178)

Using these expressions the Coulomb shift ∆Enp(
3
2 ,

3
2 )2 is expressed in the form

∆E( 3
2 ,

3
2 )np

2

2 = 2/3(p1, p0|ρ−1
12 |p1, p0)− 2/3(p1, p0|ρ−1

12 |p0, p1)

+ 1/3(p1, p̄1|ρ−1
12 |p1, p̄1)− 1/3(p1, p̄1|ρ−1

12 |p̄1, p1)

+
√

2/3(p1, p0|ρ−1
12 |p1, p̄1)−

√
2/3(p1, p0|ρ−1

12 |p̄1, p1)

+
√

2/3(p1, p̄1|ρ−1
12 |p1, p0)−

√
2/3(p1, p̄1|ρ−1

12 |p0, p1). (10.179)

Note that only the first three terms give a nonzero contribution; the others vanish by spin orthogo-
nality. With the aid of Table 7.1 these evaluate to,

∆E( 3
2 ,

3
2 )np

2

2 = 2/3J (p1, p0)− 2/3K(p1, p0) + 1/3J (p1, p1)

= 2/3 (F0 − 2F2)− 2/3 (3G2) + 1/3 (F0 + F2) = F0 − 3F2. (10.180)
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Periodic table of the elements

Table A.1: Eight primary groups cover the filling of s and p shells. The secondary groups 3-13 are the
transition metals and correspond to the filling of d shells. The rare-earth elements (lanthanides and actinides)
correspond to filling of the f shells.

I II III IV V VI VII VIII

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

H (np shells)
2

He

3

Li
4

Be
5

B
6

C
7

N
8

O
9

F
10

Ne

11

Na
12

Mg transition elements (nd shells)
13

Al
14

Si
15

P
16

S
17

Cl
18

Ar

19

K
20

Ca
21

Sc
22

Ti
23

V
24

Cr
25

Mn
26

Fe
27

Co
28

Ni
29

Cu
30

Zn
31

Ga
32

Ge
33

As
34

Se
35

Br
36

Kr

37

Rb
38

Sr
39

Y
40

Zr
41

Nb
42

Mo
43

Tc
44

Ru
45

Rh
46

Pd
47

Ag
48

Cd
49

In
50

Sn
51

Sb
52

Te
53

I
54

Xe

55

Cs
56

Ba
57−70∗

71

Lu
72

Hf
73

Ta
74

W
75

Re
76

Os
77

Ir
78

Pt
79

Au
80

Hg
81

Tl
82

Pb
83

Bi
84

Po
85

At
86

Rn

87

Fr
88

Ra
89−102∗∗

103

Lr
104

Rf
105

Db
106

Sg
107

Bh
108

Hs
109

Mt
110

Ds
111

Rg

rare-earth elements (nf shells)

*lanthanides (4f)
57

La
58

Ce
59

Pr
60

Nd
61

Pm
62

Sm
63

Eu
64

Gd
65

Tb
66

Dy
67

Ho
68

Er
69

Tm
70

Yb

**actinides (5f)
89

Ac
90

Th
91

Pa
92

U
93

Np
94

Pu
95

Am
96

Cm
97

Bk
98

Cf
99

Es
100

Fm
101

Md
102

No
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B

Properties of atomic isotopes

Table B.1: Atomic Ground State , Atomic Mass, Nuclear Spin, Magnetic Dipole Moment, Electric
Quadrupole Moment and Relative Abundance for selected atomic isotopes. The Table is based on three
databases: (a) The AME2016 Atomic Mass Evaluation [58, 120]; (b) The IAEA-INDC(NDS)-658 (2014) ta-
ble of nuclear magnetic dipole moments [106]; (c) The IAEA-INDC(NDS)-650 (2013) table of recommended
values of the nuclear electric quadrupole moments [107].

Z Element ground N A mass I gI µI Q RA

term (mu) (µN ) (barn) (%)

0 neutron 1 1∗ 1.008 664 916 1/2 −1.913 043 0 -

1 Hydrogen H 2S1/2 0 1 1.007 825 032 1/2 +2.792 847 0 99.98

Deuterium 1 2 2.014 101 778 1 +0.857 438 0.00286 0.02

Tritium 2 3∗ 3.016 049 282 1/2 +2.978 962 0 -

2 Helium He 1S0 1 3 3.016 029 323 1/2 −2.127 498 0 99.9998

2 4 4.002 603 254 0 - 0 0.0002

3 Lithium Li 2S1/2 3 6 6.015 122 887 1 +0.822 047 −0.000806 7.59

4 7 7.016 003 437 3/2 +3.256 427 −0.0400 92.41

4 Beryllium Be 1S0 5 9 9.012 183 070 3/2 −1.177 432 0.0529 100

6 10∗ 10.013 534 700 -

5 Boron B 2P1/2 5 10 10.012 936 862 3 +1.800 645 0.0845 20

6 11 11.009 305 167 3/2 +2.688 649 0.04059 80

6 Carbon C 3P0 6 12 12.000 000 000 0 - 0 98.9

7 13 13.003 354 835 1/2 +0.702 412 0 1.1

8 14∗ 14.003 241 988 0 - 0 -

7 Nitrogen N 4S3/2 7 14 14.003 074 004 1 +0.403 761 0.02044 99.6

8 15 15.000 108 899 1/2 −0.283 189 0 0.4

8 Oxygen O 3P2 8 16 15.994914.620 0 - 0 99.76

9 17 16.999131 757 5/2 −1.893 790 −0.0256 0.04

10 18∗ 17.999 159 613 0 - 0 0.20

9 Fluorine F 2P3/2 10 19 18.998 403 163 1/2 +2.628 868 0 100

10 Neon Ne 1S0 10 20 19.992 440 176 0 - 0 90.48

11 21 20.993 846 690 3/2 −0.661 797 0.102 0.27

12 22 21.991 385 110 0 - 0 9.25

∗radioactive
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Table B.2: Atomic Ground State , Atomic Mass, Nuclear Spin, Magnetic Dipole Moment, Electric
Quadrupole Moment and Relative Abundance for selected atomic isotopes. The Table is based on three
databases: (a) The AME2016 Atomic Mass Evaluation [58, 120]; (b) The IAEA-INDC(NDS)-658 (2014) ta-
ble of nuclear magnetic dipole moments [106]; (c) The IAEA-INDC(NDS)-650 (2013) table of recommended
values of the nuclear electric quadrupole moments [107].

Z Element ground N A mass I gI µI Q RA

term (mu) (µN ) (barn) (%)

11 Sodium Na 2S1/2 12 23 22.989 769 3/2 1.478348 2.217 522 0.104 100

12 Magnesium Mg 1S0 12 24 23.985 042 0 - - - 78.99

13 25 24.985 837 5/2 −0.34218 −0.855 450 0.199 10.00

14 26 25.982 593 0 - - - 11.01

13 Aluminium Al 2P1/2 14 26 25.986 892 5 2.804 0.26 0

14 27 26.981 538 5/2 1.4566028 3.641 507 0.1466 100

14 Silicon Si 3P0 14 28 27.976 927 0 - 0 92.2

15 29 28.976 495 1/2 −1.11058 −0.555 290 4.7

16 30 29.973 770 0 - 0 3.1

15 Phosphorus P 4S3/2 16 31 30.973 762 1/2 2.26320 1.131 600 100

16 Sulphur S 3P2 16 32 31.972 071 0 - 0 94.99

17 33 32.971 459 3/2 0.429214 0.643 821 0.75

18 34 33.967 867 0 - 0 4.25

20 36 35.967 081 0 - 0 0.01

17 Chlorine Cl 2P3/2 17 35 34.968 853 3/2 0.5479162 0.821 874 76

18 36 35.968 307 2 0.5479162 1.285 470 0

20 37 36.965 903 3/2 0.4560824 0.684 124 24

18 Argon Ar 1S0 18 36 35.967 545 0 - 0 0.34

20 38 37.962 732 0 - 0 0.06

22 40 39.962 383 0 - 0 99.60

19 Potassium K 2S1/2 18 39 38.963706 3/2 0.391 47 0.0585 93.26

20 40 39.963 998 4 −1.298 100 −0.073 0.01

22 41 40.961 825 3/2 0.214 8701 0.0711 6.73

20 Calcium Ca 1S0 20 40 39.962 591 0 - 0 0 96.94

21 41 40.962 278 7/2 −1.594 781 −0.0665 0

22 42 41.958 618 0 - 0 0 0.65

23 43 42.958 766 7/2 −1.317 643 −0.0408 0.13

24 44 43.955 482 0 - 0 0 2.09

26 46 45.953 688 0 - 0 0 2.09

28 48∗ 47.952 523 0 - 0 0 0.18

21 Scandium Sc 2D0 21 45 44.955 908 7/2 4.756 487 −0.220 100

22 Titanium Ti 3F2 24 46 45.952 627 0 - 0 0 8.25

25 47 46.951 758 5/2 −0.788 48 0.302 7.44

26 48 47.947 941 0 - 0 0 73.72

27 49 48.947 865 7/2 −1.10417 0.247 5.41

28 50 49.944 786 0 - 0 0 5.18
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Table B.3: Atomic Ground State , Atomic Mass, Nuclear Spin, Magnetic Dipole Moment, Electric
Quadrupole Moment and Relative Abundance for selected atomic isotopes. The Table is based on three
databases: (a) The AME2016 Atomic Mass Evaluation [58, 120]; (b) The IAEA-INDC(NDS)-658 (2014) ta-
ble of nuclear magnetic dipole moments [106]; (c) The IAEA-INDC(NDS)-650 (2013) table of recommended
values of the nuclear electric quadrupole moments [107].

Z Element ground N A mass I gI µI Q RA

term (neutrons) (mu) (µN ) (barn) (%)

23 Vanadium V 4F3/2 23 50∗ 5/2 3.3456889 0.21 0

0

23 51 7/2 5.1487057 0.043 0

24 Chromium Cr 7S3 24 50∗ 3/2 −0.47454 −0.15 0

0

0

25 Manganese Mn 6S5/2 24 51 5/2 3.5683 0.48 0

25 52 5/2 3.5683 0.48 0

26 53∗ 7/2 5.035 0.17 0

28 55 5/2 3.46871790 0.330 0
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C

Properties of the elements

Table C.1: Configuration, Ground term, Ionization Energy (IE) and Electron Affinity (EA) of the first three
rows of the periodic table. Note that all half-filled and fully-filled shells have an S term ground state and
that the electron affinity of fully-filled shells vanishes. The table is based on the NIST Atomic Spectra
Database [66]. The Electron Affinities (EA) are from T. Andersen, H.K. Haugen, H. Hotop [3].

ground IE in eV EA in eV

Z Element configuration term 1s 2s 2p 3s 3p 3d

1 Hydrogen H 1s 2S1/2 13.60 0.75

2 Helium He 1s2 1S0 24.59 < 0

3 Lithium Li [He]2s 2S1/2 5.39 0.62

4 Beryllium Be [He]2s2 1S0 9.32 < 0

5 Boron B [He]2s22p 2P1/2 8.30 0.28

6 Carbon C [He]2s22p2 3P0 11.26 1.26

7 Nitrogen N [He]2s22p3 4S3/2 14.53 -0.07

8 Oxygen O [He]2s22p4 3P2 13.62 1.46

9 Fluorine F [He]2s22p5 2P3/2 17.42 3.40

10 Ne Ne [He]2s22p6 1S0 21.56 < 0

11 Sodium Na [Ne]3s 2S1/2 5.14 0.55

12 Magnesium Mg [Ne]3s2 1S0 7.65 < 0

13 Aluminium Al [Ne]3s23p 2P1/2 5.99 0.43

14 Silicon Si [Ne]3s23p2 3P0 8.15 1.39

15 Phosphorus P [Ne]3s23p3 4S3/2 10.49 0.75

16 Sulphur S [Ne]3s23p4 3P2 10.36 2.08

17 Chlorine Cl [Ne]3s23p5 2P3/2 12.97 3.61

18 Argon Ar [Ne]3s23p6 1S0 15.76 < 0
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Table C.2: Configuration, Ground term, Ionization energy (IE) and Electron affinity (EA) of the fourth and
fifth row of the periodic table. This includes the filling of the 3d and 4d shells (transition metals). The table
is based on the NIST Atomic Spectra Database [66]. The Electron Affinities (EA) are from T. Andersen,
H.K. Haugen, H. Hotop [3].

ground IE in eV EA in eV

Z Element configuration term 3d 4s 4p 4d 5s 5p

19 Potassium K [Ar]4s1 2S1/2 4.34 0.50

20 Calcium Ca [Ar]4s2 1S0 6.11 0.02

21 Scandium Sc [Ar]3d4s2 2D3/2 6.56 0.19

22 Titanium Ti [Ar]3d24s2 3F2 6.83 0.08

23 Vanadium Va [Ar]3d34s2 4F3/2 6.75 0.53

24 Chromium Cr [Ar]3d54s1 7S3 6.77 0.67

25 Manganese Mn [Ar]3d54s2 6S5/2 7.43 < 0

26 Iron Fe [Ar]3d64s2 5D4 7.90 0.16

27 Cobalt Co [Ar]3d74s2 4F9/2 7.88 0.66

28 Nickel Ni [Ar]3d84s2 3F4 7.64 1.16

29 Copper Cu [Ar]3d104s1 2S1/2 7.73 1.23

30 Zinc Zn [Ar]3d104s2 1S0 9.39 < 0

31 Gallium Ga [Ar]3d104s24p 2P1/2 6.00 0.30

32 Germanium Ge [Ar]3d104s24p2 3P0 7.90 1.22

33 Arsenic As [Ar]3d104s24p3 4S3/2 9.79 0.81

34 Selenium Se [Ar]3d104s24p4 3P2 9.75 2.02

35 Bromine Br [Ar]3d104s24p5 2P3/2 11.81 3.37

36 Krypton Kr [Ar]3d104s24p6 1S0 14.00 < 0

37 Rubidium Rb [Kr]5s 2S1/2 4.18 0.49

38 Strontium Sr [Kr]5s2 1S0 5.69 0.05

39 Yttrium Y [Kr]4d5s2 2D3/2 6.22 0.31

40 Zirconium Zr [Kr]4d25s2 3F2 6.63 0.43

41 Niobium Nb [Kr]4d45s1 6D1/2 6.76 0.67

42 Molybdenium Mo [Kr]4d55s1 7S3 7.09 0.75

43 Technetium Tc [Kr]4d55s2 6S5/2 7.28 0.55

44 Ruthenium Ru [Kr]4d75s1 5F5 7.36 1.05

45 Rhodium Rh [Kr]4d85s1 4F9/2 7.46 1.14

46 Palladium Pd [Kr]4d10 1S0 8.34 0.56

47 Silver Ag [Kr]4d105s1 2S1/2 7.58 1.30

48 Cadmium Cd [Kr]4d105s2 1S0 8.99 < 0

49 Indium In [Kr]4d105s25p 2P1/2 5.79 0.4

50 Tin Sn [Kr]4d105s25p2 3P0 7.34 1.11

51 Antimony Sb [Kr]4d105s25p3 4S3/2 8.61 1.05

52 Tellurium Te [Kr]4d105s25p4 3P2 9.01 1.97

53 Iodine I [Kr]4d105s25p5 2P3/2 10.45 3.06

54 Xenon Xe [Kr]4d105s25p6 1S0 12.13 < 0
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Table C.3: Configuration, Ground term, Ionization energy (IE) and Electron affinity (EA) of the sixth row
of the periodic table. This includes the filling of the 4f (rare-earths lanthanides) and 5d (transition metals)
shells. The table is based on the NIST Atomic Spectra Database [66]. The Electron Affinities (EA) are
from T. Andersen, H.K. Haugen, H. Hotop [3].

ground IE in eV EA in eV

Z Element configuration term 4f 5d 6s 6p 7s

55 Cesium Cs [Xe]6s 2S1/2 3.89 0.47

56 Barium Ba [Xe]6s2 1S0 5.21 0.14

57 Lanthanum La [Xe]5d 6s2 2D3/2 5.58 0.47

58 Cerium Ce [Xe]4f 5d 6s2 1G4 5.54

59 Praseodymium Pr [Xe]4f36s2 4I9/2 5.47

60 Neodymium Nd [Xe]4f46s2 5I4 5.53

61 Promethium Pm [Xe]4f56s2 6H5/2 5.58

62 Samarium Sm [Xe]4f66s2 7F0 5.64

63 Europium Eu [Xe]4f76s2 8S7/2 5.67

64 Gadolinium Gd [Xe]4f75d 6s2 9D2 6.15

65 Terbium Tb [Xe]4f96s2 6H15/2 5.86

66 Dysprosium Dy [Xe]4f106s2 5I8 5.94

67 Holmium Ho [Xe]4f116s2 4I15/2 6.02

68 Erbium Er [Xe]4f126s2 3H6 6.11

69 Thulium Tm [Xe]4f136s2 2F7/2 6.18

70 Ytterbium Yb [Xe]4f146s2 1S0 6.25

71 Lutetium Lu [Xe]4f145d 6s2 2D3/2 5.43

72 Hafnium Hf [Xe]4f145d26s2 3F2 6.83 ∼0

73 Tantalum Ta [Xe]4f145d36s2 4F3/2 7.55 0.32

74 Tungsten W [Xe]4f145d46s2 5D0 7.86 0.82

75 Rhenium Re [Xe]4f145d56s2 6S5/2 7.83 0.15

76 Osmium Os [Xe]4f145d66s2 5D4 8.44 1.08

77 Iridium Ir [Xe]4f145d76s2 4F9/2 8.97 1.56

78 Platinum Pt [Xe]4f145d96s1 3D3 8.96 2.13

79 Gold Au [Xe]4f145d106s1 2S1/2 9.23 2.31

80 Mercury Hg [Xe]4f145d106s2 1S0 10.44 < 0

81 Thallium Tl [Xe]4f145d106s26p 2P1/2 6.11 0.38

82 Lead Pb [Xe]4f145d106s26p2 3P0 7.42 0.36

83 Bismuth Bi [Xe]4f145d106s26p3 4S3/2 7.29 0.94

84 Polonium Po [Xe]4f145d106s26p4 3P2 8.14 1.93

85 Astatine At [Xe]4f145d106s26p5 2P3/2 - 2.82

86 Radon Rn [Xe]4f145d106s26p6 1S0 10.75 < 0



296 Appendix C. Properties of the elements

Table C.4: Configuration, Ground term, Ionization energy (IE) and Electron affinity (EA) of the seventh
row of the periodic table up through the 5f shell (rare-earth actinides). The table is based on the NIST
Atomic Spectra Database [66].

ground IE in eV EA in eV

Z Element configuration term 5f 6d 7s

87 Francium Fr [Rn]7s 2S1/2 4.07

88 Radium Ra [Ra]7s2 1S0 5.28

89 Actinium Ac [Ra]6d 7s2 2D3/2 5.38

90 Thorium Th [Ra]6d27s2 3F2 6.31

91 Protactinium Pa [Ra]5f26d 7s2 4K11/2 5.89

92 Uranium U [Ra]5f36d 7s2 5L6 6.19

93 Neptunium Np [Ra]5f46d 7s2 6L11/2 6.27

94 Plutonium Pu [Ra]5f67s2 7F0 6.03

95 Americium Am [Ra]5f77s2 8S7/2 5.97

96 Curium Cm [Ra]5f76d 7s2 9D2 5.99

97 Berkelium Bk [Ra]5f97s2 6H15/2 6.20

98 Californium Cf [Ra]5f107s2 5I8 6.28

99 Einsteinium Es [Ra]5f117s2 4I15/2 6.37

100 Fermium Fm [Ra]5f127s2 3H6 6.50

101 Mendelevium Md [Ra]5f137s2 2F7/2 6.58

102 Nobelium No [Ra]5f147s2 1S0 6.65
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Classical Mechanics

D.1 Introduction

The goal of classical mechanics is to describe the time evolution of systems of point-like particles,
called classical particles, subject to Newton’s laws of motion. To introduce the subject we consider
a mechanical system of N classical particles labeled by the particle index α. The position of particle
α is denoted by the vector rα. The first derivative with respect to time t, ṙα ≡ drα/dt, is called the
velocity of the particle and the second derivative, r̈α ≡ d2rα/dt

2, its acceleration.

We suppose that for a given state of the system the evolution does not depend on the instant
that we choose to follow it in time; i.e., time is homogeneous. Space is taken to be both homogeneous
and isotropic; i.e., it is possible to choose a frame of reference in which the evolution of the system
is independent of position and orientation. Such a reference frame is called an inertial frame. In
an inertial frame a free particle either stays at rest or moves at constant velocity. This is Newton’s
first law : the law of inertia.

A system of N classical particles has at most 3N degrees of freedom; i.e., 3N independent ways
to change in time. For free particles this motion can be described by Newton’s equations of motion
using 3N coordinates, for instance the cartesian coordinates xα, yα and zα, with α ∈ {1, · · ·N}.
However, in many cases the motion is not free (not described by ) but subject to constraints. These
can be time independent (scleronomous) or have an explicit time dependence (rheonomous). An
example of a scleronomous constraint is the fixed distance between two particles in a rotating rigid
body. A ball rolling on the deck of a ship is an example of a system (the ball) with a rheonomous
constraint (confinement to the deck of the ship). The system is called holonomic if the constraining
relations reduce the 3N degrees of freedom the system (which can greatly simplify calculations).
This is the case for constraint equalities, for instance the above mentioned fixed distance between
two particles in a rotating rigid body. If the constraints do not affect the 3N degrees of freedom the
system is called nonholonomic. An example is a system of particles confined to a box, where the
confinement is accounted for by constraint inequalities. Nonholonomic constraints can sometimes
be avoided by idealizations of the theory.

The field of classical mechanics is subdivided into three subjects: (a) statics, which is the theory
of mechanical equilibrium between forces; (b) kinematics, which is the theory of motion without
entering in the origin of this motion; (c) dynamics, which is the theory of motion under the influence
of forces. This appendix cannot be more than a summary. It is partially based on unplublished
lecture notes by De Groot and Suttorp at the University of Amsterdam. For a comprehensive
introduction the reader is referred to volume 1 of the Landau-Lifshitz series [69] and the book by
Herbert Goldstein [52].
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D.2 Dynamical evolution

D.2.1 Newton’s equation of motion

The time development of a system of N particles under the influence of external forces is called
the dynamical evolution of that system. In classical mechanics the dynamical evolution of a single
particle is described by Newton’s second law, which states that the total force Fα acting on particle
α is proportional to the acceleration of that particle, with the proportionality constant mα being
its inertial mass,

Fα = mαr̈α. (D.1)

For a system of N particles the force Fα is given by the resultant of all external forces, Fext
α , and

the sum of the interaction forces Fαβ of particle α with all other particles of the system,

Fext
α +

N∑
β=1

′Fαβ = mαr̈α, (D.2)

where the prime indicates the condition β 6= α. This expression represents a set of N coupled
differential equations which is impossible to solve for a macroscopic number of particles. However,
as we shall see below, in many cases excellent approximations can be obtained by replacing the
interparticle forces by one or more relations acting as constraints on the motion of particle α.

D.2.2 Kinematic evolution of holonomous systems

For a holonomic system of N particles at positions rα with l constraints we can introduce f = 3N−l
independent coordinates qi(t) known as the generalized coordinates, with i ∈ {1, · · · f} being the
coordinate index. Together these define the evolution of the system as a function of time in the
f -dimensional configuration space of the system. The time derivatives q̇i(t) are called the generalized
velocities.1

• The rheonomous constraints of a N -particle system with f = 3N − l degrees of freedom
constitute a set of l time-dependent relations fk(r1, · · · , rN , t) = 0, where k ∈ {1, · · · l} is
called the constraint index. In this case the position of particle α may be expressed as a
function of the f coordinates qi plus time,

rα = rα(q1, · · · , qf , t). (D.3)

The velocities follow with

ṙα =

f∑
i=1

∂rα
∂qi

q̇i +
∂rα
∂t

, (D.4)

which shows that the velocity of particle α is (in general) a function of qi, q̇i and t,

ṙα = ṙα(q1, · · · , qf , q̇1, · · · , q̇f , t). (D.5)

Hence, in rheonomous systems rα and ṙα depend explicitly on time.

• For scleronomous constraints the l constraining relations do not contain an explicit time
dependence: fk(r1, · · · , rN ) = 0, with k ∈ {1, · · · l}. This makes it possible to choose the
f coordinates qi in such a way that the position of the particles does not depend explicitly
on time. For instance, a rigid body has f = 6 degrees of freedom, because the position of
an arbitrary particle α is specified by rα = rα(X,Y, Z, r, θ, φ), where R = (X,Y, Z) is the
position of the center of mass and r = (r, θ, φ) to position relative to R inside the body. For
a homogeneous rigid sphere on a static surface this reduces to f = 4 and rα = rα(X,Y, θ, φ).

1In this appendix we adopt the following index convention: α ∈ {1, · · ·N} for the particle index, i ∈ {1, · · · f} for
the coordinate index and k ∈ {1, · · · l}. for the constraint index.
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D.2.3 Virtual displacements - principle of d’Alembert

The force Fα acting on particle α is the superposition of all forces acting on that particle. These
forces can be separated into known forces Fext

α , like gravity or externally applied forces, and unknown
forces Kα,

Fα = Fext
α + Kα. (D.6)

The unknown forces are called forces of constraint. These unknown forces are reaction forces that
reduce the freedom of motion of the particles. Their actual value is unknown but always such that
the constraints remain satisfied, for instance to assure that a train stays in the rails.

The explicit appearance of the reaction forces can be eliminated from the formalism. To demon-
strate this we first consider mechanical equilibrium. This is the state in which all particles are at
rest in their equilibrium position; i.e., Fα = 0 and Kα = −Fext

α for all particles. By pulling on one
of the particles we expect to perform work against the restoring force of the system but as long as
the displacements δrα remain small (i.e., close to the equilibrium position) we find that this work
vanishes because the forces Fα remain vanishingly small,∑

α

Fα · δrα =
∑
α

(Fext
α + Kα) · δrα = 0. (D.7)

In other words, in equilibrium the restoring force is zero. This implies that in the absence of external
forces the reaction forces have to be zero, Fα = Kα = 0.

Now suppose that the system is pulled out of equilibrium. In this case we have forces acting on
(in general) all the particles; i.e., Fα = mαr̈α 6= 0 and Kα = −Fext

α + Fα 6= 0. Shifting the external
forces to the l.h.s. of (D.7) this equation takes the form∑

α

(mαr̈α − Fext
α ) · δrα =

∑
α

Kα · δrα. (D.8)

The dot product leads us to distinguish between the component of δrα along Kα and the component
perpendicular to Kα. A parallel displacement would require work but is not in accordance with
the constraints; a perpendicular displacement is in accordance with the constraints but does not
result in work (as long as the displacements remain sufficiently small). This insight brings us to the
principle of d’Alembert : under virtual displacements δrα (in accordance with the constraints) no
work is done by the reaction forces,

δW =
∑
α

Kα · δrα = 0. (D.9)

By analyzing virtual displacement we can eliminate the reaction forces from (D.8) and the principle
of d’Alembert takes the form

δW =
∑
α

(mαr̈α − Fext
α ) · δrα = 0. (D.10)

As this expression also holds outside equilibrium, we have obtained a condition for the dynamical
evolution of a mechanical system in which the constraints are satisfied implicitly. In Section D.3
the d’Alembert principle will be used to derive the central equations of classical mechanics: the
equations of Lagrange.

Let us have a closer look at the virtual displacements. These can be thought of as instantly
being present at any desired point in time just to analyze how they would affect the system; i.e.,
unlike real displacements, which are based on (D.3), virtual displacements have no (explicit) time
dependence. To be relevant, they have to be in accordance with the constraints; i.e., δrα has to be
perpendicular to Kα. This leads to the practical difficulty that (in principle) the virtual displacement
of one particle affects the virtual reaction forces of all other particles; i.e., the δrα cannot be chosen
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independently. This difficulty can be eliminated by decomposing the virtual displacements in terms
of the generalized coordinates defined by the constraints,

δrα =

f∑
i=1

∂rα
∂qi

δqi. (D.11)

Note the absence of the time variable. Substituting this expression into (D.10) we obtain

δW =

f∑
i=1

[
N∑
α=1

(mαr̈α − Fext
α ) · ∂rα

∂qi

]
δqi = 0 (D.12)

and since the qi are independent variables the principle of d’Alembert takes the form of a set of f
coupled differential equations∑

α

(mαr̈α − Fext
α ) · ∂rα

∂qi
= 0, with i ∈ {1, · · · , f}. (D.13)

Inversely, it is easily verified that (D.10) is always valid provided the equations (D.13) are simulta-
neously satisfied.

Bernoulli’s principle

In the absence of dynamical evolution (the static case - r̈α = 0) the principle of d’Alembert reduces
to the Bernoulli principle of virtual displacements :

δW =
∑
α

Fext
α · δrα = 0. (D.14)

As an example of Bernoulli’s principle without constraints we consider a system of N = 2 identical
particles subject to a force Fext

α = −∇αU(r1, r2), where U(r1, r2) is a potential function which
depends on the position of both particles. This is an example of a conservative force (see Section
D.5.2). The expression for the virtual work is δW = Fext

1 · δr1 + Fext
2 · δr2 = 0. For two free

particles confined by a harmonic potential the condition δW = 0 is satisfied at the minimum of
the potential. For two repulsive particles we have Fext

1 = −Fext
2 and the condition δW = 0 is

satisfied for δr1 = −δr2 perpendicular to Fext
1 . Note the correlation between δr1 and δr2 (these

are not independent). The virtual displacements correspond to a rotation of the pair about the
potential center. The latter case shows that the virtual variation does not automatically correspond
to minimum of δW but can also represent a degenerate case.

Kinetic energy relations

Introducing the kinetic energy,

T ≡ 1
2

∑
α

mαṙ2
α, (D.15)

we note that, in view of (D.5), the kinetic energy of particle α is in the most general case a function
of qi(t), q̇i(t) and t,

T = T (q1, · · · , qf , q̇1, · · · , q̇f , t). (D.16)

For future convenience of use we derive the partial derivatives with respect to qi and q̇i,

∂T

∂qi
=
∑
α

mαṙα ·
∂ṙα
∂qi

(D.17a)

∂T

∂q̇i
=
∑
α

mαṙα ·
∂rα
∂qi

. (D.17b)

Here we used the relation ∂ṙα/∂q̇i = ∂rα/∂qi, which follows immediately from (D.4) and (D.3).
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Problem D.1. Consider the kinematics of a single particle moving in a stationary circular orbit of radius
R = 1. Derive the equations of motion and show that motion is in accordance with the principle of
d’Alembert.

Solution. To describe the orbit we choose a two-dimensional cartesian coordinate system with the position
vector r given by

x = r cosφ y = r sinφ,

where (x, y) are the cartesian coordinates and (r, φ) the polar coordinates of r. In this problem we have one
(skeronomic) constraint: the radius of the orbit is constant. Choosing the origin of the coordinate system
at the center of the circle the constraint takes the form r = 1 and the motion can be described using φ as
the only generalized coordinate, r = r(φ). The time evolution is given by

x(t) = cosωt, ẋ(t) = −ω sinωt, ẍ(t) = −ω2cosωt

y(t) = sinωt, ẏ(t) = ω cosωt, ÿ(t) = −ω2sinωt,

where φ(t) ≡ ωt, with ω = φ̇ the angular velocity about the origin. These expressions show that the
velocity is always tangential to the circle with the acceleration pointing to the center. Note that the velocity
is proportional to ω and the acceleration scales with ω2. As there are no “known” forces acting on the
particle, the d’Alembert principle tells us that the force must a reaction force, K = mr̈, which constrains
the orbit of the particle to the circle. Furthermore, as no work is done by reaction forces under virtual
displacements,

δW = mr̈ · δr = 0,

the virtual displacements have to be orthogonal to the force; i.e., tangential to the circle (in accordance
with the constraint r = 1). Note that the x and y motion only differ by a constant phase shift. Hence, the
circular motion maps on that of a one-dimentional harmonic oscillator, which also is a mechanical system
with one degree of freedom (f = 1). 2

D.3 Lagrange equations

In this section we derive the equations of Lagrange, which are the equations of motion of classical
mechanics. The Lagrange equations offer important advantages over Newton’s equations of motion
because forces of constraint are eliminated from the formalism. In this way the state of a classical
system of f degrees of freedom can be uniquely specified by a set of 2f generalized coordinates,

(q, q̇) ≡ (q1, · · · , qf ; q̇1, · · · , q̇f ). (D.18)

This set is known as the classical phase of the system. As the generalized coordinates are linearly
independent, the classical phase corresponds to a point in a 2f -dimensional vector space, called the
(generalized) phase space of the system. Each point in the phase space corresponds to a different
classical state. In the Lagrange equations the vectors q ≡ (q1, · · · , qf ) and q̇ ≡ (q̇1, · · · , q̇f ) serve as
dynamical variables because the evolution of the classical phase in time represents the dynamical
evolution of the system. Separately, q and q̇ evolve as vectors in the (generalized) configuration
space and (generalized) velocity space, respectively. The Lagrange equations are equally valid for
conservative and non-conservative forces. Examples of conservative forces are the gravitational force
and the Lorentz force. The friction force is an example of a non-conservative force. In the present
section the Lagrange equations are obtained from the principle of d’Alembert. In Section D.4 they
will be derived from the principle of least action of Hamilton.

D.3.1 Absence of constraining forces

First we show how the Lagrange equations are obtained form Newton’s second law. In the absence of
constraining forces the particles are called free and the equations of motion (D.1) suffice to describe
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the motion of the particles. Using Eq. (D.15) for the kinetic energy, we find that a force acting on
particle α can be written in the form

Fα =
d

dt

∂T

∂ṙα
. (D.19)

Now we restrict ourselves to forces that can be expressed as the negative gradient of a potential
function U = U(r1, · · · , rN , t),

Fext
α = − ∂U

∂rα
. (D.20)

In the special case of a time-independent potential function the force field is called conservative and
potential function can be interpreted as the potential energy U = V (r1, · · · , rN ). We return to the
concept of potential energy in the context of the conservation laws (see Section D.5.2). Combining
(D.19) and (D.20) we find

− ∂U

∂rα
=

d

dt

∂T

∂ṙα
. (D.21)

At this point we introduce the Lagrangian L(rα, ṙα, t) as the difference between the kinetic energy
and the potential function,

L(rα, ṙα, t) ≡ T (ṙα)− U(rα, t). (D.22)

Because the potential function U(r1, · · · , rN , t) does not depend explicitly on ṙα, and T (ṙ1, · · · , ṙN )
not explicitly on rα, (D.21) we arrive at the so-called Lagrange equations for particle α,

d

dt

∂L
∂ṙα
− ∂L
∂rα

= 0, with α ∈ {1, · · · , N}. (D.23)

D.3.2 Presence of constraining forces

Lagrange equations can also be derived for systems with holonomic constraints. So let us turn to
a system of N particles in which holonomic constraints add up to the reaction forces Kα. How do
these constraints affect the evolution of the system? To answer this question we apply the principle
of d’Alembert. Rewriting (D.13) in the form∑

α

Fext
α ·

∂rα
∂qi

=
∑
α

mαr̈α ·
∂rα
∂qi

, with i ∈ {1, · · · , f}, (D.24)

we can introduce a generalized force defined by f components, one for every degree of freedom of
the system,

Qi ≡
∑
α

Fext
α ·

∂rα
∂qi

, with i ∈ {1, · · · , f}. (D.25)

Using the r.h.s. of (D.24) the Qi can be expressed as

Qi =
d

dt

(∑
α

mαṙα ·
∂rα
∂qi

)
−
∑
α

mαṙα ·
∂ṙα
∂qi

, (D.26)

and after substitution of (D.17) this becomes

Qi =
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
, with i ∈ {1, · · · , f}. (D.27)

This expression holds for any holonomic system. It has the structure of a Lagrange equation but the
forces remain to be specified. Below we derive the Lagrange equation for three types of forces: (a)
conservative or non-conservative potential forces; (b) generalized potential forces; (c) non-potential
forces.
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(a) If the components of the generalized force can be expressed as the gradients of the potential
function U = U(r1, · · · , rN , t) we can substitute (D.20) into (D.25) and obtain

Qi ≡ −
∑
α

∂U

∂rα
· ∂rα
∂qi

= −∂U
∂qi

. (D.28)

Substituting this equation into (D.27) and taking into account ∂U/∂q̇i = 0 (because U does
not depend explicitly on the q̇i), the equations of motion takes the form

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0, with i ∈ {1, · · · , f}, (D.29)

where
L(q, q̇, t) ≡ T (q, q̇, t)− U(q, t). (D.30)

The set of equations (D.29) will be referred to as the Lagrange equations. Note that in the
non-holonomic case we have f = 3N and the set of generalized coordinates {qi} coincides with
the full set of cartesian coordinates {rα}; i.e., (D.29) coincides with (D.23).

(b) The derivation of Eq. (D.29) breaks down in cases where ∂U/∂q̇i 6= 0; i.e., for velocity-
dependent forces. However, by construction, the Lagrange equations will still be obtained
if the generalized forces can be written the form

Qi = −∂U
∂qi

+
d

dt

(
∂U

∂q̇i

)
, with i ∈ {1, · · · , f}. (D.31)

Substituting this expression into (D.27) we find

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0, with i ∈ {1, · · · , f}. (D.32)

Here the Lagrangian is defined as.

L(q, q̇, t) ≡ T (q, q̇, t)− U(q, q̇, t). (D.33)

In the presence of a velocity dependence the function U = U(q, q̇, t) is called a generalized
potential function.

(c) Not all forces can be derived from a potential function. However, also for non-potential forces
(for instance friction forces) the equation (D.27) is valid. In the most general case, when both
potential and non-potential forces are present, the Lagrange equations can be written in the
form

d

dt

∂L
∂q̇i
− ∂L
∂qi

= Qi, with i ∈ {1, · · · , f}. (D.34)

Here Qi are the components of the non-potential force. Forces that can be derived from a
potential function are presumed to be contained in the Lagrangian.

D.3.2.1 Motion in a central potential field

As a first example we consider the motion of a particle of mass m freely moving in a central potential,
U(r). This is a conservative potential which only depends on the distance of the particle to the
center of the potential. As the force is central, the orbit will be confined to the plane defined by the
position and velocity of the particle at t = 0. The Lagrangian is given by

L = 1
2m ṙ2 − U(r). (D.35)
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Choosing the xy plane of a cartesian coordinate system with its origin at the potential center, the
position vector given by

r = x̂ r cosφ+ ŷ r sinφ (D.36)

where x̂ and ŷ are the unit vectors along the x and y direction, and (r, φ) are the polar coordinates
of r. Differentiating Eq. (D.36) with respect to time find for the velocity

ṙ = x̂ (ṙ cosφ− r sinφ φ̇) + ŷ (ṙ sinφ+ r cosφ φ̇). (D.37)

Then, using the orthogonality of the unit vectors x̂ and ŷ we obtain

ṙ2 = (ṙ cosφ− r sinφ φ̇)2 + (ṙ sinφ+ r cosφ φ̇)2 = ṙ2 + r2φ̇2 (D.38)

and the Lagrangian becomes

L = 1
2m (ṙ2 + r2φ̇2)− U(r). (D.39)

Since the polar coordinates are obtained from the cartesian coordinates by an orthogonal transfor-
mation, both sets of coordinates can serve as a complete set of generalized coordinates on which the
action principle is based. In other words, the Lagrange equations also apply to the case of polar
coordinates.

For the φ motion the Lagrange equation becomes

d

dt

∂L
∂φ̇

=
∂L
∂φ

⇔ d

dt

(
mr2φ̇

)
= 0. (D.40)

This shows that the quantity mr2φ̇ is conserved. In this quantity we recognize the angular momen-
tum about the potential center, m (r× v) = mr2φ̇. Note that this conservation law implies that
the area enclosed by the orbit in a given time is conserved in time

dA = 1
2r

2dφ = cdt. (D.41)

This Keppler’s second law. In particular, for a circular orbit the angular velocity is conserved:
φ̇ ≡ ω and φ = ωt (with the initial phase of the circular motion chosen to be zero at t = 0).

For the r motion the Lagrange equation becomes

d

dt

∂L
∂ṙ

=
∂L
∂r

⇔ F =
d

dt
(mṙ) = mrφ̇2 − ∂U(r)

∂r
. (D.42)

For a circular orbit this reduces to the well-known condition for stationary motion,

mω2r − ∂U(r)/∂r = 0 (D.43)

D.3.2.2 Friction force

In this example we ask for the steady-state velocity of particle falling in a gravitational field in the
presence of friction. For a gravitational field along the z axis the potential is V = αz. This is a
conservative potential field. The friction force is a velocity dependent force,

F = −βż. (D.44)

This is a non-conservative and therefore non-Newtonian force. The Lagrangian is determined only
by the kinetic energy and the potential fields (in this case only the gravitational potential),

L = 1
2 ż

2 − αz. (D.45)
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Substituting the friction force into the r.h.s. of the Lagrange equation (D.29) we obtain

d

dt

∂L
∂ż
− ∂L
∂z

= −βż. (D.46)

Substituting the Lagrangian (D.45) we obtain

z̈ + βż − α = 0. (D.47)

The steady-state condition is z̈ = 0; hence, we find for the steady-state velocity

ż = −α/β. (D.48)

D.3.2.3 Lorentz force

The celebrated example of a velocity-dependent force for which a generalized potential can be
defined is the Lorentz force. This force governs the motion of a charged particle moving through an
electromagnetic field in vacuum. The Lorentz force is given by

F = q(E + v ×B), (D.49)

where q is the electric charge and v = ṙ the velocity of the particle. The generalized electromagnetic
potential from which the Lorentz force may be derived has the form,

U(r,v, t) = q(ϕ− v ·A), (D.50)

where ϕ(r, t) and A(r, t) are the scalar and vector potentials of the electromagnetic field. To
demonstrate this assertion we start from (D.31) and find in the vector notation 1

F(r, ṙ, t) = −∂rU +
d

dt
∂ṙU = −q[∂rϕ− ∂r(ṙ ·A) +

d

dt
∂ṙ(ṙ ·A)]. (D.51)

Because A(r, t) does not depend explicitly on ṙ and in view of the vector rule (N.17) the last term
of (D.51) can be rewritten as

d

dt
∂ṙ(ṙ ·A) =

dA

dt
= ∂tA + (ṙ · ∂r)A. (D.52)

Substitution of this expression into (D.51) we obtain

F = −q[∂rϕ+ ∂tA + (ṙ · ∂r)A− ∂r(ṙ ·A)], (D.53)

which yields with (N.16) the expression for the Lorentz force

F = −q(∂rϕ+ ∂tA− ṙ× ∂r ×A) = q(E + v ×B). (D.54)

D.4 The Lagrange formalism

In Section D.3 the Lagrange equations were derived from the Newton equations of motion together
with the principle of d’Alembert. An alternative approach is to derive the Lagrange equations from
the principle of Hamilton. In this approach we start by noting that the time evolution of the system
corresponds to a unique path of the vector q ≡ (q1, · · · , qf ) in the f -dimensional configuration space
of the generalized coordinates. As these coordinates are mutually independent, this path can be
predicted over an infinitesimal time interval from t to t+ δt by the relation

q(t+ δt) = q(t) + q̇(t)δt. (D.55)

Hence, to predict the continuation of the path at time t, both q(t) and q̇(t) have to be known. In
other words, together q and q̇ fully determine the classical state of the system (often represented
by a point in the so-called phase space of position and momentum).

1In this example we use the short-hand notation ∂q ≡ ∂/∂q ≡ (∂/∂qx, ∂/∂qy , ∂/∂qz) and ∂t ≡ ∂/∂t.
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D.4.1 Principle of Hamilton

Let us consider the case where the actual path q(t) runs from the starting point q(t0) to the end
point q(t1) during the time interval (t0, t1), and let q′(t) be some adjacent path, slightly differing
from the actual path but with the same starting point and end point. The key idea behind the
principle of Hamilton is that any continuous deviation from the actual path,

δq(t) = q′(t)− q(t), (D.56)

with boundary conditions
δq(t0) = 0 and δq(t1) = 0, (D.57)

has to be unfavorable in some respect. Thus we search for a functional of q and q̇ (the cost functional
of the variational problem) which is minimal for the actual path from q(t0) to q(t1). Minimizing
this functional with respect to the path provides us with criteria that have to be satisfied along the
actual path (for instance conservation laws). This cost functional is called the action and is given
by the integral of a lagrangian function L(q, q̇, t) over the time interval (t0, t1),

S =

ˆ t1

t0

L(q, q̇, t)dt. (D.58)

Whatever this “Lagrangian” may turn out to be, the expression for the action is plausible; at each
point in time t within the interval (t0, t1), knowledge of q and q̇ suffice to determine the actual path
from q(t0) to q(t1). So if the Lagrangian is to be deterministic for the actual path, it can only be a
function of the variables q, q̇ and t. This minimization procedure is called the action principle1or
the principle of Hamilton.

The principle of Hamilton is a variational principle that enables us to derive properties of the
Lagrangian for systems in which the function L(q, q̇, t) is at least twice differentiable; i.e., smooth
with respect to the variables q, q̇ and t. Fortunately, many systems fall in this class and we shall
study some examples. Let us consider the change in action of such a system over the time interval
(t0, t1) when deforming the path defined by q(t) and q̇(t) into an adjacent smooth continuous path
q′(t) and q̇′(t) given by q′ = q + δq and q̇′ = q̇ + δq̇,

δS =

ˆ t1

t0

[L(q + δq, q̇ + δq̇, t)− L(q, q̇, t)]dt. (D.59)

As the Lagrangian is smooth we can use a Taylor expansion with respect to δq and δq̇,2

L(q + δq, q̇ + δq̇, t) = L(q, q̇, t) +
∂L
∂q
· δq +

∂L
∂q̇
· δq̇ + · · · , (D.60)

and the change of action takes the form

δS =

ˆ t1

t0

∑
i

(
∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i

)
dt. (D.61)

By partial integration of the second term this integral becomes

δS =
∑
i

[
∂L
∂q̇i

δqi

]t1
t0

+

ˆ t1

t0

∑
i

(
∂L
∂qi
− d

dt

∂L
∂q̇i

)
δqidt. (D.62)

1Traditionally the action principle is called the priciple of least action. This is an unfortunate name because the
variational method provides stationary points rather than minima.

2Note the following equivalent notations for the gradient operator, ∂q ≡ ∂/∂q ≡ (∂/∂q1, · · · , ∂/∂qf ).
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Since the variation is zero at the boundaries of the path, see (D.57), this expression reduces to

δS =

ˆ t1

t0

∑
i

(
∂L
∂qi
− d

dt

∂L
∂q̇i

)
δqidt. (D.63)

At this point we can formulate a necessary condition for minimal action: the functional must be
stationary (δS = 0) under arbitrary variations of the path,1

ˆ t1

t0

∑
i

(
∂L
∂qi
− d

dt

∂L
∂q̇i

)
δqidt = 0. (D.64)

Since the variations δqi are independent this condition is only satisfied if all terms of the summation
vanish simultaneously,

∂L
∂qi
− d

dt

∂L
∂q̇i

= 0, with i ∈ {1, · · · , f}. (D.65)

These equations constitute the Euler-Lagrange equations of the action variational principle in which
we recognize the Lagrange equations of classical mechanics. In Section D.3 these were obtained
starting from the principle of d’Alembert.

The action principle has revealed the Lagrangian as the optimal functional from which the laws
of physics of a mechanical of the system can be derived. As the Lagrangian is optimized by variation
of the path in phase space it is independent of the choice of coordinates. The latter also holds for
the form of the Lagrange equations.

Properties of the Lagrangian

Above the Lagrangian L(q, q̇, t) is introduced as a smooth (at least twice differentiable) function of
the variables, q, q̇ and t for which the action is stationary under the condition that the Lagrange
equations (D.65) are satisfied. Lagrangians have the following properties:

(a) Additive property : The Lagrangian L of a system consisting of two non-interacting subsystems
can be written as the sum of the Lagrangians L1 and L2 of the two subsystems,

L = L1 + L2. (D.66)

This has to be the case because the paths of the subsystems in configuration space can be
varied independently. Hence, the least action of the total system must coincide with the sum
of the least actions of the two subsystems.

(b) Definition up to a multiplicative factor : The path of least action is invariant under multipli-
cation of the Lagrangian by an arbitrary constant. For L′ = αL we find

S′ = α

ˆ t1

t0

L(q, q̇, t)dt = αS. (D.67)

Hence, δS′ = αδS, which implies that the condition δS′ = 0 is equivalent to δS = 0. This
means that the multiplication by α does not affect the stationarity condition and leads to the
same Euler-Lagrange equation.

(c) Definition up to a total time derivative: The path of least action is invariant under addition
of a total time derivative to the Lagrangian. For L′ = L+ df/dt we find

S′ =

ˆ t1

t0

L(q, q̇, t)dt+

ˆ t1

t0

df

dt
dt = S + f(t1)− f(t0). (D.68)

1Note that the inverse is not generally true: being stationary does not mean that the action is minimal.
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Hence, S′ and S differ by a constant and this does not affect the variation, δS′ = δS. Thus,
the addition of dα/dt does not change the stationarity condition and leads to the same Euler-
Lagrange equation.

D.4.2 Lagrangian of a free particle

To gain insight in the functional form of the Lagrangian we consider a free particle. In classical
mechanics space and time are postulated to be homogeneous, so the Lagrangian of the particle
(which determines the time evolution of the system) must be independent of position r and time t.
This leaves the velocity v = ṙ as the only variable, L = L(v). Since L is independent of r we have
∂L/∂r = 0 and the Lagrange equation (D.65) becomes

d

dt

∂L
∂v

= 0. (D.69)

Hence, ∂L/∂v must be a constant and since v is the only variable of L the velocity must be constant,
v(t) = v0. Thus we found Newton’s law of inertia.

Space is postulated to be isotropic. Thus, the Lagrangian may only depend on the absolute
value of the velocity, v; i.e., it has to be some function of the velocity squared,

L = L(v2). (D.70)

This observation immediately implies that the Lagrangian is invariant under time reversal; i.e., time
is isotropic in newtonian mechanics. To get more precise information about the functional depen-
dence of L on v2 we turn to Galileo’s principle of relativity, which is also based on the homogeneity
and isotropy of space and time. According to this principle the equations of motion (hence also the
Lagrangian) must be invariant under a Galilean transformation, which is a transformation of one
inertial frame to another (from the inertial frame S to the frame S ′)

r′ = r + Vt; t′ = t, (D.71)

where V is the relative velocity of the frame S ′ with respect to the frame S. Thus we are led to
compare two Lagrangians, L(v′2) and L(v2), defined with respect to two inertial frames which move
with an infinitesimally small but constant velocity w = v′ − v with respect to each other. Using
the relation v′2 = v2 + 2v ·w + w2 we find

L(v′2) = L(v2) +
∂L
∂v2

(2v + w) ·w+
∂2L
∂(v2)2

[(2v + w) ·w]
2

+ · · · . (D.72)

As the time evolution of the system must be independent of the choice of inertial frame, the two
Lagrangians must be equivalent. In view of property (D.68) this means that they cannot differ by
more than a total time derivative. Since v is by definition a total time derivative and w a constant,
∂L/∂v2 has to be a constant; i.e., the function L has to be a linear function of v2,

L = L0 + αv2. (D.73)

For any other functional dependence on v2 the Lagrangian is either trivially zero or differs from L
by more than a total time derivative. Once we accept that L has to be a linear function of v2 we
find that all higher order terms of the expansion vanish. As the constant L0 can also be regarded
as a total time derivative we may write the Lagrangian as simply proportional to v2,

L = 1
2mv

2 = T. (D.74)

The proportionality constant m is called the mass of the particle and serves to calibrate the La-
grangian. This calibration is possible in view of property (D.67). The chosen calibration yields the
kinetic energy of the particle, T = 1

2mv
2.
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For a free particle the principle of least action is very intuitive. The particle has to follow a
straight path in configuration space (which coincides in this case with real space) because for a
constant Lagrangian any deviation from a straight path leads to an increase of the action integral.
The example also shows that the mass must be positive (m > 0) because otherwise the action could
be reduced by deviating from the straight path, which contradicts experimental observation.

D.4.3 Lagrangian of a single particle in a potential field

Let us now add to the kinetic energy of the particle a (smooth) function of position and time (i.e.,
a time-dependent field),

L(r, ṙ, t) = 1
2mv

2 − U(r, t). (D.75)

Being a function of r, ṙ and t, the new expression is again a Lagrangian if the Lagrange equations
are satisfied:

∂L
∂r

=
d

dt

∂L
∂v

. (D.76)

When will this be the case? Since U(r, t) is independent of v and T = 1
2mv2 is independent of r

and t, substitution of (D.75) into the Lagrange equations (D.76) leads to the following condition

− ∂U

∂r
=

d

dt

∂T

∂v
= m

dv

dt
. (D.77)

Interpreting the negative gradient of U(r, t) as a force,

F = −∂U
∂r

(D.78)

we recognize in (D.77) Newton’s second law, F = mr̈. Hence, the Lagrange equations are satisfied if
the particle moves in accordance with the Newton equations of motion; i.e., under non-relativistic
conditions. The function U(r, t) is called the potential field of the system. If this field does not
depend on position, U(r, t) = U(t), it is called uniform. If it does not depend on time, U(r, t) = U(r),
the field is called conservative.

D.4.3.1 Generalized potential functions

The above discussion can be generalized to include velocity-dependent potentials, called generalized
potential functions. For this purpose we add to the kinetic energy a (smooth) function of r, ṙ and t,

L(r, ṙ, t) = 1
2mv

2 − U(r, ṙ, t). (D.79)

This function is a Lagrangian if it satisfies the Lagrange equations. Substituting L(r, ṙ, t) into
(D.76), we find that the condition (D.77) is replaced by

− ∂U

∂r
+
d

dt

∂U

∂v
=

d

dt

∂T

∂v
. (D.80)

In other words, the Lagrange equations are satisfied for generalized forces of the type

Q = −∂U
∂r

+
d

dt

∂U

∂v
. (D.81)

Note that (D.81) reduces to (D.78) for velocity-independent potentials; hence, the class of generalized
forces includes gradient forces as a subclass. Although any generalized potential function gives rise
to a generalized force, the inverse is not true. For instance, friction forces, F = −αv, cannot be
expressed in the form (D.81). On the other hand, the Lorentz force is an example of a generalized
force because we can define a generalized potential function for which (D.81) is satisfied (see Problem
D.2).
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Problem D.2. Show, using the Einstein notation, that the Lorentz force, Fi = q[Ei + (v × B)i], is the
generalized force resulting from the generalized potential function U = q(ϕ − vj · Aj), where ϕ(r, t) is the
scalar and A (r, t) the vector potential. Further, Ei = −∂iϕ − ∂tAi and Bi = εijk∂jAk are the cartesian
components of the (generally time dependent) E and B fields, respectively. Use the short-hand notation
∂i ≡ ∂/∂ri and ∂t ≡ ∂/∂t.

Solution. The first term of (D.81) yields

−∂iU = q [−∂iϕ− vj∂iAj (r, t)] (a)

and the second term can be written as

d

dt

∂U

∂vi
= q

d

dt

(
∂ϕ (r, t)

∂vi
− ∂vjAj (r, t)

∂vi

)
= −q d

dt
Ai (r, t) = q [−∂jAi (r, t) ṙj − ∂tAi (r, t)] . (b)

Combining (a) and (b) we obtain for the generalized force

Qi = q [−∂iϕ− ∂tAi + vj∂iAj − vj∂jAi] . (c)

In the first two terms within the brackets we recognize the Ei-component of the E field. Likewise, recalling
B =∇×A, we recognize in the last two terms the component (v ×B)i of the v ×B field 1

(v ×B)i = εijkvj(∇×A)k = εijkεklmvj∂lAm = vj∂iAj − vj∂jAi.

Hence, Eq. (c) can be rewritten as Qi = q
[
Ei + (v ×B)i

]
, which is indeed the expression for the Lorentz

force. 2

D.5 Many-particle systems

D.5.1 Lagrangian

At this point we return to many-particle systems. In view of property (D.66) we know that the
Lagrangian of a system of N non-interacting particles is given by

L = 1
2

∑
α

mαv
2
α, (D.82)

where α ∈ {1, · · ·N}. In search for the Lagrangian in the presence of interactions between the par-
ticles as well as interactions with the environment we use a procedure similar to the one introduced
for the single particle: we add to the Lagrangian (D.82) a generalized potential function

L(· · · , rα, ṙα, · · · , t) = 1
2

∑
α

mαṙ2
α − U(· · · , rα, ṙα, · · · , t). (D.83)

The potential function depends in principle on the position and velocities of all the particles as well
as on time

U(· · · , rα, ṙα, · · · , t) = U int(· · · , rα, ṙα, · · · ) + Uext(· · · , rα, ṙα, · · · , t). (D.84)

The function U int is called the internal generalized potential function and represents the interaction
between all particles of the system; e.g., the Van der Waals interaction between the atoms in a
classical gas. The function Uext is called the external generalized potential function and represents
externally applied fields; e.g., the electromagnetic potential of a light field.

The function (D.83) is a Lagrangian if it satisfies the Lagrange equations,

∂L
∂rα

=
d

dt

∂L
∂vα

, with α ∈ {1, · · ·N}. (D.85)

1In the Einstein notation the contraction of the Levi-Civita tensor is given by εijkεklm = δilδjm − δimδjl.
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Since the first term on the r.h.s. of (D.83) is independent of rα we find that the condition (D.85)
can be written in the form

− ∂U

∂rα
+
d

dt

∂U

∂vα
=

d

dt

∂T

∂vα
= mαr̈α, with α ∈ {1, · · ·N}. (D.86)

Hence, the quantity

Qα = − ∂U
∂rα

+
d

dt

∂U

∂vα
, with α ∈ {1, · · ·N}, (D.87)

can be interpreted as the generalized force acting on particle α as the result of its interaction with
all other particles in the system.

Generalization to the presence of scleronomous constraints

It is straightforward to generalize the formalism to holonomic systems with scleronomous con-
straints. In this case the positions rα and velocities ṙα of the particles can be expressed in terms of
f = 3N − l generalized coordinates q1, · · · , qf and velocities q̇1, · · · , q̇f ,

rα = rα(q1, · · · , qf ) (D.88a)

ṙα =

f∑
i=1

∂rα
∂qi

q̇i. (D.88b)

Substituting these expressions into (D.83) we obtain

L(q, q̇) = 1
2

f∑
i,j=1

aij(q)q̇iq̇j − U(q, q̇). (D.89)

Here we use the vector notation (D.18); the coefficient aij(q) is given by

aij(q) =
∑
α

mα
∂rα
∂qi

∂rα
∂qj

. (D.90)

In terms of the generalized coordinates and velocities the Lagrange equation take the form

∂L
∂qi

=
d

dt

∂L
∂q̇i

, with i ∈ {1, · · · f}, (D.91)

and the components of the generalized force become

Qi = −∂U
∂qi

+
d

dt

∂U

∂q̇i
, with i ∈ {1, · · · f}. (D.92)

Note that in the absence of constraints we have f = 3N and the generalized coordinates turn into
the cartesian coordinates of the particles, (q1, · · · , qf )→ (x1, y1, z1, · · · , xN , yN , zN ), and we regain
(D.85) and (D.87).

Open and closed systems

A mechanical system is called closed if it does not interact with its environment; i.e., the potential
function can be written as U = U int(· · · , rα, ṙα, · · · ). Hence, for closed systems both the potential
function and the Lagrangian are time independent. An example of a closed mechanical system is an
atom in field-free space. If the system is not closed it is called open. An example of an open system
is a cloud of interacting particles confined by an external potential.
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D.5.2 Energy conservation

In the absence of time-dependent external forces the evolution of a mechanical system only depends
on the state of that system and not on the instant that this state is created in time. In view of this
homogeneity of time the Lagrangian of such a system cannot depend explicitly on time; i.e., the
total time derivative of (D.83) can be written in the form

dL
dt

=
∑
α

∂L
∂rα
· ṙα +

∑
α

∂L
∂ṙα
· r̈α. (D.93)

With the aid of the Lagrange equation (D.85) this becomes

dL
dt

=
∑
α

ṙα ·
d

dt

∂L
∂ṙα

+
∑
α

r̈α ·
∂L
∂ṙα

=
∑
α

d

dt

(
ṙα ·

∂L
∂ṙα

)
. (D.94)

Rewriting this expression in the form

d

dt

(∑
α

ṙα ·
∂L
∂ṙα
− L

)
= 0 (D.95)

we find that the quantity

E =
∑
α

ṙα ·
∂L
∂ṙα
− L (D.96)

is a constant of the motion; i.e., it is conserved along the path from t0 to t1. This quantity
is called the energy of the system. Mechanical systems for which the energy is conserved are
called conservative systems. It is straightforward to generalize (D.96) to holonomic systems with
scleronomous constraints,

E(q, q̇) =
∑
i

q̇i
∂L
∂ṙi
− L. (D.97)

D.5.2.1 Potential energy

The energy of a conservative system can always be written as the sum of a kinetic energy and a
potential energy contribution. This can be seen as follows. The kinetic energy is uniquely determined
by the velocities of the particles,

T (ṙ1, · · · , ṙN ) = 1
2

∑
α

mαv
2
α.

In general this quantity will change in time under the influence of inter-particle forces but (since the
system is conservative) the (total) energy has to remain constant, E(r1, · · · , rN , ṙ1, · · · , ṙN ) = E.
Since the same kinetic energy can be obtained for different distributions of velocity over the particles
the difference of E and T has to be a function of the positions only. This difference is called the
potential energy V (r1, · · · , rN ) of the system,

V (r1, · · · , rN ) = E(r1, · · · , rN , ṙ1, · · · , ṙN )− T (ṙ1, · · · , ṙN ). (D.98)

Beware of the difference between the potential energy V (r1, · · · , rN ) and the generalized potential
function U(r1, · · · , rN , ṙ1, · · · , ṙN ); the former determines the kinetic energy of a conservative system
(also in the presence of generalized forces between the particles); the latter determines the force on
all particles, both for conservative and non-conservative systems.

An open mechanical system is conservative if the external potential is constant in time.
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D.5.3 Momentum conservation in closed systems

The evolution of a closed mechanical system only depends on the internal state of that system and
not on the absolute position where this state is created in space. In view of this homogeneity of space
the Lagrangian of a closed system must be independent of the absolute position of that system; i.e.,
(D.83) must be invariant under a translation of the system over a distance R,

r′α = rα + R. (D.99)

Thus we are led to compare two Lagrangians, defined with respect to two inertial frames shifted
with respect to each other over an infinitesimally small distance δrα = r′α − rα = δR. For this
displagrangianlacement the change change in Lagrangian is given by

δL =
∑
α

∂L
∂rα
· δR + · · · . (D.100)

Hence, a necessary condition that the Lagrangian be invariant under an arbitrary small shift δR is∑
α

∂L
∂rα

= 0. (D.101)

Note that also the sum over all higher order terms has to vanish but this has no relevance in the
present context. Using the Lagrange equation (D.85) the condition (D.101) becomes∑

α

∂L
∂rα

=
d

dt

∑
α

∂L
∂vα

= 0. (D.102)

Apparently, in a closed system the quantity

P =
∑
α

pα (D.103)

with

pα =
∂L
∂ṙα

(D.104)

is a constant of the motion. The quantity P is called the canonical momentum of the system and pα
is the canonical momentum of particle α. Hence, for closed systems the canonical momenta of the
individual particles always add up to the total momentum of the system, irrespective of the absence
or presence of generalized forces between the particles. With (D.85) it immediately follows that

ṗα =
∂L
∂rα

. (D.105)

Example: velocity-independent potential functions

In the special case of systems with only velocity-independent interactions between the particles (e.g.,
gravitational forces) the canonical momentum only depends on the kinetic energy and we find the
well-known expression

pα = mαvα. (D.106)

The Hamiltonian is given by

E =
∑
α

mαv2
α − L, (D.107)

which becomes after substitution of the Lagrangian (D.83)

E = T + V. (D.108)
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D.5.3.1 Generalization to holonomic systems with scleronomous constraints - symmetry

It is straightforward to generalize (D.104) and (D.105) to holonomic systems with scleronomous
constraints,

pi =
∂L
∂q̇i

(D.109a)

ṗi =
∂L
∂qi

(D.109b)

with i ∈ {1, · · · f}.

D.5.4 Conservation of angular momentum in closed systems

In view of the isotropy of space the Lagrangian of a closed system must be independent of the
absolute orientation of that system; i.e., (D.83) must be invariant under rotation of the system over
an angle Ω about an axis in direction Ω̂ through the origin of the inertial frame of observation,

r′α = rα + Ω× rα. (D.110)

Under such a rotation also the velocity vector changes direction

v′α = vα + Ω× vα. (D.111)

Thus we are led to compare two Lagrangians, defined with respect to two inertial frames rotated
with respect to each other over an infinitesimally small angle δΩ so that δrα = r′α − rα = δΩ× rα
and δvα = v′α − vα = δΩ× vα. For this rotation we have

δL =
∑
α

∂L
∂rα
· δΩ× rα +

∑
α

∂L
∂ṙα
· δΩ× ṙα + · · · . (D.112)

Hence, a necessary condition that the Lagrangian be invariant under an arbitrary rotation (about
an axis through the origin) is ∑

α

(
rα ×

∂L
∂rα

+ ṙα ×
∂L
∂ṙα

)
= 0. (D.113)

Here we used the permutation rules for the vector products (see Appendix N). Turning to canonical
variables the condition becomes∑

α

(rα × ṗα + ṙα × pα) =
d

dt

∑
α

(rα × pα) = 0. (D.114)

Apparently, in a closed system the quantity

L =
∑
α

(rα × pα) , (D.115)

with
Lα ≡ rα × pα, (D.116)

is a constant of the motion. The quantity L is called the angular momentum of the system and
Lα is the angular momentum of particle α, both with respect to the origin of the inertial system.
Although the value of L depends on the choice of origin, the conservation holds irrespective of this
choice.
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D.6 The Hamilton formalism

In the Lagrange formalism the dynamical evolution of mechanical systems is expressed in terms
of the dynamical variables q ≡ (q1, · · · , qf ) and q̇ ≡ (q̇1, · · · , q̇f ) with the aid of the Lagrangian
L(q, q̇, t) and the Lagrange equations. With this approach we identified the sum over the canonical
momenta p ≡ (p1, · · · , pf ) as a conserved quantity of a closed mechanical system. In the Hamilton
formalism the dynamical evolution is described in terms of the dynamical variables q and p; i.e.,
the dependence on q̇ is eliminated from the formalism and replaced by a dependence on p.

D.6.1 Legendre transformation of Lagrangian - Hamiltonian

To replace the dependence on q̇ by a dependence on p we use a Legendre transformation of the
function L(q, q̇, t) into the function

H(q,p, t) = p · q̇− L(q, q̇, t). (D.117)

The function H(q,p, t) is called the function of Hamilton or Hamiltonian of the system. Note that
with the sign convention of (D.117) the Hamiltonian represents the energy of the system

E = H(q,p, t). (D.118)

To convince ourselves that the Hamiltonian has the desired properties we consider the total differ-
ential

dH = −dL+ d(
∑
i

piq̇i). (D.119)

For the total differential of the Lagrangian L(q, q̇, t) we have with the aid of (D.109a) and (D.109b)

dL =
∑
i

∂L
∂qi

dqi +
∑
i

∂L
∂q̇i

dq̇i +
∂L
∂t
dt =

∑
i

ṗidqi +
∑
i

pidq̇i +
∂L
∂t
dt. (D.120)

The total differential of the transformation term is

d(
∑
i

piq̇i) =
∑
i

q̇idpi +
∑
i

pidq̇i. (D.121)

Substituting (D.120) and (D.121) into (D.119) we obtain

dH = −
∑
i

ṗidqi +
∑
i

q̇idpi +
∂L
∂t
dt. (D.122)

Thus we have verified that H is indeed a function of q and p. From the total differential we obtain

ṗi = −∂H
∂qi

(D.123a)

q̇i = +
∂H

∂pi
(D.123b)

with i ∈ {1, · · · f}. These equations are called the Hamilton equations of motion. In view of their
symmetrical form they are called the canonical equations of motion.

D.6.1.1 Energy conservation

From (D.122) we further infer
∂H

∂t
=
∂L
∂t
. (D.124)

Together with (D.118) this shows that the energy is conserved if the Lagrangian (hence, also the
Hamiltonian) do not depend explicitly on time; i.e., for ∂H/∂t = 0.
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D.6.1.2 Example: charged particle in an electromagnetic field

As an example of a system with a time-independent generalized potential function U(r, ṙ) we consider
the motion of a charged particle in a static electromagnetic field. As we showed in Example D.3.2.3
the force on a charged particle can be written as the gradient of a generalized potential function

U(r, ṙ) = q[ϕ(r)− v ·A(r)] (D.125)

and the Lagrangian is of the form (D.33). As the kinetic energy is given by

T (ṙ) = 1
2mv2, (D.126)

the Lagrangian becomes
L(r, ṙ) ≡ 1

2mv2 − q[ϕ− v ·A]. (D.127)

From this we calculate the canonical momentum

p ≡ ∂L
∂v

= mv + qA. (D.128)

Thus we found that the canonical momentum consists in this case of two contributions; the first
term is called the kinetic momentum and the second term the electromagnetic momentum. The
Hamiltonian is given by

H = v · p− L = mv2 + qA · v − 1
2mv2 + q(ϕ− v ·A) = 1

2mv2 + qϕ. (D.129)

The potential energy is given by
V (r) = H − T = qϕ(r). (D.130)

Expressing (D.129) in terms of the canonical variables r and p we obtain with the aid of (D.128)
the Hamiltonian of the system,

H =
1

2m
(p− qA)

2
+ qϕ. (D.131)

D.7 Center of mass and relative coordinates

D.7.1 Center of mass motion of a closed system

In Section D.5.3 we found that the momentum of a closed mechanical system with velocity-independent
interparticle forces,

P =
∑
α

mαṙα, (D.132)

is conserved in time. However, this quantity is not conserved when changing from one inertial frame
to another. Obviously, the velocity of the particles depends on the inertial system in which the
velocity is measured. Hence, also the kinetic momentum depends on the inertial system. To analyze
this dependence we change from the inertial frame S to a new inertial frame S ′ in which the origin
of old frame is moving at velocity V. This change of inertial system is described by a galilean
transformation,

r′α = rα −Vt (D.133a)

ṙ′α = ṙα −V. (D.133b)

The observed difference in momentum between both inertial systems is given by

P′ = P−
∑
α

mαV. (D.134)
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This expression reveals the existence of an inertial frame in which the momentum is zero, P′ = 0.
Thus we find for the momentum in an inertial system moving with velocity V with respect to the
zero-momentum frame,

P =
∑
α

mαV. (D.135)

In other words, the momentum of the entire system behaves like that of a single particle with mass

M =
∑
α

mα. (D.136)

This quantity is called the total mass of the system. Introducing the position vector

R =
∑
α

mαrα/
∑
α

mα (D.137)

we find the relation
P = MṘ = MV. (D.138)

The vector R is called the center of mass of the system. Hence, in the zero-momentum frame the
center of mass is at rest.

It is also instructive to compare the total angular momentum in the frame S ′ with that in the
frame S. Using Eq. (D.133a) the total angular momentum in the frame S ′ can be expressed as

L′ =
∑
α

(rα × p′α)−Vt×
∑
α

p′α, (D.139)

where Vt is the position of the origin of S as observed in S ′. The second term vanishes if we choose
for S ′ the zero-momentum frame. To proceed we multiply both sides of Eq. (D.133b) by the particles
mass,

p′α = pα −mαV. (D.140)

Substituting this expression into Eq. (D.139) we find

L′ = L−
∑
α

(mαrα ×V) . (D.141)

In terms of the position and momentum of the center of mass this becomes

L = L′ + R×P. (D.142)

Thus we recognize two contributions to the angular momentum of the system: L′ is called the
intrinsic angular momentum, which is the angular momentum with the center of mass at rest, and
R ×P is the angular momentum resulting from the center of mass motion in the inertial frame of
reference.

D.7.2 Relative motion in a closed system of two atoms

To deal with interatomic interactions and collisions between particles one introduces relative coor-
dinates. The position of particle 1 relative to particle 2 is given by

r = r1 − r2. (D.143)

Taking the derivative with respect to time we find for the relative velocity of particle 1 with respect
to particle 2

v = v1 − v2. (D.144)



318 Appendix D. Classical Mechanics

P = p1 + p2p1
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p
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Figure D.1: Center of mass and relative momenta for two colliding atoms: left : equal mass; right : unequal
mass with m1/m2 = 1/3.

Let us analyze in some detail the case of a system of two particles. The total momentum of the pair
(the center of mass momentum) is a conserved quantity and given by

P = p1 + p2 = m1v1 +m2v2 = m1ṙ1 +m2ṙ2. (D.145)

The total mass is given by the sum of the two particles masses, M = m1 + m2. With the relation
P = MV, where V = Ṙ is the center of mass velocity, we find for the position of the center of mass

R = (m1r1 +m2r2)/(m1 +m2). (D.146)

Adding and subtracting (D.145) and (D.144) allows us to express v1 and v2 in terms of P and v,

P +m2v = (m1 +m2) v1 (D.147a)

P−m1v = (m1 +m2) v2. (D.147b)

With these expressions the total kinetic energy of the pair, E = ε1 +ε2, can be split in a contribution
of the center of mass and a contribution of the relative motion

E =
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1

(P +m2v)
2

(m1 +m2)
2 +

1

2
m2

(P−m1v)
2

(m1 +m2)
2 =

P2

2M
+

p2

2mr
, (D.148)

where
p = mrv = mr ṙ =

mr

m1
p1 −

mr

m2
p2 (D.149)

is the relative momentum with
mr = m1m2/(m1 +m2) (D.150)

representing the reduced mass of the pair. Because both P and E are conserved quantities in elastic
collisions also p2 must be conserved. This implies that in elastic collisions the relative momentum
p = |p| is conserved, but not its direction. Adding and subtracting (D.143) and (D.146) we can
express r1 and r2 in terms of R and r,

r1 = R +
m2

M
r and r2 = R− m1

M
r. (D.151)

Likewise combining (D.145) and (D.149) we can express p1 and p2 in terms of P and p,

p1 =
m1

M
P + p and p2 =

m2

M
P− p. (D.152)

The vector diagram is shown in Fig. D.1.

Problem D.3. Show that the Jacobian of the transformation dr1dr2 =
∣∣∣ ∂(r1,r2)∂(R,r)

∣∣∣ dRdr is −1.

Solution. Because the x, y and z directions separate we can write the Jacobian as the product of three 1D
Jacobians. ∣∣∣∣∂ (r1, r2)

∂ (R, r)

∣∣∣∣ =
∏

i=x,y,z

∣∣∣∣∂ (r1i, r2i)

∂ (Ri, ri)

∣∣∣∣ =
∏

i=x,y,z

∣∣∣∣∣1 m1/M

1−m2/M

∣∣∣∣∣ = −1. 2
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Problem D.4. Show that the Jacobian of the transformation dp1dp2 =
∣∣∣ ∂(p1,p2)
∂(P,p)

∣∣∣ dPdp is −1.

Solution. Because the x, y and z directions separate we can write the Jacobian as the product of three 1D
Jacobians. ∣∣∣∣∂ (p1,p2)

∂ (P,p)

∣∣∣∣ =
∏

i=x,y,z

∣∣∣∣∂ (p1i, p2i)

∂ (Pi, pi)

∣∣∣∣ =
∏

i=x,y,z

∣∣∣∣∣m1/M 1

m2/M −1

∣∣∣∣∣ = −1. 2

D.7.3 Kinematics of scattering

In any collision the momentum P is conserved. Thus, also the center of mass energy P2/2M is
conserved and since also the total energy must be conserved also the relative kinetic energy p2/2mr

is conserved in elastic collisions, be it in general not during the collision. In this section we consider
the consequence of the conservation laws for the momentum transfer between particles in elastic
collisions in which the relative momentum changes from p to p′, with q = p′ − p. Because the
relative energy is conserved, also the modulus of the relative momentum will be conserved, |p| = |p′|,
and the only effect of the collision is to change the direction of the relative momentum over an angle
ϑ. Hence, the scattering angle ϑ fully determines the energy and momentum transfer in the collision.
Using (D.147) the momenta of the particles before and after the collision (see Fig. D.1) are given by

p1 = m1P/M + p −→ p′1 = m1P/M + p′ (D.153a)

p2 = m2P/M − p −→ p′2 = m2P/M − p′. (D.153b)

Hence, the momentum transfer is

∆p1 = p′1 − p1 = p′ − p = q (D.154a)

∆p2 = p′2 − p2 = p− p′ = −q. (D.154b)

The energy transfer is

∆E1 =
p′21
2m1

− p2
1

2m1
=

(m1P/M + p′)
2

2m1
− (m1P/M + p)

2

2m1
=

P · q
M

(D.155a)

∆E2 =
p′22
2m2

− p2
2

2m2
=

(m2P/M − p′)
2

2m2
− (m2P/M − p)

2

2m2
= −P · q

M
. (D.155b)

In the special case p1 = 0 we have

P = p2 =
−p

1−m2/M
= −M

m1
p (D.156)

or
p = −mrv2. (D.157)

The momentum transfer becomes

q =
√

q2 =

√
(p′ − p)

2
=
√

2p2 − 2p′ · p = p
√

2− 2 cosϑ. (D.158)

For small angles this implies
ϑ = q/p. (D.159)

The energy transfer becomes

∆E1 =
P · q
M

= −p· (p′ − p)

m1
=

p2

m1
(1− cosϑ) =

m2
r

m1
v2

2 (1− cosϑ) , (D.160)
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where ϑ is the scattering angle. This can be written in the form

∆E1 = 1
4ξm2v

2
2 (1− cosϑ) , (D.161)

where

ξ =
4m2

r

m1m2
=

4m1m2

(m1 +m2)
2 = 4

mr

M
. (D.162)

is the thermalization efficiency parameter. For m1 = m2 this parameter reaches its maximum value
(ξ = 1) and we obtain

∆E1 = 1
2E2 (1− cosϑ) . (D.163)

For m1 � m2 the efficiency parameter is given by ξ ' 4m1/m2.



E

Classical electrodynamics

E.1 Maxwell equations

The central equations of classical electrodynamics are the four equations of Maxwell. In the presence
of a free charge density %e and free current density J the macroscopic Maxwell equations can be
written in the form1

∇ ·D = %e (Gauss) (E.1a)

∇×H− ∂D

∂t
= J (Ampère/Maxwell) (E.1b)

∇ ·B = 0 (E.1c)

∇×E +
∂B

∂t
= 0 (Faraday). (E.1d)

Here E is the electric field strength and B is the magnetic induction. These are the fields that
determine the forces acting on charges and currents, respectively. H is the magnetic field strength
and D the dielectric displacement. These fields are important for describing the response of matter.
The relation between the two pairs of fields, B versus H and E versus D, is given by the materials
equations

B = µ0(H + M) E = ε−1
0 (D−P) , (E.2)

where M is called the magnetization and P the polarization of the medium under consideration;
µ0 = 4π × 10−7 N A−2 and ε0 = 1/µ0c

2 = 8.854187817...× 10−12 Fm−1 are fundamental constants
with defined values, µ0 is called the magnetic permeability of vacuum and ε0 the electric permittivity
of vacuum.

E.1.1 Linear media

In linear media the magnetization M (the magnetic moment per unit volume) and polarization P
(the electric dipole moment per unit volume) are given by

M = χmH P = ε0χeE, (E.3)

where χm is the magnetic susceptibility and χe the electric susceptibility of the material. Dividing
the susceptibilities by the atomic density N/V one obtains (for dilute systems) the magnetic and
electric polarizabilities αM and αE ,

χm = µ0 (N/V )αM (E.4a)

χe = (N/V )αE . (E.4b)

1See for instance: J.D. Jackson, Classical electrodynamics, John Wiley & Sons, 3rd edition, New York 1998.
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Substituting these expressions into the materials equations they become

B = µ0(1 + χm)H = µH (E.5a)

D = ε0(1 + χe)E = εE, (E.5b)

where µ = µ0(1 + χm) = µ0µrel is the permeability and ε = ε0(1 + χm) = ε0εrel the permittivity of
the material. In these media the D and H fields can be eliminated and the Maxwell equations can
be written in the form

∇ ·E = %e/ε (Gauss) (E.6a)

∇×B− ∂E

c2∂t
= µJ (Ampère/Maxwell) (E.6b)

∇ ·B = 0 (E.6c)

∇×E +
∂B

∂t
= 0 (Faraday), (E.6d)

where c = (µε)−1/2 is the speed of light in the medium. Combining equations we obtain, with the
aid of Eq. (N.24), for the E and B fields separately

−∇2B +
∂2B

c2∂t2
= µ∇× J (E.7)

−∇2E +
∂2E

c2∂t2
= −µJ−1

ε
∇%e. (E.8)

In vacuum µrel = 1 and εrel = 1 and c = (µ0ε0)−1/2 and including all charges and currents (also
those inside atoms) the Maxwell equations are referred to as the microscopic Maxwell equations or
Maxwell-Lorentz equations.

E.1.2 Scalar and vector potentials and gauge freedom

Using the vector identity (N.23) and the Maxwell equation (E.6c) the B field can be derived from
a vector potential A by requiring

B =∇×A. (E.9)

Substituting this expression into the Maxwell equation (E.6d) we obtain

∇× (E + ∂A/∂t) = 0. (E.10)

Thus, in view of the vector identity (N.22) we infer that the E field can be derived from the equation

E = −∇ϕ− ∂A/∂t. (E.11)

In view of the Helmholtz theorem (N.5) the vector potential A can be separated in a solenoidal or
divergence-free part, A⊥, and a irrotational or rotation-free part, A‖,

A = A⊥ + A‖ with ∇ ·A⊥ = 0 and ∇×A‖ = 0. (E.12)

The potentials A and ϕ are not uniquely defined. Eq. (E.9) remains satisfied under the trans-
formation A′ → A = A′+∇χ, where χ(r, t) is an arbitrary scalar field because ∇×∇χ = 0 for all
scalar fields χ. Furthermore, under the simultaneous transformation ϕ = ϕ′−∂χ/∂t also Eq. (E.11)
remains satisfied. This is known as gauge freedom. The transformation (A′, ϕ′) → (A, ϕ) is called
a gauge transformation and the field χ(r, t) the gauge field. The invariance of Eqs. (E.9) and (E.11)
under gauge transformations is called gauge invariance. Also the fields B and E are gauge invariant.
In view of the Helmholtz theorem (E.12), the gauge invariance of Eq. (E.9) always allows us to freely
choose A‖.

For the electromagnetic field we mention two important gauges:
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• In the Coulomb gauge the gauge freedom is used to make the vector potential divergence-free,

∇ ·A =∇ · (A′ +∇χ) = 0. (E.13)

This condition is satisfied if the gauge field satisfies the relation ∇2χ = −∇ ·A′. This gauge
implies A‖ = 0 as follows by using the Helmholtz relation∇ ·A⊥ = 0. In this sense the vector
potential can be called transverse. More precisely, by spatial Fourier transformation

A(r, t) =
1

(2π)
3/2

ˆ
~A(k, t)eik·rdk (E.14)

the Eq. (E.13) turns into

k · ~A(k, t) = 0. (E.15)

Hence, the Fourier components of the vector potential are transverse with respect to the vector
k in reciprocal space.

• In the Lorenz gauge the gauge freedom is used to satisfy the Lorenz condition,

∇ ·A +
1

c2
∂ϕ

∂t
=∇ · (A′ +∇χ) +

1

c2
∂

∂t
(ϕ′ − ∂χ/∂t)

=∇ ·A′ +∇2χ+
1

c2
∂ϕ′

∂t
− 1

c2
∂2χ

∂t2
= 0.

This condition is satisfied if the gauge field satisfies the relation ∇2χ = −∇ ·A′− c−2∂ϕ/∂t+
c−2∂2χ/∂2t.

E.2 Transformation formulas for moving objects

An observer moving in an static electromagnetic field experiences a velocity-induced electromagnetic
field given by

E′⊥ = γ (E⊥ + v ×B⊥) B′⊥ = γ
(
B⊥ −

v

c2
×E⊥

)
E′‖ = E‖ B′‖ = B‖,

(E.16)

where γ = (1 − v2/c2)−1/2 is the Lorentz contraction factor. For an observer moving at a non-
relativistic velocity in a static magnetic field B this reduces to

E′⊥ ' v ×B⊥ B′⊥ ' B⊥
E′‖ = 0 B′‖ = B‖.

(E.17)

Likewise, for an observer moving at a non-relativistic velocity in a static electric field E we have

B′⊥ ' −
v

c2
×E⊥ E′⊥ ' E⊥

B′‖ = 0 E′‖ = E‖.
(E.18)

For an observer moving orthogonal to the direction of a static electric or magnetic field this is
illustrated in Fig. E.1.

E.3 Current-charge distributions in the quasi-static approximation

E.3.1 Introduction

Let us consider a current-charge distribution in vacuum, localized at the origin of a coordinate system
as illustrated in Fig. E.1. The current-charge distribution is defined by the charge-density distribu-
tion %e(r, t) and the current-density distribution J(r, t), which are coupled through the continuity
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Figure E.1: (a) An observer moving perpendicularly to the direction of a static magnetic field experiences
a velocity-induced electric field; (b) an observer moving orthogonal to the direction of a static electric field
experiences a velocity-induced magnetic field. The formulas are valid in the weakly-relativistic limit (v � c).

equation
∂%e
∂t

+∇ · J = 0. (E.19)

The charge-density distribution is normalized on the total free charge q of the system under consid-
eration, ˆ

%e(r, t)dr = q. (E.20)

Rather than using charge densities and current densities we give preference to work with neutral
densities n and neutral currents j,

%e(r, t) = q n(r, t) (E.21a)

J(r, t) = q j(r, t), (E.21b)

where ˆ
n(r, t)dr = 1. (E.22)

Under quasi-static conditions (no retardation), the electromagnetic potentials of this current-charge
distribution are given by

ϕ(r, t) =
q

4πε0

ˆ
1

|r− r′|
n(r′, t)dr′ (E.23a)

A(r, t) =
µ0

4π
q

ˆ
1

|r− r′|
j(r′, t) · dr′. (E.23b)

Note that by using for n(r, t) a delta-function distribution centered at the origin Eq. (E.23a) reduces
to the well-known expression for the Coulomb potential of an electric point charge q,

ϕ(r, t) =

ˆ
qδ3(r′, t)

4πε0|r− r′|
dr′ =

q

4πε0|r|
. (E.24)

Hence, the integrand of Eq. (E.23a) represents the contribution of a point-charge density at position
r′ to the scalar potential. Likewise, the integrand of Eq. (E.23a) represents the contribution of the
current density at position r′ to the vector potential.

For a point r far from the current-charge distribution we can expand 1/|r − r′| in terms of a
Taylor series in r′ about the origin. For r′/r < 1 the expansion is given by,

1

|r− r′|
=
∞∑
n=0

1

n!
(r′ ·∇′)n 1

|r− r′|

∣∣∣∣
r′=0

. (E.25)
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Since ∇′|r− r′| = −∇|r− r′| (as is easily verified in cartesian coordinates) the Taylor series can be
written in the form

1

|r− r′|
=
∞∑
n=0

(−1)n

n!
(r′ ·∇)n

1

|r|
. (E.26)

The function 1/|r − r′| is called a generating function for the Legendre polynomials because the
expansion can be written in the form

1

|r− r′|
=

1

r

∑
l

(
r′

r

)l
Pl(cos θ) for r′/r < 1, (E.27)

where r = |r| and u = r̂ · r̂′ = cos θ, with θ the angle included by the unit vectors r̂ and r̂′. This is
readily verified order for order,

• zero order
1

r
P0(cos θ) =

1

r
, (E.28)

• in first order we obtain with the aid of Eq. (N.18)

r′

r2
P1(cos θ) = −(r′ ·∇)

1

r
=

1

r3
(r′ · r) =

r′

r2
cos θ, (E.29)

• in second order we obtain with the aid of Eq. (N.18)

r′2

r3
P2(cos θ) =

1

2
(r′ ·∇)(r′ ·∇)

1

r

= −1

2
(r′ ·∇)

1

r3
(r′ · r)

= −1

2

[
(r′ · r)(r′ ·∇)

1

r3
+

1

r3
(r′ ·∇)(r′ · r)

]
=

1

2

[
3

r5
(r′ · r)(r′ · r)− 1

r3
(r′ · r′)

]
=
r′2

r3
1
2

[
3 cos2 θ − 1

]
. (E.30)

E.3.2 Expansion of the scalar potential

Substituting Eq. (E.27) into Eq. (E.23a) we obtain for the scalar potential

ϕ(r, t) =
q

4πε0r

∑
l

ˆ (
r′

r

)l
Pl(cos θ)n(r′, t)dr′ for r′/r < 1. (E.31)

Limiting the expansion to power n = 2,

ϕ(r, t) =
q

4πε0r

ˆ [
1 + P1(cos θ)

r′

r
+ P2(cos θ)

(
r′

r

)2

+ · · ·

]
n(r′, t)dr′. (E.32)

Evaluating these terms order for order we obtain:

• zero order

ϕ(0)(r, t) =
q

4πε0r

ˆ
n(r′, t)dr′ =

q

4πε0r
, (E.33)
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• first order

ϕ(1)(r, t) =
q

4πε0r2

ˆ
P1(cos θ)r′n(r′, t)dr′ =

q

4πε0

d · r
r3

, (E.34)

where the dipole moment of the charge distribution is defined as

d = q

ˆ
r′n(r′, t)dr′. (E.35)

• second order

ϕ(2)(r, t) =
q

4πε0r3

ˆ
P2(cos θ)r′2n(r′, t)dr′

=
q

4πε0

1

r3

ˆ
1
2

[
3(r′ · r̂)2 − r′2

]
n(r′, t)dr′

=
q

4πε0

1

2r5

ˆ [
3(
∑
ix
′
ixi)(

∑
jx
′
jxj)− r′2

]
n(r′, t)dr′

=
q

4πε0

1

2

∑
i,j

Qij
xixj
r5

, (E.36)

where xi are the cartesian components of r and Qij the components of the quadrupole moment
tensor

Qij =

ˆ [
3x′ix

′
j − r′2δij

]
n(r′, t)dr′. (E.37)

E.3.3 Expansion of the Vector potential

Substituting Eq. (E.27) into Eq. (E.23b) we obtain for the vector potential

A(r, t) =
µ0

4πr
q
∑
l

(
r′

r

)l
Pl(cos θ)j(r′, t)dr′ for r′/r < 1. (E.38)

Limiting the expansion to power n = 2,

A(r, t) =
µ0

4πr
q

ˆ
j(r′, t)dr′ +

µ0

4πr2
q

ˆ
P1(cos θ)r′j(r′, t)dr′ +

µ0

4πr3

ˆ
P2(cos θ)r′2j(r′, t)dr′ + · · · .

(E.39)
Let us write the current density of a moving point charge in the form

j(r′) = q ṙ′δ(r′) (E.40)

and evaluate the terms of the expansion order for order we obtain:

• zero order

A(0)(r, t) =
µ0

4π

q

r

ˆ
ṙ′δ(r′)dr′ =

µ0

4πr
q
v

r
(E.41)

• first order

A(1)(r, t) =
µ0

4π

q

r2

ˆ
P1(cos θ)r′ṙ′δ(r′)dr′ (E.42)

• second order

A(2)(r, t) =
µ0

4π

q

r3

ˆ
P2(cos θ)r′2j(r′, t)dr′

=
µ0

4π

q

2r3

ˆ [
3(r′ · r̂)2 − r′ · r′

]
j(r′, t)dr′

=
µ0

4π

q

2r5

ˆ [
3(
∑
ix
′
ixi)(

∑
jx
′
jxj)− r′2

]
ṙ′δ(r′)dr′. (E.43)
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Various concepts from Quantum Mechanics

In this appendix we give a summary of formal quantum mechanics for purposes of internal refer-
ence. For a proper introduction the reader is referred to one of the major textbooks on quantum
mechanics, such as those by Paul Dirac [34], Albert Messiah [75, 76], Gordon Baym [10], Claude
Cohen-Tannoudji, Bernard Diu and Franck Laloë [26], Eugen Merzbacher [74], and Jun John Sakurai
[96].

F.1 Dirac formalism

F.1.1 Introduction

In the formulation of Dirac, the dynamical state of a physical system is established by observation of
its dynamical variables (e.g., the position of a particle, its translational momentum, orbital angular
momentum with respect to a point of reference, spin, energy, . . . ). Each dynamical variable A
corresponds to a hermitian operator A which defines a complete orthonormal set of eigenstates
{|ai〉} called kets, representing the basis vectors of a complex vector space, the Hilbert space of the
dynamical system. A hermitian operator with the mentioned properties is called an observable.
The set of eigenstates {|ai〉} is called a representation of the Hilbert space, often referred to as the
representation {A}. The representation {A} serves to describe measurements of the observable A.
The measurement is expressed by the eigenvalue relation

A|ai〉 = ai|ai〉, (F.1)

where ai is the eigenvalue corresponding to the eigenstate |ai〉. Observables are characterized by a
spectrum of real eigenvalues. The kets are abstract state vectors which provide a representation-free
notation for the states. In this introduction we focus on discrete representations (e.g., the standard
representation {L2, Lz} of orbital angular momentum - cf. Appendix F.1.3). The discussion can be
extended to continuous representations in which summations are replaced by integrations and in the
orthonormality condition the Kronecker symbol becomes a Dirac delta function - cf. Appendix F.1.2.

By completeness we mean that an arbitrary state |ψ〉 of the system can be represented by the
linear superposition,

|ψ〉 =
∑
i

|ai〉〈ai|ψ〉, (F.2)

where 〈ai|ψ〉 is the inner product of the vectors |ψ〉 and |ai〉; i.e., the projection of |ψ〉 onto |ai〉.
This is called the superposition principle. In matrix notation 〈ai| is written as a row vector and
|ψ〉 as a column vector. In the Dirac formalism, the vectors 〈ai| are called bras. They are related
to the kets by hermitian conjugation (antilinear transposition - in matrix notation the column
vector is transformed into a row vector with the coordinates replaced by their complex conjugates;
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i.e., 〈φ|ψ〉∗ = 〈ψ|φ〉). The orthonormality of the basis is expressed by the property 〈aj |ai〉 = δij .
The inner product 〈ai|ψ〉 represents the amplitude, short for probability amplitude, to observe the
eigenstate |ai〉 when the system prepared in the state |ψ〉. The corresponding density, short for
probability density or occupation density, is given by

Pi = |〈ai|ψ〉|2. (F.3)

The completeness of the representation {A} is expressed by the Parseval relation (which is a prob-
ability sum rule), ∑

i

Pi =
∑
i

|〈ai|ψ〉|2 = 1 (F.4)

and the closure relation (which is a decomposition sum rule),

1 =
∑
i

|ai〉〈ai|. (F.5)

Here 1 is the identity operator.
Presuming |ψ〉 to be normalized, 〈ψ|ψ〉 = 1, the quantity

〈A〉 = 〈ψ|A|ψ〉 (F.6)

is called the expectation value of the operator A. For |φ〉 = A|ψ〉 we write 〈ψ|A† = 〈φ|, where A† is
called the hermitian conjugate of A. This implies the relation

〈ψ|A|ψ〉∗ = 〈ψ|A†|ψ〉, (F.7)

which is real for hermitian operators (A† = A). If the matrix elements 〈bi|A|bj〉 of the operator A
are known in some representation {B}, the expectation value is given by

〈A〉 =
∑
i,j

〈ψ|bj〉〈bj |A|bi〉〈bi|ψ〉. (F.8)

For the representation {A}, defined above, the matrix is diagonal, 〈ai|A|aj〉 = aiδi,j , and Eq. (F.8)
reduces to

〈A〉 =
∑
i

〈ψ|ai〉ai〈ai|ψ〉 =
∑
i

aiPi. (F.9)

This result is also intuitively correct: the expectation value corresponds to the sum of the eigenvalues
weighted by the probability to have that eigenvalue.

Two dynamical variables A and B are called compatible if they can be measured simultaneously
to arbitrary precision; i.e., share a complete set of eigenstates. This is the case if and only if the
corresponding operators A and B commute. Operators that do not commute are called incompati-
ble. In general, the shared basis is not uniquely defined, because two eigenstates can have the same
eigenvalues. This is called degeneracy. To obtain a unique basis a complete set of commuting ob-
servables A,B,C, · · · is required, together providing all quantum numbers of the dynamical system.
This is called the representation {A,B,C, · · · }.
Problem F.1. Show that two commuting observables A and B share a complete set of eigenstates.

Solution. Consider the eigenvalue equations for the operators A and B,

A |α, k〉 = α |α, k〉 and B |β, l〉 = β |β, l〉 ,

where {|α, k〉} is a complete set of kα-fold degenerate states corresponding to the operator A and {|β, l〉}
a complete set of lβ-fold degenerate states corresponding to the operator B. In search for a joint basis we
know that the eigenstates of A can be expressed in the eigenstates of B

|α, k〉 =
∑
β

lβ∑
l=1

|β, l〉 〈β, l|α, k〉 =
∑
β

|β〉 ,
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where

|β〉 ≡
lβ∑
l=1

|β, l〉 〈β, l|α, k〉 .

Note that |β〉 is a linear combination of degenerate eigenstates of B, all with eigenvalue β. This implies that
|β〉 itself is an eigenstate of B with eigenvalue β as follows from

B |β〉 ≡
lβ∑
l=1

B |β, l〉 〈β, l|α, k〉 =

lβ∑
l=1

β |β, l〉 〈β, l|α, k〉 = β |β〉 .

Next we show that |β〉 is also an eigenstate of A. Since [A,B] = 0 we have

B(A |β〉) = AB |β〉 = Aβ |β〉 = β(A |β〉).

Hence A |β〉 is also an eigenstate of B with eigenvalue β. Having the eigenvalue β this eigenstate has to be
of the form, A |β〉 = λ |β〉. This shows that |β〉 is also an eigenstate of A. The corresponding eigenvalue λ
has to be equal to α as follows from∑

β

A |β〉 = A |α, k〉 = α |α, k〉 =
∑
β

α |β〉 . �

F.1.2 Continuous bases - position and momentum representation

For a particle in the arbitrary state |ψ〉 the wavefunction ψ(r) represents the probability amplitude
to observe the particle at position r. The ψ(r) defines the state |ψ〉 in the position representation
and r stands for the position coordinates. In the Dirac formalism the same probability amplitude is
obtained by projecting the state vector |ψ〉 onto the eigenstate |r〉 of the position operator r,

ψ(r) = 〈r|ψ〉. (F.10)

The set {|r〉} forms a basis of the Hilbert space of the particle because |ψ〉 is completely defined by
specifying the probability amplitude ψ(r) for all values of r,

|ψ〉 =

ˆ
dr |r〉〈r|ψ〉. (F.11)

This shows that the closure relation is given by

1 =

ˆ
dr |r〉〈r| (F.12)

and the Parseval relation takes the form of the normalization integral,

1 =

ˆ
dr|〈r|ψ〉|2 =

ˆ
|ψ(r)|2dr. (F.13)

To find the orthogonality relation for the position representation we note that the probability am-
plitude to observe the particle at position r′ is given by

ψ(r′) =

ˆ
dr 〈r′|r〉ψ(r). (F.14)

Since |ψ〉 was chosen arbitrary this implies

〈r′|r〉 = δ(r− r′), (F.15)

which is the Dirac deltafunction in three dimensions.
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In search for the momentum representation we consider the Fourier transform

ψ(p) =

ˆ
dr e−ip·r/~ψ(r). (F.16)

The inverse transform is given by

ψ(r) = (2π~)−3

ˆ
dp eip·r/~ψ(p). (F.17)

In the plane wave eip·r/~ we recognize the wavefunction of a free particle in state |p〉,

〈r|p〉 = eip·r/~. (F.18)

Substituting this expression into the Fourier transform (F.16) we find with the aid of the closure
relation (F.12)

ψ(p) =

ˆ
dr 〈p|r〉〈r|ψ〉 = 〈p|ψ〉. (F.19)

Substituting this expression into the inverse transform we obtain

|ψ〉 = (2π~)−3

ˆ
dp |p〉〈p|ψ〉. (F.20)

Since |ψ〉 was chosen arbitrarily, this shows that the set {|p〉} forms the basis of the momentum
representation for the Hilbert of the particle. The wavefunction ψ(p) = 〈p|ψ〉 represents the prob-
ability amplitude that the particle is measured with momentum p. The closure relation is given
by

1 = (2π~)−3

ˆ
dp |p〉〈p| (F.21)

and the Parseval relation becomes,

1 = (2π~)−3

ˆ
dp|〈p|ψ〉|2 = (2π~)−3

ˆ
|ψ(p)|2dp. (F.22)

To find the orthogonality relation we note that the probability amplitude to find the particle with
momentum p′ is given by

ψ(p′) = (2π~)−3

ˆ
dp 〈p′|p〉ψ(p). (F.23)

Since |ψ〉 was chosen arbitrary we obtain

〈p′|p〉 = (2π~)3δ(p− p′). (F.24)

Using the closure relation (F.12) as well as Eq. (F.18) we find the expression

ˆ
dr〈p′|r〉〈r|p〉 =

ˆ
dr ei(p−p

′)·r/~ = (2π~)3δ(p− p′). (F.25)

F.1.3 Discrete basis - orbital angular momentum

As an example of a discrete basis, we discuss the case of orbital angular momentum. The three
cartesian components of the angular momentum operator L satisfy the commutation relations

[Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx and [Lz, Lx] = i~Ly. (F.26)
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These are the generic commutation relations for any type of angular momentum. The Hermitian
operators that uniquely define the state of orbital angular momentum are the operators L2 and Lz.
Their shared basis {|l,ml〉} is defined by

L2 |l,ml〉 = l(l + 1)~2 |l,ml〉 (F.27a)

Lz |l,ml〉 = ml~ |l,ml〉 , (F.27b)

where the |l,ml〉 are abstract (i.e., representation-free) state vectors in Hilbert space, with l and ml

the rotational quantum numbers. The basis {|l,ml〉} is called the standard representation {L2, Lz}
of angular momentum. The spherical harmonics

Y mll (θ, φ) ≡ Y mll (r̂) = 〈r̂|l,ml〉 (F.28)

are the corresponding wavefunctions in the position representation of spherical coordinates.

F.1.4 Spin coordinates, spinor states and spinorbitals

The “wavefunction” χ(σ) of the spin of a particle in the angular momentum state |χ〉 is obtained
by projection of |χ〉 onto one of the eigenstates {|σ〉} of the sz operator,

χ(σ) = 〈σ|χ〉 =

s∑
ms=−s

〈σ|s,ms〉〈s,ms|χ〉, (F.29)

where σ assumes discrete values in the interval s ≤ σ ≤ s. Hence, the function χ(σ) is a function of
the discrete variable σ, the spin coordinate. For a particle in spin state χ the spinor χ(σ) represents
the probability amplitude to detect the particle in the eigenstate σ. For s being half-integral it
is called a 2s + 1 component spinor (to distinguish its rotation properties from scalar and vector
functions). The basis states are denoted by the unit spinors

χms(σ) ≡ 〈σ|s,ms〉 = δms,σ, (F.30)

where ms assumes discrete values in the interval s ≤ ms ≤ s. For the special case of s = 1
2 the

eigenstates are often written in the arrow notation, χ+1/2(σ) ≡ χ�(σ) and χ−1/2(σ) ≡ χ�(σ).

As an example we consider the case s = 1
2 , where the summation runs over the values ms ∈

{− 1
2 ,+

1
2},

χ(σ) = χ�(σ)〈+ 1
2 |χ〉+ χ�(σ)〈− 1

2 |χ〉. (F.31)

Note that χ(σ) = 〈± 1
2 |χ〉 for σ = ± 1

2 . In the matrix representation the s = 1
2 spinors take the form

of a column vector,

χ(σ) =

(
〈+ 1

2 |χ〉
〈− 1

2 |χ〉

)
= 〈+ 1

2 |χ〉
(

1

0

)
+ 〈− 1

2 |χ〉
(

0

1

)
. (F.32)

and the basis vectors take the form (up to a not observable phase factor)

χ�(σ) =

(
1

0

)
and χ�(σ) =

(
0

1

)
. (F.33)

The spinor concept is readily extended from discrete spinor functions to spinor fields. Such
an extension is essential to describe particles with both motional and spin degrees of freedom (for
example the electron). Since s and r are commuting observables they must share a complete set of
basis functions, obtained as the tensor product of their eigenstates

|r, σ〉 ≡ |r〉 ⊗ |σ〉. (F.34)
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The tensor product assures that for every eigenvalue of one operator the state can assume all
eigenvalues of the other operator. An arbitrary state can be written in the form

ψ (r, σ) = 〈r, σ|ψ〉 = ϕ (r)χ(σ), (F.35)

where ϕ (r) = 〈r|ϕ〉 is the wavefunction in the position representation and χ(σ) = 〈σ|χ〉 a discrete
spinor.

For the case s = 1
2 this implies

ψ (r, σ) = ϕ (r) 〈+ 1
2 |χ〉χ�(σ) + ϕ (r) 〈− 1

2 |χ〉χ�(σ). (F.36)

In matrix form this becomes

ψ (r, σ) =

(
ψ (r,+1/2)

ψ (r,−1/2)

)
= ψ (r,+1/2)

(
1

0

)
+ ψ (r,−1/2)

(
0

1

)
, (F.37)

where ψ (r,±1/2) is a double-valued function representing the probability amplitude to observe the
particle at position r in spin state | ± 1

2 〉.
If a particle is prepared in the motional state |ϕ〉 = |k〉 and spin state |χ〉 = |�〉 the Eq. (F.36)

takes the form of a spinorbital

ψk� (r, σ) = ϕk (r)χ�(σ). (F.38)

In terms of spinorbitals the spinor field becomes

ψ (r, σ) = ψk� (r, σ)χ(+ 1
2 ) + ψk� (r, σ)χ(− 1

2 ), (F.39)

where χ(± 1
2 ) is the probability amplitude to observe the particle in spin state

∣∣± 1
2

〉
.

F.2 The Schrödinger and Heisenberg pictures of time evolution

In this section we discuss two alternative views on the time evolution in non-relativistic quantum
mechanics. These are known as the Schrödinger and the Heisenberg picture. To introduce these
pictures, we start by recalling that the state of a quantum mechanical system is postulated to be
uniquely defined by a state vector in Hilbert space (see Appendix F.1.1). At any point in time a
quantum mechanical state can be written as a linear superposition of eigenstates. This superposition
is (in general) not stationary but evolves in time. In the Schrödinger picture we postulate that the
time evolution is uniquely defined by a linear transformation,

|ψS(t)〉 = U(t, t0)|ψS(t0)〉, (F.40)

where |ψS(t)〉 is the state of the system at time t. The linearity implies that |ψS(t)〉 is given by a
linear superposition of independently evolving eigenstates; i.e., the superposition is conserved but
the coefficients vary in time. The operator U(t, t0) is called the evolution operator of the system and
accounts for the time dependence of the states over the interval t0 → t. By definition U(t0, t0) = 1.
To assure the postulated uniqueness of the state evolution, the transformation has to be norm
conserving,

〈ψS(t)|ψS(t)〉 = 〈ψS(t0)|ψS(t0)〉. (F.41)

Only in this way we can be sure that a system, initially in state |ψS(t0)〉, arrives with unit probability
at time t in the state |ψS(t)〉. Substituting the transformation (F.40) into (F.41), we find that the
norm is conserved if and only if U†U = 1; i.e., the evolution has to be unitary,

U†(t, t0) = U−1(t, t0) = U(t0, t). (F.42)
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In view of the uniqueness of the time evolution, U(t, t0) can be written as a product of unitary
operators,

U(t, t0) = U(t, tn)U(tn, tn−1) · · ·U(t2, t1)U(t1, t0). (F.43)

This shows that the set {U(t, t′)} forms a group under multiplication, with unit element U(t, t) and
inverse U(t′, t). In particular, as t is a continuous variable, U(t, t0) can be written as an infinite
product of infinitesimal evolution operators U(t + δt, t). Infinitesimal unitary operators with the
property U(t, t) = 1 can be expressed in the form

U(t+ δt, t) = 1− (i/~)H(t)δt = e−iH(t)δt/~ for δt→ 0, (F.44)

where H(t) has to be a hermitian operator to assure the unitarity of U. The factor 1/~ has been
included for future convenience. Note that (for any point in time) the evolution operator commutes
with the Hamiltonian,

[U(t+ δt, t),H(t)] = 0. (F.45)

Using U(t, t) = 1, we rewrite Eq. (F.44) in the form

lim
δt→0

U(t+ δt, t)− U(t, t)

δt
= −(i/~)H(t). (F.46)

Multiplying both sides with U(t, t0) we obtain the differential equation 1

i~
∂

∂t
U(t, t0) = H(t)U(t, t0), (F.47)

subject to the boundary condition U = 1 for t = t0. This equation can be rewritten in the form of
an integral equation by integration over the finite time interval t0 → t,

U(t, t0) = 1− (i/~)

tˆ

t0

dt′H(t′)U(t′, t0). (F.48)

This form for the evolution operator is particularly suited for generating iterative solutions for
application in time-dependent perturbation theory.

As the time dependences of U(t, t0) and |ψS(t)〉 are related by the equation

i~
∂

∂t
|ψS(t)〉 =

[
i~
∂

∂t
U(t, t0)

]
|ψS(t0)〉 (F.49)

we find for the time dependence of the state vector

i~
∂

∂t
|ψS(t)〉 = H(t)|ψS(t)〉, (F.50)

with the boundary condition that at t = t0 the system is in the state |ψS(t0)〉. In this differential
equation we recognize the familiar form of the time-dependent Schrödinger equation. In view of this
formal similarity the hermitian operator H is called the Hamiltonian of the quantum mechanical
system. In hindsight this explains the factor 1/~ included in Eq. (F.44). This being said, it should be
emphasized that Eq. (F.50) was obtained from the postulates without any reference to the Hamilton
formalism of classical mechanics. It shows that the Hamiltonian can be defined, also in the absence
of any correspondence to a classical system, as the hermitian operator that assures unitary evolution
of the system.

Recalling that U(t, t0) can be written as an infinite product of infinitesimal operators we distin-
guish three cases

1The time derivative of the operator U(t, t′) is defined as

∂

∂t
U(t, t′) ≡ lim

δt→0

U(t+ δt, t′)− U(t, t′)

δt
.
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• Time-dependent Hamiltonian with the property [H(t),H(t′)] 6= 0.

U(t, t0) ≡ lim
δt→0

e−iH(t−δt)δt/~ · · · e−iH(t0)δt/~ (F.51)

• Time-dependent Hamiltonian with the property [H(t),H(t′)] = 0. Using the properties of
exponential operators (see Appendix L.8)

U(t, t0) ≡ lim
δt→0

e−iH(t−δt)δt/~ · · · e−iH(t0)δt/~ = e
−(i/~)

´ t
t0
H(t′)dt′

(F.52)

• Time-independent Hamiltonian H = H0 (conservative system). In this case we write δt ≡
(t− t0)/n and obtain with the aid of Eq. (L.33a)

U(t, t0) ≡ lim
n→∞

[
e−(i/~)H0(t−t0)/n

]n
= e−iH(t−t0)/~. (F.53)

F.2.1 Schrödinger picture

In this section we summarize the primary features of the Schrödinger picture. The evolution of the
physical system is contained in the time dependence of the state vector,

|ψS(t)〉 = U(t, t0)|ψS(t0)〉, (F.54)

where |ψS(t)〉 is the Schrödinger state of the system at time t. In the Schrödinger picture we write
AS for the operator that represents the dynamical variable A. Likewise, we shall write AH when
turning to the Heisenberg picture. An exception is made for the Hamiltonian because, as we shall
see, this operator is the same in both pictures. For this reason we simply write H rather than HS
or HH . The time dependence of the state vectors is governed by the Schrödinger equation,

i~
∂

∂t
|ψS(t)〉 = H(t)|ψS(t)〉, (F.55)

subject to the boundary condition that at t = t0 the system is in the state |ψS(t0)〉. According
to the postulate of quantum measurement (see Appendix F.1.1), the expectation value of AS(t) is
given by

〈AS(t)〉 =
〈ψS(t)|AS(t)|ψS(t)〉
〈ψS(t)|ψS(t)〉

. (F.56)

As the evolution is norm conserving, the time derivative of the expectation value is given by - see
Problem F.2

i~
d

dt
〈AS(t)〉 = 〈[AS(t),H(t)]〉+ i~〈 ∂

∂t
AS(t)〉. (F.57)

Here the first term arises from the time development of the state and the second one from that of
the operator. Note that the latter is only nonzero if the operator depends explicitly on time.

Problem F.2. Show that the equation of motion for the expectation value of a (generally time-dependent)
operator AS(t) is given by

i~ d
dt
〈AS(t)〉 = 〈[AS(t),H(t)]〉+ i~〈 ∂

∂t
AS(t)〉.

Solution. The answer is obtained by differentiation of (F.56) using the Leibniz integral rule (L.28). Since
the norm of the state is conserved we obtain the following three terms,

d

dt
〈AS(t)〉 =

[
∂

∂t
〈ψS(t)|

]
AS(t)|ψS(t)〉+ 〈ψS(t)|

[
∂

∂t
AS(t)

]
|ψS(t)〉+ 〈ψS (t) |AS(t)

[
∂

∂t
|ψS(t)〉

]
.

The first and the third term are evaluated using the Schrödinger equation (F.55) and its hermitian conjugate.
The second term is zero unless the operator has an explicit time dependence. Thus we obtain

i~ d
dt
〈AS(t)|〉 = −〈ψS(t)| [H(t)AS(t)−AS(t)H(t)] |ψS(t)〉+ i~〈ψS(t)|

[
∂

∂t
AS(t)

]
|ψS(t)〉,

which can be rewritten in the form of the desired expression. 2
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F.2.2 Heisenberg picture

The Heisenberg picture is obtained by a unitary transformation of the Schrödinger states and oper-
ators in the Hilbert space. This unitary transformation is chosen such that it exactly removes the
time dependence from the Schrödinger state |ψS(t)〉 by evolving it back to t = t0,

|ψH〉 ≡ U†(t, t0)|ψS(t)〉 = |ψS(t0)〉. (F.58)

The same unitary transformation puts a time dependence on the operators,

AH(t) = U†(t, t0)AS(t)U(t, t0). (F.59)

Note that with this transformation the Heisenberg and Schrödinger pictures coincide at t = t0,

AH(t0) = AS(t0) and |ψH〉 = |ψS(t0)〉. (F.60)

Importantly, since U(t, t0) commutes with the Hamiltonian H(t), the transformation to the Heisen-
berg picture leaves the Hamiltonian invariant. For this reason we omit the subscript and simply
writeH(t). It is straightforward to show, using Eq. (F.56), that the expectation value 〈AH〉 coincides
with 〈AS〉 at any time t and is given by

〈AH(t)〉 =
〈ψH |AH(t)|ψH〉
〈ψH |ψH〉

=
〈ψH |U†(t, t0)AS(t)U(t, t0)|ψH〉
〈ψH |U†(t, t0)U(t, t0)|ψH〉

= 〈AS(t)〉. (F.61)

As, by construction, |ψH〉 does not depend on time, the time dependence of 〈AH (t)〉 is fully de-
termined by the time dependence of AH (t). The latter is known as the the Heisenberg equation of
motion. By differentiation of (F.59) we obtain - see Problem F.3

i~
d

dt
AH(t) = [AH(t),H(t)] + i~

∂

∂t
AH(t), (F.62)

where
∂

∂t
AH(t) ≡

(
∂

∂t
AS(t)

)
H

= U†(t)

[
∂

∂t
AS(t)

]
U(t). (F.63)

The correspondence (F.61) shows that the Heisenberg equation of motion is completely equivalent
to the Schrödinger equation.

Problem F.3. Consider the Heisenberg operator AH(t) = U†(t)AS(t)U(t). Show that the equation of
motion of this operator is given by

i~ d
dt
AH(t) = [AH(t),H(t)] + i~ ∂

∂t
AH(t).

Solution. By differentiation of 〈AH(t)〉 we obtain three terms using the Leibniz integral rule (L.28)

d

dt
〈AH(t)〉 = 〈

[
∂

∂t
U†(t)

]
AS(t)U(t) + U†(t)

[
∂

∂t
AS(t)

]
U(t) + U†(t)AS(t)

[
∂

∂t
U(t)

]
〉.

The first and the third term are evaluated using the differential equation (F.47) and its hermitian conjugate.
The second term is zero unless the operator has an explicit time dependence. As the Heisenberg states are
time independent we can assign all time dependence to the Heisenberg operators,

i~ d
dt
AH(t) ≡ −U†(t) [H(t)AS(t)−AS(t)H(t)]U(t) + i~U†(t) ∂

∂t
AS(t)U(t).

As H(t) commutes with the evolution operator this expression simplifies to

i~ d
dt
AH(t) = [AH(t),H(t)] + i~U†(t) ∂

∂t
AS(t)U(t).

Defining
∂

∂t
AH(t) ≡

(
∂

∂t
AS(t)

)
H

≡ U†(t)
[
∂

∂t
AS(t)

]
U(t)

we arrive at the desired expression. 2
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F.2.3 Interaction picture

Rather than removing the full time dependence, we can also use a unitary transformation that
removes only part of it. It may speak for itself that this can be done in many ways. A particularly
valuable variant arises when the Hamiltonian of the system can be separated into two parts,

H(t) = H0 +H1(t), (F.64)

where H0 is the time-independent Hamiltonian of a closed system and H1(t) is a (generally time-
dependent) perturbation representing some interaction with an external field. To analyze this case,
we consider the unitary transformations

|ψI(t)〉 = U†0 (t)|ψS(t)〉, (F.65)

and
AI(t) = U†0 (t)AS(t)U0(t). (F.66)

Here U0(t) is the evolution operator corresponding to H0,

U0(t) = e−iH0(t−t1)/~, (F.67)

which is the solution of the differential equation

i~
∂

∂t
U0(t) = H0U0(t), (F.68)

under the boundary condition U0(t) = 1 for t = t1. With this definition, the state |ψI(t1)〉 coincides
with the Schrödinger state |ψS(t)〉 for t = t1. As we are free to choose the time t1, we conveniently
choose t0 = 0.

The above transformations define the interaction picture and the states |ψI(t)〉 are called the
intermediate states. The operator AI(t) is called the intermediate operator. Note that U0(t) removes
all H0-related evolution from the state but leaves the part related to H1(t). For small H1(t) this
means that |ψI(t)〉 is “almost” stationary. It follows with the aid of Eqs. (F.65) and (F.56) that the
expectation values 〈AI〉 and 〈AS〉 coincide at all times,

〈AI (t)〉 =
〈ψI(t)|AI(t)|ψI(t)〉
〈ψI(t)|ψI(t)〉

=
〈ψI(t)|U†0 (t)AS(t)U0(t)|ψI(t)〉
〈ψI(t)|U†0 (t)U0(t)|ψI(t)〉

= 〈AS(t)〉. (F.69)

The time dependence of the intermediate states can be obtained by differentiation of Eq. (F.65) -
see Problem F.4,

i~
∂

∂t
|ψI(t)〉 = HI(t)|ψI(t)〉, (F.70)

where HI(t) is defined by

HI(t) ≡ U†0 (t)H1(t)U0(t), (F.71)

which is consistent with the general case (F.66). In complete analogy with the derivation of the
Heisenberg equation of motion we obtain by differentiation of (F.66) the intermediate equation of
motion,

i~
d

dt
AI(t) = [AI(t),H0] + i~

∂

∂t
AI(t), (F.72)

where
∂

∂t
AI(t) ≡

(
∂

∂t
AS(t)

)
I

= U†0 (t)

[
∂

∂t
AS(t)

]
U0(t). (F.73)

Hence, just like the time evolution of AH follows from the full Hamiltonian, the time dependence of
AI follows from the partial Hamiltonian H0.
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As also the time evolution driven by HI(t) has to be uniquely defined the evolution of the
intermediate state over the interval t0 → t can be written in the form

|ψI(t)〉 = UI(t, t0)|ψI(t0)〉, (F.74)

where UI(t, t0) is a unitary operator and the solution of the differential equation

i~
∂

∂t
UI(t, t0) = HI(t)UI(t, t0), (F.75)

under the boundary condition UI(t0, t0) = 1. This differential equation can be rewritten in the form
of an integral equation,

UI(t, t0) = 1− i

~

ˆ t

t0

dt1HI(t1)UI(t1, t0). (F.76)

In search for a relation between UI(t, t0) and U(t, t0) we write, with the aid of Eqs. (F.65) and
(F.54), the intermediate state in the form

|ψI(t)〉 = U†0 (t)|ψS(t)〉 = U†0 (t)U(t, t0)|ψS(t0)〉 = U†0 (t)U(t, t0)U0(t0)|ψI(t0)〉. (F.77)

Comparing this expression with Eq. (F.65) we obtain the following relation between the full and the
intermediate evolution operator,

UI(t, t0) = eiH0t/~U(t, t0)e−iH0t/~. (F.78)

Note that in the intermediate picture the time dependence is divided between the states and
the operators. Its operators resemble the Heisenberg operators - compare Eqs. (F.62) and (F.72),
whereas its states resemble the Schrödinger states - compare Eqs. (F.55) and (F.70).

Problem F.4. Show that the equation of motion for the expectation value of a (generally time-dependent)
intermediate operator AI(t) is given by

i~ ∂
∂t
|ψI(t)〉 = HI(t)|ψI(t)〉.

Solution. Differentiating (F.65) we obtain with the aid of Eqs. (F.68) and (F.55)

i~ ∂
∂t
|ψI(t)〉 =

[
∂

∂t
U†0 (t)

]
|ψS(t)〉+ i~U†0 (t)

∂

∂t
|ψS(t)〉

= −H0U
†
0 (t)|ψS(t)〉+ U†0 (t)H(t)|ψS(t)〉.

Using Eq. (F.65) and its inverse, this becomes

i~ ∂
∂t
|ψI(t)〉 = −H0|ψI(t)〉+ U†0 (t)H(t)U0(t)|ψI(t)〉.

Since H0 = U†0 (t)H0U0(t) and H1(t) = H(t)−H0 this corresponds to

i~ ∂
∂t
|ψI(t)〉 = U†0 (t)H1(t)U0(t)|ψI(t)〉.

Defining HI(t) ≡ U†0 (t)H1(t)U0(t) we arrive at the desired form. 2
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F.2.4 Constants of the motion and “good” quantum numbers

The dynamical variable A of a quantum mechanical system is called a constant of the motion if the
expectation value 〈AS〉 is independent of time, whatever the state of the system. This implies that
the Heisenberg operator AH is stationary as follows by differentiation of (F.61),

d

dt
〈AS〉 = 〈 d

dt
AH〉 ≡ 0 ⇒ d

dt
AH = 0. (F.79)

Furthermore, expressing the Heisenberg equation of motion for the operator AH in terms of the
corresponding Schrödinger operator AS we find with the aid of Eqs. (F.62) and (F.45)

i~
d

dt
AH = U†(t, t0)[AS ,H]U(t, t0) + i~U†(t) [∂AS(t)/∂t]U(t). (F.80)

This shows that the dynamical variable A is a constant of the motion if AS does not depend explicitly
on time, ∂AS(t)/∂t = 0, and commutes with the Hamiltonian, [AS ,H] = 0.

In particular, suppose that at t = t0 the system is in the eigenstate |a〉 of AS with eigenvalue a.
In this case we have 〈AS〉 = a and a is called a “good” quantum number if this expectation value is
conserved in time. This invariance is satisfied if |a〉 is also an eigenstate of H (i.e., if [AS ,H] = 0).
If a is a good quantum number the time development of the state is given by

|ψ(t)〉 = exp[−(i/~)εa(t− t0)] |a〉 , (F.81)

where exp[−(i/~)εa(t − t0)] is called the dynamical phase of the state. This shows explicitly that
eigenstates are stationary up to the development of the dynamical phase.

To illustrate these concepts we consider a quantum mechanical system at t = 0 in the state

|ψ0〉 = |a〉 =
√

1/2 (|α〉+ |β〉) , (F.82)

which is itself not an eigenstate ofH but a linear combination of the (normalized) eigenstates |α〉 and
|β〉 of H with eigenvalues εa and εb, respectively. By integrating the time-dependent Schrödinger
equation we obtain for the time dependence of the state

|ψ(t)〉 = e−(i/~)Ht |a〉 =
√

1/2
[
e−(i/~)εαt |α〉+ e−(i/~)εβt |β〉

]
. (F.83)

Note that for t = 0 we regain Eq. (F.82). Projecting |ψ(t)〉 onto the state |a〉 we find that the
occupation of |a〉 will oscillate in time between 1 and 0 at the frequency corresponding to the energy
splitting εa − εb between the levels,

|〈a |ψ(t)〉 |2 = 1
2 + 1

2 cos[(εα − εβ) t/~]. (F.84)

Note that the Hamiltonian is a constant of the motion,

〈ψ(t)|H |ψ(t)〉 = 1
2 (εα + εβ) . (F.85)

Let us specialize to the case that the initial state |a〉 is an eigenstate of the operator A, with
eigenvalue a,

A |a〉 = a |a〉 . (F.86)

When is A is constant of the motion (and a a good quantum number)?

• If [A,H] = 0 we find with the aid of Eq. (L.33b),

〈ψ(t)|A |ψ(t)〉 = 〈a| e(i/~)HtAe−(i/~)Ht |a〉 = a. (F.87)

Hence, in this case A is a constant of the motion (and a is a good quantum number).
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• If [A,H] = −B 6= 0 we find with the aid of Eq. (L.33b)

〈ψ(t)|A |ψ(t)〉 = 〈a| e(i/~)HtAe−(i/~)Ht |a〉
= a+ (i/~) 〈a|B |a〉 t+ 1

2! (i/~)2 〈a| [H, B] |a〉 t2 + · · · . (F.88)

Hence, in this case A is not a constant of the motion (and a not a good quantum number).

Problem F.5. Show by explicit calculation the equivalence of the Heisenberg equation of motion and the
Schrödinger equation for the example of a particle of mass m moving in the conservative potential energy
field V(r).

Solution. At t = 0 the particle is in the state |ψH〉. As the Hamiltonian does not depend on time and
the position operator r does not depend explicitly on time, the time development of the Heisenberg position
operator r(t) = rH(t) is given by Eq. (F.80) in the form

i~ d
dt

r(t) = [r(t),H], with H = −
p2

2m
+ V(r).

Using r(t) = U†(t, t0)rU(t, t0) and recalling Eqs. (F.45) and (F.47) we have

i~ d
dt
U†(t, t0)rU(t, t0) |ψH〉 = U†(t, t0)[r,H]U(t, t0) |ψH〉 .

Multiplying from the left with U(t, t0) and turning to Schrödinger states this becomes

i~U(t, t0)
d

dt
U†(t, t0)r |ψ(t)〉 = [r,H] |ψ(t)〉

With the aid of the differential equation (F.47) this becomes

−Hr |ψ(t)〉+ i~ d
dt

r |ψ(t)〉 = [r,H] |ψ(t)〉 .

Turning to the position representation this becomes the Schrödinger equation,

i~ d
dt
〈r |ψ(t)〉 = H0〈r |ψ(t)〉 , with H0 = 〈r|H|r〉 = − ~2

2m
∆ + V(r). �

F.2.5 Translation as an example of a symmetry operation

In Appendix D.5.3 we introduced the homogeneity of space in relation to conservation laws. The
evolution of a closed mechanical system only depends on the internal state of that system and not
on the inertial frame in which the state is observed in space and time. Now let us suppose that the
quantum mechanical state of the system is given by de wavefunction

ψ(r) = 〈r|ψ〉,

where r is the position with respect to a cartesian coordinate system S. We now consider a passive
translation T of the cartesian coordinate system S defined by the displacement vector d. Denoting
the translated coordinate system by S ′ = TS, the position r = (x, y, z) with respect to S changes
into r′ = (x′, y′, z′) with respect to S ′, where

r′ = T r = r− d. (F.89)

As the translation is passive the physical state of the system is not affected by the translation, we
require

ψ′(r′) ≡ ψ(r), (F.90)

or, equivalently,

ψ′(r) = ψ(r + d). (F.91)
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The appearance of the new state ψ′ does not come as a surprise. From general quantum me-
chanics we know that a new coordinate system comes with a new linear combination of eigenstates,
|ψ′〉, which is related to the original linear combination of eigenstates, |ψ〉, by a norm-conserving
basis transformation,

|ψ′〉 = u|ψ〉. (F.92)

The transformation u has to be norm conserving because |ψ〉 and |ψ′〉 represent the same state with
respect to two different bases,

〈ψ|ψ〉 = 〈ψ′|ψ′〉 = 〈ψ|u†u|ψ〉 → u†u = 1. (F.93)

This identity shows that the transformation must be unitary, u† = u−1, which implies that the
inverse transformation is given by

|ψ〉 = u†|ψ′〉. (F.94)

So let us consider the wavefunction of a free particle,

ψ′(x) = u(∆x)ψ(x)

ψ′(x) = ψ(x+ ∆x)

= ψ(x) + ∆x∂xψ(x) + 1
2!∆x

2∂2
xψ(x) + · · ·

= e∆x∂xψ(x)

F.3 Density matrix formalism

F.3.1 Density operators for pure states

The density matrix formalism provides an alternative for the familiar representation of quantum
mechanical states by linear combinations of eigenvectors spanning a Hilbert space. The central
quantity of the density matrix formalism is the density operator. For a quantum mechanical
system in the state |ψ(t)〉 the density operator is defined as

ρ(t) ≡ |ψ(t)〉〈ψ(t)|. (F.95)

Note that this operator is hermitian, ρ† = ρ, as well as idempotent, ρ2 = ρ. The operator ρ can be
represented by a (in general nondiagonal) square matrix, ρij = 〈i|ρ|j〉, which explains the use of
the names density operator and density matrix. Being hermitian, ρ is free of the phase ambiguity
of the state vectors; i.e., a quantum mechanical state is fully defined by its density matrix. As the
state kets satisfy the Schrödinger equation (F.50) and the state bras its complex conjugate we have
for a time-independent Hamiltonian

i~
∂ρ(t)

∂t
= H|ψ(t)〉〈ψ(t)| − |ψ(t)〉〈ψ(t)|H = −[ρ(t),H]. (F.96)

Apparently, the density matrix is stationary, ∂ρ(t)/∂t = 0, if it commutes with the Hamiltonian.
This has the important consequence that a stationary density matrix is diagonal in the representation
of H. Furthermore, by diagonalization of a given density matrix we obtain the state of the system
and its eigenvalue is unity; i.e., the state of the system is the solution of the eigenvalue equation

ρ|ψ〉 = ρ0|ψ〉 (F.97)

with eigenvalue ρ0 = 1. In this state, the expectation value of the density operator is unity,

〈ρ〉 = 〈ψ|ρ|ψ〉 = 1. (F.98)
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To demonstrate the calculation of properties of the system in state |ψ〉, we ask for the expectation
value of an arbitrary operator A,

〈A〉 = 〈ψ|A|ψ〉. (F.99)

In some arbitrarily chosen alternative representation {B}, this expectation value can be rewritten
(using the closure relation) in the form

〈A〉 =
∑
i

〈ψ|A|bi〉〈bi|ψ〉 =
∑
i

〈bi|ψ〉〈ψ|A|bi〉. (F.100)

Recognizing the density operator ρ = |ψ〉〈ψ| we find that the expectation value of A for the system
in the state |ψ〉 is given by

〈A〉 =
∑
i

〈bi|ρA|bi〉 = tr ρA. (F.101)

Note that tr ρA = trAρ. As the representation {B} was chosen arbitrarily, the trace is invariant
under unitary transformation (a property of square matrices - see Appendix M.2.1). This is expressed
by the representation-free form of Eq. (F.101).

To compare the two formalisms a bit further, we reconsider the Parseval relation for the state
|ψ〉 in the representation {B},

1 =
∑
i

|〈bi|ψ〉|2 =
∑
i

Pi, (F.102)

where
1 =

∑
i

|bi〉〈bi| =
∑
i

ρi (F.103)

is the closure relation in the representation {B} and Pi represents the probability density to observe
the system in the eigenstate |bi〉. In the state formalism we write

Pi = 〈ψ|bi〉〈bi|ψ〉 = 〈ψ|ρi|ψ〉, (F.104)

which is interpreted as the expectation value of the projection operator ρi = |bi〉〈bi|. In the density
matrix formalism, Pi is interpreted as the expectation value of the density operator,1

Pi = 〈bi|ψ〉〈ψ|bi〉 = 〈bi|ρ|bi〉 = ρii. (F.105)

The representation {B} being arbitrary, the Parseval relation takes the representation-free form

tr ρ = 1. (F.106)

F.3.2 Density operators for mixed ensembles of states

The importance of the density matrix formalism finds its origin in the probabilistic nature of quan-
tum mechanical measurement. A single state-selective measurement (state filtration) on a quantum
mechanical system is of little value. It tells us whether or not the selected state was observed but
nothing more. Only by repeating the measurement many times we can determine the probability of
observing that state. If the measurements are done on an ensemble of identically prepared systems,
say a beam of particles all prepared in the state |ψ〉, the probability density of observing this state,
Ps = |〈s|ψ〉|2, is obtained by averaging over the set of measurements. This procedure is called the
ensemble-averaging . As was shown at the end of the previous section, formally Ps can be expressed
as the expectation value of the density operator for the system in state |s〉, Ps = 〈s|ρ|s〉. Such an
ensemble of identically prepared systems is called a pure ensemble, to distinguish it from mixed

1Notice the difference between the density operator ρi and the diagonal matrix element of the density matrix,
ρii. In our notation Pi = 〈ψ|ρi|ψ〉 = 〈ψ|bi〉〈bi|ψ〉 = 〈bi|ψ〉〈ψ|bi〉 = 〈bi|ρ|bi〉 = ρii.
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ensembles, in which the state preparation may vary or is even absent.1 It may speak for itself that
whatever the ensemble we can always determine ensemble averages. Therefore, to refer to an arbi-
trary type of ensemble averaging we use a different notation for the density matrix, ρ→ %, denoting
the ensemble-averaged probability to detect the state |s〉 by 〈s|%|s〉. If there is no state preparation
whatsoever one speaks of a random ensemble and 〈s|%|s〉 = 1/n, where n is the order of the density
matrix. The value of n cannot exceed the number of measurements but it can be smaller. For
instance, measuring spin “up” or “down” on a beam of particles we can do many measurements but
n = 2.

The relative probability of occurrence of one of the states of a mixed ensemble {|s〉} is given
by the statistical weight ws, a number between zero and one (0 ≤ ws ≤ 1), and subject to the
normalization condition ∑

s

ws = 1. (F.107)

Here, the probability is defined for a discrete ensemble but can be generalized to the continuous
case. Note that orthogonality is neither mentioned nor required for the states of the ensemble {|s〉}.

Let us analyze ensemble averaging in more detail. Knowing the probabilities {ws}, we can
calculate the quantum statistical average for an arbitrary operator A,

Ā ≡ 〈〈A〉〉 =
∑
s

ws〈s|A|s〉. (F.108)

Note that this is the ensemble average of the expectation values 〈A〉s = 〈s|A|s〉 = Ass. Choosing
an arbitrary representation {B}, we can use its closure relation to write the quantum-statistical
average in the form

Ā =
∑
s

ws
∑
i

〈s|A|bi〉〈bi|s〉 =
∑
i

∑
s

ws〈bi|s〉〈s|A|bi〉 =
∑
i

〈bi|%A|bi〉, (F.109)

where

% ≡
∑
s

ws|s〉〈s| =
∑
s

wsρs (F.110)

defines the statistical operator of the ensemble defined by the weights {ws}, which represents the (by
construction diagonal) density matrix of a statistical mixture of states. Importantly, as for a time-
independent mixture the weights {ws} are conserved, it follows in the same way as demonstrated
for Eq. F.96 that the time dependence of its density matrix is given by

i~
∂%(t)

∂t
= −[%(t),H]. (F.111)

Thus we established that (also) for mixed ensembles a stationary density matrix is diagonal in the
representation of H.

Using the statistical operator the quantum statistical average can be written in the representation-
free form

Ā ≡ 〈〈A〉〉 = tr %A. (F.112)

Substituting A→ 1 we find that for mixed ensembles the Parseval relation (F.106) is replaced by

tr % = 1. (F.113)

1We distinguish between a mixed ensemble, which consists of a statistical mixture of states, and a mixed state,
which is a coherent superposition of states. Beware that some authors use mixed state as an abbreviation for
“statistical mixture of states”.
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Substituting A→ ρs ≡ |s〉〈s| we obtain the probability to observe the (pure) state |s〉 in a measure-
ment on the ensemble,

ρ̄s = tr %ρs =
∑
i

〈bi|%|s〉〈s|bi〉 = 〈s|%|s〉 = %ss = ws. (F.114)

Thus, using the density matrix for mixed ensembles of states, we can calculate quantum statistical
averages using the same methods as used for the density matrix of pure states - see Eq. (F.101).1

The density matrix of a pure state is in general nondiagonal, whereas that of mixed states is by
construction diagonal. Furthermore, an important difference is revealed when calculating tr %2. For
pure states the density matrix is idempotent, ρ2 = ρ, and we have

tr ρ2 = tr ρ = 1. (F.115)

For mixed states this is replaced by the inequalities.

0 ≤ tr %2 ≤ (tr %)2 = 1. (F.116)

F.3.3 Density matrices for quantum-statistical mixtures

Thus far we emphasized ensemble averaging for a real set of measurements; e.g., of the spin states
of particles in a beam. Such ensembles of experimental data are called real ensembles. Interestingly,
density matrices based on fictitious ensembles are at least as important. In many-body systems
it is simply impossible to measure all particles individually but, as is well known from statistical
physics, often this is not necessary. For instance, to calculate the pressure of an ideal gas, all we
need to know is the probability of occupation of the single-particle states and this information can
be provided by a fictitious ensemble such as the canonical distribution over the energy eigenstates
of a physical system.

To start the discussion of quantum statistical ensembles we define the entropy of a physical
system in terms of its density matrix

S/kB = −tr % ln%. (F.117)

To explore the plausibility of this definition as a measure for the disorder in the system we choose
the representation of H (in which % is diagonal - see Section F.3.2). Denoting the basis of this
representation by {|s〉} the expression for the entropy can be written in the form

S/kB = −
∑
s,s′

〈s|%|s′〉〈s′|ln%|s〉 = −
∑
s

〈s|%|s〉ln〈s|%|s〉 = −
∑
s

%ss ln %ss. (F.118)

From classical statistical mechanics we recall that zero entropy corresponds to the system being
in a single microstate. In quantum statistics this translates to the system being in a pure state.
Denoting this pure state by |ψ〉, its density operator is given by % = ρ = |ψ〉〈ψ| and

%ss = 〈s|%|s〉 = |〈s|ψ〉|2. (F.119)

To avoid the complications of entanglement we restrict ourselves to a single eigenstate of the repre-
sentation {|s〉} , |ψ〉 → |t〉 ∈ {|s〉}. In this case we have %ss = δs,t and calculate zero entropy, S = 0,
because either %ss = 0 or ln %ss = 0. On the other hand, for a completely random ensemble (where
all energy eigenstates have the same probability), the density matrix is given by % = 1/n, where n
is the size of the ensemble (the order of the density matrix),

S/kB = −tr
1

n
ln

1

n
= lnn. (F.120)

1Many authors do not distinguish between 〈〈A〉〉 and 〈A〉 as all relevant information is contained in the form of %.
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For example, the maximum entropy of a two-level system is ln 2.
In general a statistical mixture will not have maximum entropy. We know from the statistical

principle for ergodic systems that only states of equal energy have to be equally probable. This limits
the entropy because, at finite temperature, high-energy states will be less probable. In statistical
physics the entropy is determined by a maximization procedure in which one or more constraints
are enforced. In a canonical ensemble we search for the maximum entropy under the constraints of
given total total energy E = 〈H〉 = tr %H and unit normalization, N = tr % = 1. To describe the
procedure, we turn to the representation of H, denoted by {|s〉} = {|1〉, · · · , |n〉}, because in this
representation the density matrix is diagonal. For the sake of the argument we restrict ourselves
to discrete systems with a finite-dimensional Hilbert space. The lagrangian for the variation of the
diagonal elements of the density matrix {%ss}, and the multipliers β (for total energy) and γ (for
normalization) is stationary if the following conditions are satisfied - see Problem F.6

δL =

n∑
s=1

δ%ss [−(ln %ss + 1)− βEs − γ] = 0, (F.121a)

δE =

n∑
s=1

%ssEs − E = 0, (F.121b)

δN =

n∑
s=1

%ss − 1 = 0, (F.121c)

where Es = 〈s|H|s〉 is the energy of the eigenstate |s〉. To assure that Eq. (F.121a) be valid for
arbitrary variations of {δ%ss}, we require

[(ln %ss + 1) + βEs + γ] = 0. (F.122)

Renaming the Lagrange multiplier γ → −(1 + βF ) we obtain

ln %ss = −β(Es − F ), (F.123)

which can be written in the form

%ss = e−β(Es−F ) =
1

Z
e−βEs . (F.124)

Hence, the corresponding density matrix can be defined in the form of a statistical operator,

% =
1

Z
e−βH. (F.125)

Imposing the normalization condition (F.121c) we find

Z = e−βF =

n∑
s=1

e−βEs . (F.126)

By identifying β ≡ 1/kBT , we recognize the well-known expression for the canonical partition sum.
Note that in the high-temperature limit (β → 0) we obtain Z = n and %ss = 1/n, which shows that
the limiting value for the entropy is that of a random ensemble, S = lnn.

For finite temperature we find for the entropy

S/kB = −
n∑
s=1

%ssln %ss = β

n∑
s=1

%ss(Es − F ) = β(E − F ), (F.127)

where we used Eq. (F.121b). Identifying F with the Helmholtz free energy and E with the internal
energy U we obtain the thermodynamic relation

F = U − TS. (F.128)
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Problem F.6. Show that the deviation of the lagrangian of the canonical ensemble of size n vanishes under
variation of the {%ss}, with s ∈ {1, · · ·n} if

δL =

n∑
s=1

δ%ss [−(ln %ss + 1)− βEs − γ] = 0.

Solution. The lagrangian for the variation of the {%ss} of the canonical ensemble under the constraints of
fixed total total energy E = 〈H〉 = tr %H and normalization, tr % = 1, is given by

L({%ss}n, β, γ) =

n∑
s=1

[−%ss ln %ss + β(E − %ssEs) + γ(1− %ss)] .

Hence, L is stationary under partial variation of %ss provided

δL

δ%ss
= −(ln %ss + 1)− βEs − γ = 0

and also stationary under partial variation of β and γ provided

δL

δβ
= E −

n∑
s=1

%ssEs = 0 and
δL

δγ
= 1−

n∑
s=1

%ss = 0.

Hence, L is stationary under simultaneous variation of of {%ss}n, β and γ if

δL =

n∑
s=1

[−(ln %ss + 1)− βEs − γ] δ%ss = 0,

n∑
s=1

%ssEs = E and

n∑
s=1

%ss = 1. �

F.4 Conservation of normalization and current density

The rate of change of normalization of a wave function can be written as a continuity equation

∂

∂t
|Ψ(r, t)|2 +∇ · j = 0, (F.129)

which defines j as the probability current density of the wave function. With the time-dependent
Schrödinger equation

i~
∂

∂t
Ψ(r, t) = H Ψ(r, t) (F.130a)

−i~ ∂
∂t

Ψ∗(r, t) = H Ψ∗(r, t) (F.130b)

we find

∂

∂t
|Ψ(r, t)|2 = Ψ∗(r, t)

∂

∂t
Ψ(r, t) + Ψ(r, t)

∂

∂t
Ψ∗(r, t)

=
1

i~
[Ψ∗(HΨ)−Ψ(HΨ∗)] . (F.131)

Hence,

∇ · j =
i

~
[Ψ∗(HΨ)−Ψ(HΨ∗)] . (F.132)

Hence, together with the continuity equation this equation shows that the normalization of a sta-
tionary state is conserved if the Hamiltonian is hermitian.

For a Hamiltonian of the type

H = − ~2

2m
∆ + V (r) (F.133)
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the Eq. (F.132) takes the form

∇ · j = − i~
2m

[
ψ∗(∇2ψ)− (∇2ψ∗)ψ

]
= − i~

2m
∇ · [ψ∗(∇ψ)− (∇ψ∗)ψ] . (F.134)

Hence, the continuity equation is satisfied by defining the probability current density as

j = − i~
2m

(ψ∗∇ψ − ψ∇ψ∗) . (F.135)

The probability current density is a real quantity,

j = Re

[
−i~
m

ψ∗∇ψ
]

= Re [ψ∗vψ] , (F.136)

where v = p/m = (−i~/m)∇ is the velocity operator , in which we recognize the well-known
correspondence rule p→− i~∇.

Writing ψ as the product of a position-independent amplitude |ψ| and a position-dependent phase
factor, ψ = |ψ|eiφ, we have

j =
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ) =
i~
2m
|ψ|2

(
eiφ∇e−iφ − e−iφ∇eiφ

)
= |ψ|2 (~/m)∇φ. (F.137)

Keeping in mind the flux relation j = nv, we identify n = |ψ|2 as the probability density and

v = (~/m)∇φ (F.138)

as the probability-flow velocity.
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Two-level systems

G.1 Introduction

In this appendix we review the unique properties of two-level systems. A two-level system is a
discrete quantum mechanical system with exactly two energy levels. Along with the harmonic
oscillator and the Bohr atom, two-level systems belong to the select group of quantum mechanical
systems for which exact analytical solutions can be obtained. The mathematical form of the solutions
to be obtained in the present appendix is independent of the physical origin of the two levels. This
reveals the universal properties of two-level systems. The iconic example is the electron spin in an
applied magnetic field. The two-level equations are widely used in physics, be it that usually an
approximation is required before they can be applied.

G.2 Two-level systems - general properties

Let us consider a closed quantum mechanical system with exactly two energy levels and described by
the time-independent Hamiltonian H0. The Schrödinger equation for the eigenstates of this system,

H0|φn〉 = E0
n|φn〉, (G.1)

defines a two-dimensional Hilbert space spanned by a basis of two state vectors, φ1 and φ2, corre-
sponding to the eigenvalues E0

1 and E0
2 , respectively. Degeneracy (E0

1 = E0
2) is not excluded. The

eigenvectors can be chosen to be normalized and orthogonal and we assume this to be the case,

〈φn|φm〉 = δnm, with n,m ∈ {1, 2}. (G.2)

What happens to the time evolution when we apply a perturbing field? To describe this situation
we append the Hamiltonian H0 with a hermitian term, H1, representing the perturbation,

H = H0 +H1. (G.3)

In this context H is called the full Hamiltonian, H0 the unperturbed part and H1 the perturbation.
Unlike the practice in perturbation theory the perturbation may be strong (i.e. dominate over H0)
without compromising the validity of the equations. Furthermore, whereas H0 remains constant in
time, the perturbation may (and often will) have an explicit time dependence, H1 → H1(t).

To understand how the perturbation affects the two-level system we solve the time-dependent
Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 (G.4)

under the initial condition |ψ(0)〉 = |ψi〉, where ψi is the state of the system at time t = 0. If H1

depends on time there will be energy exchange between the system and the perturbing field. There

347
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are methods to deal with this situation but these fall outside the scope of the present appendix.
Leaving aside their energy, the states of the system can always be decomposed with respect to the
unperturbed basis,

|ψ(t)〉 =
∑
n=1,2

|φn〉 〈φn|ψ(t)〉 = a1(t)|φ1〉+ a2(t)|φ2〉, (G.5)

where the amplitudes an(t) ≡ 〈φn|ψ(t)〉 are complex functions (depending only on time) and subject
to the Parseval relation

|a1(t)|2 + |a2(t)|2 = 1. (G.6)

The probability to observe the system at time t > 0 in the state ψf is given by the expression

Wi→f (t) = |〈ψf |ψ(t)〉|2. (G.7)

This is called the transition probability for the transition ψi → ψf .

G.2.1 Solving the Schrödinger equation

To solve the Schrödinger equation we project both sides of Eq. (G.4) onto the eigenstates φn,

i~
d

dt
an(t) = 〈φn|H0 +H1(t)|ψ(t)〉, (G.8)

with n ∈ {1, 2}. Substituting Eq. (G.5) into this expression and using the orthonormality relations
(G.2) as well as the hermiticity of H0, we find that the amplitudes a1(t) and a2(t) satisfy a set of
two coupled linear differential equations

i~
d

dt
an(t) = E0

nan(t) +
∑
m=1,2

〈φn|H1(t)|φm〉am(t), (G.9)

with n ∈ {1, 2}. Let us suppose for convenience that at t = 0 the system is in the eigenstate φ1 (i.e.,
ψi → φ1). In this case the initial condition for the amplitudes is

an(0) = 〈φn|ψ(0)〉 = 〈φn|φ1〉 = δn1. (G.10)

Before continuing we introduce a compact notation and derive some properties for the matrix
elements:

Hnm(t) ≡ 〈φn|H(t)|φm〉 and H ′nm(t) ≡ 〈φn|H1(t)|φm〉, (G.11)

with n,m ∈ {1, 2}. In view of the orthogonality of φ1 and φ2 we have

Hnm(t) =

{
H ′nm(t) for n 6= m

E0
n +H ′nn(t) for n = m.

(G.12)

Given the hermiticity of H1 we find1

H ′nm = 〈φn|H1|φm〉 = 〈φm|H1|φn〉∗ = H ′∗mn. (G.13)

In particular, for the diagonal matrix elements this becomes

H ′nn = H ′∗nn, (G.14)

showing that the diagonal elements are all real. In this notation the coupled equations (G.9) take
the form

i~ȧ1 = H11a1 +H ′12a2 (G.15a)

i~ȧ2 = H ′∗12a1 +H22a2. (G.15b)

1From here on we mostly suppress showing the time variable in the notation.
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Figure G.1: A two-level system can be represented by a pseudospin S in 3D real space. The states of the
system are defined by the angles θ and φ corresponding to a point on the surface of the Bloch sphere. Note
that by changing the coupling angle (θ) over its range from 0 to π the mixing angle (α = θ/2) changes
from 0 to π/2. Note further that the relative phase of the two components depends on the definition of the
coordinate system (in the plot the two components are in phase in the x direction).

G.2.2 Pseudospin and Bloch sphere - formal correspondence with spin-1/2

The unique position of two-level systems among the discrete quantum systems finds its origin in the
simplicity of the Parseval relation (G.6). As only two levels are involved, the occupation of one of
the levels, |a1|2, fully determines that of the other, |a2|2 = 1−|a1|2. This imposes a strong condition
on the relation between the amplitudes a1 and a2. It is straightforward to show that the Parseval
relation is satisfied for amplitudes of the following form:

a1 = e−iφ/2cosα and a2 = eiφ/2sinα. (G.16)

In this form the quantum numbers n ∈ {1, 2} are replaced by two new quantities, the mixing angle
α, with 0 ≤ α < π/2,1 and the relative phase φ, with 0 ≤ φ < 2π Actually, it is advantageous from
a geometric point of view to write the mixing angle in the form

α = θ/2, (G.17)

where θ is called the coupling angle. In Sections G.3.2 and G.3.3 we discuss why. Since θ is twice
as large as α it is defined over the range 0 ≤ θ < π. In this notation the states of any two-level
system are represented by two angles, θ and φ, which define the polar and azimuthal angle of a
three-dimensional unit vector, r̂, in an abstract real space,

rx = a1a
∗
2 + a∗1a2 = sin θ cosφ (G.18a)

ry = i(a1a
∗
2 − a∗1a2) = sin θ sinφ (G.18b)

rz = a1a
∗
1 − a2a

∗
2 = cos θ. (G.18c)

Keeping in mind that a spin- 1
2 system is a two-level system, Eqs. (G.18) suggest a relation between

the unit vector r̂ and the direction of the magnetic moment of a spin- 1
2 particle. For this reason r̂

is called the pseudo or fictitious spin of the two-level system. A first indication for the correctness
of this conjecture is found by writing the decomposition for an arbitrary state in the form

|ψ〉 = cos(θ/2)|φ1〉+ eiφsin(θ/2)|φ2〉. (G.19)

1Any interval of π/2 could be chosen; in Section G.3.3 preference is given to −π/4 ≤ α ≤ π/4.
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In this form a1 is chosen to be real, a1 → cos(θ/2). This is allowed without loss of generality
because we are free to choose the global phase. As is illustrated in Fig. G.1, the decomposition
(G.19) relates the 2D Hilbert space of the two-level system to the surface of a sphere - the Bloch
sphere - introduced by Felix Bloch to describe the evolution of a nuclear moment in a electromagnetic
field [16]. In 1957 Richard Feynman, Frank Vernon and Robert Hellwarth showed that the evolution
of any two-level system in a perturbing field can be mapped onto the equation of motion of a spin- 1

2
system subject to a perturbation [42]. In this map the Schrödinger equation is written in the form
of a real three-dimensional vector equation (see Problem G.1),

dr̂

dt
= (ω × r̂), (G.20)

where the components of the pseudospin r̂ uniquely refer to the state of the system and the compo-
nents of the vector ω represent the perturbation,

ωx = (H ′12 +H ′∗12)/~, ωy = i(H ′12 −H ′∗12)/~, ωz = (H11 −H22)/~. (G.21)

In particular, for the magnetic interaction of a real spin- 1
2 particle (e.g., electron spin) the 3D real

space reduces to the physical space of observation. In optics the sphere is called the Poincaré sphere
and the vector corresponds to an arbitrary state of polarized light (elliptical polarization). With
Eqs. (G.20) and (G.21) we have obtained a universal relation for the time evolution of two-level
systems.

Problem G.1. Derive the Feynman-Vernon-Hellwarth transformation by showing that the time evolution
of two-level systems may be formulated in the universal form of a real three-dimensional vector equation for
the pseudospin r̂,

dr̂

dt
= (ω × r̂),

where the components of the r̂ uniquely refer to the state of the system and the components of the vector
ω represent the perturbation.

Solution. We start by differentiating Eqs. (G.18) with respect to time,

ṙx = (ȧ1a
∗
2 + a1ȧ

∗
2 + c.c.)

−iṙy = (ȧ1a
∗
2 + a1ȧ

∗
2 − c.c.)

ṙz = (ȧ1a
∗
1 − ȧ2a∗2 + c.c).

Each term in these equations follows from the Schrödinger equation using Eq. (G.15),

ȧ1a
∗
2 = −i(H11a1a

∗
2 +H ′12a2a

∗
2)/~

a1ȧ
∗
2 = i(H ′12a1a

∗
1 +H22a1a

∗
2)/~

ȧ1a
∗
1 = −i(H11a1a

∗
1 +H ′12a

∗
1a2)/~

ȧ2a
∗
2 = −i(H ′∗12a1a∗2 +H22a2a

∗
2)/~.

Then, substituting these terms and using the Parseval relation (G.6) we obtain after some rearrangement

~ṙx = −i(H11 −H22)(a1a
∗
2 − a∗1a2) + i(H ′12 −H ′∗12)(a1a

∗
1 − a2a∗2)

−i~ṙy = −i(H11 −H22)(a1a
∗
2 + a∗1a2) + i(H ′12 +H ′∗12)(a1a

∗
1 − a2a∗2)

~ṙz = +i(H ′12 +H ′∗12)(a1a
∗
2 − a∗1a2)− i(H ′12 −H ′∗12)(a1a

∗
2 + a∗1a2).

Here we recognize the appearance of the components of r̂ as given in Eqs. (G.18) and write

i~ṙx = −i(H11 −H22)ry − (H ′12 −H ′∗12)rz

i~ṙy = i(H11 −H22)rx − i(H ′12 +H ′∗12)rz

i~ṙz = i(H ′12 +H ′∗12)ry + (H ′12 −H ′∗12)rx.
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In vector notation this becomes

d

dt
r̂ = −

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

rx ry rz

(H ′12 +H ′∗12)/~ i(H ′12 −H ′∗12)/~ (H11 −H22)/~

∣∣∣∣∣∣∣∣ .
This expression can be rewritten in the form of the vector equation (G.20), where the components of the
vector ω are defined in terms of the matrix elements of the Hamiltonian as given in Eq. (G.21). 2

G.3 Two-level systems - static perturbations

Let us return to the coupled equations (G.15). These equations govern the evolution of two-level
systems for a (generally time-dependent) Hamiltonian. They followed from the Schrödinger equation
and were transformed to the vector equation (G.20) but they were not solved. The reason is simple:
analytic solution of the differential equations is not possible for an arbitrary time dependence of
the perturbation. This being said, analytic solutions can be given for special cases. In the present
section we specialize to static perturbations (i.e., perturbations without an explicit time dependence).
Time-dependent perturbations are not discussed in this Appendix.

Before proceeding we note that the coupled equations (G.15) can be written in the form of a
matrix equation as is common practice in linear algebra,

i~
d

dt

 a1

a2

 =

H11 H
′
12

H ′∗12 H22

 a1

a2

 . (G.22)

Not surprisingly, this equation has the form of the time-dependent Schrödinger equation,

i~
d

dt
ψ = Hψ, (G.23)

where, in matrix notation, the Hamiltonian and the state are given by

H =

H11 H
′
12

H ′∗12 H22

 and ψ =

 a1

a2

 . (G.24)

Specializing to the case of static perturbations turns H into an operator without an explicit time
dependence. This makes it possible to integrate Eq. (G.23) by separation of variables,

1

ψ

dψ

dt
= − i

~
H. (G.25)

Under the initial condition ψ(0) = ψi we obtain

ψ(t) = e−(i/~)Htψi. (G.26)

Note the appearance of the evolution operator. If ψi is an eigenstate of H (corresponding to the
eigenvalue Ei) it satisfies the Schrödinger equation

Hψi = Eiψi, (G.27)

and the evolution becomes stationary; i.e., there is only evolution of the global phase,

|ψ(t)〉 = e−(i/~)Eit|ψi〉. (G.28)

The exponential prefactor is called the dynamical phase of the state.
In cases where ψi is not an eigenstate of H the time evolution is not stationary. Non-stationary

evolution under static perturbations is the subject of Section G.4
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G.3.1 Level shifts and mixing of the eigenstates

As is well known from linear algebra Eq. (G.27) represents an eigenvalue problem. Non-singular
solutions exist if and only if the characteristic determinant, traditionally referred to as the secular
determinant,1 is zero, ∣∣∣∣∣∣H11 − E H ′12

H ′∗12 H22 − E

∣∣∣∣∣∣ = 0. (G.29)

Eq. (G.29) is known as the characteristic equation (secular equation) of the problem. By solving
this equation we find the eigenvalues of H. As is evident from Eq. (G.29), for two-level systems the
characteristic equation takes the form of a quadratic equation in E,

(H11 − E)(H22 − E) = |H ′12|
2
. (G.30)

The eigenvalues are given by the roots of this equation.

• In the absence of mixing of the eigenstates (H ′12 = 0) the Hamiltonian is diagonal and we
easily find E+ = H11 and E− = H22. Furthermore, we are free (without loss of generality) to
choose the state labeling such that

H11 ≥ H22. (G.31)

In this convention E+ and E− correspond to the upper and lower level, respectively (E+ ≥
E−).

• Also in the presence of mixing (H ′12 6= 0) we have E+ > E− under the convention (G.31)
because the off-diagonal matrix elements always result in level repulsion (see Section G.3.2).
The general solution of the quadratic equation is given by the “square root formula”,

E± = 1
2 (H11 +H22)± 1

2

√
(H11 −H22)

2
+ 4 |H ′12|

2
. (G.32)

Note that the discriminant is always positive or zero; i.e., the eigenvalues are real as required
for the eigenvalues of a hermitian operator.

G.3.2 Eigenvalues and coupling angle

To study the effect of the perturbation we introduce the coupling angle θ and its tangent

tan θ ≡ 2|H ′12|
H11 −H22

, (G.33)

where θ is defined on the interval −π/2 ≤ θ ≤ π/2 (under the convention (G.31) this is the interval
0 ≤ θ ≤ π/2). The name coupling angle refers to the coupling of the two differential equations in
Eqs. (G.15) by the off-diagonal matrix elements H ′12 and H ′∗12. In Section G.3.3 this coupling angle
will be identified with the coupling angle introduced in Section G.2.2. We distinguish between weak
and strong coupling (cf. Section G.3.4):

• The coupling is called weak if the off-diagonal matrix elements are “smaller than the level
splitting”, |H ′12| � |H11 −H22|. In this case the coupling angle is small (0 ≤ tan2 θ � 1).

• Likewise, the coupling is called strong for |H ′12| � |H11 − H22|. In this case the coupling
angle is large; i.e., close to ±π/2 (0 ≤ cot2 θ � 1). Note that in the absence of asymmetry
(H11 = H22) any coupling is strong.

1The adjective secular was introduced in astronomy to describe non-cyclic variations in the planetary motion
caused by the interactions between planets.



G.3. Two-level systems - static perturbations 353

Figure G.2: Level shifts in two-level systems are symmetric with respect to the average value of the diagonal
matrix elements, 1

2
(H11 +H22): (a) weak repulsion by an off-diagonal matrix element (|H ′12| � H11−H22);

(b) strong repulsion by an off-diagonal matrix element (H11 −H22 � |H ′12|).

Let us have a closer look at Eq. (G.32). Using the coupling angle this equation can be rewritten in
one of the two following equivalent forms

E± = 1
2 (H11 +H22)± 1

2 (H11 −H22)
√

1 + tan2θ (G.34a)

E± = 1
2 (H11 +H22)± |H ′12|

√
1 + cot2θ, (G.34b)

where the labeling of the energy levels is chosen in accordance with the convention (G.31); i.e.,
E+ → H11 and E− → H22 in the limit of weak coupling (θ → 0). Note that there is no ambiguity
in the sign of the square root,√

1 + tan2θ = 1/cos θ > 1 for − π/2 ≤ θ ≤ π/2. (G.35)

Also the level splitting ∆E = E+ − E− follows directly from Eq. (G.32),

∆E =

√
(H11 −H22)2 + 4 |H ′12|

2
. (G.36)

In terms of the coupling angle this becomes

∆E = 1
2 (H11 −H22)

√
1 + tan2θ (G.37a)

∆E = 2 |H ′12|
√

1 + cot2θ. (G.37b)

The upper form of Eqs. (G.34) and (G.37) is best suited to analyze weak coupling (tan2θ � 1);
the lower form for strong coupling (cot2θ � 1). The expressions shows that for weak coupling the
splitting is dominated by the diagonal matrix elements whereas for strong coupling it is a direct
measure of the coupling strength - see Fig. G.2.

Level repulsion

Note that the coupling gives rise to a shift of the energy levels which is symmetric about the average
value 1

2 (H11 + H22). More precisely, under the convention (G.31) the levels repel each other [119].
This is illustrated in Fig. G.2 for the degenerate case. The repulsion is easily verified by rewriting
Eq. (G.34a) in the form

E+ = H11 + 1
2 (H11 −H22)(

√
1 + tan2θ − 1) (G.38a)

E− = H22 − 1
2 (H11 −H22)(

√
1 + tan2θ − 1). (G.38b)

The average value 1
2 (H11 +H22) may be chosen as the zero of energy for most practical purposes.
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Figure G.3: Three special cases: (a) absence of diagonal shifts; (b) degeneracy with symmetric diagonal
shift; (c) degeneracy with asymmetric diagonal shift.

Special cases

When dealing with energy levels and shifts induced by the perturbation it is good to mention a few
special cases in which the equations simplify.

• zero diagonal shift (H ′11 = H ′22 = 0): in this case the diagonal matrix elements of the full
Hamiltonian coincide with those of H0 - see Fig. G.3a

H11 → E0
1 and H22 → E0

2 . (G.39)

• degeneracy of the unperturbed levels (E0
1 = E0

2): in this case the diagonal matrix elements of
the full Hamiltonian coincide with those of the perturbation,

H11 → H ′11 and H22 → H ′22. (G.40)

We distinguish between two cases: (a) symmetric diagonal shifts (H ′11 = H ′22); (b) asymmetric
diagonal shifts (H ′11 6= H ′22) - see Fig. G.3b,c.

• zero off-diagonal shift (H ′12 = H ′21 = 0): in this case there is no coupling between the levels
although the levels shift as a result of the diagonal matrix elements of the perturbation,

E± = 1
2 (H11 +H22)± 1

2 (H11 −H22) =

{
H11

H22

. (G.41)

G.3.3 Eigenstates

Ones we have the eigenvalues E± we obtain the corresponding eigenstates ψ± by substituting the
eigenvalues into the Schrödinger equation. In matrix notation this becomesH11 H

′
12

H ′∗12 H22

A±

B±

 = E±

A±

B±

 , with ψ± ≡

A±

B±

 . (G.42)

As we recall from Section G.2.2, the eigenstates of a two-level system are fully defined by the mixing
angle and the relative phase - see Eq. (G.16). In Problem G.2 we show that in terms of these angles
the amplitudes of the eigenstates are given by

a1 →

A+ = +e−iφ/2cosα

A− = −e−iφ/2sinα
and a2 →

B+ = eiφ/2sinα = −A−eiφ

B− = eiφ/2cosα = A+e
iφ

. (G.43)
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In this format the eigenstates become (in Dirac notation)

|ψ+〉 = +e−iφ/2cosα|φ1〉+ eiφ/2sinα|φ2〉 (G.44a)

|ψ−〉 = −e−iφ/2sinα|φ1〉+ eiφ/2cosα|φ2〉. (G.44b)

As expected for a basis transformation Eqs. (G.44) define a unitary transformation between the
eigenstates of H and those of H0 (cf. Problem 3.20). Importantly, as the probabilities of occupation,

|B−|2 = |A+|2 = cos2 α and |B+|2 = |A−|2 = sin2 α, (G.45)

are independent of the phase we are free to choose the coordinate system such that the relative
phase vanishes, φ = 0. In this convention the amplitudes are real quantities and related by

B+ = −A− and B− = A+. (G.46)

So the eigenstates of H take the convenient form

|ψ+〉 = +cosα|φ1〉+ sinα|φ2〉 (G.47a)

|ψ−〉 = −sinα|φ1〉+ cosα|φ2〉. (G.47b)

The inverse transformation is given by

|φ1〉 = cosα|ψ+〉 − sinα|ψ−〉 (G.48a)

|φ2〉 = sinα|ψ+〉+ cosα|ψ−〉. (G.48b)

What remains to be done is demonstrate that the coupling angle defined in Eq. (G.33) coincides
with the coupling angle introduced for the pseudospin in Eq. (G.17). This follows in a few steps
from Eqs (G.45). First we notice that tan2α may be expressed as

tan2α = |B+/A+|2 = |A−/A+|2. (G.49)

Substituting E+ from Eq. (G.38a) into the Eq. (G.42) we obtain under the convention (G.31) 1

tan2α =
(E+ −H11)2

|H ′12|2
=

(
√

1 + tan2 θ − 1)2

tan2θ
=

(1− cos θ)2

sin2θ
=

1− cos θ

1 + cos θ
= tan2(θ/2). (G.50)

Here we used Eq. (G.35) as well as the double-angle formulas for the cosine. With this result
we established that the mixing angle α, introduced in Eq. (G.33), can be identified with half the
coupling angle as defined in Eq. (G.33), α = θ/2. Since θ is defined over a range of π on the interval
−π/2 < θ ≤ π/2, the mixing angle is restricted to a range of π/2 on the interval −π/4 < α ≤ π/4.2

Alternatively, we can use the periodicity of tan θ to redefine θ on the interval 0 ≤ θ < π (i.e., α
restricted to the interval 0 ≤ α < π/2). The latter convention was used to map the states of a
pseudospin onto the Bloch sphere (see Section G.2.2).

An expression for the coupling coefficient |A+|2 in terms of the matrix elements is obtained using
the trigonometric relation between cos2α and tan2α,

|A+|2 = cos2α =
1

1 + tan2α
=

|H ′12|2

(E+ −H11)2 + |H ′12|2
. (G.51)

A nice consequence of the convention −π/4 ≤ α ≤ π/4 is the inequality cos2 α ≥ sin2 α. Note that
this can serve as a convenient pointer to the dominant component of a mixed state (e.g., see the
figures of magnetic fine- and hyperfine structure in Chapters 4 and 5).

1By substituting the solution (G.38b) into Eq. (G.42) we obtain the same result.
2Adopting the convention (G.31) we can restrict the angles to positive values, 0 ≤ θ ≤ π/2 and 0 ≤ α ≤ π/4.
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Problem G.2. Derive Eqs. (G.43).

Solution. Introducing for the eigenstates ψ± the mixing angles α± and phase angles θ± we have in the
notation of Section G.2.2

a1 → A± = e−iφ±/2cosα± and a2 → B± = eiφ±/2sinα±.

Since the eigenstates have to be orthogonal we require 〈ψ+|ψ−〉 = A∗+A− + B∗+B− = 0. In terms of the
angles this condition becomes

ei(φ+−φ−)/2cosα+cosα− + e−i(φ+−φ−)/2sinα+sinα− = 0.

This condition is satisfied for cosα− = −sinα+ and sinα− = cosα+ in combination with

ei(φ+−φ−)/2 − e−i(φ+−φ−)/2 = −2isin[(φ+ − φ−)/2] = 0.

In term of the angles this is satisfied for α− = α+ + π/2 and φ− = φ+. Changing notation α+ → α and
φ+ → φ this results in the requested expressions. 2

G.3.4 Weak versus strong coupling

In Section G.3.2 we introduced the concepts of weak and strong coupling by comparing the strength
of the off-diagonal matrix elements, |H ′12|, with the difference of the diagonal ones, H11−H22, under
the convention (G.31). We now analyze these cases in more detail using Fig. G.2 for purposes of
illustration:

• Weak coupling (strong asymmetry), |H ′12|2 � (H11 −H22)
2 → α2 ' 1

4 tan2 θ � 1. In this
regime Eq. (G.34a) reduces to

E+ = H11 + α2 (H11 −H22) + · · · = H11 + α |H ′12|+ · · · , (G.52a)

E− = H22 − α2 (H11 −H22) + · · · = H22 − α |H ′12|+ · · · . (G.52b)

Here we used the expansion
√

1 + tan2 θ = 1 + 1
2 tan2 θ + · · · = 1 + 2α2 + · · · . Note that

the contribution of the off-diagonal matrix elements |H ′12| is suppressed by a factor α with
respect to the diagonal ones, H11 and H22. In other words, the diagonal elements contribute
in first order, cf. Eq. (H.56), whereas the off-diagonal elements contribute in second-order,
cf. Eq. (H.63). The corresponding basis coefficients satisfy the relations

A±|2 =

 cos2 α = 1− α2 + · · ·
sin2 α = α2 + · · · .

(G.53)

In the limit |H ′12| → 0 we obtain the case of no coupling (zero off-diagonal shift), in which

E+ = H ′11 and E− = H22, with |A+|2 = 1 and |A−|2 = 0. (G.54)

• Strong coupling (weak asymmetry), (H11 −H22)
2 � |H ′12|

2 ⇔ cot2 θ � 1. In this case
Eq. (G.34b) reduces to

E± = 1
2 (H11 +H22)± |H ′12| (1 + 1

2 cot2 θ + · · · ). (G.55)

Here we used the expansion
√

1 + cot2 θ = 1+ 1
2 cot2 θ+· · · . In this limit the mixing coefficients

satisfy the relations
A2
± = 1

2 (1± cot2 θ + · · · ). (G.56)

In the limit H11 → H22 we obtain the symmetric case, in which

E± = H11 ± |H ′12| and A2
± = 1

2 . (G.57)

• Crossover regime. In case we are neither weakly nor strongly coupled we are dealing with
crossover behavior between the two limits. In this case the shifts cannot be approximated and
we have to apply the exact expression; i.e., Eq. (G.32).
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G.4 Non-stationary evolution under a static perturbation

Let us return to the time-dependent aspects of the two-level system. We start by assuming that the
system is at time t = 0 in the eigenstate φ1 of the unperturbed Hamiltonian, H0. To find the time
evolution under the full Hamiltonian we solve the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (G.58)

under the initial condition |ψ(0)〉 ≡ |φ1〉. For a static perturbation, i.e., a perturbation without
explicit time dependence, the full Hamiltonian is also independent of time and along the lines of
Section G.3 we obtain for the time evolution of the initial state φ1

|ψ(t)〉 = e−(i/~)Ht|φ1〉. (G.59)

In the absence of the perturbation, H0 = 0, the system remains in the state φ1. This is the stationary
evolution of Section G.3. In the present section we discuss how the state evolves for a non-vanishing
static perturbation. In particular we are interested in finding out how the perturbation gives rise to
a probability of observing the system at t > 0 in the eigenstate φ2. As discussed in the introduction
of Section G.2 this means that we are looking for the transition probability

W1→2(t) = |〈φ2|ψ(t)〉|2. (G.60)

G.4.1 Special case

To introduce the subject we start with a special case. We consider the full Hamiltonian H with
eigenvalues E+ and E− and suppose for convenience that the corresponding eigenstates ψ+ and ψ−
are given by symmetric (+) and anti-symmetric (−) linear combinations of the eigenstates of H0),

|ψ+〉 =
√

1/2 (|φ1〉+ |φ2〉) (G.61a)

|ψ−〉 =
√

1/2 (|φ1〉 − |φ2〉) . (G.61b)

Note that this is a special case of Eqs. (G.47a) with sin2α = cos2α = 1
2 . This is called a 50/50

coherent mixture of the eigenstates φ1 and φ2 corresponding to a mixing angle of α = π/4 and
coupling angle θ = π/2 (cot2θ → 0). Adding Eqs. (G.61) and solving for |φ1〉 (the initial state) we
find

|φ1〉 =
√

1/2 (|ψ+〉+ |ψ−〉) . (G.62)

Next we substitute this expression into the time-dependent solution (G.59),

|ψ(t)〉 =
√

1/2
[
e−(i/~)E+t|ψ+〉+ e−(i/~)E−t|ψ−〉

]
, (G.63)

and project the result on the eigenstate φ2. Using the orthonormality of the φ1 and φ2 as well as
the decompositions (G.61) this leads to the amplitude for observing the system at time t > 0 in
“level 2” (i.e., in the eigenstate φ2),

a2(t) = 1
2e
−(i/~)E+t

[
1− e(i/~)(E+−E−)t

]
. (G.64)

Introducing the angular frequency
ω = (E+ − E−)/~ (G.65)

the probability for observing the system in level 2 becomes

W1→2(t) = 1
4

[
2− eiωt − e−iωt

]
= 1

2 (1− cosωt) = sin2 1
2ωt. (G.66)
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Figure G.4: Transition probability from level 1 to level 2 as a function of time after switching on a pertur-
bation. Full transfer of the population can be achieved for the coupling angle θ = ±π/2 (dashed red line).
In the limit of weak coupling (θ � 1) the transfer efficiency is at best sin2θ ' θ2 (solid blue line).

This result is plotted as the dashed red line in Fig. G.4. Note that at t = 0 the probability to
observe the system in level 2 is zero, in accordance with the initial condition |ψ(0)〉 ≡ |φ1〉. With
increasing time the transition probability grows until at ωt = π the system is with unit probability
in level 2. Continuing, the probability oscillates in time between zero and one at angular frequency
ω. This has an important consequence. By applying the perturbation at t = 0 for the duration
∆t = π/ω0 (better: ∆t = (π±2nπ)/ω, with n = 0,±1,±2, · · · ) we can transfer the entire population
of a two-level system from level 1 to level 2. Such a timed pulse is called a Rabi pulse (better: a
zero-frequency Rabi pulse). Since for the 50/50 mixture the coupling angle is θ = π/2 (cot2θ → 0)
we find for the angular frequency - see Eqs. (G.34b)

ω =
2

~
|H ′12|

√
1 + cot2 θ → 2

~
|H ′12| for θ → π/2. (G.67)

G.4.2 The general case - Rabi’s formula

It is straightforward to generalize the example of the previous section to cases with an arbitrary
mixing angle. For this purpose we recall Eqs. (G.47),

|ψ+〉 = +cosα|φ1〉+ sinα|φ2〉 (G.68a)

|ψ−〉 = −sinα|φ1〉+ cosα|φ2〉 (G.68b)

and its inverse, Eqs. (G.48). Sticking to the same initial condition as before the decomposition of
the initial state is given by

|ψ(0)〉 = |φ1〉 = cosα|ψ+〉 − sinα|ψ−〉. (G.69)

Using Eq. (G.59) we find for the time evolution

〈φ2|ψ(t)〉 = sinα cosα
[
e−(i/~)E+t − e−(i/~)E−t

]
. (G.70)

In terms of the angular frequency (G.65) the probability to observe the system at time t in level 2
is given by

W1→2(t) = 4 sin2α cos2α sin2 1
2ωt. (G.71)

In terms of the coupling angle this further simplifies to the form of Rabi’s formula [85],

W1→2(t) = sin2θ sin2 1
2ωt. (G.72)
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Just as in the previous section, the probability oscillates at angular frequency ω. The difference is in
coupling strength. For strong coupling, cot2θ → 0 (θ → π/2), we regain Eq. (G.66). The transition
probability oscillates between zero and one. On the other hand, for weak coupling, tan2θ → 0, the
transition probability oscillates between zero and the small value sin2θ. In other words, aside from
oscillating in time, the transition probability increases with the strength of the coupling until it
saturates because a probability cannot become larger than one. This conclusion is satisfactory, also
from the intuitive point of view. Using the trigonometric relation sin2θ = tan2θ/(1 + tan2θ) we find
by substitution of Eq. (G.33)

sin2θ =
4(H11 −H22)2

(H11 −H22)2 + 4 |H ′12|
2 . (G.73)

For the level splitting we find

ω = 2 |H ′12| /~ (cot2θ → 0); ω = (H11 −H22)/~ (tan2θ → 0). (G.74)

Note that for cot2θ → 0 (θ → π/2) we regain Eq. (G.66). In the absence of a diagonal shift
(H ′11 = H ′22 = 0) the angular frequency approaches in the limit of weak coupling (tan2θ → 0) the
transition frequency of the unperturbed system.

ω0 ≡ (E0
2 − E0

1)/~. (G.75)

In atomic physics this quantity is known as the Bohr frequency. In Fig. G.4 we show the transition
probability (G.72) for transitions from level 1 to level 2 as a function of time for both strong
(cot2θ → 0 - dashed red line) and weak coupling (tan2θ → 0 - solid blue line).
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H

Time-independent perturbation theory

H.1 Introduction

In most cases of practical importance physical systems cannot be studied without approximation
and quantum mechanical systems are no exception to this rule. Unfortunately, exact solutions
of the Schrödinger equation can only be obtained for a hand full of simple systems. Therefore,
methods of approximation play a crucial role in the application of quantum mechanics. Obviously,
in the computer era with massive calculational power at our disposal, approximate solutions of high
precision are available using numerical methods. However, these methods constitute a field in itself
and are better introduced in the context of mathematics. In this course we follow the tradition of
focusing on analytical approaches as these offer structured insight in the physics of the quantum
mechanical system under consideration. Importantly, although the approximate methods to be
discussed are often intuitively convincing and appealing one should be aware that their foundation
is generally non-trivial and forms an important subject of mathematical physics.1 In this appendix
we discuss analytical approximations for time-independent phenomena in systems with discrete
energy levels resulting from a time-independent Hamiltonian. Time-dependent phenomena form a
topic in itself and are best discussed separately.

In time-independent perturbation theory we consider physical systems in which the eigenstates
and eigenvalues of the Hamiltonian H of the system are known, except for the effects of a small and
stationary perturbing term H1. Typically this gives rise to level shifts and/or level splittings. To
develop the theory the Hamiltonian H is broken up in two hermitian parts,

H = H0 +H1, (H.1)

where H0 is called the unperturbed part and H1 the perturbation. We shall consider systems where
the Schrödinger equation for the unperturbed Hamiltonian

H0 |φn〉 = E0
n |φn〉 . (H.2)

defines a discrete set of (known) eigenvalues {E0
n} corresponding to an orthonormal set of (known)

eigenstates {|φn〉}, for instance corresponding to the bound states of a system. The presence of
an additional continuum of states is not considered here but can be included in the closure of the
Hilbert space. The Schrödinger equation for the full Hamiltonian

H|ψn〉 = En|ψn〉 (H.3)

defines a discrete set of (unknown) eigenvalues {En} corresponding to an orthonormal set of (un-
known) eigenstates {|ψn〉}. Because the perturbation is small we expect only a small shift of the

1See P.M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill Book Company, Boston 1953.
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energy level En with respect to the value E0
n. Projecting both sides of the Schrödinger equation

(H.3) on an arbitrary unperturbed state |φν〉 we obtain, after splitting off the perturbation and
using the hermiticity of H0,

En〈φν |ψn〉 = 〈φν |H0 +H1|ψn〉 = E0
ν〈φν |ψn〉+ 〈φν |H1|ψn〉. (H.4)

Thus we found a set of expressions relating the energy of the perturbed level En with the energies
E0
ν of all the eigenstates {|φn〉} of the unperturbed Hamiltonian H0,

En = E0
ν +
〈φν |H1|ψn〉
〈φν |ψn〉

. (H.5)

For the special case ν = n this relation corresponds to an expression for the energy shift,

∆En = En − E0
n =
〈φn|H1|ψn〉
〈φn|ψn〉

. (H.6)

It will be our approach to derive an approximate solution for the level shift with a method of
successive approximation starting from Eq. (H.6). This method is called Rayleigh-Schrödinger per-
turbation theory Schrödinger [99]. We distinguish between perturbation theory for non-degenerate
levels (ordinary perturbation theory - see Section H.2) and that for degenerate levels (see Section
H.3). It will be shown that the ordinary theory embodies a method of successive approximation
describing the level shift (H.6); for the degenerate case the method amounts to the diagonalization
of the degenerate subspace and describes the lifting of degeneracy by splitting into nondegenerate
sublevels.

H.2 Perturbation theory for non-degenerate levels

We start with the case of a non-degenerate energy level En. To develop the perturbation theory we
introduce a parameterized Hamiltonian

H(λ) = H0 + λH1, (H.7)

with a set of (unknown) orthonormal eigenstates {|ψn(λ)〉} satisfying the Schrödinger equation

H(λ) |ψn(λ)〉 = En(λ) |ψn(λ)〉 . (H.8)

The parameter λ enables us to vary the strength of the perturbation and is introduced solely to
keep track of the order at which the perturbation contributes; for λ → 0 the H(λ) reduces to
the unperturbed Hamiltonian, limλ→0H(λ) = H0; for λ → 1 we obtain the full Hamiltonian,
limλ→1H(λ) = H0 +H1. Using the Hamiltonian (H.7) the expression (H.5) changes into

En(λ) = E0
ν + λ

〈φν |H1 |ψn(λ)〉
〈φν |ψn(λ)〉

. (H.9)

The denominator of the second term plays an important role in the perturbation theory and will be
denoted by

aν(λ) ≡ 〈φν |ψn(λ)〉. (H.10)

Eq. (H.9) is the starting point to obtain approximate solutions for the levels En(λ) and the
coefficients aν(λ). This is done with an iterative procedure in which Eq. (H.9) is expressed in the
form of an hierarchy of equations of increasing power of λ obtained from the Ansatz

|ψn(λ)〉 ≡ |φn〉+ λ|ψ1
n〉+ λ2|ψ2

n〉+ · · · , (H.11)
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where |ψpn〉 corresponds to the pth-order correction to the wavefunction, with p ∈ {0, 1, · · · } and
|ψ0
n〉 ≡ |φn〉. As will be shown below the corrections |ψpn〉 can be chosen orthogonal to the un-

perturbed state, 〈φn|ψpn〉 = 0, and we will do so in a later stage. The Ansatz (H.11) implies an
expansion in powers of λ for the function aν(λ),

aν(λ) = 〈φν |ψn(λ)〉 = δνn + λa(1)
ν + λ2a(2)

ν + · · · , (H.12)

where the coefficients are defined by a
(p)
ν = 〈φν |ψpn〉. For weak perturbations the Ansatz assures

that the coefficients aν(λ) will change regularly with λ over the full interval 0 ≤ λ ≤ 1 (in particular

at the end points) and differ little, aν(λ)− a(0)
ν � 1, from the unperturbed value a

(0)
ν given by

a(0)
ν ≡ lim

λ→0
aν(λ) = lim

λ→0
〈φν |ψn(λ)〉 = 〈φν |φn〉 = δνn. (H.13)

The norm of the parameterized wavefunction is given by

〈ψn(λ)|ψn(λ)〉 = 1 + λ(a(1)
n + a(1)∗

n ) + λ2(a(2)
n + a(2)∗

n + 〈ψ1
n|ψ1

n〉) + · · · . (H.14)

Substituting the Ansatz (H.11) and the expansion (H.12) into Eq. (H.9) we obtain for the special
case ν = n

En(λ) = E0
n +

λ〈φn|H1|φn〉+ λ2〈φn|H1|ψ1
n〉+ · · ·

1 + λa
(1)
n + λ2a

(2)
n + · · ·

. (H.15)

Expanding this expression in powers of λ we obtain

En(λ) = E0
n + λ〈φn|H1|φn〉

+ λ2[〈φn|H1|ψ1
n〉 − 〈φn|H1|φn〉a(1)

n ]

+ λ3[〈φn|H1|ψ2
n〉 − 〈φn|H1|ψ1

n〉a(1)
n − 〈φn|H1|φn〉a(2)

n ] + · · · . (H.16)

This expansion defines the energy shift order by order,

En(λ) ≡ E0
n + λ∆E(1)

n + λ2∆E(2)
n + λ3∆E(3)

n + · · · , (H.17)

where ∆E
(p)
n represents the pth-order contribution to the energy shift. With regard to the eigenstate

|ψn(λ)〉, the perturbation can be regarded as giving rise to an admixture of all other states (m 6= n)
as follows with the aid of the closure relation under the assumption 〈φn|ψ1

n〉 = 0,

|ψn(λ)〉 ≡ |φn〉+ λ
∑
m

′|φm〉〈φm|ψ1
n〉+ λ2

∑
m

′|φm〉〈φm|ψ2
n〉+ · · · . (H.18)

Here the prime on the summation indicates m 6= n (i.e., the term m = n is skipped in the sum-

mation). In terms of the coefficients a
(p)
m the corrections to the wavefunction can be expressed as

as
|ψn(λ)〉 ≡ |φn〉+ λ

∑
m

′a(1)
m |φm〉+ λ2

∑
m

′a(2)
m |ψm〉+ · · · . (H.19)

Note that to calculate the energy shift to order p ≥ 1 we need to know the wavefunction |ψqn〉 to order
q ≤ p − 1. It is good to emphasize that there is no guarantee that the expansion (H.16) actually
converges for λ → 1. We will simply presume convergence, as is the case in many applications
of practical interest. Convergence criteria and alternative perturbation methods can be found in
advanced texts.

Before proceeding to the calculation of the energy shifts ∆E
(p)
n we return to Eq. (H.9) and derive

a set of equations for the coefficients a
(p)
ν , this time for the case ν = m 6= n. Substituting Eqs. (H.11)

and (H.12) for the case ν = m 6= n into Eq. (H.9) we obtain

En(λ) = E0
m +

λ〈φm|H1|φn〉+ λ2〈φm|H1|ψ1
n〉+ · · ·

λa
(1)
m + λ2a

(2)
m + · · ·

. (H.20)
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Replacing the l.h.s. by the expansion (H.17) and collecting the terms of equal power in λ we have

(E0
n − E0

m)a(1)
m = 〈φm|H1|φn〉 first order (H.21a)

∆E(1)
n a(1)

m + (E0
n − E0

m)a(2)
m = 〈φm|H1|ψ1

n〉 second order (H.21b)

∆E(2)
n a(1)

m + ∆E(1)
n a(2)

m + (E0
n − E0

m)a(3)
m = 〈φm|H1|ψ2

n〉 third order (H.21c)

· · · = · · · .

These equations are valid for m 6= n. Extension to any order in λ is straightforward. Note that
the parameter λ has dropped out of the expressions; it only served to identify the orders of the

perturbation expansion. Note further that to calculate a
(p)
m to order p ≥ 1 we need to know the

correction to the wavefunction |ψqn〉 as well as the energy shift ∆E
(q)
n to order q ≤ p− 1.

Zeroth order

We are now prepared to calculate the energy shifts ∆E
(p)
n . To zeroth order we have En ' E0

n

and a
(0)
m ' 〈φm|ψ0

n〉 = 〈φm|φn〉 = δmn. Note that the approximate wavefunction |ψn〉 ' |φn〉 is
normalized.

H.2.0.1 First order

Proceeding to first order we compare Eqs. (H.17) and (H.16) to obtain

∆E(1)
n = 〈φn|H1|φn〉. (H.22)

With this result we expressed the first-order energy shifts in terms of the (known) unperturbed
states {|φn〉}. Eq. (H.22) is of enormous practical importance. It shows that in the presence of the
perturbation H1 the first-order contribution to the energy is obtained by calculating the expectation
value of H1 under the assumption that the wavefunctions remain unchanged. Also from the intuitive
point of view this is plausible: we expect

∆En =
〈φn|H1|ψn〉
〈φn|ψn〉

' 〈φn|H1|φn〉
〈φn|φn〉

= 〈φn|H1|φn〉 (H.23)

because replacing in Eq. (H.6) the exact (but unknown) state |ψn〉 by the only slightly different (but
known) state |φn〉 will hardly affect the result.

H.2.0.2 Second order

Comparing Eq. (H.16) with (H.17), and using the closure relation the second-order contribution to
the energy shift takes the form

∆E(2)
n =

∑
m

〈φn|H1|φm〉〈φm|ψ1
n〉 − 〈φn|H1|φn〉a(1)

n . (H.24)

Separating the term m = n from the summation it cancels against the second term on the r.h.s.
and Eq. (H.24) reduces to

∆E(2)
n =

∑
m

′a(1)
m 〈φn|H1|φm〉, (H.25)

where the prime indicates the constraint m 6= n. Interestingly, the result for ∆E
(2)
n is independent

of a
(1)
n . This leaves us the freedom to choose the value of a

(1)
n to best serve our purpose. The obvious

choice is a
(1)
n = 0. This not only assures the normalization of the wavefunction to first order in λ,
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see Eq. (H.14), but also has the advantage that the expression for the third-order shift simplifies,
see Eq. (H.16). Eq. (H.25) shows that the second-order correction to the energy follows from the
first-order correction to the state - see Eq. (H.19),

|ψn(λ)〉 ' |φn〉+ λ
∑
m

′a(1)
m |φm〉. (H.26)

To obtain the coefficient a
(1)
m we rewrite Eq. (H.21a) in the form

a(1)
m =

〈φm|H1 |φn〉
E0
n − E0

m

with m 6= n. (H.27)

As this expression is not defined for E0
n = E0

m it is only valid in the absence of degeneracy. Substi-
tuting Eq. (H.27) into Eq. (H.26) the first-order expression for the state is given by

|ψn〉 ' |φn〉+
∑
m

′|φm〉
〈φm|H1 |φn〉
E0
n − E0

m

. (H.28)

Substituting Eq. (H.27) into Eq. (H.25) the second-order correction to the energy is found to be

∆E(2)
n =

∑
m

′ | 〈φn|H1 |φm〉 |2

E0
n − E0

m

. (H.29)

Note that this second-order contribution to the energy shift consists of a summation over all states
|φm〉 except the state |φn〉 under consideration. This feature of second-order perturbation theory is
called summation over virtual excitations or virtual transitions to excited states.

Closure approximation: It is possible to set limits on |∆E(2)
n | by over-estimating or under-

estimating all terms of the summation (H.29). We illustrate this for the ground state (n = 0). Since∣∣E0
1 − E0

0

∣∣ ≤ ∣∣E0
m − E0

0

∣∣ ≤ ∣∣E0
0

∣∣ the following inequality holds:

1

|E0
0 |
∑
m

′| 〈φ0|H1 |φm〉 |2 ≤ |∆E(2)
0 | ≤

1

|E0
1 − E0

0 |
∑
m

′| 〈φ0|H1 |φm〉 |2 (H.30)

Using the closure relation the summation can be rewritten in the form∑
m

′ |φm〉 〈φm| = 1− |φn〉 〈φn| (H.31)

and the inequality becomes

〈φ0|H2
1 |φ0〉 − |〈φ0|H1 |φ0〉|2

|E0
0 |

≤ |∆E(2)
0 | ≤

〈φ0|H2
1 |φ0〉 − |〈φ0|H1 |φ0〉|2

|E0
1 − E0

0 |
, (H.32)

The quantity

(∆H1)
2

= 〈φ0|H2
1 |φ0〉 − |〈φ0|H1 |φ0〉|2

is the variance of the perturbing term H1 in the state |φ0〉. This approximation is known as the
closure approximation.
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H.2.0.3 Third order

In many cases the determination of the first-order contribution ∆E
(1)
n is already adequate for a good

estimate of the level shift, with ∆E
(2)
n serving as a tool to get an impression of the convergence of

the perturbation expansion. When the first-order shift happens to be zero, ∆E
(1)
n = 0, the second

order contribution may still be nonzero and provide the leading contribution to the shift of the
energy levels. Rarely we will need the third-order contribution. The reason to proceed anyhow
and calculate the third order is that a new element enters the discussion with consequences for the
normalization of the wavefunction to second order in λ. Comparing Eqs. (H.17) and (H.16) and

using the choice a
(1)
n = 0 the third-order contribution to the energy shift can be written in the form

∆E(3)
n =

∑
m

〈φn|H1|φm〉〈φm|ψ2
n〉 − 〈φn|H1|φn〉a(2)

n . (H.33)

As the term m = n from the summation cancels against the second term on the r.h.s. the expression

for ∆E
(3)
n becomes

∆E(3)
n =

∑
m

′a(2)
m 〈φn|H1|φm〉. (H.34)

The result for ∆E
(3)
n is independent of a

(2)
n . Thus, like for a

(1)
n we have the freedom to choose

a
(2)
n . Choosing a

(2)
n = 0 has the advantage that the expression for the fourth-order term simplifies.

However, unlike in the second-order case this choice does not conserve the normalization as is

evident from Eq. (H.14). Normalization requires a
(2)
n + a

(2)∗
n + 〈ψ1

n|ψ1
n〉 = 0. Hence, we have the

choice between unit normalization or a simplified hierarchy of equations of higher order. To keep

the procedure simple we choose for the latter (a
(2)
n = 0) and correct for the loss of normalization by

renormalizing the final result. We return to this renormalization below. To determine the coefficient

a
(2)
m for m 6= n we use the closure relation to rewrite Eq. (H.21b) in the form

(E0
n − E0

m)a(2)
m =

∑
ν

′〈φm|H1|φν〉〈φν |ψ(1)
n 〉 −∆E(1)

n a(1)
m with m 6= n, (H.35)

where the term ν = n could be excluded because a
(1)
n was previously chosen to be zero. Substituting

the first-order results (H.22) and (H.27) the expression for the second-order coefficient becomes

a(2)
m =

∑
ν

′ 〈φm|H1|φν〉〈φν |H1|φn〉
(E0

n − E0
ν) (E0

n − E0
m)
− 〈φm|H1|φn〉〈φn|H1|φn〉

(E0
n − E0

m)2
with m 6= n. (H.36)

Substituting this result into Eq. (H.34) we find for the third-order shift

∆E(3)
n =

∑
m,ν

′ 〈φn|H1|φm〉〈φm|H1|φν〉〈φν |H1|φn〉
(E0

n − E0
ν) (E0

n − E0
m)

− 〈φn|H1|φn〉
∑
m

′ |〈φm|H1|φn〉|2

(E0
n − E0

m)2
. (H.37)

H.2.1 Renormalization of the wavefunction

It is straightforward to show by induction that Eq. (H.25) can be generalized to arbitrary order by

choosing a
(p)
n = 0 for all orders p ≥ 1. With this convention we have an(λ) = 1 and the expression

for the energy shifts (H.15) reduces to

∆En(λ) = λ〈φn|H1|φn〉+ λ2〈φn|H1|ψ1
n〉+ · · · = λ〈φn|H1|ψn(λ)〉. (H.38)

Here we recognize a conveniently simplified form of Eq. (H.6). However, as mentioned above, with
this convention the normalization differs from unity,

〈ψn(λ)|ψn(λ)〉 = 1 + λ2〈ψ1
n|ψ1

n〉+ λ3[〈ψ1
n|ψ2

n〉+ 〈ψ2
n|ψ1

n〉] + · · · . (H.39)



H.3. Perturbation theory for degenerate levels 367

As the result (H.38) depends on the norm of |ψn(λ)〉 we have to correct for the normalization error
by multiplying with a renormalization factor,

∆En(λ) =
λ〈φn|H1|ψn(λ)〉
〈ψn(λ)|ψn(λ)〉1/2

= λ〈φn|H1|ψn(λ)〉Z1/2. (H.40)

The quantity

Z =
1

〈ψn(λ)|ψn(λ)〉
= 1− λ2〈ψ(1)

n |ψ(1)
n 〉+ · · · (H.41)

is called the renormalization constant. Note that the renormalization correction enters as a second-
order correction in λ. Using the closure relation as well as Eq. (H.27) the renormalization constant
becomes

Z = 1− λ2
∑
m

′ | 〈φn|H1 |φm〉 |2

(E0
n − E0

m)2
+ · · · . (H.42)

H.3 Perturbation theory for degenerate levels

In this section we turn to the perturbation theory for a g-fold degenerate energy level E0
n of the

unperturbed Hamiltonian H0, corresponding to bound states |φn,k〉, with k ∈ {1, · · · , g}, where the
value of g will generally depend on the primary quantum number n. In this case the Schrödinger
equation of H0 takes the form

H0 |φn,k〉 = E0
n |φn,k〉 with k ∈ {1, · · · , g}, (H.43)

where the manifold of normalized eigenstates {|φn,k〉}, with k ∈ {1, · · · , g}, span the degenerate
subspace of level E0

n but are not necessarily orthogonal,

Sik = 〈φn,i|φn,k〉 6= δik. (H.44)

The quantity Sik represents the overlap matrix for the eigenstates |φn,k〉 of the degenerate subspace.
The set {|φn,k〉}, with k ∈ {1, · · · , g}, can of course always be orthogonalized to provide a complete
set of orthonormal eigenstates. Implicitly, we suppose that this orthogonalization has been done

〈φn,i|φn,k〉 = δik. (H.45)

As we will see this diagonalization, although convenient, is not sufficient to deal with the degenerate
case.

Ordinary perturbation theory fails in the degenerate case by divergence at the level of Eqs. (H.27)
and (H.29) because E0

n,k = E0
n,l for k 6= l ∈ {1, · · · , g}. As will appear, for a degenerate manifold of

states, the effect of the perturbation is not so much an over-all shift of the manifold but a relative
shift of the degenerate sublevels with respect to each other. This is called lifting of the degeneracy
by level splitting. To approximate the perturbed basis states {|ψn,k〉} we reconsider the Hamiltonian
(H.7) with corresponding Schrödinger equation

H(λ) |ψn,k(λ)〉 = En,k(λ) |ψn,k(λ)〉 . (H.46)

For this case the expression (H.9) takes the form

En,k(λ) = E0
ν + λ

〈φν,i|H1 |ψn,k(λ)〉
〈φν,i|ψn,k(λ)〉

. (H.47)

To obtain approximate expressions for the levels En,k(λ) we start, in analogy with Eq. (H.11), with
the Ansatz

|ψn,k(λ)〉 ≡ |φn,k〉+ λ|ψ1
n,k〉+ λ2|ψ2

n,k〉+ · · · . (H.48)
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Figure H.1: Heuristic diagram for the selection of the optimal basis for perturbation theory of a degenerate
level. The perturbation removes the ambiguity in the choice of basis vectors and this imposes a constraint
in the choice of the unperturbed basis.

However, in the present case immediately an ambiguity arises. It is not obvious which of the
unperturbed states from the degenerate manifold {|φn,k〉} of energy E0

n should be chosen in the
expansion. Actually, any normalized linear combination of states from the degenerate the manifold
{|φn,k〉} will also be an eigenstate of H0 of energy E0

n. Therefore, it is not a priori clear how to
choose an orthonormal set {|χn,k〉} within the degenerate subspace of the manifold n such that the
|ψpn,k〉 with p ≥ 1 represent a small correction with respect to |χn,k〉 for λ→ 1. This becomes clear
only after we know how the symmetry of H0 is broken by the perturbation H1.

Let us presume that {|χn,i〉} is the (unknown) orthonormal set of the manifold n that we are
looking for and {|φm,k〉} is the subset of the basis {|φn,k〉} for which m 6= n, (see Fig. H.1). The
selection of the optimal basis is illustrated in Fig. H.1. For the optimal basis the following closure
relation holds

1 =
∑
i

|χn,i〉〈χn,i|+
∑
m,k

′|φm,k〉〈φm,k| ≡
∑
ν,µ

|ψ0
ν,µ〉〈ψ0

ν,µ|, (H.49)

where the prime indicates m 6= n and

{|ψ0
ν,µ〉} =

 {|χn,µ〉} for ν = n

{|φν,µ〉} for ν 6= n.
(H.50)

For this new set of eigenstates the Ansatz (H.48) takes the form

|ψn,k(λ)〉 ≡ |χn,k〉+ λ|ψ1
n,k〉+ λ2|ψ2

n,k〉+ · · · . (H.51)

This implies for the function aνµ,nk(λ) the following expansion in powers of λ:

aνµ,nk(λ) = 〈ψ0
ν,µ|ψn,k(λ)〉 = δνµ,nk + λa

(1)
νµ,nk + λ2a

(2)
νµ,nk + · · · , (H.52)

where the coefficients are defined by a
(p)
νµ,nk = 〈ψ0

ν,µ|ψ
p
n,k〉. Substituting this expansion into Eq. (H.47)

we obtain for the special case ν = n, µ = k

En,k(λ) = E0
n +

λ〈χn,k|H1|χn,k〉+ λ2〈χn,k|H1|ψ1
n,k〉+ · · ·

1 + λa
(1)
nk,nk + λ2a

(2)
nk,nk + · · ·

. (H.53)

Expanding Eq. (H.53) in powers of λ we obtain

En,k(λ) = E0
n + λ〈χn,k|H1|χn,k〉+ λ2[〈χn,k|H1|ψ1

n,k〉 − 〈χn,k|H1|χn,k〉a(1)
nk,nk] + · · · . (H.54)

This expression defines the energy shifts order by order,

En,k(λ) ≡ E0
n + λ∆E

(1)
n,k + λ2∆E

(2)
n,k + λ3∆E

(3)
n,k + · · · . (H.55)
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H.3.0.1 First order

Comparing Eqs. (H.54) and (H.55) we obtain for the first-order shift,

∆E
(1)
n,k = 〈χn,k|H1|χn,k〉. (H.56)

Note that this expression coincides with the expression for the first-order energy shift given by
Eq. (H.22) from non-degenerate perturbation theory. The coupling to other manifolds does not
enter the expression; only matrix elements diagonal in the quantum number n appear. In this sense,
the quantum number n is always conserved to first order in perturbation theory and n is called a
“good quantum number to first order in perturbation theory”.

H.3.0.2 Second order

Proceeding to second order we obtain with the aid of Eq. (H.49)

∆E
(2)
n,k =

∑
m,l

〈χn,k|H1|ψ0
m,l〉〈ψ0

m,l|ψ1
n,k〉 − 〈χn,k|H1|χn,k〉a(1)

nk,nk. (H.57)

This is the analogue of (H.24). Separating the term with (m = n, l = k) from the summation it
cancels against the subtracted term and we obtain

∆E
(2)
n,k =

∑
m,l

′〈χn,k|H1|φm,l〉a(1)
ml,nk, (H.58)

where the prime indicates the summation constraint (m 6= n, l 6= k) , which implies |ψ0
m,l〉 = |φm,l〉

as follows from (H.50). As Eq. (H.58) does not depend on a
(1)
nk,nk we may choose a

(1)
nk,nk = 0.

To determine the other coefficients a
(1)
ml,nk we consider Eq. (H.47) for (ν, µ) = (m, l) 6= (n, k)

En,k(λ) = E0
m +

λ〈ψ0
m,l|H1|χn,k〉+ λ2〈ψ0

m,l|H1|ψ1
n,k〉+ · · ·

λa
(1)
ml,nk + λ2a

(2)
ml,nk + · · ·

. (H.59)

Replacing the l.h.s. by the expansion (H.55) and collecting the terms of first order in λ we obtain

(E0
n − E0

m)a
(1)
ml,nk = 〈ψ0

m,l|H1|χn,k〉. (H.60)

Here we distinguish two cases:

• for (m = n, l 6= k) we have
〈χn,l|H1|χn,k〉 = 0, (H.61)

independent of the value of a
(1)
nl,nk; this provides us with the freedom to choose a

(1)
nl,nk = 0 for

given n, k and all values of l.

• for m 6= n we obtain, irrespective of the values of l and k,

a
(1)
ml,nk =

〈φm,l|H1|χn,k〉
E0
n − E0

m

. (H.62)

Substituting these expressions for a
(1)
ml,nk the expression for the second order shift reduces to

∆E
(2)
n,k =

∑
m,l

′ |〈φm,l|H1|χn,k〉|2

E0
n − E0

m

, (H.63)

where the prime indicates the summation constraint m 6= n. Note that Eq. (H.63) is formally
identical to the result (H.29) obtained with ordinary perturbation theory because summing over
both m and l represents the summation over all states non-degenerate with the manifold {χn,k}.
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H.3.0.3 Relation with the unperturbed eigenstates

What remains to be done is to express the orthonormal set {|χn,k〉} in terms of the (known) set
{|φn,k〉}. From Eqs. (H.56) and (H.61) we find that this set diagonalizes the degenerate subspace,

〈χn,l|H1|χn,k〉 = ∆E
(1)
n,kδkl, (H.64)

but in general not the rest of the Hilbert space - see (H.62),

〈φm,l|H1|χn,k〉 = (E0
n − E0

m)a
(1)
ml,nk 6= 0 for m 6= n. (H.65)

Hence, the orthonormal set {|χn,k〉} represents a basis for the degenerate subspace. Only when
the operators H0 and H1 commute they can share a complete basis for the full Hilbert space (see
Problem F.1). Thus, restricting ourselves to the degenerate subspace we may write

H1|χn,k〉 = εk|χn,k〉 for k ∈ {1, · · · , g}, (H.66)

where we use the shorthand notation εk ≡ ∆E
(1)
n,k. The eigenstates of the (unknown) set {|χn,k〉}

and the (known) set {|φn,k〉} are related by a basis transformation,

|χn,k〉 =
∑
j

cjk|φn,j〉 with
∑
j

|cjk|2 = 1, (H.67)

where the coefficients cjk ≡ 〈φn,j |χn,k〉 are yet to be determined. These coefficients follow in three
steps. First we project both sides of the Schrödinger equation for the degenerate subspace as given
by Eq. (H.66) onto an arbitrary state |φn,i〉 from the (known) set {|φn,k〉},

〈φn,i|H1|χn,k〉 = εk〈φn,i|χn,k〉. (H.68)

In the second step we replace |χn,k〉 in Eq. (H.68) by the superposition (H.67) and obtain a set of g
equations with g unknowns, one for each possible choice of i ∈ {1, · · · , g},∑

j

cjk[〈φn,i|H1|φn,j〉 − εkδij ] = 0. (H.69)

The third step is to solve these equations, which is possible if and only if the secular equation is
satisfied,

det
∣∣H ′ij − ε δij∣∣ = 0, (H.70)

where

H ′ij = 〈φn,i|H1|φn,j〉 (H.71)

is the coupling matrix. Eq. (H.70) represents a polynomial of order g in powers of ε and is called
the characteristic polynomial (secular equation) of the set of equations. The set of equations has
g solutions for the set of coefficients {c1k, · · · cgk}, each corresponding to one of the roots εk ∈
{ε1, · · · , εg} of the characteristic polynomial. Finding these solutions amounts to the diagonalization
of a g × g matrix eigenvalue problem, well-known from linear algebra. The roots correspond to
the eigenvalues εk and the corresponding eigenvectors define the coefficients {c1k, · · · cgk}. This
completes our task of expressing |χn,k〉 in terms of the (known) eigenstates {|φn,i〉} of the degenerate
subspace of level n.
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H.3.1 Reduction to ordinary first-order perturbation theory

Interestingly, in many practical cases involving degenerate levels we can calculate the perturbation
shifts using the simple first-order expression form ordinary perturbation theory. In such cases it is
said that “perturbation theory for degenerate levels reduces to ordinary perturbation theory”. To
introduce this topic we consider the special case in which we can select a basis {|φn,k〉} in which not
only H0 but also H1 is diagonal,

H0|φn,k〉 = E0
n|φn,k〉 (H.72a)

H1|φn,k〉 = ∆En,k|φn,k〉. (H.72b)

The existence of a basis {|φn,k〉} with the given properties is assured if the operators H0 and H1

commute (see Problem F.1). Obviously, in this case there is no need for explicit diagonalization
because the full Hamiltonian is already diagonal, with the quantum number n associated with H0

and k with H1. This situation arises when, in the modeling of a physical system, a new feature is
introduced; e.g., an external field. When the new feature involves a new degree of freedom (e.g., spin)
the Hilbert space has to be expanded accordingly, turning the eigenstates |φn〉 of H0 into degenerate
manifolds {|φn,k〉} of H0. The energy shifts associated with the new feature are captured by the
term H1 in the Hamiltonian. As the new Hamiltonian H = H0 +H1 is already diagonal in the basis
{|φn,k〉} we can restrict ourselves to calculating the energy shifts caused by the term H1,

∆En,k = ∆E
(1)
n,k + ∆E

(2)
n,k + · · · for k ∈ {1, · · · , g}, (H.73)

where
∆E

(1)
n,k = 〈φn,k|H1|φn,k〉 (H.74)

and

∆E
(2)
n,k =

∑
m,l

′ |〈φm,l|H1|φn,k〉|2

E0
n − E0

m

= 0. (H.75)

Thus, the shift is given by the expression for “ordinary” first order perturbation theory because all

terms of higher order (∆E
(2)
n,k, ∆E

(3)
n,k, · · · ) vanish by orthogonality of the basis states {|φn,k〉}, as

follows directly by substituting (H.72b) into (H.75). This is of course as it should be because if the
full Hamiltonian is already diagonal, we have the exact solution at our disposal and there is nothing
that perturbation theory can add to this.

In view of the above, it is good practice to first check the commutation properties of H0 and
H1 and search (in case [H0,H1] = 0) for a basis that is diagonal for all quantum numbers. Only
if this search is unsuccessful we have to turn to perturbation theory for degenerate levels and
diagonalize the perturbation matrix explicitly. Interestingly, in important cases (e.g., spin-orbit
coupling) the commutation of the operators H0 and H1, although not exact, is close to perfect.
In these cases we can take advantage of the rule that n is always a “good quantum number to
first order in perturbation theory” and use the basis (H.50) for which H1 is only diagonal in the
manifold of interest; i.e., H1|χn,k〉 = ∆En,k|χn,k〉. Whether first-order perturbation theory yields
a sufficiently good approximation can only be justified by verifying that the higher-order shifts are
sufficiently small. Fortunately, in many cases a rough estimate suffices to convince ourselves that
this requirement is satisfied.

Comment A: the level splitting by the orbital Zeeman interaction HZ is an example that can
be analyzed with first-order perturbation theory in the basis of the Schrödinger Hamiltonian H0.
This is possible because [H0,HZ ] = 0. In this case the exact result coincides with the first-order
expression from ordinary perturbation theory.

Comment B : the level shifts by the relativistic mass correction, the spin-orbit interaction and
the hyperfine interaction are examples of cases where full commutation with the perturbation is
absent but the Hamiltonian is close to diagonal in the basis of the subspace of interest because
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the principal quantum number is always a “good quantum number to first order in perturbation
theory”. Hence, this is a good approximation as long as the second- and higher-order contributions
are negligible.

H.4 Example: the two-fold degenerate case

In this section we turn to the special case of a 2-fold degenerate manifold of two bound states |a〉
and |b〉 with primary quantum number n, unperturbed energy E0

n and satisfying the Schrödinger
equation

H0 |φn,i〉 = E0
n |φn,i〉 with |φn,i〉 ∈ {|a〉 , |b〉}. (H.76)

For simplicity the unperturbed states states |a〉 and |b〉 are presumed to be orthonormal. The full
Hamiltonian H = H0 +H1 satisfies the Schrödinger equation

H |ψn,k〉 = En,k |ψn,k〉 , (H.77)

where En,k = E0
n + ∆Ek, with ∆Ek the energy shift of level k ∈ {1, 2}. In the perturbation theory

for degenerate levels the first-order approximation to the level shift, ∆Ek ' εk, is obtained by diag-
onalization of the degenerate subspace with respect to the perturbation H1. In this approximation
the problem reduces to case (a) discussed for two-level systems in Appendix G.3.1.
Comment A: The two-level case is used to calculate the zero-field fine-structure splitting in hydrogen-
like atoms and the zero-field hyperfine splitting of hydrogen-like atoms in the electronic ground state.
Comment B : The exchange splitting in the helium atom can be estimate by first-order perturbation
theory of a two-fold degenerate level and corresponds to the symmetric case of strong coupling.
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Variational Methods

I.1 Introduction

I.1.1 Fundamental theorem

The fundamental theorem of variational calculus states that the equation M(x) = 0 holds if the

integral I =
´ b
a
M(x)h(x)dx vanishes for any smooth function h(x). By smooth we mean in this

context that h(x), h′(x) and h′′(x) are continuous.

I.1.2 Extremal values of a continuous function

In physics we often have to search for a maximum or minimum (i.e., extremum) of some function.
So, let f(v) be a continuous function of n variables, represented by the real vector v = (v1, · · · , vn),
defined on the domain v ∈ V . In general f(v) will not be bounded; i.e., have no extreme points.
Therefore, we shall suppose that f(v) has an extreme value at the point v0. Three types of extrema
can be distinguished: (a) critical points (if ∂vf(v)|v=v0 = 0); (b) singular points (if ∂vf(v) does
not exist at v0); (c) boundary points (if v0 is a point at the boundary of the domain V ). Here
∂v represents the gradient with respect to the variables v1, · · · , vn. Inversely, if we have identified
a critical, singular or boundary point, this is not automatically an extreme point. The point can
also be a local rather than a global extremum or some kind of saddle point. In such cases further
inspection will be necessary and may be labor intensive.

I.1.3 Extremal values of a function in the presence of constraints - Lagrange multipliers

In important cases we have to search for the extrema of the function f(v) in the presence of one or
more constraints. Such a constraint can be an inequality (e.g., restricting the domain of definition
of the function) or an equality (e.g., a normalization condition). In the latter case the number
of independent variables is reduced, which means that in principle one of the variables could be
eliminated but for many types of constraints this turns out to be impractical.

For smooth functions we can turn to the method of Lagrange multipliers. To introduce this
method we consider again the function f(v) of n variables, represented by the real vector v =
(v1, · · · , vn), defined on the domain v ∈ V and subject to m ≤ n− 1 equality constraints

gj(v) = 0, (1 ≤ j ≤ m) . (I.1)

If f(v) has a critical point at v0 we can define a function of n+m variables,

L(v, λ1, · · ·λm) = f(v) + λ1g1(v) + · · ·+ λmgm(v), (I.2)
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with the property that L(v, λ1, · · ·λm) has a critical point at (v0, λ1, · · ·λm) provided ∂vgj(v0) 6= 0
for 1 ≤ j ≤ m. The function L(v, λ1, · · ·λm) is called the Lagrangian of the function f(v) under the
constraints gj(v) = 0 and λ1, · · ·λm are called Lagrange multipliers. Any critical point must satisfy
the set of n+m equations

∂L
∂vi

= 0 (1 ≤ i ≤ n) (I.3)

∂L
∂λj

= 0 (1 ≤ j ≤ m) . (I.4)

I.2 Rayleigh-Ritz variational principle

In this section we introduce the variational principle for the determination of eigenvalues and eigen-
functions of a quantum mechanical system. According to this principle any state |ψ〉 in the Hilbert
space of the Hamiltonian H for which the expectation value

E[ψ] =
〈ψ|H|ψ〉
〈ψ|ψ〉

(I.5)

is stationary under arbitrary functional variations of the state |ψ〉, is an eigenstate of H with
eigenvalue E[ψ].

To derive this theorem we consider the change of the energy functional E[ψ] = 〈ψ|H|ψ〉 under
an arbitrary variation ψ → ψ + δψ

δE = E[ψ + δψ]− E[ψ] =
〈ψ + δψ|H|ψ + δψ〉 − E〈ψ + δψ|ψ + δψ〉

〈ψ + δψ|ψ + δψ〉
. (I.6)

Expanding this expression up to lowest order in the variation we obtain with the aid of Eq. (I.5)

〈ψ|ψ〉δE + · · · = 〈ψ|H|ψ〉+ 〈δψ|H|ψ〉+ 〈ψ|H|δψ〉 − E〈ψ|ψ〉 − E〈δψ|ψ〉 − E〈ψ|δψ〉+ · · ·
= 〈δψ|H − E|ψ〉+ 〈ψ|H − E|δψ〉+ · · · . (I.7)

Hence, for E[ψ] to be stationary (δE = 0) under real variations of the state vector we require

〈ψ|ψ〉δE = 〈δψ|H − E|ψ〉+ 〈ψ|H − E|δψ〉 = 0. (I.8)

As H is an hermitian operator this condition can be written in the form

〈δψ|H − E|ψ〉+ 〈δψ|H − E|ψ〉∗ = 0. (I.9)

This shows that the variation of the bra 〈ψ| gives rise to a term which is the complex conjugate
of the term arising from the variation of the ket |ψ〉, which has the convenient consequence that if
the energy is stationary under variation of 〈ψ|, the condition for being stationary under variation
of |ψ〉 is simultaneously satisfied. Hence, we can restrict the variational procedure to the variation
of either 〈ψ| or |ψ〉. To complete the derivation we note that the condition

〈δψ|H − E|ψ〉 = 0 under arbitrary variation of ψ (I.10)

can only be satisfied if |ψ〉 is a stationary state of the system with eigenvalue E,

H|ψ〉 = E|ψ〉. (I.11)

Eq. (I.5) is sometimes referred to as the Rayleigh ratio as it can be identified with the Lagrange
multiplier for the normalization constraint 〈ψ|ψ〉 = N in the lagrangian variation of the functional
f [ψ] = 〈ψ|H|ψ〉 - see Problem I.1. The variational principle was introduced by Rayleigh in 1873 [91]
for the identification of the eigenmodes of acoustical systems. The method was further developed
by Ritz in 1909 [92].
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Problem I.1. Show that the Rayleigh ratio (I.5) can be identified with the Lagrange multiplier for the
normalization constraint 〈ψ|ψ〉 = N of the functional f [ψ] = 〈ψ|H|ψ〉.

Solution. The Lagrangian for the variation of f [ψ] = 〈ψ|H|ψ〉 under the constraint 〈ψ|ψ〉 = 1 is given by

L = 〈ψ|H|ψ〉+ λ(〈ψ|ψ〉 − N ).

This Lagrangian is stationary if

δL = 〈ψ + δψ|H|ψ + δψ〉+ λ〈ψ + δψ|ψ + δψ〉 = 0,

which is satisfied for

−λ =
〈ψ + δψ|H|ψ + δψ〉
〈ψ + δψ|ψ + δψ〉 =

δψ→0

〈ψ|H|ψ〉
〈ψ|ψ〉 = E[ψ]. 2

I.2.1 Estimating the ground state energy

The “arbitrary” variations considered in the variational principle remain meaningless unless the
eigenmodes of the system are known. So what to do if the eigenstates of a quantum mechanical
system are unknown? In the present section we show that the ground state energy of a quantum
mechanical system can be found or at least approximated by cleverly choosing a trial wavefunction in
which we try to include all our knowledge (or intuition) about the system, for instance by imposing
a known symmetry. To demonstrate the procedure we consider a physical system described by the
Hamiltonian H, for which a complete set of (unknown) eigenstates {|ψn〉} satisfy the Schrödinger
equation

H|ψn〉 = En|ψn〉. (I.12)

Here E0, E1, E2, · · · are the eigenvalues in order of growing energy, E0 being the energy of the (non-
degenerate) ground state |ψ0〉. Let us denote the trial state of the system by |χ〉. The corresponding
trial wavefunction χ (r) is given a functional form (preferably norm conserving) involving on one
or more coefficients α, β, γ, · · · which serve as variational parameters. In general |χ〉 will not be an
eigenstate of H and is not necessarily normalized. Expressing |χ〉 as a linear combination of the
basis states {|ψn〉} we have

|χ (α, β, γ, · · · )〉 =
∑
n

an (α, β, γ, · · · ) |ψn〉. (I.13)

Since En > E0, with n > 0, we can derive the following inequality for the expectation value of H,

〈χ|H|χ〉 =
∑
mn

a∗man〈ψm|H|ψn〉 =
∑
n

|an|2En ≥ E0

∑
n

|an|2. (I.14)

With the aid of this inequality we obtain for the energy of the system

E (α, β, γ, · · · ) =
〈χ|H|χ〉
〈χ|χ〉

≥ E0. (I.15)

This expression is intuitively clear: an arbitrary state will in general not be the ground state and
therefore have an energy larger than E0. The better we succeed in capturing the properties of the
ground state in the trial state the lower will be the energy and the better will be our estimate of E0.
Hence, this important theorem can be used to derive an upper bound for the ground-state energy
of the system. By variation of the parameters α, β, γ, · · · we can minimize the energy of our trial
state. The minimum is obtained if the following equations are satisfied

∂E (α, β, γ, · · · )
∂α

=
∂E (α, β, γ, · · · )

∂β
=
∂E (α, β, γ, · · · )

∂γ
= · · · = 0. (I.16)



376 Appendix I. Variational Methods

In view of the inequality (I.15) the minimal value must be larger or equal than E0. Accordingly,
simultaneously imposing the conditions (I.16) is not equivalent to an arbitrary variation of |ψ0〉.
In other words, minimizing the energy by variation of the trial wavefunction does not lead us
necessarily to the exact state. However, the procedure neither excludes this possibility. In Problem
I.2 we demonstrate the method by obtaining an upper bound for the ground state energy of a
harmonic oscillator.

Problem I.2. The Hamiltonian of the 1D harmonic oscillator is given by

H = − ~2

2m

d2

dx2
+

1

2
mω2x2.

Determine an upper bound for the ground state energy of the 1D harmonic oscillator using the variational
trial function χ(x) = exp[− 1

2
αx2]. Compare this value with the exact value.

Solution. Applying the inequality (I.15) the energy of the trial state χ(x) satisfies the relation

E(α) =

´
exp[− 1

2
αx2]H exp[− 1

2
αx2]dx´

exp[−αx2]dx
≥ E0.

Substituting the expression for H and evaluating the integrals we obtain

E(α) = − ~2

2mα

´∞
0

exp[− 1
2
x2] d

2

dx2
exp[− 1

2
x2]dx´∞

0
exp[−x2]dx

+ 1
2
mω2α

´∞
0
x2 exp[−x2]dx´∞

0
exp[−x2]dx

=
~2

4mα
+ 1

4
mω2α ≥ E0.

In this case we have only one variational parameter. Varying E(α) with respect to α the stationary value is
reached for

∂E

∂α
= − ~2

4mα2
+ 1

4
mω2 = 0,

which implies α = ~/mω. It is easily verified that the stationary value corresponds to the minimum of the
function E(α) and substituting the value α = ~/mω we obtain

E = 1
2
~ω.

This happens to the be the exact value because our trial function is of the same form as the true ground
state. Any other choice of trial function will yield E(α) > 1

2
~ω. 2

I.3 Variational method for degenerate states

In many cases we have to deal with the phenomenon of lifting of a degeneracy by some form of
symmetry breaking in the Hamiltonian H. To discuss this phenomenon we consider a set with g
degenerate states which we shall denote by |χi〉, with i ∈ {1, · · · , g}. The states |χi〉 need not be
orthogonal or normalized. Because the states are degenerate we have

E0 =
〈χi|H0 |χi〉
〈χi|χi〉

for i ∈ {1, · · · , g}, (I.17)

where H0 is the Hamiltonian without symmetry breaking. To analyze how the degeneracy of the
states |χi〉 is lifted we choose a trial wavefunction in which g variational parameters c1, c2, · · · , cg
are chosen as the coefficients of a linear combination of the type

|ψk〉 =

g∑
i=1

ci |χi〉 . (I.18)

The energy of the trial wave function is given by

Ek =
〈ψk|H |ψk〉
〈ψk|ψk〉

=

∑
i

∑
j c
∗
i cj 〈χi|H |χj〉∑

i

∑
j c
∗
i cj 〈χi|χj〉

. (I.19)



I.3. Variational method for degenerate states 377

Using the rule that it suffices to vary either the state vector or its adjoint (see Section I.2) we
differentiate this expression with respect to c∗i and obtain

∂Ek
∂c∗i

=

(∑
i

∑
j c
∗
i cj

)∑
j cjHi,j −

(∑
i

∑
j c
∗
i cjHij

)∑
j cjSij(∑

i,j c
∗
i cjSij

)2 =

∑
j cj(Hij − ESij)∑

i,j c
∗
i cjSij

. (I.20)

Here we defined
Hij = 〈χi|H |χj〉 (I.21)

as well as the quantity
Sij = 〈χi |χj〉 , (I.22)

called the overlap integral . The energy Ek is stationary under variation of c∗i when ∂E/∂c∗i = 0,
which is the case for ∑

j

cj(Hij − ESi,j) = 0. (I.23)

Repeating this procedure for all c∗i with i ∈ {1, · · · , g} we obtain g simultaneous equations for the g
unknown variables cj . This set of equations only has non-trivial solutions when the so-called secular
determinant vanishes,

det |Hij − ESij | = 0. (I.24)

This expression is called the secular equation and represents a polynomial of power g. The solutions
define g energy levels, Ei with i ∈ {1, · · · , g}, which are stationary with respect to small variations
of the coefficients of the corresponding trial states.

I.3.1 Lifting of degeneracy by a small symmetry-breaking term

As a first special case we discuss the situation where the Hamiltonian H can be broken up in two
hermitian parts,

H = H0 +H1, (I.25)

where the Schrödinger equation H0 |φi〉 = E0 |φi〉, with i ∈ {1, · · · , g}, defines a g-fold degenerate
manifold of levels corresponding to an orthonormal set of g eigenstates {|φi〉}. The term H1 is
presumed to break the symmetry and is here taken to be small.

Using the formalism introduced above we set |χi〉 = |φi〉 and since the {|φi〉} are eigenstates of
H0 we have zero overlap between different states,

Sij = 〈φi |φj〉 = δi,j . (I.26)

Further, we have
Hi,j = 〈φi|H0 |φj〉+ 〈φi|H1 |φj〉 = E0δij +H′ij , (I.27)

where we defined
H′i,j = 〈φi|H1 |φj〉 . (I.28)

Substituting Eqs. (I.26) and (I.27) into the secular equation (I.24) we obtain

det
∣∣H′i,j − ε1δi,j

∣∣ = 0, (I.29)

where ε1 = E −E0. This equation has g solutions, ε1 = ∆Ei with i ∈ {1, · · · , g}, which correspond
to the energy shifts of the levels Ei with respect to the degenerate value E0,

Ei = E0 + ∆Ei with i ∈ {1, · · · , g}. (I.30)

Comment : This result coincides with first-order perturbation theory for a degenerate level and
is further discussed in Section H.3.



378 Appendix I. Variational Methods

I.3.2 Variation method applied to two degenerate states

As a second special case we discuss the situation of two normalized real states |a〉 and |b〉, not
necessarily orthogonal, and of the same energy.

• Because the states are degenerate we have

H00 ≡ Haa = 〈a|H |a〉 = 〈b|H |b〉 = Hbb. (I.31)

• Because the states are real and H is hermitian

V ≡ Hab = 〈a|H |b〉 = 〈b|H† |a〉∗ = 〈b|H |a〉 = Hba

• Because the states are not necessarily orthogonal we have in general

S ≡ Sab = 〈a|b〉 = 〈b|a〉 = Sba 6= 0

In search for a state of lower energy we construct a trial state

|χ〉 = a |a〉+ b |b〉 . (I.32)

Applying the variational principle to the coefficients a and b we obtain the secular equation∣∣∣∣∣∣H00 − E V − ES
V − ES H00 − E

∣∣∣∣∣∣ = 0, (I.33)

which can be written as (H00 − E)
2

= (V − ES)
2
. Solving the quadratic equation yields for the

eigenvalues

E± =
(H00 ± V )

(1± S)
. (I.34)

The coefficients fixing the eigenstates are found from

〈a|H |χ〉 = E± 〈a|χ〉 ⇔ a±H00 + b±V = E± (a± + b±S) , (I.35)

which can be written as
a±
b±

=
E±S − V
H00 − E±

= ±1. (I.36)

As the overlap is non-zero the normalization condition is

1 = 〈χ|χ〉 = |a|2 + |b|2 + 2abS (I.37)

Hence, setting |a|2 = |b|2 = |c|2 we find for the coefficients

|c±|2 =
1

2(1± S)
. (I.38)

Comment : This variational method is used to calculate the exchange splitting in two-electron
atoms (in this case S = 0). It is also the basis for the description of bonding and anti-bonding
orbitals in quantum chemistry (in this case S 6= 0).



J

Clebsch-Gordan coefficients

J.1 Relation with the Wigner 3j symbols

The Clebsch-Gordan coefficients 〈j1m1; j2m2|JM〉 for the coupling (j1 × j2) of two quantized an-
gular momenta j1 and j2 into the total quantized angular momentum J are related to the Wigner
3j symbols,

〈j1m1; j2m2|JM〉 ≡ (−1)j1−j2+M
√

2J + 1

 j1 j2 J

m1 m2 −M

 , (J.1)

where |JM〉 is a state of the coupled angular momentum and |j1m1; j2m2〉 ≡ |j1m1〉1⊗ |j2m2〉2 is a
product state. Note that (−1)j1−j2+M = (−1)j2−j1−M because j1− j2 +M is always an integer. By
convention the CGCs with maximum projection of the total angular momentum are non-negative
(sign convention),

〈j1j1; j2(J − j1)|JJ〉 ≥ 0, (J.2)

and unity for the stretched state (stretched-state convention),

〈j1j1; j2j2|JmaxJmax〉 = 1, (J.3)

where Jmax = j1 + j2.
The Wigner 3j symbols can be visualized by the vector diagram shown in Fig. J.1. The properties

are listed below for the 3j symbol

 j1 j2 j3

m1 m2 m3

 :

Reality:

• 3j symbols are real

Selection rules:

• 3j symbols are zero unless the triangle inequality ∆ (j1j2j3) holds; this is the case if

|ja − jb| ≤ jc ≤ ja + jb (J.4)

with a, b, c representing any cyclic permutation of 1, 2, 3.

• 3j symbols are zero unless j1 + j2 + j3 is integral and the angular momentum projection is
conserved,

j1 + j2 + j3 ∈ {0, 1, · · · } and m1 +m2 +m3 = 0 (J.5)

379
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Figure J.1: To establish whether a 3j symbol is manifestly zero one can use a vector diagram, shown here
for the example j1 = j2 = 1, j3 = 2. The given 3j symbol is valid (i.e., not manifestly zero) because the
triangle is closed and the projections onto the z axis are quantized in integer values; hence, the triangle
inequality is satisfied, j1 + j2 + j3 is integral and the projections onto the z axis add up to zero.

Symmetries:

• invariant under cyclic permutation

• multiplied by (−1)j1+j2+j3 under interchange of two columns

• multiplied by (−1)j1+j2+j3 under simultaneous change of sign, m1,m2,m3 → −m1,−m2,−m3

Orthogonality:

∑
m1m2

(2j3 + 1)

 j1 j2 j3

m1 m2 m3

 j1 j2 j′3

m1 m2 m
′
3

 = δj3,j′3δm3,m′3
(J.6)

j1+j2∑
j3=|j1−j2|

j3∑
m3=−j3

(2j3 + 1)

 j1 j2 j3

m1 m2 m3

 j1 j2 j3

m′1 m
′
2 m3

 = δm1,m′1
δm2,m′2

(J.7)

In particular:

∑
m1

(2j3 + 1)

 j1 j2 j3

m1 (m3 −m1)−m3

2

= 1 (J.8)

2j∑
J=0

J∑
M=−J

(2J + 1)

 j j J

m1 m2 M

2

= 1 (J.9)

Even and odd summations:

2j∑
J=even

J∑
M=−J

(2J + 1)

 j j J

m1 m2 M

2

=
1

2
(J.10a)

2j∑
J=odd

J∑
M=−J

(2J + 1)

 j j J

m1 m2 M

2

=
1

2
(J.10b)



J.1. Relation with the Wigner 3j symbols 381

Racah formula j1 j2 J

m1 m2 −M

 = (−1)j1−j2+M
√

∆(j1j2J)

×
√

(j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)! (J +M)! (J −M)!

×
∑
t

(−)t

t!(J − j2 + t+m1)!(J − j1 + t−m2)!(j1 + j2 − J − t)!(j1 − t−m1)!(j2 − t+m2)!
(J.11)

where t = 0, 1, · · · and the quantity

∆(abc) ≡ (a+ b− c)!(b+ c− a)!(c+ a− b)!
(a+ b+ c+ 1)!

(J.12)

offers a logical measure for the triangle inequalities; these are satisfied for ∆(j1j2J) > 0, whereas
for ∆(j1j2J) = 0 they are violated.

J.1.1 Special cases for given values of J

• J taking its maximum value J = j1 + j2 j1 j2 J

m1 m2 −M

 =
(−1)j1−j2+M

√
2J + 1

√
(2j1)!(2j2)!

(2J)!

√
(J +M)! (J −M)!

(j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)!

(J.13)

• the stretched case (J,M maximal); this implies J = j1 + j2 and M = J , with m1 = j1 and
m2 = j2,  j1 j2 j1 + j2

m1 m2 −(j1 + j2)

 =
(−1)2j1√

2(j1 + j2) + 1
δm1,j1δm2,j2 . (J.14)

Since 2j1 is always integral, the corresponding Clebsch-Gordan coefficient is always unity,

〈j1j1j2j2|(j1 + j2)(j1 + j2)〉 = 1. (J.15)

• J = 0 :  j j 0

m−m 0

 = (−1)j−m
1√

2j + 1
⇔ 〈jm00|j,m〉 = 1 (J.16)

• J = 1/2 (note that j +m is always an integer): j j + 1
2

1
2

m −m′ ± 1
2

 = (−1)j−m
′−1/2

√
j + 1±m

2 (j + 1) (2j + 1)
δm′,m± 1

2
(J.17a)

 j j − 1
2

1
2

m −m′ ± 1
2

 = (−1)j−m−1

√
j ∓m

2j (2j + 1)
δm′,m± 1

2
(J.17b)
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• J = 1 (note that m = 0 can only occur for integral j and in this case 2j + 1 = odd): j j 1

m−m 0

 = (−1)j−m
m√

j (j + 1) (2j + 1)
(J.18a)

 j j 1

m−m′ ±1

 = (−1)j−min(m,m′)

√
j(j + 1)−mm′

2j(j + 1)(2j + 1)
δm′,m±1 (J.18b)

• J = 2 : j j 2

m−m 0

 = (−1)j−m
3m2 − j (j + 1)√

j(j + 1)(2j + 3) (2j + 1) (2j − 1)
(J.19a)

 j j 2

m−m′ ±1

 = (−1)j−m (1± 2m)

√
3

2

j(j + 1)−mm′
j(j + 1)(2j + 3) (2j + 1) (2j − 1)

δm′,m±1 (J.19b)

 j j 2

m−m′ ±2

 = (−1)j−m

√
3

2

(j2 − 1−mm′) (j(j + 2)−mm′)
j(j + 1)(2j + 3) (2j + 1) (2j − 1)

δm′,m±2 (J.19c)

• Shell summation:  l k l

0 0 0

 l∑
m=−l

(−1)m

 l k l

−m 0m

 = δk,0 (J.20)

J.1.2 Special cases for integer values of l

• m1 = m2 = m3 = 0 and l1 + l2 + l3 is odd l1 l2 l3
0 0 0

 = 0 (J.21)

• m1 = m2 = m3 = 0 and l1 + l2 + l3 is even (including zero) l1 l2 l3
0 0 0

 =
(−1)pp!

√
∆(l1l2l3)

(p− l1)!(p− l2)!(p− l3)!
, (J.22)

where p ≡ (l1 + l2 + l3)/2 and ∆(l1l2l3) is given by Eq. (J.12).

• l3 = 0 and l, l′ = integer , only nonzero if l+ l′ is even; this implies l′ = l and p ≡ (l+ l′)/2 = l l l′ 0

0 0 0

 = (−1)l
1√

2l + 1
δl′,l (J.23)

• l3 = 1 and l, l′ = integer , only nonzero if l + l′ + 1 is even; this implies l′ = l ± 1 and
p ≡ (l + l′ + 1)/2 = max(l, l′) l l′ 1

0 0 0

 = (−1)max(l,l′)

√
max(l, l′)

(2l + 1)(2l′ + 1)
δl′,l±1 (J.24)
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• l3 = 2 and l, l′ = integer , only nonzero if l + l′ + 2 is even; this implies l′ = l, l ± 2 and
p ≡ (l + l′ + 2)/2 = max(l, l′)

 l l′ 2

0 0 0

 =


(−1)l+1

√
l (l + 1)

(2l + 3) (2l + 1) (2l − 1)
l′ = l

(−1)l

√
max(l, l′)

(2l + 1)(2l′ + 1)

(
3

4

l + l′

l + l′ + 1

)
l′ = l ± 2.

(J.25)

Problem J.1. Use the exchange rule for 3j symbols to show that the symmetry of Clebsch-Gordan coeffi-
cients under exchange of the coupled angular momenta is given by

〈jm1j2m2|JM〉 = (−1)j1+j2−J〈j2m2; j1m1|JM〉.

Solution. The relation between the Clebsch-Gordan coefficients and the 3j symbols is given by

〈j1m1; j2m2|JM〉 ≡ (−1)j1−j2+M
√

2J + 1

 j1 j2 J

m1 m2 −M

 .

Using the exchange rule for 3j symbols, j1 j2 J

m1 m2 −M

 = (−1)j1+j2+J

 j2 j1 J

m2 m1 −M

 ,

we find
〈j1m1j2m2|JM〉 = (−1)3j2−j1+J〈j2m2j1m1|JM〉.

Since (−1)4j2 ≡ 1 for all allowed values of j2, and J − j1 − j2 is always integer this results in the desired
expression for exchange. 2

J.2 Relation with the Wigner 6j symbols

The Wigner 6j symbols are defined by the relation

〈(j1j2)j12, j3; J ′M ′|j1, (j2j3)j23; JM〉 = (−)j1+j2+j3+J
√

(2j12 + 1) (2j23 + 1)

j1 j2 j12

j3 J j23

 δJJ ′δMM ′ .

(J.26)
and can be expressed as a sum over a product of four 3j symbols j1 j2 j3

J1 J2 J3

 =
∑

m1,m2,m3
M1,M2,M3

(−1)σ

 j1 j2 j3

m1 m2 m3

 J2 J3 j1

M2 −M3 m1

 J3 J1 j2

M3 −M1 m2

 J1 J2 j3

M1 −M2 m3


(J.27)

where σ = J1 + J2 + J3 +M1 +M2 +M3.

The Wigner 6j symbols

 j1 j2 j3

J1 J2 J3

 have the following properties:

Reality:
The 6j symbols are all real.
Selection rules: j1 j2 j3

J1 J2 J3

 = 0 unless the triads (j1, j2, j3) (j1, J2, J3) (J1, j2, J3) (J1, J2, j3) (J.28)
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• satisfy the triangular inequalities

• have an integral sum

Symmetry:

• invariant under column permutation,

 j1 j2 j3

J1 J2 J3

 =

 j2 j1 j3

J2 J1 J3

 (J.29)

• invariant under simultaneous exchange of two elements from the first line with the correspond-
ing elements from the second line,

 j1 j2 j3

J1 J2 J3

 =

J1 J2 j3

j1 j2 J3

 (J.30)

Orthogonality:

∑
j

(2j + 1)

 j1 j2 j

J1 J2 J


 j1 j2 j

J1 J2 J
′

 =
δJ′J

(2J + 1)
(J.31)

Special cases [36]

j1 j2 j3j2 j1 0

 = (−1)
s 1√

(2j1 + 1)(2j2 + 1)
, (J.32a)

j1 j2 j3j2 j1 1

 =
(−1)

s

2

X√
j1(j1 + 1)(2j1 + 1)j2(j2 + 1)(2j2 + 1),

(J.32b)

j1 j2 j3j2 j1 2

 =
(−1)

s

2

3X (X + 1)− 4j1(j1 + 1)j2(j2 + 1)√
(2j1 − 1)j1(j1 + 1)(2j1 + 1)(2j1 + 3)(2j2 − 1)j2(j2 + 1)(2j2 + 1)(2j2 + 3)

,

(J.32c)

where s = j1 + j2 + j3 and X = j3(j3 + 1)− j1(j1 + 1)− j2(j2 + 1).
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j2 − 1j1 − 1 1

 =
(−1)

s

2

√
(j1 + j2 + j3)(j1 + j2 + j3 + 1)(j1 + j2 − j3 − 1)(j1 + j2 − j3)

(2j1 − 1)j1(2j1 + 1)(2j2 − 1)j2(2j2 + 1)
,

(J.33a) j1 j2 j3

j2 − 1j1 1

 =
(−1)

s

2

√
(j1 + j2 + j3 + 1)(j1 + j2 − j3)(j2 + j3 − j1)(j1 + j3 − j2 + 1)

j1(j1 + 1)(2j1 + 1)(2j2 − 1)j2(2j2 + 1)
,

(J.33b) j1 j2 j3

j2 − 1j1 + 1 1

 =
(−1)

s

2

√
(j2 + j3 − j1 − 1)(j2 + j3 − j1)(j1 + j3 − j2 + 1)(j1 + j3 − j2 + 2)

(j1 + 1)(2j1 + 1)(2j1 + 3)(2j2 − 1)j2(2j2 + 1)
.

(J.33c)

Sum rules:

• Summation over two 6j symbols∑
J′′

(−1)J+J′+J′′ (2J ′′ + 1)

j1 j2 Jj3 j J
′′


j2 j3J ′′j1 j J

′

 =

j3 j1J ′j2 j J

 (J.34)

• summation over product of four 3j symbols

∑
q

∑
m1m2

m′1,m
′
2

(−1)σ

 j1 j2 J

m1m2M

 j′2 j′1 J ′

m′2m
′
1M

′

 j1 j′1 k

−m1m
′
1 q

 j2 j′2 k

−m2−m′2 q

 =

= δJ,J ′δM,M ′
1

2J + 1

j1 j2Jj′2 j
′
1 k

 , (J.35)

where σ = j′1 + j′2 + J +m1 +m2 + q.

• summation over the product of three 3j symbols

∑
m1m2m3

(−1)σ

 j1 j2 j

m1−m2m

 j2 j3 j′

m2−m3m
′

 j3 j1 J

m3−m1M

 =

=

j′ J j

j1 j2 j3


 j′ J j

m′Mm

 , (J.36)

where σ = j1 + j2 + j3 +m1 +m2 +m3. Note that m1 = m2−m and m3 = m2 +m′; i.e., the
sum runs over a single independent index (m2).

• summation over product of two 3j symbols

∑
m

(−1)j+m

 j1 j2 j

m1m2−m

 j′1 j′2 j

m′1m
′
2m


= (−1)−j2−j

′
1−j−J

∑
J,M

(−1)J+M (2J + 1)

j1 j′1Jj′2 j2 j


 j1 j′1 J

m1m
′
1−M

 j2 j′2 J

m2m
′
2M

 (J.37)

Note that M = m1 +m′1 = −m2 −m′2 and m = m1 +m2 = −m′1 −m′2; i.e., the summations
over m and M both consist only of a single nonzero term.
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J.2.0.1 Determination of Clebsch-Gordan coefficients - recursion relations

The values of the Clebsch-Gordan coefficients can be determined using recursion relations. In this
section we derive two of such relations. Their use is demonstrated in Problem J.2. As you will
see the procedure is labor intensive. Therefore, it makes little sense to rederive these values every
time we need them. Once we understand the procedure, it suffices to determine the values with
Mathematica. For reference purposes some old-fashioned look-up tables are included in Appendix J.
These are derived from the vector sum identity (3.83). For more information the books Elementary
theory of Angular Momentum by Morris Rose [94] and Angular Momentum in Quantum Mechanics
by A.R. Edmonds [36] are highly recommended.

• ∆J = 0; ∆M = +1 : To relate the Clebsch-Gordan coefficient 〈j1m1; j2m2 |J(M − 1)〉 with
coefficients in which M is raised by one unit of angular momentum we use the operator identity
J− = j1− + j2− and start from the equation

〈j1m1; j2m2 |J−|JM〉 = 〈j1m1; j2m2 |j1− + j2−|JM〉 . (J.38)

As the raising and lowering operators are hermitian conjugates we obtain a recursion relation
for Clebsch-Gordan coefficients√

J (J + 1)−M(M − 1)〈j1m1; j2m2 |J(M − 1)〉 =

=
√
j1 (j1 + 1)−m1(m1 + 1)〈j1(m1 + 1); j2m2 |JM〉

+
√
j2 (j2 + 1)−m2(m2 + 1)〈j1m1; j2(m2 + 1) |JM〉 . (J.39)

Specializing to the case M = J and m1 = j1, the selection rule (3.89) implies m2 = J − j1− 1
and the recursion relation simplifies to

〈j1j1; j2(J − j1 − 1) |J(J − 1)〉 =

√
j2 (j2 + 1)− (J − j1 − 1)(J − j1)

2J
〈j1j1; j2(J − j1) |JJ〉 .

(J.40)

• ∆J = 0; ∆M = −1 : To relate the Clebsch-Gordan coefficient 〈j1m1; j2m2 |J(M + 1)〉 with
coefficients in which M is lowered by one unit of angular momentum we use the operator
identity J+ = j1+ + j2+ and start from the equation

〈j1m1; j2m2 |J+|J(M − 1)〉 = 〈j1m1; j2m2 |j1+ + j2+|J(M − 1)〉 . (J.41)

As the raising and lowering operators are hermitian conjugates we obtain the recursion relation√
J (J + 1)−M(M + 1)〈j1m1; j2m2 |J(M + 1)〉 =

=
√
j1 (j1 + 1)−m1(m1 − 1)〈j1(m1 − 1); j2m2 |JM〉

+
√
j2 (j2 + 1)−m2(m2 − 1)〈j1m1; j2(m2 − 1) |JM〉 . (J.42)

Specializing to the case M = J − 1 and m1 = j1, the selection rule (3.89) implies m2 = J − j1
and the recursion relation becomes
√

2J〈j1j1; j2(J − j1) |JJ〉 =
√

2j1〈j1(j1 − 1); j2(J − j1) |J(J − 1)〉

+
√
j2 (j2 + 1)− (J − j1)(J − j1 − 1)〈j1j1; j2(J − j1 − 1) |J(J − 1)〉 .

(J.43)

Substituting Eq. (J.40) we find an expression for the next Clebsch-Gordan coefficient,

〈j1(j1−1); j2(J−j1) |J(J − 1)〉 =
2J − j2 (j2 + 1) + (J − j1)(J − j1 − 1)

2
√
j1J

〈j1j1; j2(J−j1) |JJ〉 .

(J.44)
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Table J.1: Clebsch-Gordan coefficients for coupling of the angular momenta j1 = 3
2

and j2 = 1
2
. Only the

non-zero coefficients are indicated. Note the selection rule M = m1 +m2.

〈j1j2,m1,m2|JM〉 |2,+2〉 |2,+1〉 |1,+1〉 |2, 0〉 |1, 0〉 |1,−1〉 |2,−1〉 |2,−2〉(
j1j2,+

3
2
,+ 1

2

∣∣ 1(
j1j2,+

3
2
,− 1

2

∣∣ √
1/4

√
3/4(

j1j2,+
1
2
,+ 1

2

∣∣ √
3/4 −

√
1/4(

j1j2,+
1
2
,− 1

2

∣∣ √
1/2

√
1/2(

j1j2,− 1
2
,+ 1

2

∣∣ √
1/2 −

√
1/2(

j1j2,− 1
2
,− 1

2

∣∣ √
1/4

√
3/4(

j1j2,− 3
2
,+ 1

2

∣∣ −
√

3/4
√

1/4(
j1j2,− 3

2
,− 1

2

∣∣ 1

M = m1 +m2 2 1 0 -1 -2

With these recursion relations it is possible to express Clebsch-Gordan coefficients in terms of the
“stretched” coefficient 〈j1j1; j2(J − j1) |JJ〉 , which is positive by convention. The procedure is
demonstrated in Problem J.2. An example of a complete Clebsch-Gordan table for the addition of
j1 = 3/2 and j2 = 1/2 is given in Table J.1.

J.2.0.2 Example: Spin-doublet system with half-integral total angular momentum

The case of coupling a spin s = 1
2 to orbital angular momentum l is special since only two J values

can emerge, j = l± 1
2 . This implies that j and mJ have half-integral values. Using the mJ selection

rule (3.89) the Clebsch-Gordan decomposition (3.106) reduces to two terms,

|(l ± 1
2 ),mJ〉 =

−1/2∑
ms=+1/2

|l(mJ −ms), sms〉(l(mJ −ms), sms|(l ± 1
2 ),mJ〉. (J.45)

This expression can be written in the form

|(l + 1
2 ),mJ〉 = a+|l(mJ −ms);

1
2 ,

1
2 〉+ a−|l(mJ −ms);

1
2 ,−

1
2 〉 (J.46)

|(l − 1
2 ),mJ〉 = b+|l(mJ −ms);

1
2 ,

1
2 〉+ b−|l(mJ −ms);

1
2 ,−

1
2 〉. (J.47)

where the Clebsch-Gordan coefficients,

a± = (l(mJ ∓ 1
2 ); 1

2 ,±
1
2 |(l + 1

2 ),mJ〉

= (−)−(1/2−l−mJ )
√

2(l + 1)

(
l 1/2 l + 1/2

mJ ∓ 1/2 ±1/2 −mJ

)
=

√
l + 1/2±mJ

(2l + 1)
(J.48)

b± = (l(mJ ∓ 1
2 ); 1

2 ,±
1
2 |(l −

1
2 ),mJ〉

= (−)−(1/2−l−mJ )
√

2l

(
l 1/2 l − 1/2

mJ ∓ 1/2 ±1/2 −mJ

)
= ∓

√
l + 1/2∓mJ

(2l + 1)
. (J.49)

are readily determined with the aid of Eqs. (J.17a) and (J.17b).
It is important to understand this spin-doublet system also from a more general point of view.

As the states |(l+ 1
2 ),mJ〉 and |(l− 1

2 ),mJ〉 form an orthonormal pair, the coefficients must satisfy
the normalization condition

a2
± + a2

∓ = 1 (J.50)
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as well as the orthogonality condition

a+b+ + a−b− = 0. (J.51)

Note that both conditions are satisfied if we define an angle 0 ≤ α ≤ π/2 such that a+ = cosα,
b+ = sinα and a− = − sinα, b− = cosα. Note that b± = ∓a∓, which implies

a2
± + b2± = 1. (J.52)

The angle α is called the coupling angle. This choice of phases for the coefficients is in accordance
with the Condon and Shortly phase convention for this two-level system of an angular momenta l
and s,

|(l + 1
2 ),mJ〉 = + cosα|l(mJ −ms), �〉+ sinα|l(mJ −ms), �〉 (J.53)

|(l − 1
2 ),mJ〉 = − sinα|l(mJ −ms), �〉+ cosα|l(mJ −ms), �〉. (J.54)

In this convention the coefficients of the state of maximal J (parallel coupling) are chosen to be
positive.

Problem J.2. Derive the Clebsch-Gordan coefficients for coupling of the angular momenta j1 = 3
2

and
j2 = 1

2
(see Table J.1). Note that this is an example of a doublet system with integral total angular

momentum.

Solution. First the case J = 2. We start from the stretched state convention,

( 3
2

3
2
; 1
2

1
2
|22〉 = 1. (a)

Applying Eq. (J.40) we obtain
( 3
2

3
2
; 1
2
− 1

2
|21〉 = 1

2
. (b)

Next we use the recursion relation (J.42) with the values m1 = 3
2
, m2 = 1

2
and M = 1. Substituting (a) and

(b) we find

2 ( 3
2

3
2
; 1
2

1
2
|22〉 =

√
3 ( 3

2
1
2
; 1
2

1
2
|21〉+ ( 3

2
3
2
; 1
2
− 1

2
|21〉 ⇒ ( 3

2
1
2
; 1
2

1
2
|21〉 =

√
3/4. (c)

Next we use the recursion relation (J.42) with the values m1 = 3
2
, m2 = − 1

2
and M = 0. Substituting (b)

and (c) we find

√
6 ( 3

2
3
2
; 1
2
− 1

2
|21〉 =

√
3 ( 3

2
1
2
; 1
2
− 1

2
|20〉 ⇒ ( 3

2
1
2
; 1
2
− 1

2
|20〉 =

√
1/2. (d)

Next we use the recursion relation (J.42) with the values m1 = 3
2
, m2 = 1

2
and M = 0. Substituting (c) and

(d) we find

√
6 ( 3

2
1
2
; 1
2

1
2
|21〉 = 2 ( 3

2
− 1

2
; 1
2

1
2
|20〉+ ( 3

2
1
2
; 1
2
− 1

2
|20〉 ⇒ ( 3

2
− 1

2
; 1
2

1
2
|20〉 =

√
1/2.

Continuing this procedure we obtain all Clebsch-Gordan coefficients for J = 2.
We turn to the case J = 1. In this case we have no stretched state, so we have to determine the starting

value in a different way. We start with the recursion relation (J.42) with the values m1 = 3
2
, m2 = 1

2
and

M = 1,
0 =
√

3 ( 3
2

1
2
; 1
2

1
2
|11〉+ ( 3

2
3
2
; 1
2
− 1

2
|11〉 ⇒ ( 3

2
1
2
; 1
2

1
2
|11〉 = −

√
1/3 ( 3

2
3
2
; 1
2
− 1

2
|11〉 . (e)

Using the orthonormality relation

|( 3
2

1
2
; 1
2

1
2
|11〉 |2 + |( 3

2
3
2
; 1
2
− 1

2
|11〉 |2 = 1

we find, using Eq. (e) and the sign convention,

( 3
2

3
2
; 1
2
− 1

2
|11〉 =

√
3/4 and ( 3

2
1
2
; 1
2

1
2
|11〉 = −

√
1/4.

From here on we can continue with the recursion procedure as discussed for J = 2 until all values are
determined. 2
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J.2.1 Tables of Clebsch-Gordan coefficients

Table J.2: The Clebsch-Gordan coefficients 〈j1j2m1m2|jm〉 for the coupling of two angular momenta j1 and
j2 to the total angular momentum J = j1 + j2 for the cases (j1 × j2) = ( 1

2
× 1

2
), (1× 1

2
), ( 3

2
× 1

2
), (2× 1

2
).

|m| = 1 |1, 1〉 |1,−1〉 m = 0 |1, 0〉 |0, 0〉
〈j1j2, 1

2 ,
1
2 | 1 0 〈j1j2, 1

2 ,−
1
2 |
√

1/2
√

1/2 ( 1
2 ×

1
2 )

〈j1j2,− 1
2 ,−

1
2 | 0 1 〈j1j2,− 1

2 ,
1
2 |
√

1/2 −
√

1/2

|m| = 3
2 |

3
2 ,

3
2 〉 |

3
2 ,−

3
2 〉

〈j1j2, 1, 1
2 | 1 0

〈j1j2,−1,− 1
2 | 0 1

(1× 1
2 )

m = 1
2 |

3
2 ,

1
2 〉 |

1
2 ,

1
2 〉 m = − 1

2 |
3
2 ,−

1
2 〉 |

1
2 ,−

1
2 〉

〈j1j2, 1,− 1
2 |
√

1/3
√

2/3 〈j1j2, 0,− 1
2 |
√

2/3
√

1/3

〈j1j2, 0, 1
2 |
√

2/3 −
√

1/3 〈j1j2,−1, 1
2 |
√

1/3 −
√

2/3

|m| = 2 |2, 2〉 |2,−2〉
〈j1j2, 3

2 ,
1
2 | 1 0

〈j1j2,− 3
2 ,−

1
2 | 0 1

m = 1 |2, 1〉 |1, 1〉 m = −1 |2,−1〉 |1,−1〉
〈j1j2, 3

2 ,−
1
2 |
√

1/4
√

3/4 〈j1j2,− 1
2 ,−

1
2 |
√

3/4
√

1/4 ( 3
2 ×

1
2 )

〈j1j2, 1
2 ,

1
2 |
√

3/4 −
√

1/4 〈j1j2,− 3
2 ,

1
2 |
√

1/4 −
√

3/4

m = 0 |2, 0〉 |1, 0〉
〈j1j2, 1

2 ,−
1
2 |
√

1/2
√

1/2

〈j1j2,− 1
2 ,

1
2 |
√

1/2 −
√

1/2

|m| = 5
2 |

5
2 ,

5
2 〉 |

5
2 ,−

5
2 〉

〈j1j2, 2, 1
2 | 1 0

〈j1j2,−2,− 1
2 | 0 1

m = 3
2 |

5
2 ,

3
2 〉 |

3
2 ,

3
2 〉 m = − 3

2 |
5
2 ,−

3
2 〉 |

3
2 ,−

3
2 〉

〈j1j2, 2,− 1
2 |
√

1/5
√

4/5 〈j1j2,−1,− 1
2 |
√

4/5
√

1/5 (2× 1
2 )

〈j1j2, 1, 1
2 |
√

4/5 −
√

1/5 〈j1j2,−2, 1
2 |
√

1/5 −
√

4/5

m = 1
2 |

5
2 ,

1
2 〉 |

3
2 ,

1
2 〉 m = − 1

2 |
5
2 ,−

1
2 〉 |

3
2 ,−

1
2 〉

〈j1j2, 1,− 1
2 |
√

2/5
√

3/5 〈j1j2, 0,− 1
2 |
√

3/5
√

2/5

〈j1j2, 0, 1
2 |
√

3/5 −
√

2/5 〈j1j2,−1, 1
2 |
√

2/5 −
√

3/5
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Table J.3: Clebsch-Gordan coefficients 〈j1j2m1m2|jm〉 for the coupling of two angular momenta for the
cases (j1, j2) = ( 5

2
× 1

2
), (3× 1

2
).

|m| = 3 |3, 3) |3,−3)

〈j1j2, 5
2 ,

1
2 | 1 0

〈j1j2,− 5
2 ,−

1
2 | 0 1

m = 2 |3, 2〉 |2, 2〉 m = −2 |3,−2〉 |2,−2〉
〈j1j2, 5

2 ,−
1
2 |
√

1/6
√

5/6 〈j1j2,− 3
2 ,−

1
2 |
√

5/6
√

1/6

〈j1j2, 3
2 ,

1
2 |
√

5/6 −
√

1/6 〈j1j2,− 5
2 ,

1
2 |
√

1/6 −
√

5/6

( 5
2 ×

1
2 )

m = 1 |3, 1〉 |2, 1〉 m = −1 |3,−1〉 |2,−1〉
〈j1j2, 3

2 ,−
1
2 |
√

1/3
√

2/3 〈j1j2,− 1
2 ,−

1
2 |
√

2/3
√

1/3

〈j1j2, 1
2 ,

1
2 |
√

2/3 −
√

1/3 〈j1j2,− 3
2 ,

1
2 |
√

1/3 −
√

2/3

m = 0 |3, 0〉 |2, 0〉
〈j1j2, 1

2 ,−
1
2 |
√

1/2
√

1/2

〈j1j2,− 1
2 ,

1
2 |
√

1/2 −
√

1/2

|m| = 7
2 |

7
2 ,

7
2 〉 |

7
2 ,−

7
2 〉

〈j1j2, 3, 1
2 | 1 0

〈j1j2,−3,− 1
2 | 0 1

m = 5
2 |

7
2 ,

5
2 〉 |

5
2 ,

5
2 〉 m = − 3

2 |
7
2 ,−

5
2 〉 |

5
2 ,−

5
2 〉

〈j1j2, 3,− 1
2 |
√

1/7
√

6/7 〈j1j2, 0,− 1
2 |
√

6/7
√

1/7

〈j1j2, 2, 1
2 |
√

6/7 −
√

1/7 〈j1j2,−1, 1
2 |
√

1/7 −
√

6/7

(3× 1
2 )

m = 3
2 |

7
2 ,

3
2 〉 |

5
2 ,

3
2 〉 m = − 3

2 |
7
2 ,−

3
2 〉 |

5
2 ,−

3
2 〉

〈j1j2, 2,− 1
2 |
√

2/7
√

5/7 〈j1j2, 0,− 1
2 |
√

5/7
√

2/7

〈j1j2, ‘, 1
2 |
√

5/7 −
√

2/7 〈j1j2,−1, 1
2 |
√

2/7 −
√

5/7

|m= 1
2 |

7
2 ,

1
2 〉 |

5
2 ,

1
2 〉 m = − 1

2 |
7
2 ,−

1
2 〉 |

5
2 ,−

1
2 〉

〈j1j2, 1,− 1
2 |
√

3/7
√

4/7 〈j1j2, 0,− 1
2 |
√

4/7
√

3/7

〈j1j2, 0, 1
2 |
√

4/7 −
√

3/7 〈j1j2,−1, 1
2 |
√

3/7 −
√

4/7

7
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Table J.4: Clebsch-Gordan coefficients 〈j1j2m1m2|jm〉 for the coupling of two angular momenta for the
cases (j1, j2) = ( 7

2
× 1

2
), (4× 1

2
).

|m| = 4 |4, 4〉 |4,−4〉
〈j1j2, 7

2 ,
1
2 | 1 0

〈j1j2,− 7
2 ,−

1
2 | 0 1

m = 3 |4, 3〉 |3, 3〉 m = −3 |4,−3〉 |4,−3〉
〈j1j2, 7

2 ,−
1
2 |
√

1/8
√

7/8 〈j1j2,− 7
2 ,−

1
2 |
√

7/8
√

1/8

〈j1j2, 5
2 ,

1
2 |
√

7/8 −
√

1/8 〈j1j2,− 5
2 ,

1
2 |
√

1/8 −
√

7/8

m = 2 |4, 2〉 |3, 2〉 m = −2 |4,−2〉 |3,−2〉
〈j1j2, 5

2 ,−
1
2 |
√

2/8
√

6/8 〈j1j2,− 3
2 ,−

1
2 |
√

6/8
√

2/8 ( 7
2 ×

1
2 )

〈j1j2, 3
2 ,

1
2 |
√

6/8 −
√

2/8 〈j1j2,− 5
2 ,

1
2 |
√

2/8 −
√

6/8

m = 1 |4, 1〉 |3, 1〉 m = −1 |4,−1〉 |3,−1〉
〈j1j2, 3

2 ,−
1
2 |
√

3/8
√

5/8 〈j1j2,− 1
2 ,−

1
2 |
√

5/8
√

3/8

〈j1j2, 1
2 ,

1
2 |
√

5/8 −
√

3/8 〈j1j2,− 3
2 ,

1
2 |
√

3/8 −
√

5/8

m = 0 |4, 0〉 |3, 0〉
〈j1j2, 1

2 ,−
1
2 |
√

1/2
√

1/2

〈j1j2,− 1
2 ,

1
2 |
√

1/2 −
√

1/2

|m| = 9
2 |

9
2 ,

9
2 〉 |

9
2 ,−

9
2 〉

〈j1j2, 4, 1
2 | 1 0

〈j1j2,−4,− 1
2 | 0 1

m = 7
2 |

9
2 ,

5
2 〉 |

7
2 ,

7
2 〉 m = − 7

2 |
9
2 ,−

7
2 〉 |

7
2 ,−

7
2 〉

〈j1j2, 4,− 1
2 |
√

1/9
√

8/9 〈j1j2,−3,− 1
2 |
√

8/9
√

1/9

〈j1j2, 3, 1
2 |
√

8/7 −
√

1/9 〈j1j2,−4, 1
2 |
√

1/9 −
√

8/9

m = 5
2 |

9
2 ,

5
2 〉 |

7
2 ,

5
2 〉 m = − 5

2 |
9
2 ,−

5
2 〉 |

7
2 ,−

5
2 〉

〈j1j2, 3,− 1
2 |
√

2/9
√

7/9 〈j1j2,−2,− 1
2 |
√

7/9
√

2/9 (4× 1
2 )

〈j1j2, 2, 1
2 |
√

7/9 −
√

2/9 〈j1j2,−3, 1
2 |
√

2/9 −
√

7/9

m = 3
2 |

9
2 ,

3
2 〉 |

7
2 ,

3
2 〉 m = − 3

2 |
9
2 ,−

3
2 〉 |

7
2 ,−

3
2 〉

〈j1j2, 2,− 1
2 |
√

3/9
√

6/9 〈j1j2,−1,− 1
2 |
√

6/9
√

3/9

〈j1j2, 1, 1
2 |
√

6/9 −
√

3/9 〈j1j2,−2, 1
2 |
√

3/9 −
√

6/9

m = 1
2 |

9
2 ,

1
2 〉 |

7
2 ,

1
2 〉 m = − 1

2 |
9
2 ,−

1
2 〉 |

7
2 ,−

1
2 〉

〈j1j2, 1,− 1
2 |
√

4/9
√

5/9 〈j1j2, 0,− 1
2 |
√

5/9
√

4/9

〈j1j2, 0, 1
2 |
√

5/9 −
√

4/9 〈j1j2,−1, 1
2 |
√

4/9 −
√

5/9
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K

Irreducible tensor operators

K.1 Definition

An irreducible tensor operator of rank k, denoted by T(k), is defined as a set of 2k+ 1 components,
Tk,q ∈ {Tk,−k, · · · , Tk,k}, which transform according to the (2k + 1)-dimensional representation
Dk
q′q(α, β, γ) of the full rotation group (see Section 3.9.4),

T ′kq = PRTkqP
†
R =

+k∑
q′=−k

Tkq′D
k
q′q, (K.1)

where

PR ≡ P (α, β, γ) = Pz(α)Py(β)Pz(γ) = e−iαJz/~e−iβJy/~e−iγJz/~. (K.2)

is the operator for a rotation of the physical system over the Euler angles α, β, γ (see Section 3.9.3).
The components Tk,q act in a (2k + 1)-dimensional subspace of the basis {|αJM〉} of the standard
representation {J2, Jz}. The symbol α points to all other (including non-angular momentum)
quantum numbers of the system. Alternatively, irreducible tensor operators can be defined by the
following commutation relations of their standard components (see Problem K.1) [86],

[Jz, Tk,q] = q ~Tk,q (K.3a)

[J±, Tk,q] =
√

(k ∓ q) (k ± q + 1) ~Tk,q±1 =
√
k (k + 1)− q (q ± 1) ~Tk,q±1. (K.3b)

The Tk,q of integral rank are called spherical tensor operators [93] because they transform like the
spherical harmonics Y qk (r̂). For this reason the hermitian conjugate of Tk,q is given by

T †k,q = (−1)qTk,−q for k = 0, 1, 2, · · · . (K.4)

This can be verified with the aid of the commutation relations (K.3).

Problem K.1. Derive the commutation relations K.3 from the transformation properties K.1

Solution. To deal with Ja we consider an infinitesimal rotation δϕ about the direction â,

Pa(δϕ)Tk,qP
†
a (δϕ) =

∑
q′

Tk,q′〈k, q′|Pa(δφ)|k, q〉.

Using Eq. (3.217) we have PR → Pa(δϕ) = 1− iδϕJa/~ and the l.h.s. becomes

Pa(δϕ)Tk,qP
†
a (δϕ) = Tk,q −

i

~
δϕJaTk,q +

i

~
δϕTk,qJa +

1

~2
(δϕ)2JaTk,qJa.

393
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On the r.h.s. the rotation matrix becomes

〈k, q′|Pa(δφ)|k, q〉 = δq,q′ −
i

~
δϕ〈k, q′|Ja|k, q〉.

Thus we obtain

Tk,q −
i

~
δϕJaTk,q +

i

~
δϕTk,qJa +

1

~2
(δϕ)2JaTk,qJa = Tk,q −

i

~
δϕ
∑
q′

〈k, q′|Ja|k, q〉.

Subtracting Tk,q from both sides and dividing by iδϕ/~ this expression reduces in the limit δϕ → 0 to the
form

[Ja, Tk,q] =
∑
q′

〈k, q′|Ja|k, q〉Tk,q.

In particular, this holds for â→ x̂, â→ ŷ and â→ ẑ. For â→ ẑ the sum reduces to

[Jz, Tk,q] = q ~Tk,q.

Since J± = Jx ± iJy we find

[J±, Tk,q] =
√
k (k + 1)− q (q ± 1) ~Tk,q±1. �

K.1.1 Spherical tensor operators of rank zero - scalar operators

The simplest class of irreducible tensor operators are scalar operators T0,0. These are irreducible
tensor operator of rank 0; i.e., k = 0 and q = 0, which means that scalar operators only have a
single component. Any operator that commutes with J+, J− and Jz is a scalar operator in the
vector space spanned by the basis {|αJM〉},

[Jz, T0,0] = 0 (K.5a)

[J±, T0,0] = 0. (K.5b)

In other words, scalar operators are invariant under arbitrary rotations of the vector space in which
they operate. An example of a scalar operator is the operator L2 in the vector space {|LM〉}.
Operators like pr and r or any function f(r) of r are scalar operators within the vector space
{|nlm〉} of hydrogenic atoms with only principal structure.

K.1.2 Spherical tensor operators of rank 1 - vector operators

Vector operators are defined as operators with the same transformation properties as the radius
vector r under proper rotations; i.e., rotations in which the handedness of the coordinate system is
conserved. In the cartesian basis an arbitrary real vector operator T can be written as

T = x̂Tx + ŷTy + ẑTz ⇔

TxTy
Tz

 , (K.6)

where Tx, Ty, Tz are called the cartesian components. Vector operators can be expressed as irre-
ducible tensor operators of rank 1; i.e., k = 1 and q = 0,±1 and we write T for T(1). In the standard
phase convention (Condon and Shortley) the standard components of T are given by s

T1,0 = Tz, T1,±1 = ∓
√

1
2 (Tx ± iTy). (K.7)

Substituting the inverse relations

Tx = −
√

1
2 (T1,+1 − T1,−1) and Ty = i

√
1
2 (T1,+1 + T1,−1) (K.8)
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into Eq. (K.6) the standard decomposition takes the form

T = û∗+1T1,+1 + û0T1,0 + û∗−1T1,−1, (K.9)

where the ûq, with q = 0,±1, are the spherical unit vectors

û+1 = −
√

1
2 (x̂ + iŷ), û−1 = +

√
1
2 (x̂− iŷ), û0 = ẑ. (K.10)

The commutation relations (K.3) become

[Jz, T1,0] = 0 [Jz, T1,±1] = ±~T1,±1

[J±, T1,0] =
√

2 ~T1,±1 [J±, T1,∓1] =
√

2 ~T1,0.
(K.11)

In particular, the standard components J+1, J0, J−1 of the angular momentum operator J are defined
as

J0 = Jz; J±1 = ∓
√

1
2 (Jx ± iJy) = ∓

√
1
2J±. (K.12)

Using these relations the commutations take the form

[T1,0, T1,0] = 0 [T1,0, T1,±1] = ±~T1,±1

[T1,±1, T1,0] = ∓~T1,±1 [T1,±1, T1,∓1] = ∓~T1,0.
(K.13)

Example K.1. The simplest example of a vector operator is the radius vector operator r with cartesian
components x, y, z and standard components

T1,0 = z, T1,±1 = ∓
√

1
2
(x± iy), (K.14)

which can be rewritten in the form

T1,0 = r cos θ =
√

4π/3 rY 0
1 (r̂), (K.15a)

T1,±1 = ∓
√

1
2
r(sin θ cosφ± i sin θ sinφ) =

√
4π/3 rY ±1

1 (r̂), (K.15b)

where r = |r| and r̂ is the operator for the direction unit vector. Note that these standard components
transform like the spherical harmonics,

T1,m =
√

4π/3 rY m1 (r̂). (K.16)

Substituting these quantities into the commutation relations (K.11) we find

[Lz, Y
0
1 (r̂)] = 0 [Lz, Y

±1
1 (r̂)] = ±~Y ±1

1 (r̂)

[L±, Y
0
1 (r̂)] =

√
2~Y ±1

1 (r̂) [L±, Y
∓1
1 (r̂)] =

√
2~Y 0

1 (r̂).
(K.17)

Using the relations (1.53) and (1.55) we readily verify (with the aid of a test function) that these commutation
relations are indeed satisfied.1

Example K.2. A second example of an irreducible vector operator is the angular momentum operator L,
which acts in the vector space spanned by the basis {|LM〉} of the standard representation {L2, LZ}. The
operator L is a (pseudo) vector with cartesian components Lx, Ly, Lz and standard components

T1,0 = Lz, T1,±1 = ∓
√

1
2
(Lx ± iLy) = ∓

√
1
2
L±. (K.18)

Substituting these definitions into the commutation relations (K.11) we find

[Lz, Lz] = 0 [Lz, L±] = ±~L±
[L±, Lz] = ∓~L± [L±, L∓] = ±2~Lz,

(K.19)

which coincide with the commutation relations derived in Chapter 1, as it should be.

1Note that a test function ϕ(r) is a function of r = {x, y, z}. The operator r acting on this test function yields
the variable r.
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K.1.3 Generalization - spherical tensor operators of rank 2

We now generalize the vector concept by introducing tensors in the cartesian space. The simplest
tensor is a tensor of rank 0. This is a quantity which is invariant under proper rotations about
the origin of the cartesian space. A tensor of rank 1 is a quantity with the same transformation
properties under proper rotations as the fundamental vector

r = x̂x+ ŷy + ẑz ⇔

xy
z

 , (K.20)

where û = ∂ur, with u ∈ {x, y, z}. A tensor of rank 2 is defined as a quantity with the same
transformation properties under proper rotations as the fundamental tensor

↔
r = x̂x̂xx+ x̂ŷxy + x̂ẑxz + ŷx̂yx+ ŷŷyy + ŷẑyz + ẑx̂zx+ ẑŷzy + ẑẑzz ⇔

xx xy xzyx yy yz

zx zy zz

 , (K.21)

where ûv̂ = ∂uv
←→r , with u, v ∈ {x, y, z}. It is straightforward to generalize this concept and define

tensors of higher rank.

K.2 Wigner-Eckart theorem

Let Tk,q be the standard components of an irreducible tensor operator in the angular momentum
vector space defined by the standard representation {J2, Jz}. The Wigner-Eckart theorem states
that any matrix element of Tk,q in this representation can be reduced to the form

〈J ′M ′|Tk,q|JM〉 =
1√

2J ′ + 1
〈J ′||Tk||J〉(JM ; kq|J ′M ′〉, (K.22)

where (JM, kq|J ′M ′〉 is a Clebsch-Gordan coefficient and the factor 〈J ′||Tk||J〉 stands for all prop-
erties of the matrix element that do not depend on M , M ′ and q. This factor is called the reduced
matrix element of the tensor for given values of J and J ′. In a way, the notation 〈J ′||Tk||J〉 suggests
more than it actually delivers because it only points to the existence of such a factor.1 Its value
has to be determined on a case by case basis by explicit calculation of one of the matrix elements
〈J ′M ′|Tk,q|JM〉. Importantly, since 〈J ′||Tk||J〉 is independent of M , M ′ and q we can use the most
convenient matrix element for this purpose. Some key examples are given in Section K.3.

In terms of 3j symbols, the theorem takes the form

〈J ′M ′|Tk,q|JM〉 = (−1)J−k+M ′〈J ′||Tk||J〉

(
J k J ′

M q −M ′

)
. (K.23)

This form is best suited for rearranging the quantum numbers (taking advantage of the convenient
symmetry properties of the 3j symbols). For integral k the expression is equivalent to

〈J ′M ′|Tk,q|JM〉 = (−1)J
′−M ′〈J ′||Tk||J〉

(
J ′ k J

−M ′ q M

)
. (K.24)

To arrive at this result we used the permutation rule for 3j symbols. Furthermore, since J ′ + M ′

is always integral, we have (−1)J
′+M ′ = (−1)−J

′−M ′ . As k was taken to be integral also J − J ′ is

1The presence of the prefactor 1/
√

2J ′ + 1 is a matter of taste. Being independent of M, M ′ and q, this prefactor
can equally well be included in 〈J ′||Tk||J〉 (as some authors do).
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integral and (−1)J−J
′

= (−1)−J+J′ . In preparation for the application of sum rules it is useful to
rewrite the Wigner-Eckart theorem in the form

〈J ′M ′|Tk,q|JM〉 = (−1)J−M
1√

2k + 1
〈J ′||Tk||J〉(J ′M ′; J,−M |kq〉. (K.25)

K.2.1 Reduction of matrix elements

Properties of the reduced matrix elements can be derived with the aid of sum rules. As will be
shown, these rules are most conveniently applied in the Dirac notation starting from Eq. (K.25).
This expression can be inverted by multiplying both sides by (−1)J−M 〈k′q′|J ′,M ; J,−M) and
summing over M and M ′. For the evaluation we return to the 3j notation

〈J ′||Tk||J〉 = (2k + 1)
∑
M,M ′

(−1)J
′−M ′

(
J ′ k J

−M ′ q M

)
〈J ′M ′|Tk,q|JM〉. (K.26)

Another example is to sum both sides of the Wigner-Eckart theorem (K.22) over M and q,∑
M,q

|〈J ′M ′|Tk,q|JM〉|2 =
1

2J ′ + 1
|〈J ′||Tk||J〉|2

∑
M,q

〈J ′M ′|JM, k, q)(JM, k, q|J ′M ′〉

=
1

2J ′ + 1
|〈J ′||Tk||J〉|2.

Next we sum over all 2J ′ + 1 possible values of M ′ and arrive at∑
M ′,M,q

|〈J ′M ′|Tk,q|JM〉|2 = |〈J ′||Tk||J〉|2, (K.27)

which is manifestly independent of M, M ′ and q.

K.2.2 Proof of Wigner-Eckart theorem

The proof proceeds in four steps

1. First we show that the matrix elements satisfy the projection rule (J.5) of the 3j symbols.
Using the commutation relation (K.3a) we have

q~〈J ′M ′|Tk,q|JM〉 = 〈J ′M ′|[Jz, Tk,q]|JM〉.

Expanding the commutator and using the hermiticity of Jz this becomes

q〈J ′M ′|Tk,q|JM〉 = (M ′ −M) 〈J ′M ′|Tk,q|JM〉. (K.28)

Thus we obtained the projection rule (J.5): 〈J ′M ′|Tk,q|JM〉 = 0 unless q = M ′ −M , which
can be expressed as

〈J ′M ′|Tk,q|JM〉 = λ〈J ′M ′|Jq|JM〉 (K.29)

because also 〈J ′M ′|Jq|JM〉 is zero unless q = M ′ −M . Our conjecture is that the propor-
tionality constant λ corresponds to the reduced matrix element that we are looking for,

λ = (2J ′ + 1)
−1/2 〈J ′||Tk||J〉. (K.30)

However, for the time being it remains to be shown that in Eq. (K.29) the same value for λ
can be used for any combination of M , M ′ and q; in other words, we have to show that the
value of λ is independent of M , M ′ and q. For the special case of vector operators (k = 1)
we recognize in Eq. (K.29) the structure of the vector projection rule used in the addition of
angular momenta; e.g., for J = L + S we find for T1,q = Lq

〈J ′M ′|Lq|JM〉 = λ〈J ′M ′|Jq|JM〉. (K.31)
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2. To prove the Wigner-Eckart theorem we have to show that

〈J ′M ′|Tk,q|JM〉 = λ〈JM, k, q|J ′M ′〉, (K.32)

where the differences between different combinations of M , M ′ and q are contained in the
Clebsch-Gordan coefficient 〈JM, k, q|J ′M ′〉 and the prefactor λ is independent of these values.
This suggests the strategy to search for two equivalent recursion relations for given values of
J , J ′ and k, one for the matrix elements 〈J ′M ′|Tk,q|JM〉 and the other for the corresponding
Clebsch-Gordan coefficients 〈JM, k, q|J ′M ′〉, both relating terms with different combinations
of M , M ′ and q. For the matrix elements such a relation follows from the commutation relation
(K.3b), √

k (k + 1)− q (q ± 1)~〈J ′M ′|Tk,q±1|JM〉 = 〈J ′M ′|[J±, Tk,q]|JM〉 (K.33)

Expanding the commutator and using the property that J+ and J− are hermitian conjugates
we find√

k (k + 1)− q (q ± 1)〈J ′M ′|Tk,q±1|JM〉 =

=
√
J ′ (J ′ + 1)−M ′ (M ′ ∓ 1)〈J ′ (M ′ ∓ 1) |Tk,q|JM〉−

−
√
J (J + 1)−M (M ± 1)〈J ′M ′|Tk,q|J (M ± 1)〉. (K.34)

3. To find the equivalent recursion relation for the Clebsch-Gordan coefficients we use the addition
of two angular momenta J′ = J + k and apply Clebsch-Gordan decomposition of the coupled
states |J ′M ′〉 onto the uncoupled basis {|JM, kq〉}. The properties of the coupling vector, k,
is determined by the rank, k, of the tensor Tk,q. If Tk,q represents a vector operator J and J′

can differ by at most one unit of angular momentum (k = 1 and −1 ≤ q ≤ 1); for second-rank
tensors by at most two units of angular momentum (k = 2 and −2 ≤ q ≤ 2), etc.. To obtain
the recursion relation we use the operator identity

λJ ′± = λJ± + λk±, (K.35)

where λ can be any constant. First, we operate the l.h.s. onto the state |J ′M ′〉 and find

λJ ′∓|J ′M ′〉 = λ
√
J ′ (J ′ + 1)−M ′ (M ′ ∓ 1)~|J ′ (M ′ ∓ 1)〉 (K.36)

and subsequently, after decomposition of |J ′ (M ′ ∓ 1)〉 with respect to the basis {|JM, kq〉},
this becomes

λJ ′∓|J ′M ′〉 = λ
√
J ′ (J ′ + 1)−M ′ (M ′ ∓ 1)~

∑
Mq

|JM, kq〉〈JM, kq|J ′ (M ′ ∓ 1)〉. (K.37)

Note that at this point we already obtained an expression that carries the same prefactor and
quantum numbers as the first term on the r.h.s. of Eq. (K.34). Second, we start with the
decomposition

|J ′M ′〉 =
∑
Mq

|JM, kq〉〈JM, kq|J ′M ′〉 (K.38)

and subsequently operate the r.h.s. of the identity (K.35) onto the states |JM, kq〉,

λJ ′∓|J ′M ′〉 =
∑
Mq

λ
√
J (J + 1)−M (M ∓ 1)~|J (M ∓ 1) , kq〉〈JM, kq|J ′M ′〉

+
∑
Mq

λ
√
k (k + 1)− q (q ∓ 1)~|JM, k (q ∓ 1)〉〈JM, kq|J ′M ′〉. (K.39)
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Note that we can bring λ under the summation as long as it is independent of M , M ′ and q.
Comparing this expression with the recursion relation (K.34) we note that the Clebsch-Gordan
coefficients have to be shifted to serve our purpose. This is easily realized by relabeling of
quantum numbers (M →M ′′ ± 1 and q → q′′ ± 1) and summing over the new dummy indices
(M ′′ or q′′) which is allowed because the projection rule (J.5) assures that the summation
total is not affected,

λJ ′∓|J ′M ′〉 =
∑
M ′′q

λ
√
J (J + 1)−M ′′ (M ′′ ± 1)~|JM ′′, kq〉〈J(M ′′ ± 1), kq|J ′M ′〉

+
∑
Mq′′

λ
√
k (k + 1)− q′′ (q′′ ± 1)~|JM, kq′′〉〈JM, k(q′′ ± 1)|J ′M ′〉. (K.40)

After again renaming the dummy indices, M ′′ → M and q′′ → q, we equate the expansions
(K.37) and (K.40) term by term and obtain the relation

λ
√
k (k + 1)− q (q ± 1)〈JM, k (q ± 1) |J ′M ′〉 =

= λ
√
J ′ (J ′ + 1)−M ′ (M ′ ∓ 1)〈JM, kq|J ′ (M ′ ∓ 1)〉−

− λ
√
J (J + 1)−M (M ± 1)〈J (M ± 1) , kq|J ′M ′〉, (K.41)

where we know that λ can depend on J , J ′ and k but certainly does not depend on M , M ′

and q; i.e., this recursion relation holds for any value of of M , M ′ and q. Note that all
square root prefactors coincide with those of Eq. (K.34). So, with Eq. (K.41), we succeeded in
our goal to relate the matrix elements of Eq. (K.34) to Clebsch-Gordan coefficients multiplied
by a coefficient λ which does not depend on the combination of M ′, M and q; comparing
Eqs. (K.34) and (K.41) we identify

〈J ′M ′|Tk,q±1|JM〉 = λ〈JM, k (q ± 1) |J ′M ′〉
〈J ′ (M ′ ∓ 1) |Tk,q|JM〉 = λ〈JM, kq|J ′ (M ′ ∓ 1)〉
〈J ′M ′|Tk,q|J (M ± 1)〉 = λ〈J (M ± 1) , kq|J ′M ′〉

 (K.42)

Using the appropriate change of the dummy indices (q ± 1→ q, M ′ ∓ 1→M ′, M ± 1→M)
these three equations all reduce to a single relation,

〈J ′M ′|Tk,q|JM〉 = λ〈JM, kq|J ′M ′〉. (K.43)

4. As this relation holds with the same value of λ for any combination of M , M ′ and q, we
have proved the existence of a prefactor with the properties of the reduced matrix element
introduced in Eq. (K.22) and we may adopt the notation

λ = (2J ′ + 1)
−1/2 〈J ′||Tk||J〉, (K.44)

which completes the proof.

K.3 Examples

K.3.1 Reduced matrix elements and hermitian conjugation of spherical tensor operators

Consider the following two expressions based on the Wigner-Eckart theorem:

〈J ′M ′|T †k,q|JM〉= 〈JM |Tk,q|J
′M ′〉∗ = (−1)J

′−k+M 〈J ||Tk||J ′〉∗
(
J ′ k J

M ′ q −M

)
(K.45a)

〈J ′M ′|Tk,−q|JM〉= (−1)J−k+M ′〈J ′||Tk||J〉

(
J k J ′

M −q −M ′

)
. (K.45b)
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Eliminating the 3j symbols and using the condition q = M −M ′ these expressions combine to

〈J ′M ′|T †k,q|JM〉 =
(−1)J−J

′+q〈J ||Tk||J ′〉∗

〈J ′||Tk||J〉
〈J ′M ′|Tk,−q|JM〉. (K.46)

Since 〈J ′||Tk||J〉 is independent of M , M ′ and q we can determine the relation between 〈J ′||Tk||J〉
and 〈J ||Tk||J ′〉∗ by choosing the most convenient matrix element for this purpose. For integer rank
we can choose q = 0 and obtain

〈J ′M ′|T †k,0|JM〉 =
(−1)J−J

′〈J ||Tk||J ′〉∗

〈J ′||Tk||J〉
〈J ′M ′|Tk,0|JM〉. (K.47)

Since, for integer rank, Tk,0 is invariant under rotation, we have T †k,0 = Tk,0 and the above equation
reduces to

〈J ′||Tk||J〉 = (−1)J−J
′
〈J ||Tk||J ′〉∗. (K.48)

K.3.2 Reduced matrix elements for angular momentum operators

To determine the reduced matrix element 〈J ′||J ||J〉 the Wigner-Eckart theorem is written in the
form

〈J ′||J ||J〉 = (−1)J
′−M ′〈J ′M ′|Jq|JM〉

(
J ′ 1 J

−M ′ q M

)−1

. (K.49)

Since 〈J ′||Tk||J〉 is independent of M , M ′ and q we can use the most convenient matrix element to
determine its value. We demonstrate this by choosing q = 0 and M = M ′ = J and obtain with the
aid of Eq. (J.18a)

〈J ′||J ||J〉 = 〈J ′J ′|J0|JJ〉

(
J ′ 1 J

−J ′ 0 J

)−1

=
√
J (J + 1) (2J + 1) δJ,J ′ . (K.50)

Hence, for arbitrary q, M and M ′ the angular momentum matrix elements can be written in the
form

〈J ′M ′|Jq|JM〉 = (−1)J+M ′−1
√
J (J + 1) (2J + 1)

(
J 1 J

M q −M ′

)
δJ,J ′ . (K.51)

Using Eqs. (J.18) it is readily verified that this one equation is equivalent to the set of Eqs. (3.22b)
and (3.24b).

K.3.3 Reduced matrix elements for the spherical harmonics

As a second example we discuss the determination of the reduced matrix elements of tensor operators
of the spherical harmonic type. This is done by comparing the expression obtained by applying the
Wigner-Eckart theorem with the result of the Gaunt integral (L.59).

〈l′m′|Y qk (r̂)|lm〉 =


(−1)m

′+l′〈l′||Yk(r̂)||l〉

(
l′ k l

−m′ q m

)

(−1)m
′

√
(2l′ + 1)(2k + 1)(2l + 1)

4π

(
l′ k l

0 0 0

)(
l′ k l

−m′ q m

)
.

(K.52)

This comparison yields

〈l′||Yk(r̂)||l〉 = (−1)−l
′

√
(2l′ + 1)(2k + 1)(2l + 1)

4π

(
l′ k l

0 0 0

)
, (K.53)
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which is only nonzero for even values of k + l + l′.
Some special cases are:

• k = 0: Substituting the 3j symbol (J.23) we find

〈l′||
√

4πY0(r̂)||l〉 =
√

2l + 1 δl,l′ . (K.54)

• k = 1: Substituting the 3j symbol (J.24) we find

〈l′||
√

4π/3Y1(r̂)||l〉 = (−1)−l
′+max(l,l′)

√
max(l, l′) δl′,l±1 = ±

√
max(l, l′) δl′,l±1. (K.55)

• k = 2: Substituting the 3j symbol (J.25) we find

〈l′||
√

4π/5Y2(r̂)||l〉 =


−

√
l (l + 1) (2l + 1)

(2l + 3)(2l − 1)
l′ = l

+

√
max(l, l′)

(
3

4

l + l′

l + l′ + 1

)
l′ = l ± 2.

(K.56)

K.3.4 Reduction of matrix elements of vector operators

As a first example we consider the reduction of the matrix elements 〈lsJ ′M ′|Lq |lsJM〉 of the
orbital angular momentum operator L expressed in the basis {|JM〉} of the standard representation
{J2, Jz} of the total angular momentum operator J = L + S. Our aim is to show that

〈lsJ (M ± q)|Lq |lsJM〉 = 〈lsJ ||L||lsJ〉 〈lsJ (M ± q)| Jq |lsJM〉 for q = 0,±1, (K.57)

where Lq and Jq are the standard components of the vector operators L and J, respectively, and
〈lsJ ||L||lsJ〉 is a proportionality constant independent of M and q.

We start by applying the Wigner-Eckart theorem (K.24) to the standard components Lq of the
rank 1 tensor L,

〈lsJM ′|Lq |lsJM〉 = (−)J
′−M ′〈lsJ ||L||lsJ〉

(
J 1 J

−M ′ q M

)
with q = 0,±1. (K.58)

These matrix elements are only non-zero for M ′ = M + q. We evaluate subsequently the cases
q = 0,±1 using the expressions (J.18a) and (J.18b) for 3j symbols,

〈lsJM |Lz |lsJM〉 = (−)J−M 〈lsJ ||L||lsJ〉

(
J 1 J

−M 0 M

)

=
〈lsJ ||L||lsJ〉√

J (J + 1) (2J + 1)
M ~ (K.59a)

〈lsJ (M ± 1)|L± |lsJM〉 = (−)J−M∓1〈lsJ ||L||lsJ〉
√

2 ~

(
J 1 J

−(M ± 1) ±1 M

)

=
〈lsJ ||L||lsJ〉√

J (J + 1) (2J + 1)

√
J(J + 1)−M(M ± 1) ~. (K.59b)

Absorbing the joint prefactor
√
J (J + 1) (2J + 1) into the reduced matrix element (it is independent

of M , M ′ and q) and using the definitions of the Jz and J± operators we can rewrite Eqs. (K.59a)
and (K.59b) in the form

〈lsJM |Lz |lsJM〉 = 〈lsJ ||L||lsJ〉 〈lsJM | Jz |lsJM〉 (K.60a)

〈lsJ (M ± 1)|L± |lsJM〉 = 〈lsJ ||L||lsJ〉 〈lsJ (M ± 1)| J± |lsJM〉 . (K.60b)
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Here we recognize the vector projection rule used for describing the atomic fine structure in the
low-field limit. Using the definitions J0 = (Jz/~) and J±1 =

√
1/2 (J±/~) these equations reduce

to Eq. (K.57).

K.3.5 Calculation of reduced matrix elements in coupled bases

The Wigner-Eckart theorem allows the reduction of matrix elements involving coupled angular
momenta. In this section we illustrate this for two angular momentum operators, j1 and j2, acting
in the two (independent) subspaces of the representations {j2

1, j1z} and {j2
2, j2z}, respectively, and

together spanning the angular momentum space {J2, Jz}, where J = j1 + j2 is the coupled angular
momentum. Let us consider matrix elements of the type 〈j′1j2J ′M ′|T1:k,q|j1j2JM〉, where T1:k,q is a
spherical tensor operator acting in one of the subspaces, the subspace defined by the basis {|j1,m1},
but the matrix element is expressed in the basis {|JM〉} of the standard representation {J2, Jz}.
Applying the Wigner-Eckart theorem we obtain

〈j′1j2J ′M ′|T1:k,q|j1j2JM〉 = (−1)J
′−M ′〈j′1j2J ′||T

(k)
1 ||j1j2J〉

(
J ′ k J

−M ′ q M

)
. (K.61)

In view of the properties of the 3j symbols this matrix element is nonzero only for q = M ′ −M . In

other words, for given values of M and M ′ only a single component of the tensor T
(k)
1 is nonzero.

Furthermore, as T
(k)
1 operates within the subspace {|j1,m1} it leaves the quantum numbers j2 and

m2 unaffected. Hence, only the matrix elements diagonal in j2 and m2 are nonzero and it is our

task is to determine reduced matrix elements of the type 〈j′1j2J ′||T
(k)
1 ||j1j2J〉. In Problem K.2 we

show that these are given by the expression for repeated reduction

〈j′1j2J ′||T
(k)
1 ||j1j2J〉 = (−1)J+j′1+j2+j1〈j′1||T

(k)
1 ||j1〉

√
(2J + 1) (2J ′ + 1)

{
j′1 J

′ j2

J j1 k

}
, (K.62)

where 〈j′1||T
(k)
1 ||j1〉 is the reduced matrix element of T

(k)
1 within the subspace {j2

1, j1z} as given by
(K.50). Note that the reduced matrix element is independent of magnetic quantum numbers.

Analogously, we can reduce the matrix elements of scalar invariants of the type

T
(k)
1 · T(k)

2 =

k∑
m=−k

(−1)mT1:k,mT2:k,−m, (K.63)

where T
(k)
1 and T

(k)
2 operate in the two (independent) subspaces of the representations {j2

1, j1z} and
{j2

2, j2z}, respectively. In this case the repeated reduction (K.62) leads to the following expression
- see Problem K.3

〈j′1j′2J ′M ′|T
(k)
1 · T(k)

2 |j1j2JM〉 = (−1)j1+j2+j1′ 〈j′1||T
(k)
1 ||j1〉〈j′2||T

(k)
2 ||j2〉

{
j′1 j

′
2 J

j2 j1 k

}
δJ,J ′δM,M ′ .

(K.64)

Example K.3. As a first example we consider the coupling of the orbital angular momentum L with the
spin S, to form the total electronic angular momentum J = L + S. Let us consider matrix elements of the
type 〈l′sj′M ′|Tk,q |lsjM〉 , where Tk,q is a spherical tensor operator operating in the subspace {L2, Lz} of
the orbital angular momentum but the matrix element is expressed in the basis {|jM〉} of the total electronic
angular momentum standard representation {J2, Jz}. With 〈l′||Tk||l〉 given by (K.50), the expression for
the repeated reduction is

〈l′sj′||Tk||lsj〉 = (−1)j+k+l
′+s〈l′||Tk||l〉

√
(2j + 1) (2j′ + 1)

{
l′ j′ s

j l k

}
. (K.65)
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Example K.4. As a second example we consider the coupling of the total electronic angular momentum J
with the nuclear spin I, to form the total angular momentum F = J+ I. Let us consider matrix elements of
the type 〈j′IF ′M ′|Tk,q |jIFM〉 , where Tk,q is a spherical operator operating in the subspace {J2, Jz} of the
orbital angular momentum but the matrix element is expressed in the basis {|FM〉} of the total electronic
angular momentum standard representation {F2, Fz}. With 〈j′||Tk||j〉 given by (K.50), the expression for
the repeated reduction is

〈j′IF ||Tk||jIF 〉 = (−1)F+k+j′+I〈j′||Tk||j〉
√

(2F + 1) (2F ′ + 1)

{
j′ F ′ I

F j k

}
. (K.66)

Example K.5. Actually, in the previous example the total electronic angular momentum is itself composed
of two angular momenta, J = L + S. If the spherical tensor operator Tk only acts in one of the subspaces,
say the subspace of {L2, Lz} we can repeat the reduction by substituting Eq. (K.65) into Eq. (K.66). In this
way we reduce the matrix element from the standard representation {F2, Fz} to the standard representation
{L2, Lz}. Using the relation (−1)2k = 1 we find

〈j′IF ||Tk||jIF 〉 = (−1)F+j′+j+l′+s+I〈l′||Tk||l〉

×
√

(2j + 1) (2j′ + 1) (2F + 1) (2F ′ + 1)

{
l′ j′ s

j l k

}{
j′ F ′ I

F j k

}
. (K.67)

Problem K.2. Derive Eq. (K.62).

Solution. We start by decomposing Eq. (K.61) with respect to the uncoupled basis {|jmsms)},〈
j′sJ ′M ′

∣∣Tk,q |jsJM〉 =
∑

m,m′,ms

〈J ′M ′|j′m′sms)〈j′m′|Tk,q|jm〉(jmsms |JM〉 . (K.68)

Expressing the Clebsch-Gordan coefficients in terms of Wigner 3j symbols using Eq. (J.1) we have

(jmsms|JM〉 = (−1)j−s+M
√

2J + 1

(
j s J

m ms −M

)
(K.69a)

(j′m′sms|J ′M ′〉 = (−1)j
′−s+M′√2J ′ + 1

(
j′ s J ′

m′ ms −M ′

)
. (K.69b)

To evaluate 〈j′m′|Tk,q|jm〉 we use the Wigner-Eckart theorem,

〈j′m′|Tk,q|jm〉 = (−1)j
′−m′〈j′||Tk||j〉

(
j′ k j

−m′ q m

)
. (K.70)

If the reduced matrix element 〈j′||Tk||j〉 cannot be reduced any further (i.e., j is not a composite angular
momentum itself) it can be determined by direct evaluation of the l.h.s. of Eq. (K.70), as was demonstrated
for the 〈j′||Yk(r̂)||j〉 in Section K.3.3. To evaluate Eq. (K.68) we substitute Eqs. (K.69a), (K.69b) and (K.70).
Collecting the phase factors we obtain

(−1)2j
′+j−2s+M′+M−m′ . (K.71)

Using the properties of the 3j symbols we know that M = ms+m and M ′ = ms+m′; hence, M ′+M−m′ =
2ms +m = −M ′ + 4ms +m−ms +m′. Furthermore, since 4ms is even we have (−1)4ms = 1. Likewise we
have (−1)−2s = (−1)2s because 2s is an integer. Hence, Eq. (K.68) can be written in the form

〈
j′sJ ′M ′

∣∣Tk,q |jsJM〉 = 〈j′||Tk||j〉
√

(2J + 1) (2J ′ + 1)
∑

m,m′,ms

(−1)2j
′+j−2s−M′+m−ms+m′

×

(
j s J

m ms −M

)(
j′ s J ′

m′ ms −M ′

)(
j′ k j

−m′ q m

)
. (K.72)
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Next we bring the triple product of the 3j symbols in the order of triple-product summation formula (J.36).
For this we first reorder the second and third 3j symbols,

〈
j′sJ ′M ′

∣∣Tk,q |jsJM〉 = 〈j′||Tk||j〉
√

(2J + 1) (2J ′ + 1)
∑

m,m′,ms

(−1)2j
′+j+2s−M′+m+ms+m

′

×

(
j s J

m −ms −M

)(
s j′ J ′

ms −m′ M ′

)(
j′ j k

m′ −m −q

)
. (K.73)

Note that we have replaced ms by −ms, which is allowed because we sum over all values of ms. At this
point we can apply the 3j triple-product summation formula and obtain (after using the sign rule for 3j
symbols)

〈
j′sJ ′M ′

∣∣Tk,q |jsJM〉 = (−1)J
′+J+k(−1)j

′+s−M′〈j′||Tk||j〉

×
√

(2J + 1) (2J ′ + 1)

{
J ′ k J

j s j′

}(
J ′ k J

−M ′ q M

)
. (K.74)

Comparing Eq. (K.74) with Eq. (K.61) we find

〈j′sJ ′||Tk||jsJ〉 = (−1)J+k+j
′+s〈j′||Tk||j〉

√
(2J + 1) (2J ′ + 1)

{
J ′ k J

j s j′

}
. (K.75)

Rearranging the 6j symbols using the relations (J.29) and (J.30) we arrive at Eq. (K.62). 2

Problem K.3. Derive Eq. (K.64).

Solution. Starting from the scalar invariant T
(k)
1 ·T

(k)
2 =

∑k
m=−k(−1)mT1:k,mT2:k,−m, we separate the ma-

trix element into parts for T
(k)
1 and T

(k)
2 , operating in the two (independent) subspaces of the representations

{j21, j1z} and {j22, j2z}, respectively,

〈j′1j′2J ′M ′|T
(k)
1 · T(k)

2 |j1j2JM〉 =

k∑
q=−k

(−1)m〈j′1j′2J ′M ′|T1:k,qT2:k,−q|j1j2JM〉

=
∑
j′′1 j
′′
2

∑
J′′,M′′

k∑
q=−k

(−1)q〈j′1j′2J ′M ′|T1:k,q|j′′1 j′′2 J ′′M ′′〉〈j′′1 j′′2 J ′′M ′′|T2:k,−q|j1j2JM〉.

Applying the Wigner-Eckart theorem to each of these parts we obtain

〈j′1j′2J ′M ′|T
(k)
1 · T(k)

2 |j1j2JM〉 =
∑

J′′,M′′

k∑
q=−k

(−1)q+J
′−M′+J′′−M′′

〈j′1j′2J ′||T
(k)
1 ||j1j

′
2J
′′〉〈j1j′2J ′′||T

(k)
2 ||j1j2J〉

(
J ′ k J ′′

−M ′ q M ′′

)(
J ′′ k J

−M ′′ −q M

)
.

In view of the 3j projection rule we have q = M ′−M ′′ and (−1)q+J
′−M′+J′′−M′′ = (−1)J

′+J′′−2M′′ . Adding
and subtracting J ′′ in the exponent and noting that 2(J ′′ −M ′′) is even, the matrix element becomes after
some rearrangement of the left 3j symbol

〈j′1j′2J ′M ′|T
(k)
1 · T(k)

2 |j1j2JM〉 =
∑
J′′

(−1)J
′−J′′

〈j′1j′2J ′||T
(k)
1 ||j1j

′
2J
′′〉〈j1j′2J ′′||T

(k)
2 ||j1j2J〉

J′′∑
M′′=−J′′

k∑
q=−k

(
J ′′ k J ′

−M ′′ −q M ′

)(
J ′′ k J

−M ′′ −q M

)
.
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In this form we can apply the orthogonality relation (J.6) and simplify the expression,

〈j′1j′2J ′M ′|T
(k)
1 · T(k)

2 |j1j2JM〉 =
∑
J′′

(−1)J
′−J′′

〈j′1j′2J ′||T
(k)
1 ||j1j

′
2J
′′〉〈j1j′2J ′′||T

(k)
2 ||j1j2J〉

δJ,J′δM,M′

2J + 1
.

Using the repeated reduction relation (K.62) twice the expression for the matrix element becomes

〈j′1j′2J ′M ′|T
(k)
1 · T(k)

2 |j1j2JM〉 = 〈j′1||T
(k)
1 ||j1〉〈j

′
2||T

(k)
2 ||j2〉∑

J′′

(−1)J
′+J+2j1+j2+2j′2+j

′
1
(
2J ′′ + 1

){ j′1 J ′ j2

J ′′ j1 k

}{
j2 J

′′ j1

J j′2 k

}
δJ,J′δM,M′ .

Rearranging the 6j symbols for applying the sum rule (J.34) and arrive at the desired expression.

〈j′1j′2J ′M ′|T
(k)
1 · T(k)

2 |j1j2JM〉 = 〈j′1||T
(k)
1 ||j1〉〈j

′
2||T

(k)
2 ||j2〉

(−1)J
′+J+2j1+j2+2j′2+j

′
1
∑
J′′

(
2J ′′ + 1

){ J j2 j′1

j1 k J ′′

}{
j2 j1 J

′′

J k j′2

}
δJ,J′δM,M′ . �
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L

Properties of functions, series and integrals

L.1 Finite sums of powers

The best known example is the arithmetic series:

n∑
k=1

ak = 1
2n(an + a1), with an+1 = an + v, (L.1)

where v is called the difference between successive terms. In particular, for ak = k this becomes

n∑
k=1

k = 1
2n(n+ 1). (L.2)

Related finite sums are

n∑
k=1

k2 = 1
6n(n+ 1)(2n+ 1) (L.3)

n∑
k=1

k3 = 1
4n

2(n+ 1)2. (L.4)

Sums of powers of (generally complex) numbers:

n∑
k=1

knzk =

(
z
d

dz

)n
z − zn+1

1− z
. (L.5)

The best known example is the geometric series

n∑
k=1

ak = a1
1− rn

1− r
, with an+1 = ran. (L.6)

The factor r is called the ratio of the series; i.e., the ratio of two subsequent terms. Other examples
of summations of this type are

n∑
k=1

kzk = z
1− (n+ 1)zn + nzn+1

(1− z)2
(L.7)

n∑
k=1

k2zk = z
1 + z − (n+ 1)2zn + (2n2 + 2n− 1)zn+1 − n2zn+2

(1− z)3
. (L.8)

407
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L.2 Gamma function

The gamma function is defined for the complex z plane excluding the non-positive integers

ˆ ∞
0

e−xxz−1dx = Γ (z) . (L.9)

For integer values z − 1 = n = 0, 1, 2, · · · the gamma function coincides with the factorial function,

ˆ ∞
0

e−xxndx = Γ (n+ 1) = n! (L.10)

Some special values are:

Γ (−1/2) = −2
√
π = −3.545, Γ (1/2) =

√
π = 1.772, Γ (1) = 1

Γ (−3/2) = 4
3

√
π = 2.363, Γ (3/2) = 1

2

√
π = 0.886, Γ (2) = 1

Γ (5/2) = 3
4

√
π = 1.329, Γ (3) = 2

Γ (7/2) = 15
8

√
π = 3.323, Γ (4) = 6.

(L.11)

Some related integrals are

ˆ ∞
0

e−x
2

x2n+1dx =
1

2
n! (L.12)

ˆ ∞
0

e−x
2

x2ndx =
(2n− 1)!!

2n+1

√
π. (L.13)

A useful integral relation is

ˆ ∞
0

e−`x
n

xmdx =
1

`(m+1)/n

ˆ ∞
0

e−x
n

xmdx. (L.14)

L.3 Polylogarithm

The polylogarithm Liα(z) is a special function defined over the unit disk in the complex plane by
the series expansion

Liα(z) = PolyLog[α, z] ≡
∞∑
`=1

z`

`α
(|z| < 1), (L.15)

where α is an arbitrary complex number. By analytic continuation the polylogarithm can be defined
over a larger range of z. For z and α on the real axis and for α > 1 the polylogarithm are given by
the Bose-Einstein integrals

FBE
α (z) =

1

Γ (α)

ˆ ∞
0

xα−1

z−1ex − 1
dx (z < 1) (L.16)

and the Fermi-Dirac integrals

FFD
α (z) =

1

Γ (α)

ˆ ∞
0

xα−1

z−1ex + 1
dx (z ≥ −1). (L.17)

Recurrence relations:

FBE/FD
α (z) = z

d

dz
F

BE/FD
α+1 (z) ⇔ FBE/FD

α (eu) =
d

du
F

BE/FD
α+1 (eu). (L.18)
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L.4 Bose-Einstein function

The Bose-Einstein (BE) integrals are defined for real z and α > 1 as

FBE
α (z) =

1

Γ (α)

ˆ ∞
0

xα−1

z−1ex − 1
dx (z < 1). (L.19)

The integrals can be expanded in powers of z on the interval 0 < z < 1,

FBE
α (z) =

1

Γ (α)

∞∑
`=1

ˆ ∞
0

xα−1z`e−`xdx =

∞∑
`=1

z`

`α
= gα (z) = Liα(z), (L.20)

where Liα(z) is the polylogarithm. For non-integer values of α the BE-integrals can also be expanded
in the form1

FBE
α (e−u) = Γ (1− α)uα−1 +

∞∑
n=0

(−1)n

n!
ζ(α− n)un, (L.21)

where the expansion in powers of u = − ln z is valid on the interval 0 < u < 2π. For integer values
α = m ∈ {2, 3, 4, · · · } the BE-integrals the expansion is

FBE
m (e−u) =

(−u)
m−1

(m− 1)!

(
1 +

1

2
+

1

3
+ · · ·+ 1

m− 1
− lnu

)
um−1 +

∞∑
n=0
6=m−1

ζ(m− n)

n!
un, (L.22)

with convergence for 0 < u ≤ 2π.

L.5 Fermi-Dirac function

The Fermi-Dirac (FD) integrals are defined for real z and α > 1 as

FFD
α (z) =

1

Γ (α)

ˆ ∞
0

xα−1

z−1ex + 1
dx (z ≥ −1). (L.23)

The integrals can be expanded in powers of z on the interval 0 < z ≤ 1,

FFD
α (z) =

−1

Γ (α)

∞∑
`=1

ˆ ∞
0

xα−1 (−z)` e−`xdx = −
∞∑
`=1

(−z)`

`α
= fα (z) = −Liα(−z), (L.24)

where Liα(z) is the polylogarithm.

L.6 Riemann zeta function

The Riemann zeta function is defined as a Dirichlet series

lim
z→1

gα (z) = ζ (α) =

∞∑
`=1

1

`α
. (L.25)

Some special values are:

ζ (1/2) = −1.460, ζ (3/2) = 2.612, ζ (5/2) = 1.341, ζ (7/2) = 1.127,

ζ (1)→∞, ζ (2) = π2/6 = 1.645, ζ (3) = 1.202, ζ (4) = π4/90 = 1.082.

1For a derivation see J.E. Robinson, Phys. Rev. 83, 678 (1951).
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L.7 Selected integrals and rules

For γ > 0 and ε > 0 ˆ ε

0

√
x (ε− x)

γ−1
dx =

√
πΓ(γ)

2 Γ (3/2 + γ)
ε1/2+γ (L.26)

The Leibniz integral rule for moving boundaries is given by

d

dt

ˆ b(t)

a(t)

f(x, t)dx =

ˆ b(t)

a(t)

∂

∂t
f(x, t)dx+ f(x, t)

d

dt
b(t)− f(x, t)

d

dt
a(t) (L.27)

In particular, for definite integrals with fixed boundaries this integration rule becomes

d

dt

ˆ
f(x, t)dx =

ˆ
∂

∂t
f(x, t)dx. (L.28)

L.8 Commutator algebra

If A,B,C and D are four arbitrary linear operators the following relations hold:

[A,B] = − [B,A] (L.29a)

[A,B + C] = [A,B] + [A,C] (L.29b)

[A,BC] = [A,B]C +B [A,C] (L.29c)

[AB,CD] = A[B,C]D +AC[B,D] + [A,C]DB + C[A,D]B (L.29d)

0 = [A, [B,C]] + [B, [C,A]] + [C, [A,B]] . (L.29e)

Commutators containing Bn:

[A,Bn] =

n−1∑
s=0

Bs [A,B]Bn−s−1 (L.30a)

[A,Bn] = nBn−1 [A,B] if B commutes with [A,B]. (L.30b)

The exponential operator is defined as:

eA ≡
∞∑
n=0

An

n!
. (L.31)

Baker-Campbell-Hausdorff formula:
eAeB = eC , (L.32)

where
C = A+B + 1

2 [A,B] + 1
12 ([A, [A,B]] + [[A,B], B]) + · · · .

Special cases:

eAeB = eA+B+ 1
2 [A,B] if A and B commute with [A,B] (L.33a)

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + · · · (L.33b)

eABe−A = B + [A,B] if A commutes with [A,B] (L.33c)

eABe−A = eγB if [A,B] = γB, with γ a constant. (L.33d)

Trotter formula:
eA+B = lim

N→∞
(eA/NeB/N )N . (L.34)
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Zassenhaus formula:

eA+B = eAeB
∞∏
n=2

eCn , (L.35)

where
C2 = − 1

2 [A,B]; C3 = 1
6 (2[A, [A,B]]− [[A,B], B]).

L.9 Legendre polynomials

The associated Legendre differential equation is given by,[(
1− u2

) d2

du2
− 2u

d

du
− m2

1− u2
+ l(l + 1)

]
Pml (u) = 0 (L.36)

For m = 0 this equation is called the Legendre differential equation and its solutions are the Legendre
polynomials, defined by the Rodrigues formula:

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l. (L.37)

Pl(u) is a real polynomial of degree l ∈ {0, 1, 2 · · · }, parity

Pl(−u) = (−1)lPl(u) (L.38)

and having l zeros in the interval −1 ≤ u ≤ 1. The Legendre polynomials of lowest degree are

P0(u) = 1, P1(u) = u, P2(u) = 1
2 (3u2 − 1) (L.39)

P3(u) = 1
2 (5u3 − 3u), P4(u) = 1

8 (35u4 − 30u2 + 3). (L.40)

The Legendre polynomials are generated by expansion of the function

1

|r− r′|
=

1√
r2 − 2urr′ + r′2

=
1

r>

∑
l

(
r<
r>

)l
Pl(u), (L.41)

where r> = max{r, r′} and r< = min{r, r′} with r = |r| and r′ = |r′|; further u = r̂ · r̂′ = cos θ,
with θ the angle included by the unit vectors r̂ and r̂′. The expansion (L.41) is called the multipole
expansion.

For m 6= 0 the solutions of Eq. (L.36) are called the associated Legendre functions Pml (u). For
m = 0 they coincide with the Legendre polynomials. For m > 0 the Pml (u) are obtained by
differentiation of the Pl(u),1

Pml (u) = (−1)m(1− u2)m/2
dm

dum
Pl(u). (L.42)

Note that P 0
l (u) ≡ Pl(u). The differentiation fixes the relative sign of the polynomials of different

power. These functions consist of the product of a function (−1)m(1− u2)m/2 and a polynomial of
degree (l −m), parity (−1)l−m with (l −m) zeros in the interval −1 ≤ u ≤ 1. For crossing from
positive to negative m the sign and normalization are fixed by convention,2

P−ml (u) = (−1)m
(l −m)!

(l +m)!
Pml (u), (L.43)

1Here the phase factor (−1)m is introduced to simplify the definition of the spherical harmonics. This convention
is implemented in Mathematica but deviates from the convention used in most texts on quantum mechanics. Beware
that differences in phase convention affect the recursion relations (L.48) and (L.49).

2Note that the phase factor oscillates like (−1)m for m > 0 · · · but is always 1 for m ≤ 0. This is the signature
of the Condon and Shortley phase convention [28].
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where 0 ≤ m ≤ l. The Pml (u) are nonzero only for −l ≤ m ≤ l; i.e., the index m can assume 2l + 1
possible values for a given value of l. Particular cases are

P 0
l (u) = Pl(u), P ll (u) = (−1)−l(2l − 1)!!(1− u2)l/2. (L.44)

The orthogonality of the Pml is expressed by

ˆ 1

−1

Pml (u)Pml′ (u)du = 0 (l 6= l′) (L.45a)

ˆ 1

−1

Pml (u)Pm
′

l (u)du = 0 (m 6= m′). (L.45b)

The normalization of the Pml is expressed by

ˆ 1

−1

[Pml (u)]
2
du = 2

ˆ 1

0

[Pml (u)]
2
du =

2

2l + 1

(l +m)!

(l −m)!
. (L.46)

The following recursion relations hold for −l ≤ m ≤ l:

(2l + 1)uPml (u) = (l −m+ 1)Pml+1(u) + (l +m)Pml−1(u) (L.47)√
1− u2Pm+1

l (u) = −(l −m+ 1)(l +m)
√

1− u2Pm−1
l (u)− 2muPml (u) (L.48)

and

(1− u2)
d

du
Pml (u) = −luPml (u) + (l +m)Pml−1(u) (L.49a)

= (l + 1)uPml (u)− (l −m+ 1)Pml+1(u) (L.49b)

= −muPml (u)−
√

1− u2Pm+1
l (u) (L.49c)

= +muPml (u) + (l −m+ 1)(l +m)
√

1− u2Pm−1
l (u). (L.49d)

L.9.1 Spherical harmonics Y ml (θ, ϕ)

The spherical harmonics are defined as the joint, normalized eigenfunctions of L2 and Lz. Their
relation to the associated Legendre polynomials is given by

Y ml (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ, (L.50)

with −l ≤ m ≤ l. The orthonormality relation is

ˆ
Y m∗l (r̂)Y m

′

l′ (r̂)dr̂ = δl′lδm′m. (L.51)

Using Eq. (L.43) we find that the complex conjugation is given by

Y m∗l (r̂) = (−1)
m
Y −ml (r̂). (L.52)

The parity under space inversion, r̂ = (θ, ϕ)→ −r̂ = (π − θ, ϕ+ π), is given by

Y ml (−r̂) = (−1)
l
Y ml (r̂). (L.53)
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Alternatively, the spherical harmonics can be defined using only associated Legendre functions of
positive m ,1

Y ml (θ, ϕ) = ε

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ with ε =

{
(−1)

m
for m ≥ 0

1 for m < 0.
(L.54)

Note that the spherical harmonics with even l have even parity and those with odd l have odd parity.
The lowest order spherical harmonics are:√

4π
2l+1Y

m
l (θ, ϕ)− spherical

√
4π

2l+1Y
m
l (x, y, z)− cartesian

Y 0
0 = 1 ⇔ 1

Y 0
1 = cos θ ⇔ z/r

Y ±1
1 = ∓

√
1
2 sin θ e±iϕ ⇔ ∓

√
1
2 (x± iy) /r

Y 0
2 = 1

2

(
3 cos2 θ − 1

)
⇔ 1

2

(
3z2 − r2

)
/r

Y ±1
2 = ∓

√
3
2 sin θ cos θ e±iϕ ⇔ ∓

√
3
2 (x± iy) z/r2

Y ±2
2 =

√
3
2

1
2 sin2 θ e±2iϕ ⇔

√
3
2

1
2 (x± iy)

2
/r2

Y 0
3 = 1

2

(
2 cos3 θ − 3 cos θ sin2 θ

)
⇔ 1

2

(
5z2 − 3r2

)
z/r3

Y ±1
3 = ∓

√
3
16

(
4 cos2 θ sin θ − sin3 θ

)
e±iϕ ⇔ ∓

√
3
16 (x± iy)

(
5z2 − r2

)
/r3

Y ±2
3 =

√
15
2

1
2 cos θ sin2 θ e±2iϕ ⇔

√
15
2

1
2 (x± iy)

2
z/r3

Y ±3
3 = ∓

√
5
2

√
1
8 sin3 θ e±3iϕ ⇔ ∓

√
5
2

√
1
8 (x± iy)

3
/r3.



(L.55)

Note that

Y ml (θ, ϕ)|θ̀=0 =

√
2l + 1

4π
δm,0.

Furthermore, the phase factor oscillates like (−1)m for m = 1, 3, 5, · · · 0 but is always 1 for m < 0;
this is the signature of the Condon and Shortley phase convention.

The addition theorem relates the angle θ12 between two directions r̂1 = (θ1, ϕ1) and r̂2 = (θ2, ϕ2)
relative to a coordinate system of choice,

2l + 1

4π
Pl(cos θ12) =

l∑
m=−l

Y m∗l (r̂1)Y ml (r̂2). (L.56)

The product of two spherical harmonics can be expressed in terms of Wigner 3j symbols

Y ml (r̂)Y m
′

l′ (r̂) =

l+l′∑
L=|l−l′|

L∑
M=−L

(−1)M
√

(2l + 1)(2l′ + 1)(2L+ 1)

4π

×
(
l l′ L

0 0 0

)(
l l′ L

mm′M

)
Y −ML (r̂), (L.57)

1Note that the phase factor (−1)m is only included for positive m. This is the signature of the Condon and
Shortley phase convention [28].
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An important relation is the integral over three spherical harmonics [49]

ˆ
Y m1

l1
(r̂)Y m2

l2
(r̂)Y m3

l3
(r̂)dr̂ =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (L.58)

In Dirac notation this becomes

〈l′m′|Y qk (r̂) |lm〉 = (−1)m
′

√
(2l′ + 1)(2k + 1)(2l + 1)

4π

(
l′ k l

0 0 0

)(
l′ k l

−m′ q m

)
. (L.59)

Some special cases are:

• k = 0: The 3j symbols are zero unless l′ = l and m′ = m; hence, we find

〈l′m′|
√

4π Y 0
0 (r̂) |lm〉 = δl′,lδm′,m (L.60)

• k = 1: The first 3j symbol is zero unless l′ = l ± 1; hence, we find

〈l′m′|
√

4π/3Y q1 (r̂) |lm〉 = (−1)m
′+max(l,l′)

√
max(l, l′)

(
l′ 1 l

−m′ q m

)
δl′,l±1 (L.61)

• k = 2: The first 3j symbol is zero unless l′ = l, l ± 2; hence, we find

〈l′m′|
√

4π/5Y q2 (r̂) |lm〉 =


(−1)m

′+l+1

√
l (l + 1) (2l + 1)

(2l + 3)(2l − 1)

(
l 2 l

−m′ q m

)
l′ = l

(−1)m
′+l

√
3

4

l + l′

l + l′ + 1

√
max(l, l′)

(
l′ 2 l

−m′ q m

)
l′ = l ± 2.

(L.62)

L.10 Hermite polynomials

The Hermite differential equation is given by

y′′ − 2xy′ + 2ny = 0. (L.63)

For n = 0, 1, 2, . . . the solutions satisfy the Rodrigues formula

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

). (L.64)

These solutions are polynomials of degree n known as Hermite polynomials. Examples:

H0 (x) = 1 H4 (x) = 16x4 − 48x2 + 12

H1 (x) = 2x H5 (x) = 32x5 − 160x3 + 120x

H2 (x) = 4x2 − 2 H6 (x) = 64x6 − 480x4 + 720x2 − 120

H3 (x) = 8x3 − 12x H7 (x) = 128x7 − 1344x5 + 3360x3 − 1680x .

(L.65)

The generating function is

e2tx−t2 =

∞∑
n=0

Hn (x)
tn

n!
. (L.66)

Useful recursion relations are

Hn+1 (x) = 2xHn (x)− 2nHn−1 (x) (L.67)

H ′n (x) = 2nHn−1 (x) (L.68)

and the orthogonality relation is given byˆ ∞
−∞

e−x
2

Hm (x)Hn (x) = 2nn!
√
πδmn . (L.69)
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L.11 Laguerre polynomials

Generalized Laguerre polynomials satisfy the following differential equation

xy′′ + (α+ 1− x)y′ + 2ny = 0. (L.70)

For n = 0, 1, 2, . . . the solutions satisfy the Rodrigues formula1

Lαn(x) =
1

n!
exx−α

dn

dxn
(e−xxn+α) (L.71)

=

n∑
m=0

(−1)m
(
n+ α

n−m

)
xm

m!

=

n∑
m=0

Γ(α+ n+ 1)

Γ(α+m+ 1)

(−1)m

(n−m)!

xm

m!
(L.72)

These polynomials are well-defined also for real α > −1 because the ratio of two gamma functions
differing by an integer is well-defined, (β)n = β(β + 1)(β + 2) · · · (β + n− 1) = Γ(β + n)/Γ(β). The
Laguerre polynomials of lowest degree are given by

Lα0 (x) = 1, Lα1 (x) = α+ 1− x, Lα2 (x) = 1
2 (α+ 1)(α+ 2)− (α+ 2)x+ 1

2x
2. (L.73)

Some special cases for α = 0 and α = −n are

L0(x) = 1, L1(x) = 1− x, L2(x) = 1− 2x+ 1
2x

2, L−nn (x) = (−1)n
xn

n!
. (L.74)

The generating function is

(−1)
m
tm

(1− t)m+1 e
−x/(1−t) =

∞∑
n=m

Lmn (x)
tn

n!
. (L.75)

The generalized Laguerre polynomials satisfy the orthogonality relationˆ ∞
0

xαe−xLαn(x)Lαm(x)dx = 0 for m 6= n (orthogonality relation) (L.76)

ˆ ∞
0

xαe−xLαn(x)dx = Γ(α+ 1)δ0,n . (L.77)

Useful recursion relations are:

xLαn(x) = (2n+ α+ 1)Lαn(x)− (n+ α)Lαn−1(x)− (n+ 1)Lαn+1 (L.78)

d

dx
Lαn(x) = −Lα+1

n−1(x) = −[1 + Lα1 (x) + · · ·+ Lαn−1(x)]. (L.79)

Series expansions:

Lα+1
n (x) =

n∑
m=0

Lαm(x) (L.80a)

d

dx
Lαn(x) = −

n−1∑
m=0

Lαm(x) (L.80b)

d2

dx2
Lαn(x) =

n−2∑
m=0

(n−m− 1)Lαm(x). (L.80c)

1Different definitions can be found in the literature. Here we adhere to the definition of the generalized La-
guerre polynomials as used in the Handbook of Mathematical functions by Abramowitz and Stegun (Eds.), Dover
Publications, New York 1965. This definition is also used by Mathematica.
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Further, it is practical to introduce a generalized normalization integral

Jν(m,α) =

ˆ ∞
0

xα+νe−x[Lαm(x)]2dx. (L.81)

Some special cases are given by

J0(m,α) =

ˆ ∞
0

xαe−x[Lαm(x)]2dx =
Γ(α+m+ 1)

m!
(L.82)

J1(m,α) =

ˆ ∞
0

xα+1e−x[Lαm(x)]2dx =
Γ(α+m+ 1)

m!
(2m+ α+ 1) (L.83)

J2(m,α) =

ˆ ∞
0

xα+2e−x[Lαm(x)]2dx =
Γ(α+m+ 1)

m!
[6m(m+ α+ 1) + α2 + 3α+ 2] (L.84)

J−1(m,α) =

ˆ ∞
0

xα−1e−x[Lαm(x)]2dx =
1

α

ˆ ∞
0

xαe−x[Lαm(x)]2dx =
Γ(α+m+ 1)

m!

1

α
(L.85)

The integrals Jν(m,α) with ν > 0 are obtained from Eq. (L.82) by repetitive use of the recursion
relation (L.78) and orthogonality relation (L.76); integrals Jν(m,α) with ν < 0 are obtained from
Eq. (L.82) by partial integration and use of the recursion relation (L.79), the orthogonality relation
(L.76) and the special integral (L.77).
Selected ratios for m = n− l − 1 and α = 2l + 1 :

J4/J1 =
1

n
[35n2(n2 − 1)− 30n2(l + 2)(l − 1) + 3(l + 2)(l + 1)l(l − 1)] (L.86)

J3/J1 = 2
[
5n2 + 1− 3l(l + 1)

]
(L.87)

J2/J1 =
1

n

[
3n2 − l(l + 1)

]
(L.88)

J1/J1 = 1 (L.89)

J0/J1 =
1

2n
(L.90)

J−1/J1 =
1

2n

1

2l + 1
(L.91)

J−2/J1 =
1

8

1

(l + 1)(l + 1/2)l
(L.92)

J−3/J1 =
1

32n

3n2 − l(l + 1)

(l + 3/2)(l + 1)(l + 1/2)l(l − 1/2)
. (L.93)

L.12 Bessel functions

L.12.1 Spherical Bessel functions and Hankel functions

The spherical Bessel differential equation is given by

x2y′′ + 2xy′ +
[
x2 − l(l + 1)

]
y = 0. (L.94)

The general solution is a linear combination of two particular solutions, solutions jl (x), regular
(as xl) at the origin and known as spherical Bessel functions of the first kind, and solutions nl(
x), irregular at the origin and known as spherical Bessel function of the second kind (also called
Neumann functions). The spherical Bessel functions and the Neumann functions are real. The
general solution can also be written as a linear combination of two complex functions called Hankel
functions of the first (+) and second (−) type,

h±l (x) = nl (x)± ijl (x) (L.95)
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or, vice versa

jl (x) =
1

2
i
[
h−l (x)− h+

l (x)
]

(L.96a)

nl (x) =
1

2

[
h−l (x) + h+

l (x)
]
. (L.96b)

The spherical Bessel functions and Neumann functions are real and Hankel functions can be ex-
pressed in the form

jl (x) = Rl
sinx

x
+ Sl

cosx

x
(L.97)

nl (x) = Rl
sinx

x
− Sl

cosx

x
(L.98)

h±l (x) = (Rl ± iSl)
e±ix

x
, (L.99)

where Rl and Sl are polynomials in 1/x with real coefficients. In the case of Rl the polynomial is
of degree l and has parity (−1)l; the polynomial Sl is of degree l − 1 and has parity (−1)l−1. For
real x the polynomial (Rl ± iSl) is of the form

Rl ± iSl =

l∑
s=0

(±i)s−l

2ss!

(l + s)!

(l − s)!

(
1

x

)s
. (L.100)

For real argument x the functions jl (x) and nl (x) are real and the Hankel functions satisfy the
relation

h±l (x) = h∓l (x)∗.

The parity relations for the spherical Bessel, spherical Neumann and spherical Hankel functions are

jl(−z) = (−1)ljl(z) (L.101)

nl(−z) = (−1)l−1nl(z) (L.102)

h±l (−z) = (−1)l−1h∓l (z). (L.103)

An integral representation of the spherical Bessel function is

jl (kr) = 1
2 (−1)l

ˆ 1

−1

eikr cos θPl(cos θ)d cos θ (L.104)

Some special cases are given by

• Lowest orders:

j0 (x) =
sinx

x
, n0 (x) =

cosx

x
, h±0 (x) =

e±ix

x
,

j1 (x) =
sinx

x2
− cosx

x
, n1 (x) =

cosx

x2
+

sinx

x
, h±1 (x) =

(
1

x2
∓ i 1

x

)
e±ix

x
.

(L.105a)

• Asymptotic forms for x→∞

jl (x) ∼
x→∞

1

x
sin(x− 1

2 lπ) (L.106a)

nl (x) ∼
x→∞

1

x
cos(x− 1

2 lπ) (L.106b)

h±l (x) ∼
x→∞

e±i(x−
1
2 lπ)

x

[
1± i l(l + 1)

2x

]
. (L.106c)
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• Asymptotic forms for x→ 0

jl (x) ∼
x→0

xl

(2l + 1)!!

[
1− x2

2(2l + 3)
+ · · ·

]
(L.107a)

nl (x) ∼
x→0

(2l + 1)!!

(2l + 1)

(
1

x

)l+1 [
1 +

x2

2(2l − 1)
+ · · ·

]
. (L.107b)

• Orthogonality relations
ˆ ∞

0

jl (k1r) jl (k2r) r
2dr =

π

2k2
1

δ(k1 − k2) (L.108)

ˆ ∞
−∞

jl (x) jl′ (x) dx =
π

2l + 1
δl′l. (L.109)

L.12.1.1 Relation to Riccati functions

The Riccati functions ̂l (x), n̂l (x) and ĥ±l (x) are defined as

̂l (x) = xjl (x) (L.110a)

n̂l (x) = xnl (x) (L.110b)

ĥ±l (x) = xh±l (x). (L.110c)

L.12.1.2 Relation to Bessel functions

The spherical Bessel functions are related to half-integer Bessel functions

jl (x) =

√
π

2x
Jl+ 1

2
(x) for l = 0, 1, 2, . . . (L.111)

nl(x) = (−)l
√

π

2x
J−l− 1

2
(x) for l = 0, 1, 2, . . . (L.112)

L.12.2 Bessel functions

The Bessel differential equation is given by

x2y′′ + xy′ +
(
x2 − n2

)
y = 0. (L.113)

The general solution is a linear combination of two particular solutions

y = AJn(x) +BJ−n(x) for n 6= 0, 1, 2, · · · (L.114a)

y = AJn(x) +BYn(x) for all integer n (L.114b)

where A and B are arbitrary constants and J±n(x) are Bessel functions, which are defined by

J±n(x) =

∞∑
p=0

(−1)
p

(x/2)2p±n

p!Γ (1 + p± n)
. (L.115)

The Yn(x) are Neumann functions and are defined by

Yn (x) =
Jn(x) cosnπ − J−n(x)

sinnπ
for n 6= 0, 1, 2, · · · (L.116)

Yn (x) = lim
p→n

Jn(x) cos pπ − J−n(x)

sin pπ
for n = 0, 1, 2, · · · . (L.117)
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Extracting the leading term from the Bessel expansion (L.115) results in

J±n(x) =
(x/2)±n

Γ (1± n)

(
1− (x/2)2

(1± n)
+ · · ·

)
. (L.118)

The generating function is of the form

ex(z−1/z)/2 =

∞∑
n=−∞

Jn(x)zn, (L.119)

in particular for z = 1
∞∑

n=−∞
Jn(x) = 1.

Some differential recursion relations are for any n ∈ Z

2J ′n(x) = Jn−1(x)− Jn+1(x) (L.120a)

2n

x
Jn(x) = Jn+1(x) + Jn−1(x) (L.120b)

d

dx
[xnJn(x)] = xnJn−1(x). (L.120c)

Some integral recursion relations are for any n ∈ Z
ˆ
xn+1Jn(x)dx = xn+1Jn+1(x) (L.121)

ˆ
x−n+1Jn(x)dx = −x−n+1Jn+1(x). (L.122)

Completeness relations for any m 6= 0

J2
0 (x) + 2

∞∑
n=1

J2
n(x) = 1 (L.123)

∞∑
n=−∞

Jn+m(x)Jn(x) = 0. (L.124)

Addition relation

Jn(x+ y)

∞∑
m=−∞

Jm(x)Jn−m(y) (L.125)

Special cases:
Bessel functions with negative integer index

J−n(x) = (−1)nJn(x) for n = 0, 1, 2, · · ·
Y−n(x) = (−1)nYn(x) for n = 0, 1, 2, · · · .

Bessel function of n = 1/4

J1/4(x) =
(x/2)1/4

Γ (5/4)
(1− (x/2)2Γ (5/4)

Γ (9/4)
+ · · · ) (L.126)

J−1/4(x) =
(x/2)−1/4

Γ (3/4)
(1− (x/2)2Γ (3/4)

Γ (7/4)
+ · · · ) (L.127)
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Asymptotic expansions:

Jn(x) '
x→∞

√
2

π

1

x
cos
(
x− nπ

2
− π

4

)
(L.128)

Yn(x) '
x→∞

√
2

π

1

x
sin
(
x− nπ

2
− π

4

)
(L.129)

Integral expressions for µ+ ν + 1 > λ > 0

ˆ ∞
0

1

rλ
Jµ(kr)Jν(kr)dr =

kλ−1Γ (λ) Γ
(
µ+ν−λ+1

2

)
2λΓ

(
µ−ν+λ+1

2

)
Γ
(
µ+ν+λ+1

2

)
Γ
(
ν−µ+λ+1

2

) . (L.130)

Special cases 2µ+ 1 > λ > 0

ˆ ∞
0

1

rλ
[Jµ(kr)]

2
dr =

kλ−1Γ (λ) Γ
(

2µ−λ+1
2

)
2λ
[
Γ
(
λ+1

2

)]2
Γ
(

2µ+λ+1
2

) . (L.131)

L.12.3 Jacobi-Anger expansion and related expressions

The Jacobi-Anger expansions are is given by

eiz cos θ =

n=∞∑
n=−∞

inJn(z)einθ (L.132)

eiz sin θ =

n=∞∑
n=−∞

inJn(z)ein(θ−π/2) =

n=∞∑
n=−∞

Jn(z)einθ, (L.133)

where n assumes only integer values. Using
´ π
−π e

inαdα = δn,0 this leads to the following integral
representation of the Bessel function

ˆ π

−π
eiz sin θe−imθdθ =

n=∞∑
n=−∞

Jn(z)

ˆ π

−π
einθe−imθdθ = Jn(z), (L.134)

in particular

J0(z) =

ˆ π

−π
eiz sin θdθ =

ˆ π

−π
eiz cos θ′dθ′. (L.135)

This relation can be rewritten in several closely related forms

eiz sin θ = J0(z) +

n=∞∑
n=1

Jn(z)[einθ + (−1)ne−inθ] (L.136)

cos(z sin θ) = <(eiz sin θ) = J0(z) + 2

n=∞∑
n=2,4,···

Jn(z) cos(nθ) (L.137)

sin(z sin θ) = =(eiz sin θ) = 2

n=∞∑
n=1,3,···

Jn(z) sin(nθ). (L.138)
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L.13 The Wronskian and Wronskian Theorem

Let us consider a second-order differential equation of the following general form

χ′′ + F (r)χ = 0 (L.139)

and look for some general properties of this eigenvalue equation. The only restrictions will be that
F (r) is bounded from below and continuous over the entire interval (−∞,+∞). To compare full
solutions of Eq. (L.139) with approximate solutions the analysis of their Wronskian is an important
tool. The Wronskian of two functions χ1(r) and χ2(r) is defined as

W (χ1, χ2) ≡ χ1χ
′
2 − χ′1χ2. (L.140)

Problem L.1. If the Wronskian of two functions χ1(r) and χ2(r) is vanishing at a given value of r, then
the logarithmic derivative of these two functions are equal at that value of r.

Solution. The Wronskian W (χ1, χ2) is vanishing at position r if χ1χ
′
2 − χ′1χ2 = 0. This can be rewritten

as
d lnχ1

dr
=
χ′1
χ1

=
χ′2
χ2

=
d lnχ2

dr
.

Hence, the logarithmic derivatives are equal. 2

Problem L.2. Show that the derivative of the Wronskian of two functions χ1(r) and χ2(r), which are (over
an interval a < r < b) solutions of two differential equations χ′′1 + F1(r)χ1 = 0 and χ′′2 + F2(r)χ2 = 0, is
given by

dW (χ1, χ2)/dr = [F1(r)− F2(r)]χ1χ2.

This is the differential form of the Wronskian theorem.

Solution. The two functions χ1(r) and χ2(r) are solutions (over an interval a < r < b) of the equations

χ′′1 + F1(r)χ1 = 0 (L.141)

χ′′2 + F2(r)χ2 = 0, (L.142)

Multiplying the upper equation by χ2 and the lower one by χ1, we obtain after subtracting the two equations

dW (χ1, χ2)/dr = χ1χ
′′
2 − χ2χ

′′
1 = [F1(r)− F2(r)]χ1χ2.

In integral form this expression is known as the Wronskian theorem,

W (χ1, χ2)|ba =

ˆ b

a

[F1(r)− F2(r)]χ1(r)χ2(r)dr. (L.143)

The Wronskian theorem expresses the overall variation of the Wronskian of two functions over a given
interval of their joint variable. 2

Problem L.3. Show that the derivative of the Wronskian of two functions χ1(r) and χ2(r), which are (over
an interval a < r < b) solutions of two differential equations χ′′1 + F1(r)χ1 + f1(r) = 0 and χ′′2 + F2(r)χ2 +
f2(r) = 0, is given by

dW (χ1, χ2)/dr = [F1(r)− F2(r)]χ1χ2 + f1(r)χ2 − f2(r)χ1.

Solution. The two functions χ1(r) and χ2(r) are solutions (over an interval a < r < b) of the equations

χ′′1 + F1(r)χ1 + f1(r) = 0 (L.144)

χ′′2 + F2(r)χ2 + f2(r) = 0, (L.145)

Multiplying the upper equation by χ2 and the lower one by χ1, we obtain after subtracting the two equations

dW (χ1, χ2)/dr = [F1(r)− F2(r)]χ1χ2 + f1(r)χ2 − f2(r)χ1.
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In integral form this expression becomes

W (χ1, χ2)|ba =

ˆ b

a

[F1(r)− F2(r)]χ1χ2dr +

ˆ b

a

[f1(r)χ2 − f2(r)]χ1dr. (L.146)

The Wronskian theorem expresses the overall variation of the Wronskian of two functions over a given
interval of their joint variable. 2

For two functions χ1(r, ε1) and χ2(r, ε2), which are solutions of the 1D-Schrödinger equation
(L.139) on the interval a < r < b for energies ε1 and ε2, the Wronskian Theorem takes the form

W (χ1, χ2)|ba = (ε1 − ε2)

ˆ b

a

χ1(r)χ2(r)dr. (L.147)

Likewise, for two functions χ1(r) and χ2(r), which are (on the interval a < r < b) solutions for
energy ε of the 1D-Schrödinger equation (L.139) with potential U1(r) and U2(r), respectively, the
Wronskian Theorem takes the form

W (χ1, χ2)|ba =

ˆ b

a

[U2(r)− U1(r)]χ1(r)χ2(r)dr. (L.148)

L.14 Total differentials and partial derivatives

In this section we consider the function u, which is function of the variables x, y and z,

u = u(x, y, z) (L.149)

in the presence of a single constraint
g(x, y, z) = 0. (L.150)

In thermodynamics the constraint is given by the equation of state of the system under consideration.
In view of the constraint we can express x, y, z and u in terms of (y, z), (y, z) or (x, y), respectively,

z = z(x, y) or y = y(x, z) or x = x(y, z) (L.151)

u = u(x, y) or u = u(x, z) or u = x(y, z). (L.152)

L.14.1 Total differential

The total differential (also called exact differential),

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy (L.153)

can always be written in the form

dz = A(x, y)dx+B(x, y)dy, (L.154)

where

A(x, y) ≡
(
∂z

∂x

)
y

and B(x, y) ≡
(
∂z

∂y

)
x

, (L.155)

which implies (
∂A

∂y

)
x

=

(
∂B

∂x

)
y

=
∂2z

∂x∂y
. (L.156)

Properties:
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Path invariance: The integral
´
A(x, y)dx +

´
B(x, y)dy is independent of the integration path in

the x, y plane but only depends on the value of the function z at the beginning and the end point,

ˆ x2,y2

x1,y1

A(x, y)dx+

ˆ x2,y2

x1,y1

B(x, y)dy =

ˆ z2

z1

dz = z2 − z1, (L.157)

where z1 = z(x1, y1) and z2 = z(x2, y2).
Minus 1 rule: The variables x, y, z satisfy the relation (see Problem L.4)(

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (L.158)

Problem L.4. Derive the minus 1 rule.

Solution. This rule follows by substituting the total differential

dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz (L.159)

into Eq. (L.153)

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

(
∂y

∂x

)
z

dx+

(
∂z

∂y

)
x

(
∂y

∂z

)
x

dz. (L.160)

Since (
∂z

∂y

)
x

(
∂y

∂z

)
x

= 1 (L.161)

the differential is only satisfied if (
∂z

∂x

)
y

+

(
∂z

∂y

)
x

(
∂y

∂x

)
z

= 0, (L.162)

which can be rewritten in the form of the minus 1 rule. 2
Inversely, the expression (L.154) is in general not a total differential. Interpreting A(x, y) and B(x, y)

as partial derivatives,

A(x, y) ≡
(
∂zA
∂x

)
y

and B(x, y) ≡
(
∂zB
∂y

)
x

, (L.163)

we find that in general (
∂A

∂y

)
x

6=
(
∂B

∂x

)
y

. (L.164)

For this case we use the notation:
d−z = A(x, y)dx+B(x, y)dy. (L.165)

Only if the condition (L.156) holds the functions zA(x, y) and zB(x, y) are equal (up to a constant) and
Eq. (L.154) becomes a total differential.
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M

Square matrices

M.1 Nomenclature and notation

In this section we summarize the nomenclature and properties of complex square matrices of order
n. An arbitrary n× n matrix A and its inverse are written as

A ≡ (aij) and A−1 ≡ (aij)
−1 ≡ (āij), (M.1)

where aij and āij represent the elements of these matrices with the convention that the upper or
contravariant index is the row index and the lower or covariant index is the column index. We
define the index order, upper precedes lower. Conforming to the standard matrix notation, the first
index is the row index of the matrix (aij) and the second index the column index. The transposed
matrix

AT ≡ Ã ≡ (ãij) = (aji ) (M.2)

is obtained by exchanging rows and columns, the complex conjugate

A∗ ≡ (aij)
∗ = (ai∗j ) (M.3)

by taking the complex conjugate of all elements, and the hermitian conjugate or conjugate transpose

A† ≡ (aij)
† = (aj∗i ) = Ã∗ (M.4)

is obtained by complex conjugation of the transposed matrix. The trace of the matrix A is defined
as

trA =

n∑
i=1

aii. (M.5)

The determinant of the matrix A is defined by the Leibniz expansion

|A| ≡ detA = det(aij) =
∑
P

(−1)pai1
1
· · · ain

n
= εi1,···ina

i1
1
· · · ain

n
, (M.6)

where the summation runs over all permutations P of the indices (i1, · · · in) = (1, · · ·n) and p ∈
{even, odd} is the order of the permutation; εi1,···in is a generalized Levi-Civita symbol.

With each element aij of the matrix we can associate a cofactor , cofactor(aij), which is defined as

the minor (sub-determinant) detAij corresponding to the sub-matrix Aij of that element, including

its sign (−1)i+j . The determinant detA can be expanded in terms of its minors detAij , c.q. cofactors,
with respect to row i,

detA =

n∑
i=1

(−1)i+jaij detA =

n∑
i=1

aijcofactor(aij). (M.7)

425
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This is called the Laplace expansion. Replacing the elements of the transposed matrix by their
cofactors we obtain the adjoint matrix, in which the elements are the cofactors of the transposed
matrix

Adj(aij) = cofactor(aji ) = (−1)i+j detAji . (M.8)

For square matrices we define the following special cases:

complex : hermitian A = A† ⇔ aij = aj∗i (M.9)

unitary A−1 = A† ⇔ āij = aj∗i (M.10)

real A = A∗ ⇔ aij = ai∗j (M.11)

real : symmetrical A = Ã ⇔ aij = aji (M.12)

orthogonal A−1 = Ã ⇔ āij = aji (M.13)

M.2 Properties

If the inverse exists, the matrix A satisfies the following properties:

• The determinant of an n × n matrix (aji ) is invariant under addition to a given column (or
row) a scalar multiple of another column (or rows)∣∣∣∣∣∣∣

a1
1 · · · an1
...

...

a1
n · · · ann

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a1

1 + kaj1 · · · an1
...

...

a1
n + kaj1 · · · ann

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a1

1 · · · an1
...

...

a1
n + ka1

i · · · ann + kani

∣∣∣∣∣∣∣ . (M.14)

• The determinant of a triangular n× n matrix (aji ), i.e. aji = 0 for i > j (or j > i), is equal to
the product of the diagonal elements,∣∣∣∣∣∣∣

a1
1 · · · an1

0
. . .

...

0 0 ann

∣∣∣∣∣∣∣ =

n∏
i=1

aii . (M.15)

This follows from the Leibniz expansion because the only nonzero product of n matrix elements
is the diagonal one.

• The determinant of the blockdiagonal (n+m) × (n+m) matrix of the n × n matrix A and
the m×m matrix B is equal to the product of the determinants of the matrices A and B,

∣∣∣∣AC0 B

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1
1 · · · an1 c11 · · · cm1
...

...
...

...

a1
n · · · ann c1n · · · cmm

b11 · · · bm1
0

...
...

b1m · · · bmm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= detAdetB. (M.16)

This follows from the Leibniz expansion because the only nonzero product of n + m matrix
elements are the ones containing only elements of the submatrices A and B. Note that the
r.h.s. is independent of C because the elements of the submatrix C appear in the determinant
only in combination with elements of the zero block.
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• The product rule for the determinants of two n× n matrices, A and B,

det AB = detA detB. (M.17)

• The determinant of A is non-zero

detA = det(aij) = ∆ 6= 0. (M.18)

Proof: Because the inverse exists, (āij) = (aij)
−1, we have (aij)(ā

i
j) = 1. Thus we obtain with

the aid of the product rule 1 = det[(aij)(ā
i
j)] = ∆ det(āij). This implies ∆ 6= 0.

• The determinant of A−1 equals the inverse of the determinant of A,

detA−1 = det(āij) = ∆−1. (M.19)

Proof: Because the inverse exists we have (with the aid of the product rule) 1 = det[(aij)(ā
i
j)] =

∆ det(āij) with ∆ 6= 0. This can be rewritten in the form (M.19).

• The determinant of A∗ equals the complex conjugate of detA,

detA∗ = det(ai∗j ) = det(aij)
∗ = ∆∗. (M.20)

Proof: det(ai∗j ) = εi1,···ina
i1∗
1
· · · ain∗

n
= (εi1,···ina

i1
1
· · · ain

n
)∗ = [det(aij)]

∗.

• The determinant of A is invariant under transposition

det Ã = detA. (M.21)

Proof: det(aij) = εi1,···ina
i1∗
1
· · · ain∗

n
= εi1,···ina

1
i1
· · · anin = det(aji ).

• Kronecker property:

aikā
k
j = δij and āii′a

i′

j = δij (M.22)

Proof:1 1 = (aij)(ā
i
j) = (aikā

k
j )⇒ (aikā

k
j ) = δij and 1 = (āij)(a

i
j) = (āika

k
j )⇒ āika

k
j = δij .

• The elements of the inverse matrix are given by

āij = ∆−1Adj(aij), (M.23)

where Adj(aij) is the adjoint matrix of (aij), i.e. Adj(aij) = cofactor(aji ) = (−1)i+j det(Aji ).

Proof: Let B = (αij) = Adj(aij) be the adjoint matrix of (aij). Then, the product of the
matrices A and B is given by

AB = (aij)(α
i
j) = (aikα

k
j ) =

n∑
i=1

aikcofactor(ajk) = (δij) detA = 1 ∆. (M.24)

To arrive at the result we used Eq. (M.7) and further
∑n
i=1 a

i
kcofactor(ajk) = 0 for i 6= j.2

Rewriting Eq. (M.24) we obtain at A−1 = B/∆, which had to be proven.

1Note that aikb
k
j 6= aki b

j
k. Therefore we need a convention. In matrix multiplication we use the column on row

summation convention (cij) = (aij)(b
i
j) = (aikb

k
j ). This means that we sum over the column index of the left matrix

and the row index of the right matrix.
2Note that this expression corresponds to a determinant with two identical columns.
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• The trace of the commutator of two (n× n) matrices, A and B, is zero,

tr [A,B] = 0 (M.25)

Proof: The trace trAB of the product of the matrices A and B is given by

trAB = tr(aikb
k
j ) =

n∑
i,k=1

aikb
k
i =

n∑
i,k=1

bki a
i
k = tr(bki a

i
l) = trBA.

Since [A,B] = AB −BA and tr (A+B) = trA+ trB this completes the proof.

• The trace of the product of three (n× n) matrices A, B and C is invariant under cyclic
permutation of these matrices,

trABC = trCAB = trBCA (M.26)

Proof: This follows by direct application of property M.25.

M.2.1 Unitary matrices

Let U = (ui
′

i ) be a unitary n × n matrix, U−1 = U† ≡ Ũ∗ ⇔ ūii′ = ui
′∗
i . The unitarity implies the

following properties:

• Kronecker property: The Kronecker property takes the following form

ui
′∗
i uij′ = δi

′

j′ and uii′u
i′∗
j = δij . (M.27)

Proof: Substituting the unitarity condition ūii′ = ui
′∗
i in Eq. (M.22) yields the desired result.

• Determinant - The determinant of a unitary n×n matrix U equals a complex number of unit
norm,

∆ ≡ detU = eiϕ. (M.28)

where ϕ ∈ R. For the special case ϕ = 0 the matrix U is called the special unitary matrix.
Proof: Using the properties M.20, M.30 and M.19 we find ∆∗ = detU∗ = detU† = detU−1 =
1/∆→ |∆|2 = 1, which implies (M.28).

• Matrix inversion rule: The elements of the inverse matrix are given by

ui∗i′ = e−iϕcofactor(ui
′

i ), (M.29)

Proof: This follows from Eq. (M.23) by substitution of ∆ = eiϕ.

• Determinant of hermitian conjugate: The determinant of U† follows with Eq. (M.21),

detU† = det Ũ∗ = detU∗ = e−iϕ. (M.30)

Proof: This follows from Eq. (M.21) and substitution of ∆ = eiϕ.

• Invariance of determinant under unitary transformation: The determinant of an arbitrary
n× n matrix A is invariant under unitary transformation

detUAU† = detA. (M.31)

Proof: Using the properties M.17 and M.28 we find det UAU†) = detU detA detU† =
eiϕ detAe−iϕ = detA.

• Invariance of trace under unitary transformation: The trace of an arbitrary n × n matrix A
is invariant under unitary transformation

trUAU† = trA. (M.32)

Proof: Using the properties M.26 and M.10 we find trUAU† = trU†UA = trU−1UA = trA.



N

Vector relations

N.1 Inner and outer products

(u,v,w) = u · (v ×w) = v · (w × u) = w · (u× v) (N.1)

u× (v ×w) = (u ·w)v − (u · v)w (N.2)

u× (v ×w) = − (v ×w)×u (N.3)

(u× v) · (w × z) = (u ·w)(v · z)− (u · z)(v ·w) (N.4)

N.2 Gradient, divergence and curl

N.2.1 Helmholtz theorem

Any vector A can be separated in an irrotational part A‖ and a rotational (solenoidal) part A⊥,
defined by

A = A⊥ + A‖ with ∇ ·A⊥ = 0 and ∇×A‖ = 0. (N.5)

N.2.2 Vector identities with a single vector differential operator

∇ · (Aφ) = (A ·∇φ) + φ(∇ ·A) (N.6)

∇× (Aφ) = −(A×∇φ) + φ(∇×A) (N.7)

∇ · (A×B) = B · (∇×A) + A · (∇×B) (N.8)

∇× (A×B) = (B ·∇)A−B(∇ ·A)− (A ·∇)B + A(∇ ·B) (N.9)

∇(A ·B) = (B ·∇)A + (A ·∇)B + B× (∇×A) + A× (∇×B) (N.10)

Examples:

∇ · r = 3⇔ ∂iri = 3 (N.11)

∇× r = 0⇔ εijk∂jrk = 0 (N.12)

(A ·∇)r = A⇔Ai∇irk = Ak (N.13)

∇ · ṙ =∇× ṙ = (A ·∇)ṙ = 0 (N.14)

Combining Eqs. (N.10), (N.12) and (N.13) we find

∇(r ·A) = A + (r ·∇)A + r× (∇×A). (N.15)
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Likewise we find by combining Eqs. (N.10) with Eq. (N.9)

∇(ṙ ·A) = (ṙ ·∇)A + ṙ× (∇×A) (N.16)

d

dt
A =

∂

∂t
A + (ṙ · ∇)A. (N.17)

Special case:
∇rn = nrn−1 (r/r) = nrn−1r̂. (N.18)

For n ≥ 0 this expression is valid everywhere, including the origin. For n < 0 the expression is
irregular in the origin. In particular we have

∇1

r
= − r

r3
. (N.19)

Since

∇|r− r′| = r− r′

|r− r′|
= −∇′|r− r′| (N.20)

(as is easily verified in cartesian coordinates) we can generalize Eq. (N.18) to

∇|r− r′|n = n|r− r′|n−1 r− r′

|r− r′|
= −∇′|r− r′|n. (N.21)

N.2.3 Expressions with second derivatives

∇× (∇φ) = 0 (N.22)

∇ · (∇×A) = 0 (N.23)

∇× (∇×A) =∇(∇ ·A)−∇2A (N.24)

Expressions for the laplacian:

∆rn =∇ ·∇rn = nrn−2 (∇ · r) + nr·∇rn−2 = 3nrn−2 + n(n− 2)rn−2. (N.25)

We distinguish three cases:

∆rn = n(n+ 1)rn−2 is regular everywhere

{
for n ≥ 0 also at the origin

for n < 0 outside at the origin
(N.26)

Note that for n = −1 this expression yields ∇2(1/r) = 0 everywhere outside the origin. The case
n = −1 is special at the origin because the laplacian produces a flux out of any sphere centered
around the origin. With the Gauss divergence theorem we calculate for this flux

−
ˆ
∇
(
1/r3

)
r · dr = −

¸ (
1/r3

)
r · r̂dS = −4π. (N.27)

Thus, ∆r−1 can be regarded as a distribution and we write

∇2(1/r) = −4πδ(r). (N.28)
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Index

a.u. - atomic unit, 19
Accidental degeneracy, 22, 100, 166
Actinides, 245
Action

integral, 306
principle, 306

Addition theorem, 176, 197, 413
Adjoint matrix, 426
Alkali-like

atoms, 17
Alkaline-earth element, 256
Angle

coupling, 352
mixing, 349, 354
scattering, 319

Angular
average, 28
averaging, 116
distribution, 28
variables, 12
velocity, 116

Angular momentum, 314
absence of, 152
addition, 49, 112
cartesian components, 7, 330
commutation relations, 7, 330
coupled basis, 50, 114
coupling, 112, 135, 146

in arbitrary magnetic field, 134, 161
in high magnetic field, 137, 165, 280
in low magnetic field, 139, 166, 281

decomposition
in orthogonal coordinates, 6
in spherical coordinates, 6

effective magnetic moment, 108
half-integer, 110
inner product rule, 68, 120, 133, 161, 280
intrinsic, 110
Larmor precession, 109
magnetic quantum number, 6
magnitude, 108

semi-classical, 44, 108
nonclassical, 82
nuclear, 144
operator, 1, 5, 18, 45

F - total atomic, 146
I - nuclear spin, 144
J - total electronic, 112
L - orbital, 2
S - electronic spin, 111

orbital, 2, 100, 106, 108, 114, 120, 273
orbital quantum number, 22
precession, 45
projection, 6
quantization, 113, 146
quantization axis, 8
spin, 111
states in Dirac notation, 10, 38
stretched state, 52
total, 120, 146, 157
triangle inequality, 52
uncoupled basis, 49, 114
vector coupling model, 49
vector model, 44, 108
vector projection rule, 140, 397
z-component, 6

Annihilation operator, 235
Anomalous magnetic moment, 111
Antimony, 258
Antiparallel

coupling of angular momenta, 52
Anyon, 224
Approximation

frozen orbital, 250
local density, 218

Argon, 256
Arsenic, 258
Atom

alkali-like, 17, 207
alkaline-earth, 256
alkaline-earth-like, 229
Bohr, 17, 18
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exotic, 17
group I, 17
group II, 17, 229, 256
group III, 229
group in periodic system, 245
helium-like, 186
hydrogen-like, 17, 115, 208
hydrogenic, 17
inert gas, 256
many-electron, 17, 118, 185
non-interacting electron, 209
one-electron, 17, 98, 143
period, 245
principal structure, 17, 18
rare-earth, 257
Rydberg, 17, 219
shell structure, 245
three-electron, 229
transition element, 256
two-electron, 17, 196, 256

Atomic
clock, 158, 165
fine-structure, 97
number, 18
orbitals, 18
principal structure, 98, 99, 118
unit (a.u.)

energy (Hartree), 20, 188
energy (Rydberg), 20
length (Bohr), 19

Aufbau principle, 245
Average

ensemble, 342
quantum statistical, 342

Back-Goudsmit effect, 161, 165
Baker-Campbell-Hausdorff formula, 410
Balmer

atomic transitions, 32
formula, 21
series, 23

Barium, 256
singly charged ion, 127
singly ionized, 17

Basis
vectors, 327

Bernoulli
principle, 300

Beryllium, 228, 256
singly charged ion, 128

Bessel function

ordinary, J±n(x), 418
Riccati, ̂l(x), 418
spherical, jl (x), 416

Binding energy, 187
Bismuth, 258
Bloch

sphere, 47
vector, 47

Bloch sphere, 350
Bohr

atom, 17, 18
formula for binding energy, 22
frequency, 359
magneton, 107, 145, 273
radius, a0, xiii, 19, 26, 100
theory for the atom, 22

Bose-Einstein
function, 409
statistics, 186

Bosons, 224
Bra, 〈, 327
Breit-Rabi

diagram, 170
formula, 136, 163

c - speed of light in vacuum, 18
Cadmium, 256
Calcium, 256, 259, 277

singly charged ion, 127
singly ionized, 17

Canonical momentum, 103
Carbon, 277
Cartesian

coordinates, 3
decomposition, 30

Casimir invariant, 85
Cayley-Klein parameters, 75
Center of mass, 317
Center-of-gravity rule, 119, 157, 276
Central

field
approximation, 209
Hamiltonian, 208
potential, 208

potential, 1, 12
non-Coulomb, 190

symmetry, 190
Centrifugal

energy, Vrot(r), 12
Cesium, 17, 274
CGC, see Clebsch-Gordan coefficient
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Charge
effective nuclear, 115, 123, 189
effective nuclear charge, 211
electronic, 18
internal, 130
nuclear, 18
Rydberg, 115, 124
screening, 188, 211

Charge-density
distribution

nuclear, 177
Charge-density distribution, 323
Chemical binding, 246
Chemical potential

Thomas-Fermi atom, 212
Chromium, 258

Aufbau anomaly, 259
Classical

action integral, 306
mechanics, 297
particle, 297
phase, 301
state, 301, 305

Clebsch-Gordan
coefficient, 56, 379

projection rule, 56
sign convention, 58, 379, 388
stretched-state convention, 57, 379, 388

decomposition, 56, 85
phase convention, 135
recursion relation, 57, 58, 386
selection rule, 379
transformation, 56

Clock state, 164, 165
Closure

approximation, 365
relation, 328

Coefficient
Clebsch-Gordan, see Clebsch-Gordan
recoupling of angular momenta, 69
shift, see Shift

Cofactor, 425
Collision

elastic, 319
Commutation relation

angular momentum, 7
construction operators, 235
position momentum, 3

Commutator
algebra, 7, 410

Compatibility

of dynamical variables, 328
Complete set

commuting observables, 328
eigenstates, 327

Completeness
of basis states, 327

Complex conjugate, 425
Component

standard, 40, 41, 84, 393, 395, 396
Compton

wavelength, λC , xiii, 100
Condon and Shortley

phase convention, 9, 10, 39, 57, 150, 163,
388, 394, 411, 413

coupled basis, 54
Configuration, 187

hydrogenic atoms, 22
interaction, 258
space, 298, 301
standard ordering convention, 227

Conjugate transpose, 425
Conservation

angular momentum, 314
angular momentum projection, 64, 379
canonical momentum, 313
energy, 312, 319
momentum, 313, 319

Conservative
force, 300–302
potential, 309
system, 312

Constant
fine-structure, 17

Constant of the motion, 16, 338
angular momentum, 314
canonical momentum, 313
energy, 312

Construction
operator, 39, 234, 235

properties, 236
Construction operator formalism, 234
Contact interaction, 101, 149, 151

induced, 260
Contravariant, 425
Coordinates

cartesian, 3
center of mass, 317
cylindrical, 4
generalized, 298
polar, 2, 3, 6
position, 223, 329
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relative, 317
spin, 223, 331

Copper, 258
Aufbau anomaly, 259
configuration interaction, 259

Core
contraction, 259
electron, 17, 115, 122, 258
polarization, 259

Correlated motion, 225
Correlation

Coulomb, 209
electron, 209
electron motion, 190
kinematic, 190, 225

Correspondence rule
momentum, 2, 346
position, 2

Coulomb
correlations, 209
electric field, 115
gauge, 104, 323
integral

direct contribution, 195
exchange contribution, 195

interaction, 18, 176
Potential

screened, 115, 123
potential, 18

Coupled basis, 50, 114, 147
notation, 50

Coupling
angle, 352
angular momenta

coupled basis, 50
stretched, 52
uncoupled basis, 49

angular momentum states
antiparallel, 52
parallel, 52

constant
Russell-Saunders, 275
spin-orbit, 118, 275

crossover regime, 356
electrostatic, 246
intermediate, 274
jj, 274
LS, 274
matrix, 370

element, 353
order, 49, 50, 60

Russell-Saunders, 133, 138, 139, 274
schemes for fine structure, 274
spin-orbit, 117
strong (weak asymmetry), 356
weak (strong asymmetry), 356
Zeeman - electron spin, 111
Zeeman - nuclear spin, 146
Zeeman - orbital motion, 108

Coupling angle, see two-level systems
Covariant, 425
Creation operator, 235
Crossover field

fine-structure, 136, 137
hyperfine, 112, 164, 165

Cylindrical
coordinates, 4

d wave, 19
d’Alembert

principle, 299
Darwin term, 100
Decomposition

spherical, 30
standard, 30, 40, 41, 84, 393, 395, 396

Degeneracy, 328
accidental, 22, 100, 166
essential, 22
exchange, 194
lifting of, 98, 100, 108, 118, 142, 194, 367,

376
manifold of states, 367

Degree
Legendre polynomials, 411

Degree of freedom, 297
Density

exchange, 252
matrix, 340
of occupation, 328
operator, 340
probability, 328

Density matrix
order, 342

Density-functional theory, 207
Determinant

characteristic, 352
cofactor, 425
minor, 425
secular, 352
sub-determinant, 425

Deuterium, 17
Deuteron
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mass, 131
Diamagnetic

moment, 106
Dielectric

displacement - D, 321
Differential

exact, 422
total, 422

Dipole, 176
electric, 158, 177

moment, 29
transition moment, 29

tensor, 178
Dipole-dipole

interaction
magnetic, 149, 153

magnetic
interaction, 149

operator
magnetic, 149, 153

Dirac
formalism, 327
notation, 10, 38

Dirichlet
series, 409

Distribution
charge-density

nuclear, 177
Divergence-free

vector, 322
Doublet

spin 1/2 system, 162, 387
Dynamical

evolution, 298
variable, 301, 327

compatibility, 328
Dynamical phase, 338, 351
Dynamics, 297

εijk - Levi-Civita tensor, 2
EDM, see Electric-dipole moment
Effective

field, 218
magnetic moment, 106, 108
nuclear charge, 115, 189, 208

Eigenstate
complete set, 327

Eigenvalues, 224
Einstein

summation convention, 2
Electric

constant, 18
field strength - E, 321
hyperfine

interaction, 175
hyperfine structure, 144, 175
permittivity of vacuum, 18, 186, 208, 321
polarizability, 321
susceptibility, 321

Electric-dipole
interaction, 177
moment, 178

permanent, 29
operator, 28, 158
tensor, 178

Electric-monopole
moment, 177

Electric-quadrupole
interaction, 178, 182
moment, 143, 178
operator, 180, 181
shift, 182
tensor, 178

Electromagnetic
field

scalar potential, 103
vector potential, 103

momentum, 103
Electron

affinity, 257
anomalous magnetic moment, 111
anomaly, 111, 158
configuration, 22, 187, 207, 245
core, 17, 115, 122, 245, 258
electrostatic repulsion, 195
equivalent, 22, 200, 207, 245
magnetic moment

intrinsic, 111
mass, 18
non-interacting, 209
rest mass, 17
screening, 188
shell, 22, 245

acceptor, 246
donor, 246

shell model, 122
spectator, 188
spectator versus screening, 115
spin doublets, 119, 134, 143, 280
subshell, 22
vacancy, 246
valence, 17, 122, 123, 126, 246
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Electrostatic
energy, 18
potential

centrally symmetric, 208
repulsion, 195

Elementary
particle, 110

Energy
conservation, 312
ionization, 188
kinetic, 300
potential, 312

Ensemble
average, 46, 341, 342
fictitious, 343
mixed, 46, 342
pure, 46, 341
quantum-statistical mixture, 343
random, 46, 342
real, 343

Equation
characteristic, 352
secular, 352

Equivalent electrons, see Electron
Euler angles

yaw, pitch, roll, 73
Euler-Lagrange

equations, 307
Europium, 258
Evolution

dynamical, 298
Exact differential, 422
Exchange, 185, 207, 226

degeneracy, 194
lifting of, 194

density, 252
ferromagnetic, 250
hole, 253
interaction, 196, 250, 252
operator, 223

Excitation
virtual, 365

Exclusion principle, 194, see Pauli
Exotic atoms

muonium, 17
positronium, 17

Expansion
multipole, 176, 197, 411

F- total atomic angular momentum, 146
Fermi

contact interaction, 149, 151
induced, 260

energy, 212
hole, 253

Fermi statistics, 185
Fermi-Dirac

function, 409
statistics, 185

Fermions, 224
Ferromagnetic exchange, 250
Field

effective, 218
fine-structure, 136
gauge, 322
hyperfine, 164
internal, 136, 164
mean, 218

Filtration
of state, 46, 341

Fine structure, 97
constant, 17, 20
crossover field, 136, 137
field, 136
high-field limit, 137
in magnetic field, 132
low-field limit, 137, 139
shift, 121
splitting, 121

Fock
operator, 251
space, 235

Force
conservative, 300–302
electrical, 103
generalized, 103, 302
gravitational, 301
Lorentz, 103, 301
non-conservative, 304
non-Newtonian, 304
reaction, 299
see interaction, 17
velocity dependent, 103

Formalism
density matrix, 340

Frequency
Bohr, 359

Frozen orbital, 250
Full rotation group, 16

g-factor, 107
gd - deuteron g factor, 145
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gF - hyperfine g factor, 167
gI - nuclear g factor, 144
gJ - Landé g factor, 140
gL - orbital g factor, 107
gp - proton g factor, 145
Galilean

invariance, 308
principle of relativity, 308
transformation, 308, 316

Gamma function, 408
Gauge

Coulomb, 104, 323
field, 322
invariance, 322
Lorenz, 323
radiation, 104
transformation, 322

Generalized
coordinates, 298
electromagnetic potential, 305
force, 103, 302
momentum, 103
potential function, 103, 303
velocity, 298

Generator of rotation, 77
Gluon, 143
Good quantum number, 16, 99, 101, 108, 118,

134, 139, 161, 167, 280, 281, 338
Grand Hilbert space, 235
Gravity rule, see Center-of-gravity rule
Grotrian, 23
Group

generator, 81
periodic system, 245
representation, 81
special orthogonal group SO(3), 74, 76, 82
special unitary group SU(2), 76, 81, 82

Gyromagnetic ratio, 106
free electron, 110
nuclear, 144

Hamilton
formalism, 315
integral principle, 305
principle, 306

Hamiltonian
central field, 1, 208
spin-orbit, 273

Hankel functions
h±l (x), 416

Hartree

atomic unit, 20
equations, 216, 218, 219
method, 193

Hartree-Fock
equations, 248, 249
method, 193
restricted, 260
unrestricted

core polarization, 260
Hartree-Fock-Slater

equations, 252
Heading, 73
Heisenberg

equation of motion, 335
picture, 332, 335

Helium, 256
electronic ground state, 187
metastable, 203, 205
singly ionized, 17

Helium-like
atom, 191

Helmholtz
theorem, 429

Hermite
differential equation, 414
polynomials, 414

degree, 414
Hermitian

conjugate (h.c.), 425
matrix, 426
operator, 11, 327

High-field seekers, 106
Hilbert space, 327
Hole, 246

definition, 277
equivalence with electrons, 276
exchange, 253
Fermi, 253

Holonomic system, 297
Homogeneous

space, 297
time, 297

Homomorphic
map, 76

Hund
first rule, 264–266, 269
rules, 246
second rule, 268, 269
third rule, 265, 269, 277, 279

Hydride ion, 191
Hydrogen, 17
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maser, 158
negative ion, 191

Hydrogen-like
atoms, 17, 119, 134, 161, 280
spin-orbit coupling, 118

Hydrogenic
atoms, 17
helium, 187

Hyperfine
coupling constant, 151, 156
crossover field, 112, 164, 165
field, 164
interaction, 147

electric, 175
magnetic

interaction (l = 0), 152
interaction (l > 0), 153

shift, 156
structure

electric, 143, 144, 175
magnetic, 143, 144

I - nuclear spin, 144
Idempotence

of operator, 48
Identical

particle
exchange symmetry, 61

particles, 185
Identity

operator, 328
Incompatible

operators, 44, 328
Index

column, 425
contravariant (upper), 425
covariant (lower), 425
order, 425
particle, 216, 227
row, 425
state, 216, 227, 247

Indistinguishability
of identical particles, 185

Indium, 258
Inert gases, 256
Inertial

reference frame, 297
Inner product rule

for angular momenta, 68, 120, 133, 161, 280
Integral rule

Leibniz, 410

Interaction
Coulomb, 17, 176
dipole-dipole

magnetic, 150, 153
direct screening, 252
electric

quadrupole, 178, 182
electric dipole, 177
exchange, 196, 250, 252
Fermi contact, 149, 151

induced, 260
magnetic, 98

hyperfine (l = 0), 152
hyperfine (l > 0), 153

orbit-orbit, 185
spin-orbit, 185
spin-other-orbit, 185
spin-spin, 185

Intercombination lines, 206
Interferometric measurement, 45
Internal

magnetic field, 136, 164
Internal charge, 130
Interval rule, 119, 276

Landé, 157
Intrinsic angular momentum, 110
Invariance

manifest, 15
under galilean transformation, 308
under rotation, 16

Invariant
Casimir, 85
scalar, 84

Inversion
operator, 15

Inverted multiplets, 157
Inverted ordering

of j levels, 119
Ionization

energy, 257
Ionization energy, see Energy
Ions

singly-charged, 17
Irreducible

tensor operator, 84, 393
Irrotational

vector, 322, 429
Isoelectronic

definition, 126
series, 259

Isotope
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shift, 130
Isotropic, 297

J - electronic angular momentum, 113
Jacobi-Anger

expansion, 420
jj coupling, 274

Keppler
second law, 304

Ket, 〉, 327
Kinematics, 297

scattering, 319
Kinetic momentum, 103
Koopmans’ theorem, 218, 250
Krypton, 256
Kummer

equation, 21
functions, 21

L - electronic orbital angular momentum, 18
Lagrange

equations, 301–303, 307
formalism, 305
multiplier, 373, 374

Lagrangian, 103, 302, 374
Laguerre

polynomials, 415
degree, 415
generalized, 415

Lamb shift, 97
Landé

factor, 141, 282
interval rule, 119, 157, 276

Lanthanides, 245
Larmor

frequency, 109
precession, 109

Legendre
associated polynomials, 9, 411
differential equation, 9
polynomial

degree, 411
parity, 411

polynomials, 411
Leibniz

integral rule, 410
Level repulsion, 352
Levi-Civita tensor - εijk, 2
Linear

media, 321
Lithium, 17, 126, 128, 274

doubly ionized, 17
Local density approximation, 218
Lorentz

contraction factor, 323
force, 103, 305

Lorenz
gauge, 323

Low-field seekers, 106
Lowering operator, 8, 38
LS coupling, 274
LS terms, 113
Lyman

alpha transition, 35
atomic transitions, 31
series, 23

Möbius ring, 76
md - deuteron mass, 131
me - electron mass, 18
mp - proton mass, 131
Madelung ordering, 212, 215
Magnesium, 256

singly charged ion, 128
singly ionized, 17

Magnetic
constant, 18
dipole-dipole interaction, 149, 153
field

internal, 136, 164
field - extreme, 112
field dependence

asymptotic, 138, 166
field strength - H, 321
hyperfine interaction, 147
hyperfine interaction (l = 0), 152
hyperfine interaction (l > 0), 153
hyperfine structure, 144
induction - B, 321
interaction, 98
moment, 105

electron, 111
induced, 106
intrinsic, 111, 135
nuclear, 144
orbital, 106, 108, 135
Stern-Gerlach method, 106

permeability of vacuum, 18, 115, 321
polarizability, 106, 321
quantum number, 40
susceptibility, 107, 321

Magnetizability, 106
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Magnetization, 321
diamagnetic, 107

Magneton
Bohr, 145
nuclear, 144

Manganese, 258
Mass, 308

center of, 317
deuteron, 131
electron, 18
point-like, 297
proton, 131
reduced - mr, 1, 318

single-electron atom, 18
Materials equations

of electrodynamics, 321
Matrix

adjoint, 426, 427
complex conjugate, 425
conjugate transpose, 425
element

reduced, 25, 118
hermitian, 426
hermitian conjugate, 425
inverse, 425
Laplace expansion, 426
order, 425
orthogonal, 426
real, 426
representation, 41, 331
symmetrical, 426
transition, 348
transposed, 425
triangular, 426
unitary, 426

determinant rule, 428
general, 75
inversion rule, 428
Kronecker property, 428
special, 75, 428
transformation, 428

Maxwell equations, 321
microscopic, 322

Maxwell-Lorentz equations
microscopic, 322

Mean field, 123, 218
approximation, 193

Measurement
filtration, 46, 341
interferometric, 45
state-selective, 46, 341

Mechanical system
closed, 311
conservative, 312

Mechanics
classical, 297

Mercury, 256
Metastable

triplet helium, 203, 205
Minor (sub-determinant), 425
Mixed state, 342
Mixed states, 135, 163
Mixing

angle, 349, 354
Mixing angle, see two-level systems
Momentum

angular, see Angular momentum
canonical, 103, 313
conservation, 313
electromagnetic, 103, 316
generalized, 103
kinetic, 103, 316
operator, 2
radial, 2, 12
representation, 330
transfer, 319

Monopole, 176
moment

electric, 177
Motion

correlated, 225
free, 297
stationary, 304
subject to constraint, 297

Multipole
expansion, 176

Multipole expansion, 197, 411
Muonium, 17

n∗l - effective principal quantum number, 124
n - principal quantum number, 22
Neon, 256
Neutron, 143
Newton

equation of motion, 298
first law, 297
second law, 298

Niobium, 258
Nitrogen, 258
Nobelium, 257
Nonholonomic system, 297
Nuclear



Index 449

charge, 175
effective, 115, 189, 208

charge-density distribution, 177
effective charge, 115, 123
electric

quadrupole moment, 178
g-factor, 144
gyromagnetic ratio, 144, 162
magnetic moment, 144
magneton, 144
shape, 143, 175
size, 130, 175
spin, 143
volume

isotope shift, 130
Nuclear volume correction, 177
Nucleon, 143
Number

operator, 235
state, 234

Observable, 16, 327
Occupation

density of, 328
Occupation number representation, 234–236
One-electron atom, 17, 98, 143
Operator

annihilation, 235
compatible, 44
construction, 39, 234, 235
creation, 235
density, 340
derivative, 333
electric dipole, 158
electric quadrupole, 180, 181
exchange, 223
Fock, 251
hermitian, 224, 340
idempotence, 48
idempotent, 340
identity, 328
irreducible tensor, 84, 393
lowering, 8, 38
norm conserving, 223
number, 235
observable, 224
one-body, 230, 232
parity, 15
permutation, 224
quadrupole, 180, 181
Raising, 8, 38

scalar, 394
shift, 8
space inversion, 15
spherical tensor, 393
statistical, 46
vector, 41, 394

Orbital, 18
magnetic moment, 107, 108
spin-orbital, 227
wavefunction, 18

Orbital magnetic moment, see Magnetic moment
Order

coupling, 49, 50, 60
density matrix, 342
of square matrix, 425

Ordering
Madelung, 212, 215
of j levels

inverted, 119
regular, 119

Orthogonal
matrix, 426

Orthohelium, 203
Overlap integral, 377

p wave, 19
Pairing

of electrons, 229
of spins, 190, 233

Parahelium, 203
Parallel

coupling of angular momenta, 52
Parity, 10, 29–31, 132, 230

associated Legendre functions, 9, 411
conservation, 16
even, 16
Legendre polynomials, 411
nuclear forces, 143
odd, 16
of permutation, 227
operator, 15
spherical harmonics, 10, 412

Parseval relation, 328, 348
Particle

acceleration, 297
classical, 297
elementary, 110
free, 297, 302
Identical

exchange symmetry, 61
identical, 185
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index, 216, 227, 297
mass, 308
physics, 110
velocity, 297

Paschen-Back effect, 133, 137, 161, 165, 280
Pauli

exclusion principle, 185, 194, 196, 207, 212,
227

spin matrices, 43
Pauli principle, 225
Periodic system, 122, 245
Permanent electric-dipole moment

absence, 29
Permeability, 322
Permeability of vacuum, 18, 115, 321
Permittivity, 322
Permittivity of vacuum, 18, 186, 208, 321
Permutation, 227

operator, 224
parity, 227

Perturbation
static, see two-level systems

Perturbation theory
degenerate levels, 367

first order, 369
reduction to non-degenerate case, 371
second order, 369
symmetric case, 195
two-fold degenerate case, 372

non-degenerate levels, 362
first order, 364
second order, 364
third order, 366
wavefunction renormalization, 366
zeroth order, 364

perturbation matrix, 134, 138, 139, 162, 165,
166

Phase
classical, 301
dynamical, 338, 351
relative, 349, 354

Phase convention
Clebsch-Gordan, 135
Condon and Shortley, 9, 10, 39, 57, 150, 163,

388, 394, 411, 413
Phase rules

for angular momentum addition, 54
Phase space, 301, 305
Phosphorus, 258
Photon

polarization, 31

spin, 31
spin projection on atomic quantization axis,

31
wavevector, 31

Physically relevant solutions, 11
Pitch angle, 73
Platinum, 258
Poincaré

sphere, 350
Poisson equation, 211
Polar vector, 16
Polarizability

electric, 321
magnetic, 106, 321

Polarization, 321
degree, 46
vector, 45

Polylogarithm, 408
Position

coordinates, 223
operator, 2
representation, 2, 329

Positronium, 17
Potassium, 17, 258, 259
Potential

central, 18
definition, 303
non-Coulomb, 190

central field, 208
central field in helium, 189
chemical, 212
conservative, 309
Coulomb, 18

screened, 115, 123
energy, 309, 312

of screening, 188
field, 309
non-local, 100
scalar, 18
screening, 200
uniform, 309

Potential-functional theory, 207
Praseodymium, 274
Precession, 45
Principal

quantum number, see Quantum number
structure, 17, 18

Principle
action, 306
Bernoulli, 300
d’Alembert, 299
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Hamilton, 305, 306
of least action, 306
statistical, 344
superposition, 327

Probability
amplitude, 328
density, 328

Projection rule
Clebsch-Gordan coefficients, 56

Proton, 143
mass, 131
radius, 100
spin puzzle, 143

Pseudo vector, 16
Pseudospin, 349
Pure state, 135
Pure,state, 52

QCD - quantum chromodynamics, 143
QED, 97, 110

corrections, 130
Quadratic Zeeman effect, see Zeeman
Quadrupole, 176

electric, 178
interaction, 182

operator, 180, 181
tensor, 178

Quantization
axis, 7, 38
by correspondence, 2

Quantum
Bose-Einstein statistics, 185
chromodynamics (QCD), 143
δnl, 124
electrodynamics, 97, 110
electrodynamics (QED), 111
Fermi-Dirac statistics, 185
statistical average, 342

Quantum number
F, MF - total atomic angular momentum,

146
good, 16, 118, 134, 139, 167, 280, 281, 338

to first order, 99, 101, 108, 369, 371
half-integral, 110
I, MI - nuclear spin, 144
integral versus half-integral, 41
j, mj - electronic angular momentum, 113
j, m - rotational (generic), 40
J, MJ - total electronic angular momentum,

246

l, ml - orbital angular momentum, 10, 100,
108, 331

L, ML - total orbital angular momentum,
246

n - principal, 22
n′ - radial, 21
n∗l - effective principal, 124
s, ms - electronic spin, 110
S, MS - total electronic spin, 194, 246

Quark, 143
Qubit, 43

Rabi
formula, 358
pulse, 358

Radial
distribution function, 25
momentum, 2
quantum number, 21
wave equation, 1, 12

Radiation
gauge, 104

Radium, 256
Radius

Bohr, a0, xiii, 19, 26, 100
proton, 100

Radon, 256
Raising operator, 8, 38
Rare-earth

elements, 245
Rare-earth element, 257
Rayleigh ratio, 374
Rayleigh-Schrödinger perturbation theory, 362
Reaction forces, 299
Recoil

shift, 23
Recoupling coefficient, 69
Reduced

mass
isotope shift, 130

mass - mr, 1, 318
single-electron atom, 18

matrix element, 25, 118, 140, 168, 281, 396
radial wave equation, 13
radial wavefunction, 13, 25

Reducible subspace, 51
Regular ordering

of j levels, 119
Regular wavefunctions, 11
Relative coordinates, 317
Relativistic
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Hamiltonian, 98
mass correction, 98

Relativity
galilean principle, 308

Renormalization
constant, 367
in perturbation theory, 366

Representation
matrix, 41
momentum, 330
occupation number, 234, 235
of Hilbert space, 327
position, 329
reduction of, 81
standard, 38, 40, 42

Representation-free notation, 327, 331
Repulsion

of energy levels, 352
Rest mass

electron, 17
Rhenium, 258
Rheonomous, 297
Riemann

zeta function, 409
Rodrigues formula, 411
Roll angle, 73
Rotation

generator, 77
passive, 71
physical, 71
proper, 71

Rotational
energy barrier, 12
quantum numbers, 10, 40, 331

Rubidium, 17, 258
Russell-Saunders

coupling constant, 275
Russell-Saunders coupling, 133, 138, 139, 274
Rydberg

atom, 17, 22, 125, 219
atomic unit, 20
charge, 115, 124
constant, 20, 186
correction, 124
formula, 23
limit, 124
state, 22

S - electronic spin, 111
s wave, 19
Scalar

invariant, 84
operator, 394
potential, 18, 103

Scandium, 259
Scattering

angle, 319
Schrödinger

equation, 12
Hamiltonian, 2, 18, 98
picture, 332

Scleronomous, 297
Screening, 123, 207, 252

charge, 188, 211
constant, 123, 188
Coulomb potential, 115, 123, 210
efficiency, 125
function, 210
of nuclear charge, 115, 187, 189, 208
potential, 200
potential energy, 188

Second quantization, 234
Secular

determinant, 352, 377
equation, 352, 370, 377

Selection rule, 379
electric-dipole parity

one-electron atom, 30, 132
electric-dipole transitions, 10, 31
fine-structure transition, 132
for mJ, 139, 167, 281
hyperfine transition, 159
in coupled basis, 53
mL, 31
parity, 29, 31

Selective measurement, 46, 341
Self-consistent

solution, 193
Separation

of angular variables, 8
of radial and angular motion, 1

Shell
closed, 207
fully filled, 207
K,L,M,N,O,P,Q,..., 22

Shift
coefficient

symmetry properties, 40
operator, 8

hermitian conjugate, 38
symmetry properties, 40

recoil, 23
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rules for fine structure, 119
rules for hyperfine structure, 157

6j symbols, 383
Slater

determinant, 227
sum rule, 266

SO(3), 74, 76, 82
Sodium, 17, 128, 259
Solenoidal

vector, 322, 429
Space

charge, 123, 211, 212
configuration, 298, 301
field free, 311
homogeneity, 297
inversion operator, 15
isotropy, 297
phase, 305
velocity, 301

Spectator electron, 115, see Electron
Spectroscopic notation, 113
Spectrum

of eigenvalues, 327
Spherical

basis, 29, 42
coordinates, 2, 3, 6
decomposition, 30
harmonics, 412

addition theorem, 413
tensor operator, 84, 393

Spin, 110
anomalous magnetic moment, 111
as infinitesimal rotation, 77
coordinate, 331
coordinates, 223
doublet, 162, 387
doublets, 119, 134, 143, 280
pairing, 190, 233
pseudo-, 349
relation with statistics, 224
state

symmetric versus antisymmetric, 61
under rotation, 74, 82

Spin-orbit
coupling, 114, 273

hydrogen-like, 118
coupling constant, 118, 134, 275, 277
coupling schemes, 274
coupling strength, 117, 273
field, 117
Hamiltonian, 273

interaction, 117, 185, 273
shift, 119, 275
splitting, 118

Spinor, 331
discrete, 331
field, 331
rotation properties, 82

Spinorbital, 227, 230, 332
Standard

components, 40, 41, 84, 393, 395, 396
decomposition, 40, 41, 84, 393, 395, 396
model, 110
ordering convention, 227
phase convention, 394
representation, 38, 40, 42, 84

Standard decomposition, 30
Standard ordering convention, 227
State

classical, 301, 305
clock, 164
index, 216, 227, 247
mixed, 342
number, 234
pure, 52
statistical mixture, 342
stretched, 49, 52
virtual, 365

Static perturbation, see two-level systems
Statics, 297
Statistical

mixture, 342
operator, 46, 342

Statistical principle, 344
Statistics

anyon, 224
quantum, 185

Stern-Gerlach method, 106
Stretched

angular momentum state
3j symbols, 381
diagram, 51
hyperfine shift, 157
hyperfine structure, 162
Russel-Saunders coupling, 276
spin-orbit coupling, 135
spin-orbit shift, 119

state, 49, 52, 241
Stretched-state convention, see Clebsch-Gordan
Strontium, 256

singly charged ion, 127
singly ionized, 17
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SU(2), 76, 81, 82
Subspace

reducible, 51
Sum rule, 397
Superposition principle, 327
Susceptibility

diamagnetic, 107
Symmetry

central, 207
Integer versus half-integer spin, 61
spin exchange, 61
time reversal, 61

Technetium, 258
Tensor

irreducible, 84, 393
product, 331
spherical, 84, 393

Term, 23
definition, 119
diagram, 23, 121
notation, 113, 119

Theorem
Unsöld, 256

Thomas precession, 116, 273
Thomas-Fermi

approximation, 212
central field, 210
equation, 213
function, 213
model, 212
number density, 211
variable, 213

3j symbols, 379, 413
Time

homogeneity, 297
Total differential, 422
Transformation

antilinear, 61
galilean, 316
gauge, 322

Transition
Balmer, 32
dipole moment, 29
Lyman, 31
matrix element, 348
metals, 245, 256
probability, 348, 357
sigma-plus (σ+), sigma-minus (σ−), pi (π),

31
strength, 30

to virtual states, 365
Transposed matrix, 425
Transposition, 227
Trial wavefunction, 375
Triangle inequality, 52, 113, 146

delta notation, 57, 381
logical function delta notation, 64, 379

Tritium, 17
Trotter formula, 410
Two-electron atoms, 17, 196, 256
Two-level system, 43, 347

coupling angle, 349
level repulsion, 352
mixing angle, 349
no coupling, 356
pseudospin, 349
static perturbation, 351
strong coupling, 356
symmetric case, 356
weak coupling, 356

Uncoupled basis, 49, 114, 147
Unitary

matrix, 426
Unsöld’s theorem, 256

Vacuum
permeability, 18, 115, 321
permittivity, 18, 186, 208, 321
polarization, 110
state, 236

Valence electron, 17, 122, 123, 126, 246
Variable

dynamical, 301
Variational

calculation
helium ground state, 190

parameters, 375, 376
principle, 216, 374
wavefunction, 375

Vector
axial, 16
coupling model

angular momentum, 49
divergence-free, 322
irrotational, 322, 429
model

angular momentum, 44, 45, 108
projection rule, 140, 397

polar, 16
polarization, 45
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potential, 103, 147
pseudo, 16
relations, 429
rotation-free, 322
rotational, 429
solenoidal, 322, 429

Velocity
dependence in generalized force, 103
induced

electromagnetic field, 323
operator, 346
probability-flow, 346
space, 301

Virtual
displacement, 299
excitation, 365

Wavefunction
renormalization, 366
trial, 375
variational, 375

Wavelength
Compton, λC , xiii, 100

Wigner
3j symbol, 63, 379, 413
6j symbol, 383

Wigner-Eckart theorem, 140, 396
Wronskian

theorem, 421

Xenon, 256

Yaw angle, 73
Ytterbium, 257

Z - atomic number (nuclear charge number), 18
Zassenhaus formula, 411
Zc - Rydberg charge number, 115, 124
Zi - internal charge number, 130
Zeeman effect

coupling
to electron spin, 111
to nuclear spin, 146
to orbital motion, 107, 108

electronic, 97
Hamiltonian, 107, 111, 144
high-field asymptote, 137, 138, 164, 166
in fine structure, 132
in hyperfine structure, 144
Larmor precession, 109
linear, 137, 165
low-field tangent, 137, 139, 165, 167

magnetic level shift, 108, 112, 139, 167
nuclear, 144
quadratic, 137, 165, 168

Zinc, 256
Znl - Effective nuclear charge number, 115, 123
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Leeswijzer Atoomfysica Cursus 2020-2021

1 Quantum motion in a central potential field

Het eerste hoofdstuk gaat over de Schrödinger vergelijking voor een deeltje in een centraal poten-
tiaalveld. Het is voor een groot deel een herhaling van wat al bij andere colleges aan de orde is
geweest. Je leert hoe de Schrödinger wordt opgesteld en door scheiding van variabelen geredu-
ceerd tot een 1D vergelijking voor de radiale beweging (de radiale golfvergelijking) en een tweetal
eigenwaardenvergelijkingen voor de rotatie rond het potentiaalcentrum. Van deze twee vergelijkin-
gen hangt alleen de radiale golfvergelijking af van de potentiaal. De vergelijkingen voor de rotatie
zijn voor alle centraalsymmetrische systemen hetzelfde. De rotatie-eigenwaarden liggen vast met
de quantumgetallen l en m. De bijbehorende eigenfuncties zijn de bolfuncties. Tot slot bespreken
we invariantie van de hamiltoniaan onder draaiing in relatie tot impulsmoment als een behouden
grootheid.

Thuis bestuderen:

Hoofdstuk 1: Lees de introductie. Neem kennis van de begrippen centrale potentiaal V(r), met
r = |r1−r2| als afstand tussen twee deeltjes, en de gereduceerde massa mr. Bij dit eerste hoofdstuk
is het vooral zaak om het overzicht te behouden. Het is wellicht goed om je parate kennis van de
kwantummechanica op te frissen. Hierbij kan Appendix F je helpen. Problem F.1 is heel belangrijk.
Problems 1.2, 1.3, 1.5, 1.7, 1.8, 1.9 zijn keuzeopgaven en bedoeld ter verdieping van de stof; blijf
hierin niet hangen voordat je het overzicht over het hele hoofdstuk hebt. Ook de stukjes over cilinder
coördinaten zijn facultatief en vallen buiten de stof.

§ 1.1: Het algemene deel van deze sectie gaat over het opstellen van de klassieke hamiltoniaan H0 en
het splitsen daarvan in radiale en rotationele kinetische energie. Begrijp de begrippen radiale
impuls pr en impulsmoment L t.o.v. het potentiaalcentrum. Fris je kennis op van de Einstein
notatie en sommatieconventie en maak Problem 1.1.

§ 1.1.1: We kwantiseren de hamiltoniaan in de plaatsrepresentatie gebruik makend van de
correspondentieregels voor plaats en impuls. We bepalen de commutatierelaties in car-
tesische coördinaten (door gebruik te maken van een testfunctie φ); wees je bewust
van mogelijke problemen bij het toepassen van de correspondentieregels bij producten
van niet-commuterende operatoren. We buiten de centrale symmetrie uit door het kie-
zen bolcoördinaten. Schrijf de laplaciaan in bolcoördinaten. De stukjes over cilinder
coördinaten zijn facultatief.

§ 1.1.2: Opstellen van de operator voor het impulsmoment L (in de plaatsrepresentatie met
orthogonale coördinaten, cartesiaans of kromlijnig). Uitschrijven van L in (orthogonale)
kromlijnige coördinaten: bolcoördinaten.

§ 1.1.3: Oplossen eigenwaardenvergelijking voor Lz

§ 1.1.4: Begrijp het nut van communicator algebra. Hiermee kunnen we commutatierelaties
afleiden voor Lx, Ly, Lz en L2 zonder gebruik te maken van een testfunctie. Problem 1.4
is heel leerzaam.

§ 1.1.5: Idem voor L±. Herschrijf L2 in termen van L+, L− en Lz.

§ 1.1.6: Oplossen eigenwaardenvergelijking voor L2 (begrijpen van het principe van scheiding
van variabelen). De details van de Pml (u) zijn facultatief. De werking van L± als ladder-
operator moet je goed begrijpen maar de gedetailleerde consequenties voor de bolfuncties
niet. Weet dat het positieve teken vóór de wortelformule bekend staat als de Condon en
Shortley faseconventie. Begrijp dat deze conventie ervoor zorgt dat de ladderoperatoren
goed werken zowel voor positieve als negatieve waarden van het kwantumgetal m.

§ 1.1.7: Begrijp het gebruik van impulsmoment in de representatievrije notatie van Dirac.
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§ 1.1.8: Begrijp het afleiden van een uitdrukking voor de radiale impuls, pr, en commutatiere-
laties voor pr en p2

r. Problem 1.5 is facultatief maar Problem 1.6 is heel nuttig (voor 2D
facultatief).

§ 1.2: Schrödinger vergelijking

§ 1.2.1: Opstellen van 3D Schrödinger vergelijking voor de golffunctie ψlm(r) voor een deel-
tje in een centraal potentiaalveld gebruik makend van bolcoördinaten. Reductie van de
3D Schrödinger vergelijking tot de 1D radiale golfvergelijking voor de radiale golffunctie
Rl(r) voor gegeven impulsmoment l, plus de 2D Schrödinger vergelijking voor de rota-
tiegolffunctie Ylm(r̂), met r̂ = (θ, φ), die de rotatiebeweging rond het potentiaalcentrum
beschrijft. Begrijp de scheiding van variabelen. Herschrijven van de radiale golfverge-
lijking in de vorm van een 1D Schrödinger vergelijking met een gereduceerde golffunctie
χl(r) = rRl(r). Problems 1.7-1.9 zijn facultatief.

§ 1.2.2: Idem voor cilinder coördinaten. Deze paragraaf is facultatief.

§ 1.3: Lees deze paragraaf zorgvuldig door. Begrijp wat er bedoeld wordt met pariteit. Begrijp
ook dat het commuteren van de operatoren ∂/∂φ en H0 impliceert dat H0 invariant is onder
rotatie rond de z as.

Parate kennis:

1. De naam en definitie van de grootheden mr, pr, L, L±, Vrot(r), Z, l, m, χl(r).

2. De uitdrukking voor de impulsoperator, pi = ih∂i en afleiding [ri, pj ] = i~δij met testfunctie.

3. De commutatierelaties voor Lx, Ly en Lz en hun afleiding zonder testfunctie.

4. De inproductregel L2 = L · L = LzLz + 1
2 (L+L− + L−L+) met L± = Lx ± iLy.

5. Het principe van scheiding van variabelen bij commuterende operatoren.

6. Weten waarom regulariteit van de radiale golffunctie in de oorsprong in het algemeen expliciet
geverifieerd moet worden en waarom hier altijd aan is voldaan voor de baangolffuncties binnen
een echt atoom.

7. De uitdrukkingen voor de klassieke hamiltoniaan

H0 =
p2

2µ
+ V(r) and H0 =

1

2µ

(
p2
r +

L2

r2

)
+ V(r) (r 6= 0).

8. De uitdrukking voor de kwantummechanische hamiltoniaan

H0 = − ~2

2mr
∆ + V(r).

9. De eigenwaardenvergelijkingen voor Lz en L2 in de Dirac notatie

L2 |l,m〉 = l(l + 1)~2 |l,m〉
Lz |l,m〉 = m~ |l,m〉

en de werking van de shift operatoren

L± |l,m〉 =
√
l (l + 1)−m(m± 1) ~ |l,m± 1〉 ,

waar de keuze voor de positieve wortel de Condon en Shortley faseconventie bepaald.
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10. De radiale golfvergelijking[
~2

2mr

(
− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2

)
+ V(r)

]
Rl(r) = ERl(r).

11. De definitie χl(r) = rRl(r) en de afleiding van de 1D Schrödinger vergelijking

χ′′l +

[
2mr

~2
(E − V )− l(l + 1)

r2

]
χl = 0.
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2 Hydrogenic atoms

Het tweede hoofdstuk gaat over het oplossen van de Schrödinger vergelijking voor een elektron in
het centrale potentiaalveld (Coulombveld) van de kern. Dit wordt het

”
Bohr atoom” genoemd.

De rotatie-toestanden zijn al bekend uit hoofdstuk 1 (bolfuncties). Dus nu moeten we de radiale
golfvergelijking oplossen. Je maakt kennis met atomaire eenheden en leert hoe de kwantisatie volgt
uit de normeringseis voor de golffunctie. Als uitkomst vind je de discrete energieniveaus van het
waterstof atoom (de zgn. waterstof Termen) en de bijbehorende golffuncties. Verder leer je het
uitrekenen van diagonale en afdiagonale matrix elementen met waterstofgolffuncties.

Thuis bestuderen:

Hoofdstuk 2: Lees de intro. Begrijp wat een één-elektron atoom is en wat er bedoeld wordt met het
begrip waterstofachtig (hydrogeen of alkali-achtig). Problems 2.1, 2.2, evenals 2.4 en 2.5 zijn heel
nuttig. Problem 2.3 is voor de echte liefhebber van speciale functies; Problem 2.6 is voor diegenen
die zich in Mathematica willen bekwamen. Deze opgaven kun je ook gewoon overslaan bij eerste
kennismaking.

§ 2.1: Hierin wordt het opstellen van de radiale Schrödinger vergelijking kort samengevat. Neem
kennis van de begrippen s golf, p golf, etc., en het gebruik van de naam orbitaal voor baan-
golffunctie. Let op de notatie Rnl met als alternatieve schrijfwijzen R10 ≡ R1s voor het geval
n, l = 1, 0.

§ 2.1.1: Het invoeren van Hartree atomaire eenheden en het verschijnen van de fijnestructuur-
constante α. Neem kennis van het verschil tussen de Hartree en Rydberg energie. Maak
Problem 2.1.

§ 2.1.2: Bestudeer het limietgedrag van de golffuncties voor r → 0 en r →∞ en het ontstaan
van de kwantisatieconditie uit de normeerbaarheidsvoorwaarde voor de golffunctie. Merk
op hoe van het hoofdkwantumgetal , n, in de theorie verschijnt.

§ 2.2: De Bohr formule voor waterstof niveaustructuur (Termdiagram) en de Rydberg formule

En = −hcRM
Z2

n2
⇔ 1

λn
= −RM

[(
1

n

)2

−
(

1

n0

)2
]
, with n > n0.

Verder de n2 ontaarding van de energie-niveaus en de samenhang met de ontaarding van de
rotatiegolffuncties (bolfuncties). Begrijp het verschil tussen essentiële en toevallige ontaarding.

§ 2.3: De algemene uitdrukking voor de waterstofgolffuncties voor de radiale beweging Rnl (ρ) en de
bijbehorende normeringsfactor N . Bestudeer de figuren voor de radiale golffuncties. Zie de
systematiek van het aantal knopen in de golffunctie.

§ 2.3.1: Zorg dat je vertrouwd bent met de representatievrije notatie (Dirac notatie) voor de
eigentoestanden van de elektronbaan, |nlm〉, en de relatie met de golffuncties in de plaatsre-
presentatie (met bolcoördinaten).

§ 2.4: Diagonale matrixelementen:

§ 2.4.1: Het uitrekenen van radiale gemiddelden. Exacte oplossingen bestaan maar het kan
ingewikkeld worden. Neem kennis van Eq. (2.48) maar verspil geen tijd aan het bewijs
van Problem 2.3; dat is voor de echte liefhebbers van speciale functies. Je kunt beter je
tijd stoppen in Problem 2.2 omdat dit inzicht biedt in de structuur van het Wigner-Eckart
theorema.
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§ 2.4.2: De integraal over drie bolfuncties is de steen van Rosetta voor de hoekmiddeling, zie
Eq. (2.54) en de rol van 3j symbolen. Oefen jezelf in dit soort integralen met Problems 2.4
en 2.5. Een inleiding in 3j symbolen komt aan de orde in § 3.4.6 (cf. Appendix J).

§ 2.5: Afdiagonale matrixelementen:

§ 2.5.1: Neem kennis van de elektrische dipool operator

d =− er =− eaρ r̂

en het uitrekenen van koppelingsmatrixelementen = afdiagonale matrixelementen en het
begrip overgangsdipoolmoment. Het overgangsdipoolmoment bepaalt de selectieregels
voor optische dipool overgangen. Deze zijn van groot praktisch belang want zij staan de
sterkste interactie van atomen met licht. In de praktijk zijn overgangen toegestaan als
het corresponderende 3j symbool ongelijk aan nul is.

§ 2.5.2: De eenheidsvector voor richting r̂ en de decompositie naar de sferische basis; hoekma-
trixelementen.

§ 2.5.3: Hier geven we uitdrukkingen voor de overgangsdipool en definiëren de overgangssterkte.

§ 2.5.4: Selectieregels voor optische dipool overgangen; het foton en de spin van het foton.
Begrijp het verschil tussen σ+, σ− en π overgangen (zie Fig. 2.4). De afleidingen behoren
niet tot de tentamenstof.

§ 2.5.5: Bestudeer de bespreking van de Lyman reeks en de Balmer reeks. Merk op dat de
som van de overgangswaarschijnlijkheden hetzelfde is voor alle boven (or onder) niveaus
van een gegeven manifold (zie Fig. 2.5). Problem 2.6 is een sleutelprobleem, essentieel
om later de koppeling van elektronen aan het elektromagnetische veld te begrijpen. Je
kunt je vaardigheden met Mathematica oefenen door de integralen uit te rekenen.

Parate kennis:

1. De begrippen waterstofachtig (hydrogeen of alkali-achtig), s golf, p golf, etc..

2. De atomaire eenheden van lengte (a) en van energie (Hartree ~2/mra
2) en waarmee zij cor-

responderen binnen het atoom.

3. De relatie tussen de Hartree en de Rydberg atomaire eenheden: EH = 2ER.

4. De relatie tussen de Rydberg constante RM en de Rydberg energie: ER = hcRM .

5. De relatie tussen de Hartree atomaire eenheid, elektron rustenergie en fijnstructuurconstante:

~2/mra
2 = α2mrc.

6. De niveausplitsing van de hoofdstructuur is typisch een factor α2 kleiner dan de energie van
de rustmassa van het elektron. Het Bohr/Schrödinger atoom kan als een zwakrelativistisch
systeem beschouwd worden.

7. De energieniveaus (Termen) van hydrogene atomen en het begrip Termdiagram,

E = −(α2mrc
2)Z2/2n2,

en verder de Rydberg formule

λ−1
n = −RM

[
(1/n)

2 − (1/n0)
2
]
⇔ ∆En = En − En0

= hc/λn, with n > n0.
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8. De afleiding van de relatie voor radiale gemiddelden

〈ρk〉 ≡
〈
nlm|ρk|nlm

〉
=

ˆ
ρk+2R̃2

nl(ρ)dρ,

waar ˆ
R̃2
nl(ρ)ρ2dρ = 1.

9. De definitie van de electrische-dipool operator ,

d =− er =− eaρ r̂.

10. Weten wanneer 3j symbolen nul zijn of 1 en zorg dat je 3j symbool regels kunt toepassen (de
driehoeksongelijkheid, de 3m som regel, de m inversie regel, en de permutatie regels). Zie ook
de bespreking van de 3j symbolen in § 3.2.2 en Appendix J.
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3 Angular momentum

We beginnen het derde hoofdstuk met een verrassing: na alle arbeid in Hoofdstuk 1 blijkt dat we
de eigenwaarden van L2 en Lz en de eigenschappen van L+ en L− ook kunnen verkrijgen zonder de
Schrödinger vergelijking op te lossen. Het enige wat daarvoor nodig blijkt zijn de commutatie relaties
voor Lx, Ly en Lz. Uitgaande van deze relaties leiden we een algebra af waarmee we de eigenschappen
van het baanimpulsmoment kunnen reproduceren. Hiervoor gebruiken we de representatie-vrije
notatie van Dirac (een notatie zonder

”
golffuncties”). Vervolgens generaliseren we deze aanpak.

Dat kan omdat iedere observabele die voldoet aan eenzelfde stel commutatie relaties als Lx, Ly en
Lz aan dezelfde algebra moet voldoen. Dit noemen we de algebra van gekwantiseerd impulsmoment.
Nu blijkt dat binnen deze algebra ook halfgehele kwantumgetallen mogelijk zijn (de elektron spin,
s = 1/2, is daarvan een bekend voorbeeld). Van cruciaal belang voor een goed begrip van de gehele
cursus is het optellen van impulsmomenten. We maken kennis met de gekoppelde en de ongekoppelde
representatie en de Clebsch-Gordan transformatie tussen deze representaties. Het vector-koppelings-
model is daarbij een belangrijk hulpmiddel, i.h.b. voor het lezen van 3j symbolen.

In het tweede deel van het hoofdstuk zoeken we uit hoe de impulsmoment operatoren en de
impulsmoment toestanden transformeren onder een verandering van kwantisatieas. Dit wordt re-
presentatie theorie genoemd. Het blijkt dat we de impulsmoment operatoren kunnen opvatten als
operatoren waarmee we het fysische systeem een klein stukje (infinitesimaal) draaien.

Thuis bestuderen:

Let op, aan Hoofdstuk 3 moet je je niet vertillen. De stof is belangrijk omdat gekwantiseerd
impulsmoment een sleutelrol speelt in de kwantum fysica en zeker in de Atoomfysica. Het is essentieel
voor een goed begrip van optisch overgangen in atomen. Het hoofdstuk biedt veel extra stof voor
studenten met een theoretische belangstelling. De volgende stof is deel van de cursus, de facultatieve
stof wordt daarna samengevat:

§ 3.1: Dit is een zeer belangrijke paragraaf. Het blijkt dat alle eigenschappen van impulsmoment
volgen uit een algebra die afgeleid wordt uit de commutatierelaties voor Jx, Jy en Jz. De
liefhebbers kunnen de afleiding bestuderen. Voor allen is de samenvatting (3.1.0.1) belangrijk.
De belangrijkste conclusie is dat naast heeltallige impulsmomenten j = 0, 1, 2, · · · ook half-
tallige impulsmomenten, j = 1

2 , 3
2 , 5

2 , · · · , mogelijk zijn. Voor de laatste klasse zal in § 3.9.3
blijken dat ze geen geen klassiek analogon hebben.

§ 3.1.1: Hier bespreken we de decompositie van de impulsmoment vector J in de cartesische
basis en de sferische basis en het subtiele verschil tussen de standaard componenten J0,
J+1 en J−1 en de shift operatoren Jz, J+ en J−.

§ 3.2: Uitgaande van de eigenwaarden kun je matrix representaties construeren die voldoen aan alle
in § 3.1 genoemde eigenschappen. Ga na hoe dit gaat in de sferische en cartesische basis voor
l = 1. Ga ook na hoe de Pauli matrices volgen voor s = 1/2. Problem 3.1 is facultatief.

§ 3.3: In het algemene deel van deze sectie wordt het verschil tussen impulsmoment in de klassieke
mechanica en de kwantummechanica samengevat. Zorg dat je het begrip polarisatie goed
begrijpt en inziet dat de polarisatie in de kwantummechanica de plaats inneemt van de im-
pulsmoment vector uit de klassieke mechanica. Het vector model van Fig. 3.1 helpt je bij het
voorstellen van enerzijds de grootheid J (die niet waarneembaar is) en anderzijds de projecties
daarvan op de kwantisatieas (die wel waarneembaar zijn). Maak Problem 3.2.

§ 3.3.1: In deze paragraaf bespreken hoe de polarisatie gemeten kan worden. Begrijp wat er
bedoeld wordt met een zuiver ensemble, een random ensemble en met de polarisatiegraad.
Verder bespreken we hoe de polarisatie bepaald kan worden met de dichtheidsmatrix.
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§ 3.3.2: In deze paragraaf berekenen we de polarisatie voor een s = 1/2 systeem, ook wel qubit
genoemd, en laten zien dat je de polarisatie van een willekeurige toestand meetkundig
kunt weergeven als een punt op de Bloch bol. Dit is een mooi stukje kwantummechanica
dat een belangrijke rol speelt in de moderne atoomfysica en bij kwantum informatiever-
werking. Zorg dus dat je de Bloch bol goed begrijpt; dat je begrijpt dat de polarisatie-
vector een vector in de 3D reële ruimte is maar dat de Hilbertruimte van het qubit een
2D complexe vector ruimte is die af te beelden is op het oppervlak van de bol. Verwar
dus niet een vector in het lab met een toestand van het qubit.

§ 3.3.3: Een alternatieve aanpak om spin systemen te beschrijven is het dichtheidsmatrix for-
malisme (cf. Appendix F.3). Naast het beschrijven van zuivere toestanden kun je met
dit formalisme ook de statistische mengsels aanpakken. Begrijp hoe je de polarisatie voor
een zuiver ensemble uitrekent met de dichtheidsoperator en welke vorm de dichtheids-
operator aanneemt in de matrix representatie. Ga door deze sectie en overtuig jezelf van
Eq. (3.74).

§ 3.4: De volgende subsecties zijn onmisbaar voor een goed begrip van de hele stof.

§ 3.4.1: Allereerst introduceren we de Hilbert ruimte voor een systeem met twee impulsmo-
menten, j1 en j2. We definiëren de ongekoppelde basis als de basis gevormd door het
tensorproduct van de bases voor de individuele impulsmomenten. Hierbij moeten we op-
letten want het tensorproduct is een geordend product. Hieraan wordt doorgaans weinig
aandacht besteed omdat dit geen opvallende consequenties heeft zolang we ons beperken
tot twee impulsmomenten. Bij koppeling van meer dan twee impulsmomenten ligt dat
anders. Daarop wordt in detail teruggekomen in Section 3.5. De details kun je vergeten
maar begrijp wel het verschil tussen een gestrekte en een niet gestrekte toestand (zie
Example 3.1 en 3.4.2).

§ 3.4.2: Hier leren we hoe twee impulsmoment operatoren opgeteld moeten worden (met de
driehoeksongelijkheid in ons achterhoofd). Dit zal herhaaldelijk terugkomen in de ko-
mende hoofdstukken. Begrijp het verschil tussen de gekoppelde en de ongekoppelde
representatie (maak Problem 3.3). Overtuig jezelf dat ze dezelfde dimensie hebben (zie
Problem 3.4) omdat ze dezelfde Hilbertruimte opspannen. Bestudeer zorgvuldig het
zgn. vectorkoppelingsmodel zoals geschetst in Fig. 3.4. Het begrip gestrekte toestand
komt op vele plaatsen in de stof terug. Zorg er dus voor dat je goed begrijpt wat hiermee
bedoeld wordt.

§ 3.4.6: Hier leren we de zogenaamde Clebsch-Gordan transformaties tussen de gekoppelde en
de ongekoppelde representatie. Begrijp dat deze transformaties eenvoudig volgen uit de
volledigheidsrelaties. De gekoppelde en de ongekoppelde representatie zijn verbonden
door een unitaire transformatie - zie Problem 3.10.

§ 3.6: In deze sectie introduceren we koppeling van impulsmomenten. De vorm van de koppeling is
belangrijk maar bedenk dat de gekoppelde en ongekoppelde basis goed gedefinieerd zijn ook
onafhankelijk van de aanwezigheid van een koppelingsmechanisme. Als j1 en j2 behouden
grootheden zijn zal ook hun vector som, J = j1 + j2, een behouden grootheid zijn. Daarin
komt verandering zodra j1 en j2 ergens aan gekoppeld worden (bijvoorbeeld aan elkaar). We
maken onderscheid tussen interne en externe koppeling. In beide gevallen zijn j1 en j2 niet
langer behouden. Bij interne koppeling blijft J behouden omdat het systeem mechanisch
gesloten blijft. Bij externe koppeling is ook J niet langer behouden. In belangrijke gevallen
is er zowel een interne als een externe koppeling actief. Begrijp wat er in dat geval bedoeld
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wordt met koppeling van de J niveaus - zie ook Section 3.4.5. De inproductregels moet je vlot
kunnen toepassen. Die worden overal in de syllabus toegepast (maak Problem 3.18).

§ 3.7: Lees deze sectie door en zorg dat je bekend bent met het begrip 6j symbool en dat deze
gedefinieerd zijn middels 3j symbolen.

§ 3.8: Hier begint de bespreking van de representatie theorie. Dat is de theorie die ons leert wat er
in de Hilbertruimte gebeurt als we een fysisch systeem in de reële ruimte roteren. Het is een
interessante maar ook lastige sectie.

§ 3.8.1: We gaan in detail na hoe de operatoren en de toestanden van een s = 1/2 systeem
transformeren onder een zuivere rotatie van of rond de kwantisatieas. Begrijp wat we
bedoelen met een zuivere rotatie.

§ 3.8.2: Het blijkt dat we een willekeurige zuivere draaiing kunnen beschrijven met drie draai-
hoeken, de Eulerse hoeken α, β, en γ. Eerst doen we dat in een meedraaiend assenstelsel
(zoals een piloot dat ervaart in de cockpit van een vliegtuig). Fig. 3.7-b is daarbij heel
belangrijk. Daarna laten we zien dat we dezelfde draaiing ook kunnen realiseren met
opeenvolgende draaiingen in een vast coördinatenstelsel (het laboratorium stelsel) rond
de z as, de y as en weer de z over dezelfde Eulerse hoeken (maar in omgekeerde volgorde).
We schrijven de draaioperatoren in de reële ruimte als 3×3 matrices. Je hoeft de afleiding
niet te kunnen reproduceren maar je moet wel de Eulerse hoeken kunnen definiëren aan
de hand van Eqs. (3.183) en (3.187).

§ 3.8.3: Nu bespreken we de unitaire transformaties in de Hilbert ruimte die corresponderen
met dezelfde Euler rotaties. Merk op dat de transformaties nu met een 2 × 2 matrix
worden beschreven. Dat komt omdat we ons hier beperken tot een tweeniveausysteem
(NB. voor de rotatie van quarks wordt het een 3×3 matrix). Problem 3.10 behandelt een
belangrijk resultaat en is een goede oefening om je kennis van complexe 2×2 matrices op
te frissen. Merk op dat niet één maar twee unitaire transformaties corresponderen met een
rotatie in de reële ruimte. Dit heeft geen gevolg voor de operatoren (die transformeren als
klassieke heeltallige impulsmoment operatoren) maar de toestanden worden tweewaardige
complexe functies.

§ 3.8.4: Na al het voorwerk zijn we nu in staat om een relatie neer te schrijven tussen de
s = 1/2 impulsmoment operatoren en draaiingen in het laboratorium. Met Eq. (3.210)
komen we tot de fundamentele conclusie dat de spin operator Sz equivalent is met de
operator voor een infinitesimale rotatie rond de z as (zie Problem 3.20 voor het formele
bewijs). Problem 3.18 gaat over het algemene geval (i.e., rotatie rond een willekeurige
as) en is voor de liefhebbers.

§ 3.8.5: In deze sectie laten we zien dat de relaties die we in de vorige secties afgeleid hebben
voor s = 1/2 gegeneraliseerd kunnen worden tot uitdrukkingen geldig voor spins van
willekeurige grootte. Dit resultaat vormt de basis voor de formele definitie van impuls-
moment in§ 3.9.1.

§ 3.9.3: Hier bereiken we een mijlpaal uit de natuurkunde. We komen tot de conclusie dat een fysisch
systeem met halftallige spin gedraaid worden over een hoek van 4π om de oorspronkelijke
golffunctie terug te krijgen (i.p.v. 2π, zoals bij de bolfuncties en zoals verwacht op basis van
de klassieke natuurkunde). We zeggen dat halfgeheel impulsmoment geen klassiek analogon
heeft. Lees deze subsectie door en zorg dat je bekend bent met het gebrek aan klassieke
analogon.
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§ 3.11: In deze paragraaf demonstreren we dat we de transformatiematrices van § 3.9.4 kunnen ge-
nereren met de systematische methode van § 3.9.1.

§ 3.11.1 Voor een s = 1/2 systeem

§ 3.11.2 Voor een s = 1 systeem.

Parate kennis:

1. De commutatie relaties voor een algemeen impulsmoment J,

[Jx, Jy] = i~Jz, [Jy, Jz] = i~Jx and [Jz, Jx] = i~Jy.

De eigenwaarde vergelijkingen,

J2 |j,m〉 = j(j + 1)~2 |j,m〉
Jz |j,m〉 = m~ |j,m〉 ,

De kwantumgetallen j en m staan bekend onder de naam rotatie-kwantumgetallen; voor ge-
geven J zijn deze beiden geheel or halfgeheel. Het kwantumgetal m is het magnetisch kwan-
tumgetal met waarden beperkt tot het interval −j ≤ m ≤ j. De werking van de ladder
operatoren

J± |j,m〉 =
√
j (j + 1)−m(m± 1) ~ |j,m± 1〉 ,

waar de keuze voor het positieve teken vóór de wortel bekend staat als de Condon en Shortley
fase conventie.

2. Zorg dat je vanuit de eigenwaardenvergelijkingen de matrix representatie kunt genereren.

3. De definitie van polarisatie van impulsmoment : P = (〈Jx/j~〉, 〈Jy/j~〉, 〈Jz/j~〉) .

4. De relaties R(α, β, γ) = Rz′′(γ)Ry′(β)Rz(α) en R(α, β, γ) = Rz(α)Ry(β)Rz(γ) en de definitie
van de Eulerse hoeken (Fig. 3.7-b).

5. Weet dat je een willekeurige s = 1/2 toestand kunt schrijven als |χ〉 = cos θ/2 |�〉+eiφ sin θ/2 |�〉
en dat je daarmee de afbeelding op de Bloch bol kunt uitwerken.

6. Zorg dat je de inproductregels kent:

L · S = LxSx + LySy + LzSz

L · S = LzSz + 1
2 (L+S− + L−S+)

L · S = 1
2 (J2 − L2 − S2).

7. Zorg dat je de vector optelling J = j1 + j2 kunt uitvoeren in een vector diagram en ken de
driehoeksongelijkheid

|j1 − j2| ≤ J ≤ j1 + j2.

8. Zorg dat je de Clebsch-Gordan decompositie kunt neerschrijven
”
in beide richtingen” door

gebruik te maken van de volledigheidsrelatie

|JM〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1; j2m2〉〈j1m1; j2m2 |JM〉

|j1m1; j2m2〉 =

j1+j2∑
J=|j1−j2|

J∑
M=−J

|JM〉 〈JM |j1m1; j2m2〉 .

9. Weet dat de Clebsch-Gordan coëfficiënten kunnen worden herschreven in de vorm van Wigner
3j symbolen, waarvoor een handig grafisch model bestaat. Alle symmetrieregels zoals gegeven
in Appendix J.1 moet je uit het hoofd kunnen opschrijven.
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3 Angular momentum, facultatieve stof

§ 3.4.3: Hier geven we een aantal commutatie relaties voor j1 en j2 met J. Dit soort commutatie-
relaties kun je afleiden als je ze nodig hebt. Ga ze dus niet uit je hoofd leren maar ga na of
het afleiden lukt.

§ 3.4.4: Hier staan drie belangrijke selectieregels voor het uitrekenen van j1z, j2z, j1±, j2±, in de
basis van J. Overtuig jezelf dat deze relaties intüıtief correct zijn. De afleiding vind je in
Problems 3.7-3.9.

§ 3.4.5: Als we de matrix elementen van j1z, j2z, j1±, j2± in de basis van J willen uitrekenen blijkt
er een nieuwe fase conventie nodig. Je hoeft niet te begrijpen hoe dat precies werkt maar
het is wel goed om kennis te nemen van de nieuwe conventie Eq. (3.99): Voor J ′ 6= J de
matrixelementen van j1z worden gekozen als reëel en niet negatief, 〈J ′,M |j1z|J,M〉 ≥ 0. Deze
conventie impliceert - zie Eqs. (3.103) en (3.105) en lees de samenvatting aan het eind van de
sectie: 〈J − 1,M + 1|j1+|J,M〉 ≥ 0 en 〈J + 1,M + 1|j1+|J,M〉 ≤ 0.

§ 3.4.7: De recursierelaties worden gebruikt om de CGCs uit te rekenen. Dat is natuurlijk heel
belangrijk maar niet voor ons want dat is deel van Mathematica.

§ 3.5: In deze sectie onderzoeken we de symmetrieregels van de Clebsch-Gordan coëfficiënten (CGCs).
Deze zijn lastig om te onthouden, daarom heeft Wigner de CGCs getransformeerd naar 3j sym-
bolen. Die hebben eenvoudige symmetrierelaties en met de driehoeksongelijkheid kunnen we
snel te zien of zij nul zijn of niet - Fig. 3.4. In het laatste geval moeten we de waarde opzoeken
in Appendix J (of uitrekenen met Mathematica). Voor de liefhebbers worden de rekenregels
met 3j symbolen afgeleid maar dat behoort niet tot de tentamenstof. Je hoeft de regels dus
niet te kunnen afleiden maar je moet ze wel kunnen toepassen. De symmetrierelaties staan
in Appendix J.1 en als je verstandig bent leer je ze nu meteen uit je hoofd, daar kun je veel
plezier van hebben.

§ 3.5.1: Hier bespreken we de koppelingsvolgorde en leiden we de symmetrierelaties af voor de
Clebsch-Gordan coëfficiënten.

§ 3.5.1.1: De verwisselingssymmetrie is bijzonder voor twee identieke impulsmomenten.
We laten zien dat de paartoestanden symmetrisch zijn voor heeltallige impulsmo-
menten en antisymmetrisch voor halftallige impulsmomenten. Dit heeft natuurlijk
gevolgen voor de relatie tussen spin en kwantumstatistiek.

§ 3.5.2: We hebben het optellen van impulsmomenten besproken maar kunnen we ze ook van
elkaar aftrekken? Voor klassieke vectoren is dat evident. Dat kan door het omdraaien van
de vectorpijl zoals geschetst in Fig. 3.3. Dit principe werkt bij heeltallige impulsmomenten
maar bij halftallige impulsmomenten klopt dit niet. Bij het vergelijken van de CGCs
van de twee situaties blijkt er een fasesprong van (−1)2j2 op te treden waarbij j2 het
impulsmoment is dat gëınverteerd wordt - zie Fig. 3.3. Dit heeft alleen consequenties
voor een halftallig impulsmoment.

§ 3.5.3: In deze sectie introduceren we de transformatie van CGC naar 3j symbool. De be-
perkte symmetrie van de CGCs is het gevolg van het inproduct dat zowel een ket deel als
een bra deel heeft. Na hermitisch conjugeren van het bra deel krijgen we een tensorpro-
duct van 3 kets dat een scalar moet opleveren omdat de drie vectoren moeten optellen
tot nul, j1 + j2 + J = 0. Die scalar is het 3j symbool.

§ 3.5.3.1: Belangrijk: hier staan de symmetrierelaties samengevat - zie ook Appendix J.1.
Leer ze uit je hoofd. Dat zeggen we niet snel maar hierbij zijn hele grote collega’s je
voorgegaan...

§ 3.5.3.2: Hier worden de faseregels voor 3jsymbolen afgeleid.
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§ 3.5.3.3: Oefen met het vector model voor 3j symbolen - zie Fig. 3.4

§ 3.7: We gaan nu een stap verder: we gaan drie impulsmomenten met elkaar koppelen.
Het totaal impulsmoment wordt dan J = j1 + j2 + j3. De volgorde van koppeling
komt nu prominent naar voren omdat er meerdere manieren zijn om dit te doen.
We introduceren herkoppelingscoëfficiënten om twee manieren van koppeling met
elkaar te vergelijken middels een inproduct, e.g. 〈(j12j3)JM |(j1j23)J ′M ′〉. Zorgvuldig
gebruik makend van de koppelingsregels kunnen we deze coëfficiënten uitdrukken in
een som van producten van vier 3j symbolen - zie Eq. (3.166) en Appendix J.2.

§ 3.7.1: Bij het koppelen van 3 impulsmomenten (j1, j2, j3) moeten we rekening hou-
den met 6 impulsmomenten (j1, j2, j3, j12, j13, j23). Bij het koppelen van twee
impulsmomenten (j1, j2) waren dat er slechts drie (j1, j2, j12). Dat laatste geval
konden we visualiseren met de driehoek van het vectormodel. Bij 6 impulsmo-
menten is dit mogelijk met een tetraëder - zie Fig. 3.6. Gebruik makend van de
symmetrie van de tetraëder heeft Wigner het 6j symbool ontworpen. Dat is weer
een scalar omdat we eisen dat j1 + j2 + j2 + J = 0. De algemene relatie voor
het 6j symbool wordt afgeleid in Problem 3.19. De afleidingen kun je overslaan
maar kijk even goed naar de symmetrieregels van de 6j symbolen samengevat in
§ 3.7.1.1 en Appendix J.2.

§ 3.9: (facultatief maar als je vertrouwd bent met de Euler rotaties kun je best proberen om tot
§ 3.9.4 te komen) Hier beginnen we met een schone lei omdat impulsmoment op een meer
fundamentele wijze gedefinieerd kan worden als een infinitesimale draaiing.

§ 3.9.1 We beginnen met de formele definitie van de impulsmoment operator als een infinite-
simale rotatie.

§ 3.9.2: We generaliseren de nieuwe definitie voor het geval van willekeurige vormen van im-
pulsmoment. We laten zien dat uit deze definitie de commutatierelaties volgen en daarmee
alles wat we in § 3.4 hebben geleerd over impulsmoment.

§ 3.9.3: Hier bereiken we een mijlpaal uit de natuurkunde. We komen tot de conclusie dat
een fysisch systeem met halftallige spin gedraaid worden over een hoek van 4π om de
oorspronkelijke golffunctie terug te krijgen (i.p.v. 2π, zoals bij de bolfuncties en zoals
verwacht op basis van de klassieke natuurkunde). We zeggen dat halfgeheel impulsmo-
ment geen klassiek analogon heeft.

§ 3.9.4: Hier bespreken de unitaire transformaties in de Hilbert ruimte die corresponderen met
Euler rotaties α, β, γ voor het algemene geval (willekeurig impulsmoment). Hierbij maken
we kennis met de draaimatrices van Wigner, Dj

m′m(α, β, γ).

§ 3.9.5: Uitgaande van de Clebsch-Gordan decompositie kunnen we de transformatie eigen-
schappen van sferische tensor operatoren afleiden. We demonstreren dit voor de sferische
tensor operatoren T(0) (rang 0), T(1) (rang 1) en T(2) (rang 2).

§ 3.10: In deze sectie maken we de stap van vectoroperatoren naar tensoroperatoren van willekeurige
orde. Dat is de laatste stap van generalisatie. Binnen de syllabus is het alleen belangrijk voor
het hoofdstuk over de elektrische hyperfijnstructuur en dat is niet deel van het examen. Een
bijzonder detail is dat de methoden van deze sectie het mogelijk maken om als een speciaal
geval de Gaunt integraal op te lossen. - zie Problem 3.24.
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4 Fine structure of hydrogen-like atoms - deel 1

In zekere zin komen we nu pas toe aan het echte werk. We laten de wereld van exacte oplossingen
achter ons en gaan verder met storingsrekening. We richten ons eerst op de fijnstructuur en in
Hoofdstuk 5 op de hyperfijnstructuur van waterstofachtige atomen. De term fijnstructuur verwijst
naar kleine afwijkingen van de hoofdstructuur die het gevolg zijn van

”
storingen” als gevolg van

eigenschappen van het elektron. De hyperfijnstructuur wordt bepaald door eigenschappen van de
kern. We beginnen het vierde college met de fijnstructuur van waterstofachtige atomen, gebruik
makend van storingsrekening. Eerst berekenen we een relativistische correctie. Die bestaat uit twee
bijdragen, een correctie van de kinetische energie (massacorrectie) en een correctie van de potentiële
energie (Darwin correctie). Daarna leren we hoe het elektron binnen het atoom een Lorentzkracht
ervaart als we een extern magneetveld aanleggen (waardoor de rotatiesymmetrie wordt gebroken).
Dit is de oorsprong van het baanmagnetisme (baan-Zeemaninteractie en Larmor precessie) en van
het diamagnetisme. Dan postuleren we de elektron spin (ook een relativistisch fenomeen) en de spin-
Zeemaninteractie. Al deze bijdragen worden tenslotte gereduceerd tot een effectieve hamiltoniaan
voor de wisselwerking van het elektron met een extern magneetveld: de Zeeman hamiltoniaan voor
het elektron. Dit is het werkpaard van de elementaire atoomfysica. Alle genoemde interacties kunnen
berekend worden met gewone eerste orde storingsrekening.

Thuis bestuderen:

Hoofdstuk 4 - deel 1: De begrippen relativistische massacorrectie, Darwin correctie, Zitterbewegung
en Compton golflengte λC , Lorentzkracht F, gegeneraliseerde potentiële energie V (r,v, t), vector-
potentiaal A(r), scalar potentiaal ϕ(r), kinetisch impuls mv, elektromagnetisch impuls qA, cano-
niek impuls p, hamiltoniaan H, lagrangiaan L, kinetische energie T , diamagnetisch moment µdia
en magnetische polariseerbaarheid αM , baanmagnetisch moment µL, spinmagnetisch moment µS ,
Bohr magneton, Larmor precessie, Stern-Gerlach methode. Lees de introductie. Realiseer je de
sleutelrol van waterstof voor de ontwikkeling van de moderne natuurkunde.

§ 4.1: Relativistische en stralingsverschuivingen:

§ 4.1.1: Het afleiden van de relativistische massacorrectie Hmass
r uitgaande van de relativisti-

sche hamiltoniaan. Dit is de correctieterm voor de kinetische energie van het elektron
(zie Fig. 4.1).

§ 4.1.2: De Darwincorrectie HDarwin
r is de correctieterm voor de potentiële energie van het

elektron (zie Fig. 4.1). De oorsprong van deze correctie kun je enigszins visualiseren als een
soort

”
uitsmeren” van de ladingsverdeling van het elektron over een Compton golflengte

λC als gevolg van de Zitterbewegung van relativistische elektronen. Hierdoor wordt de
bindingsenergie kleiner voor elektronen die dicht bij de kern komen (s elektronen). Begrijp
wat deze correctie gemeen heeft met de Lamb shift en de nucleaire volume verschuiving
(als gevolg van de ladingsverdeling in de kern) - zie Problem 4.1.

§ 4.1.3: De Lamb shift is ongelofelijk belangrijk maar past helaas niet binnen dit college (zie
Fig. 4.1). De oorsprong kun je ook enigszins visualiseren als een

”
uitsmeren” van de

ladingsverdeling over een afstand veel kleiner dan λC maar veel groter dan de rp, de
straal van de ladingverdeling van het proton, als gevolg van de nulpuntsoscillaties van het
elektromagnetische veld. Dit heuristische model staat bekend als Welton’s beeld van de
Lamb shift.

§ 4.2: Fris je kennis op van de klassieke mechanica (Appendix C): de relatie H = p · v − L tussen
de Hamiltoniaan en de Lagrangiaan L = T − V en de afleiding van de hamiltoniaan voor een
elektron in een klassiek elektromagnetisch veld

H =
1

2m
(−i~∇− qA)2 + qϕ (r) .

13
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Bestudeer zorgvuldig de afleiding van de effectieve hamiltoniaan voor een atoom in een mag-
netisch veld B(r)

H = H0 −
q

2m
L ·B(r) +

q2

8m
r2
⊥B2(r),

gebruik makend van de Coulomb ijking, ∇ ·A = 0, en de uitdrukking voor de vectorpotentiaal
voor een homogeen magnetisch veld, A = 1

2B × r. Problem 4.2 is facultatief maar super
geschikt om je kennis van de klassieke mechanica op te frissen.

§ 4.3: Waterstofachtige atomen in een extern magneetveld:

§ 4.3.1: Bestudeer goed hoe een magnetisch moment aangetoond kan worden met de Stern-
Gerlach methode (zie Fig. 4.3). Begrijp het verschil tussen een permanent en een gëınduceerd
moment evenals het begrip magnetische polariseerbaarheid. Let op de tekenconventies bij
uitdrukkingen voor het magnetisch moment µL = γLL = −gLµB (L/~); realiseer je dat
voor het elektron de gyromagnetische verhouding γL negatief is maar de gL factor (per
definitie) positief.

§ 4.3.2: Bestudeer de begrippen diamagnetisme, diamagnetische susceptibiliteit en magnetisa-
tie.

§ 4.3.3: Begrijp de verschillen tussen de begrippen baanmagnetisch moment vector operator
µL,

”
het” baanmagnetisch moment µL, effectief baanmagnetisch moment µeff en grootte

(magnitude) van het baanmagnetisch moment
√
〈µL · µL〉. De zeeman hamiltoniaan voor

de baanbeweging is HZ = −µL ·B. Begrijp de Fig. 4.4a/b.

§ 4.3.4: Het koppel op het impulsmoment, dL(t)/dt = µL × B geeft aanleiding tot Larmor
precessie van µL om de veldrichting ωL = gL(e/2me)B. Berekenen van niveausplitsing
met eerste orde storingsrekening (baan Zeeman effect). Begrijp de Fig. 4.4c.

§ 4.3.5: Hier wordt spin gepostuleerd, begrijp waarom spin iets totaal anders is dan impulsmo-
ment van een klassiek klopje ronddraaiende lading.

§ 4.3.6: Maak jezelf vertrouwd met de begrippen elektron spin, g factor, gyromagnetische
verhouding, elektron anomalie, intrinsieke magnetisch moment en spin-Zeeman effect.
Let op de tekenconventies bij uitdrukkingen voor het magnetisch moment µs = γeS =
−geµB (S/~); realiseer je dat (net als bij µL) de gyromagnetische verhouding γe nega-
tief is maar de ge factor (per definitie) positief. Verder is de hamiltoniaan van het type
HZ = −µs ·B en het koppel wordt beschreven met dS(t)/dt = µL ×B.

§ 4.3.7: Hier vind je de totale Zeeman hamiltoniaan voor het elektron.

Parate kennis:

1. De relativistische en radiatieve energie verschuivingen: de relativistische massa correctie, Dar-
win term en Lamb shift, hun oorsprong en relatie met impulsmoment.

2. De Zeeman Hamiltoniaan voor het elektron

HZ = −(µS + µL) ·B− 1
2µdia ·B.

3. De definities van de magnetische momenten, van het Bohr magneton µB en de magnetische
polariseerbaarheid αM :

µL = γLL = −gLµB (L/~) gL ' 1

µS = γeS = −geµB (S/~) ge ' 2

}
µB = (e~/2me)

µdia = −αMB αM ' (e2/4me)〈r2
⊥〉.

14
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4. De energiesplitsing van de fijnstructuur is typisch een factor α2 kleiner dan de energiesplitsing
van de hoofdstructuur.
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4 Fine structure of hydrogen-like atoms - deel 2

Het
”
Zeeman” magneetveld kan nooit helemaal uitgezet worden omdat een bewegend elektron in

een elektrisch veld altijd een (bewegingsgëınduceerd) magneetveld ervaart in de richting van het
impulsmoment L. De elektron spin S koppelt aan dit interne veld, een fenomeen dat bekend staat
als spin-baan koppeling. Bij afwezigheid van een extern veld koppelen daarom spin S en baan L tot
een totaalimpulsmoment J = L + S. De spin-baan koppeling wordt in rekening gebracht met een
nieuwe term in de hamiltoniaan, HLS = ξ(r)L ·S. Door deze storing wordt de n2 ontaarding van de
Schrödinger hamiltoniaan H0 (deels) opgeheven. Omdat L · S commuteert met de H0 kunnen we
dit uitrekenen met gewone storingrekening. Omdat ξ(r) niet commuteert met H0 is deze berekening
alleen geldig tot 1e orde in de storingsrekening. Dat is meestal afdoende omdat de tweede orde
correctie meestal verwaarloosbaar klein is. Helaas commuteert de HLS koppelingsterm niet met
de Zeeman hamiltoniaan HZ . Daarom moet de niveausplitsing in een magneetveld uitgerekend
worden met storingsrekening voor een ontaard niveau. In veel gevallen is dit mogelijk door het
oplossen van een 2× 2 seculiervergelijking. Als bijzondere gevallen blijken zowel de lage veld limiet,
〈HZ〉 � 〈HLS〉, als de hoge veld limiet, 〈HLS〉 � 〈HZ〉, oplosbaar met eerste orde storingsrekening.
Omdat mj = ml+ms een goed kwantumgetal is, ongeacht de sterkte van het magneetveld, is kennis
van de laagveld en hoogveld informatie voldoende om het gehele fijnstructuurdiagram te schetsen.

Thuis bestuderen:

Hoofdstuk 4 - deel 2 (vanaf § 4.4): Koppeling van impulsmomenten en de Termnotatie (spectro-
scopische notatie), Clebsch-Gordan decompositie, Landé interval regel, zwaartepuntsregel, laagveld
limiet - Landé factor, hoogveld limiet - Paschen-Back effect, Wigner-Eckart theorema. Screening,
Effectieve lading, Quantum defect, Rydberg limiet, laagveld limiet - Landé factor, hoogveld limiet -
Paschen-Back effect.

§ 4.4: Hamiltoniaan voor de fijnstructuur:

§ 4.4.1: De introductie van het totaal impulsmoment J = L+S met de bijbehorende gekoppelde
basis {|lsjmJ〉} meestal kort genoteerd als {|jmj〉} en het herschrijven van deze basis in
termen van de ontkoppelde basis |lmlsms〉 ≡ |lml〉 ⊗ |sms〉 (de Paschen-Back basis)
door middel van een Clebsch-Gordan decompositie. In deze paragraaf wordt de stof van
§ 3.2 toegepast. Kijk goed hoe de commutatierelaties worden bewezen: Problem 4.4-4.7.
Problem 4.8 is heel belangrijk!

§ 4.4.2: Bestudeer hoe het bewegingsgëınduceerde veld BL ontstaat.

§ 4.4.3: Bestudeer hoe BL reduceert tot het spin-baan veld BLS door te corrigeren voor de
Thomas precessie. Door de spin te koppelen aan het veld BLS ontstaat de spin-baan
wisselwerking.

§ 4.4.4: Bestudeer hoe de spin-baan hamiltoniaan HLS = ξ(r)L · S tot stand komt, i.h.b. hoe
de koppelingssterkte ξ(r) gedefinieerd is.

§ 4.4.5: Door alle genoemde termen te verzamelen verkrijgen we de fijnstructuur hamiltoniaan.

§ 4.5: De fijnstructuur in nulveld.

§ 4.5.1: Bestudeer hoe de effectieve fijnstructuur hamiltoniaan tot stand komt, i.h.b. hoe de
koppelingsconstante ζnl gedefinieerd is.

§ 4.5.2: Bestudeer Fig. 4.8 en zorg dat je de verschuivingsregels van de spin-baan wisselwerking
kunt afleiden. Neem kennis van de Landé interval regel, ∆Wj = ∆ELSn,j−∆ELSn,j−1 = ζnlj,
en de zwaartepuntsregel voor energieniveaus. Begrijp wat bedoeld wordt met een ge-
strekte toestand. Problem 4.9 is facultatief. Bereken de fijnstructuursplitsing en contro-
leer de zwaartepuntsregel voor waterstofachtige atomen.
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§ 4.5.3: Waterstof - Bestudeer waarom de fijnstructuurniveaus van waterstof alleen van j
afhangen en niet van l en/of s afzonderlijk.

§ 4.6: We gaan nu naar de alkali-achtige atomen.

§ 4.6.1: We buigen we ons over een van de grote puzzels uit de uit de ontwikkeling van de
Atoomfysica (zie Fig. 4.9): waarom zijn twee kwantumgetallen (n, j) afdoende voor wa-
terstof maar hebben we er drie nodig (n, l,s) voor de alkali atomen?

§ 4.6.2: Begrijp dat de n 2S − n 2P splitsing in alkalis enorm groot is omdat de kernlading
door core elektronen beter wordt afgeschermd voor p elektronen dan voor s elektronen.
Waterstof heeft geen core elektronen. Hierdoor treedt een (bijna complete) toevallige
ontaarding op van van de n 2S en de n 2P termen. Bestudeer Fig. 4.10a . Merk op dat de
spin-baan koppeling groot is in de zware alkalis. Dit komt door de grote kernlading (die
ondanks de afscherming door de core elektronen zich toch doet gelden).

§ 4.6.2.1: Begrijp wat er bedoeld wordt met de begrippen screening constante, effectieve
kernlading en kwantum defect. Bestudeer Fig. 4.10b, Fig. 4.11 en Tabel 4.1 Begrijp
wat er bedoeld wordt met de Rydberg limiet van het kwantum defect.

§ 4.6.2.2: Hier kun je lezen wat er met een atoom gebeurd als je de kernlading groter
maakt. Begrijp wat er bedoeld wordt met een iso-elektronische reeks. Deze paragraaf
is belangrijk om later opvallende anomalieën in het periodieke systeem te kunnen
begrijpen. Heel belangrijk: begrijp waarom s toestanden preferentieel gebonden
worden. Bestudeer Fig. 4.12.

§ 4.6.3: (facultatief ) Screening heeft ook invloed op de fijnstructuur.

§ 4.6.4: (facultatief ) Deze paragraaf is heel waardevol voor studenten die optische dipool over-
gangen tussen fijnstructuurniveaus willen kunnen uitrekenen.

§ 4.7: Nu gaan we een magneetveld aanleggen.

§ 4.7.1: Lees de introductie. Als we te maken hebben met een ontaard niveau en twee niet
commuterende storingsoperatoren (HZ en HLS) dan moeten we de seculiervergelijking
oplossen. Dit is equivalent met het diagonaliseren van de storingsmatrix.

§ 4.7.2: We schrijven de elementen van de storingsmatrix in de ongekoppelde basis (Zeeman
basis), H′mjm′sms = 〈nlm′lsm′s|H′ |nlmlsms〉. Merk op dat alle matrixelementen waarin

ms en m′s met meer dan één eenheid van impulsmoment verschillen nul zijn.

§ 4.7.3: Het belangrijkste is dat je inziet dat de matrix bestaat uit (1× 1) blokken en (2× 2)
blokken langs de diagonaal. We hoeven dus nooit meer dan een (2×2) matrix te diagona-
liseren. Begrijp het verschil tussen zuivere spintoestanden (lineaire Zeemanverschuiving)
en gemengde spintoestanden (niet-lineaire Zeemanverschuiving). Neem goed kennis van
het kantelgedrag van laag veld naar hoog veld in Fig. 4.15. Problem 4.12 biedt een relatie
voor het kantelpunt, handig is om in te schatten wanneer je in waterstof de laagveld limiet
verlaat.

§ 4.7.4: Bestudeer de hoogveld limiet, waarbij je gebruik maakt van de ontkoppelde basis
(Paschen-Back basis) met de spin-baan hamiltoniaanHLS als storing. Dit kan beschreven
worden met eerste orde storingsrekening. Deze sectie is heel belangrijk.

§ 4.7.5: Bestudeer de laagveld limiet, waarbij je gebruik maakt van de gekoppelde basis met de
Zeeman hamiltoniaan HZ als storing. Ook deze limiet kan beschreven worden met eerste
orde storingsrekening. Ook deze sectie is heel belangrijk. Het Wigner-Eckart theorema
in de vorm van Eq. (4.200) moet je kennen maar de algebräısche afleiding valt buiten de
tentamenstof (Problem 4.14 en Appendix K). Wel moet je de heuristische afleiding via
het vectordiagram (Fig. 4.6) en Eq. (4.200) begrijpen en kunnen reproduceren. Zorg er
ook voor dat je de afleiding van de Landé factor gJ begrijpt.
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§ 10.7.5: Bestudeer deze paragraaf als een voorbeeld van de laagveld limiet. Problem 4.14
biedt een afleiding van het Wigner-Eckart theorema voor het speciale geval van Lz. Dit
bewijs is facultatief maar geeft je een idee van hoe het volledige bewijs in elkaar steekt.

Parate kennis:

1. Realiseer je twee belangrijke zaken over commutatierelaties:

• als A commuteert met C én B commuteert met C houdt dit niet automatisch in dat A
ook met B commuteert. Voorbeeld: [Lz,L

2] = 0 en [L · S,L2] = 0 maar [Lz,L · S] 6= 0.

• als A niet commuteert met C én B ook niet commuteert met C kan het best zo zijn
dat A + B wel met C commuteert. Voorbeeld: [Lz,L · S] 6= 0 en [Sz,L · S] 6= 0 maar
[Jz,L · S] = [Lz + Sz,L · S] = 0.

2. Het vectorkoppelingsdiagram (Fig. 3.9 en Fig. 4.6) met driehoeksongelijkheid en de spectroscopische
Term notatie.

3. De Clebsch-Gordan decomposities

|jmj〉 =

l∑
ml=−l

s∑
ms=−s

|lmlsms〉〈lmlsms |jmj〉

|lmlsms〉 =

l+s∑
j=|l−s|

j∑
mj=−j

|jmj〉 〈jmj |lmlsms〉 .

4. De Landé interval regel (inclusief afleiding): ∆W = ∆ELSn,J −∆ELSn,J−1 = ζnlJ .

5. De zwaartepuntsregel:

1

(2l + 1) (2s+ 1)

l+s∑
J=|l−s|

(2J + 1) ∆ELSn,J = 0.

6. Screening door core elektronen: de rotationele structuur blijft intact (behoud van centrale
symmetrie).

7. Ben bekend met de concepten quantum defects en screening efficiency en iseoelectronic pairs.

8. Begrijp de voorkeursbinding van s elektronen.

9. Begrijp hoe screening de fijnstructuur bëınvloedt en in het bijzonder de spin-orbit koppeling.
Begrijp dat het energie verschil tussen D1 en D2 transities in alkalis snel toeneemt met Z,
maar niet zo snel als verwacht door de screening.

10. De storingsrekening voor hoog veld.

11. De storingsrekening voor laag veld inclusief het Wigner-Eckart theorema

〈nlsJmJ |Lz |nlsJmJ〉 = 〈lsJ ‖L‖ lsJ〉 〈JmJ | Jz |JmJ〉
〈nlsJmJ |Sz |nlsJmJ〉 = 〈lsJ ‖S‖ lsJ〉 〈JmJ | Jz |JmJ〉 ,

met

〈nlsJmj |Lz |nlsJmj〉 =
〈lsJmj | (L · J) Jz |lsJmj〉
〈lsJmj |J2 |lsJmj〉

= 〈lsJ ‖L‖ lsJ〉 〈lsJmj | Jz |lsJmj〉 ,
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waarbij

〈lsJ ‖L‖ lsJ〉 =
〈lsJmj |L · J |lsJmj〉
〈lsJmj |J2 |lsJmj〉

=
J(J + 1) + l(l + 1)− s(s+ 1)

2J(J + 1)
.

en de analoge uitdrukking voor Sz.

12. De uitdrukking en de afleiding van de Landé factor

gJ = gL〈lsj ‖L‖ lsj〉+ ge〈lsj ‖S‖ lsj〉 ' 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
.

19



Leeswijzer Atoomfysica Cursus 2020-2021

5 Hyperfine structure of hydrogen-like atoms - deel 1

De kern heeft spin I en daarmee geassocieerd een magnetisch moment µI = γII met een gyromag-
netische verhouding γI die (afhankelijk van de kern) zowel positief als negatief kan uitvallen. Dit
geeft aanleiding tot het kern-Zeeman effect met als effectieve hamiltoniaan

HZ = γI I ·B.

Als gevolg van het magnetisch moment van de kern is er altijd een intern magneetveld. Dit geeft
aanleiding tot een koppeling, de hyperfijninteractie, tussen de kernspin I en het totaalimpulsmoment
J = L + S van het elektron. Deze koppeling kan altijd (in goede benadering) geschreven worden in
de vorm

HIJ = ahfs (I · J)/~2,

maar de koppelingsconstante ahfs heeft een andere oorsprong voor l = 0 dan voor l 6= 0. De
hyperfijnkoppeling geeft aanleiding tot opsplitsing van de fijnstructuurniveaus en dit kunnen we
uitrekenen met eerste orde storingsrekening. Net als in het geval van de fijnstructuur vinden we een
intervalregel en een zwaartepuntsregel. Tot slot van het eerste deel over hyperfijnstructuur wordt
de hyperfijnsplitsing van de waterstof grondtoestand 2S1/2 uitgerekend. De nauwkeurigheid blijkt
1 : 104 te zijn. Niet gek voor een derdejaars college over echte atomen!

Thuis bestuderen:

Lees de inleiding. De hyperfijnstructuur vindt zijn oorsprong in de eigenschappen van de atoomkern.
Neem kennis van de verschillende bijdragen. Het blijkt dat we de kern slechts oppervlakkig hoeven
te begrijpen om de hyperfijnstructuur met grote precisie te kunnen beschrijven. In dit hoofdstuk
concentreren we ons op de magnetische hyperfijnstructuur.

§ 5.1.1: Net als bij elektron spin associëren we een magnetisch moment met kernspin. Let op de
tekenconventies, µI = γII = gIµN (I/~); realiseer je dat bij de kernspin de gI factor en de
gyromagnetische verhouding γI = gIµN/~ positief dan wel negatief kunnen uitvallen. De
hamiltoniaan is weer van het generieke type, HZ = −µI ·B, en het koppel wordt beschreven
met dI(t)/dt = µI ×B.

§ 5.1.2: De introductie van het totaal impulsmoment F = J+I met de bijbehorende gekoppelde
basis {|IJFmJ〉}, vaak kort genoteerd als {|FmF 〉}. De koppeling is gëıllustreerd in
Fig. 5.1. Zoek zelf uit hoe de gekoppelde basis herschreven kan worden in termen van de
ontkoppelde basis |ImIJmJ〉 ≡ |ImI〉 ⊗ |JmJ〉 (de Paschen-Back basis) door middel van
een Clebsch-Gordan decompositie.

§ 5.2: Magnetische hyperfijnwisselwerking: § 5.2.1: Bestudeer het formuleren van de hamiltoniaan
voor de magnetische hyperfijnwisselwerking. Fris je kennis van de magnetische dipool-dipool
interactie op met behulp van Problem 5.1.

§ 5.2.2: Begrijp de drie bijdragen aan de magnetische hyperfijninteractie Hhfs: (a) de Fermi-
contact interactie HFermi, waarbij µe, het magnetisch moment van het elektron, (en
daarmee ook de spin S) koppelt aan het magnetisch veld in de kern - dit gebeurt alleen
voor l = 0 (in dit geval is J = S); (b) de kernspin-baan koppeling HLI , waarbij µI , het
magnetisch moment van de kern, (en daarmee ook de spin I) koppelt aan het magneetveld
behorend bij het baanimpulsmoment L van het elektron - dit veld is alleen aanwezig voor
l 6= 0, d.w.z. bij aanwezigheid van baanimpulsmoment; (c) de magnetische dipool-dipool
interactie Hdd tussen het magnetisch moment µe van het elektron (dus ook de spin S) het
magnetisch moment µI van de kern (dus ook de spin I) - gemiddeld over de baanbeweging
is deze wisselwerking alleen ongelijk aan nul voor l 6= 0.
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§ 5.2.3: Hier vind je de tensor uitdrukking voor de magnetische dipool-dipool interactie. In
Problem 5.2 demonstreren we de decompositie in tensor componenten. Deze sectie valt
buiten de tentamenstof.

§ 5.3: Hyperfijnwisselwerking in nulveld:

§ 5.3.1: Eerst bestuderen we de hyperfijnwisselwerking in nulveld. We beginnen met een sa-
menvatting om ons voor te bereiden op de afleiding. Het blijkt dat, ondanks de drie
bijdragen (Hhfs = HLI +Hdd +HFermi) de magnetische hyperfijninteractie een extreem
eenvoudige vorm heeft: Hhfs = ahfs (I · J)/~2. Wel moet men dan voor l = 0 een andere
uitdrukking voor ahfs gebruiken dan voor l 6= 0. Neem dus zorgvuldig kennis van het
verschil tussen de uitdrukkingen voor de coëfficiënten ahfs voor de gevallen l = 0 en l 6= 0.
Merk op dat in beide gevallen het teken van ahfs wordt bepaald door de gyromagnetische
verhouding γI van de kern.

§ 5.3.2: Overtuig jezelf dat de Fermi-contact term de enige term is die een bijdrage geeft voor
l = 0.

§ 5.3.3: Bestudeer hoe de som van de dipool-dipool interactie en de kernspin-baan interactie
een effectief veld BJ ter plaatse van de kern opleveren. Het uitrekenen van dit veld is vrij
technisch, waarbij het Wigner-Eckart theorema een glansrol speelt. In Problem 5.3 laten
we zien hoe we het gereduceerde matrix element 〈nlsj||BJ ||nlsj〉 bepalen. Deze afleiding
is heel karakteristiek en zeker aanbevolen maar valt buiten de tentamenstof.

§ 5.3.4: In deze paragraaf berekenen we de hyperfijnsplitsing in nulveld voor een gegeven fijn-
structuur Term n 2s+1LJ . Dit kan met eerste orde storingsrekening omdat I · J commu-
teert met de fijnstructuurhamiltoniaan. Ga na dat de storing inderdaad diagonaal is in
de gekoppelde basis {|IJFmF 〉}.

§ 5.3.5: Door de hyperfijnverschuiving van twee opeenvolgende F niveaus van elkaar af te
trekken krijgen we de hyperfijnintervalregel ∆WF = ∆EIJF −∆EIJF−1 = ahfsF. De zwaar-
tepuntsregel wordt gegeven zonder bewijs maar dit volgt analoog aan Problem 4.9 omdat
het spoor van de interactie matrix invariant is onder unitaire transformatie.

§ 5.3.6: Geniet van het uitrekenen van de hyperfijnsplitsing van de waterstofgrondtoestand
met een nauwkeurigheid van 1 : 104. Deze overgang heeft een belangrijke rol gespeeld in
de tijdmeting en in de radioastronomie!

§ 5.3.7: (facultatief ) Deze paragraaf is waardevol voor studenten die optische dipool overgan-
gen tussen de niveaus van de hyperfijnstructuur willen kunnen uitrekenen.

Parate kennis:

1. Het vectorkoppelingsdiagram (Fig. 5.1.) met driehoeksongelijkheid.

2. De kern-Zeeman hamiltoniaan:

HZ = −µI ·B = γI I ·B

3. Begrijp de herkomst van de drie contributies aan de hyperfijninteractie en ken de termen:
nuclear spin-orbit interaction, magnetic dipole-dipole interaction, Fermi contact interaction.

4. De effectieve hamiltoniaan voor de hyperfijnkoppeling:

Hhfs = ahfs (I · J)/~2.

5. Weten dat het teken van de hyperfijncoëfficiënt ahfs wordt bepaald door gyromagnetische
verhouding γI
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6. De hyperfijninterval regel: Binnen een fijnstructuur Term geldt voor de hyperfijnsplitsing

∆WF = ∆EIJF −∆EIJF−1 = ahfsF.

7. De zwaartepuntsregel:

1

(2I + 1)(2J + 1)

I+J∑
F=|I−J|

∆EIJF = 0.

8. The energiesplitsing van de hyperfijnniveaus zijn grofweg een factor me/mp kleiner dan de
splitsing van de fijnstructuur.
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5 Hyperfine structure of hydrogen-like atoms - deel 2

In het tweede deel van het hoofdstuk voegen we de Zeeman interactie toe aan de nulveld hyperfijn-
hamiltoniaan. In complete analogie met de L · S koppeling van de fijnstructuur, commuteert ook
de I · J koppelingsterm niet met de Zeeman hamiltoniaan HZ . Daarom moet de niveausplitsing in
een magneetveld uitgerekend worden met storingsrekening voor een ontaard niveau. In veel gevallen
is dit mogelijk door het oplossen van een 2 × 2 seculiervergelijking. Als bijzondere gevallen blijken
zowel de lage veld limiet, 〈HZ〉 � 〈Hhfs〉, als de hoge veld limiet, 〈Hhfs〉 � 〈HZ〉, oplosbaar met
eerste orde storingsrekening.

Thuis bestuderen:

Hoofdstuk 5 - deel 2 (vanaf § 5.4): Aan de orde komen achtereenvolgens storingsrekening in de
ongekoppelde basis, de begrippen zuivere toestand en gemengde toestand, hoogveld limiet - Paschen-
Back effect, laagveld limiet - gF factor, Wigner-Eckart theorema. Daarna volgt een bespreking
van de hyperfijnstructuur van alkali atomen (als voorbeelden van hyperfijnstructuur in één-elektron
atomen).

§ 5.4: Hyperfijnstructuur in een aangelegd magneetveld: Neem kennis van de effectieve spin hamil-
toniaan van het atoom met zowel fijnstructuur als hyperfijnstructuur. Begrijp wat bedoeld
wordt met de gekoppelde en de ongekoppelde basis van de hyperfijnstructuur en waarom de
gekoppelde basis de laagveld basis is en waarom de ongekoppelde basis de hoogveld basis is.
Bestudeer het Zeeman effect bij aanwezigheid van hyperfijnwisselwerking en merk op dat dit
geheel analoog gaat aan de fijnstructuur.

§ 5.4.1: In deze paragraaf leiden we uitdrukkingen af voor de diagonaal en de afdiagonale ma-
trixelementen van de hyperfijn storingsmatrix in de ongekoppelde basis; i.e., de Zeeman
basis {|nImIjmj〉}.

§ 5.4.2: Omdat de I · J koppeling niet commuteert met de Zeeman hamiltoniaan moeten we
storingsrekening voor een ontaard niveau toepassen. Zoals uitgelegd in Appendix H
is het hierbij onze taak om de storingshamiltoniaan te diagonaliseren. Dit komt dit
neer op het oplossen van de karakteristieke vergelijking van het eigenwaarden probleem
(de zgn. seculiervergelijking). We doen dit hier in de ongekoppelde basis (we hadden
dezelfde oplossingen ook kunnen verkrijgen uitgaande van de gekoppelde basis) omdat de
storingsmatrix dan blokdiagonaal is met (1 × 1) en (2 × 2) blokken langs de diagonaal.
Daarom hoeven we nooit meer dan een (2 × 2) matrix te diagonaliseren. Dat wordt
gedemonstreerd in Appendix H.4. Voor atomen met J = 1/2 (zoals waterstof) bepalen we
niet alleen de energieniveaus maar ook de corresponderende eigentoestanden. Begrijp het
verschil tussen zuivere toestanden (lineaire Zeemanverschuiving) en gemengde toestanden
(niet-lineaire Zeeman toestanden). Bestudeer in Fig. 5.5 het kantelgedrag van laagveld
naar hoogveld, in het bijzonder het verschil tussen γI > 0 en γI < 0. Merk op dat het
kantelpunt Bhfs gedefinieerd is als het punt waar de hoogveld en laagveld raaklijnen elkaar
snijden.

§ 5.4.3: Bestudeer de hoogveld limiet. Hier maken we gebruik van de regel dat bij aanwezigheid
van diagonaaltermen de afdiagonaaltermen slechts in hogere orde een bijdrage leveren aan
de storingsrekening. Merk op dat in het geval van waterstof de bovenste hyperfijn niveaus
elkaar snijden bij een veld van 16.7 Tesla. Dit gebeurt als de kern Zeemanverschuiving
gelijk is aan de nulveldsplitsing.

§ 5.4.4: Bestudeer de laagveld limiet. Hier doen we opnieuw een beroep op het Wigner-Eckart
theorema (vgl. met nulveld). We vinden dat, in goede benadering, dat de gF factor wordt
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gegeven door

gF ' ±gJ
1

2I + 1
voor F = I ± 1/2; j = 1/2; F > 0,

waarbij gJ de g factor is van de fijnstructuur Term waarop we storingsrekening doen.

§ 5.4.5: Hier gaan we tot tweede orde in storingsrekening. Dit levert in laag veld een kwadra-
tische correctie op die het kwadratisch Zeeman effect wordt genoemd.

§ 5.5: Hyperfijnstructuur van waterstofachtige atomen in de elektronische grondtoestand:
Voorbeelden:

§ 5.5.1: Oplossen seculiervergelijking voor S = 1/2, I = 1/2, γI > 0 (waterstof).

§ 5.5.2: Oplossen seculiervergelijking voor S = 1/2, I = 1, γI > 0 (deuterium, lithium-6).

§ 5.5.3: Oplossen seculiervergelijking voor S = 1/2, I = 3/2, γI > 0 (diverse alkali atomen).

§ 5.5.4: Oplossen seculiervergelijking voor S = 1/2, I = 4, γI < 0 (kalium-40).

Parate kennis:

1. De atomaire hamiltoniaan met zowel fijnstructuur als hyperfijnstructuur,

H = H0 +Hr + ξ L · S +
(
ahfs/~2

)
I · J + (gJµBJz − gIµNIz)B/~

2. De storingsrekening voor hoog veld (analoog aan fijnstructuur) in hoogveld basis.

3. De storingsrekening voor laag veld inclusief het Wigner-Eckart theorema (analoog aan fijn-
structuur)

〈nlsJIFmF | Jz |nlsJIFmF 〉 = 〈JIF ‖J‖ JIF 〉 〈FmF |Fz |FmF 〉
〈nlsJIFmF | Iz|nlsJIFmF 〉 = 〈JIF ‖I‖ JIF 〉 〈FmF |Fz |FmF 〉 ,

〈JIF ||J ||JIF 〉 =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
. (O.3)

en de analoge uitdrukking voor I.

4. De uitdrukking voor de gF factor,

gF = gJ〈JIF ||J ||JIF 〉 − gI(me/mp)〈JIF ||I||JIF 〉 '
for J 6=0

gJ〈JIF ||J ||JIF 〉

en de zeer goede benadering voor J = 1/2 atomen met F 6= 0

gF ' ±gJ
1

2I + 1
voor J = 1/2, F 6= 0,

waarbij gF < 0 altijd correspondeert met de toestand met de laagste multipliciteit (F =
I − 1/2) en gF > 0 altijd correspondeert met de toestand met de hoogste multipliciteit (F =
I + 1/2).

5. Het kunnen schetsen van de hyperfijnstructuur als functie van het magneetveld voor atomen
met J = 1/2 voor gegeven I en (teken van) γI .
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6 Elektrische hyperfijnstructuur (facultatief)

NB: Dit hoofdstuk valt buiten de tentamenstof.
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7 Helium-like atoms

Meteen aan het begin van dit hoofdstuk leer je dat er heel veel verandert als een atoom meer dan één
elektron bevat. Eigenlijk neemt de complexiteit zo sterk toe dat de situatie min of meer hopeloos
zou zijn als de elektrostatische interactie niet alles zou overheersen. In de theoretische beschrijving
moet de lading van de elektronen met grote precisie over het atoom verdeeld worden. Dit vraagt een
nieuwe aanpak omdat analytische oplossingen (zoals bij waterstof) niet bestaan. Daarnaast wordt
de elektrostatische interactie sterk bëınvloed door het fenomeen exchange dat geheel afwezig is in de
klassieke elektriciteitstheorie. In het eerste college komen we daar weliswaar nog niet aan toe maar
de voorkennis dat elektrostatische effecten dominant zijn geeft de burger moed om grote atomen
aan te pakken. We zullen zien dat de centrale symmetrie grotendeels gehandhaafd blijft zodat we
de classificatie met de quantumgetallen n, l,ml per elektron kunnen blijven hanteren. Nadat we de
nomenclatuur hebben opgefrist beginnen we met het helium atoom. De elektrontoestanden lijken erg
op die uit het waterstofatoom. Het grote verschil zit in de Coulombafstoting tussen de elektronen.
De invloed daarvan rekenen we uit met eerste orde storingsrekening.

Na helium in de grondtoestand gaan we in dit college kijken naar het geval van helium met
twee elektronen in verschillende baantoestanden. Het blijkt dat in dit geval de energie van de twee-
elektron-toestand ontaard is onder verwisseling van de elektronen. Dit wordt exchange ontaarding
genoemd. We leren dat de Coulombafstoting tussen de elektronen aanleiding geeft tot het opheffen
van de ontaarding en maken kennis met twee Coulomb integralen: de directe integraal J en de
exchange integraal K. Met eerste orde storingsrekening van een tweevoudig ontaard niveau vinden
we dat de antisymmetrische baangolffunctie de laagste energie heeft. Dit is intüıtief begrijpelijk
omdat de Coulombafstoting daar het kleinste is. In het geval van twee elektronen in dezelfde
orbitaal (zoals in de helium grondtoestand) speelt alleen de directe integraal een rol omdat in dit
geval exchange ontaarding niet bestaat. Daarna leren we hoe we de Coulomb integralen kunnen
uitrekenen. Tot slot gebruiken we de opgedane kennis om de energie van de grondtoestand van
helium uit te rekenen.

Thuis bestuderen:

Lees de introductie.

§ 7.1: We stellen de hamiltoniaan op voor een atoom met exact twee elektronen, een zgn. heliogeen
atoom. Eerst bepalen we de oplossingen van het ongestoorde probleem (de Coulombafstoting
wordt verwaarloosd). We vinden waterstofachtige energieniveaus.

§ 7.1.1: De Coulombafstoting van de elektronen doet de ladingsverdeling van de elektronen
opzwellen - see Fig. 7.1. Dit opzwellen kan ook verklaard worden door in rekening te
brengen dat het ene elektron de kernlading enigszins afschermt voor het andere elektron.
Dit wordt screening genoemd. We berekenen de energie van het atoom met eerste orde
storingsrekening. De afschermpotentiaal , U1s(ρ), gevoegd bij de Coulomb potentiaal van
de kale kern, −Z/ρ, vormt de effectieve centrale veld potentiaal, UCF(ρ), - see Eq. (7.17)

UCF(ρ) = −Z
ρ

+ U1s(ρ) = −1

ρ
[Z − σ1s(ρ)] = −Z1s(ρ)

ρ
.

Hier is Z1s(ρ) = [Z − σ1s(ρ)] de effective kernlading op afstand ρ van de kern, met Z de
kernlading (in atomaire eenheden) en σ1s(ρ) de afschermlading op afstand ρ van de kern.
Bestudeer deze grootheden in Fig. 7.2.

§ 7.1.2: Een lagere energie van de grondtoestand kan verkregen worden door de golffunctie
door variatie te optimaliseren.
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§ 7.1.3: De afscherming is niet compleet. Daarom is het mogelijk om een elektron aan een
neutraal waterstofatoom te binden; zo krijgen we het negatieve ion H−. De binding van
dit ion kan niet met storingsrekening worden verkregen maar wel met variatierekening.
Het uitvoeren van de variatierekening voor het H− ion valt buiten de tentamenstof maar
je moet wel begrijpen waarom H− als ion kan bestaan.

§ 7.1.4: Onze taak is om de beste effectieve potentiaal te vinden. In deze paragraaf laten we
zien dat voor de 1s2 productgolffunctie van helium variatierekening leidt tot de Hartree
vergelijkingen. Dit is een set van gekoppelde Schrödinger vergelijkingen (één voor elk
elektron) waarvan de oplossing met een iteratieve numerieke procedure verkregen moet
worden. Omdat de golffuncties de potentiaal bepalen (die in de Schrödinger vergelijking
voorkomt) zijn iteraties zijn nodig om een zelfconsistente oplossing (voor golffuncties en
potentiaal) te krijgen. De afleiding van de Hartree vergelijkingen valt buiten de tenta-
menstof maar het principe van de zelfconsistente oplossing moet je begrijpen.

§ 7.2: Hier leren we dat de grondtoestand van helium (met twee elektronen in dezelfde baangolf-
functie) niet magnetisch is (S = 0) alhoewel de magnetische toestand (S = 1) op basis va de
koppelingsregels voor twee elektron spins heel goed mogelijk zou kunnen zijn (zie Sectie 3.2).
Het experiment dwingt ons om de symmetrische spintoestand uit te sluiten. Dit wordt het
Pauli uitsluitingsbeginsel genoemd.

§ 7.3: Als twee elektronen zich in verschillende baangolffuncties bevinden treedt exchange ontaar-
ding op (bij verwaarlozing van de Coulombafstoting tussen de elektronen). Het opheffen van
deze ontaarding door de Coulombafstoting kan uitgerekend worden met storingsrekening van
een tweevoudig ontaard niveau. De gestoorde toestanden zijn de symmetrische en antisym-
metrische lineaire combinaties van de ongestoorde toestanden. We introduceren de directe
integraal J en de exchange integraal K. De directe integraal geeft aanleiding tot een verschui-
ving van de ontaarde energieniveaus. De exchange integraal zorgt voor de opsplitsing. De
antisymmetrische baangolffunctie heeft de laagste energie omdat de Coulombafstoting daar
het kleinste is. We constateren dat - experimenteel - de antisymmetrische baantoestand alleen
wordt waargenomen in combinatie met een symmetrische spintoestand en vice versa. Andere
combinaties moeten dus worden uitgesloten (Pauli uitsluitingsbeginsel).

§ 7.4: Bestudeer hoe de storingsterm uit de hamiltoniaan (de Coulombafstoting tussen de elektronen)
herschreven kan worden als een som over bolfuncties en ga na hoe dit leidt tot uitdrukkingen
voor J en K in termen van hoekintegralen en radiale integralen.

§ 7.4.1: Overtuig jezelf dat de hoekintegralen ak(lml; l
′ml′) en bk(lml; l

′ml′) eenvoudig uit te
rekenen zijn door toepassing van de integraal over drie bolfuncties - zie Eq. (L.59) en
Problem 7.3). Tabel 7.1 is belangrijk. Later, bij het onderbouwen van de Hund regels,
zal blijken dat je de tabel snel moet kunnen gebruiken.

§ 7.4.2: Bestudeer hoe de radiale integralen F k(nl;n′l′) en Gk(nl;n′l′) compact kunnen wor-
den geschreven door het introduceren van mean-field potentialen (afschermpotentialen).
Problems 7.8 en 7.9 belangrijk om later de Hund regels te kunnen onderbouwen.

§ 7.4.3: Bereken de grondtoestandsenergie van helium.

§ 7.4.4: Bereken de grondtoestandsenergie van metastabiel triplet helium.

§ 7.4.5: Lees het stukje over helium-achtige atomen en begrijp waarom metastabiele toestand
van helium een bijzondere plaats inneemt.

Parate kennis:

1. De naam en definitie van de grootheden: baangolffunctie (orbitaal), schillen en subschillen,
equivalente elektronen, Pauli principe, elektron configuratie, volle schil, gaten, valentie elek-
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tronen en core elektronen.

2. De hamiltoniaan van het heliumatoom in Hartree atomaire eenheden

H =
∑
i=1,2

Hi +H′ =
∑
i=1,2

(
−1

2
∇2
i −

Z

ρi

)
+

1

ρ12
.

3. De opbouw van de effectieve potentiaal voor het centrale veld,

UCF(ρ) = −Z
ρ

+ U1s(ρ) = −1

ρ
(Z − σ1s) = −Z1s(ρ)

ρ
,

met Z1s(ρ) = (Z − σ1s(ρ)) de effective kernlading op afstand ρ, Z de kernlading en σ1s(ρ) de
afschermlading op afstand ρ (alles in atomaire eenheden).

4. De naam en definitie van de directe integraal J en de exchange integraal K

J = (nlml;n
′l′ml′ |

1

ρ12
|nlml;n

′l′ml′) =
∞∑
k=0

ak(lml; l
′ml′)F

k(nl;n′l′)

K = (nlml;n
′l′ml′ |

1

ρ12
|n′l′ml′ ;nlml) =

∞∑
k=0

bk(lml; l
′ml′)G

k(nl;n′l′).

5. Voor equivalente elektronen Gk(nl;nl) = F k(nl;nl) > 0 en omdat bk(lml; l
′ml′) ≥ 0 voor alle

waarden van k, is de exchange integraal positief definiet: K(nlml;nlm
′
l) > 0.
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8 Central field approximation for many-electron atoms

In dit hoofdstuk gaan we verder met de aanpak die zo succesvol bleek voor helium. We ontmoeten
opnieuw de elektrostatische afscherming van de kernlading (nuclear screening) en de centrale symme-
trie. Daarom komen de bekende orbitalen 1s, 2p, 3d, · · · opnieuw langs. We laten zien dat het begrip
screening eenvoudig uitgebreid kan worden tot veel-elektron atomen. Daarbij wordt duidelijk dat we
de Hamiltoniaan kunnen reduceren tot een centrale potentiaal (§ 8.1) door de correlaties tussen de
elektronen te verwaarlozen. Vervolgens bespreken we een viertal voorbeelden van zo’n centrale veld
benadering. Allereerst behoort daartoe het atoommodel met niet-wisselwerkende elektronen (§ 8.2).
Het tweede voorbeeld van een centrale veldbenadering is het Thomas-Fermi model voor het atoom
(§ 8.3). Vervolgens bespreken in§ 8.4 de Hartree vergelijkingen waarvan we een voorproefje hebben
gehad bij de bespreking van helium. De Hartree aanpak kan gezien worden als de eerste aanzet
tot een moderne mean-field theorie. Als laatste voorbeeld bespreken in§ 8.5 we de semi-empirische
kwantum-defect aanpak van Bates en Damgaard, waarmee de overgangsdipolen voor optische dipool
overgangen in één-elektron atomen ingeschat kunnen worden. Achteraf beschouwd geeft de centrale
veld benadering de rechtvaardiging voor het behandelen van alkali atomen als waterstofachtige ato-
men zoals we gedaan hebben in eerdere hoofdstukken, in het bijzonder bij de bespreking van de
hyperfijnstructuur in Hoofdstuk 5.

Thuis bestuderen:

Lees de introductie.

§ 8.1: Bestudeer hoe we een screening potentiaal introduceren en welke termen worden weggelaten
in de centraal-veld benadering. Kijk of je begrijpt dat je met deze benadering de correlaties
tussen de elektronen verwaarloost.

§ 8.2: Bestudeer het stukje over atomen waarin de wisselwerking tussen de elektronen verwaarloosd
wordt. Constateer dat zelfs onder deze grove benadering de volgorde in het periodiek sys-
teem goed beschreven wordt voor de lichte atomen. Alleen de eerste alinea behoort tot de
tentamenstof.

§ 8.3: (facultatief ) Het Thomas-Fermi centrale veld, het atoommodel van Thomas-Fermi en Thomas-
Fermi screening.

§ 8.4: Neem kennis van het principe van een zelfconsistente mean field oplossing. Begrijp wat bedoeld
wordt met de Hartree vergelijkingen.

§ 8.5: (facultatief ) Alkali-achtige atomen lenen zich bij uitstek voor een beschrijving met een centrale
veld benadering. Een semi-empirische beschrijving wordt mogelijk door het benoemen van een
kwantum defect, ook bekend onder de naam Rydberg correctie.

§ 8.5.1: (facultatief ) Deze paragraaf gaat over het schatten van radiale integralen met de me-
thode van Bates en Damgaard.

Parate kennis:

1. Alle genoemde definities: nuclear screening, centrale symmetrie, centrale veld benadering,
niet-wisselwerkende elektronen, Hartree mean field, zelfconsistente oplossing, kwantum defect
(Rydberg correctie).

2. De N -elektron hamiltoniaan voor de hoofdstructuur van veel-elektron atomen:

H =

N∑
i=1

(
− ~2

2me
∇2
i −

Ze2

4πε0r

)
+

1

2

N∑
i,j

′ e2

4πε0rij
.
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3. De centrale veld hamiltoniaan

HCF ≡
N∑
i=1

(
− ~2

2me
∇2
i + VCF(ri)

)
,

met het centrale veld gegeven door

VCF(ri) = − Ze2

4πε0ri
+ Vscr(ri) = − e2

4πε0

Zeff(ri)

ri
.

4. Notatie: De som over alle verschillende paren met i, j ∈ {1, · · ·N} kan geschreven worden op
twee equivalente manieren:

1
2

N∑
i,j=1

′ ≡
N∑
i>j

,

waar het accent geeft aan dat de termen met i = j worden uitgesloten en de factor 1
2 wordt

toegevoed om te corrigeren voor dubbel tellen. In te alternatievbe notatie sommerwen we
alleen over paren met i > j.
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9 Many-electron wavefunctions

Hoofdstuk 9 bestaat uit heel droge stof maar is belangrijk omdat duidelijk wordt waarom een veel-
elektron probleem formeel hanteerbaar kan blijven. We ontwikkelen het gereedschap om veel-deeltjes
systemen van fermionen kwantum mechanisch te beschrijven. We kijken we nog een keer goed naar
het begrip exchange. We beginnen met het introduceren van de verwisselingsoperator P (exchange
operator) en constateren dat dit een observabele is met eigenwaarden ±1 en symmetrische (+1) dan
wel antisymmetrische (−1) eigentoestanden. Identieke deeltjes blijken zich altijd in één van de twee
eigentoestanden van de exchange operator te bevinden. We geven ze een naam: bosonen (+1) of
fermionen (−1). De consequentie van de antisymmetrie van de golffunctie is dat twee fermionen
zich niet in dezelfde toestand kunnen bevinden. De elektronen zijn fermionen en dit manifesteert
zich als het Pauli principe.

De veel-elektron toestanden kunnen worden geschreven als Slaterdeterminanten. Daarom moe-
ten we de verwachtingswaarden van operatoren tussen twee Slaterdeterminanten kunnen uitrekenen.
Bijvoorbeeld: wat is het impulsmoment van zo’n toestand? We leiden af dat de matrixelementen
waarbij een operator tussen twee Slaterdeterminanten staat altijd gereduceerd kan worden tot een
relatief eenvoudige uitdrukking. In principe kan zo’n N -deeltjes matrixelement geschreven wor-
den als een som van N ! × N ! termen maar gelukkig blijken de meesten daarvan nul en de rest
óf allemaal gelijk te zijn aan elkaar óf aan een overzichtelijk aantal karakteristieke waarden. Voor
ééndeeltjesoperatoren zijn dat uitdrukkingen waarin alleen één-deeltjes matrixelementen voorkomen,
die maximaal N verschillende waarden kunnen aannemen; voor tweedeeltjesoperatoren zijn dat uit-
drukkingen waarin alleen matrixelementen van deeltjesparen voorkomen, die óf gelijk zijn aan een
directe waarde óf aan een exchange waarde. Er zijn maximaal N(N − 1) van dat soort termen.

Thuis bestuderen:

§ 9.1: Bestudeer de definitie van de exchange operator P en begrijp dat dit een observabele is met ei-
genwaarden ±1. Ga na dat P commuteert met de hamiltoniaan en dat de gemeenschappelijke
basis bestaat uit de symmetrische (+1) dan wel antisymmetrische (−1) eigentoestanden van de
hamiltoniaan. We komen tot de conclusie dat twee identieke deeltjes zich altijd in één van de
eigentoestanden van de exchange operator bevinden. Die geven we een naam, bosonen (+1) of
fermionen (−1). Experimenteel blijken de elektronen fermionen te zijn. De consequentie van
de antisymmetrie van de golffunctie is dat twee fermionen zich niet in dezelfde toestand kun-
nen bevinden (Pauli uitsluitingsbeginsel). Bestudeer de consequentie van de aanwezigheid van
spin: als de baangolffunctie symmetrisch (antisymmetrisch) is kan de spintoestand alleen anti-
symmetrisch (symmetrisch) zijn om te garanderen dat de totale paartoestand antisymmetrisch
onder verwisseling van deeltjes inclusief spin.

§ 9.1.1: Begrijp het begrip spinorbitaal, de één-electron eigentoestand inclusie spin. Hiervoor
gebruiken we een compacte notatie,

|u̇〉 ≡ |u�〉 ≡ |u〉 ⊗ |�〉 and |u〉 ≡ |u�〉 ≡ |u〉 ⊗ |�〉 .

Ga na dat een twee-elektron toestand altijd geschreven kan worden als een lineaire com-
binatie van twee 2× 2 determinanten, zgn. Slaterdeterminanten.

§ 9.1.1.1: Hie gaan we de spinorbitalen gebruiken om matrix elementen uit te rekenen.
Een goede oefining is om te laten zien dat voor matrix elementen van het type
〈u̇v|ρ−1

12 |u̇v〉 de exchange termen verdwijnen, terwijl voor het type 〈u̇v|ρ−1
12 |v̇u〉 dit

geldt voor de directe termen (zie Problems 9.2 en 9.3),

〈u̇v|ρ−1
12 |u̇v〉 = (uv|ρ−1

12 |uv) = J
〈u̇v|ρ−1

12 |v̇u〉 = (uv|ρ−1
12 |vu) = K.
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Hier herkennen we de Coulomb-repulsie integralen die we in Hoordstuk 7 voor hy-
drogene orbitalen hebben leren uitrekenen.

§ 9.1.2: Begrijp dat de Slaterdeterminant eenvoudig gegeneraliseerd kan worden tot een n× n
determinant voor n fermionen. Let op het verschil tussen de exchange operator P en de
permutatieoperator P ,

ψα (r1, σ1; · · · ; rN , σN ) =

√
1

N !

∣∣∣∣∣∣∣
ϕα1

(r1, σ1) · · · ϕαN (r1, σ1)
... · · ·

...

ϕα1 (rN , σN ) · · · ϕαN (rN , σN )

∣∣∣∣∣∣∣ .
De Slaterdeterminant is de eenvoudigste generalisatie van de product golffunctie met de
juiste permutatiesymmetrie en consistent met het Pauli principe. In de Dirac notatie
krijgt deze toestand de vorm

|ψα〉 ≡ |α1, · · · , αN 〉 ≡
√

1

N !

∑
P

(−1)pP |α1, · · ·αN ),

waarin
|α1, · · ·αN ) ≡ |α1〉1 |α2〉2 · · · |αN 〉N ≡ |ψα) (O.4)

de N -deeltjes geordende product toestand van de één-deeltjes toestanden |ακ〉i is, waarin
κ ∈ {1, · · · , N} de toestandsindex en i ∈ {1, · · · , N} deeltjesindex wordt genoemd. Zorg
ervoor dat je Slaterdeterminant in beide notaties heel goed begrijpt, i.h.b. het verschil
in betekenis van de notaties |〉 en |) voor, respectievelijk, gesymmetriseerde en ongesym-
metriseerde veeldeeltjes toestanden.

§ 9.1.3: Een compacte notatie is essentieel om overzicht te behouden. Begrijp de Dirac nota-
tie |1, 1̄, 0, 0̄,−1,−1̄〉2p6 waarbij we gebruik maken van de standaard ordeningsconventie:
hoge ML vóór lage ML en spin

”
up” vóór spin

”
down”. Voor volle schillen voldoet slechts

één toestand aan het Pauli principe. Overtuig jezelf dat voor een nlx configuratie er voor
ieder elektron ν = 2(2l + 1) toestanden |nlmlsms〉 mogelijk zijn, evenals ν2 mogelijke
paartoestanden, waarvan er

(
ν
x

)
voldoen aan het Pauli principe. Een interessante eigen-

schap van Slaterdeterminanten is dat zij invariant zijn onder unitaire transformatie (zie
Problem 9.4).

§ 9.2: Nu we de veel-elektron toestanden kennen kunnen we matrixelementen gaan uitrekenen. Veel-
deeltjes operatoren tussen determinant golffuncties lijkt een zware opgave, maar dat zal blijken
mee te vallen.

§ 9.2.1: We beginnen met de ééndeeltjesoperatoren.

1. Die zijn allemaal nul als de matrixelementen verschillen in meer dan één paar spi-
norbitalen.

2. Bestudeer dan het stuk over afdiagonale matrixelementen die verschillen in één paar
spinorbitalen. Begrijp waarom de meeste termen weer nul zijn. Er blijken N(N −
1)! = N ! termen niet gelijk aan nul en die zijn allemaal gelijk aan elkaar.

3. Bestudeer vervolgens het stuk over de diagonale matrixelementen. Weer blijken
slechts N ! termen niet gelijk aan nul. Dit maal kunnen we ze groeperen in N groep-
jes van (N − 1)! termen met dezelfde waarde, d.w.z. er zijn N verschillende termen
mogelijk.

§ 9.2.2: Dan gaan we naar de tweedeeltjesoperatoren.

1. Die zijn allemaal nul als de matrixelementen verschillen in meer dan twee paar spi-
norbitalen.
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2. Bestudeer het stuk over afdiagonale matrixelementen die verschillen in twee paar
spinorbitalen. Begrijp waarom de meesten weer nul zijn. Er blijken slechts 1

2N(N −
1)[2(N −2)!] = N ! termen niet gelijk aan nul en 1

2N(N −1) daarvan hebben dezelfde
waarde en worden de directe termen genoemd en de andere 1

2N(N − 1) termen zijn
ook gelijk aan elkaar en worden de exchange termen genoemd. Er zijn dus twee
verschillende termen mogelijk.

3. Bestudeer dan het stuk over afdiagonale matrixelementen die verschillen in één paar
spinorbitalen. We kunnen ze groeperen in N groepjes van (N − 1)! termen die voor
de helft allemaal een directe waarde aannemen en voor de andere helft een exchange
waarde, d.w.z. er zijn N verschillende waarden mogelijk.

4. Dan komt het stuk over de diagonale matrixelementen. We kunnen ze groeperen in
N(N −1) groepjes van (N − 2)! termen die weer voor de helft allemaal een

”
directe”

waarde aannemen en voor de andere helft een
”

exchange” waarde, d.w.z. er zijn
N(N − 1) verschillende termen mogelijk.

Problem 9.5 is belangrijk. Het laat zien dat exchange nooit bijdraagt aan een spin-
onafhankelijke tweedeeltjesinteractie tussen gepaarde spins. Dat is handig om paraat
te hebben.

§ 9.3: (voor de liefhebber) Deze sectie gaat over de aantallenrepresentatie (ook genoemd tweede
kwantisatie).

§ 9.3.1: (voor de liefhebber) De aantallenrepresentatie vormt de (niet-relativistische) aanzet
tot een kwantumveldentheorie voor het atoom. Je moet er even aan wennen maar zodra
dat is gebeurd zul je zien dat dat er een enorme vereenvoudiging wordt gerealiseerd. Dat
is geen luxe omdat de aanpak van § 9.2 (met alle te onderscheiden gevallen) bewerkelijk is
en daarom aanleiding geeft tot fouten. De aantallenrepresentatie is heel intüıtief. De ope-
ratoren worden uitgedrukt in zogenaamde constructieoperatoren. Hierbij onderscheiden
we creatieoperatoren en annihilatieoperatoren. Deze vormen een generalisatie van de lad-
deroperatoren voor impulsmoment. Hiermee kun je iedere gewenste atomaire toestand
construeren door creatie of annihilatie van spinorbitalen. Dit stuk is sterk aanbevolen
maar valt niet onder de tentamenstof.

§ 9.3.2: (voor de liefhebber) We beginnen met het definiëren van een nieuwe representatie:
de aantallenrepresentatie in de N -deeltjes Hilbert ruimte. In deze representatie geven
we aan hoeveel deeltjes (in ons geval elektronen) in een bepaalde toestand zitten. In
ons geval specificeren we daarmee de bezetting van de spinorbitalen. De veeldeeltjes
toestanden noemen we aantallentoestanden. In ons geval is dit alleen een andere wijze
om een Slaterdeterminant te specificeren. De N -elektron Slaterdeterminant |ψγ〉 wordt
geschreven als |ψγ〉 ≡ |n1, n2, · · · 〉, waarin ns ∈ {0, 1} is het bezettingsgetal van de
spinorbitaal |αs〉, met nr + ns + · · ·+ nt = N .

§ 9.3.3: (voor de liefhebber) We gaan nu naar de Grand Hilbert space (Fock space) waarin de
toestanden uit een willekeurig aantal deeltjes kunnen bestaan. De aantallentoestanden uit
de vorige paragraaf blijken nu de eigentoestanden van de aantallen operatoren n̂1, n̂2, · · · ,
met de bezettingsgetallen n1, n2, · · · als de eigenwaarden,

n̂s|n1, n2, · · · , ns, · · · 〉 = ns|n1, n2, · · · , ns, · · · 〉,

waarbij n1, n2, · · · de waarden 0 of 1 kunnen aannemen (voor fermionen). De eigen-
toestanden |n1, n2, · · · , ns, · · · 〉 vormen de basis van de aantallenrepresentatie. In deze
representatie kan iedere operator uitgedrukt worden in termen van de elementaire ope-
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ratoren â†s (de creatie operator) en âs (de annihilatie operator),

â†s|ns, · · · 〉 ≡
√
ns + 1|ns + 1, · · · 〉

âs|ns, · · · 〉 ≡
√
ns|ns − 1, · · · 〉,

met ns ∈ {0, 1}. Door het opleggen van de anticommutatie relaties,

âr, â
†
s} = δrs ; {âr, âs} = {â†r, â†s} = 0,

zorgen we er voor dat het Pauli principe gehandhaafd wordt. Om dit te demonstreren
wordt een 7-tal voorbeelden gegeven. Ook de commutatierelaties uit Problem 9.6 zijn
heel waardevol.

§ 9.3.4: (voor de liefhebber) Na het voorbereidende werk kunnen we de één- en tweedeeltjes
operatoren herschrijven in de aantallenrepresentatie

Q1 =
∑
i

qi → Q̂1 =
∑
s,s′

〈s′|q|s〉â†s′ âs,

waarbij de som in de uitdrukking voor Q1 loopt over de deeltjesindex en de som in de
uitdrukking voor Q̂1 loopt over de toestandsindex van alle spinorbitalen (al dan niet bezet)
en â†s en âs zijn de constructieoperatoren waarmee de bezetting van de toestand |αs〉
veranderd kan worden. Op vergelijkbare wijze vinden we voor tweedeeltjes operatoren

Q2 = 1
2

∑
i,j

′qij → Q̂2 = 1
2

∑
t,t′

∑
s,s′

(s′, t′|q12|s, t)â†s′ â
†
t′ âtâs,

waarbij (s′, t′|q12|s, t) ongesymmetriseerde tweedeeltjes toestanden bevat. In de rest
van§ 9.3.4 laten we zien dat deze twee operatoren precies doen wat we willen, bijvoorbeeld
dat alle gevallen van § 9.2 gereproduceerd worden.

§ 9.4: We gaan nu terug naar de hoofdlijn van de tekst. We passen het veeldeeltjesformalisme toe
op impulsmomentoperatoren. Dit stelt ons in staat om impulsmoment eigenschappen van
Slaterdeterminanten uit te rekenen.

§ 9.4.1: Hier onderzoeken we de werking van de operatoren Lz, L± en L2 (van het totale
baanimpulsmoment) op Slaterdeterminanten. Voor de spinorbitalen gebruiken we de
notatie |αk〉 = |nklkmk

l s
kmk

s〉. Het totale baanimpulsmoment is gedefinieerd als

L =

N∑
i=1

li, (O.5)

waarbij li het baanimpulsmoment van elektron i is.

1. Ga na dat

Lz|ψα〉 =

N∑
k=1

mk
l ~ |ψα〉 = Mα

L~ |ψα〉,

precies zoals we intüıtief zouden schrijven...

2. Ga na dat

L±|ψα〉 =

N∑
k=1

√
lk(lk + 1)−mk

l (mk
l ± 1)~ |ψα(mk

l ± 1)〉,

een resultaat dat al iets minder vanzelfsprekend is.
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3. Dan komt het geval

L2|ψα〉 =


N∑
k=1

lk(lk + 1) +

N∑
k,k′=1

′mk
lm

k′

l

 ~2 |ψα〉+

+

N∑
k,k′=1

′
√
lk(lk + 1)−mk

l (mk
l + 1)

√
lk′(lk′ + 1)−mk′

l (mk′
l − 1)~2 |ψα(mk

l +1)(mk′

l −1)〉.

Hier komen we met intüıtie niet erg ver en wordt de inspanning van § 9.2 beloond.

4. Bestudeer de Problems 9.7 en 9.8 en constateer dat voor het volledig gestrekte baan-
impulsmoment ook de uitdrukking voor L2 weer een intüıtief correcte vorm krijgt.
Neem kennis van de commutatie relaties (9.106). De afleiding wordt gegeven in
Problems 9.9 en 9.10 maar is facultatief.

§ 9.4.2: Bestudeer hoe de uitdrukkingen nog iets vereenvoudigen voor het geval van spin omdat
de spin gelijk is voor alle elektronen (s = 1/2).

§ 9.4.3: Merk op dat de l2i operator van de individuele elektronen commuteert met zowel J2

als met L · S, waar J = L + S.

Parate kennis:

1. De compacte notaties: helium:

|ψHe〉 = |1s, 1s̄〉 ≡ |0, 0̄〉1s2 ≡ |��−〉1s2 ,

beryllium:
|ψBe〉 = |1s, 1s̄, 2s, 2s̄〉 ≡ |(0, 0̄)1s2(0, 0̄)2s2〉 ≡ |(��−)1s2(��−)2s2〉,

neon:

|ψNe〉 = |1s, 1s̄; 2s, 2s̄; 2p1, 2p̄1, 2p0, 2p̄0, 2p−1, 2p̄−1〉
= |(0, 0̄)1s2(0, 0̄)2s2(1, 1̄, 0, 0̄,−1,−1̄)2p6〉 ≡ |(��−)1s2(��−)2s2(��− ��− ��−)2p6〉.

2. De uitdrukking

Lz|ψα〉 =

N∑
k=1

mk
l ~ |ψα〉,

en de pendant voor spin impulsmoment.

3. De uitdrukking

L±|ψα〉 =

N∑
k=1

√
lk(lk + 1)−mk

l (mk
l ± 1)~ |ψα(mk

l ± 1)〉,

en de pendant voor spin impulsmoment.

4. De uitdrukking
L2|ψllα〉 = Nl(Nl + 1)~2|ψllα〉

voor L2 in het geval van een gestrekte baanimpulsmoment toestand en zijn pendant voor spin
impulsmoment en verder dat deze uitdrukking volstrekt onjuist is voor niet volledig gestrekte
toestanden.
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10 Ground states of many-electron atoms - deel 1

Al het voorbereidende werk is nu gedaan om het periodiek systeem van Mendeleev te begrijpen.
Daarbij gaat het om de grondtoestanden van veel-elektron atomen. De theorie die hieraan ten
grondslag ligt wordt omschreven als het Aufbau principe. De elektronen worden gegroepeerd in
schillen en subschillen. De elektronen in een subschil (vaak gewoon schil genoemd) delen dezelfde
radiale golffunctie en worden equivalent genoemd. De ontaarding van elektrontoestanden (inclusief
spin) bepaalt hoeveel elektronen in een subschil passen. Het maximum aantal wordt bepaald door
het Pauli principe. De verdeling van de elektronen over de schillen wordt de electron configuratie
genoemd. Een schil met het maximale aantal elektronen wordt een volle schil of gesloten schil
genoemd. Ontbrekende elektronen in een schil worden gaten genoemd. De elektronen buiten de
gevulde schillen worden valentie elektronen genoemd. De elektronen van de gevulde schillen worden
de core elektronen genoemd. Hoofdstuk 10 begint met noemen van de

”
regels van Hund” waarmee

de grondtoestand van veel-elektrosystemen bepaald kunnen worden. De regels van Hund hebben
geen exacte geldigheid maar zijn zeer geschikt om de onderliggende fysica van het Aufbau principe
goed te begrijpen. Zij vormen dan ook de rode draad door dit belangrijke hoofdstuk.

Thuis bestuderen:

Lees de introductie. Begrijp dat het impulsmoment van de grondtoestand van een atoom bepaald
wordt door de Coulombafstoting tussen de spinorbitalen.

§ 10.1: neem kennis van de regels van Hund.

§ 10.2: Hartree-Fock methode:

§ 10.2.1: In deze paragraaf wordt een aanzet gemaakt tot het uitrekenen van de energie van
de grondtoestand. Bij het uitrekenen van de Coulombafstoting herkennen we een drietal
bijdragen: (a) afstoting tussen twee elektronen uit gesloten schillen; (b) de afstoting
tussen een valentie elektron en de elektronen van een gesloten schil; (c) de afstoting tussen
twee valentie elektronen. Het blijkt dat de afstoting van een |nlmlsms〉 elektron door de
elektronen van een gevulde n′l′ schil niet afhangt van de waarden ml en ms. Met andere
woorden twee equivalente elektronen ondervinden altijd dezelfde Coulombafstoting door
een gesloten schil. Dit heeft tot gevolg dat enkel de valentie elektronen bepalen welke
toestand de laagste energie heeft.

§ 10.2.2: Begrijp dat niet altijd slechts één enkele configuratie relevant is. Als twee configura-
ties ongeveer dezelfde energie opleveren worden deze gekoppeld (de configuraties worden
gemengd), zoals blijkt uit tweede-orde storingsrekening.

§ 10.2.3: De aanpak van § 10.2.1 kan worden onderbouwd met een variationele procedure, de
Hartree-Fock methode. Deze lijkt sterk op de Hartree methode maar is gebaseerd op
Slaterdeterminanten zodat impliciet aan het Pauli principe is voldaan. Neem kennis van
het begrip ferromagnetische exchange. Gezien het belang van de Hartree-Fock methode
in de theoretische natuurkunde worden de Hartree-Fock vergelijkingen afgeleid maar de
procedure behoort niet tot de tentamenstof.

§ 10.2.4: Als je besluit om de Hartree-Fock methode te willen begrijpen lees dan ook het stukje
over het theorema van Koopmans. Dit theorema stelt ons in staat om de kwaliteit van de
Hartree-Fock methode te toetsen door het meten van foto-emissie van core elektronen.

§ 10.2.5: Als je besluit om de Hartree-Fock methode te begrijpen lees dan ook het stukje over
de Slater benadering. Deze benadering geeft een intüıtief inzicht in de rol van de Coulomb
integralen.
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§ 10.2.6: Deze sectie hoort wel bij de tentamenstof. Het is belangrijk als vervolg op sectie
§ 10.2.1 en sluit aan bij onze bespreking van helium-achtige atomen. Begrijp dat de
Coulomb integralen opgesplitst kunnen worden in termen die de Coulombafstoting binnen
de schillen (intra-shell) beschrijven en termen voor de Coulombafstoting tussen de schillen
(inter-shell). Begrijp ook hoe je die bijdragen kunt uitrekenen met de methoden van
Hoofdstuk 7. Problem 10.1 is heel instructief omdat daaruit blijkt dat de interactie
energie tussen een valentie elektron en een gesloten schil niet afhangt van het magnetisch
kwantumgetal van dat elektron.

§ 10.3: Allereerst bespreken we de bolvormige atomen; i.e., atomen zonder baanimpulsmoment.

§ 10.3.1: Bij een volle schil is zowel het totale baanimpulsmoment als de totale spin nul.
Overtuig jezelf hiervan. Neem kennis van het Unsöld theorema: volle of halfvolle schillen
zijn sferisch. Bestudeer Fig. 10.2. Merk op dat bij gevulde schillen de elektronaffiniteit
nihil is. Het verschil tussen kleine (ns2) gevulde schillen (alkali-aard atomen) en grotere
(np2 en nd2) gevulde schillen is dat de ionisatie energie kleiner is in het eerste geval. Zorg
dat je begrijpt waarom de ionisatie energie toeneemt als er meer elektronen in een gesloten
schil zitten. Bij de edelgassen Ne en Ar zijn zowel de s schil als de p schil gesloten; bij
Kr en Xe zowel de s schil, de p schil en de d schil; bij Rn de s schil, de p schil, de d schil
en de f schil. Het wordt dan energetisch zeer onvoordelig om daar een elektron uit te
trekken.

§ 10.3.2: Bij een halfgevulde schil is volgens de eerste regel van Hund de spin maximaal ge-
strekt. Overtuig jezelf ervan dat het totale baanimpulsmoment dan nul moet zijn.

§ 10.4: Nu atomen met één valentie elektron.

§ 10.4.1: De afscherming van de kern is kleiner voor s elektronen dan voor elektronen met
l > 0. Begrijp waarom dit het geval is en waarom dit aanleiding geeft tot het vullen
van de 4s schil vóór de 3d schil, de 5s schil vóór de 4d en 4f schil, etc., en waarom het
energievoordeel van de s schillen marginaal wordt voor bijna half gevulde of geheel gevulde
schillen (instorten van de d schil). Begrijp wat bedoeld wordt met configuratieinteractie.
In deze sectie komen we terug op de screening in alkali-achtige atomen voor toenemende
kernlading en hoe dit aanleiding geeft tot het trekken van een gat in de 4s schil. Dit is
een interessante anomalie die optreedt bij het vullen van de 3d schil in de vierde periode
van het periodiek systeem.

§ 10.4.2: Hier bespreken we hoe exchange de ladingsverdeling van de core elektronen bëınvloed.
Het sleutelwoord is core polarisatie als gevolg van kwantumcorrelaties. Als je het leuk
vind kun je hier begrijpen hoe core polarisatie een Fermi contact interactie kan induceren
waar je dat niet zou verwachten en hoe dit aanleiding kan geven tot een negatieve hyper-
fijncoëfficiënt bij positieve gyromagnetische verhouding (γI > 0). Die inversie treedt op
in lithium - zie Fig. 5.3. Het is een opvallende anomalie van de elementaire theorie voor
waterstofachtige atomen.

§ 10.5: Het echte werk begint bij atomen met meer dan één valentie elektron. Daarbij is het zaak
om de eerste twee regels van Hund te begrijpen.

§ 10.5.1: Lees de intro.

§ 10.5.2: Allereerst bestuderen we een partieel gevulde schil met twee equivalente p elektronen.
Ga na dat er zonder Pauli uitsluiting (2l + 1)(2s + 1) × (2l + 1)(2s + 1) = 6 × 6 = 36
mogelijke basistoestanden zijn voor zo’n paar, waarvan er

(
6
2

)
= 15 consistent zijn met

het Pauli principe. Dit zijn de 15 Slaterdeterminanten uit het bovendeel van Tabel 10.2.
Dan zien we in dat die 36 toestanden ook neergeschreven kunnen worden als 36 LS
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termen in de gekoppelde representatie (onderst deel van Tabel 10.2). Drie vragen komen
onmiddellijk op: a.) welke van deze LS termen zijn consistent met het Pauli principe?
b.) wat is de relatie tussen de LS termen en de Slaterdeterminanten c.) welke term heeft
de laagste energie?

1. a.) Bestudeer de beslissingstabel 10.3 waarmee we bepalen welke LS termen consis-
tent zijn met het Pauli principe. Slechts één triplet blijkt hiermee consistent te zijn
en moet (volgens Hund) dus de grondtoestand zijn.

2. b.) Volledig gestrekte toestanden kunnen geschreven worden als één enkele Slater-
determinant. Als de LS term niet volledig gestrekt is kan hij geschreven worden als
lineaire combinatie van Slaterdeterminanten. Welke lineaire combinatie dit is kunnen
we bepalen met door een van de operatoren L± of S± te laten werken op een volle-
dig gestrekte toestand. Soms moeten we deze operatoren zelfs meer dan eens laten
werken. Bestudeer hoe we uitgaande van de LS termen |3P ; 1, 1〉 en |1D; 2, 0〉 twee
orthonormale lineaire combinaties van Slaterdeterminanten kunnen vinden. Omdat
we te maken hebben met een driedimensionale deelruimte moet de lineaire combina-
tie van de term |1S; 0, 0〉 (die zich ook in deze deelruimte bevindt) orthogonaal staan
op beide andere vectoren. Met deze procedure kunnen we op systematische wijze
iedere LS term uitdrukken als een lineaire combinatie van Slaterdeterminanten.

3. c.) Als we onze termen kunnen schrijven als lineaire combinatie van Slaterdetermi-
nanten kunnen we ook de energie van deze termen uitrekenen, gebruikmakend van
de uitdrukkingen voor matrixelementen van één- of tweedeeltjes operatoren tussen
twee Slaterdeterminanten. Omdat het vinden van de lineaire combinaties van Slater-
determinanten bewerkelijk kan zijn brengt de Slater somregel uitkomst. Deze regel
maakt gebruik van de eigenschap dat het spoor van een matrix behouden is onder een
unitaire transformatie. Dit bespaard ons de moeite om de laatste lineaire combinatie
met een orthonomalisatieprocedure te bepalen. Als we eenmaal de energieën hebben
blijkt eenvoudig dat aan de eerste Hund regel is voldaan. Dit toont dat elektrostati-
sche afstoting tussen valentie elektronen bepalend is voor de grondtoestand.

§ 10.5.3: Dan gaan we naar partieel gevulde schil met twee equivalente d elektronen. Ga na dat
er (zonder rekening te houden met het Pauli principe) (2l+1)(2s+1)× (2l+1)(2s+1) =
10×10 = 100 mogelijke basistoestanden zijn voor zo’n paar, waarvan er

(
10
2

)
= 45 consis-

tent zijn met het Pauli principe. Dit zijn de 45 Slaterdeterminanten uit het bovendeel van
Tabel 10.6. Dan zien we in dat die 100 toestanden ook neergeschreven kunnen worden
als 100 LS termen in de gekoppelde representatie (onderste deel van Tabel 10.6). De
drie vragen komen terug: a.) welke van deze LS termen zijn consistent met het Pauli
principe? b.) wat is de relatie tussen de LS termen en de Slaterdeterminanten c.) welke
term heeft de laagste energie?

1. a.) Bestudeer de beslissingstabel (Tabel 10.7) waarmee we bepalen welke LS termen
consistent zijn met het Pauli principe. Voor drie singletten en twee tripletten blijkt
dit het geval te zijn. Volgens de eerste regel van Hund moet één van de twee tripletten
3F en 3P de grondtoestand zijn, maar welke?

2. b.) Volledig gestrekte toestanden kunnen geschreven worden als één enkele Slaterde-
terminant. Dus kunnen we een uitdrukking neerschrijven voor de Coulombafstoting
in de 3F term, gebruik makend van de Coulomb integralen uit Hoofdstuk 6. Bestu-
deer hoe de Coulombafstoting in de 3P term uitgerekend wordt met behulp van de
Slater somregel. De afstoting blijkt het kleinst te zijn voor de 3F term. Dit is de
term met de grootste waarde van L. Dit resultaat bevestigt de tweede regel van Hund.
Dit toont opnieuw dat elektrostatische afstoting tussen valentie elektronen bepalend
is voor de grondtoestand.
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Parate kennis:

1. Het kunnen neerschrijven van de elektronen configuraties van de grondtoestand van alle ele-
menten t/m Kr.

2. Het kunnen uitleggen van de preferente bezetting van de s schillen en waarom hier anomalieën
in optreden bij Cr en Cu.

3. De regels van Hund.

4. Het kunnen neerschrijven van alle termen die behoren bij een gegeven elektronen configuratie.

5. Het kunnen neerschrijven van alle Slaterdeterminanten die behoren bij een gegeven elektronen
configuratie en bovendien voldoen aan het Pauli principe (beslissingstabel).

6. Het gebruik van de operatoren L± of S± op LS termen en op Slaterdeterminanten.

7. Het kunnen uitrekenen van de elektrostatische energie van een LS term in termen van Coulomb
integralen voor paar toestanden.

8. Het gebruik van de Slater somregel.
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10 Ground states of many-electron atoms - deel 2

De derde regel van Hund discrimineert tussen toestanden met dezelfde waarde van L en S maar
verschillend in J . Er blijkt verschil tussen minder dan halfgevulde schillen en méér dan halfgevulde
schillen. Om deze regel te kunnen begrijpen gaan we de spin-baan wisselwerking in veel-elektron
atomen uitrekenen. We ontdekken dat een méér dan halfgevulde schil ook beschouwd kan worden
als een volle schil waaraan een aantal gaten zijn toegevoegd. Zo’n gat heeft een positieve lading
en daarom draait het teken van de spin-baan koppelingssterkte om, i.e., ξ(r) wordt negatief (zie
sectie 4.6.1). Dit heeft als gevolg dat ook de niveauverschuivingen van teken wisselen. Voor gegeven
waarde waarde van L en S verandert daarom de J toestand met hoogste energie voor minder dan
halfgevulde schil in de J toestand met laagste energie voor meer dan halfgevulde schil. Nu we de
drie regels van Hund begrijpen kunnen we voor ieder atoom met LS koppeling en gegeven elektronen
configuratie de grondtoestand uitrekenen.

§ 10.6: Veel-elektron atomen met fijnstructuur - derde regel van Hund.

§ 10.6.1: Bestudeer hoe de Zeeman hamiltoniaan voor een systeem van N elektronen met
baanimpulsmoment li en spin si, waarbij i ∈ {1, · · ·N}, herschreven kan worden als een
effectieve Zeeman hamiltoniaan van één deeltje met baanimpulsmoment L =

∑
i li en

spin S =
∑
i si.

§ 10.6.2: In deze paragraaf zien we dat we de spin-baankoppeling van één elektron kunnen
uitrekenen zoals in het geval van waterstof maar dan met de Coulomb potentiaal vervan-
gen door een afgeschermde Coulomb potentiaal. Ga na dat de koppelingsconstante zal
toenemen met de kernlading.

§ 10.6.3: Dan buigen we ons over de koppeling tussen de impulsmomenten van de verschillende
elektronen. Zolang de exchange domineert over de spin-baan koppeling (dit is het geval
voor atomen met niet te grote kernlading) koppelen eerst de baan-impulsmomenten tot
een totaal baan-impulsmoment L =

∑
i li en de spin-impulsmomenten tot een totale spin

S =
∑
i si. Daarna pas koppelen L en S tot het totaal impulsmoment J = L+S. Deze J

is de behouden grootheid in nulveld (onder verwaarlozing van hyperfijnstructuur). Deze
vorm van koppeling wordt LS koppeling of Russell-Saunders koppeling genoemd. Bij
atomen met zeer grote kernlading domineert de spin-baan koppeling over de exchange en
koppelen eerst de li en si tot ji. Daarna koppelen de ji tot het totaal impulsmoment
J = j1 + · · · jN , de behouden grootheid. Deze vorm van koppeling wordt jj koppeling
genoemd.

§ 10.6.4: In het college beperken we ons tot LS koppeling omdat dit van toepassing is op de
meest courante elementen uit het periodiek systeem. Het blijkt dat ook de spin-baan
hamiltoniaan herschreven kan worden als een effectieve spin-baan hamiltoniaan van één
deeltje met baanimpulsmoment L =

∑
i li en spin S =

∑
i si. Bestudeer hoe dit resultaat

verkregen wordt met behulp van het Wigner-Eckart theorema.
Met dit alles is de hamiltoniaan van een veel-elektron systeem gereduceerd tot een
ééndeeltjes hamiltoniaan. Als gevolg hiervan is de fenomenologie van veel-elektron ato-
men in vele opzichten gelijk aan die van waterstofachtige atomen, met dien verstande
dat de spin S niet noodzakelijkerwijs gelijk is aan 1/2 maar een willekeurige waarde kan
aannemen.

§ 10.6.5: Bestudeer dat een elektronenschil met een vacature zich gedraagt als een volle schil
waar een gat aan is toegevoegd. Zo’n gat denkt een elektron af zodat er een vacature
ontstaat en heeft daarom een negatieve massa, een positieve lading en een intrinsiek
magnetische moment tegengesteld aan dat van het elektron. Elektron en gat bevinden
zich altijd op dezelfde plaats en hebben dezelfde snelheid maar hun baanimpuls is te-
gengesteld. Bestudeer hoe we met een optel/aftrek procedure kunnen laten zien dat de
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spin-baan koppelingsconstante ζnl van een gat (i.e., een schil met één vacature) negatief
is.

§ 10.6.6: Wat resteert is het uitrekenen van het matrixelement van de spin-baan koppeling (de
spin-baan verschuiving) voor de volledig gestrekte toestand (maximale L en maximale S)
die volgt uit de Hund regels 1 en 2 voor een willekeurige nlx configuratie. Omdat deze
toestand geschreven kan worden als één Slaterdeterminant kunnen we dit doen op twee
manieren. Eerst sommeren we de één-elektron bijdragen, die we met Eq. (9.44) kunnen
schrijven als som over de bijdragen van de één-elektron toestanden. Het gaat hier immers
over de diagonaal matrixelementen van een één-deeltjes operator,

∑
i ξili · si. Dit levert

uitdrukking (10.131) die evenredig is met de één-elektron koppelingsconstante ζnl.
Dan vergelijken we dit resultaat met de uitdrukking verkregen met de effectieve hamilto-
niaan, die evenredig is met ζnLS . Het resultaat van deze vergelijking blijkt af te hangen
van de vulling van de schil. Voor een minder dan halfgevulde schil vinden we voor de
veel-elektron koppelingsconstante ζnLS = ζnl/2S; voor een méér dan halfgevulde schil
vinden we ζnLS = −ζnl/2S. Merk op dat de noemer 2S opgevat kan worden als het
aantal elektronen in een minder dan halfgevulde schil, dan wel het aantal gaten in een
méér dan halfgevulde schil. Begrijp hoe je aan de fijnstructuur kunt zien of een schil
minder of méér dan half gevuld is (zie ook Fig. 10.9). Begrijp verder dat de Hund regel 3
geen rol speelt bij een halfgevulde schil omdat daar J slechts één waarde kan aannemen
(J = S).
Dit voltooit de onderbouwing van de derde Hund regel. Hier blijkt de spin-baan koppeling
doorslaggevend.

§ 10.8: Deze sectie over jj koppeling valt buiten de tentamenstof.

Parate kennis:

1. De regels van Hund

2. De equivalentie van elektronen en gaten, i.h.b. de eigenschappen van de gaten: negatieve massa,
positieve lading en een intrinsiek magnetische moment tegengesteld aan dat van een elektron,
snelheid gelijk aan de snelheid van het elektron dat het gat kan vullen maar met tegengesteld
impuls.

3. Het kunnen neerschrijven van de Slaterdeterminant van de volledig gestrekte toestand die
verkregen wordt door toepassing van de Hund regels 1 en 2.

4. De uitdrukking voor de spin-baan verschuiving

∆ELSn,J =
(
ζnLS/~2

)
〈nLSJMJ |L · S|nLSJMJ〉.

5. De relaties voor de derde regel van Hund

ζnLS = +
ζnl
2S

for 0 < x < 2l + 1

ζnLS = −ζnl
2S

for 2l + 1 < x < 2(2l + 1)

voor de spin-baan koppelingsconstanten van een minder dan halfgevulde schil, 0 < x < 2l+ 1,
of een méér dan halfgevulde schil, 2l + 1 < x < 2(2l + 1).

6. Het kunnen bepalen van de grondtoestand van een willekeurig atoom op basis van een gegeven
elektron configuratie.
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H Time-independent perturbation theory (facultatief)

De appendix over storingsrekening is facultatief. Het is een inhaalcollege, bedoeld voor studenten
die niet eerder met storingsrekening hebben kennisgemaakt. Het onderwerp is helaas gortdroog
maar essentieel voor het begrijpen van de rest van het college. We maken kennis met een

”
storende

term” in de hamiltoniaan. Bij een niet-ontaarde toestand verschuiven alleen de energieniveaus; bij
een ontaarde toestand kan de storingsterm de symmetrie breken met als gevolg niveausplitsing. We
leren dat als de storing commuteert met de hamiltoniaan, de storingsrekening voor een ontaard
niveau reduceert tot

”
gewone” storingsrekening; i.e., storingsrekening van een niet-ontaard niveau.

Thuis bestuderen:

Appendix H tot aan bespreking van de derde orde correctie en het begrip renormalisatie van de
golffunctie. Deze onderwerpen zijn belangrijk voor de verdieping van de stof maar zijn facultatief.

§H.1: In deze inleidende paragraaf maken we kennis met de begrippen ongestoorde hamiltoniaan
H0 en storing H1. We definiëren representaties {|ψn〉} van de volledige hamiltoniaan H =
H0 +H1 en {|φn〉} van de ongestoorde hamiltoniaan H0 en leiden een uitdrukking af voor de
niveauverschuiving als gevolg van de storing H1.

§H.2: Storingsrekening van een niet-ontaard niveau. We parametriseren de hamiltoniaan door het
invoeren van de storingsparameter λ. We introduceren de gestoorde toestanden |ψn(λ)〉 met
bijbehorende storingscoëfficiënten an(λ). In de Ansatz schrijven we de gestoorde toestand
|ψn(λ)〉 als een ontwikkeling in machten λp waarbij de coëfficiënten |ψpn〉 (met bijbehorende
coëfficiënten apn) een nader te bepalen correctie vormen op de ongestoorde toestand |ψ0

n〉 ≡
|φn〉. We schrijven een uitdrukking voor de normering van de gestoorde toestanden. Het
blijkt dat de toestanden alleen genormeerd blijven als de coëfficiënten apn aan bepaalde eisen
voldoen. We leiden vervolgens een uitdrukking af voor de niveauverschuiving in de vorm
van een ontwikkeling in machten van λ. Zo krijgen wij bijdragen aan de niveauverschuiving
schrijven in orden van λ.

1. nulde orde. Dit is de energie van de ongestoorde toestand.

2. eerste orde. De correctie van de energie in eerste orde wordt verkregen door de storing
te “sandwichen” tussen de ongestoorde toestanden. Met het resultaat kan de eerste orde
correctie van de toestand worden uitgerekend.

3. tweede orde. De tweede orde correctie van de energie wordt verkregen door de eerste orde
correctie van de toestand in rekening te brengen. Ook kunnen we dan de tweede/orde
correctie van de toestand bepalen. Bij een niet ontaard niveau (gewone storingsrekening)
hoef je alleen de 1e- en 2e-orde verschuivingen van de energie te kunnen uitrekenen.

§H.3: Storingsrekening van een ontaard niveau. We beginnen op dezelfde manier als voor niet-
ontaarde niveaus maar het blijkt onmiddellijk bij het neerschrijven van de Ansatz dat dit
niet meer op unieke wijze valt te doen. We hebben voorkennis nodig van het effect van de
storing om de Ansatz zó te kunnen doen dat de storingscoëfficiënten zich als reguliere functies
van λ gedragen. Met andere woorden: we moeten rekening houden met het breken van de
symmetrie door de storing. Als we dat doen dan vinden wij uitdrukkingen voor de eerste en
tweede orde verschuivingen die analoog zijn aan die van de gewone storingsrekening (i.e., de
storingsrekening van een niet-ontaard niveau.

1. In het algemeen is het niet onmiddellijk duidelijk hoe de storing de symmetrie zal gaan
breken. Daarom is het belangrijk om te weten dat uitgaande van een willekeurige onge-
stoorde basis de energieverschuivingen ε van de ongestoorde toestanden worden verkregen
door een stelsel van gekoppelde vergelijkingen op te lossen. Dit is equivalent met het nul
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stellen van de zogenaamde seculierdeterminant. We krijgen dan voor een stelsel van k
vergelijkingen een polynoom van orde k in de variabele ε (het zgn. karakteristieke poly-
noom van het stelsel vergelijkingen - ook wel de seculiervergelijking genoemd). De wortels
van dit polynoom zijn de eigenwaarden voor de enegieverschuivingen. De bijbehorende
eigentoestanden reflecteren de symmetrie van de storing. Het stelsel van gekoppelde ver-
gelijkingen kan geschreven worden als matrix vergelijking. Het oplossen van dit stelsel is
equivalent met het diagonaliseren van de matrix (de zgn. storingsmatrix).

§H.3.1: Deze sectie is van groot praktisch belang. In het speciale geval dat de storing commu-
teert met de ongestoorde hamiltoniaan bestaat er een basis waarin is de storingsmatrix
diagonaal is. In die basis kan men de storing eenvoudig exact uitrekenen omdat de exacte
oplossing gelijk is aan de eerste orde uitdrukking van

”
gewone” storingsrekening. Vaak

echter commuteren de hamiltonianen slechts in benadering. Dan is de storingsmatrix
ook slechts in benadering diagonaal maar blijft de eerste orde benadering van gewone
storingsrekening afdoende voor het uitrekenen van de niveauverschuivingen. Expliciet
diagonaliseren is dan niet nodig en zegt men dat de storingsrekening voor een ontaard
niveau reduceert tot

”
gewone” storingsrekening.

§H.4: Voorbeeld: tweedimensionale storingsmatrix. Begrijp de definitie van de koppelingshoek en
het verschil tussen een zwakke koppeling en een sterke koppeling tussen de niveaus. Merk op
dat de koppeling tussen twee niveaus aanleiding geeft tot afstoting tussen die niveaus. Begrijp
ook dat bij zwakke koppeling de afdiagonale matrixelementen verwaarloosd mogen worden
t.o.v. de diagonale elementen (deze dragen dan bij in tweede orde).

§G.3.4: Hier wordt het verschil tussen zwakke en sterke koppeling samengevat.

Parate kennis:

1. Bij tijdonafhankelijke storingsrekening de opsplitsing van de hamiltoniaan in twee hermitsche
delen

H = H0 +H1.

2. Bij
”
gewone” storingsrekening: de formule voor de eerste orde energieverschuiving

ε1 = 〈φn|H1 |φn〉 .

met {|φn〉}een orthonormale set behorend bij H0 |φn〉 = E0 |φn〉.

3. Bij
”
gewone” storingsrekening: de formule voor de tweede-orde energieverschuiving

ε2 = 〈φn|H1 |1〉 =
∑
m

m6=n

| 〈φn|H1 |φm〉 |2

E0
n − E0

m

.

4. Bij storingsrekening voor een ontaard niveau moeten we de seculiervergelijking oplossen,

det
∣∣H′i,j − ε1δi,j

∣∣ = 0,

waarin H′i,j = 〈φn,i|H1 |φn,j〉 met {|φn,i〉} de basis behorend bij H0 |φn,i〉 = E0 |φn,i〉.

5. In de zwakke koppelingslimiet, geven de diagonaalelementen van de storingsmatrix H′i,j een
bijdrage in eerste orde en de afdiagonaal elementen een bijdrage in tweede orde (en kunnen
dus verwaarloosd worden in een

”
eerste orde berekening”). Dit geldt bijvoorbeeld voor de

Paschen-Back limiet van de fijnstructuur en hyperfijnstructuur.

6. Realiseer je dat als H0 en H1 commuteren met H de seculierdeterminant diagonaal is en
daarmee de storingsrekening reduceert tot

”
gewone” eerste orde storingrekening.

43



Reader Atomic Physics Course 2020-2021

44



P

Reader

45



Reader Atomic Physics Course 2020-2021

1 Quantum motion in a central potential field

The first chapter is about the Schrödinger equation for a particle in a central potential field. The
major part will be a repetition of material known from elementary lectures in mathematics, classical
mechanics and quantum mechanics. Our task is to formulate the Schrödinger equation for this
problem and reduce it by separation of variables into a 1D equation for the radial motion (the radial
wave equation) plus two eigenvalue equations for the rotational motion about the potential center.
Only the radial wave equation depends on the central potential; the equations for the rotational
motion are the same for all systems of central symmetry. The rotational eigenvalues are represented
by the quantum numbers l and m. The associated eigenfunctions are the spherical harmonics. The
lecture is concluded by a brief discussion of the invariance of the Hamiltonian under rotation in
relation to the angular momentum as a conserved quantity.

Study at home:

Chapter 1: Read the introduction. Note the definition of a central potential V(r) between two
bodies, where r = |r1 − r2| is the radial distance and mr the reduced mass. In the first chapter
your primary task is preserve the overview. It may be a good idea to refresh your memory about
Quantum Mechanics. Appendix F may be helpful in this respect. Problem F.1 is very important.
Problems 1.2, 1.3, 1.6 and 1.7 are included to deepen your understanding of some mathematics,
don’t waist too much time on this - certainly not before you have captured the overview over the
chapter. Also the discussion of cylindrical coordinates are optional (i.e., not part of the exam).

§ 1.1: We introduce the notions radial momentum, pr, and angular momentum with respect to the
potential center, L. Study the classical Hamiltonian H0 and its separation into radial and
rotational kinetic energy. Recall the Einstein notation with the summation convention and
solve Problem 1.1.

§ 1.1.1: Here we introduce operators for position and momentum (correspondence rules) in
the position representation; derivation of the commutation relations in cartesian coor-
dinates (using a test function φ); beware of potential difficulties in the application of
the correspondence rules in products of non-commuting operators. Understand how the
central symmetry is exploited by introducing spherical coordinates. An expression of
great importance is the laplacian in spherical coordinates. The discussion of cylindrical
coordinates is optional.

§§ 1.1.2: Here we derive the operators for orbital angular momentum L (in the position re-
presentation using orthogonal coordinates, cartesian or curvilinear). In particular, take
notice of the expression for L in spherical coordinates, an example of (orthogonal) curvi-
linear coordinates.

§ 1.1.3: Solve the eigenvalue equation for Lz.

§ 1.1.4: Understand the usefulness of commutator algebra. This enables us to derive the com-
mutation relations for Lx, Ly, Lz and L2 without the use of a test function. Problem 1.4
is very instructive.

§ 1.1.5: Same for L±. Reformulation of L2 in terms of L+, L− and Lz.

§ 1.1.6: Solve the eigenvalue expression for L2 (using the principle of separation of variables).
The details of the Pml (u) are optional. It is important to understand the action of L± as
a shift operator but the detailed consequences for the spherical harmonics are optional.
However, you should know that the choice of the positive sign in front of the square
root formula corresponds to the Condon and Shortley phase convention. This convention
assures the proper operation of the shift operators as construction operators for both
positive and negative values of the quantum number m.
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§ 1.1.7: Understand the use and importance of angular momentum in the representation-free
notation of Dirac.

§ 1.1.8: Understand the derivation of the expression for the radial momentum pr and the
commutation relations for pr and p2

r. Problem 1.5 is optional but Problem 1.6 is very
useful (for 2D optional).

§ 1.2: Schrödinger equation

§ 1.2.1: Here we formulate the 3D Schrödinger equation for the wavefunction ψlm(r) of a
particle in a central potential field using spherical coordinates. Reduction of the 3D
Schrödinger equation to the 1D radial wave equation for the radial wavefunction Rl(r)
of given angular momentum l, plus the 2D Schrödinger equation for the wavefunction
Ylm(r̂), with r̂ ≡ (θ, φ), which describes the rotational motion about the potential center.
Understand the separation of variables and the reduction of the radial wave equation to
the form of a 1D Schrödinger equation by introducing a so called reduced radial wave-
function χl(r) = rRl(r). Problems 1.7-1.9 are optional.

§ 1.2.2: Same for cylindrical coordinates. This section is optional.

§ 1.3: Read this section carefully. Understand the concept of parity. Understand that commutation
of the operators ∂/∂φ and H0 implies the invariance of H0 under rotation about the z axis.

Minimum knowledge:

1. The name and definition of the quantities mr, pr, L, L±, Vrot(r), l, m, χl(r).

2. The expression for the linear momentum operator, pi = ih∂i and the derivation of [ri, pj ] =
i~δij using a test function.

3. The commutation relations for Lx, Ly and Lz and their derivation using commutator algebra;
i.e., without the use of a test function.

4. The inner product rule L2 = L · L = LzLz + 1
2 (L+L− + L−L+) with L± = Lx ± iLy.

5. The principle of separation of variables in relation to commuting operators.

6. Understand why the radial wavefunction has to be regular in the origin and why this is always
the case for the radial wavefunctions of electrons in a real atom.

7. The following expressions for the Hamiltonian

H0 =
p2

2mr
+ V(r) and H0 =

1

2mr

(
p2
r +

L2

r2

)
+ V(r) (r 6= 0).

8. The expression for the quantum mechanical Hamiltonian

H0 = − ~2

2mr
∆ + V(r).

9. The eigenvalue equation for Lz and L2 in the Dirac notation

L2 |l,m〉 = l(l + 1)~2 |l,m〉
Lz |l,m〉 = m~ |l,m〉

and the action of the shift operators

L± |l,m〉 =
√
l (l + 1)−m(m± 1) ~ |l,m± 1〉 ,

where the choice for the positive square root defines the Condon and Shortley phase convention.
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10. The radial wave equation[
~2

2mr

(
− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2

)
+ V(r)

]
Rl(r) = ERl(r).

11. The definition χl(r) ≡ rRl(r) and the derivation of the 1D Schrödinger equation starting from
the radial wave equation,

χ′′l +

[
2mr

~2
(E − V )− l(l + 1)

r2

]
χl = 0.
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2 Hydrogenic atoms

The second chapter is about solving the Schrödinger equation for an electron in the central potential
field (Coulomb field) of the atomic nucleus. This is called the “Bohr atom”. The rotational states are
already known from Chapter 1 (spherical harmonics). Hence, what remains to be done is solving
the radial wave equation. We introduce atomic units and learn how quantization follows from
the normalization requirement of the wavefunction. This procedure results in the discrete energy
levels of the hydrogen atom (the so-called hydrogen Term energies) and the related hydrogenic
wavefunctions. Further you learn how to calculate the diagonal and off-diagonal matrix-elements of
the electric dipole operator using hydrogenic wavefunctions.

Study at home:

Chapter 2: Read the introduction about “one-electron atoms” and take notice of what is meant by
hydrogen like (hydrogenic or alkali-like). The challenge is to keep the overview. Problems 2.1, 2.2,
as well as 2.4 and 2.5 are quite useful. Problem 2.3 is for highly motivated enthusiasts of special
functions; Problem 2.6 is for those who want to practice their Mathematica skills. In first reading
you can skip these problems altogether.

§ 2.1: Here we formulate the radial Schrödinger equation for the case of the hydrogen atom; i.e.,
using the Coulomb interaction between electron and nucleus. Make yourself familiar with the
notions s wave, p wave, etc., and the use of the name orbital for the orbital wavefunction.
Take notice of the notation Rnl and the alternatives R10 ≡ R1s for the case n, l = 1, 0.

§ 2.1.1: The introduction of atomic units and the appearance of the fine structure constant
α. Take notice of the difference between the Hartree and the Rydberg energy. Solve
Problem 2.1.

§ 2.1.2: Study the limiting behavior of the wavefunctions for r → 0 and r →∞ and the appea-
rance of the quantization condition from the normalization condition on the wavefunction.
Note how the principal quantum number enters the theory.

§ 2.2: The Bohr formula for the hydrogen level structure (Term diagram) and the Rydberg formula,

En = −hcRM
Z2

n2
⇔ 1

λn
= −RM

[(
1

n

)2

−
(

1

n0

)2
]
, with n > n0.

Further the n2 degeneracy of the energy levels and its relation to the rotational wavefunctions
(spherical harmonics). Understand the difference between essential and accidental degeneracy.

§ 2.3: The general expression for the hydrogenic wavefunctions for the radial motion Rnl (ρ) and the
associated normalization factor N . Take notice of the plots of the radial wavefunctions, in
particular the systematics of the number of nodes.

§ 2.3.1: Familiarize yourself with the Dirac notation for the eigenstates of the orbital motion, |nlm〉,
and the relation with the wavefunctions in the position representation (with spherical coordi-
nates).

§ 2.4: Diagonal matrix elements.

§ 2.4.1: Here we learn how to calculate radial averages (exact solutions exist but they can
become complicated - take notice of Eq. (2.48) but do not your waist time on the proof
of Problem 2.3, which is included for the enthusiasts of special functions). It is better to
focus on Problem 2.2 because it shines light on the origin of the Wigner-Eckart theorem.
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§ 2.4.2: The integral over three spherical harmonics (Gaunt integral) is the Rosetta stone for
the calculation of angular averages, see Eq. (2.54) and the role of 3j symbols. Practice
this type of integral by solving Problems 2.4 en 2.5. An introduction in 3j symbols is
given in § 3.4.6 (cf. Appendix J).

§ 2.5: Off-diagonal matrix elements.

§ 2.5.1: Take notice of the definition of the electric dipole operator

d =− er =− eaρ r̂

and the calculation of transition matrix elements = off-diagonal matrix elements and
the notion of transition-dipole moment. The transition dipole determines the selection
rules for electric-dipole transitions. These are of great practical importance because they
represent the strongest interaction of atoms with light. In practice a transition is allowed
if the corresponding 3j symbol is nonzero.

§ 2.5.2: The unit vector in radial direction r̂ and its decomposition to the spherical basis;
angular matrix elements.

§ 2.5.3: Here we derive expressions for the transition dipole and define the transition strength.

§ 2.5.4: Selection rules for electric-dipole transitions; the photon and the photon spin. Under-
stand the difference between σ+, σ− and π transitions (see Fig. 2.4). The derivations are
not part of the exam.

§ 2.5.5: Study how we calculate the Lyman series and the Balmer series. Note that the sum of
the transition probabilities is the same for all upper (or lower) levels of a given manifold
(see Fig. 2.5). Problem 2.6 is a key problem, essential for future understanding of the
coupling of electrons to the electromagnetic field. You can practice your Mathematica
skills by evaluating the integrals.

Minimum knowledge:

1. The notions hydrogen like (hydrogenic or alkali-like), s wave, p wave, etc..

2. The atomic units of length (a) and energy (Hartree ~2/mra
2) and what they correspond to

in the atom.

3. The relation between the Hartree and the Rydberg atomic units: EH = 2ER.

4. The relation between the Rydberg constant RM and the Rydberg energy : ER = hcRM .

5. The relation between the Hartree atomic unit, electron rest energy and fine structure constant:

~2/mra
2 = α2mrc.

6. The energy levels (Terms) of hydrogenic atoms and the notion Term diagram,

E = −(α2mrc
2)Z2/2n2,

as well as the Rydberg formula

λ−1
n = −RM

[
(1/n)

2 − (1/n0)
2
]
⇔ ∆En = En − En0

= hc/λn, with n > n0.

7. The energy splittings of the principal structure are typically a factor α2 smaller than the
electron rest mass energy.
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8. The derivation of the relation for radial average

〈ρk〉 ≡
〈
nlm|ρk|nlm

〉
=

ˆ
ρk+2R̃2

nl(ρ)dρ,

where ˆ
R̃2
nl(ρ)ρ2dρ = 1.

9. The definition of the electric-dipole operator ,

d =− er =− eaρ r̂.

10. Make sure that you can determine when 3j symbols are nonzero and apply the 3j symbol
rules (the triangular inequalities, the 3m sum rule, the m inversion rule, and the permutation
rules). For a discussion of the 3j symbols see also § 3.2.2 and Appendix J.
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3 Angular momentum

The third chapter starts with a surprise: after all the work in Chapter 1 it turns out that we can
obtain the eigenvalues of L2 and Lz and the properties of L+ and L− also without solving the
Schrödinger equation. All we need are the commutation relations for Lx, Ly and Lz. Starting from
these relations we can derive an algebra which reproduces the properties of the orbital angular
momentum operators. This is done with the representation-free notation of Dirac (a notation
without “wavefunctions”). We generalize this approach by arguing that any observable satisfying
the same commutation relations as Lx, Ly and Lz must also satisfy the same algebra; i.e., have the
properties of quantized angular momentum. Importantly, also half-integral values turn out to be
consistent with this algebra (with the electron spin, s = 1/2, as the famous example). Of crucial
importance is further the addition of angular momenta. In this context we introduce the coupled
and the uncoupled representation as well as the Clebsch-Gordan transformation between these. The
vector-coupling model is an important tool in this context, in particular for reading 3j symbols.

In the second part of the chapter we investigate how the angular momentum operators and
the angular momentum states transform under rotation of the quantization axis. This is called
representation theory. It leads to the conclusion that the angular momentum operators can be
identified with operators imposing an infinitesimal rotation on the physical system.

Study at home:

Beware: Chapter 3 is rather formal and quite demanding. It is important because quantized angular
momentum plays a major role in quantum physics and certainly in Atomic Physics (if only because
the total angular momentum of a free atom is conserved in time). It is essential for a proper
understanding of optical transitions in atoms. The chapter is of special interest for students geared
towards theoretical physics. The following is part of the course, while the optional material is
described afterwards.

§ 3.1: This is an important section for all. Here we find that all properties of angular momentum in
quantum mechanics follow from an algebra derived from the commutation relations for Jx, Jy
en Jz. The derivation is instructive but is not required for the exam. All students should be
able to reproduce the summary (3.1.0.1). Importantly, aside from integral angular momenta,
j = 0, 1, 2, · · · , also half-integer angular momenta, j = 1

2 , 3
2 , 5

2 , · · · , are allowed. In § 3.9.3 we
shall find that the latter have no classical analog.

§ 3.1.1: We discuss the decomposition of the angular momentum vector J in the cartesian basis
as well as the spherical basis. Note the subtle difference between the standard components
J0, J+1 and J−1 and the shift operators Jz, J+ and J−.

§ 3.2: Starting from the eigenvalues we can construct the matrix representation that satisfies all
properties mentioned in § 3.4. Study how this works for l = 1 in the spherical and cartesian
basis. Convince yourself that the Pauli matrices are obtained for s = 1/2. Problem 3.1 is
optional.

§ 3.3: In the general part of this section we summarize the difference between angular momentum
in classical physics and in quantum mechanics. Note how the polarization vector in quantum
mechanics replaces the angular momentum vector from classical mechanics. The vector model
of Fig 3.1 helps to visualize the angular momentum vector J (which is not observable) and its
projections on a quantization axis (which are observable). Note Problem 3.2.

§ 3.3.1: In this section we discuss how the polarization of the angular momentum can be
measured. Make sure that you understand the difference between a pure ensemble and
a random ensemble and digest the notion degree of polarization. In an optional part we
discuss how the polarization can be determined within the density matrix formalism.
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§ 3.3.2: In this section we calculate the polarization for a pure ensemble of a s = 1/2 system
(also known as a qubit). We show that the polarization of an arbitrary state can be repre-
sented by a point on the Bloch sphere. This makes the Bloch sphere into the geometrical
representation of all possible states of a qubit. This is a nice bit of quantum mechanics
which plays an important role in modern atomic physics and in quantum information
processing. Make sure that you understand the Bloch sphere (see Fig. G.1). Beware of
the difference between the components of the angular momentum (which is a vector in
the 3D space of the laboratory) and the components of the qubit (which is a vector in a
2D complex vector space - the Hilbert space of the qubit). In other words, do not confuse
a vector in the lab with a state of the qubit.

§ 3.3.3: An alternative method to describe a spin system is the density matrix formalism
(cf. Appendix F.3). This method is more general than the methods developed for pure
states because it can also be used with the statistical mixtures mentioned in the intro-
duction to Section 3.3. Familiarize yourself with the density operator and its matrix
representation and study how these are used to calculate the polarization for a pure
ensemble. Work through this section and convince yourself of Eq. (3.74).

§ 3.4: This section is of central importance for the proper understanding of the whole course.

§ 3.4.1: We first introduce the Hilbert space for a system of two angular momenta, j1 en j2. We
define the uncoupled basis as the basis formed by the tensor product of the bases of the
individual angular momenta. Please note that the tensor product is an ordered product.
Usually little attention is paid to this because it does not have serious consequences as
long as we limit ourselves to two angular momenta. For coupling of more than two this is
different. We return to this in detail in Section 3.5. You may forget about many details
but make sure you know the difference between stretched and non-stretched states - see
Example 3.1 en 3.4.2.

§ 3.4.2: We learn how to add two angular momentum operators, keeping in mind the triangle
inequalities. In this way we obtain the coupled basis of the Hilbert space. Convince
yourself that the coupled and the uncoupled representation are of thee same dimension
(see Problem 3.4) because they span the same Hilbert space. The addition of angular
momenta will be used over and over again in the coming chapters. Study the geome-
trical addition as illustrated in Fig. 3.4. (called the vector coupling model) and solve
Problem 3.3. Make sure that you understand the difference between the coupled and the
uncoupled representations of a given angular momentum subspace.

§ 3.4.6: Here we learn the about the so-called Clebsch-Gordan transformations between the
coupled and the uncoupled representations. These transformations follow straightfor-
wardly from the closure relations for these representations. The Clebsch-Gordan coef-
ficients are proportional to 3j symbols. For the latter we can rapidly establish if they
vanish or not. In the latter case we can look up the value in Appendix J (or by using Ma-
thematica). The symmetry rules are very important. These are given in Appendix J.1.
It is a good idea to memorize them. Memorization is not very popular among scien-
tists but you will not regret it. The coupled representation is related to the uncoupled
representation by a unitary transformation. Convince yourself by making Problem 3.5.

§ 3.6: In this section we introduce the coupling of angular momenta. First of all it is important to
realize that the coupled and uncoupled representations are defined irrespective of the presence
of absence of a coupling mechanism. If j1 and j2 are conserved quantities, also their vector
sum, J = j1 + j2, will be a conserved quantity. This can change as soon as j1 and j2

are coupled to something (e.g., each other). We distinguish between internal and external
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coupling. In both cases j1 and j2 are no longer conserved. In case of internal coupling J
remains conserved because the system remains mechanically closed. In the case of external
coupling also J is no longer conserved. In important cases both internal and external couplings
cam be present. Make sure that you understand what is meant by coupling of the J levels -
see also Section 3.4.5. The inner product rules are indispensable throughout the course (see
Problem 3.6).

§ 3.7: Read this section and be familiar with the concept of the 6j symbol and that they are defined
in terms of 3j symbols.

§ 3.8: We now turn to representation theory, the theory that tells us what happens in Hilbert space
if we rotate a physical system in reals space. It is an interesting section but also difficult.
Before you start reading this section make sure that you have enough time.

§ 3.8.1: We study in detail how the operators and the states of a s = 1/2 system transform
under a pure rotation of the quantization axis. Understand what is meant by a pure
rotation.

§ 3.8.2: It turns out that an arbitrary pure rotation of the quantization axis can be realized
with three subsequent rotations over the so-called Euler angles α, β, and γ. First we
demonstrate this for a co-rotating coordinate system (as experienced by a pilot in the
cockpit of an airplane). Fig. 3.7-b is important in this context. Next we show that
the same rotation can also be realized in the laboratory-fixed frame by three subsequent
rotations (about the z axis, the y axis and again the z axis) over the same Euler angles
(but in reversed order). In real space the rotation operators take the form of 3 × 3
matrices. For the exam it is not required that you can reproduce the derivation but you
should know the expressions for a general pure rotation over the Euler angles as given by
Eqs. (3.183) and (3.187).

§ 3.8.3: Next we derive the unitary transformations in Hilbert space corresponding to the Euler
rotations. Note that these transformations are described by complex 2×2 matrices. This
arises because we restricted ourselves to a two level system (for instance quarks require
3×3 matrices). Problem 3.10 deals with an important result and offers a good opportunity
to refresh your skills of handling complex 2 × 2 matrices. Importantly, not one but two
unitary transformations correspond to a rotation in real space. This has no consequence
for the operators (they transform like classical integer angular momentum operators) but
the states become double valued.

§ 3.8.4: We now are in a position to derive a relation between the s = 1/2 angular momentum
operators and rotations in the laboratory. With Eq. (3.210) we arrive at the fundamental
conclusion that the spin operator Sz is equivalent to an operator for an infinitesimal
rotation about the z axis (see Problem 3.20 for the formal proof). Problem 3.18 deals
with the general case (i.e., rotation about an arbitrary axis) and is optional.

§ 3.8.5: In this section we show that the relations derived in the previous sections for s = 1/2
can be generalized to the case of arbitrary spin. This result provides the basis for the
formal definition of angular momentum in § 3.9.1.

§ 3.9.3: Here we arrive at a milestone in physics. We find that for half-integral spin the physical
system has to be rotated over 4π to regain the original wavefunction (rather than 2π as we
expect from classical physics and as is the case for spherical harmonics). We say: half-integral
angular momentum has “no classical analogue”. Read the subsection and make sure you are
aware of this lack of classical analogy.
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§ 3.11: In this section we apply the new knowledge. We demonstrate how we can generate the
transformation matrices of § 3.10 with the systematic method of § 3.9.1.

§ 3.11.1 For a s = 1/2 system

§ 3.11.2 For a s = 1 system.

Minimum knowledge:

1. The commutation relations

[Jx, Jy] = i~Jz, [Jy, Jz] = i~Jx and [Jz, Jx] = i~Jy.

The eigenvalue equations

J2 |j,m〉 = j(j + 1)~2 |j,m〉
Jz |j,m〉 = m~ |j,m〉 ,

The quantum numbers j and m are called rotational quantum numbers; for a given J these are
either both integral or half-integral. The quantum number m is called the magnetic quantum
number and is restricted to the interval −j ≤ m ≤ j. The action of the shift operators is given
by

J± |j,m〉 =
√
j (j + 1)−m(m± 1) ~ |j,m± 1〉 ,

where the choice for the positive sign is known as the Condon and Shortley phase convention.

2. Make sure that you can generate the matrix representation from the eigenvalue equations.

3. Be aware of the definition of the polarization vector : P = (〈Jx/j~〉, 〈Jy/j~〉, 〈Jz/j~〉) .

4. The relations R(α, β, γ) = Rz′′(γ)Ry′(β)Rz(α) en R(α, β, γ) = Rz(α)Ry(β)Rz(γ) and the
definition of the Euler angles (see Fig. 3.7-b).

5. The expression for an arbitrary s = 1/2 state: |χ〉 = cos θ/2 |�〉 + eiφ sin θ/2 |�〉 and its
mapping onto the Bloch sphere.

6. The inner product rules:

L · S = LxSx + LySy + LzSz

L · S = LzSz + 1
2 (L+S− + L−S+)

L · S = 1
2 (J2 − L2 − S2).

7. Know how to apply the vector addition J = j1 + j2 in a vector diagram and understand the
triangle inequality

|j1 − j2| ≤ J ≤ j1 + j2.

8. The Clebsch-Gordan decompositions “in both directions” by using the closure relations

|JM〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1; j2m2〉〈j1m1; j2m2 |JM〉

|j1m1; j2m2〉 =

j1+j2∑
J=|j1−j2|

J∑
M=−J

|JM〉 〈JM |j1m1; j2m2〉 .

9. Know that the Clebsch-Gordan coefficients can be rewritten in the form of Wigner 3j sym-
bols. Make sure that you understand the graphical model. All symmetry rules as given in
Appendix J.1 you should know by heart.
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3 Angular momentum, optional material

§ 3.4.3: Here we give a few commutation relations for j1 and j2 with J. These can be derived when
needed. Check that you can do so, such that there is no need for memorizing them.

§ 3.4.4: Three important selection rules for calculating j1z, j2z, j1±, j2±, in the basis of J are given.
Convince yourself that these rules are intuitively correct. The derivation can be found in
Problems 3.7-3.9.

§ 3.4.5: If we want to calculate the matrix elements of j1z, j2z, j1±, j2± in the basis of J, it turns
out that we need a new phase convention. No need to understand the exact details, but please
familiarize yourself with the new convention, Eq. (3.99): For J ′ 6= J the matrix elements of j1z
are chosen to be real and non-negative, 〈J ′,M |j1z|J,M〉 ≥ 0. This implies - see Eqs. (3.103)
en (3.105). Read the summary at the end of the section: 〈J − 1,M + 1|j1+|J,M〉 ≥ 0 en
〈J + 1,M + 1|j1+|J,M〉 ≤ 0.

§ 3.5: In this section we investigate the symmetry rules of the Clebsch-Gordan coefficients (CGCs).
These are hard to recall. For this reason Wigner transformed the CGCs into 3j-symbols.
These have simple symmetry relations and the triangle inequality helps us to instantly see
whether they vanish or not - see Fig. 3.4. In the latter case we have to look up the value in
Appendix J or calculate them in Mathematica. For the hardliners the properties of the 3j
symbols are derived. Us softies take comfort in the thought that this was ones properly done
for us. In any case it is not part of the exam. Whatever, you must be able to apply these rules.
The symmetry relation can also be found in Appendix J.1. If you are wise you memorize them
right now.

§ 3.5.1: In this section we discuss the coupling order and derive the symmetry relations of the
CGCs.

§ 3.5.1.1: The exchange symmetry is special for two identical angular momenta. We
demonstrate that the pair states are symmetric for integral and antisymmetric for
half-integral angular momenta. This is of course important for the relation between
spin and quantum statistics.

§ 3.5.2: We discussed the addition of angular momenta but does it make sense to subtract
them? For classical arrow vectors this is evident. We simply have to reverse the arrow as
sketched in Fig. 3.3. Interestingly, this principle works for integer angular momenta but in
the half-integer case it does not! By inspection of the CGCs for the two situations it turns
out that we have to include a phase jump of (−1)2j2 , where j2 is thee angular momentum
to be inverted - see Fig. 3.3. Not that this has only consequences for half-integral j2.

§ 3.5.3: In this section we introduce the transformation from CGC to 3j symbol. The limi-
ted symmetry of the CGCs can be traced back to the presence of the bra side of the
coefficients. By hermitic conjugation of the bra part we obtain a tensor product of 3
kets the must represent a scalar because we consider three vectors adding up to zero,
j1 + j2 + J = 0. The mentioned scalar is the 3j symbol.

§ 3.5.3.1: Important: in this section you find a summary of the symmetry relations - see
also Appendix J.1. Memorize them! We do not promote this option in general but
in this case the example of famous colleagues may convince you.

§ 3.5.3.2: Here you find the derivation of the phase rules for 3j symbols.

§ 3.5.3.3: Have a look at the examples of Fig. 3.4.

§ 3.7: We raise to the next level by coupling three angular momenta. The total angular momentum
becomes J = j1 + j2 + j3. The order of coupling emerges prominently because this can be
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done in several ways. We introduce recoupling coefficients to compare twee different coupling
orders using their inner product, e.g. 〈(j12j3)JM |(j1j23)J ′M ′〉. By careful use of the coupling
rules we can express these recoupling coefficients in the form of a sum of products of four 3j
symbols - see Eq. (3.166) en Appendix J.2.

§ 3.7.1: When coupling 3 angular momenta (j1, j2, j3) we actually have to account for 6 angular
momenta (j1, j2, j3, j12, j13, j23). When coupling two angular momenta (j1, j2) this was
restricted to only three (j1, j2, j12). The latter could be visualized by the triangle of the
vector model. For 6 angular momenta this is possible with a tetraeder - see Fig. 3.6.
Using the symmetry of the tetraeder Wigner designed the 6j symbol. This is again a
scalar because we require j1 + j2 + j2 + J = 0. The general expression for the 6j symbol
is derived in Problem 3.19. You can skip the derivations but have a close look at the
symmetry rules compiled in § 3.7.1.1 and Appendix J.2.

§ 3.9: In this section we make a fresh start because angular momentum can be defined in a more
fundamental way as an infinitesimal rotation.

§ 3.9.1 We give the formal definition of orbital angular momentum operator as an infinitesimal
rotation.

§ 3.9.2: We generalize the new definition for arbitrary types of angular momentum. From this
we obtain the commutation relations and, consequently, regain everything we learned
about angular momentum in § 3.4.

§ 3.9.3: Here we arrive at a milestone in physics. We find that for half-integral spin the physical
system has to be rotated over 4π to regain the original wavefunction (rather than 2π as
we expect from classical physics and as is the case for spherical harmonics). We say:
half-integral angular momentum has “no classical analogue”.

§ 3.9.4: Here we discuss the unitary transformations in Hilbert space corresponding to Euler
rotations for the general case (arbitrary angular momentum). We meet the Wigner
rotation matrices.

§ 3.9.5: From the Clebsch-Gordan decomposition we can derive the transformation properties
of spherical tensor operators. We demonstrate this for spherical tensor operators T(0)

(rank 0), T(1) (rank 1) and T(2) (rank 2).

§ 3.10: In this section we make the step from vector operators to tensor operators of general order.
This is the final generalization. The section is important for the chapter on electric hyperfine
structure, which is not part of the course. A nice detail is that the methods introduced allow
for solving the Gaunt integral as shown in Problem 3.24.
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4 Fine structure of hydrogen-like atoms - part 1

Arguably this is the point where the lectures really start: we are well prepared to describe the detai-
led structure of hydrogen-like atoms. We first focus on the atomic fine structure and in Chapter 4
we turn to the hyperfine structure. The term fine structure refers to deviations from the principal
structure related to properties of the electronic motion relative to the nucleus. The hyperfine struc-
ture is related to the nuclear structure. First we calculate relativistic corrections to the electronic
energies. This involves two contributions, a kinetic energy correction (the relativistic mass correc-
tion) and a potential energy correction (the Darwin correction). Then, we turn to the Lorentz force
experienced by the electron when we apply a magnetic field (this breaks the rotation symmetry).
This is the origin of the orbital magnetism (orbital Zeeman interaction and Larmor precession of the
angular momentum) as well as of diamagnetism. Next we postulate the electron spin (which is also
a relativistic phenomenon) and obtain the spin-Zeeman interaction. As it turns out it is in general
impossible to completely switch of the magnetic field because a moving electron always experiences
a velocity induced magnetic field in the electric field of the nucleus. The electron spin couples to
this internal field, a phenomenon known as spin-orbit interaction. Further, also the Lamb shift is
a fine structure effect, related the coupling of the atomic dipole to the zero-point fluctuations of
the electromagnetic field. As quantum electrodynamics (QED) is not part of this course on atomic
structure it is also not part of the exam. Compiling all contributions we obtain a Hamiltonian that
can be reduced to an effective spin Hamiltonian for the atomic fine structure. This is the work horse
of elementary atomic physics. With this Hamiltonian all interactions (except the Lamb shift) can
be calculated to very good approximation usually by ordinary perturbation theory.

To study at home

Chapter 4 - part 1: The notions relativistic mass correction, Darwin correction, Zitterbewegung and
Compton wavelength λC , Lorentz force F, generalized potential function V (r,v, t), vector potential
A(r), scalar potential ϕ(r), kinetic momentum mv, electromagnetic momentum qA, canonical mo-
mentum p, Hamiltonian H, lagrangian L, kinetic energy T , diamagnetic moment µdia and magnetic
polarizability αM , orbital magnetic moment µL, spin magnetic moment µS , Bohr magneton µB ,
Larmor precession, Stern-Gerlach method.

Read the introduction. Realize yourself how important hydrogen has been for the development
of modern physics.

§ 4.1: Relativistic and radiative shifts:

§ 4.1.1: The derivation of the relativistic mass correction Hmass
r starting from of the relativistic

Hamiltonian. This is the correction term for the kinetic energy of the electron (see
Fig. 4.1).

§ 4.1.2: The Darwin correction HDarwin
r is the correction term for the potential energy of

the electron. The origin of this correction can be visualize heuristically as a kind of
"smearing" of the electronic charge distribution over the Compton wavelength λC = αa0

as a consequence of the Zitterbewegung of relativistic electrons (see Fig. 4.1). This reduces
the electrostatic attraction of electrons close to the nucleus (s electrons). A similar
reduction results from the finite size of the atomic nucleus. - see Problem 4.1.

§ 4.1.3: The Lamb shift is a really important phenomenon but, unfortunately, does not fit
within the scope of this lecture (see Fig. 4.1). The origin of this shift can also be visualized
as a kind of "smearing of the charge distribution, in this case over a distance much
smaller than λC but much larger than rp (proton charge radius) as a result of the zero
point fluctuations of the electromagnetic field. This heuristic model is known as Welton’s
picture of the Lamb shift.
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§ 4.2: Refresh your knowledge of classical mechanics (Appendix C): the relation H = p · v − L
between the Hamiltonian and the lagrangian L = T −V and the derivation of the Hamiltonian
for an electron in a classical electromagnetic field

H =
1

2m
(−i~∇− qA)2 + qϕ (r) .

Study carefully the derivation of the effective Hamiltonian for an atom in a magnetic field
B(r)

H = H0 −
q

2m
L ·B(r) +

q2

8m
r2
⊥B2(r),

obtained using the Coulomb gauge, ∇ ·A = 0, and the expression for the vector potential of
a homogeneous magnetic field, A = 1

2B× r. Problem 4.2 is optional but very useful to refresh
your classical mechanics.

§ 4.3: Hydrogen-like atoms in an external magnetic field:

§ 4.3.1: Have a close look at how a magnetic moment can be demonstrated with the Stern-
Gerlach method (see Fig. 4.3. Understand the difference between a permanent and an
induced magnetic moment as well as the concept of magnetic polarizability. Take careful
notice of the sign conventions for the magnetic moment µL = γLL = −gLµB (L/~) realize
that the gyromagnetic ratio γL is negative but the gL factor is (by definition) positive.

§ 4.3.2: Study the notions diamagnetism, diamagnetic susceptibility and magnetization.

§ 4.3.3: Understand the difference between the notion of orbital-magnetic moment vector ope-
rator µL, “the” orbital-magnetic moment µL, effective orbital-magnetic moment µeff and
magnitude of the orbital magnetic moment

√
〈µL · µL〉. The Zeeman Hamiltonian for

the orbital motion is HZ = −µL ·B. Study Fig. 4.4-a/b.

§ 4.3.4: The torque on the angular momentum, dL(t)/dt = µL × B gives rise to Larmor
precession of µL about the field direction, ωL = gL(e/2me)B. Calculate the level splitting
by first-order perturbation theory (orbital Zeeman effect). Study Fig. 4.4-c.

§ 4.4.5: In this section we postulate spin - understand why and, in particular, why spin differs
fundamentally from a classically rotating sphere of charge.

§ 4.3.6: Familiarize yourself with the concepts of electron-spin, g-factor, gyromagnetic ratio,
electron anomaly, intrinsic magnetic moment and spin-Zeeman effect. Beware of sign
conventions in expressions for the magnetic moment µs = γeS = −geµB (S/~); realize
that (just as for µL) the gyromagnetic ratio γe is negative but the ge factor is (by
definition) positive. The Hamiltonian takes the form HZ = −µs · B and the torque is
given by dS(t)/dt = µL ×B.

§ 4.3.7: Here you find the full Zeeman Hamiltonian for the electron.

Minimum knowledge:

1. The origin of the relativistic and radiative shifts: Relativistic mass correction, Darwin term
and Lamb shift and their dependence on the angular momentum.

2. The Zeeman Hamiltonian for the electron

HZ = −µS ·B− µL ·B− 1
2µdia ·B.
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3. The definitions of the magnetic moments, of the Bohr magneton µB and the magnetic polari-
zability αM :

µL = γLL = −gLµB (L/~) gL ' 1

µS = γeS = −geµB (S/~) ge ' 2

}
µB = (e~/2me)

µdia = −αMB αM ' (e2/4me)〈r2
⊥〉.

4. The energy splittings of the fine structure are typically a factor α2 smaller than the energy
splitting of the principal structure.
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4 Fine structure of hydrogen-like atoms - part 2

The “Zeeman” magnetic field can never be switched off completely because a moving electron in an
electric field always experiences a (motion induced) magnetic field. In the atom the direction of this
field is directed along L. The electron spin S couples to this internal field, a phenomenon known
as spin-orbit coupling (Russell-Saunders coupling in the case of many-electron atoms). Therefore,
in the absence of an external field the spin S and the orbital angular momentum L couple to a
total angular momentum J = L + S. This spin-orbit coupling is accounted for by a new term in
the Hamiltonian, HLS = ξ(r)L · S. This term (partly) lifts the n2 degeneracy of the Schrödinger
Hamiltonian H0. Since L · S commutes with H0 we can calculate this lifting with "ordinary"
perturbation theory. However, as the prefactor ξ(r) does not commute with H0 this calculation is
only accurate to first order in perturbation theory. Usually this is sufficient because the second-
order correction is negligible. Unfortunately, the coupling term HLS does not commute with the
Zeeman Hamiltonian HZ . Therefore, the level splitting in a magnetic field has to be calculated with
perturbation theory for a degenerate level. In many cases this is possible by solving a 2× 2 secular
equation. Fortunately, we can analyze the fine structure with first-order perturbation theory both
in the low field limit, 〈HZ〉 � 〈HLS〉, and in the high field limit, 〈HLS〉 � 〈HZ〉. As mj = ml +ms

is a good quantum number in any field the low- and high-field information is sufficient to sketch the
full fine-structure diagram.

To study at home

Chapter 4 - part 2 (starting§ 4.4): Coupling of angular momentum and the Term notation (spectro-
scopic notation), Clebsch-Gordan decomposition, Landé interval rule, center-of-mass rule, low-field
limit - Landé factor, high-field limit - Paschen-Back effect, Wigner-Eckart theorem. Screening,
effective charge, quantum defect, Rydberg limit, low-field limit - Landé factor, high-field limier -
Paschen-Back effect.

§ 4.4: Fine-structure Hamiltonian:

§ 4.4.1: The introduction of the total angular momentum J = L + S with the corresponding
coupled basis {|lsJmJ〉} (the Russell-Saunders basis) usually written shortly as {|JmJ〉}
and the decomposition of this basis in terms of the uncoupled basis |lmlsms〉 ≡ |lml〉 ⊗
|sms〉 (the Paschen-Back basis) by means of a Clebsch-Gordan decomposition. In this
section we apply the method of § 3.2. Have a close look how the commutation relations
are proven: Problem 4.4-4.7. Problem 4.8 is very important!

§ 4.4.2: Study how the motion-induced field BL arises.

§ 4.4.3: Study how BL this reduces to the spin-orbit field BLS by correcting for the Thomas
precession. Coupling the spin to the field BLS yields the spin-orbit interaction.

§ 4.4.4: Make sure that understand how the spin-orbit Hamiltonian HLS = ξ(r)L ·S arises, in
particular how the coupling strength ξ(r) is defined.

§ 4.4.5: By collecting all terms discussed thus far we obtain the fine-structure Hamiltonian.

§ 4.5: Fine structure in zero field:

§ 4.5.1: Study how we obtain the effective fine-structure Hamiltonian, in particular how the
coupling constant ζnl is defined.

§ 4.5.2: Study Fig. 4.8 by making sure that you can derive the shift rules. Take notice of
the Landé interval rule, ∆WJ = ∆ELSn,J −∆ELSn,J−1 = ζnlJ , and the center-of-mass rule
for the energy levels. Problem 4.9 is optional. Calculate the fine-structure splitting and
verify the center-of-mass rule for hydrogen-like atoms.
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§ 4.5.3: Note that the fine-structure levels of hydrogen depend only on j and not on l and/or
s independently.

§ 4.6: We now turn to the alkali-like atoms.

§ 4.6.1: Here we discus one of the great puzzles from the development of Atomic Physics (see
Fig, 4.9): Why do we need only two quantum numbers (n, j) to describe the ground state
of hydrogen but need three (n, l, s) for the alkali-like atoms?

§ 4.6.2: Study the large n 2S - n 2P splitting in the alkalies. Understand the role of the core
electrons in screening the nuclear charge. For p electrons this is core is more efficient
than for s electrons. The absence of core electrons in hydrogen give rise to an (almost
complete) degeneracy of the n 2S and n 2P terms (see Fig, 4.9). Fig, 4.10 shows how this
depends on the alkali (i.e., the size of the core). Note that for the heavy alkali the spin-
orbit becomes large (i.e., visible even in Fig, 4.10). This is caused by the large nuclear
charge (in spite of the screening by the core electrons).

§ 4.6.2.1: The deviation from the hydrogenic value of the principal quantum numbers
(integers in the case of hydrogen) arises from screening of the nuclear charge. The
screening can be quantified using three closely related notions: the screening constant,
the effective nuclear charge and the quantum defect. Digest how these are related.
Study Fig. 4.10-b and Fig. 4.11 in this context, as well as Table 4.1. Understand what
is meant by the Rydberg limit of the quantum defect.

§ 4.6.2.2: In this section you can read how the atom contracts for increasing nuclear
charge. This section is important because it will help you later to understand some
remarkable anomalies in the periodic system. Can you define what is meant by an iso-
electronic series? Very important: Understand why the s orbitals are preferentially
bound. In Fig. 4.12 you find the radial distribution functions 2s and 2p orbitals.

§ 4.6.3: (optional) Screening also affects the fine structure.

§ 4.6.4: (optional) Understand how the calculation of the transition dipoles changes in the
presence of fine structure.

§ 4.7: Next we study the influence of a magnetic field.

§ 4.7.1: Read the introduction. When dealing with a degenerate level and two non commuting
perturbation operators (HZ and HLS) we have to solve the secular equation. This is
equivalent to the diagonalization of the perturbation matrix.

§ 4.7.2: We express the elements of the perturbation matrix in the uncoupled basis (Zeeman
basis), H′mjm′sms = 〈nlm′lsm′s|H′ |nlmlsms〉. Note that these matrix elements vanish if

ms and m′s differ more than one unit of angular momentum.

§ 4.7.3: Importantly, the matrix consists of (1×1) and (2×2) blocks along the diagonal. Hence,
we do not have to diagonalize more than a (2 × 2) matrix. Understand the difference
between pure spin states (linear Zeeman shift) and mixed spin states (non-linear Zeeman
shift). Study the crossover behavior from low field to high field in Fig. 4.15. Note the
definition of the crossover field Bfs as the point where the low-field and high-field tangents
intersect. In Problem 4.12 we derive a relation for the crossover field, handy to estimate
when you leave the low-field limit.

§ 4.7.4: Analyze the high-field limit using the uncoupled basis (Paschen-Back basis) treating
the spin-orbit Hamiltonian HLS as a perturbation. This can be done using first-order
perturbation theory. This section is very important.

§ 4.7.5: Analyze the low-field limit using the coupled basis (Russell-Saunders basis) and trea-
ting the Zeeman Hamiltonian HZ as a perturbation. Also this limit can be described with
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first-order perturbation theory. Also this section is very important. Familiarize yourself
with the Wigner-Eckart theorem in the form (4.200). You have to know this expression
but its algebraic derivation is not part of the exam (Problem 4.14 and Appendix K are
not part of the exam). However, you should be able to reproduce the heuristic derivation
using the vector diagram (Fig. 4.6) and Eq. (4.200). Have a close look at the derivation
of the Landé factor gJ .

§ 10.7.5: Study this section as an example of the low-field limit. Problem 4.14 offers a deri-
vation of the Wigner-Eckart theorem for the special case of Lz. This proof gives you an
impression how the full proof is constructed. Problem 4.14 is optional.

Minimum knowledge:

1. Realize two important properties of commutation relations:

• if A commutes with C and B commutes with C this does not imply that A and B also
commute with each other. Example: [Lz,L

2] = 0 and [L · S,L2] = 0 but [Lz,L · S] 6= 0.

• if A does not commute with C and B does not commute with C, it still can be such
that A + B does commute with C. Example: [Lz,L · S] 6= 0 and [Sz,L · S] 6= 0 but
[Jz,L · S] = [Lz + Sz,L · S] = 0.

2. The vector coupling diagram (Fig. 3.9 and Fig. 4.6) with the triangle inequality and the spec-
troscopic Term notation.

3. The Clebsch-Gordan decompositions

|jmj〉 =

l∑
ml=−l

s∑
ms=−s

|lmlsms〉〈lmlsms |jmj〉

|lmlsms〉 =

l+s∑
j=|l−s|

j∑
mj=−j

|jmj〉 〈jmj |lmlsms〉 .

4. The Landé interval rule (including derivation): ∆W = ∆ELSn,J −∆ELSn,J−1 = ζnlJ .

5. The center of gravity rule:

1

(2l + 1) (2s+ 1)

l+s∑
J=|l−s|

(2J + 1) ∆ELSn,J = 0.

6. Screening by core electrons: the rotational structure is not affected (central symmetry is
conserved).

7. Be familiar with the concepts quantum defects and screening efficiency and isoelectronic pairs.

8. Understand the preferential binding of s electrons.

9. Understand the effect of screening on the fine structure and in particular on the spin-orbit
coupling. Know that the energy difference between the D1 and D2 transitions in alkalies grows
significantly with Z, but not as rapid as expected due to screening.

10. The perturbation theory for high field.
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11. The perturbation theory for low field including the Wigner-Eckart theorem

〈nlsJmJ |Lz |nlsJmJ〉 = 〈lsJ ‖L‖ lsJ〉 〈JmJ | Jz |JmJ〉
〈nlsJmJ |Sz |nlsJmJ〉 = 〈lsJ ‖S‖ lsJ〉 〈JmJ | Jz |JmJ〉 ,

with

〈nlsJmj |Lz |nlsJmj〉 =
〈lsJmj | (L · J) Jz |lsJmj〉
〈lsJmj |J2 |lsJmj〉

= 〈lsJ ‖L‖ lsJ〉 〈lsJmj | Jz |lsJmj〉 ,

where

〈lsJ ‖L‖ lsJ〉 =
〈lsJmj |L · J |lsJmj〉
〈lsJmj |J2 |lsJmj〉

=
J(J + 1) + l(l + 1)− s(s+ 1)

2J(J + 1)
.

and the analogue expression for Sz.

12. The expression and derivation of the Landé factor

gJ = gL〈lsj ‖L‖ lsj〉+ ge〈lsj ‖S‖ lsj〉 ' 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
.
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5 Hyperfine structure of hydrogen-like atoms - part 1

The nucleus has a spin I and associated with this a magnetic moment µI = γII, where γI is the
gyromagnetic ratio, which (depending on the nucleus) can be positive, negative or zero. This gives
rise to a nuclear-Zeeman effect described by the effective Hamiltonian

HZ = γI I ·B.

In view of the presence of the nuclear magnetic moment the electron always experiences the asso-
ciated magnetic field. This gives rise to a coupling, the hyperfine interaction, between the nuclear
spin I and the total angular momentum J = L + S of the electron. This coupling can always be
written (to very good approximation) in the form

HIJ = ahfs (I · J)/~2,

but the coupling constant ahfs has a different origin for l = 0 as compared to l 6= 0. The hyperfine
coupling give rise to splitting of the fine structure levels which can be calculated by first-order
perturbation theory. Just as for the fine structure we find an interval rule and a center-of-gravity
rule. Applying the theory to the hyperfine splitting of the hydrogen ground state 2S1/2 we already
find at this elementary level an accuracy of 1 : 104.

To study at home

Read the introduction. Hyperfine structure finds its origin in the properties of the nucleus. Take
notice of the various contributions. It turns out that even with a superficial understanding of the
nucleus the hyperfine structure can be described with great precision. In Chapter 5 we focus on the
magnetic hyperfine structure.

§ 5.1.1: Just as in the case of electron spin we associate a magnetic moment to the nuclear spin.
Note the sign conventions, µI = γII = gIµN (I/~); realize the in the case of nuclear spin both
positive and negative values can be observed for the gI factor and the gyromagnetic ration
γI = gIµN/~. The Hamiltonian is again of the generic type, HZ = −µI ·B, and the torque is
described by dI(t)/dt = µI ×B.

§ 5.1.2: The introduction of the total angular momentum F = J + I with the corresponding
coupled basis {|IJFmJ〉} often written shortly as {|FmF 〉}. The coupling is illustrated
in Fig. 5.1. Verify yourself how this basis can be decomposed in the uncoupled basis
|ImIJmJ〉 ≡ |ImI〉 ⊗ |JmJ〉 (the Paschen-Back basis) with the aid of a Clebsch-Gordan
decomposition.

§ 5.2: Magnetic hyperfine interaction:

§ 5.2.1: Study how we formulate the Hamiltonian for the magnetic hyperfine interaction. Re-
fresh your knowledge of the magnetic dipole-dipole interaction by making Problem 5.1.

§ 5.2.2: Understand the three contributions to the magnetic hyperfine interaction Hhfs: (a) the
Fermi-contact interaction HFermi, where the magnetic moment µe of the electron (hence,
also the spin S) couples to the magnetic field inside the nucleus - this only happens
for l = 0 (in this case J = S); (b) the nuclear spin-orbit coupling HLI , by which the
magnetic moment µI of the nucleus (hence, also the spin I) couples to the magnetic field
associated to the orbital angular momentum L of the electron. This field is only nonzero
for l 6= 0; i.e., in the presence of orbital angular momentum; (c) the magnetic dipole-dipole
interaction Hdd between the magnetic moment µe of the electron (hence, also the spin S)
and the magnetic moment µI of the nucleus (hence, also the spin I); averaged over the
orbital motion this interaction is nonzero only for l 6= 0.
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§ 5.2.3: In this section you find the tensor expression for the magnetic dipole-dipole interaction.
In Problem 5.2 we demonstrate the decomposition in tensor components. This section is
not part of the exam.

§ 5.3: Hyperfine interaction in zero field.

§ 5.3.1: We start with an outline to prepare us for the derivation. It turns out that, in spite
of three contributions (Hhfs = HLI +Hdd +HFermi), the magnetic hyperfine interaction
assumes an extremely simple form: Hhfs = ahfs (I ·J)/~2, be it that the expression for the
coefficient differs for l = 0 from that for l 6= 0; so take close notice of the difference of the
expressions for the hyperfine coefficient ahfs for the cases l = 0 and l 6= 0. Notice, that in
both cases the sign of ahfs is determined by the gyromagnetic ratio γI of the nucleus.

§ 5.3.2: Convince yourself that the Fermi-contact term is the only term that contributes for
l = 0.

§ 5.3.3: Notice how the sum of the dipole-dipole interaction and the nuclear-spin-orbit inter-
action give rise to an effective field BJ generated by the electron at the position of the
nucleus. The calculation of this field is rather technical with the Wigner-Eckart theorem
again playing a prominent role. In Problem 5.3 we show how to calculate the reduced ma-
trix element 〈nlsj||BJ ||nlsj〉. This derivation is quite typical and certainly recommended
but is not part of the exam.

§ 5.3.4: In this section we calculate the hyperfine splitting in zero field for a given fine struc-
ture Term n 2s+1LJ . This can be done with ordinary perturbation theory because I · J
commutes with the fine structure Hamiltonian. Verify that the perturbation is indeed
diagonal in the coupled basis {|IJFmF 〉}.

§ 5.3.5: By subtracting the hyperfine shift of two subsequent F levels we obtain the hyperfine
interval rule ∆WF = ∆EIJF −∆EIJF−1 = ahfsF. The center-of-gravity rule is given without
proof because it follows analogous to Problem 4.9 because the trace of the interaction
matrix is invariant under unitary transformation.

§ 5.3.6: Pause a moment to appreciate our finding that at this point we can calculate the
hyperfine splitting in the electronic ground state 12S1/2 of hydrogen with an accuracy of
1 : 104. This transition played a major role in the development of precision time- and
frequency measurement and in radio astronomy.

§ 5.3.7: (optional) This section is valuable for students with interest in optical dipole transiti-
ons between hyperfine-structure levels.

Minimum knowledge:

1. The vector-coupling diagram (Fig. 5.1) with triangle inequality.

2. The nuclear-Zeeman Hamiltonian:
HZ = γI I ·B

3. Understand the origin of the three contributions to the hyperfine interaction and be able to
name them: nuclear spin-orbit interaction, magnetic dipole-dipole interaction, Fermi contact
interaction.

4. The effective Hamiltonian for the hyperfine coupling:

Hhfs = ahfs (I · J)/~2.

5. Know that the sign of the hyperfine coefficient ahfs is the same as the sign of the gyromagnetic
ratio γI .
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6. The hyperfine interval rule: within a fine structure Term the following rule holds for adjacent
hyperfine levels

∆WF = ∆EIJF −∆EIJF−1 = ahfsF.

7. The center-of-gravity rule:

1

(2I + 1)(2J + 1)

I+J∑
F=|I−J|

∆EIJF = 0.

8. The energy splittings of the hyperfine structure are typically a factor me/mp smaller than the
energy splitting of the fine structure.
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5 Hyperfine structure of hydrogen-like atoms - part 2

In the second part of this chapter we add the Zeeman interaction to the hyperfine Hamiltonian. In
complete analogy with the L · S coupling of the fine structure, also the I · J coupling term does not
commute with the Zeeman Hamiltonian HZ . Therefore, the level splitting in a magnetic field has
to be calculated with perturbation theory for a degenerate level. In many cases this is possible by
solving a 2×2 secular equation. As special cases we find that both the low field limit, 〈HZ〉 � 〈Hhfs〉,
and the high field limit, 〈Hhfs〉 � 〈HZ〉, can be solved with first-order perturbation theory.

To study at home

Chapter 5 - part 2 (from .§ 5.4): We meet subsequently perturbation theory in the uncoupled basis,
the notions pure state and mixed state, high-field limit - Paschen-Back effect, low-field limit - gF
factor, Wigner-Eckart theorem, followed by a discussion of the hyperfine structure of alkali atoms
(as examples of hyperfine structure in one-electron atoms).

§ 5.4: Hyperfine structure in an applied magnetic field: Take notice of the effective spin Hamiltonian
of the atom with fine structure as well as hyperfine structure. Understand what is meant by
the coupled and the uncoupled basis of the hyperfine structure and why the coupled basis is
the low-field basis and the uncoupled basis the high-field basis. Study the Zeeman effect in the
presence of hyperfine interaction and note the close similarity with the Zeeman effect in the
case of fine structure.

§ 5.4.1: In this section we derive expressions for the diagonal and the off-diagonal matrix
elements of the hyperfine perturbation matrix in the uncoupled representation; i.e., the
Zeeman basis {|nImIjmj〉}.

§ 5.4.2: Because the I · J coupling does not commute with the Zeeman Hamiltonian we have
to use perturbation theory for a degenerate level. As explained in Appendix H it is our
task to diagonalize the Hamiltonian. This amounts to solving the characteristic equation
of the eigenvalue problem (the secular equation). We do this using the uncoupled basis
(note that the same solutions can also be obtained in the coupled basis) because in this
representation the perturbation matrix is block diagonal, with (1× 1) and (2× 2) blocks
along the diagonal. Hence, we do not have to diagonalize more than a (2× 2) matrix, see
Appendix H.4. For atoms with J = 1/2 (like hydrogen) not only the energies but also
the corresponding states are determined. Understand the difference between pure spin
states (linear Zeeman shift) and mixed spin states (non-linear Zeeman shift). Study in
Fig. 5.5 the crossover behavior from low field to high field, in particular the difference
between γI > 0 and γI < 0. Note the definition of the crossover field Bhfs as the point
where the low-field and high-field tangents intersect.

§ 5.4.3: In this section we calculate the high-field limit. We apply the rule that off-diagonal
terms contribute only in higher order to the energy shifts. Notice the intersection of the
upper hyperfine levels at 16.7 Tesla in hydrogen. This happens when the nuclear Zeeman
shift equals the zero-field splitting.

§ 5.4.4:hen we calculate the low-field limit using the Wigner-Eckart theorem, like in the zero-
field case. We find that, to good approximation, for j = 1/2 the gF factor is given
by

gF ' ±gJ
1

2I + 1
for F = I ± 1/2; j = 1/2; F > 0.

where gJ is the g factor of the fine-structure Term under consideration.

§ 5.4.5: Here we go to second order in perturbation theory. In low field this results in a
quadratic correction known as the quadratic Zeeman effect.
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§ 5.5: Ground state hyperfine structure of hydrogen-like atoms:
Examples:

§ 5.5.1: Solving the secular equation for S = 1/2, I = 1/2, γI > 0 (hydrogen)

§ 5.5.2: Solving the secular equation for S = 1/2, I = 1, γI > 0 (deuterium, lithium-6)

§ 5.5.3: Solving the secular equation for S = 1/2, I = 3/2, γI > 0 (various alkali atoms)

§ 5.5.4: Solving the secular equation for S = 1/2, I = 4, γI < 0 (potasium-40)

Minimum knowledge:

1. The atomic Hamiltonian with both fine structure and hyperfine structure,

H = H0 +Hr + ξ L · S +
(
ahfs/~2

)
I · J + (gJµBJz − gIµNIz)B/~

2. The perturbation theory for high field (analogous to fine structure) in high-field basis.

3. The perturbation theory for low field including the Wigner-Eckart theorem (analogous to fine
structure)

〈nlsJIFmF | Jz |nlsJIFmF 〉 = 〈JIF ‖J‖ JIF 〉 〈FmF |Fz |FmF 〉
〈nlsJIFmF | Iz|nlsJIFmF 〉 = 〈JIF ‖I‖ JIF 〉 〈FmF |Fz |FmF 〉 ,

〈JIF ||J ||JIF 〉 =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
. (P.3)

and the analogous expression for I. The expression for the gF factor,

gF = gJ〈JIF ||J ||JIF 〉 − gI(me/mp)〈JIF ||I||JIF 〉 '
for J 6=0

gJ〈JIF ||J ||JIF 〉

and the very good approximation for J = 1/2 atoms with F 6= 0

gF ' ±gJ
1

2I + 1
for J = 1/2, F 6= 0,

where gF < 0 always corresponds to the state with the lowest multiplicity (F = I − 1/2) and
gF > 0 always with the state with of highest multiplicity (F = I + 1/2).

4. Make sure that you can sketch the hyperfine structure as a function of the magnetic field for
atoms with J = 1/2 and given nuclear spin I and sign of γI .
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6 Electric hyperfine structure (optional)

NB: This chapter not part of the exam.
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7 Helium-like atoms

Right at the start of this chapter we find out that major changes occur when an atom contains
more than a single electron. Actually, the complexity increases so strongly that the situation would
be more or less hopeless of the electrostatic interaction would not be overwhelmingly dominant.
In the theoretical description the electronic charge has to be distributed over the atom with great
precision. This requires a new approach because analytical solutions (as used for hydrogen) do not
exist. Aside from this, the electrostatic interaction is strongly affected by a phenomenon called
exchange, completely absent in classical electrodynamics. With this knowledge in the back of our
mind we can be positive to embark on larger atoms. We shall find that that the central symmetry
is mostly preserved, so the classification with the quantum numbers n, l,ml per electron remains
useful. After refreshing the nomenclature we start with the helium atom. The electronic orbitals
remain similar to those of hydrogen. The principal difference is found in the Coulomb repulsion
between the electrons. The influence of this phenomenon we calculate with first-order perturbation
theory.

After a discussion of helium in the ground state we turn to helium with two electrons in different
orbital states. We find that in the latter case the two-electron state is degenerate under exchange of
the electrons. This is called exchange degeneracy. The Coulomb repulsion between the electrons lifts
this degeneracy. In this context we meet the two so-called Coulomb integrals: The direct integral J
and the exchange integral K. Using first-order perturbation theory for a two-fold degenerate level we
find that the antisymmetric wavefunction has the lowest energy. Intuitively this is understandable
because the Coulomb repulsion is smallest in this case. For two electrons in the same orbital
(like in the helium ground state) only the direct integral contributes because in this case exchange
degeneracy is absent. After this we learn how to evaluate the Coulomb integrals. At the end of the
chapter we apply the newly acquired knowledge to calculate the ground state of helium.

To study at home:

Read the introduction.

§ 7.1: We formulate the Hamiltonian for an atom with exactly two electrons. First we solve the
unperturbed problem. This is the Hamiltonian without Coulomb repulsion. We obtain the
hydrogenic energy levels.

§ 7.1.1: The Coulomb repulsion between the electrons causes the charge distribution to inflate.
Another way to look at the same phenomenon is to say that each of the electrons is
somewhat shielded from the nuclear charge by the presence of the other electron. This
is called screening. We calculate the energy of the atom using first-order perturbation
theory. The screening potential added to Coulomb potential of the bare nucleus yields
the effective potential for the electrons inside the atom.

§ 7.1.2: The ground-state energy can be reduced by optimization of the shape of the (norma-
lized) wavefunction.

§ 7.1.3: Importantly, the screening is not complete. This makes it possible to bind an electron
to a neutral hydrogen atom.. In this way we obtain the negative ion H−. Binding of this
ion cannot be obtained (explained) with perturbation theory. In contrast, this is possible
by variation of the wavefunction. The actual variational calculus for H− falls outside the
exam but you should be able to explain why the H− ion can exist.

§ 7.1.4: Our task is to determine the best effective potential. In this section we show that
for the 1s2 product wavefunction of helium variational calculus leads us to the Hartree
equations. This is a set of coupled Schrödinger equations (one for each electron) that
can be solved with an iterative numerical procedure. As the wavefunctions determine
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the potential used in these Schrödinger equations, we have to iterate the procedure to
obtain a selfconsistent solution (for wavefunctions and potential). The derivation of the
Hartree equations is not part of the exam but you have to understand the principle of
the self-consistent solution.

§ 7.2: In this section we meet a fundamental phenomenon. We learn that the ground state of helium
(with two electrons in the same orbital) is nonmagnetic (S = 0) although magnetic states
(S = 1) seems perfectly possible in view of the coupling rules for two spins s = 1/2 (see
Section 3.2). Apparently, experiment forces us to exclude the symmetric spin state. This is
known as the Pauli exclusion principle.

§ 7.3: For two electrons in different orbitals we note the occurrence of exchange degeneracy (when
neglecting the Coulomb repulsion between the electrons). Lifting of this degeneracy by the
Coulomb repulsion can be calculated with perturbation theory for a two-fold degenerate level.
The perturbed states are given by the symmetric and anti-symmetric linear combinations of
the unperturbed states. We introduce the direct integral J and the exchange integral K. The
direct integral corresponds to a shift of the degenerate levels. The exchange integral determines
the splitting. The antisymmetric orbital has the lowest energy because the Coulomb repulsion
is lowest in this case. We come to the conclusion that, experimentally, the antisymmetric
orbital pair state is only observed in combination with a symmetric spin state and vice versa.
Other combinations have to be excluded (Pauli exclusion principle).

§ 7.4: Study how the perturbation term from the Hamiltonian (the Coulomb repulsion between the
electrons) can be rewritten as a sum over spherical harmonics. Verify how this enables closed
expressions for J and K in terms of angular integrals and radial integrals.

§ 7.4.1: Convince yourself that it is straightforward to calculate the angular integrals with the
aid of the integral over three spherical harmonics. Study Table 7.1.

§ 7.4.2: Convince yourself of the usefulness of introducing mean-field potentials (screening
potentials) to calculate radial integrals. Problem 7.9 is of particular relevance.

§ 7.4.3: Calculate the ground-state energy of helium.

§ 7.4.4: Calculate the ground-state energy of metastable triplet helium.

§ 7.4.5: Read the discussion of helium-like atoms and make sure you understand why helium
is spacial.

Minimum knowledge:

1. The name and definition of the notions: orbital wavefunction (short: orbital), electron shells
en subshells, equivalent electrons, Pauli principle, electron configuration, filled shell (closed
shell), electron hole, valence electron and core electron.

2. The Hamiltonian of the helium atom in Hartree atomic units,

H =
∑
i=1,2

Hi +H′ =
∑
i=1,2

(
−1

2
∇2
i −

Z

ρi

)
+

1

ρ12
.

3. The name and definition of the direct integral J and the exchange integral K

J = (nlml;n
′l′ml′ |

1

ρ12
|nlml;n

′l′ml′) =
∞∑
k=0

ak(lml; l
′ml′)F

k(nl;n′l′)

K = (nlml;n
′l′ml′ |

1

ρ12
|n′l′ml′ ;nlml) =

∞∑
k=0

bk(lml; l
′ml′)G

k(nl;n′l′).
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4. For equivalent electrons Gk(nl;nl) = F k(nl;nl) > 0 and since bk(lml; l
′ml′) ≥ 0 for all values

of k, the exchange integral is positive definite: K(nlml;nlm
′
l) > 0.
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8 Central field approximation for many-electron atoms

In this chapter we continue with the approach that turned out so successful for helium. Also
for many-electron atoms the concept of screening is of central importance. We show how the
Hamiltonian can be reduced to a Hamiltonian with central symmetry (§ 8.1) by neglecting the
correlations between the electrons. In this way we obtain the central field approximation. In the
remaining part of the section we analyze four approximations in which central fields are used to
describe many-electron atoms. First we discuss the atomic model with noninteracting electrons
(§ 8.2). The second example is the Thomas-Fermi model for the atom (§ 8.3). Next we discuss in
§ 8.4 the Hartree equations, already introduced in the discussion of the helium atom. The Hartree
method can be regarded as the first step towards a modern mean-field theory. As a last example we
discuss in § 8.5 the semi-empirical quantum-defect approach and show how this approach can serve
to calculate electric-dipole transitions in alkali-like atoms. In hindsight the validity of the central
field approximation provides the justification of the treatment of alkali atoms as hydrogen-like atoms
as was done in previous chapters, in particular when discussing the atomic hyperfine structure in
Chapter 5.

To study at home:

Read the introduction.

§ 8.1: Study how we introduce the screening potential and which terms are neglected in the central
field approximation. Make sure that you understand that in this approximation correlations
between electrons are neglected.

§ 8.2: Study the discussion about non-interacting electron atoms. Convince yourself that even under
this rude approximation the atomic sequence in the periodic system is correctly predicted for
the light atoms. Only the first paragraph is part of the exam.

§ 8.3: (optional) The Thomas-Fermi central field, the atomic model of Thomas and Fermi and
Thomas-Fermi screening.

§ 8.4: Digest the principle of a selfconsistent mean field solution. Study what is meant by the Hartree
equations.

§ 8.5: (optional) Alkali-like atoms are well-suited for a description with a central field approxima-
tion. A semi-empirical description emerges by using quantum defects, also known as Rydberg
corrections.

§ 8.5.1: (optional) This section is about estimating radial integrals with the method of Bates
en Damgaard.

Minimum knowledge:

1. All mentioned notions: nuclear screening, central symmetry, central field approximation, non-
interacting electrons, Hartree mean field, selfconsistent solution, quantum defect (Rydberg cor-
rection).

2. The N -electron Hamiltonian for the principal structure of many-electron atoms:

H =

N∑
i=1

(
− ~2

2me
∇2
i −

Ze2

4πε0r

)
+

1

2

N∑
i,j

′ e2

4πε0rij
.
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3. The central field Hamiltonian

HCF ≡
N∑
i=1

(
− ~2

2me
∇2
i + VCF(ri)

)
,

with the central field given by

VCF(ri) = − Ze2

4πε0ri
+ Vscr(ri) = − e2

4πε0

Zeff(ri)

ri
.

4. Notation: The sum over all different pairs with i, j ∈ {1, · · ·N} can be written in two equivalent
ways:

1
2

N∑
i,j=1

′ ≡
N∑
i>j

,

where the prime indicates the exclusion of the terms i = j and the factor 1
2 has to be included

to correct for double counting. Alternatively, on can sum over all pairs with i > j.
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9 Many-electron wavefunctions

Chapter 9 is a formal intermezzo in between the other chapters. It is important because it serves
to understand why a many-electron problem can remain manageable. We develop the toolbox for
fermionic many-body systems. We have another good look at the notion exchange as well as the
lifting of exchange degeneracy by Coulomb repulsion between the electrons. We start the chapter
by introducing the exchange operator P and come to the conclusion that this is an observable
with eigenvalues ±1 corresponding to symmetric (+1) or antisymmetric (−1) eigenstates. Identical
particles turn out to show only one of these eigenvalues. Depending on this eigenvalue they are
called bosons (+1) or fermions (−1). The consequence of the antisymmetry of the wavefunction
is that two fermions cannot occupy the same states. The electrons are fermions and this becomes
manifest in the form of the Pauli principle.

The many-electron states can be written as Slater determinants. This means that we should be
able to evaluate the expectation values of operators sandwiched between two Slater determinants.
For instance: what is the angular momentum of such a state? We show that matrix elements in
which an operator is sandwiched between two Slater determinants always can be reduced to relative
simple expressions. In principle such a N -body matrix element can be written as a sum of N !×N !
terms but, fortunately, most of these are zero and the remaining terms equal to each other (or to a
manageable number of characteristic values). For one-body operators these are expressions in which
only one-body matrix elements appear which can take at most N different values. For two-body
operators these are expressions of at most N(N − 1) terms in which only matrix elements of pair
states appear, which are either equal to a “direct” value or to an “exchange” value.

To study at home:

§ 9.1: Study the definition of the exchange operator P and understand that this is an observable with
eigenvalues ±1. Note that P commutes with the Hamiltonian and that the joint basis consists
of symmetric (+1) and antisymmetric (−1) eigenstates of the Hamiltonian. We arrive at the
(empirical) conclusion that two identical particles always occupy only one of the eigenstates of
the exchange operator. Depending on the eigenvalue they are called bosons (+1) or fermions
(−1).

§ 9.1.1: Experimentally the electrons turn out to be fermions. The consequence of the anti-
symmetry of the wavefunction is that two fermions cannot occupy the same state (Pauli
exclusion principle). Study the consequence of the presence of spin: if the orbital wa-
vefunction is symmetric the spin state has to be antisymmetric (or vice versa) to assure
that the total pair state is antisymmetric under exchange of particles with spin..

§ 9.1.2: Note the definition of spinorbitals. Verify that a two-electron state can always be
written as a linear combination of at most two 2× 2 determinants, so-called Slater deter-
minants. Convince yourself that the concept of the Slater determinant can be generalized
to a n × n determinant for n fermions. Beware of the difference between the exchange
operator P and the permutation operator P ,

ψα (r1, σ1; · · · ; rN , σN ) =

√
1

N !

∣∣∣∣∣∣∣
ϕα1 (r1, σ1) · · · ϕαN (r1, σ1)

... · · ·
...

ϕα1
(rN , σN ) · · · ϕαN (rN , σN )

∣∣∣∣∣∣∣ .
The Slater determinant is the simplest generalization of the product wavefunction . It
has the proper permutation symmetry and is consistent with the Pauli principle. In the
Dirac notation this state takes the form

|ψα〉 ≡ |α1, · · · , αN 〉 ≡
√

1

N !

∑
P

(−1)pP |α1, · · ·αN ),
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where

|α1, · · ·αN ) ≡ |α1〉1 |α2〉2 · · · |αN 〉N ≡ |ψα) (P.4)

is the N -body ordered product state of one-body states |ακ〉i, in which κ ∈ {1, · · · , N}
is called the state index and i ∈ {1, · · · , N} the particle index. Make sure that that you
have a good understanding of the Slater determinant in both notations, in particular
the difference between the notations |〉 and |) used for symmetrized and unsymmetrized
many-body states, respectively.

§ 9.1.3: A compact notation is essential to maintain the overview. Make sure that you un-
derstand the Dirac notation |1, 1̄, 0, 0̄,−1,−1̄〉2p6 , where we use the standard ordering
convention: high ML before low ML and

”
spin up” before

”
spin down”. For closed shells

only a single state is consistent with the Pauli principle. Convince yourself that for a nlx

configuration every electron can be found in one of ν = 2(2l + 1) states |nlmlsms〉. For
the same configuration we can identify ν2 possible pair states,

(
ν
x

)
of which satisfy the

Pauli principle. An interesting property of Slater determinants is that they are invariant
under unitary transformation (see Problem 9.4).

§ 9.2: Once we have many-electron states we turn to evaluating matrix elements. It may seem a
tough task to evaluate many-body operators sandwiched between determinantal wavefunctions
but this will turn out manageable.

§ 9.2.1: We start with one-body operators.

1. These are zero if the matrix elements differ in more than one pair of spinorbitals.

2. Study the description of off-diagonal matrix elements differing in one pair of spi-
norbitals. Make sure that you understand why most of the terms are again zero. It
turns out that N(N − 1)! = N ! terms are nonzero and these are all equal to each
other.

3. Study next the diagonal matrix elements. Again N ! terms are nonzero. This time we
group them in N sets of (N − 1)! terms with the same value; i.e., N different terms
are possible.

§ 9.2.2: Next we turn to two-body operators.

1. These are zero if the matrix elements differ in more than two pairs of spinorbitals.

2. Study the description of off-diagonal matrix elements differing in two pairs of spi-
norbitals. Make sure that you understand why most of the terms are again zero. It
turns out that 1

2N(N − 1)[2(N − 2)!] = N ! terms are nonzero; 1
2N(N − 1) of these

are called the “direct” terms (all equal to each other) and the other 1
2N(N − 1) are

the “exchange” terms (also all equal to each other).

3. Study the description of off-diagonal matrix element differing in one pair of spinor-
bitals. We group them in N sets of (N − 1)! terms, half of them carrying a “direct”
value and half of them an “exchange” value; i.e., in this case N different values can
occur.

4. Next come the diagonal matrix elements. We group them in N(N−1) sets of (N − 2)!
terms. Half of these carry a “direct” value and the other half an “exchange” value;
i.e., in this case N(N − 1) different values can occur.

Problem 9.5 is important. It shows that exchange never contributes to spin-independent
two-body interactions between paired spins This knowledge will come out handy.

§ 9.3: (optional) In this section we introduce the occupation number representation (also called
second quantization).
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§ 9.3.1: (optional) It forms the (non-relativistic) onset to a quantum field theory for the atom.
You have to get used to it but one this is done you will realize that the many-body forma-
lism simplifies to an algebra with simple and intuitive rules. This is no luxury because the
formalism of § 9.2 (with all cases to be distinguished) is labor intensive and error prawn.
In the occupation number representation the emphasis is on the operators rather than on
the states. The operators are be expressed in terms of so-called construction operators,
either creation operators or annihilation operators. These represent a generalization of
the shift operators introduced for angular momentum. The construction operators serve
to create any desirable atomic state by creation or annihilation of spinorbitals in the
atom. § 9.3 is highly recommended but falls outside the exam.

§ 9.3.2: (optional) We start with the definition of a new representation: the occupation number
representation in the N -body Hilbert space. In this representation we specify the occu-
pation of all possible states (most of them are empty). In our case (for many-electron
states) we specify the occupation of the spinorbitals. These states are called number
states. It is just another way to specify the Slater determinants. The N -electron Slater
determinant |ψγ〉 is written as |ψγ〉 ≡ |n1, n2, · · · 〉, where ns ∈ {0, 1} is the occupation
number of the spinorbital |αs〉, with nr + ns + · · ·+ nt = N .

§ 9.3.3: (optional) We next extend the Hilbert space into a Grand Hilbert space (Fock space)
in which the states may consist of any number of particles. The number states from the
previous section turn out to be the eigenstates of the number operators n̂1, n̂2, · · · , with
occupation numbers n1, n2, · · · as the eigenvalues,

n̂s|n1, n2, · · · , ns, · · · 〉 = ns|n1, n2, · · · , ns, · · · 〉,

where n1, n2, · · · can take the values 0 or 1 (for fermions). The eigenstates |n1, n2, · · · , ns, · · · 〉
form a basis of the occupation number representation. In this representation every ope-
rator can be expressed in terms of the elementary operators â†s (the creation operator for
the spinorbital |αs〉) en âs (the annihilation operator for the spinorbital |αs〉),

â†s|ns, · · · 〉 ≡
√
ns + 1|ns + 1, · · · 〉

âs|ns, · · · 〉 ≡
√
ns|ns − 1, · · · 〉,

with ns ∈ {0, 1}. By imposing the anti-commutation relations,

âr, â
†
s} = δrs ; {âr, âs} = {â†r, â†s} = 0,

we assure that the Pauli principle remains satisfied. This is demonstrated with seven
examples. The commutation relations derived in Problem 9.6 are very valuable.

§ 9.3.4: (optional) After the preparatory work we can rewrite the one- and two-body operators
in the the occupation number representation,

Q1 =
∑
i

qi → Q̂1 =
∑
s,s′

〈s′|q|s〉â†s′ âs,

where the sum in the expression for Q1 runs over the particle index and the sum in the
expression for Q̂1 runs over the state index of all spinorbitals (occupied or not) and â†s
en âs are the construction operators by which the occupation of the state |αs〉 can be
changed. Likewise, we find for the two-body operators

Q2 = 1
2

∑
i,j

′qij → Q̂2 = 1
2

∑
t,t′

∑
s,s′

(s′, t′|q12|s, t)â†s′ â
†
t′ âtâs,

where (s′, t′|q12|s, t) contains unsymmetrized two-body states. In the remainder of § 9.3.4
we show that these two operators do exactly what we want, in particular all cases of § 9.2
are reproduced.
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§ 9.4: We now return to the main body of the text. We apply the many-body formalism to angular
momentum operators. In particular it will enable us to calculate the angular momentum
properties of Slater determinants.

§ 9.4.1: In this section we investigate the action of the operators Lz, L± en L2 (of the total
orbital angular momentum) on Slater determinants. The spin orbitals are denoted by
|αk〉 = |nklkmk

l s
kmk

s〉. Here the total orbital angular momentum is defined as

L =

N∑
i=1

li, (P.5)

where li is the orbital angular momentum of electroni.

Convince yourself that

Lz|ψα〉 =

N∑
k=1

mk
l ~ |ψα〉 = Mα

L~ |ψα〉,

just as we would write intuitively...

Convince yourself that

L±|ψα〉 =

N∑
k=1

√
lk(lk + 1)−mk

l (mk
l ± 1)~ |ψα(mk

l ± 1)〉,

which is already less intuitive.

Next comes the case

L2|ψα〉 =


N∑
k=1

lk(lk + 1) +

N∑
k,k′=1

′mk
lm

k′

l

 ~2 |ψα〉+

+

N∑
k,k′=1

′
√
lk(lk + 1)−mk

l (mk
l + 1)

√
lk′(lk′ + 1)−mk′

l (mk′
l − 1)~2 |ψα(mk

l +1)(mk′

l −1)〉.

Here we come not far with intuition and the efforts for§ 9.2 are rewarded.

Study the Problems 9.7 and 9.8 and come to the conclusion that for stretched orbital angular
momentum also the expression L2 becomes intuitive. Note the commutation relations
(9.106). The derivation is given in Problems 9.9 and 9.10 but is not part of the exam.

§ 9.4.2: Study how the expressions simply a bit for the case of spin because s = 1/2 for all
electrons (in contrast the value of l can vary).

§ 9.4.3: Note that l2i of the individual electron commutes both with J2 and with L · S, where
J = L + S.

Minimum knowledge:

1. The compact notations: helium:

|ψHe〉 = |1s, 1s̄〉 ≡ |0, 0̄〉1s2 ≡ | ��−〉1s2 ,

beryllium:
|ψBe〉 = |1s, 1s̄, 2s, 2s̄〉 ≡ |(0, 0̄)1s2(0, 0̄)2s2〉 ≡ |(��−)1s2(��−)2s2〉,

neon:

|ψNe〉 = |1s, 1s̄; 2s, 2s̄; 2p1, 2p̄1, 2p0, 2p̄0, 2p−1, 2p̄−1〉
= |(0, 0̄)1s2(0, 0̄)2s2(1, 1̄, 0, 0̄,−1,−1̄)2p6〉 ≡ |(��−)1s2(��−)2s2(��− ��− ��−)2p6〉.
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2. The expression

Lz|ψα〉 =

N∑
k=1

mk
l ~ |ψα〉,

and its analogue for spin angular momentum.

3. The expression

L±|ψα〉 =

N∑
k=1

√
lk(lk + 1)−mk

l (mk
l ± 1)~ |ψα(mk

l ± 1)〉,

and its analogue for spin angular momentum.

4. The expression
L2|ψllα〉 = Nl(Nl + 1)~2|ψllα〉

for L2 in the case of stretched orbital momentum (and its analogue for spin). Beware that
this expression is completely wrong in case the angular momentum is not stretched.
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10 Ground states of many-electron atoms - part 1

All ground work has been done to understand the periodic system of Mendeleev. This table provides
the ground states of many-electron atoms. The theoretical underpinning of the periodic system is
called the Aufbau principle. The electrons are grouped in shells en subshells. The electrons in a
subshell (often simply called shells) share the same radial wavefunction and are called equivalent.
The degeneracy of electron states (including spin) determines how many electrons fit in a given
subshell. The maximum number is determined by the Pauli principle. The distribution over the
shells is called the electron configuration. A shell with the maximum number of electrons is called
a full shell or closed shell. A vacant electron in a shell is called a hole. The electrons outside closed
shells are called valence electrons. The electrons in closed shells are called core electrons. Chapter 10
start by simply stating the Hund rules for the determination of the electronic ground state. The
Hund rules have no exact validity but are ideally suited to understand the physics underpinning the
Aufbau principle. For this reason the form the guiding thoughts through this important chapter.

To study at home:

Read the introduction. Understand that the ground state of the atom is determined by the Cou-
lomb repulsion between the occupied spinorbitals.

§ 10.1: Read the Hund rules.

§ 10.2: Coulomb integrals and Hartree-Fock method.

§ 10.2.1: In this section we make a start with the calculation of the energy of the ground state.
In calculating the Coulomb repulsion we recognize three contributions: (a) repulsion
between two electrons from closed shells; (b) the repulsion between a valence electron
and a core electron; (c) The repulsion between two valence electrons. It turns out that
the repulsion of a nlmlsms electron by the electrons from a filled n′l′ shell does not
depend on the values of ml en ms. In other words, two equivalent electrons always
experience the same Coulomb repulsion by a closed shell. Therefore, only the valence
electrons determine which state has the lowest energy.

§ 10.2.2: Note that sometimes more than a single electron configuration is relevant. If two
configurations have approximately the same energy the become mixed as follows from
second-order perturbation theory.

§ 10.2.3: (optional) The approach of § 10.2.1 can be underpinned by a variational procedure,
the Hartree-Fock method. This method strongly resembles the Hartree method but is
based on Slater determinants. In this way it inherently satisfies the Pauli principle. Note
the relation to ferromagnetic exchange. In view of the importance of the Hartree-Fock
method in theoretical physics we derive the Hartree-Fock equations but this procedure is
not part of the exam.

§ 10.2.4: (optional) If you have digested the Hartree-Fock method you will also enjoy Koop-
mans’ theorem. This theorem enables us to determine the quality of the Hartree-Fock
approximation by measuring the photo-emission of core electrons.

§ 10.2.5: (optional) If you have digested the Hartree-Fock method you will also enjoy the
Slater approximation. This approximation provides some physical insight in the role of
the Coulomb integrals.

§ 10.2.6: This section is part of the exam. It is the important follow up on section§ 10.2.1 and
connects to our discussion of helium-like atoms. The Coulomb integrals can be separated
into terms representing the Coulomb repulsion within the shells (intra-shell) and terms
for the Coulomb repulsion between the shells (inter-shell). Make sure that you understand
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how these contributions can be calculated with the methods of Chapter 7. Problem10.1
is instructive because it demonstrates the interaction energy between a valence electron
and a closed shell does not depend on the magnetic quantum number of that electron.

§ 10.3: First we discuss spherical atoms; i.e., atoms without orbital angular momentum.

§ 10.3.1: For closed shells both the total orbital angular momentum and the total spin are
zero (convince yourself). Study Unsöld’s theorem: Full or half-filled shells are spherical.
Study Fig. 10.2: note that for closed shells the electron affinity vanishes. Furthermore,
study the difference in ionization energy between small closed shells (ns2), the alkaline-
earth elements, and larger closed shells (np2 en nd2). Note that the ionization energy
increases with the number of electrons in a closed shell. Make sure that you understand
this phenomenon. In the inert gases Ne en Ar both the s shell and the p shell are closed;
in Kr and Xe this holds for the s shell, the p shell and the d shell; in Rn the s shell,
the p shell, the d shell and the f shell are closed. In the latter case it has become most
unfavorable to pull an electron from the shells.

§ 10.3.2: For a half-filled shells the spin state is stretched. Convince yourself that the orbital
angular momentum has to be zero in this case.

§ 10.4: Next the atoms with one valence electron.

§ 10.4.1: The screening of the nuclear charge is smaller for s electrons than for electrons with
l > 0. Understand why this is the case and why this gives rise to preferential filling of
the 4s shell before the 3d shell, the 5s shell before the 4d and 4f shells, etc., and why
the binding advantage of the s shells becomes marginal for almost half-filled or almost
filled shells (read the text on the collapse of the d shell). Understand the reference to
configuration interaction in this context. In this section we return to the discussion of
screening in alkali-like atoms for increasing nuclear charge and how this gives rise to
pulling a hole in the 4s shell. This is an interesting anomaly in filling of the 3d shell in
the fourth period of the periodic system.

§ 10.4.2: We discuss how exchange affects the charge distribution of the core electrons. The
keyword is core polarization as a result of quantum correlations. If you like you can un-
derstand here why core polarization can give rise to a Fermi contact interaction in cases
where you would not expect it. And how this can give rise to a negative hyperfine coef-
ficient for positive gyromagnetic ratio (γI > 0). This feature explains the level inversion
in lithium (see Fig. 5.3) which is called anomalous because it cannot be explained by the
elementary theory for hydrogen like atoms.

§ 10.5: The labor starts for atoms with more than one valence electron (and without spin-orbit
coupling). This case calls for understanding of Hund’s rules 1 and 2.

§ 10.5.1: Read the intro.

§ 10.5.2: First of all we study a partially filled shell with two equivalent p electrons. Verify
that without Pauli exclusion (2l+1)(2s+1)×(2l+1)(2s+1) = 6×6 = 36 basis states are
possible for such a pair,

(
6
2

)
= 15 of which are consistent with the Pauli principle. These

are the 15 Slater determinants from the upper part of Table 10.2. The 36 states can also
be represented by 36 LS terms of the coupled representation (lower part of Table 10.2;
coupling into states of total L and total S). Three questions emerge: a.) which of these
LS terms are consistent with the Pauli principle? b.) what is the relation between the
LS terms and the Slater determinants? c.) which term has the lowest energy?

a.) Study the decision table 10.3. It is used to determine which LS terms are consistent
with the Pauli principle. Only one triplet and two singlets this turns out to be the
case. According to the Hund rules the only triplet has to be the ground state.
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b.) For stretched states the LS term can be expressed as a single Slater determinant. If
the LS term is not stretched it can be expressed as a linear combination of Slater
determinants. The actual linear combination can be determined by operating L± or
S± onto a stretched state. Sometimes these operators have to be applied more than
once. Study how, starting from the LS terms |3P ; 1, 1〉 and |1D; 2, 0〉, we derive two
orthonormal linear combinations of Slater determinants. Since we are dealing with a
3D subspace the third linear combination (for |1S; 0, 0〉) has to be orthogonal to both
of the other states. With this canonical procedure we can express every LS term as
a linear combination of Slater determinants.

c.) Once we have expressed our LS terms as a linear combination of Slater determinants
be can also calculate their energy. For this we use the expressions for matrix elements
of one- or two-body operators and the Coulomb integrals from Chapter 7.. Because
the canonical procedure can be labor intensive the Slater sum rule comes out handy.
This rule is based on the preservation of the trace of a matrix under unitary trans-
formation. This can eliminate the use of the orthonormalization procedure. Once we
have the energies it turns out that the first Hund rule is satisfied. This demonstrates
that the electrostatic repulsion between the valence electrons determines the ground
state.

§ 10.5.3: Next we turn to a partially filled shell with two equivalent d electrons. Verify that
without Pauli exclusion (2l+ 1)(2s+ 1)× (2l+ 1)(2s+ 1) = 10×10 = 100 basis states are
possible for such a pair,

(
10
2

)
= 45of which are consistent with the Pauli principle. These

are the 45 Slater determinants from Table 10.6. The 100 states can also be represented
by 100 LS terms of the coupled representation (lower part of Table 10.6). The three
questions return: a.) which of these LS terms are consistent with the Pauli principle?
b.) what is the relation between the LS terms and the Slater determinants? c.) which
term has the lowest energy?

a.) Study the decision table 10.7). It is used to determine which LS terms are consistent
with the Pauli principle. For two triplets and three singlet this turns out to be the
case turns out to be Pauli consistent. According to the Hund rules, one of the two
triplets (3F and 3P ) has to be the ground state, but which?

b.) For stretched states the LS term can be expressed as a single Slater determinant.
Holds for the 3F term and we can write down an expression for the Coulomb repulsion
in this term. Study how the Coulomb repulsion in the 3P term is calculated by using
the Slater sum rule.

c.) We calculate the Coulomb repulsion for the 3F and 3P terms, using the Coulomb
integrals from Chapter 7. The repulsion turns out to be smallest for the 3F term.
This is the term with the largest value of L. This result confirms the second Hund
rule. It demonstrates that, also for the second Hund rule, the electrostatic repulsion
between the valence electrons determines the ground state.

Minimum knowledge:

1. You should be able to determine the electron configurations of the ground states of all elements
up to krypton (Kr).

2. You should be able to explain the preferential occupation of the s shells as well as the anomalies
occurring for chromium (Cr) and Copper (Cu).

3. The three Hund rules.

4. You should be able to determine all LS terms for a given electron configuration.
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5. You should be able to determine for a given electron configuration all Slater determinants
consistent with the Pauli principle (decision tables).

6. You should be able to use the operators L± of S± on LS terms and on Slater determinants.

7. You should be able to express the electrostatic energy of an LS term in terms of the Coulomb
integrals for pair states

8. You should be able to use the Slater sum rule.
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10 Ground states of many-electron atoms - part 2

The third Hund’s rule discriminates between states with the same values of L en S but differing
in J . The rule depends on the filling of the shell (less-than-half-filled versus more-than-half-filled).
To understand the foundation of this rule we evaluate the spin-orbit interaction in many-electron
atoms. We discover that a more-than-half-filled shell can be analyzed as a full shell with some holes.
Such a hole has a positive charge which switches the sign of the spin-orbit coupling strength; i.e.,
ξ(r) becomes negative (see Section 4.6.1). This manifests itself in so-called inverted level ordering
when changing from less-than-half-filled shells to more-than-half-filled shells. Once we understand
also the third Hund’s rule we can determine the J value of state of lowest energy for a given electron
configuration (for LS coupling).

§ 10.6: Fine structure in many-electron atoms - Hund’s rule 3.

§ 10.6.1: Study how the Zeeman Hamiltonian for N electrons with orbital angular momentum
li and spin si can be rewritten in the form of an effective Zeeman Hamiltonian of one
particle with orbital angular momentum L =

∑
i li and spin S =

∑
i si.

§ 10.6.2: The spin-orbit coupling of one electron, ξ(r)l · s, can be calculated as in the case of
hydrogen but with the Coulomb potential of the nucleus replaced by a screened Coulomb
potential. Convince yourself that the coupling constant will increase with the nuclear
charge.

§ 10.6.3: As long as the exchange dominates over the spin-orbit coupling (this is the case for
small to moderate nuclear charge) the orbital angular momenta first couple into a total
orbital angular momentum L =

∑
i li and the spin angular momenta into a total spin

S =
∑
i si. Subsequently, L and S couple into the total angular momentum J = L + S.

The J is conserved in zero field (neglecting hyperfine structure). This coupling scheme is
called LS coupling or Russell-Saunders coupling. In atoms with large nuclear charge the
spin-orbit coupling dominates over the exchange first couple li and si into ji = li + si.
Subsequently, the ji couple into the total angular momentum J = j1 + · · · jN , again the
conserved quantity. This type of coupling is called jj coupling.

§ 10.6.4: In the lectures we restrict ourselves to LS coupling because this applies to most not
too heavy atoms. It turns out that the LS coupled Hamiltonian can be rewritten in the
form of an effective one-body Hamiltonian for a particle with orbital angular momentum
L =

∑
i li and spin S =

∑
i si. What remains to be done is calculate the matrix element

of the spin-orbit coupling. Study how this spin-orbit shift is obtained sing the Wigner-
Eckart theorem,

∆ELSn,J =
(
ζnLS/~2

)
〈LSJMJ |L · S|LSJMJ〉,

where
ζnLS = ζnl

∑
i

〈L||li||L〉〈S||si||S〉,

is called the the Russell-Saunders coupling constant
With all this the Hamiltonian is reduced to an effective one-body Hamiltonian. As
a consequence the phenomenology of the many-electron atoms is very similar to that of
hydrogen-like atoms, be it that the spin S is not necessarily 1/2 but can take an arbitrary
value.

§ 10.6.5: Study why an electron shell with a vacancy behaves like a closed shell with a hole.
Such a hole has a positive charge, a negative mass and an intrinsic magnetic moment
opposite to that of the electron which fits the hole. Electron and hole always coincide
and have the same velocity but opposite orbital momentum. Study the add/subtract
procedure by which we can show that the spin-orbit coupling constant ζnl of a single hole
(i.e., a closed shell with one vacancy) is negative.
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§ 10.6.6: What remains to be done is calculate the spin-orbit shift using the L and S values
following from following from Hund’s rule 1 en 2 for an arbitrary nlx configuration.
Because this state can be can be represented by a single Slater determinant we can do
this calculation in two ways. First we sum the one-electron contributions using Eq. (9.44)
and obtain an expression which is proportional to the one-electron coupling constant ζnl,

∆ELSn,Jmax
= ζnl

x∑
κ=1

mκ
l m

κ
s ,

with MS =
∑x
κ=1m

κ
s = S and ML =

∑x
κ=1m

κ
l = L for the stretched state.

Next we compare this result with the expression obtained with the effective Hamiltonian;
i.e., proportional to ζnLS . The result turns out to depend on the filling of the shell. For
a less-than-half-filled shell (0 < x < 2l + 1) we obtain for the many-electron coupling
constant ζnLS = ζnl/2S; For more-than-half-filled shells (2l + 1 < x < 2(2l + 1)) we
obtain ζnLS = −ζnl/2S. Note that the denominator 2S can be interpreted as the number
of electrons in a less-than-half-filled shell and as the number of holes in a more-than-half-
filled shell. Make sure that you understand how to derive from the fine structure diagram
whether the shell is less or more than half (see also Fig. 10.9). Note that Hund’s rule 3
plays no role for half filled shells because in this case only a single value is possible for J
(J = S).
This concludes the underpinning of the third Hund rule as the result of a spin-orbit shift.

§ 10.8: The section on jj coupling is not part of the exam.

Minimum knowledge:

1. The Hund rules

2. The equivalence of electrons and holes, in particular the properties of holes: positive charge,
negative mass, velocity equal (momentum opposite) to the electron that fits the hole and an
intrinsic magnetic moment opposite to that of the electron that fits the hole.

3. The Slater determinant of the fully stretched state obtained by applying Hund’s rule 1 en 2.

4. The expression for the spin-orbit shift:

∆ELSn,J =
(
ζnLS/~2

)
〈nLSJMJ |L · S|nLSJMJ〉.

5. The Hund’s rule 3 relations

ζnLS = +
ζnl
2S

for 0 < x < 2l + 1

ζnLS = −ζnl
2S

for 2l + 1 < x < 2(2l + 1)

for the spin-orbit coupling constants of a less-than-half-filled shell, 0 < x < 2l + 1, for a
more-than-half-filled shell, 2l + 1 < x < 2(2l + 1).

6. Last but not least: make sure that you can determine the ground state of an arbitrary atom
starting from its electron configuration.
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H Time-independent perturbation theory (optional)

Perturbation theory is unfortunately a rather dry subject. However, it is essential for the proper
understanding of the rest of the lectures. Hence, a full lecture is dedicated to this subject which
offers you the opportunity to deal with time-independent perturbation theory - once and for all. We
meet the concept of the perturbation as a perturbing term added to a well-known Hamiltonian; i.e., a
Hamiltonian for which the energy levels and eigenstates are known. We have to distinguish between
perturbation theory of non-degenerate and that of degenerate levels. The theory holds in the limit
of weak perturbations; i.e., perturbations which hardly modify the wavefunctions and for which the
energy shifts remain small. The case of a non-degenerate level is simple: the energy levels shift a
little bit. However, in atomic physics we are almost always dealing with degenerate levels, which
is more difficult because the sublevels may shift differently. This results in level splitting (lifting
of degeneracy). Fortunately, in many cases we can deal with degeneracy by treating the sublevels
as non-degenerate levels. This is called reduction of the theory for degenerate levels to “ordinary”
perturbation theory, i.e., to perturbation theory of nondegenerate levels. This reduction is always
possible if the perturbation commutes with the Hamiltonian. Fortunately this is often the case in
atomic physics (if not rigorously, at least to sufficiently good approximation). Then, by using the
joint basis of unperturbed Hamiltonian and perturbation the calculation is greatly simplified.

To study at home

§ H.1: In this introductory section we meet the concepts of unperturbed Hamiltonian H0 and pertur-
bation H1. We define representations {|ψn〉} of the full Hamiltonian H = H0 +H1 and {|φn〉}
of the unperturbed Hamiltonian H0 and derive an expression for the level shift as a result of
the perturbation H1.

§ H.2: Perturbation theory of a non-degenerate level. We parameterize the Hamiltonian by in-
troducing the perturbation parameter λ. We introduce the perturbed states |ψn(λ)〉 with
corresponding perturbation coefficients aν(λ) ≡ 〈φν |ψn(λ)〉. In the Ansatz we express the
perturbed state |ψn(λ)〉 as a series in powers λp, where the states |ψpn〉 (with corresponding

coefficients a
(p)
ν = 〈φν |ψpn〉) represent a correction (to be determined) onto the unperturbed

state |ψ0
n〉 ≡ |φn〉. We obtain an expression for the normalization of the perturbed states.

It turns out that the normalization is only conserved in the perturbation expansion if the
coefficients apν satisfy certain requirements. We derive an expression for the level shift in the
form of a series in powers λp. In this way we find the contributions to the level shift order by
order.

1. Zeroth order. This is the energy of the unperturbed state.

2. First order. The first-order correction of the energy is obtained by “sandwiching” the
perturbation between unperturbed states,

∆E(1)
n = 〈φn|H1 |φn〉 .

With this result the first-order correction of the state can be calculated,

|ψ1
n〉 =

∑
m

m6=n

H1 |φn〉
E0
n − E0

m

.

3. Second order. The second-order correction of the energy is obtained with the aid of the
first-order correction of the state,

∆E(2)
n = 〈φn|H1

∣∣ψ1
n

〉
=
∑
m

m 6=n

| 〈φn|H1 |φm〉 |2

E0
n − E0

m

.
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After this we can calculate the second-order correction of the state. For non-degenerate
levels (ordinary perturbation theory) only the calculation of the first- and second-order
shifts are part of the exam. The discussion of the third order correction and the concept
of renormalization of the wavefunction are optional. Beware that these entail non-trivial
extensions of the first and second order theory and are interesting to deepen you under-
standing of perturbation theory.

§ H.3: Perturbation theory of a degenerate level. We start in the same way as for non-degenerate
levels but already at the level of the Ansatz we find that this cannot be done in a unique way.
We need insider knowledge about the perturbation to formulate the Ansatz in such a way that
the perturbation coefficients behave as regular functions of λ. We have to formulate Ansatz
in a form consistent with any symmetry breaking by the perturbation. Once this is done we
obtain expressions which are very similar to those of “ordinary” perturbation theory; i.e., the
perturbation theory of a non-degenerate level.

1. In general it may not immediately obvious how the perturbation breaks the symmetry.
This happens for instance in the presence of two competing perturbations. Therefore,
it is important to know that starting from an arbitrary unperturbed basis the energy
shifts ε with respect to the unperturbed levels can always be obtained by solving a set
of coupled equations. This is equivalent to setting the secular determinant equal to zero.
For a set of k coupled equations this yields a polynomial of power k in the variable ε
(called the characteristic polynomial of the set of equations - called the secular equation).
The roots of this polynomial are the eigenvalues corresponding to the energy shifts. The
corresponding eigenstates reflect the symmetry of the perturbation. The set of coupled
equations can be written as a matrix equation. Solving this set of equations is equivalent
to the diagonalization of a matrix (the so called perturbation matrix).

§ H.3.1: This section is of great practical importance. In the special case of a perturbation
commuting with the unperturbed Hamiltonian, the perturbation matrix is diagonal when
choosing the proper basis. In that basis it is simple to evaluate the perturbation exactly
because the exact solution coincides with the first-order expression of “ordinary” per-
turbation theory. Often the commutation holds only approximately. In such cases the
perturbation matrix is only approximately diagonal bur the the first-order expression
of ordinary perturbation theory is sufficient to calculate the level shifts. Then, explicit
diagonalization is not necessary and this is referred to as a case where the perturbation
theory of a degenerate level reduces to ordinary first-order perturbation theory.

§ H.4: Example: two-dimensional perturbation matrix. Make sure that you understand the definition
of the coupling angle. Note that the coupling between the two levels gives rise to repulsion of
these levels.

§ G.3.4: In this section we discuss the difference between weak coupling and strong coupling
between the levels. Further you should understand that for weak coupling the contri-
bution of off-diagonal matrix elements may be neglected in comparison to that of the
diagonal ones (these contribute in higher order).

Minimum knowledge:

1. For time-independent theory the separation of the Hamiltonian in two hermitian parts

H = H0 +H1.
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2. For “ordinary” perturbation theory: the formula for the first-order energy shift

ε1 = 〈φn|H1 |φn〉 ,

where {|φn〉} is the orthonormal basis corresponding to H0 |φn〉 = E0 |φn〉 .

3. For “ordinary” perturbation theory: the formula for the second-order energy shift

∆E(2)
n = 〈φn|H1

∣∣ψ1
n

〉
=
∑
m

m6=n

| 〈φn|H1 |φm〉 |2

E0
n − E0

m

4. For perturbation theory of a degenerate level how to solve the secular equation for simple
perturbation matrices (e.g., the 2× 2 case),

det
∣∣H′i,j − ε1δi,j

∣∣ = 0,

where H′i,j = 〈φn,i|H1 |φn,j〉 , with {|φn,i〉}, is the basis corresponding to H0 |φn,i〉 = E0 |φn,i〉

5. In the weak coupling limit, the diagonal elements of the perturbation matrix H′i,j contribute
in first order whereas the off-diagonal elements contribute in second order (hence, can be
neglected in a first-order calculation). This holds for instance for the Paschen-Back limits of
the fine structure and hyperfine structure.

6. Realize that if H0 and H1 commute with H a basis can be found in which the secular deter-
minant is diagonal, which means that the perturbation theory for the degenerate levels has
been reduced to “ordinary” first-order perturbation theory.

7. Realize that if H0 gives rise to degenerate levels that the quantum numbers of those levels are
always conserved as long as we restrict ourselves to first-order perturbation theory.
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Problems Chapter 1

1. (0.5) Calculate the commutator
[
ri,p

2
]

using [ri, pj ] = i~δij with i, j ∈ {x, y, z}. Use in your
answer the Einstein notation of implicit summation over repeating indices.

2. (0.5) Prove
[
Lx,L

2
]

= 0 by commutator algebra; i.e., without any specific choice of quan-
tization axis. Hint: recall that [Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx en [Lz, Lx] = i~Ly; Hint :
[Lj , Lk] = εijki~Li (for those who want to practice the Einstein notation)

3. (1.5) Prove the expressions(
∂

∂r
+

1

r

)2

ψ =

(
∂2

∂r2
+

2

r

∂

∂r

)
ψ =

1

r

∂2

∂r2
(rψ) .

4. (1.0) Prove the expression

prψ ≡ −
i~
2

[r
r
·∇+∇ ·

(r

r

)]
ψ = −i~

(
∂

∂r
+

1

r

)
ψ.

Hint : This expression is valid irrespective of the choice of coordinate system. Most students
find it most easy to use spherical coordinates to evaluate the first term within the square
brackets and cartesian coordinates to evaluate the second term. Can you also derive the
second term in spherical coordinates?

5. (4.5) Consider (right-handed) spherical coordinates

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

φ̂ = −x̂ sinφ+ ŷ cosφ.

(a) (0.25) Show the following relations: ∂r r̂ = 0, ∂θ r̂ = θ̂ and ∂φr̂ = φ̂ sin θ.

(b) (0.25) Show the following relations: ∂rθ̂ = 0, ∂θθ̂ = −r̂ and ∂φθ̂ = φ̂ cos θ.

(c) (0.5) Derive similar expressions for ∂rφ̂, ∂θφ̂ and ∂φφ̂.

(d) (1.5) Use the relation for the gradient operator

∇→
(

r̂∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ

)
to derive the following relations

r̂ ·∇ = ∂r ; θ̂ ·∇ =
1

r
∂θ ; φ̂ ·∇ =

1

r sin θ
∂φ

∇ · r̂ =
2

r
; ∇ · θ̂ =

cot θ

r
; ∇ · φ̂ = 0

(e) (2.0) Prove the following expression for the divergence of a vector field in spherical coor-
dinates.

∇ · F =

(
∂r +

2

r

)
Fr +

1

r
(∂θ + cot θ)Fθ +

1

r sin θ
∂φFφ,

where F = r̂Fr + θ̂Fθ + φ̂Fφ.

(f) (3.0) Prove for arbitrary orthogonal curvilinear coordinates {u, v, w} the relation

∇ · r̂ =
3

r
+ (û · r)h−1

u ∂u

(
1

r

)
+ (v̂ · r)h−1

v ∂v

(
1

r

)
+ (ŵ · r)h−1

w ∂w

(
1

r

)
. (a)

(g) (0.5) Use the general formula (a) to obtain the relation ∇ · r̂ = 2/r.
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Q.2 Problem set 1 - solutions
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Solutions Problems Chapter 1

1. (0.5) We first expand the commutator using the Einstein summation convention[
ri,p

2
]

= [ri, pjpj ]

= [ri, pj ] pj + pj [ri, pj ] .

Then using [ri, pj ] = i~δij with i, j ∈ {x, y, z} we obtain after summation over the repeating
index j [

ri,p
2
]

= [ri, pj ] pj + pj [ri, pj ]

= i~δijpj + pji~δij
= 2i~pi. �

2. (0.5) We have to prove
[
Lx,L

2
]

= 0. Recall that
[
Lz,L

2
]

= 0 is one of the basic commutation
relations of angular momentum operators. Further we know the answer should be independent
of the choice of quantization axis. Thus, by choosing the quantization axis along the positive
x direction we have Lx → Lz, which implies

[
Lx,L

2
]

= 0. �
However, the explicit question was to use commutator algebra. Thus we decompose L2,

[
Lx,L

2
]

=
[
Lx, L

2
x

]
+
[
Lx, L

2
y

]
+
[
Lx, L

2
z

]
.

We next evaluate the three terms separately using [Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx and
[Lz, Lx] = i~Ly [

Lx, L
2
x

]
= [Lx, Lx]Lx + Lx [Lx, Lx] = 0[

Lx, L
2
y

]
= [Lx, Ly]Ly + Ly [Lx, Ly] = i~LzLy + i~LyLz[

Lx, L
2
z

]
= [Lx, Lz]Lz + Lz [Lx, Lz] = −i~LzLy − i~LyLz.

Adding these terms we find[
Lx,L

2
]

=
[
Lx, L

2
x

]
+
[
Lx, L

2
y

]
+
[
Lx, L

2
z

]
= 0. �

Alternative proof: In Einstein notation we have [Li, Lj ] = εijki~Lk[
Li,L

2
]

= [Li, L
2
j ]

= Lj [Li, Lj ] + [Li, Lj ]Lj

= εijkLjLk + εijkLkLj

= εijkLjLk + εikjLjLk

= εijkLjLk − εijkLjLk = 0.

3. (1.5) We have to proof two equalities

(a) First we proof the equality at the left(
∂

∂r
+

1

r

)2

ψ =

(
∂

∂r
+

1

r

)(
∂ψ

∂r
+
ψ

r

)
=

(
∂2ψ

∂r2
+

∂

∂r

ψ

r
+

1

r

∂ψ

∂r
+
ψ

r2

)
=

(
∂2ψ

∂r2
+

1

r

∂ψ

∂r
− ψ

r2
+

1

r

∂ψ

∂r
+
ψ

r2

)
=

(
∂2

∂r2
+

2

r

∂

∂r

)
ψ. �
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(b) The equality at the right is most simply proven starting from the right

1

r

∂2

∂r2
(rψ) =

1

r

∂

∂r

(
ψ + r

∂ψ

∂r

)
=

1

r

(
∂ψ

∂r
+ r

∂2ψ

∂r2
+
∂ψ

∂r

)
=

(
∂2

∂r2
+

2

r

∂

∂r

)
ψ. �

4. (1.0) The radial momentum operator pr = 1
2 (r̂ · p + p · r̂) is first turned into quantum me-

chanical form by applying the correspondence rules p→ −i~∇ and r→ r,

prψ = − i~
2

[̂r ·∇+∇ · r̂]ψ = − i~
2

[2r̂ ·∇ψ + ψ∇ · r̂] . (a)

The first term in the brackets is swiftly evaluated in spherical coordinates using Eq. (1.14)

r̂ ·∇ψ = r̂ ·
(

r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ φ̂

1

r sin θ

∂ψ

∂φ

)
=
∂ψ

∂r
. (b)

The second term yields is simplest done in cartesian coordinates

∇ ·
(r

r

)
=

∂

∂x

(
x√

x2 + y2 + z2

)
+

∂

∂y

(
y√

x2 + y2 + z2

)
+

∂

∂z

(
z√

x2 + y2 + z2

)

=
3

r
− x2 + y2 + z2

r3
=

2

r
. (c)

Substituting Eqs. (b) en (c) into (a) we obtain

prψ = −i~
(
∂

∂r
+

1

r

)
ψ. �

Alternative: ∇ · r̂ can also be derived in spherical coordinates - see Problem 5d. For the
hardliners the derivation is also given for arbitrary orthogonal curvilinear coordinates in Pro-
blem 5f,5g

5. (4.5) Consider (right-handed) spherical coordinates

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

φ̂ = −x̂ sinφ+ ŷ cosφ.

(a) (0.25) ∂r r̂ = 0 because r̂ does not depend on r,

∂θ r̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ = θ̂

∂φr̂ = −x̂ sin θ sinφ+ ŷ sin θ cosφ = φ̂ sin θ.

(b) (0.25) ∂rθ̂ = 0 because θ̂ does not depend on r,

∂θθ̂ = −x̂ sin θ cosφ− ŷ sin θ sinφ− ẑ cos θ = −r̂

∂φθ̂ = −x̂ cos θ sinφ+ ŷ cos θ cosφ = φ̂ cos θ.

2
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(c) (0.5) ∂rφ̂ = 0 because φ̂ does not depend on r,

∂θφ̂ = 0

∂φφ̂ = −x̂ cosφ− ŷ sinφ = −r̂ sin θ − θ̂ cos θ.

(d) (1.5) With the gradient operator

∇→
(

r̂∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ

)
we derive the following relations

r̂ ·∇ = r̂ · r̂ ∂r + r̂ · θ̂ 1

r
∂θ + r̂ · φ̂ 1

r sin θ
∂φ = ∂r

θ̂ ·∇ = θ̂ · r̂ ∂r + θ̂ · θ̂ 1

r
∂θ + θ̂ · φ̂ 1

r sin θ
∂φ =

1

r
∂θ

φ̂ ·∇ = φ̂ · r̂ ∂r + φ̂ · θ̂ 1

r
∂θ + φ̂ · φ̂ 1

r sin θ
∂φ =

1

r sin θ
∂φ

and for the divergences

∇ · r̂ = r̂ · ∂r r̂ + θ̂ · 1

r
∂θ r̂ + φ̂ · 1

r sin θ
∂φr̂ = 0 + θ̂ · θ̂ 1

r
+ φ̂ · φ̂1

r
=

2

r

∇ · θ̂ = r̂ · ∂rθ̂ + θ̂ · 1

r
∂θθ̂ + φ̂ · 1

r sin θ
∂φθ̂ = 0− θ̂ · r̂1

r
+ φ̂ · φ̂cot θ

r
=

cot θ

r

∇ · φ̂ = r̂ · ∂rφ̂+ θ̂ · 1

r
∂θφ̂+ φ̂ · 1

r sin θ
∂φφ̂ = 0 + 0− φ̂ · r̂1

r
− φ̂ · θ̂ cot θ

r
= 0.

(e) (2.0) The expression for divF can be written as

∇ · F =∇ · r̂Fr +∇ · θ̂Fθ +∇ · φ̂Fφ

=
(
r̂ ·∇Fr + θ̂ ·∇Fθ + φ̂ ·∇Fφ

)
+
(
Fr∇ · r̂ + Fθ∇ · θ̂ + Fφ∇ · φ̂

)
.

Substituting the expressions for r̂ ·∇, θ̂ ·∇Fθ and φ̂ ·∇ for the first term on the r.h.s.
we obtain (

r̂ ·∇Fr + θ̂ ·∇Fθ + φ̂ ·∇Fφ
)

= ∂rFr +
1

r
∂θFθ +

1

r sin θ
∂φFφ

Using the relations for divr̂, divθ̂ and divφ̂ the second term yields(
Fr∇ · r̂ + Fθ∇ · θ̂ + Fφ∇ · φ̂

)
=

2

r
Fr +

cot θ

r
Fθ.

and combining the two we find

∇ · F = ∂rFr +
1

r
∂θFθ +

1

r sin θ
∂φFφ +

2

r
Fr +

cot θ

r
Fθ. �

(f) (3.0) For arbitrary orthogonal curvilinear coordinates {u, v, w} we have

∇ · r̂ =
(
ûh−1

u ∂u + v̂h−1
v ∂v + ŵh−1

w ∂w
)
·
(r

r

)
=

1

r

(
û · h−1

u ∂ur + v̂ · h−1
v ∂vr + ŵ · h−1

w ∂wr
)

+

+ (û · r)h−1
u ∂u

(
1

r

)
+ (v̂ · r)h−1

v ∂v

(
1

r

)
+ (ŵ · r)h−1

w ∂w

(
1

r

)
.
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This expression may be simplified by using the definition â = h−1
a ∂ar with a ∈ {u, v, w},

∇ · r̂ =
3

r
+ (û · r)h−1

u ∂u

(
1

r

)
+ (v̂ · r)h−1

v ∂v

(
1

r

)
+ (ŵ · r)h−1

w ∂w

(
1

r

)
. (d)

(g) (0.5) Specializing to spherical coordinates (û = r̂, v̂ = θ̂ and ŵ = φ̂) only the first inner
product on the r.h.s. of (d) is nonzero and we have using hr = |∂rr| = 1 we regain the
result of Eq. (c)

∇ · r̂ =
3

r
− 1

r
=

2

r
. �

4



Problem set 2 Atomic Physics Course 2020-2021

Q.3 Problem set 2
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Problems Chapter 2

1. Positronium (a) Consider the Hartree atomic unit of length for H and positronium, which
one is larger and by what factor (approximately)? (b) Consider the Hartree atomic unit of
energy for H and positronium, which one is larger and by what factor (approximately)?

2. The size of atoms (a) What is the largest (ground state) atom in the periodic table? (b)
What is the smallest atom in the periodic table, (c) which appendix to the syllabus did you
use to find this out?

3. (1.5) Energy contributions in hydrogenic atoms: Consider the wavefunction ψnlm (r) =
〈r|nlm〉 for a hydrogenic atom with nuclear charge Z e. The total energy of the state ψnlm can
be written as the sum of the contributions of a number of operators, all defined in the Syllabus.
In this problem we verify that these contributions add up to the well-known expression for the
energy of hydrogen-like levels.

(a) Give an expression for the expectation value of the radial kinetic energy of this atom in
Hartree atomic units. Note that the radial kinetic energy is not a constant of the motion.

(b) Idem for the rotational energy (centrifugal contribution).

(c) Idem for the electrostatic energy.

(d) Idem for the total kinetic energy.

(e) Idem for the total potential energy.

(f) Idem for the total energy. Note that this is a constant of the motion.

Important: Do not rederive the expressions, certainly not Problem 2.3! Simply use the ex-
pressions for the radial averages given in the lecture notes. The idea behind this problem is
to realize which terms from the Hamiltonian give an l-dependent contribution and which are
l independent.

4. (1.5) Radial wavefunctions as (anharmonic) oscillator states: The principal quan-
tum number of the electronic state |n, l,ml〉 is related to the number of nodes (n′) of the
corresponding wavefunction. Such a correspondence exists for any oscillator.

(a) How many nodes do you count for the radial wavefunctions R1s(r), R2s(r), · · ·Rns(r)
outside the origin?

(b) Idem for R2p(r), R3p(r), · · ·Rnp(r) outside the origin;

(c) Idem for R3d(r), R4d(r), · · ·Rnd(r) outside the origin;

(d) Propose an expression for the relation between n and n′;

(e) Can n′ be identified with the “radial quantum number” of the radial wave equation?

5. (2.0) Plotting rotational wavefunctions: In a polar diagram we plot the modulus of a
function f(θ) as the distance to the origin for each value of θ in the interval 0 ≤ θ ≤ 2π. Plot
Y ml (θ, φ) (as defined in Appendix L.9.1) for l = 1; ml = −1, 0, 1 as a polar plot versus θ in the
xz plane (φ = 0). Indicate the regions of positive or negative sign of the spherical harmonic.
The use of Mathematica or similar programs is not permitted.

(a) Idem for l = 2; ml = −2,−1, 0, 1, 2.

(b) Idem for l = 0; ml = 0)

1
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6. (3.0) And then there was light - optical dipole transitions: Have a look at the Balmer
spectrum of atomic hydrogen.

The sketch of the level structure shows that three different transitions contribute to the Balmer
spectrum. Without explanation we point out that for “ordinary” optical transitions, like those
of the Balmer spectrum, are induced by the electric-dipole coupling to the electromagnetic field
(cf. § 2.5).

(a) (0.25) Give the expression for the dipole operator

(b) (0.25) Give the expression for the transition dipole moment of the transition |nlm〉 ↔
|n′l′m′〉

(c) (0.5) Give the expression for the nlm ↔ n′l′m′ transition strength D2
nlm,n′l′ . This

quantity is tabulated for many atomic transitions; by now we can calculate these for
hydrogen.

(d) (1.0) The transition 2p → 1s is known as the Lyman-α line (λ = 121.6 nm) and the
transition 3p→ 1s as the Lyman-β line (λ = 102.6 nm). The spontaneous lifetime τ for
the transition |n′l′m′〉 → |nlm〉 from the excited state |n′l′m′〉 is given by the relation
(not derived within this course)

1

τ
=

8π2

3~ε0

D2
n′l′m′,nlm

λ3
, (a)

where λ is the wavelength of the emitted light. Calculate the lifetimes of the 3p and the
2p levels in hydrogen (NB. the contribution of the 3p → 2s transition to the lifetime of
the 3p level may be neglected).

(e) (1.0) The lifetime of the 3d level in atomic hydrogen is 15.6 ns, that of the 3s level 160
ns. Explain the origin of this difference. Verify that the lifetimes of the 3d levels with
|lm〉 = |22〉 and |lm〉 = |21〉 are equal. Hint: use Eq.(a) and sum the partial contributions
of the various transitions from the initial state,

1

τ
=

1

τa
+

1

τb
+ · · · .

The feature that we can simply add the decay rates of the magnetic sublevels (without
worrying about the occupation of these sublevels in a gas sample) is a famous result
known as the f sum rule, (a summation over so-called oscillator strengths).
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Q.4 Problem set 2 - solutions
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Solutions Problems Chapter 2

1. Positronium: The reduced mass of a hydrogenic atom is given by

mr =
meM

me +M
,

where me is the electron mass and M the nuclear mass. The Bohr radius a.u. and Hartree
a.u. are given by

a = (1 +me/M)a0 and RM = R∞/(1 +me/M),

where R∞ and a0 are tabulated to high precision - see Table

R∞ = α2mec/2h = 1.097 373 156 8160(21)× 107m−1

a0 = α/4πR∞ ' 5.2× 10−11 m

We compare hydrogen (H) to positronium (Ps):

(a) For H we have M � me and calculate mr ' me; hence, a ' a0 and RM ' R∞
(b) For Ps we have M = me and calculate mr = me/2; hence, a ' 2a0 and RM ' R∞/2
(c) Therefore, a(H)/a(Ps) ≈ 1/2 and EH(H)/EH(Ps) ≈ 2.

2. The size of atoms. Cs is the largest and He the smallest since they have the smallest/largest
binding energy (Appendix C).

3. (1.5) Energy contributions in hydrogenic atoms: Consider the wavefunction ψnlm (r) =
〈r|nlm〉 for a hydrogenic atom with nuclear charge Z e.

(a) The expectation value for the radial kinetic energy of this atom in Hartree atomic units
is

〈− 1

2ρ

∂2

∂ρ2
ρ〉 =

Z2

2n2

[
1− 2l (l + 1)

n (2l + 1)

]
(Hartree)

(b) The rotational energy (centrifugal contribution) is

〈 l (l + 1)

2ρ2
〉 =

Z2

2n2

2l (l + 1)

n (2l + 1)
(Hartree)

(c) The electrostatic energy is

〈−Z
ρ
〉 = −2

Z2

2n2
(Hartree)

(d) The total kinetic energy is

〈− 1

2ρ

∂2

∂ρ2
ρ+

l (l + 1)

2ρ2
〉 =

Z2

2n2
(Hartree)

(e) The total potential energy is

〈−Z
ρ
〉 = −2

Z2

2n2
(Hartree)

1
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(f) The total energy is

〈− 1

2ρ

∂2

∂ρ2
ρ+

l (l + 1)

2ρ2
− Z

ρ
〉 = −1

2

Z2

n2
(Hartree)

Note that the contributions, indeed, add up to the well-known expression for the total
energy, which is independent of l.

4. (1.5) Radial wavefunctions as (anharmonic) oscillator states: The principal quantum
number of the electronic state |n, l,ml〉 is related to the number of nodes, n′,of the correspon-
ding wavefunction (outside the origin).

(a) The radial wavefunctions R1s(r), R2s(r), · · ·Rns(r) have 0, 1, · · · , n − 1 nodes, respecti-
vely;

(b) The radial wavefunctions R2p(r), R3p(r), · · ·Rnp(r) have 0, 1 · · · , n−2 nodes (outside the
origin), respectively;

(c) The radial wavefunctions R3d(r), R4d(r), · · ·Rnd(r) have 0, 1 · · · , n−3 nodes (outside the
origin), respectively;

(d) The requested expression is n = n′ + l +1;

(e) Yes, n′ is the “radial quantum number” of the radial wave equation.

5. (2.0) Plotting rotational wavefunctions: In a polar plot we plot the modulus of a function
of direction versus direction (in real space). In the polar plot of Y ml (θ, φ) (for the azimuthal
angle φ = 0), we plot |Y ml (θ, φ)| versus θ. The angle φ = 0 is chosen because in this plane the
Y ml (θ, φ) are real functions of direction. For Y 0

1 (θ, φ) this is illustrated below

2
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The polar diagrams of the requested spherical harmonics are sketched below for l = 0, 1, 2:

6. (3.0) And then there was light - optical dipole transitions: Answer to the questions:

(a) (0.25) the electric-dipole operator is

d =− er =− eaρr̂.

(b) (0.25) the transition dipole for the transition |nlm〉 ↔ |n′l′m′〉 is given by

Deg = −ea 〈n′l′m′| ρr̂ |nlm〉 = −ea 〈n′l′||ρ||nl〉 〈l′m′| r̂ |lm〉 .

(c) (0.5) The n′l′m′ ↔ nlm atomic electric-dipole transition strength is given by

D2
n′l′m′,nlm = e2a2R2

n′l′,nlA2
l′m′,lm.

(d) (1.0) The electric-dipole transition rate is given by (without derivation)

1

τ
=

8π2

3~ε0

D2
n′l′m′,nlm

λ3
.

First we calculate the Lyman-α (n = 2) decay rate in hydrogen (Z = 1). Using Eqs. (2.85)
and (2.85) we find for the radial integrals

R2
2p,1s =

(
1

Z
24n7/2 (n− 1)n−5/2

(n+ 1)n+5/2

)2

⇒ R2
2p,1s =

215

39
= 1.66479

R2
3p,1s =

(
1

Z
24n7/2 (n− 1)n−5/2

(n+ 1)n+5/2

)2

⇒ R2
3p,1s =

37

213
= 0.266968

(
R3p,1s

R2p,1s

)2

=
316

228
= 0.160362

The Lyman-α/Lyman-β wavelength ratio is(
λ2p,1s

λ3p,1s

)3

=

(
121.6

102.6

)3

= 1.66479.

3
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For the angular integral we find for both Lyman-α and Lyman-β with the aid of Eqs. (2.86)
and (J.16)

A2
1m′,00 =

(
1 1 0

−m′m′ 0

)2

=
1

3
.

Thus we obtain for Lyman-α the oscillator strength in atomic units:

D2
2p,1s = R2

2p,1sA2
1m′,00 = 0.55492.

With these numbers we calculate for the Lyman-α wavelength λ2p,1s = 121.6 nm the
lifetime τ2p,1s = 1.6 ns.
Next we calculate the ratio of the Lyman-β and Lyman-α transition rates

τ2p,1s
τ3p,1s

=
D2

3p,1s

D2
2p,1s

(
λ2p,1s

λ3p,1s

)3

=

(
R3p,1s

R2p,1s

)2( A1m,00

A1m′,00

)2(
λ2p,1s

λ3p,1s

)3

=

(
R3p,1s

R2p,1s

)2(
λ2p,1s

λ3p,1s

)3

= 0.160362 ∗ 1.66479 =
1

3.7457
.

Hence, the Lyman-β decay is 3.7457 times slower than the Lyman-α decay, τ3p,1s = 6 ns.

(e) (1.0) The lifetime of the 3d level of hydrogen is 15.6 ns and that of the 3s level 160 ns.
To understand the difference we compare the expressions for the decay rates

1

τ3d
=

1∑
m=−1

8π2

3~ε0

D2
3dm′,2pm

λ3
(Q.1)

1

τ3s
=

1∑
m=−1

8π2

3~ε0

D2
3s0,2pm

λ3
, (Q.2)

Because λ3d→2p = λ3s→2p the ratio for the lifetimes can be written as

τ3d
τ3s

=

∑1
m=−1D

2
3s0,2pm∑1

m=−1D
2
3dm′,2pm

=
R2

3s,2p

R2
3d,2p

∑1
m=−1A2

3s0,2pm∑1
m=−1A2

3dm′,2pm

The radial integrals yield

R2
ns,2p =

(
27
√

2/3n9/2 (n− 2)n−3

(n+ 2)n+3

)2

⇒ R2
3s,2p = 0.880 6

R2
nd,2p =

(
29
√

2/3n5(n2 − 1)
(n− 2)n−3

(n+ 2)n+3

√
(n− 3)!

(n+ 2)!

)2

⇒ R2
3d,2p = 22.543

Hence,

τ3d
τ3s

=
0.880 6

22.543

∑1
m=−1A2

3s0,2pm∑1
m=−1A2

3dm′,2pm

.

4



Problem set 2 - solutions Atomic Physics Course 2020-2021

The angular integrals yield:

|2,m〉 → |1,m′〉 =



|2, 2〉 → |1, 1〉 A2
2,2;1,1 = 2

5

|2, 1〉 → |1, 0〉, |1, 1〉 A2
2,1;1,0 = 1

5 ,
1
5

|2, 0〉 → |1, 1〉, |1, 0〉, |1,−1〉 A2
2,0;1,1 = 1

15 ,
4
15 ,

1
15

|2,−1〉 → |1, 0〉, |1,−1〉 A2
2,−1;1,0 = 1

5 ,
1
5

|2,−2〉 → |1,−1〉 A2
2,−2;1,−1 = 2

5

|0, 0〉 → |1,m′〉 =
{
|0, 0〉 → |1, 1〉, |1, 0〉, |1,−1〉 A2

2,0;1,1 = 1
3 ,

1
3 ,

1
3

Hence, we find for the ration of lifetimes

τ3d
τ3s

=
0.880 6

22.543

1

2/5
= 0.09765 8 ' 15.6

160
.

The decay of the 3d level is faster because the transition dipole is much larger, not
surprising because the size of the 3d orbital is larger than that of the 3s orbital. Note
that there is no competition with the Lyman transitions 3s → 1s and 3d → 1s because
these are forbidden for electric-dipole transitions. On the contrary, the 3s→ 1s decay is
much faster (0.427 ns) because it is allowed.
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Problems Chapter 3

Angular momentum

1. Spin and Pauli matrices: In the matrix representation the operators associated with spin
angular momentum S can be expressed in terms of the Pauli matrices, S = 1

2~σ. These
operators act in a two-dimensional Hilbert space with basis vectors

|�〉 ≡ |1/2, 1/2〉 =

(
1

0

)
, |�〉 ≡ |1/2,−1/2〉 =

(
0

1

)
.

The Pauli matrices are 2× 2 matrices

σx =

(
0 1

1 0

)
, σy =

(
0−i
i 0

)
, σz =

(
1 0

0−1

)
.

(a) Derive matrix expressions for the operators Sz, S+ and S−.

(b) Calculate the eigenvalues of Sz for the eigenstates |�〉 and |�〉.
(c) Show that S+ satisfies the properties of a raising operator.

(d) Verify the commutation relation [Sx, Sy] = i~Sz by matrix multiplication.

(e) Demonstrate the Closure relation for the eigenstates.

2. Inner products of angular momentum operators: There are three inner-product rules
for the inner product L · S:

(a) Express L · S in the cartesian components of L and S.

(b) Express L · S in a form containing the shift operators of L and S.

(c) Express L · S in a form containing the total angular momentum J = L + S.

(d) Show that L · S conserves ml +ms.

(e) Show that L · S conserves the quantum numbers l, s and j.

Note: that j,mj are the quantum numbers corresponding to the angular momentum J like
l,ml and s,ms are those of the angular momenta L and S, respectively.

3. Clebsch-Gordan decompositions for identical particles: Derive the following symmetry
relations for the coupling of two angular momenta, j1 and j2, of identical particles (j1 = j2 = j,
where j is integral for bosons and half-integral for fermions) :

1
2 [|jm1; jm2〉 ± |jm2; jm1〉] =



2j∑
J=even/odd

J∑
M=−J

|JM〉〈JM |jm1; jm2〉 (bosons)

2j∑
J=odd/even

J∑
M=−J

|JM〉〈JM |jm1; jm2〉. (fermions)

Hint: Use the exchange rule for Clebsch-Gordan coefficients which follows directly from the
column-interchange rule of 3j symbols (see Problem J.1)

〈jm2jm1|JM〉 = (−1)J−2j〈jm1jm2|JM〉.

1
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4. Cross product of angular momentum operators: The commutator of two vectors is
a second order tensor. This becomes evident in the Einstein notation [A,B] ⇔ [A,B]ij =

[Ai, Bj ] = AiBj −BjAi ⇔ ABT − (BAT )T , where ()T represents matrix transposition.

(a) Write the cross product L× L as a determinant and show that L× L = i~L.

(b) Express (L× L)i in the Einstein notation and show that (L× L)i = i~Li.
(c) Write the tensor ABT as a matrix and show that [A,B] = 0 if and only if all components

of A commute with all components of B.

(d) Give an expression for [L,L] in matrix form and show that [L,L] 6= 0.

(e) Give an expression for [L,L]ij in the Einstein notation.

(f) Calculate
[
L2,L2

]
.

5. Tensor products of state vectors: Consider two angular momenta, j1 and j2, acting in
vector spaces of dimension d1 = 2 and d2 = 3, respectively (i.e., j1 = 1

2 and j2 = 1). The
corresponding eigenstates are given by

| 12 ,+
1
2 〉 =

(
1

0

)
, | 12 ,−

1
2 〉 =

(
0

1

)
(Q.3)

and

|1,+1〉 =

 1

0

0

 , |1, 0〉 =

 0

1

0

 , |1,−1〉 =

 0

0

−1

 . (Q.4)

In the uncoupled representation the eigenstate | 12 ,+
1
2 ; 1, 0〉 is given by the tensor product

| 12 ,+
1
2 ; 1, 0〉 = | 12 ,+

1
2 〉 ⊗ |1, 0〉 =

(
1

0

)
⊗

 0

1

0

 =



0

1

0

0

0

0


.

Note that for the doublet state | 12 ,+
1
2 〉 the tensor product | 12 ,+

1
2 〉 ⊗ |1, 0〉 provides a three-

dimensional subspace for the triplet state |1, 0〉. Analogously, for the triplet state |1, 0〉, the
tensor product |1, 0〉 ⊗ | 12 ,+

1
2 〉 provides a two-dimensional subspace for the doublet state

| 12 ,+
1
2 〉. In both ways we obtain a 6-dimensional Hilbert space (for the tensors j1 ⊗ j2

and j2 ⊗ j1, respectively). In the uncoupled representation the stretched state is given by
|j1, j1; j2, j2〉 = |j1, j1〉 ⊗ |j2, j2〉; i.e., for j1 = 1

2 and j2 = 1 this corresponds to | 12 ,+
1
2 ; 1, 1〉 =

| 12 ,+
1
2 〉 ⊗ |1, 1〉. The tensor product is a so-called ordered product.

(a) Do the states | 12 ,+
1
2 〉 and |1, 0〉 commute under the tensor product?

(b) Do the states | 12 ,+
1
2 〉 and |1, 1〉 commute under the tensor product?

(c) Why is the tensor product called an ordered product?
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Q.6 Problem set 3 - solutions
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Solutions Problems Chapter 3

Angular momentum

1. In the matrix representation the operators associated with spin angular momentum S can be
expressed in terms of the Pauli matrices, S = 1

2~σ. These operators act in a two-dimensional
Hilbert space with basis vectors

|�〉 ≡ |1/2, 1/2〉 =

(
1

0

)
, |�〉 ≡ |1/2,−1/2〉 =

(
0

1

)
.

The Pauli matrices are 2× 2 matrices

σx =

(
0 1

1 0

)
, σy =

(
0−i
i 0

)
, σz =

(
1 0

0−1

)
.

The answers are:

(a) Matrix expressions for the operators Sz, S+ and S− are

Sz = ~
(

1/2 0

0 −1/2

)
;

S+ = (Sx + iSy) = ~
(

0 1

0 0

)
; S− = (Sx − iSy) = ~

(
0 0

1 0

)
(b) The eigenvalues of Sz for the eigenstates |�〉 and |�〉 are

~
(

1/2 0

0 −1/2

)(
1

0

)
= +

1

2
~
(

1

0

)
; ~

(
1/2 0

0 −1/2

)(
0

1

)
= −1

2
~
(

0

1

)
(c) Show that S+ satisfies the properties of a raising operator

~
(

0 1

0 0

)(
0

1

)
= ~

(
1

0

)
; ~

(
0 1

0 0

)(
1

0

)
= 0

(d) The commutation relation [Sx, Sy] = i~Sz is given by

[Sx, Sy] =
~2

4

(
0 1

1 0

)(
0−i
i 0

)
− ~2

4

(
0−i
i 0

)(
0 1

1 0

)
=

~2

4

(
i 0

0−i

)
− ~2

4

(
−i 0

0 i

)
=

~2

2

(
i 0

0−i

)
= i~

~
2

(
1 0

0−1

)
= i~Sz

(e) The Closure relation for the eigenstates is

|�〉 〈�|+ |�〉 〈�| =
(

1

0

)(
1 0
)

+

(
0

1

)(
0 1
)

=

(
1 0

0 0

)
+

(
0 0

0 1

)
=

(
1 0

0 1

)
= 1.

1
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2. Inner product of angular momentum operators: The three inner-product rules are:

(a) Rule (a) is simply the definition of the inner product in cartesian coordinates

L · S = LxSx + LySy + LzSz.

(b) Using the definitions for the shift operators we have

L+S− = (Lx + iLy) (Sx − iSy) = LxSx + LySy + i (LySx − LxSy)

L−S+ = (Lx − iLy) (Sx + iSy) = LxSx + LySy − i (LySx − LxSy) .

Adding these expressions and using rule (a) we obtain after rearrangement of terms

L · S = LzSz +
1

2
[L+S− + L−S+]

(c) L · S = 1
2

[
J2 − L2 − S2

]
: This rule follows straightforwardly from the inner product

J2 = (L + S)2 = L2 + S2 + 2L · S

because L and S commute (they act in independent sectors of Hilbert space).

(d) To demonstrate this we consider the state |ψ〉 which is in some state with known values
for the quantum numbers ml +ms = M . Hence, the state |ψ〉 needs to be an eigenstate
of Jz = Lz + Sz. An arbitrary state of the angular momentum J can be written as a
linear combination of all states |lml; sms〉 with ml+ms = M . With rule (b) we find that
whenever L+ raises ml by 1 the S− will lower ms by 1 (and vice versa); hence, ml +ms

will be conserved.

(e) To demonstrate this we consider the state |ψ〉 which is in some state with known values
for the quantum numbers l, s and j; i.e., the state can be written as a linear combination
of the following types

|ψ〉 =

j=l+s∑
j=|l−s|−j

mj=j∑
mj=−j

|ls; jmj〉〈ls; jmj |ψ〉 =

mj=j∑
mj=−j

|ls; jmj〉〈ls; jmj |ψ〉 (j is known)

|ψ〉 =

ml=l∑
ml=−l

ms=s∑
ms=−s

|lml; sms〉〈lml; sms|ψ〉

With rule c we find that the quantum numbers l, s and j are conserved because j is
conserved by J2 (see upper line) l is conserved by L2 and s is conserved by S2(see lower
line). Hence the three vectors of the vector addition triangle are conserved.

2
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3. Clebsch-Gordan decompositions for identical particles: Derive the following symmetry
relations for the coupling of two angular momenta, j1 and j2, of identical particles (j1 = j2 = j,
where j is integral for bosons and half-integral for fermions) :

1
2 [|jm1; jm2〉 ± |jm2; jm1〉] =



2j∑
J=even/odd

J∑
M=−J

|JM〉〈JM |jm1; jm2〉 (bosons)

2j∑
J=odd/even

J∑
M=−J

|JM〉〈JM |jm1; jm2〉. (fermions)

Answer:
We start with the Clebsch-Gordan decomposition

|jm1; jm2〉 =

2j∑
J=0

J∑
M=−J

|JM〉〈JM |jm1; jm2〉.

From Problem J.1 we use the exchange rule

〈jm2jm1|JM〉 = (−1)J−2j〈jm1jm2|JM〉.

Note that the exchange symmetry is independent of the value of M. Substituting the exchange
rule into the Clebsch-Gordan expansion we find

|jm1; jm2〉+ |jm2; jm1〉 =

2j∑
J=0

J∑
M=−J

[1 + (−1)J−2j ]|JM〉〈JM |jm1; jm2〉.

For bosons 2j is even and the Clebsch-Gordan expansion becomes

|jm1; jm2〉+ |jm2; jm1〉 =

2j∑
J=0

J∑
M=−J

[1 + (−1)J ]|JM〉〈JM |jm1; jm2〉

= 2

2j∑
J=even

J∑
M=−J

|JM〉〈JM |jm1; jm2〉.

For fermions 2j is odd and the Clebsch-Gordan expansion becomes

|jm1; jm2〉+ |jm2; jm1〉 =

2j∑
J=0

J∑
M=−J

[1− (−1)J ]|JM〉〈JM |jm1; jm2〉

= 2

2j∑
J=odd

J∑
M=−J

|JM〉〈JM |jm1; jm2〉.

4. Cross product of angular momentum operators: The commutator of two vectors is
a second order tensor. This becomes evident in the Einstein notation [A,B] ⇔ [A,B]ij =

[Ai, Bj ] = AiBj −BjAi ⇔ ABT − (BAT )T , where ()T represents matrix transposition.

(a) Write the cross product L× L as a determinant and show that L× L = i~L.
Answer:

L× L =

∣∣∣∣∣∣
x y z

Lx Ly Lz
Lx Ly Lz

∣∣∣∣∣∣
= x(LyLz − LzLy)− y(LxLz − LzLx) + z(LxLy − LyLx)

= i~(xLx + yLy + zLz) = i~L

3
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(b) Express (L×L)i in the Einstein notation and show that (L×L)i = i~Li for i ∈ {x, y, z}:
Answer A: By definition of the cross product we have

(L× L)i = εijkLjLk.

For i = x the Levi-Civita tensor implies that the summations over j and k only give a
nonzero contribution for j, k ∈ {y, z}

(L× L)x = LyLz − LzLy = [Ly, Lz] = i~Lx.

By cyclic permutation of the indices we find (L× L)y = i~Ly and (L× L)z = i~Lz.
Answer B : In Einstein notation, the cross product is given by (L×L)i = εijkLjLk. Using
the commutation relation [Lj , Lk] = i~εmjkLm the cross product can be expressed in the
form

(L× L)i = εijkLjLk = εijkLkLj + i~εijkεmjkLi = −(L× L)i + 2i~Li,

which can be rewritten as
(L× L)i = i~Li.

To obtained this result we used the relations εijkLkLj = −(L × L)i and εijkεmjk =
εjkiεjkm = δkkδim − δkmδik = 3δim − δim = 2δim (see Problem 1.1).

(c) Write the tensor ABT as a matrix and show that [A,B] = 0 if and only if all components
of A commute with all components of B.
Answer:

ABT =

AxBx AxBy AxBzAyBx AyBy AyBz
AzBx AzBy AzBz



[A,B] ≡ ABT − (BAT )T =

AxBx −BxAx AxBy −ByAx AxBz −BzAxAyBx −BxAy AyBy −ByAy AyBz −ByAz
AzBx −BxAz AzBy −BzAy AzBz −BzAz

 .

(d) Show that [L,L] 6= 0. Recall that [Lx, Ly] = i~Lz. Hence, not all components of L
commute with each other. As a consequence [L,L] 6= 0,

[L,L] ≡

 0 LxLy − LyLx LxLz − LzLx
LyLx − LxLy 0 LyLz − LyLz
LzLx − LxLz LzLy − LzLy 0

 =

 0 i~Lz −i~Ly
−i~Lz 0 i~Lx
i~Ly −i~Lx 0

 6= 0.

(e) Give an expression for [L,L]ij in the Einstein notation:

[L,L]ij = LiLj − LjLi = [Li, Lj ] = εijki~Lk.

(f) (0.4) Calculate
[
L2,L2

]
:[

L2,L2
]

= (L2
x + L2

y + L2
z)(L

2
x + L2

y + L2
z)− (L2

x + L2
y + L2

z)(L
2
x + L2

y + L2
z) = 0.

4
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5. Tensor products of state vectors: Consider two angular momenta, j1 and j2, acting in
vector spaces of dimension d1 = 2 and d2 = 3, respectively (i.e., j1 = 1

2 and j2 = 1). The
corresponding eigenstates are given by

| 12 ,+
1
2 〉 =

(
1

0

)
, | 12 ,−

1
2 〉 =

(
0

1

)
(Q.5)

and

|1,+1〉 =

 1

0

0

 , |1, 0〉 =

 0

1

0

 , |1,−1〉 =

 0

0

−1

 . (Q.6)

In the uncoupled representation the eigenstate | 12 ,+
1
2 ; 1, 0〉 is given by the tensor product

| 12 ,+
1
2 ; 1, 0〉 = | 12 ,+

1
2 〉 ⊗ |1, 0〉 =

(
1

0

)
⊗

 0

1

0

 =



0

1

0

0

0

0


.

Note that for the doublet state | 12 ,+
1
2 〉 the tensor product | 12 ,+

1
2 〉 ⊗ |1, 0〉 provides a three-

dimensional subspace for the triplet state |1, 0〉. Analogously, for the triplet state |1, 0〉, the
tensor product |1, 0〉 ⊗ | 12 ,+

1
2 〉 provides a two-dimensional subspace for the doublet state

| 12 ,+
1
2 〉. In both ways we obtain a 6-dimensional Hilbert space (for the tensors j1 ⊗ j2

and j2 ⊗ j1, respectively). In the uncoupled representation the stretched state is given by
|j1, j1; j2, j2〉 = |j1, j1〉 ⊗ |j2, j2〉; i.e., for j1 = 1

2 and j2 = 1 this corresponds to | 12 ,+
1
2 ; 1, 1〉 =

| 12 ,+
1
2 〉 ⊗ |1, 1〉. The tensor product is a so-called ordered product.

(a) Do the states | 12 ,+
1
2 〉 and |1, 0〉 commute under the tensor product?

Answer: No

| 12 ,+
1
2 〉 ⊗ |1, 0〉 =

(
1

0

)
⊗

 0

1

0

 =



0

1

0

0

0

0


6=



0

0

1

0

0

0


=

 0

1

0

⊗ (1

0

)
= |1, 0〉 ⊗ | 12 ,+

1
2 〉.

(b) Do the states | 12 ,+
1
2 〉 and |1, 1〉 commute under the tensor product?

Answer: Yes, |j1, j1〉 and |j2, j2〉 always commute

| 12 ,+
1
2 〉 ⊗ |1, 1〉 =

(
1

0

)
⊗

 1

0

0

 =



1

0

0

0

0

0


=

 1

0

0

⊗ (1

0

)
= |1, 1〉 ⊗ | 12 ,+

1
2 〉.

(c) The tensor product is an ordered product because the factors do not commute.
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Problem set 4: Ramsey machines!

Figuur Q.1: Sketch of Ramsey machines: (a) measuring vertical polarization; (b) refocused beam with
vertical polarizers; (c) measuring horizontal polarization; (d) refocused beam with horizontal polarizers

In Fig. Q.1 you find a sketch of so-called Ramsey machines, which are sophisticated Stern-Gerlach
analyzers consisting of magnetic lenses. When a beam of j = 1 atoms enters a Z analyzer we can
observe 3 spots along the z direction by putting a detection screen (see Fig. Q.1-a). Putting a second
analyzer, a −Z analyzer, the beam is refocused as we can observe by putting a detection screen
behind both analyzers (see Fig. Q.1-b). In Fig. Q.1-c/d we show similar machines but now with X
analyzers (which are the same as Z analyzers rotated over 90 degrees about the beam axis). Let
us suppose that the beam is unpolarized ; i.e., the beam consists of ensemble of atoms in randomly
chosen states of the j = 1 system. Hint: An arbitrary pure state is given by (up to a global phase
factor)

|χ〉 =

j∑
m=−j

|j,m〉〈jm|χ〉.

Hence for j = 1 an arbitrary state can be written in the form

|χ〉 =
1∑

m=−1

am|j,m〉,

where the Parseval relation has to be satisfied

1∑
m=−1

|am|2 = 1.

Let us consider an atom which happens to be in the state |χ〉. The probability to observe this atom
in the state |j,m〉 is |am|2. In the unpolarized ensemble |a1|2, |a0|2 and |a−1|2 will take random
values between 0 and 1, subject to the constraint of the Parseval relation; i.e, the basis {|j,m〉}
represents an ensemble of states with equal weight wm = 1

3 (called a statistical mixture or mixed
state) that can be represented by the following density matrix - see Eq. (F.110)

% = 1
3

j∑
m=−j

|j,m〉 〈j,m| = 1
3

1 0 0

0 1 0

0 0 1

 .

.

2
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Questions:

1. Below we show Ramsey machine (a) with 3 analyzers (Z,−Z,Z). Calculate the polarization
(of the ensemble) in the z direction and sketch what you expect to observe by putting a screen
at the end of the beam line.

2. In Ramsey machine (b) we block 2 of the 3 spots between the Z and −Z analyzers (see below).
Calculate the polarization in the z direction and sketch what you expect to observe by putting
a screen at the end of the beam line.

3. In Ramsey machine (c) we have a screen between the −Z and X analyzers (see below). Sketch
what you expect to observe on the screen between the −Z and X analyzers.

4. In Ramsey machine (d) we have an on-axis diaphragm between the −Z and X analyzers (see
below). Calculate the polarization in the x direction and sketch what you expect to observe
by putting a screen at the end of the beam line.

5. In Ramsey machine (e) we block 2 of the 3 spots between the Z and −Z analyzers and keep the
on-axis diaphragm between the −Z and X analyzers (see below). Calculate the polarization
in the x direction and sketch what you expect to observe by putting a screen at the end of the
beam line.

3
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6. In Ramsey machine (f) we block 2 of the 3 spots between the Z and −Z analyzers and keep the
on-axis diaphragm between the −Z and X analyzers (see below). Calculate the polarization
in the z direction and sketch what you expect to observe by putting a screen at the end of the
beam line.

7. In Ramsey machine (g) we again block 2 of the 3 spots between the Z and −Z analyzers,
keep the on-axis diaphragm, and block 2 of the 3 spots between the X and −X analyzers (see
below). Calculate the polarization in the z direction and sketch what you expect to observe
by \setcounter{figure}{0} putting a screen at the end of the beam line.

4
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In 2019 not part of the problem set

1. (2.0) Quantum Information Processing deals with gate operations on quantum bits (qubits) in
a two-dimensional Hilbert space. The qubits are state vectors in a 2D Hilbert space with the
eigenstates denoted by

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
.

Note that the qubit map one-to-one on the states |0〉 ≡ |�〉 ≡ |1/2, 1/2〉 and |1〉 ≡ |�〉 ≡
|1/2,−1/2〉 of a spin −1/2 system. The gate operations are unitary operations. The basic
examples of quantum gate operations that act on a single qubit are the gates X, Y and Z,
which map one-to-one on the Pauli matrices,

σx = X =

(
0 1

1 0

)
, σy = Y =

(
0−i
i 0

)
, σz = Z =

(
1 0

0−1

)
.

Other gate operations are the identity 1,

1 ≡
(

1 0

0 1

)
,

the Hademard gate

H ≡
√

1
2

(
1 1

1−1

)
,

the phase gate

S ≡
(

1 0

0 i

)
,

and the “π/8 phase gate”

T ≡
(

1 0

0 eiπ/4

)
.

Answer the following questions:

(a) (0.4) Show that X2 + Y 2 + Z2 6= 1; calculate X2 + Y 2 + Z2.

(b) (0.4) Show that H = (X + Z)/
√

2.

(c) (0.4) Show that 1 = H2.

(d) (0.4) Show that S = T 2

(e) Calculate X|0〉 and describe the corresponding operation on the Bloch sphere.

(f) Calculate Y |0〉 and describe the corresponding operation on the Bloch sphere.

(g) Calculate Z|0〉 and describe the corresponding operation on the Bloch sphere.

(h) Calculate H|0〉 and describe the corresponding operation on the Bloch sphere.
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Problem set 4: Ramsey machines!

Figuur Q.1: Sketch of Ramsey machines: (a) measuring vertical polarization; (b) refocused beam with
vertical polarizers; (c) measuring horizontal polarization; (d) refocused beam with horizontal polarizers

In Fig. Q.1 you find a sketch of so-called Ramsey machines, which are sophisticated Stern-Gerlach
analyzers consisting of magnetic lenses. When a beam of j = 1 atoms enters a Z analyzer we can
observe 3 spots along the z direction by putting a detection screen (see Fig. Q.1-a). Putting a second
analyzer, a −Z analyzer, the beam is refocused as we can observe by putting a detection screen
behind both analyzers (see Fig. Q.1-b). In Fig. Q.1-c/d we show similar machines but now with X
analyzers (which are the same as Z analyzers rotated over 90 degrees about the beam axis). Let
us suppose that the beam is unpolarized ; i.e., the beam consists of ensemble of atoms in randomly
chosen states of the j = 1 system. Hint: An arbitrary pure state is given by (up to a global phase
factor) \setcounter{figure}{0}

|χ〉 =

j∑
m=−j

|j,m〉〈jm|χ〉.

Hence for j = 1 an arbitrary state can be written in the form

|χ〉 =

1∑
m=−1

am|j,m〉,

where the Parseval relation has to be satisfied

1∑
m=−1

|am|2 = 1.

Let us consider an atom which happens to be in the state |χ〉. The probability to observe this atom
in the state |j,m〉 is |am|2. In the unpolarized beam |a1|2, |a0|2 and |a−1|2 will take random values
between 0 and 1, subject to the constraint of the Parseval relation; i.e, the basis {|j,m〉} represents
an ensemble of states with equal weight wm = 1

3 (called a statistical mixture or mixed state) that
can be represented by the following density matrix - see Eq. (F.110)

% = 1
3

j∑
m=−j

|j,m〉 〈j,m| = 1
3

1 0 0

0 1 0

0 0 1

 .

Questions:

1. Below we show Ramsey machine (a) with 3 analyzers (Z,−Z,Z). Calculate the polarization
(of the ensemble) in the z direction and sketch what you expect to observe by putting a screen

2
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at the end of the beam line. Let us consider an atom which happens to be in the state |χ〉.
Answer 1:

Only at the screen we do a measurement. As the initial beam is unpolarized we observe three
spots. The −Z analyzer undoes the action of the first Z analyzer, so we observe the effect
of the last analyzer, which shows equal population of mj = −1, mj = 0, and mj = +1. The
polarization in the z direction (of a j = 1 atoms) is given by

Pz = 〈χ|Jz/~|χ〉 =

1∑
m=−1

|am|2m = |a1|2 − |a−1|2.

This value can vary between 1 and−1. Now suppose |a1|2 = a and |a−1|2 = b. In an unpolarized
beam, for every atom with |a1|2 = a and |a−1|2 = b there will be another atom with |a1|2 = b
and |a−1|2 = a. Hence, the ensemble average P̄z = 0. What can be said about the relative
brightness of the three spots? Since all combinations of |a1|2, |a0|2 and |a−1|2 (satisfying the
constraint of the Parseval relation) are equally probable we know that the statistical averages
must be equal, 〈|a1|2〉 = 〈|a0|2〉 = 〈|a−1|2〉; i.e., the three spots are equally bright.
Answer 2:
The density matrix describing the unpolarized beam in the basis of the |j,m〉 eigenstates of
Jz and J2 is:

% = 1
3

j∑
m=−j

|j,m〉 〈j,m| = 1
3

1 0 0

0 1 0

0 0 1

 .

Note that tr %2 = 1
3 < 1, which is an indicator that the state is mixed. The polarization in the

z direction is given by:
〈〈Jz/j~〉〉 = tr(%Jz)/j~ = 0.

The beam is unpolarized in the z direction, as expected. Note that the same holds for the x
and y directions, which is readily verified :

〈〈Jx/j~〉〉 = 〈〈Jy/j~〉〉 = tr(%Jx)/j~ = tr(%Jy)/j~ = 0.

2. In Ramsey machine (b) we block 2 of the 3 spots between the Z and −Z analyzers (see below).
Calculate the polarization in the z direction and sketch what you expect to observe by putting
a screen at the end of the beam line.
Answer 1:

By blocking two of the three spots we do a measurement that polarizes the beam into the
state with mj = +1 with respect to the z quantization axis. The −Z analyzer focuses the

3
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beam and the second Z analyzer measures the polarization in the z direction. We calculate

〈Jz/j~〉jj = 〈j, j|Jz/j~|j, j〉 = 1.

So, the beam is fully polarized in the z direction; i.e., we observe 1 spot.
Answer 2:
By blocking two of the three spots we do a measurement that polarizes the beam into the pure
state with mj = +j with respect to the z quantization axis. The density matrix describing
the beam after the blocker is

ρ = |j, j〉 〈j, j| =

1 0 0

0 0 0

0 0 0

 .

Note that ρ2 = ρ, as required for a pure state. The polarization in the z direction is now given
by:

〈Jz/j~〉 = tr(ρJz)/j~ = 1.

The beam is fully polarized in the z direction. Note that:

〈Jx/j~〉 = 〈Jy/j~〉 = tr(ρJx)/j~ = tr(ρJy)/j~ = 0.

So the beam is still unpolarized in the x and y directions.

3. In Ramsey machine (c) we have a screen between the −Z and X analyzers (see below). Sketch
what you expect to observe on the screen between the −Z and X analyzers.
Answer:

The −Z analyzer undoes the action of the Z analyzer, so we observe the unpolarized incident
beam focused onto one spot (see Fig. Q.1-b/d).

4. In Ramsey machine (d) we have an on-axis diaphragm between the −Z and X analyzers (see
below). Calculate the polarization in the x direction and sketch what you expect to observe
by putting a screen at the end of the beam line.
Answer:

The −Z analyzer undoes the action of the Z analyzer, so the unpolarized beam passes through
the diaphragm. This problem is the same as question 1. We simply analyze the unpolarized
initial beam with the detector rotated over 90◦ about the beam axis. The diaphragm is of
no consequence because the probability to detect the focused beam on the screen around the
orifice is zero.

4
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5. In Ramsey machine (e) we block 2 of the 3 spots between the Z and −Z analyzers and keep the
on-axis diaphragm between the −Z and X analyzers (see below). Calculate the polarization
in the x direction and sketch what you expect to observe by putting a screen at the end of the
beam line.
Answer 1:

By blocking two of the three spots we do a measurement that polarizes the beam into the
state with mj = +1 with respect to the z quantization axis. Having defined the z axis we
know that the x and y axes can be defined as perpendicular axes of a right-handed coordinate
system. In the Figure an −X analyzer analyzes the effect of the Z analyzer. Apparently, the
+y direction was chosen along beam axis (we could equally well choose the x axis along the
beam direction and call the analyzer a Y analyzer). We calculate for the polarization

〈Jx/j~〉jj = 〈j, j|Jx/j~|j, j〉 = 0.

Hence, under the given convention the beam is unpolarized in the X direction. To determine
the intensity of the spots we need more information about the state |j, j〉 with respect to the
quantization axis in the x direction. To obtain this we rotate the apparatus clockwise over
90◦ about the beam axis as shown in the figure below.

We know that the beam passing the first blocker should satisfy the relation

Jx|χ〉 = +~|χ〉.

Expressing Jx with respect to the z quantization axis, see Eq. (3.307), this becomes

√
1/2~

0 1 0

1 0 1

0 1 0

ab
c

 = ~

ab
c

 ,

where a, b and c are the coefficients for the decomposition of the state |χ〉 with respect to the
z axis. So, we have to solve the set of equations√

1/2b = a√
1/2(a+ c) = b√

1/2b = c.

Under the constraint |a|2 + |b|2 + |c|2 = 1 we obtain (up to a global phase factor) a = c = 1/2
and b =

√
1/2. Hence, we observe 3 spots and the middle one is twice as bright as the others.

5
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Now we rotate the machine back to the original position and conclude that we should observe
3 spots along the z direction and the middle one is twice as bright as the others (this result
confirms zero polarization in the detection direction).
Note that the state |χ〉 can also be obtained by unitary transformation of the state |j, j〉 =
|1, 1〉. In Eq. (3.303a) we show the matrix for the unitary transformation D1(0, π/2, 0), which
corresponds to a clockwise over 90° about the y-axis. Applying this transformation we find

|χ〉 = D1(0, π/2, 0) |1, 1〉z =


1
2 −

√
1
2

1
2√

1
2 0 −

√
1
2

1
2

√
1
2

1
2


1

0

0

 =


1
2√

1
2

1
2

 .

Answer 2:

We repeat the calculation for another choice of the cartesian coordinate system. Note that
what used to be a −X machine is now called a Y machine. We calculate for the polarization

〈Jy/j~〉jj = 〈j, j|Jy/j~|j, j〉 = 0.

Hence, under the new convention the beam is unpolarized in the Y direction. To determine
the intensity of the spots we need more information about the state |j,−j〉 with respect to the
quantization axis in the y direction. To obtain this we rotate again the apparatus clockwise
over 90◦ about the beam axis as shown in the figure below.

We know that the beam passing the first blocker should satisfy the relation

Jy|χ〉 = −~|χ〉.

Expressing Jy with respect to the z quantization axis, see Eq. (3.307), this becomes

√
1/2i~

0−1 0

1 0 −1

0 1 0

ab
c

 = −~

ab
c

 ,

where a, b and c are the coefficients for the decomposition of the state |χ〉 with respect to the
z axis. Thus we have to solve the set of equations-

−
√

1/2ib = −a

−
√

1/2i(a− c) = −b√
1/2ib = −c.

6



Problem set 4 - solutions Atomic Physics Course 2020-2021

Under the constraint |a|2 + |b|2 + |c|2 = 1 we obtain (up to a global phase factor) −c = a = i/2
and b =

√
1/2. Hence, we predict 3 spots and the middle one is twice as bright as the others,

just as we found for the other choice of coordinates. Note that the choice of coordinate
system affects the relative phases of the components but this does not affect the result of the
measurement.
Answer 3:
By blocking two of the three spots we do a measurement that polarizes the beam into the state
with mj = +j = 1 with respect to the z quantization axis. The density matrix describing the
beam after the blocker is thus:

ρmj = |j, j〉 〈j, j| =

1 0 0

0 0 0

0 0 0

 .

The polarization in the x direction is given by:

〈Jx/j~〉 = tr(ρJx)/j~ = 0.

So the beam is unpolarized in the x direction. To calculate the intensity of the spots we first
rotate the system over 90° about the beam axis. The corresponding unitary transformation
is |χ〉 = D1(0, π/2, 0) |1, 1〉z and was calculated under Answer 1. The corresponding density
matrix is

ρ = |χ〉〈χ| =


1
2√

1
2

1
2

( 1
2 ,
√

1
2 ,

1
2

)
=

1

4

 1
√

2 1√
2 2

√
2

1
√

2 1

 .

Note that ρ2 = ρ as required for a pure state. To calculate the intensity of the spots we ask
for 〈ρm〉 = tr (ρ ρm), where m ∈ {1, 0,−1}. The ρmj are given by

ρ1 =

1 0 0

0 0 0

0 0 0

 ; ρ0 =

0 0 0

0 1 0

0 0 0

 ; ρ−1 =

0 0 0

0 0 0

0 0 1

 .

Thus we find

ρ ρ1 =
1

4

 1 0 0√
2 0 0

1 0 0

 ; ρ ρ0 =
1

4

0
√

2 0

0 2 0

0
√

2 0

 ; ρ ρ−1 =
1

4

0 0 1

0 0
√

2

0 0 1

 .

Tracing these matrices we arrive at tr (ρ ρ1) = 1
4 , tr (ρ ρ0) = 1

2 and tr (ρ ρ−1) = 1
4 .

6. In Ramsey machine (f) we block 2 of the 3 spots between the Z and −Z analyzers and keep the
on-axis diaphragm between the −Z and X analyzers (see below). Calculate the polarization
in the z direction and sketch what you expect to observe by putting a screen at the end of the
beam line.
Answer:

The X and −X analyzers do not effect the beam (no measurement). Therefore, this question
reduces to question 2.

7
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7. In Ramsey machine (g) we again block 2 of the 3 spots between the Z and −Z analyzers,
keep the on-axis diaphragm, and block 2 of the 3 spots between the X and −X analyzers (see
below). Calculate the polarization in the z direction and sketch what you expect to observe
by putting a screen at the end of the beam line.
Answer:

Up to the third screen we have the same situation as in question 5. To calculate the polarization
in the x direction we rotate the machine clockwise over 90◦ about the beam axis. In this way
we obtain machine (g’). In this case we have to calculate:

〈Jx/j~〉j0 = 〈j, 0|Jx/j~|j, 0〉 = 0.

Hence, the beam is unpolarized in the x direction. Now we rotate the machine back to the
original position and conclude that the beam is unpolarized in the z direction.
What about the spots? For this we stick to (g). We know that the beam passing the first
diaphragm should satisfy the relation

Jx|χ〉 = 0~|χ〉.

Expressing Jx with respect to the z quantization axis, see Eq. (3.307), this becomes

√
1/2~

0 1 0

1 0 1

0 1 0

ab
c

 =

0

0

0

 .

Thus we have to solve the set of equations √
1/2b = 0√

1/2(a+ c) = 0√
1/2b = 0.

Under the constraint |a|2 + |b|2 + |c|2 = 1 we obtain (up to phase factors) a = −c =
√

1/2
and b = 0. Hence, we observe 2 spots with the middle one lacking (this result confirms zero
polarization in the detection direction).

8
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In 2019 not part of the problem set

1. (2.0) Quantum Information Processing deals with gate operations on quantum bits (qubits)
in a two-dimensional Hilbert space. The qubits are state vectors in a 2D Hilbert space with
the eigenstates denoted by

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
.

Note that the qubits map one-to-one on the states |0〉 ≡ |�〉 ≡ |1/2, 1/2〉 and |1〉 ≡ |�〉 ≡
|1/2,−1/2〉 of a spin −1/2 system. The gate operations are unitary operations. The basic
examples of quantum gate operations that act on a single qubit are the gates X, Y and Z,
which map one-to-one on the Pauli matrices,

σx = X =

(
0 1

1 0

)
, σy = Y =

(
0−i
i 0

)
, σz = Z =

(
1 0

0−1

)
.

Other gate operations are the identity 1,

1 ≡
(

1 0

0 1

)
,

the Hademard gate

H ≡
√

1
2

(
1 1

1−1

)
,

the phase gate

S ≡
(

1 0

0 i

)
,

and the “π/8 phase gate”

T ≡
(

1 0

0 eiπ/4

)
.

Answer the following questions:

(a) (0.4) Show that X2 + Y 2 + Z2 6= 1; calculate X2 + Y 2 + Z2.
Answer: Using the definitions of X, Y and Z we find

X2 + Y 2 + Z2 =

(
0 1

1 0

)(
0 1

1 0

)
+

(
0−i
i 0

)(
0−i
i 0

)
+

(
1 0

0−1

)(
1 0

0−1

)
=

(
1 0

0 1

)
+

(
1 0

0 1

)
+

(
1 0

0 1

)
= 3

(
1 0

0 1

)
.

(b) (0.4) Show that H = (X + Z)/
√

2.
Answer: Using the definitions of X and Z we find√

1

2
(X + Z) =

√
1

2

(
0 1

1 0

)
+

√
1

2

(
1 0

0−1

)
=

√
1

2

(
1 1

1−1

)
= H.

(c) (0.4) Show that 1 = H2.
Answer: Using the definition of H we calculate

H2 =
1

2

(
1 1

1−1

)(
1 1

1−1

)
=

(
1 0

0 1

)
= 1.

9
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(d) (0.4) Show that S = T 2.
Answer: Using the definition of T and S we find

T 2 =

(
1 0

0 eiπ/4

)(
1 0

0 eiπ/4

)
=

(
1 0

0 i

)
= S.

(e) Calculate X|0〉 and describe the corresponding operation on the Bloch sphere.
Answer:

X|0〉 =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1〉.

This corresponds to a rotation over π on the Bloch sphere about the ŷ direction (θ, φ) =
(π, 0).

(f) Calculate Y |0〉 and describe the corresponding operation on the Bloch sphere.
Answer:

Y |0〉 =

(
0−i
i 0

)(
1

0

)
=

(
0

i

)
= i|1〉.

This corresponds to a rotation π on the Bloch sphere about the x̂ direction (θ, φ) =
(π, π/2).

(g) Calculate Z|0〉 and describe the corresponding operation on the Bloch sphere.
Answer:

Z|0〉 =

(
1 0

0−1

)(
1

0

)
=

(
1

0

)
= |0〉.

It is clear from the definition of Z that this operator is not the identity; Z corresponds
to a rotation over π on the Bloch sphere about the ẑ direction.

(h) Calculate H|0〉 and describe the corresponding operation on the Bloch sphere.
Answer:

H|0〉 =

√
1

2

(
1 1

1−1

)(
1

0

)
=

√
1

2

(
1

1

)
=
√

1
2 (|0〉+ |1〉).

This corresponds to a rotation over π about the (x̂ + ẑ)/
√

2 direction on the Bloch
sphere. Note that it cannot be a rotation about the ŷ axis because H2 = 1. Note that
H| �〉y = | �〉−y.
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Q.9 Problem set 5

Problems Chapter 4

1. The LSJ commute: The Schrödinger Hamiltonian can be written as

H0 =
1

2µ

(
p2
r +

L2

r2

)
− Ze2

4πε0r
,

where pr = −i~ (∂/∂r + 1/r) is the operator for the radial momentum and L = −i~(r ×∇)
the operator for the orbital angular momentum. The commutation relations between the
components of L are [Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly and further we have
[Lx,L

2] = 0, [Ly,L
2] = 0, [Lz,L

2] = 0. Analogous commutation relations hold for the
components of S, the vector operator for the electron spin. L and S act in orthogonal sectors
of the Hilbert space (L acts on the position coordinates and S on the spin coordinates). Give a
short explanation in your answers on the following questions. Note: vector operators commute
if the components of the vector operators commute.
Answer the following questions:

(a) Does H0 commute with L2?

(b) Does H0 commute with L?

(c) Does H0 commute with S?

(d) Does H0 commute with L · S?

(e) Does H0 commute with J = L + S?

(f) Does L commute with S?

(g) Does L commute with L?

(h) Does L commute with J?

(i) Does L · S commute with J?

(j) Does L · S commute with L?

Note: Perturbation theory for degenerate levels reduces to ordinary perturbation theory when
the perturbation commutes with the unperturbed Hamiltonian. Therefore, we exercise here
the commutation relations. Once a commutation rule is proven it can be used for proving or
(disproving) subsequent relations.

2. The Darwin term: Check the validity of the approximation leading to Eq. 4.19 where
the wavefunction Rnl(r) gets replaced by its value at the origin Rnl(0) using Mathematica.
Calculate the ratio of the more exact integral in the equation preceding 4.19 with 4.19 for
Hydrogen and n = 2, l = 0. Show that in the limit R → 0, the ratio goes to unity. What is
the (numerical) ratio when R = λc? (Hint: in atomic units, this corresponds to R̃ = α).

The qubits of 40Ca+

1. The spontaneous lifetime τ for the transition |n′l′m′〉 → |nlm〉 from the excited state |n′l′m′〉
is given (to first order in perturbation theory) by the relation

1

τ
=

8π2

3~ε0

D2
n′l′m′,nlm

λ3
,

The lifetime of the 3d level in atomic hydrogen is 15.6 ns. This decay is limited by electric-
dipole transitions and is observed as fluorescence after laser excitation. What is this lifetime
for the 3d level in Ca+ (to first order in perturbation theory? Why is the 3d level in Ca+

called “metastable”?

0
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2. The 40Ca nucleus has nuclear spin I = 0. Therefore, the level structure of 40Ca+ is fully
defined by its fine structure (i.e., hyperfine structure is absent). Make a sketch of the atomic
level diagram of the 4s, 4p and 3d levels of 40Ca+, including fine structure and indicate the
Zeeman splitting of the 2S1/2 and 2D5/2 manifolds.

3. Two types of qubits can be encoded in the 40Ca+ ion. Using microwave radiation a qubit
can be encoded in the magnetic sublevels of the 2S1/2 ground state manifold - this is called
the microwave qubit. Using an electric quadrupole transition a qubit can be encoded in two
magnetic sublevels, one in the 2S1/2 electronic ground state and one in the 2D5/2 metastable
state - this is called the optical qubit. How would you use a pulsed laser to demonstrate that
a single 40Ca+ ion is in the metastable state without affecting the occupation of this state or
its entanglement with another qubit?

1
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Q.10 Problem set 5 - solutions
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Solutions Problems Chapter 4

1. The LSJ commute: The Schrödinger Hamiltonian can be written as

H0 =
1

2µ

(
p2
r +

L2

r2

)
− Ze2

4πε0r
,

where pr = −i~ (∂/∂r + 1/r) is the operator for the radial momentum and L = −i~(r ×∇)
the operator for the orbital angular momentum. The commutation relations between the
components of L are [Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly and further we have
[Lx,L

2] = 0, [Ly,L
2] = 0, [Lz,L

2] = 0. Analogous commutation relations hold for the
components of S, the vector operator for the electron spin. L and S act in orthogonal sectors
of the Hilbert space (L acts on the position coordinates and S on the spin coordinates). Give a
short explanation in your answers on the following questions. Note: vector operators commute
if the components of the vector operators commute.
Answers to the questions:

(a) Yes, H0 commutes with L2, because L2 is a scalar operator and all scalar operators
commutes with itself. Further L2 commutes with r and also with pr because L2 acts only
on the angular variables.

(b) Yes, H0 commutes with L, because L2 commutes with the components of L (see intro).
Further, L commutes with r because of the reason given under (1a).

(c) Yes, H0 commutes with S, because H0 does not depend on spin.

(d) Yes, H0 commutes with L · S = LxSx + LySy + LzSz because H0 commutes with (the
components of) L and with S.

(e) Yes, H0 commutes with J = L + S because H0 commutes with L and S.

(f) Yes, L commutes with S because these operators act on different coordinates.

(g) (0.4) No, L commutes not with L. Scalar operators commutes always with itself. In the
case of vector operators the components should satisfy but this is not the case. Counter
example: [Lx, Ly] = i~Lz.

(h) No, L commutes not with J because J = L + S and L do commute with S but not with
L - see question (1g).

(i) Yes, L · S commutes with J because L · S = 1
2 [J2 − L2 − S2] and Ji commutes with J2,

Li commutes with L2 and Si commutes with S2 (by definition of angular momentum).

(j) No, L · S commutes not with L. Counter example: [Lx,L · S] = [Lx, LxSx+LyderivedSy+
LzSz] = [Lx, Lx]Sx+[Lx, Ly]Sy+[Lx, Lz]Sz = 0+i~LzSy−i~LySz 6= 0 - see also question
(1g).

2. See notebook. What is the (numerical) ratio when R = λc? - Answer: the ratio is 0.9945

The qubits of 40Ca+

1. The spontaneous lifetime τ for the transition |n′l′m′〉 → |nlm〉 from the excited state |n′l′m′〉
is given by the relation

1

τ
=

8π2

3~ε0

D2
n′l′m′,nlm

λ3
,

The lifetime of the 3d level in atomic hydrogen is 15.6 ns. This decay is limited by electric-
dipole transitions and is observed as fluorescence after laser excitation. What is this lifetime
for the 3d level in Ca+ (to first order in perturbation theory? Why is the 3d level in Ca+

1
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Figuur Q.1: (a) Atomic level diagram of 40Ca+; (b) demonstration of metastable state.

called “metastable”?
Answer: the electric-dipole lifetime of the 3d level is infinite because the p level lies above the
d level and d→ s transitions are not dipole allowed because ∆l = 2.

2. The 40Ca nucleus has nuclear spin I = 0. Therefore, the level structure of 40Ca+ is fully
defined by its fine structure (i.e., hyperfine structure is absent). Make a sketch of the atomic
level diagram of the 4s, 4p and 3d levels of 40Ca+, including fine structure and indicate the
Zeeman splitting of the 2S1/2 and 2D5/2 manifolds.
Answer: see Fig. Q.1-a

3. Two types of qubits can be encoded in the 40Ca+ ion. Using microwave radiation a qubit
can be encoded in the magnetic sublevels of the 2S1/2 ground state manifold - this is called
the microwave qubit. Using an electric quadrupole transition a qubit can be encoded in two
magnetic sublevels, one in the 2S1/2 electronic ground state and one in the 2D5/2 metastable
state - this is called the optical qubit. How would you use a pulsed laser to demonstrate that
a single 40Ca+ ion is in the metastable state without affecting the occupation of this state or
its entanglement with another qubit?
Answer: excitation of the s → p transition. If the electron is shelved in the metastable state
no fluorescence is observed during the lifetime of the metastable state (see Fig. Q.1-b).
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Problems Chapter 4 (continued)

Fine structure and Zeeman effect of p states in hydrogenic atoms

Consider the Hamiltonian

H = H0 +H′ with

H0 =
1

2µ

(
p2
r +

L2

r2

)
− Ze2

4πε0r
H′ = HLS +HZ ,

where HLS = ξ(r)L · S is the spin-orbit interaction and HZ = (gLLz + geSz)µBB/~ the Zeeman
interaction. We approximate gL = 1 and ge = 2. The spin-orbit coupling strength is

ξ(r) ' − 1

2µ2c2
e

r

dϕ(r)

dr
, (Q.7)

where ϕ(r) = Ze/4πε0r is the Coulomb potential of the nuclear charge Ze. The Hamiltonian
H0 gives rise to (2l + 1) (2s+ 1)-fold degenerate energy levels. This degeneracy is lifted by H ′,
a combination of spin-orbit and Zeeman interaction. The splitting can be calculated in the high-
field and the low-field limit with the expressions of ordinary perturbation theory for non-degenerate
levels. Note that all questions lead to Question 9; hence, pay special attention to Question 9.

Questions:

1. What condition should hold between H0 and H ′ to assure that perturbation theory for dege-
nerate levels reduces to ordinary perturbation theory? Is this condition satisfied for H ′ = HZ?
Why? Is this condition satisfied for H ′ = HLS? Why? Explain why we can use first order
perturbation theory to calculate the fine structure of hydrogen for levels of given principal
quantum number n.

2. Do HLS and HZ commute? The commutation relations between the components of an angular
momentum operator L are [Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly.

3. One distinguishes between low-field (〈HZ〉 � 〈HLS〉) and high-field (〈HZ〉 � 〈HLS〉) expres-
sions for the Zeeman shift. Which quantum number(s) is (are) conserved for any value of the
magnetic field (such a quantum number is called a “good” quantum number)?

4. In low magnetic fields, where 〈HZ〉 � 〈HLS〉, the orbital and spin angular momenta couple to
the total angular momentum J = L + S. The matrix elements of LZ and SZ in the so-called
coupled basis {|nlsjmj〉} are proportional to the matrix element of Jz. This is expressed by
the Wigner-Eckart theorem in the following form:

〈nlsjmj |LZ |nlsjmj〉 = 〈lsj||L||lsj〉〈jmj |JZ |jmj〉
〈nlsjmj |SZ |nlsjmj〉 = 〈lsj||S||lsj〉〈jmj |JZ |jmj〉,

where the proportionality factor 〈lsj||L||lsj〉 and 〈lsj||S||lsj〉 are projections on the J vector
given by

〈lsj||L||lsj〉 =
〈nlsjmj |L · J|nlsjmj〉
〈nlsjmj |J2|nlsjmj〉

and 〈lsj||S||lsj〉 =
〈nlsjmj |S · J|nlsjmj〉
〈nlsjmj |J2|nlsjmj〉

.

Calculate 〈lsj||L||lsj〉 and 〈lsj||S||lsj〉. What is the name of these proportionality factors?

5. Show that in low magnetic fields, 〈HZ〉 � 〈HLS〉, the Zeeman shift can be written as
∆EZn,j(B) = 〈nlsjmj |H′|nlsjmj〉 = gJµBBmj to first order in perturbation theory.

1
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6. What is the name of the g-factor gJ? Give an expression for gJ in terms of l, s and j. Can gJ
be negative in hydrogenic atoms?

7. Give an expression for the spin-orbit shift in zero-field in terms of the spin-orbit coupling
constant ζnl = 〈nl|ξ(r)|nl〉~2. Can ζnl be negative in hydrogenic atoms? Explain your answer.
Derive the Landé interval rule for the splitting of the levels 2s+1LJ and 2s+1LJ−1.

8. In high magnetic fields, where 〈HZ〉 � 〈HLS〉, the Zeeman shift is best calculated in the
uncoupled basis {|nlmlsms〉} ≡ {|nlml〉 ⊗ |sms〉}. Give the high magnetic field expression
for the Zeeman shift ∆EZn,ml,ms(B) to first order in perturbation theory and including the
spin-orbit contribution.

9. Sketch the fine structure as a function of magnetic field for the case l = 1, s = 1/2. Use the
spectroscopic Term notation to label the levels in zero magnetic field. Important: fill out the
following table for the high-field limit

ml ms mj mlms ml + 2ms

Which quantity is associated with ml + 2ms?

2
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Solutions Problems Chapter 4 (continued)

Fine structure and Zeeman effect of p states in hydrogenic atoms

Consider the Hamiltonian

H = H0 +H′ with

H0 =
1

2µ

(
p2
r +

L2

r2

)
− Ze2

4πε0r
H′ = HLS +HZ ,

where HLS = ξ(r)L · S is the spin-orbit interaction and HZ = (gLLz + geSz)µBB/~ the Zeeman
interaction. We approximate gL = 1 and ge = 2. The spin-orbit coupling strength is

ξ(r) ' − 1

2µ2c2
e

r

dϕ(r)

dr
, (Q.8)

where ϕ(r) = Ze/4πε0r is the Coulomb potential of the nuclear charge Ze. The Hamiltonian
H0 gives rise to (2l + 1) (2s+ 1)-fold degenerate energy levels. This degeneracy is lifted by H ′,
a combination of spin-orbit and Zeeman interaction. The splitting can be calculated in the high-
field and the low-field limit with the expressions of ordinary perturbation theory for non-degenerate
levels.

Answers:

1. To assure that perturbation theory for degenerate levels can be reduced to ordinary perturba-
tion theory we require [H0, H

′] = 0. This is the case for the Zeeman interaction, [H0,HZ ] = 0,
because Lz and Sz commute with L2 as well as with all r dependent terms of H0. This is not
the case for the spin-orbit interaction, [H0,HLS ] 6= 0, because ξ(r) does not commute with H0

and Hr. However, [H0,HLS ] ' 0, more precisely [H0,HLS ] = 0 “to first order in perturbation
theory”. To understand this feature we first note that [H0,L · S] = 0 because: (a) L · S com-
mutes with any function of r (since L and S are independent of r); (b) [L · S,p2

r] = 0 (since spin
operates in its own sector of Hilbert space and pr is independent of θ and φ); (c) [L2,L · S] = 0
(since [L2,LiSi] = [L2,Li]Si+Li[L

2,Si] = 0 for i ∈ {x, y, z}). However, ξ(r) does not commute
with H0 and Hr (because r does not commute with pr). This of no consequence as long as
the second order correction remains small. This is the case because the fine-structure splitting
is much smaller (factor α2) than the level separation of the main structure. Therefore, only
states within the selected manifold of given principal quantum number n enter the calculation
in first-order - see Eq. (H.56) and below. Thus, n is a good quantum number but only to first
order in perturbation theory.

2. HLS and HZ = (Lz + 2Sz)µBB/~ do not commute. To proof this we first note that L · S
commutes neither with Lz nor with Sz. We show this for Lz (for Sz the proof goes analogously)

[L · S, Lz] = [LxSx + LySy + LzSz, Lz]

= [Lx, Lz]Sx + [Ly, Lz]Sy = −i~LySx + i~LxSy = i~ (LxSy − LySx) 6= 0.

[L · S, Sz] = [LxSx + LySy + LzSz, Sz]

= Lx[Sx, Sz] + Ly[Sy, Sz] = −i~LxSy + i~LySx = −i~ (LxSy − LySx) 6= 0.

Hence,

[L · S, Lz + Sz] = 0.

1
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This is a happy cancellation of terms. In general the sum of two nonvanishing commutators
will be nonvanishing; in particular

[L · S, Lz + 2Sz] = −i~ (LxSy − LySx) 6= 0.

3. One distinguishes between low-field (〈HZ〉 � 〈HLS〉) and high-field (〈HZ〉 � 〈HLS〉) expres-
sions for the Zeeman shift. Correspondingly we have for the atomic fine structure a low
field Hamiltonian H = H0 +Hr +HLS with quantum numbers n, l, s, j,mj and a high field
Hamiltonian H = H0 +Hr +HZ with the quantum numbers n, l,ml, s,ms. From these quan-
tum numbers n, l, s are quantum numbers in any field (these correspond to joint eigenstates
of H0,Hr,HLS and HZ). The quantum number j corresponds to the joint eigenstates of
H0 +Hr and HLS but not of HZ . Therefore, j is not a good quantum number in arbitrary
field (in particular not in high field). Likewise ml and ms are (individually) good quantum
numbers of HZ but not of HLS . Therefore, ml and ms are (individually) not good quantum
numbers in arbitrary field (in particular not in low field). The operator Jz commutes with
both HLS and HZ . Therefore (see Problem F.1), the operator Jz = Lz + Sz shares its ei-
genstates |mj〉 and quantum number mj = ml + ms with the operators HLS and HZ . Thus
mj = ml+ms is a “good” quantum number (see Appendix F.2.4). Alternatively we can argue
that L · S = LzSz + 1

2 [L+S− + L−S+]. This means that whenever L+ raises ml by 1 the
operator S− will lower ms by 1 (and vice versa), hence ml + ms will be conserved. On the
other hand J2 = L2 +S2 + 2L · S and Lz, Sz do not commute because L · S does not commute
with gLLz + geSz (no happy cancellation - see question 2). Therefore j, ml and ms are not
good quantum numbers in arbitrary field.

4. In low magnetic fields, where 〈HZ〉 � 〈HLS〉, the orbital and spin angular momenta couple to
the total angular momentum J = L + S. The matrix elements of LZ and SZ in the so-called
coupled basis {|nlsjmj〉} are proportional to the matrix element of Jz. This is expressed by
the Wigner-Eckart theorem,

〈nlsjmj |LZ |nlsjmj〉 = 〈lsj||L||lsj〉〈jmj |JZ |jmj〉
〈nlsjmj |SZ |nlsjmj〉 = 〈lsj||S||lsj〉〈jmj |JZ |jmj〉.

The proportionality factors 〈lsj||L||lsj〉 and 〈lsj||S||lsj〉 are given by

〈lsj||L||lsj〉 =
〈nlsjmj |L · J|nlsjmj〉
〈nlsjmj |J2|nlsjmj〉

=
〈nlsjmj |L2 + L · S|nlsjmj〉
〈nlsjmj |J2|nlsjmj〉

=
〈nlsjmj |J2 + L2 − S2|nlsjmj〉

2〈nlsjmj |J2|nlsjmj〉

=
j(j + 1) + l(l + 1)− s(s+ 1)

2j(j + 1)
.

Likewise we derive

〈lsj||S||lsj〉 =
j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)
.

These proportionality factors are called reduced matrix elements.
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5. In low magnetic fields, where 〈HZ〉 � 〈HLS〉, the Zeeman shift is given by

∆EZn,j(B) = 〈nlsjmj |H′|nlsjmj〉
= [〈lsj||L||lsj〉+ 2〈lsj||S||lsj〉]µBB/~〈jmj |JZ |jmj〉
= [〈lsj||L||lsj〉+ 2〈lsj||S||lsj〉]µBBmj

= gJµBBmj ,

where the g-factor is defined by

gJ = 〈lsj||L||lsj〉+ 2〈lsj||S||lsj〉.

6. (1.0) The g-factor gJ is called the Landé g-factor.

gJ = 〈lsj||L||lsj〉+ 2〈lsj||S||lsj〉

=
j(j + 1) + l(l + 1)− s(s+ 1)

2j(j + 1)
+

2j(j + 1)− 2l(l + 1) + 2s(s+ 1)

2j(j + 1)

=
2j(j + 1) + j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)

= 1 +
j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)

For hydrogen-like atoms we have s = 1/2 and the Landé factor reduces to the compact form

gJ = 1± 1

2l + 1
for j = l ± 1/2 with l 6= 0 and s = 1/2.

For l = 0 we have gJ = 2. Since l ≥ 0 the g factor is always positive (gJ > 0) and largest for
the state with the largest multiplicity (highest j).

7. The spin-orbit shift is given by

∆ELSn,j =
1

2
〈nl| ξ(r) |nl〉 〈lsjmj |J2 − L2 − S2 |lsjmj〉

=
1

2
〈nl| ξ(r) |nl〉 ~2 [j(j + 1)− l(l + 1)− s(s+ 1)]

=
1

2
ζnl [j(j + 1)− l(l + 1)− s(s+ 1)] .

The coupling constant ζnl can not be negative in hydrogenic atoms because

ξ(r) ' 1

2µ2c2
1

r

d

dr

−Ze2

4πε0r
=

1

2µ2c2
Ze2

4πε0r3
> 0.

The Landé interval rule for the spin-orbit splitting of two subsequent spin-orbit levels 2s+1LJ
and 2s+1LJ−1 is

∆W = ∆ELSn,j −∆ELSn,j−1 = ζnlj.

8. (1.0) In high magnetic fields, where 〈HZ〉 � 〈HLS〉, the Zeeman shift dominates and is given
by

∆EZn,ml,ms(B) = 〈nlmlsms|HZ +HLS |nlmlsms〉
= 〈lmlsms|Lz + 2Sz|lmlsms〉µBB/~

+
(
ζnl/~2

)
〈lmlsms|LzSz + 1

2 [L+S− + L−S+]|lmlsms〉.

3
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Since the high-field limit is a case of weak coupling, we may neglect the off-diagonal terms to
lowest order in perturbation theory (see Appendix G.3.4) and obtain

∆EZn,ml,ms(B) = 〈lmlsms|Lz + 2Sz|lmlsms〉µBB/~
+
(
ζnl/~2

)
〈lmlsms|LzSz|lmlsms〉

= µBB (ml + 2ms) + ζnlmlms

9. The fine structure versus magnetic field is sketched above for the case l = 1, s = 1
2 .

The high-field limit is analyzed in the table below.

ml ms mj mlms ml + 2ms

(ζnl) (µBB)

1 1
2

3
2

1
2 2

1 − 1
2

1
2 − 1

2 0

0 1
2

1
2 0 1

0 − 1
2 − 1

2 0 −1

−1 1
2 − 1

2 − 1
2 0

−1 − 1
2 − 3

2
1
2 −2

Note that (ml + 2ms)µBB is the effective magnetic moment in the high field limit.
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Problems Chapter 5

Ground-state hyperfine structure of hydrogen-like atoms

1. Consider the Hamiltonian for the ground state
(
12S1/2

)
of hydrogenic atoms

H = H0 +H′ with


H0 =

1

2µ

(
p2
r +

L2

r2

)
− Ze2

4πε0r

H′ =
(
ahfs/~2

)
I · S + (geµBSz − gIµNIz)B/~

.

where ge = 2 is the g-factor of the electron

ahfs

(
n 2s+1LJ

)
=
µ0

4π

2

3

gsµBγI~
[(1 +me/M)a0]3

[Rn0(0)]
2

is the hyperfine coupling constant of the Fermi contact interaction. The low field g-factor is

gF = ±gJ
1

2I + 1
for F = I ± 1/2

where

gJ = 1 +
[j(j + 1) + s(s+ 1)− l(l + 1)]

2j(j + 1)
.

is the Landé factor.

(a) Give an expression for the zero-field hyperfine shift ∆EISF in terms of the quantum num-
bers I, S and F using the so-called coupled basis of I and S, valid to first order in ordinary
perturbation theory.

(b) Why is it allowed to use ordinary perturbation theory in the so-called coupled basis
{|sIFmF 〉} to calculate the lifting of degeneracy of degenerate F levels in zero field?

(c) Write the matrix elements for the Zeeman effect including the hyperfine interaction in
the high-field basis {|smsImI〉}. Which terms are diagonal and which are off-diagonal?
Why is it allowed to use ordinary perturbation theory to lift the degeneracy of degenerate
F levels in the high field limit if the off-diagonal terms may be neglected?

(d) Why is mF = ms +mI in all fields a “good” quantum number of the full Hamiltonian?

(e) Give an expression (in terms of the quantum numbers ms and mI) for the Zeeman effect
for magnetic fields B � ahfs/µB .

(f) Sketch the hyperfine diagram as a function of magnetic field and indicate the mF value
of all levels for atoms with (l = 0, S = 1/2, I = 1) for

a. positive gyromagnetic ratio (γI > 0)

b. negative gyromagnetic ratio (γI < 0)

1
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Solutions Problems Chapter 5

Ground-state hyperfine structure of hydrogen-like atoms

1. Consider the Hamiltonian for the ground state
(
12S1/2

)
of hydrogenic atoms

H = H0 +H′ with


H0 =

1

2µ

(
p2
r +

L2

r2

)
− Ze2

4πε0r

H′ =
(
ahfs/~2

)
I · S + (geµBSz − gIµNIz)B/~

.

where ge = 2 is the g-factor of the electron

ahfs

(
n 2s+1LJ

)
=
µ0

4π

2

3

gsµBγI~
[(1 +me/M)a0]3

[Rn0(0)]
2

is the hyperfine coupling constant of the Fermi contact interaction. The low field g-factor is

gF = ±gJ
1

2I + 1
for F = I ± 1/2

where

gJ = 1 +
[j(j + 1) + s(s+ 1)− l(l + 1)]

2j(j + 1)
.

is the Landé factor.

(a) The zero-field hyperfine shift is given by

∆EISF =
(
ahfs/~2

)
〈sIFmF |I · S|sIFmF 〉

=
1

2
ahfs{〈sIFmF |F2 − I2 − S2|sIFmF 〉}

=
1

2
ahfs{F (F + 1)− I(I + 1)− s(s+ 1)}.

(b) The above expression holds for ordinary first-order perturbation theory in the so called
coupled basis {|sIFmF 〉} (in which I and s are coupled into F by the I · S term). This
is allowed because both I2, S2, F2 and Fz commute with the Hamiltonian:

(c) In the high-field basis {|smsImI〉} the matrix elements for the Zeeman effect, including
the hyperfine interaction, are given by

∆EZ = 〈sm′sIm′I |
(
ahfs/~2

)
IzSz + (geµBSz − gIµNIz)B/~|smsImI〉

+ 1
2

(
ahfs/~2

)
〈sm′sIm′I |I+S− + I−S+|smsImI〉

The diagonal terms are 〈smsImI |
(
ahfs/~2

)
IzSz + (geµBSz − gIµNIz)B/~|smsImI〉 and

the off-diagonal terms are 1
2

(
ahfs/~2

)
〈sm′sIm′I |I+S−+I−S+|smsImI〉. If the off-diagonal

terms may be neglected H ′ commutes with H0. Thus, we may use ordinary perturbation
theory to calculate the Zeeman shift.

(d) The value mF = ms +mI is a “good” quantum number of the full Hamiltonian H in all
fields because Fz commutes with H:
[Fz, I · S] = 1

2{[Fz,F
2]−[Fz, I

2]−[Fz,S
2]} = 0 since [Iz+Sz, I

2] = 0 and [Iz+Sz,S
2] = 0.

Furthermore, Fz also commutes with H0 and Hr because these are independent of spin.

1
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(e) The expression (in terms of the quantum numbers ms and mI) for the Zeeman effect in
high magnetic fields (B � ahfs/µB) is:

∆EZ = ahfsmsmI + (geµBms − gIµNmI)B/~

(f) The requested hyperfine diagrams are given below:

2
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Problems Chapter 7

Helium-like atoms

1. Consider an atom or ion of nuclear charge Ze and two electrons in the 1s2 configuration.
Analyze this system using first-order perturbation theory and Hartree atomic units.

(a) Give an expression for the energy shift ∆εscr caused by the electrostatic repulsion bet-
ween the two electrons.

(b) Express ∆ε
(1)
scr in terms of the angular and radial integrals

(c) Find the value of the angular integral in Table 7.1.

(d) Give an expression for the radial integral in Dirac notation.

(e) Give an expression for the screening potential U0
F (ρ) of the 1s hydrogenic wavefunction,

R̃1s(ρ) = Z3/22e−Zρ. Hint: use symbolic integration (e.g., with Mathematica).

(f) Give an expression for the radial integral F 0(1s; 1s) of the 1s hydrogenic wavefunction.
Hint: use symbolic integration.

(g) Give an expression for the screening shift of the 1s hydrogenic wavefunction.

(h) Give an expression for the ground state energy of the system.

(i) Calculate the ground state energy for 4He, H− and Be2+.

(j) Calculate the binding energy of the second electron for 4He, H− and Be2+.

(k) Do your results for the binding energy of 4He and H− agree with the values given in the
syllabus?

(l) The negative ion of hydrogen is stable. Give arguments for the existence of the stable
negative ion of hydrogen.

(m) Show that (in Hartree atomic units) the effective electrostatic scalar potential of a 1s
electron in the Coulomb field of a nucleus of charge Ze is given by

φ̃eff(ρ) = (1/ρ)
[
(Z − 1) + (1 + Zρ)e−2Zρ

]
.

This potential is called a screened Coulomb potential.

2. Derive the expansion

1

(ρ2
1 + ρ2

2 − 2ρ1ρ2 cos θ12)1/2
=

1

ρ>

∞∑
k=0

(
ρ
<

ρ>

)k
Pk(cos θ12)

at least to power k = 2 in powers of the ratio (ρ
<
/ρ

>
), where ρ

<
= min{ρ1, ρ2} is the lesser

and ρ> = max{ρ1, ρ2} the greater of ρ1 and ρ2.

3. Show that ak(lml; l
′ml′) = 0 for k = odd

4. Derive the expression for the exchange coefficient bk(lml; l
′ml′),

bk(lml; l
′ml′) =

4π

2k + 1

k∑
m=−k

〈l′ml′ |Y m∗k (r̂1)|lml〉〈lml|Y mk (r̂2)|l′ml′〉

= (2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)2(
l k l′

−ml (ml −ml′)ml′

)2

.

1
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Solutions Problems Chapter 7

Helium-like atoms

1. Consider an atom or ion of nuclear charge Ze and two electrons in the 1s2 configuration.
Analyze this system using first-order perturbation theory and Hartree atomic units.

(a) Give an expression for the energy shift ∆εscr caused by the electrostatic repulsion between
the two electrons.
Answer: ∆εscr ' 〈1s, 1s|H′|1s, 1s〉 = J , where H′ = 1/ρ12.

(b) Express ∆ε
(1)
scr in terms of the angular and radial integrals

Answer: ∆ε
(1)
scr = a0(00; 00)F 0(1s; 1s).

(c) Find the value of the angular integral in table 7.1.
Answer: a0(00; 00) = 1.

(d) Give an expression for the radial integral in Dirac notation.
Answer: F 0(1s; 1s) = 〈1s|U0

F (ρ)|1s〉.
(e) (0.75) Give an expression for the screening potential U0

F (ρ) of the 1s hydrogenic wave-
function, R̃1s(ρ) = Z3/22e−Zρ. Hint: use symbolic integration.
Answer:

U0
F (ρ) =

1

ρ

ˆ ρ

0

[
R̃1s(x)

]2
x2dx+

ˆ ∞
ρ

1

x

[
R̃1s(x)

]2
x2dx =

1

ρ

[
1− e−2Zρ(1 + Zρ)

]
.

(f) Give an expression for the radial integral F 0(1s; 1s) of the 1s hydrogenic wavefunction.
Hint: use symbolic integration.
Answer:

F 0(1s; 1s) = Z34

ˆ ∞
a

[
1− e−2Zρ(1 + Zρ)

]
e−2Zρρdρ = 5

8Z.

(g) Give an expression for the screening shift of the 1s hydrogenic wavefunction.
Answer: The screening shift is given by

∆ε(1)
scr = + 5

8Z.

(h) Give an expression for the ground state energy of the system.
Answer: The ground state of the system is given by

E
(1)
1s2 = −Z2 + 5

8Z.

(i) Calculate the ground state energy for 4He, H− and Be2+.
Answer: The ground state energies in Hartree atomic units are: 4He: −4+5/4 = −11/4;
H−: −1 + 5/8 = −3/8; Be2+: −16 + 5/2 = −27/2.

(j) Calculate the binding energy of the second electron. Answer: The expression for the
binding energy of the second electron is (see Fig. Q.1)

∆E
(1)
1s2 = −

(
E

(1)
1s2 − E1s

)
= − 1

2Z
2 + Z2 − 5

8Z = 1
2Z

2 − 5
8Z.

With this expression we calculate for the binding energy (in Hartree atomic units): 4He:
3/4, H−: −1/8 (not bound) and Be2+: 11/2.

1
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Figuur Q.1

(k) Do your results for the binding energy of 4He and H− agree with the values given in the
syllabus?
Answer: Yes, the values agree.

(l) The negative ion of hydrogen is stable. Give arguments for the existence of the stable
negative ion of hydrogen.
Answer: To achieve binding the calculation has to account for the presence of correlations
because these tend to increase the average distance between the electrons. This obviously
lowers the electrostatic repulsion and, therefore increases the binding energy.

(m) Show that (in Hartree atomic units) the effective electrostatic scalar potential of a 1s
electron in the Coulomb field of a nucleus of charge Ze is given by

ϕeff(ρ) = (1/ρ)
[
(Z − 1) + (1 + Zρ)e−2Zρ

]
.

This potential is called a screened Coulomb potential.
Answer: Adding the potential energy of the electron in the Coulomb field of the nucleus,
−Z/ρ, to the potential energy of screening (the “screening potential” derived in question
1e), U0

F (ρ), we obtain

UCF(ρ) = − (1/ρ)
[
(Z − 1) + (1 + Zρ)e−2Zρ

]
.

This is the effective central-field potential of a 1s electron in the Coulomb field of a
nucleus of charge Ze. To obtain the effective electrostatic scalar potential (screened
Coulomb potential) we have to divide by the electron charge, −e. In atomic units this
results in the expression given above for ϕeff(ρ).

2. First we define the quantities x =
ρ<
ρ>

and y = x2 − 2x cos θ12. Then, we do the expansion

H′(ρ12) =
1

ρ12
=

1

(ρ2
1 + ρ2

2 − 2ρ1ρ2 cos θ12)1/2

=
1

ρ>

1

(1 + x2 − 2x cos θ12)1/2

=
1

ρ>

1

(1 + y)1/2

(1 + y)α = 1 +

(
α

1

)
y +

(
α

2

)
y2 + · · · = 1 + αy +

α(α− 1)

2
y2 + · · ·

2
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For α = −1/2 this becomes when substituting y = x2 − 2x cos θ12

(1 + y)−1/2 = 1− 1

2
y +

3

8
y2 + · · ·

= 1− 1

2

(
x2 − 2x cos θ12

)
+

3

8

(
x2 − 2x cos θ12

)2
+ · · ·

= 1 + x cos θ12 −
1

2
x2 +

3

8
4x2 cos2 θ12 + · · ·

= 1 + x cos θ12 + x2 1

2
(3 cos2 θ12 − 1) + · · ·

= P0 (cos θ12) + xP1 (cos θ12) + x2P2 (cos θ12) + · · ·

=

∞∑
k=0

xkPk (cos θ12) .

Thus, with x =
ρ<
ρ>

we arrive at

H′(ρ12) =
1

ρ12
=

∞∑
k=0

(
ρ<
ρ>

)k
Pk (cos θ12)

ρ>
.

3. ak(lml; l
′ml′) = 0 for k = odd because

ak(lml; l
′ml′) = (−1)ml+ml′ (2l + 1)(2l′ + 1)

(
l k l

0 0 0

)(
l k l

−ml 0ml

)(
l′ k l′

0 0 0

)(
l′ k l′

−ml′ 0ml′

)

and

(
l k l

0 0 0

)
= 0 for k+ 2l = odd⇔ k = odd (because

(
j1 j2 j3
0 0 0

)
= 0 for j1 + j2 + j3 = odd).

4. Derive the expression for the exchange coefficient bk(lml; l
′ml′),

bk(lml; l
′ml′) =

4π

2k + 1

k∑
m=−k

〈l′ml′ |Y m∗k (r̂1)|lml〉〈lml|Y mk (r̂2)|l′ml′〉

= (2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)2(
l k l′

−ml (ml −ml′)ml′

)2

.

The integral over three spherical harmonics results in

ˆ
Y ml∗l (r̂)Y mk (r̂)Y

ml′
l′ (r̂)dr̂ = (−1)ml

√
(2l + 1)(2k + 1)(2l′ + 1)

4π

(
l k l′

0 0 0

)(
l k l′

−mlmml′

)
ˆ
Y
ml′∗
l′ (r̂)Y m∗k (r̂)Y mll (r̂)dr̂ = (−1)ml′+m

√
(2l + 1)(2k + 1)(2l′ + 1)

4π

(
l′ k l

0 0 0

)(
l′ k l

−ml′ −mml

)
= (−1)ml′+m

√
(2l + 1)(2k + 1)(2l′ + 1)

4π

(
l k l′

0 0 0

)(
l k l′

ml −m−ml′

)
.
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Multiplying these two expressions we find

4π

2k + 1
〈l′ml′ |Y m∗k (r̂1)|lml〉〈lml|Y mk (r̂2)|l′ml′〉 =

= (2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)2(
l k l′

−mlmml′

)(
l k l′

ml −m−ml′

)
= (−1)l+l

′+k(2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)2(
l k l′

−mlmml′

)2

which is only non-zero for |l − l′| ≤ k ≤ l + l′, l + k + l′ = even and m = ml −ml′ because(
j1 j2 j3
m1 m2 m3

)
= 0 unless |j1 − j2| ≤ j2 ≤ j1 + j2 and m1 + m2 + m3 = 0 and because(

j1 j2 j3
0 0 0

)
= 0 unless l + k + l′ = even, further (−1)ml+ml′+m = (−1)2ml = 1 (because ml is

integer) and (−1)l+k+l′ = 1 (because l + k + l′ = even) (see Appendix J).
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Problems Chapter 9

Angular momentum of Slater determinants and Hund’s rules

The ground states of the elements of the periodic system can be predicted with the three Hund
rules:

1. The Coulomb repulsion between the valence electrons of an atomic ground state configuration
is minimal for the maximum (Pauli-allowed) value of the total spin, S.

2. The Coulomb repulsion between the valence electrons of an atomic ground state configuration
(of maximal Pauli-allowed S) is minimal for the maximal (Pauli-allowed) value of the total
orbital angular momentum, L.

3. The most negative spin-orbit shift is obtained for the valence electrons of an atomic ground
state configuration (of maximal Pauli-allowed S and L) if the total electronic angular mo-
mentum, J, is (a) minimal for less-than-half-filled shells; (b) maximal for more-than-half-filled
shells. (N.B. Without spin-orbit interaction, states of different J value are degenerate.

Questions:

1. (2.0) Calculate the total orbital angular momentum of the Slater determinant |1̇, 0̇〉np2 . Is
your result consistent with Hund’s rule 2? Is state |1̇, 0̇〉np2 consistent with Hund’s rule 1 and
3?

2. (4.0) Calculate the total orbital angular momentum of the Slater determinant |2̇, 1̇〉nd2 . Is
your result consistent with Hund’s rule 2? Is state |2̇, 1̇〉nd2 consistent with Hund’s rule 1 and
3?

3. (4.0) Calculate the total orbital angular momentum of the Slater determinant |1̇, 0̇,−1̇〉np3 . Is
your result consistent with Hund’s rule 2? Is state |1̇, 0̇,−1̇〉np3 consistent with Hund’s rule 1
and 3?

Hints: Use Eq. (9.98):

L2|ψα〉 =

{
N∑
κ=1

lκ(lκ + 1) +
N∑

κ,κ′=1

′mκ
l m

κ′

l

}
~2 |ψα〉

+

N∑
κ,κ′=1

′
√
lκ(lκ + 1)−mκ

l (mκ
l + 1)

√
lκ′(lκ′ + 1)−mκ′

l (mκ′
l − 1) ~2 |ψα(mκ

l + 1)(mκ′

l − 1)〉.

Clarification of notation:

|ψγ〉 = |ψα(mκ
l + 1)(mκ′

l − 1)〉 ≡ |ψα(mκ′

l − 1)(mκ
l + 1)〉, (Q.9)

with κ, κ′ ∈ {1, · · ·N}, indicates that the state |ακ〉 = |nκlκmκ
l sm

κ
s 〉 has been replaced by |α′κ〉 =

|nκlκ(mκ
l + 1)smκ

s 〉 and the state |ακ′〉 = |nκ′ lκ′mκ′

l sm
κ′
s 〉 by |α′κ′〉 = |nκ′ lκ′(mκ′

l − 1)smκ′

s 〉. Note
that

|ψα(mκ
l + 1)(mκ′

l − 1)〉 = −|ψα〉 for mκ′

l −mκ
l = 1. (Q.10)

1
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Example:

Let us clarify the notation |ψα(mκ
l + 1)(mκ′

l − 1)〉. For the state

|ψα〉 = |ακ, ακ′〉 = |1̇, 0̇〉np2 (Q.11)

we have |ακ〉 = |nκlκmκ
l sm

κ
s 〉 = |n, 1, 1, 1

2 ,
1
2 〉 and |ακ′〉 = |nκ′ lκ′mκ′

l sm
κ′
s 〉 = |n, 1, 0, 1

2 ,
1
2 〉. The

states

|ψγ〉 = |ψα(mκ
l + 1)(mκ′

l − 1)〉 = |α′κ, α′κ′〉 = |2̇,−1̇〉np2 (Q.12a)

|ψ′γ〉 = |ψα(mκ
l − 1)(mκ′

l + 1)〉 = |α′κ, α′κ′〉 = |0̇, 1̇〉np2 = −|1̇, 0̇〉np2 (Q.12b)

correspond to, respectively

|α′κ〉 = |nκlκ(mκ
l + 1)smκ

s 〉 = |n, 1, 2, 1
2 ,

1
2 〉

|α′κ′〉 = |nκ′ lκ′(mκ′

l − 1)smκ′
s 〉 = |n, 1,−1, 1

2 ,
1
2 〉

}
(Q.13a)

|α′κ〉 = |nκlκ(mκ
l − 1)smκ

s 〉 = |n, 1, 0, 1
2 ,

1
2 〉

|α′κ′〉 = |nκ′ lκ′(mκ′

l + 1)smκ′
s 〉 = |n, 1,+1, 1

2 ,
1
2 〉

}
. (Q.13b)

2



Problem set 9 - solutions Atomic Physics Course 2020-2021

Q.18 Problem set 9 - solutions

0



Problem set 9 - solutions Atomic Physics Course 2020-2021

Solutions Problems Chapter 9

Angular momentum of Slater determinants and Hund’s rules

The ground states of the elements of the periodic system can be predicted with the three Hund
rules:

1. The Coulomb repulsion between the valence electrons of an atomic ground state configuration
is minimal for the maximum (Pauli-allowed) value of the total spin, S.

2. The Coulomb repulsion between the valence electrons of an atomic ground state configuration
(of maximal Pauli-allowed S) is minimal for the maximal (Pauli-allowed) value of the total
orbital angular momentum, L.

3. The most negative spin-orbit shift is obtained for the valence electrons of an atomic ground
state configuration (of maximal Pauli-allowed S and L) if the total electronic angular mo-
mentum, J, is (a) minimal for less-than-half-filled shells; (b) maximal for more-than-half-filled
shells. (N.B. Without spin-orbit interaction, states of different J value are degenerate.)

The total orbital momentum can be calculated using the relation Eq. (9.98):

L2|ψα〉 =

{
N∑
κ=1

lκ(lκ + 1) +
N∑

κ,κ′=1

′mκ
l m

κ′

l

}
~2 |ψα〉

+

N∑
κ,κ′=1

′
√
lκ(lκ + 1)−mκ

l (mκ
l + 1)

√
lκ′(lκ′ + 1)−mκ′

l (mκ′
l − 1) ~2 |ψα(mκ

l + 1)(mκ′

l − 1)〉.

Questions:

1. (2.0) Calculate the total orbital angular momentum of the Slater determinant |1̇, 0̇〉np2 . Is
your result consistent with Hund’s rule 2? Is state |1̇, 0̇〉np2 consistent with the Hund rules 1
and 3?
Answer:
For two equivalent electrons we have N = 2 and the expression for L2 becomes

L2|1̇, 0̇〉np2 =
{

2l(l + 1) + 2m
(1)
l m

(2)
l

}
~2 |1̇, 0̇〉np2

+

√
l(l + 1)−m(1)

l (m
(1)
l + 1)

√
l(l + 1)−m(2)

l (m
(2)
l − 1) ~2 |ψα(m

(1)
l + 1)(m

(2)
l − 1)〉

+

√
l(l + 1)−m(2)

l (m
(2)
l + 1)

√
l(l + 1)−m(1)

l (m
(1)
l − 1) ~2 |ψα(m

(2)
l + 1)(m

(1)
l − 1)〉

Substituting l(1) = l(2) = l = 1, m
(1)
l = 1 and m

(2)
l = 0 we calculate m

(1)
l m

(2)
l = 0 and find -

for the notation see Eq. (9.99) and the Example given on the Problem sheet -

m
(1)
l (m

(1)
l + 1) = 2 m

(2)
l (m

(2)
l − 1) = 0 |ψα(m

(1)
l + 1)(m

(2)
l − 1)〉 = |2̇,−1̇〉np2

m
(2)
l (m

(2)
l + 1) = 0 m

(1)
l (m

(1)
l − 1) = 0 |ψα(m

(2)
l + 1)(m

(1)
l − 1)〉 = |0̇, 1̇〉np2 = −|1̇, 0̇〉np2 .

Thus we obtain

L2|1̇, 0̇〉np2 = {2l(l + 1)− 2}~2 |1̇, 0̇〉np2 = 2~2 |1̇, 0̇〉np2

and with L(L+ 1) = 2 we calculate L = 1.

1
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According to the three Hund rules the ground state of a np2 configuration is the LS term 3P0;
i.e., L = S = 1 and J = 0. Hence, L = 1 is consistent with Hund’s rule 2. Note that MS = 1,
which implies S = 1 and is consistent with Hund’s rule 1. Note that MJ = ML+MS = 2, which
implies MJ > J and shows that |1̇, 0̇〉np2 is not consistent with Hund’s rule 3 (cf. Table 10.5).
Note that all three Hund’s rules can be satisfied for the state |1̄, 0̄〉np2 . Furthermore, note that
|1̇, 0̇〉np2 and |1̄, 0̄〉np2 must be degenerate as long as we neglect spin-orbit coupling.

2. (4.0) Calculate the total orbital angular momentum of the Slater determinant |2̇, 1̇〉nd2 . Is
your result consistent with Hund’s rule 2? Is state |2̇, 1̇〉nd2 consistent with the Hund rules 1
and 3?
Answer:
For two equivalent electrons we have N = 2 and the expression for L2 becomes

L2|2̇, 1̇〉nd2 =
{

2l(l + 1) + 2m
(1)
l m

(2)
l

}
~2 |2̇, 1̇〉nd2

+

√
l(l + 1)−m(1)

l (m
(1)
l + 1)

√
l(l + 1)−m(2)

l (m
(2)
l − 1) ~2 |ψα(m

(1)
l + 1)(m

(2)
l − 1)〉nd2

+

√
l(l + 1)−m(2)

l (m
(2)
l + 1)

√
l(l + 1)−m(1)

l (m
(1)
l − 1) ~2 |ψα(m

(2)
l + 1)(m

(1)
l − 1)〉nd2

Substituting l(1) = l(2) = l = 2, m
(1)
l = 2 and m

(2)
l = 1 we calculate m

(1)
l m

(2)
l = 2 and

m
(1)
l (m

(1)
l + 1) = 6 m

(2)
l (m

(2)
l − 1) = 0 |ψα(m

(1)
l + 1)(m

(2)
l − 1)〉 = |3̇, 0̇〉np2

m
(2)
l (m

(2)
l + 1) = 2 m

(1)
l (m

(1)
l − 1) = 2 |ψα(m

(2)
l + 1)(m

(1)
l − 1)〉 = −|2̇, 1̇〉np2

Thus we obtain

L2|2̇, 1̇〉nd2 = {2l(l + 1) + 4} ~2 |2̇, 1̇〉nd2 − 4 ~2 |2̇, 1̇〉np2 = 12~2 |2̇, 1̇〉nd2

and with L(L+ 1) = 12 we calculate L = 3.
According to the three Hund rules the ground state of a nd2 configuration is the LS

term 3F2; i.e., L = 3, S = 1 and J = 2. Hence, L = 3 is consistent with Hund’s rule 2.
Note that MS = 1, which implies S = 1 and is consistent with Hund’s rule 1. Note that
MJ = ML + MS = 4, which implies MJ > J and shows that |2̇, 1̇〉nd2 is not consistent
with Hund’s rule 3. Note that all three Hund’s rules can be satisfied for the state |2̄, 1̄〉nd2 .
Furthermore, note that |2̇, 1̇〉nd2 and |2̄, 1̄〉nd2 must be degenerate as long as we neglect spin-
orbit coupling.

2
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3. (4.0) Calculate the total orbital angular momentum of the Slater determinant |1̇, 0̇,−1̇〉np3 . Is
your result consistent with Hund’s rule 2? Is state |1̇, 0̇,−1̇〉np3 consistent with the Hund rules
1 and 3?
Answer:
For three equivalent electrons we have N = 3 the expression for L2 becomes

L2|1̇, 0̇,−1̇〉np3 =
{

3l(l + 1) + 2
(
m

(1)
l m

(2)
l +m

(2)
l m

(3)
l +m

(1)
l m

(3)
l

)}
~2 |1̇, 0̇,−1̇〉np3

+

√
l(l + 1)−m(1)

l (m
(1)
l + 1)

√
l(l + 1)−m(2)

l (m
(2)
l − 1) ~2 |ψα(m

(1)
l + 1)(m

(2)
l − 1)〉np3

+

√
l(l + 1)−m(2)

l (m
(2)
l + 1)

√
l(l + 1)−m(1)

l (m
(1)
l − 1) ~2 |ψα(m

(2)
l + 1)(m

(1)
l − 1)〉np3

+

√
l(l + 1)−m(2)

l (m
(2)
l + 1)

√
l(l + 1)−m(3)

l (m
(3)
l − 1) ~2 |ψα(m

(2)
l + 1)(m

(3)
l − 1)〉np3

+

√
l(l + 1)−m(3)

l (m
(3)
l + 1)

√
l(l + 1)−m(2)

l (m
(2)
l − 1) ~2 |ψα(m

(3)
l + 1)(m

(2)
l − 1)〉np3

+

√
l(l + 1)−m(1)

l (m
(1)
l + 1)

√
l(l + 1)−m(3)

l (m
(3)
l − 1) ~2 |ψα(m

(1)
l + 1)(m

(3)
l − 1)〉np3

+

√
l(l + 1)−m(3)

l (m
(3)
l + 1)

√
l(l + 1)−m(1)

l (m
(1)
l − 1) ~2 |ψα(m

(3)
l + 1)(m

(1)
l − 1)〉np3 .

Substituting l(1) = l(2) = l = 1, m
(1)
l = 1, m

(2)
l = 0 and m

(3)
l = −1 we calculate

m
(1)
l m

(2)
l = m

(2)
l m

(3)
l = 0

m
(1)
l m

(3)
l = −1

and

m
(1)
l (m

(1)
l + 1) = 2 m

(2)
l (m

(2)
l − 1) = 0 |ψα(m

(1)
l + 1)(m

(2)
l − 1)〉 = |2̇,−1̇,−1̇〉np3 → 0

m
(2)
l (m

(2)
l + 1) = 0 m

(1)
l (m

(1)
l − 1) = 0 |ψα(m

(2)
l + 1)(m

(1)
l − 1)〉 = −|1̇, 0̇,−1̇〉np3

m
(2)
l (m

(2)
l + 1) = 0 m

(3)
l (m

(3)
l − 1) = 2 |ψα(m

(2)
l + 1)(m

(3)
l − 1)〉 = |1, 1,−2〉np3 → 0

m
(3)
l (m

(3)
l + 1) = 0 m

(2)
l (m

(2)
l − 1) = 0 |ψα(m

(3)
l + 1)(m

(2)
l − 1)〉 = −|1, 0,−1〉np3

m
(1)
l (m

(1)
l + 1) = 2 m

(3)
l (m

(3)
l − 1) = −2 |ψα(m

(1)
l + 1)(m

(3)
l − 1)〉 = |2, 0,−2〉np3

m
(3)
l (m

(3)
l + 1) = 0 m

(1)
l (m

(1)
l − 1) = 0 |ψα(m

(3)
l + 1)(m

(1)
l − 1)〉 = |0, 0, 0〉np3 → 0.

Note that |2̇,−1̇,−1̇〉np3 = 0, |1̇, 1̇,−2̇〉np3 = 0 and |0̇, 0̇, 0̇〉np3 = 0 because the determinant
are zero (two or more equal columns). Thus we obtain

L2|1̇, 0̇,−1̇〉np3 = {3l(l + 1)− 2}~2 |1̇, 0̇,−1̇〉np3 − 4~2 |1̇, 0̇,−1̇〉np3 = 0~2 |1̇, 0̇,−1̇〉np3

and with L(L+ 1) = 0 we calculate L = 0.
According to the three Hund rules the ground state of a np3 configuration is the LS term

4S3/2; i.e., L = 0, S = 3/2 and J = 3/2. Hence, L = 0 is consistent with Hund’s rule 2. Note
that MS = 3/2, which implies S = 3/2 and is consistent with Hund’s rule 1. Furthermore, we
calculate MJ = ML+MS = 3/2, which is automatically consistent with Hund’s rule 3 because
the np3 configuration corresponds to a half-filled shell; i.e., J = S and spin-orbit coupling is
absent.
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Problems Chapter 10

Equivalent electrons, Hund rules and ground state

1. (0.5) Give the definition of equivalent electrons within an atom?

2. (0.5) What is meant by a filled or half-filled electron shell within an atom?

3. (1.0) Consider an electron in the rotational state |lm〉. What is the probability per unit solid
angle to observe this electron in the direction r̂.

4. (1.0) Show explicitly for l = 1 and 2 that the charge distributions of closed and half-filled
electronic shells are spherically symmetric.

5. (1.0) The nitrogen atom (N) has atomic number Z = 7. What is the electron configuration of
the ground state of atomic nitrogen?

6. (1.0) Which LS-terms are allowed for atoms with three non-equivalent p electrons and further
only filled shells?

7. (2.0) Which LS-terms are allowed for three valence electrons in equivalent p orbitals?

8. (1.0) For which of the terms determined under (7) do you expect the smallest electrostatic
repulsion (and, hence the strongest exchange binding)? Explain your answer.

9. (1.0) Give the three Hund rules: Is the term found under (8) consistent with the first Hund
rule?

10. (1.0) Do you need the second and/or third Hund rule to determine the ground state or is this
state already identified by applying the first Hund rule?

1
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Solutions Problems Chapter 10

Equivalent electrons, Hund rules and ground state

1. (0.5) Equivalent electrons are electrons sharing the same quantum numbers n and l.

2. (0.5) A half-filled shell is a set of 2l+ 1 equivalent electrons with the same spin occupying all
spinorbitals with −l ≤ ml ≤ l; a closed shell is a set of 2 (2l + 1) equivalent electrons with
all possible spinorbitals with −l ≤ ml ≤ l doubly occupied with a spin-up and a spin-down
electron.

3. (1.0) The probability per unit solid angle to find an electron in the direction r̂ is given by
|Y ml (r̂)|2.

4. (1.0) For a half-filled shell of p electrons we have for the sum of probabilities to find the electron
in the direction r̂

1∑
m=−1

|Y m1 (r̂)|2 = Y 0
1 (r̂) + 2|Y 1

1 (r̂)|2 =
3

4π

(
cos2 θ + sin2 θ

)
=

3

4π
.

As this result in independent of r̂ the distribution is spherically symmetric. Likewise, we have
for a half-filled shell of d electrons

2∑
m=−2

|Y m2 (r̂)|2 = |Y 0
2 (r̂)|2 + 2|Y 1

2 (r̂)|2 + 2|Y 2
2 (r̂)|2

=
5

4π

[
1

4

(
3 cos2 θ − 1

)2
+ 3 sin2 θ cos2 θ +

3

4
sin4 θ

]
=

5

4π

[
3

4

(
3 cos4 θ − 2 cos2 θ +

1

3

)
+

3

4
4 sin2 θ cos2 θ +

3

4
sin4 θ

]
=

5

4π

[
3

4

(
2 cos4 θ − 2 cos2 θ + 2 sin2 θ cos2 θ

)
+

1

4
+

3

4

(
cos4 θ + 2 sin2 θ cos2 θ + sin4 θ

)]
=

5

4π

[
3

4

(
2 cos2 θ{cos2 θ + sin2 θ} − 2 cos2 θ

)
+ 1

]
=

5

4π
.

For fully filled shells the probabilities double but remain independent of r̂.

5. (1.0) The ground state configuration of atomic nitrogen is 1s22s22p3.

6. (1.0) Three non-equivalent p electrons (and further only closed shells) correspond to an angular
momentum Hilbert space of dimension (2s + 1)3(2l + 1)3 = 63 = 216 as determined in the
uncoupled representation. Adding the orbital angular momenta of two p electrons we find
three possibilities l12 = 0, 1, 2. Each of these possiblities has to be combined with the third
p electron: (l12, l) = (0, 1) results in L = 1; (l12, l) = (1, 1) → L = 0, 1, 2; (l12, l) = (2, 1) →
L = 1, 2, 3. So we identified the following possibilities for the total orbital angular momentum:
L = 0, 1(3×), 2(2×), 3. Next we turn to the spin part and find with the same approach for the
total spin S = 1/2(2×), 3/2. We now have to couple L and S: For S = 1/2(2×) we find

(L, S) =


(0, 1/2)→ J = 1/2 2S1/2 : (1× 2×) : deg = 4

(1, 1/2)→ J = 1/2, 3/2 2P1/2,3/2 : (3× 2×) : deg = 36

(2, 1/2)→ J = 3/2, 5/2 2D3/2,5/2 : (2× 2×) : deg = 40

(3, 1/2)→ J = 5/2, 7/2 2F5/2,7/2 : (1× 2×) : deg = 28

1
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So, in total, we found 108 degenerate doublet states. For S = 3/2 we find

(L, S) =


(0, 3/2)→ J = 3/2 4S3/2 : (1× 1×) : deg = 4

(1, 3/2)→ J = 1/2, 3/2, 5/2 4P1/2,··· ,5/2 : (3× 1×) : deg = 36

(2, 3/2)→ J = 1/2, 3/2, 5/2, 7/2 4D1/2,···7/2 : (2× 1×) : deg = 40

(3, 3/2)→ J = 3/2, 5/2, 7/2, 9/2 4F3/2,···9/2 : (1× 1×) : deg = 28

This corresponds to 108 degenerate quartet states (together also a basis of 216 states in the
coupled representation).

7. (2.0) Three valence electrons in equivalent p orbitals yield the LS terms 4S3/2, 2D5/2,3/2,
2P3/2,1/2,

MSMLSlater determinantsnon-zero Slater det′s LS−Terms

# accept.excl.

3/2 3 ���−−− 0 4F − 4F

3/2 2 ��− �−− 0 4D − 4D

3/2 1 �− ��−− 0 4P − 4P

3/2 0 �− �− �− 1 4S 4S −
1/2 3 ���−−− 0 2F − 2F

1/2 2 ��− �−− 1 2D 2D −
1/2 1 �− ��−−, ��−− �− 2 2D,2P 2P −
1/2 0 �− �− �−, �− �− �−, �− �− �− 3 4S,2D,2P,2S − 2S

8. (1.0) From the Terms determined under (7) 4S3/2 has the smallest electrostatic repulsion
between the electrons because the spins are parallel and the electrons cannot approach each
other closely. In the case of the 2D5/2,3/2, 2P3/2,1/2 terms this restriction is absent. Hence,
the 4S3/2-term corresponds to the largest binding energy.

9. (1.0) The three Hund rules are: (a) maximize S in accordance with the Pauli principle; (b)
maximize L in accordance with the Pauli principle; (c) Choose J = Jmin = |L−S| for less than
half-filled shells and J = Jmax = L+ S for more than half-filled shells. The state determined
under (8) is consistent with the first Hund’s rule (maximize S in accordance with the Pauli
principle).

10. (1.0) The second and/or third Hund’s rule need not be used because we found a single Term
4S3/2 so that the values of S, L and J are uniquely determined.
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Problems Chapter 10 (continued)

Periodic system, electron configurations and ground state determination

I II III IV V VI VII VIII

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

H (np shells)
2

He

3

Li
4

Be
5

B
6

C
7

N
8

O
9

F
10

Ne

11

Na
12

Mg transition elements (nd shells)
13

Al
14

Si
15

P
16

S
17

Cl
18

Ar

19

K
20

Ca
21

Sc
22

Ti
23

V
24

Cr
25

Mn
26

Fe
27

Co
28

Ni
29

Cu
30

Zn
31

Ga
32

Ge
33

As
34

Se
35

Br
36

Kr

37

Rb
38

Sr
39

Y
40

Zr
41

Nb
42

Mo
43

Tc
44

Ru
45

Rh
46

Pd
47

Ag
48

Cd
49

In
50

Sn
51

Sb
52

Te
53

I
54

Xe

55

Cs
56

Ba
57−70∗

71

Lu
72

Hf
73

Ta
74

W
75

Re
76

Os
77

Ir
78

Pt
79

Au
80

Hg
81

Tl
82

Pb
83

Bi
84

Po
85

At
86

Rn

87

Fr
88

Ra
89−102∗∗

103

Lr
104

Rf
105

Db
106

Sg
107

Bh
108

Hs
109

Mt
110

Ds
111

Rg

rare-earth elements (nf shells)

*lanthanides (4f)
57

La
58

Ce
59

Pr
60

Nd
61

Pm
62

Sm
63

Eu
64

Gd
65

Tb
66

Dy
67

Ho
68

Er
69

Tm
70

Yb

**actinides (5f)
89

Ac
90

Th
91

Pa
92

U
93

Np
94

Pu
95

Am
96

Cm
97

Bk
98

Cf
99

Es
100

Fm
101

Md
102

No

1. (1.0) Specify the ground-state electron configuration and use the Hund rules to determine
the ground state LS term of the following elements (all are regular in the periodic system):
calcium (Ca), yttrium (Y), zinc (Zn), europium (Eu), indium (In), iodine (I) and thulium
(Tm).

2. (3.0) The element selenium (Se) is an atom with a regular ground-state electron configuration.

(a) (0.2) What is the electron configuration of Se?

(b) (0.3) Use the Hund rules to determine the LS ground state term of Se.

(c) (0.5) Name all LS terms possible for four non-equivalent p electrons (Note that for more
than two electrons LS terms may appear more than once!).

(d) (0.5) Determine all LS terms possible for four equivalent p electrons consistent with the
Pauli principle.

(e) (0.5) Determine all LS terms possible for two equivalent p holes.

(f) (1.0) Give an expression for the Coulomb repulsion (screening) energy of the two equiva-
lent holes and the four valence electrons for each of the LS terms and demonstrate that
these are the same.
Hint: Use Table 7.1 and expressions for determinantal matrix elements.
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Solutions Problems Chapter 10 (continued)

Periodic system, electron configurations and ground state determination

I II III IV V VI VII VIII

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

H (np shells)
2

He

3

Li
4

Be
5

B
6

C
7

N
8

O
9

F
10

Ne

11

Na
12

Mg transition elements (nd shells)
13

Al
14

Si
15

P
16

S
17

Cl
18

Ar

19

K
20

Ca
21

Sc
22

Ti
23

V
24

Cr
25

Mn
26

Fe
27

Co
28

Ni
29

Cu
30

Zn
31

Ga
32

Ge
33

As
34

Se
35

Br
36

Kr

37

Rb
38

Sr
39

Y
40

Zr
41

Nb
42

Mo
43

Tc
44

Ru
45

Rh
46

Pd
47

Ag
48

Cd
49

In
50

Sn
51

Sb
52

Te
53

I
54

Xe

55

Cs
56

Ba
57−70∗

71

Lu
72

Hf
73

Ta
74

W
75

Re
76

Os
77

Ir
78

Pt
79

Au
80

Hg
81

Tl
82

Pb
83

Bi
84

Po
85

At
86

Rn

87

Fr
88

Ra
89−102∗∗

103

Lr
104

Rf
105

Db
106

Sg
107

Bh
108

Hs
109

Mt
110

Ds
111

Rg

rare-earth elements (nf shells)

*lanthanides (4f)
57

La
58

Ce
59

Pr
60

Nd
61

Pm
62

Sm
63

Eu
64

Gd
65

Tb
66

Dy
67

Ho
68

Er
69

Tm
70

Yb

**actinides (5f)
89

Ac
90

Th
91

Pa
92

U
93

Np
94

Pu
95

Am
96

Cm
97

Bk
98

Cf
99

Es
100

Fm
101

Md
102

No

1. (1.0) Specify the ground-state electron configuration and use the Hund rules to determine
the ground state LS term of the following elements (all are regular in the periodic system):
calcium (Ca), yttrium (Y), zinc (Zn), europium (Eu), indium (In), iodine (I) and thulium
(Tm).
Answer:

Calcium [Ar]4s2 1S0

Yttrium [Kr]5s24d1 2D3/2

Zinc [Ar]4s23d10 1S0

Europium [Xe]4f76s2 8S7/2

Indium [Kr]5s24d105p 2P1/2

Iodine [Kr]5s24d105p5 2P3/2

Thulium [Xe]4f136s2 2F7/2

2. (3.0) The element selenium (Se) is an atom with a regular ground-state configuration.

(a) (0.2) What is the electron configuration of Se?
Answer: Se is an element from the 4th period of the Mendeleev table. It has a (regular)
ground-state electron configuration: [Ar]3d104s24p4.

(b) (0.3) Use the Hund rules to determine the LS ground state term of Se.
Answer: All three Hund rules are used to determine the ground state

i. Choose first the maximum value of S consistent with the Pauli principle: S = 1.

1
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ii. Choose then the maximum value of L consistent with the Pauli principle: L = 1.

iii. Choose next J = Jmax = L+ S for shells more than half-filled: the LS term is 3P2.

(c) (0.5) Name all LS terms possible for four non-equivalent p electrons (Note that for more
than two electrons LS terms may appear more than once!).
Answer: We investigate the electron configuration [Zn]4p4. Four non-equivalent p elec-
trons (and further only closed shells) correspond to an angular momentum Hilbert space
of dimension (2s + 1)4(2l + 1)4 = 64 = 1296. Combining the orbital angular momenta
vectorially yields for the total orbital angular momentum the possible values L = 0 (3×),
1 (6×), 2 (6×), 3 (3×), 4 (1×) and for the total spin S = 0 (2×), 1 (3×), 2 (1×). This
corresponds to 162 LS terms of the singlet type, 729 triplets and 405 quintets, together
again 1296 states (the latter is a valuable check sum but not essential for solving the
problem),

p4 L degeneracy

coupled 0 1 2 3 4 1296

S 0 1S0
1P1

1D2
1F3

1G4 162

1 3S1
3P0,1,2

3D1,2,3
3F2,3,4

3G3,4,5 729

2 5S2
5P1,2,3

5D0,1,2,3,4
5F1,2,3,4,5

5G2,3,4,5,6 405

(d) (0.5) Determine all LS terms possible for four equivalent p electrons consistent with the
Pauli principle.
Answer B: We can make a decision table for four equivalent p electrons. In this approach
we search for (

6

4

)
=

6!

4!2!
=

6× 5

2
= 15

nonzero terms:

MSML Slater determinants LS terms degeneracy

Pauli allowed: options accepted excl. 15

4 ����−−− 0 5G - 5G

3 ���− �−− 0 5F - 5F

2 2 ��− ��−− 0 5D - 5D

1 �− ���−−, ��− �− �− 0 5P - 5P

0 ��−− ��−,− ����−−, �− ��− �− 0 5S - 3S

4 ����−−− 0 3G - 3G

3 ���− �−−, ���− �−− 0 3F - 3F

1 2 ��− ��−−, ��− ��−−, ���− �− (2×) 0 3D - 3D

1 ��− �− �−, �− ���−− 1 3P 3P - 9

0 �− ��− �−,− ����−− 1 3P,3S - 3S

4 ����−−− 0 1G - 1G

3 ���− �−− (2×) 0 1F - 1F

0 2 ��− ��−−, ���−− �− (2×) 1 1D 1D - 5

1 ��− �− �− (2×), �− ���−− (2×) 2 3P,1D,1P - 1P

0 �− ��− �− (2×), ��−− ��−,− ����−− 3 3P,1D,1S 1S - 1

2
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The corresponding Slater determinants are:

np4 MS

uncoupled 1 0 -1

2 |1̇, 1̄, 0̇, 0̄〉
1 |1̇, 1̄, 0̇,−1̇〉 |1̇, 1̄, 0̄,−1̇〉|1̇, 1̄, 0̇,−1̄〉 |1̇, 1̄, 0̄,−1̄〉

ML 0 |1̇, 0̇, 0̄,−1̇〉 |1̇, 0̇, 0̄,−1̄〉|1̇, 1̄,−1̇,−1̄〉|1̄, 0̇, 0̄,−1̇〉 |1̄, 0̇, 0̄,−1̄〉
−1 |1̇, 0̇,−1̇,−1̄〉 |1̇, 0̄,−1̇,−1̄〉|1̄, 0̇,−1̇,−1̄〉 |1̄, 0̄,−1̇,−1̄〉
−2 |0̇, 0̄,−1,−1̄〉

Or, equivalently,

|2S+1L;ML,MS〉 MS

uncoupled 1 0 -1

2 |1D; 2, 0〉
1 |3P ; 1, 1〉 |3P ; 1, 0〉|1D; 1, 0〉 |3P ; 1,−1〉

ML 0 |3P ; 0, 1〉 |3P ; 0, 0〉|1S; 0, 0〉|1D; 0, 0〉 |3P ; 0,−1〉
−1 |3P ;−1, 1〉 |3P ;−1, 0〉|1D;−1, 0〉 |3P ;−1,−1〉
−2 |1D;−2, 0〉

(e) (0.5) Determine all LS terms possible for two equivalent p holes.
Answer: The best way is to analyze Selenium as an atom with a hole configuration
4p2[Kr]. Two non-equivalent p holes (and further only closed shells) correspond to an
angular momentum Hilbert space of dimension (2s + 1)2(2l + 1)2 = 62 = 36. Combi-
ning the orbital angular momenta vectorially yields for all possible total orbital angular
momentum values L = 0, 1, 2 and for the total spin S = 0, 1. This corresponds to 9 LS
terms of the singlet type and 27 of the triplet type, together again 36 states:

p2 L degeneracy

coupled 0 1 2 36

S 0 1S0
1P1

1D2 9

1 3S1 P0,1,2
3D1,2,3 27

In this case we search for (
6

2

)
=

6!

2!4!
=

6× 5

2
= 15

nonzero terms:

MSML Slater determinants LS terms degeneracy

Pauli allowed: options accepted excl. 15

2 ��−−− 0 3D − 3D

1 1 �− �−− 1 3P 3P - 9

0 �−− �−,− ��−− 1 3P,3S - 3S

2 ��−−− 1 1D 1D - 5

0 1 �− �−− (2×) 2 3P,1D,1P - 1P

0 �−− �− (2×),− ��−− 3 3P,1D,1S 1S - 1

3
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Note that we found the same LS Terms. The corresponding Slater determinants are:

np2 MS

uncoupled 1 0 -1

2 |1̇, 1̄〉
1 |1̇, 0̇〉 |1̇, 0̄〉|1̄, 0̇〉 |1̄, 0̄〉

ML 0 |1̇,−1̇〉 |1̇,−1̄〉|0̇, 0̄〉|1̄,−1̇〉 |1̄,−1̄〉
−1 |0̇,−1̇〉 |0̇,−1̄〉|0̄,−1̇〉 |0̄,−1̄〉
−2 | − 1̇,−1̄〉

Or, equivalently, again (as for for equivalent electrons)

|2S+1L;ML,MS〉 MS

uncoupled 1 0 -1

2 |1D; 2, 0〉
1 |3P ; 1, 1〉 |3P ; 1, 0〉|1D; 1, 0〉 |3P ; 1,−1〉

ML 0 |3P ; 0, 1〉 |3P ; 0, 0〉|1S; 0, 0〉|1D; 0, 0〉 |3P ; 0,−1〉
−1 |3P ;−1, 1〉 |3P ;−1, 0〉|1D;−1, 0〉 |3P ;−1,−1〉
−2 |1D;−2, 0〉

(f) (1.0) Give an expression for the Coulomb repulsion (screening) energy of the two equi-
valent holes and four valence electrons for each of the LS terms and demonstrate that
these are the same.
Hint: Use Table 7.1 and expressions for determinantal matrix elements.
Answer A: Because all the sublevels of a given LS manifold are degenerate we can use
the most convenient one to calculate the Coulomb energy. These are the sublevels repre-
sented by a single Slater determinant; hence, |3P ; 1, 1〉 = |1̇, 0̇〉5p2 , |1D; 2, 0〉 = |1̇, 1̄〉5p2 .
Unfortunately this is not possible for the 1S term. To determine the Coulomb energy for
this case we use the Slater sum rule.

i. 3P term: E(3P ) = 〈1̇, 0̇|1/ρ12|1̇, 0̇〉np2 . This is a diagonal matrix element of a two-
body operator:

E(3P ) = (p1, p0|1/ρ12|p1, p0)− (p0, p1|1/ρ12|p1, p0) = J −K, (Q.14)

where J = (p1, p0|1/ρ12|p1, p0) and K = (p0, p1|1/ρ12|p1, p0) are the Coulomb inte-
grals. As we are dealing with equivalent electrons we have F k = Gk and Eq. (Q.14)
reduces to

E(3P ) =
∑
k=0,2

[
ak(p1, p0)− bk(p1, p0)

]
F k(np2).

Substituting the values for ak(p1, p0) and bk(p1, p0) for k = 0, 2 from the Table the
electrostatic repulsion can be written as the sum of two F integrals,

E(3P ) = F0 − 2F2 − 3G2 = F0 − 5F2 (Q.15)

with respect to the energy of the [Kr] configuration. In accordance with convention
the common denominators of the ak and bk coefficients where eliminated by redefi-
ning the F integrals: F0 ≡ F 0, F2 ≡ F 2/25.

ii. 1D term: E(1D) = 〈1̇, 1̄| 1
ρ12
|1̇, 1̄〉np2 . This case is even simpler than the 3P term

because the exchange term vanishes; as the orbital part is fully stretched it is mani-
festly symmetric - note also the antisymmetric spin part. Looking up ak(p1, p1) for
k = 0, 2 from the Table the expression for the electrostatic repulsion takes the form

E(1D) =
∑
k=0,2

ak(p1, p1)F k(np2) = F0 + F2 (Q.16)

4
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with respect to the energy of the [Kr] configuration.

iii. 1S term: for this term we use the Slater sum rule. On the one hand we have

Tr(3× 3) = E(3P ) + E(1D) + E(1S) = 2F0 − 4F2 + E(1S), (Q.17)

where we used the independence of the LS term energies on MS and ML. The same
subspace is spanned by the determinantal states |0̇, 0̄〉np2 , |1̇,−1̄〉np2 and |1̄,−1̇〉np2 .
The trace of the corresponding matrix is given by

Tr(3× 3) = 〈0̇, 0̄|ρ−1
12 |0̇, 0̄〉np2 + 〈1̇,−1̄|ρ−1

12 |1̇,−1̄〉np2 + 〈1̄,−1̇|ρ−1
12 |1̄,−1̇〉np2

= (p0, p0|ρ−1
12 |p0, p0) + (p1, p−1|ρ−1

12 |p1, p−1) + (p1, p−1|ρ−1
12 |p1, p−1)

= (F0 + 4F2) + (F0 + F2) + (F0 + F2) = 3F0 + 6F2. (Q.18)

Here the three matrix elements were calculated by looking up the ak terms with the
aid of the Table. The exchange terms vanish because the holes are in different spin
states. Comparing Eqs. (Q.17) and (Q.18), we find

E(1S) = F0 + 10F2 (Q.19)

with respect to the energy of the [Kr] configuration. We calculate for the energy
differences: E(1D)− E(3P ) = 6F2 > 0 and E(1S)− E(3P ) = 15F2 > 0.

(g) (f) Answer B: We show the result for the four electron configuration. This is a lot of
work (and not recommended) but yields the same result - as it should:

i. 3P term: E(3P ) = 〈1̇, 1̄, 0̇,−1̇|1/ρ12|1̇, 1̄, 0̇,−1̇〉5p4 . This is a diagonal matrix element
of a two-body operator:

E
(

3P
)

=
1

2

4∑
κ,κ′=1

′
[
(mκ

l ,m
κ′

l |ρ−1
12 |mκ

l ,m
κ′

l )− (mκ
l ,m

κ′

l |ρ−1
12 |mκ′

l ,m
κ
l )
]
.

Thus we find:

E(3P ) = (p1, p1|ρ−1
12 |p1, p1)

+ (p1, p0|ρ−1
12 |p1, p0)− (p0, p1|ρ−1

12 |p1, p0)

+ (p1, p−1|ρ−1
12 |p1, p−1)− (p−1, p1|ρ−1

12 |p1, p−1)

+ (p1, p0|ρ−1
12 |p1, p0)

+ (p1, p−1|ρ−1
12 |p1, p−1)

+ (p0, p−1|ρ−1
12 |p0, p−1)− (p−1, p0|ρ−1

12 |p0, p−1).

After simplification:

E(3P ) = (p1, p1|ρ−1
12 |p1, p1)

+ 2(p1, p0|ρ−1
12 |p1, p0)− (p0, p1|ρ−1

12 |p1, p0)

+ 2(p1, p−1|ρ−1
12 |p1, p−1)− (p−1, p1|ρ−1

12 |p1, p−1)

+ (p0, p−1|ρ−1
12 |p0, p−1)− (p−1, p0|ρ−1

12 |p0, p−1).

Using the table this becomes:

E(3P ) = F0 + F2

+ 2(F0 − 2F2)− 3F2

+ 2(F0 + F2)− 6F2

+ (F0 − 2F2)− 3F2 = 6F0 − 15F2

5
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with respect to the energy of the [Zn] configuration. In accordance with convention the
common denominators of the ak and bk coefficients where eliminated by redefining
the F integrals: F0 ≡ F 0, F2 ≡ F 2/25.

ii. 1D term: E(1D) = 〈1̇, 1̄, 0̇, 0̄| 1
ρ12
|1̇, 1̄, 0̇, 0̄〉5p4 . In this case we have:

E(1D) = (p1, p1|ρ−1
12 |p1, p1)

+ (p1, p0|ρ−1
12 |p1, p0)− (p0, p1|ρ−1

12 |p1, p0)

+ (p1, p0|ρ−1
12 |p1, p0)

+ (p1, p0|ρ−1
12 |p1, p0)

+ (p1, p0|ρ−1
12 |p1, p0)− (p0, p1|ρ−1

12 |p1, p0)

+ (p0, p0|ρ−1
12 |p0, p0).

After simplification:

E(1D) = (p1, p1|ρ−1
12 |p1, p1)

+ 4(p1, p0|ρ−1
12 |p1, p0)− 2(p0, p1|ρ−1

12 |p1, p0)

+ (p0, p0|ρ−1
12 |p0, p0).

Using the table this becomes:

E(1D) = F0 + F2

+ 4(F0 − 2F2)− 2(3F2)

+ (F0 + 4F2) = 6F0 − 9F2

with respect to the energy of the [Zn] configuration; in accordance with convention the
common denominators of the ak and bk coefficients where eliminated by redefining
the F integrals: F0 ≡ F 0, F2 ≡ F 2/25.

iii. 1S term: for this term we use the Slater sum rule. On the one hand we have

Tr(3× 3) = E(3P ) + E(1D) + E(1S) = 12F0 − 24F2 + E(1S),

where we used the independence of the LS term energies on MS and ML. The same
subspace is spanned by the determinantal states |1̇, 0̇, 0̄,−1̄〉5p4 , |1̇, 1̄,−1̇,−1̄〉5p4 and
|1̄, 0̇, 0̄,−1̇〉5p4 . The trace of the corresponding matrix is given by

Tr(3× 3) = 〈1̇, 0̇, 0̄,−1̄|ρ−1
12 |1̇, 0̇, 0̄,−1̄〉5p4

+ 〈1̇, 1̄,−1̇,−1̄|ρ−1
12 |1̇, 1̄,−1̇,−1̄〉5p4 + 〈1̄, 0̇, 0̄,−1̇|ρ−1

12 |1̄, 0̇, 0̄,−1̇〉5p4 .

The first matrix element can be expressed as

〈1̇, 0̇, 0̄,−1̄| 1

ρ12
|1̇, 0̇, 0̄,−1̄〉 = (p1, p0|ρ−1

12 |p1, p0)− (p0, p1|ρ−1
12 |p1, p0)

+ (p1, p0|ρ−1
12 |p1, p0)

+ (p1, p−1|ρ−1
12 |p1, p−1)

+ (p0, p0|ρ−1
12 |p0, p0)

+ (p0, p−1|ρ−1
12 |p0, p−1)

+ (p0, p−1|ρ−1
12 |p0, p−1)− (p−1, p0|ρ−1

12 |p0, p−1).

6
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The second matrix element can be expressed as

〈1̄, 0̇, 0̄,−1̇| 1

ρ12
|1̄, 0̇, 0̄,−1̇〉 = (p1, p0|ρ−1

12 |p1, p0)

+ (p1, p0|ρ−1
12 |p1, p0)− (p0, p1|ρ−1

12 |p1, p0)

+ (p1, p−1|ρ−1
12 |p1, p−1)

+ (p0, p0|ρ−1
12 |p0, p0)

+ (p0, p−1|ρ−1
12 |p0, p−1)− (p−1, p0|ρ−1

12 |p0, p−1)

+ (p0, p−1|ρ−1
12 |p0, p−1).

The third matrix element can be expressed as

〈1̇, 1̄,−1̇,−1̄| 1

ρ12
|1̇, 1̄,−1̇,−1̄〉 = (p1, p1|ρ−1

12 |p1, p1)

+ (p1, p−1|ρ−1
12 |p1, p−1)− (p−1, p1|ρ−1

12 |p1, p−1)

+ (p1, p−1|ρ−1
12 |p1, p−1)

+ (p1, p−1|ρ−1
12 |p1, p−1)

+ (p1, p−1|ρ−1
12 |p1, p−1)− (p−1, p1|ρ−1

12 |p1, p−1)

+ (p−1, p−1|ρ−1
12 |p−1, p−1).

Together this becomes:

Tr(3× 3) = (p1, p1|ρ−1
12 |p1, p1)

+ 4(p1, p0|ρ−1
12 |p1, p0)− 2(p0, p1|ρ−1

12 |p1, p0)

+ 6(p1, p−1|ρ−1
12 |p1, p−1)− 2(p−1, p1|ρ−1

12 |p1, p−1)

+ 2(p0, p0|ρ−1
12 |p0, p0)

+ 4(p0, p−1|ρ−1
12 |p0, p−1)− 2(p−1, p0|ρ−1

12 |p0, p−1)

+ (p−1, p−1|ρ−1
12 |p−1, p−1).

Next we express these matrix elements in terms of the Coulomb integrals:*

Tr(3× 3) = (F0 + F2)

+ 4(F0 − 2F2)− 2(3F2)

+ 6(F0 + F2)− 2(6F2)

+ 2(F0 + 4F2)

+ 4(F0 − 2F2)− 2(3F2)

+ (F0 + F2) = 18F0 − 24F2.

We determine these matrix elements by looking up the ak and bk terms with the aid
of the Table. Note that the exchange terms are zero whenever the electrons differ in
spin.

E(1S) = Tr(3× 3)− 12F0 + 24F2 = 6F0 (Q.20)

with respect to the energy of the [Zn] configuration. We calculate for the energy
differences: E(1D) − E(3P ) = 6F2 > 0 and E(1S) − E(3P ) = 15F2 > 0. Note that
these differences coincide with values obtained above.
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Problems Chapter 10 (continued)

Equivalence of electrons and holes

(1.0) Consider a closed shell with one vacancy. Let the orbital and spin angular momentum of the
electron that can fill the vacancy be given by l and s, respectively.

1. (0.1) Give the expression for the angular momentum operator of an object of mass mh,
p0osition r and velocity vh with respect to the nucleus of infinite mass.

2. (0.1) Give the expression for the orbital magnetic moment operator of a hole, µ(h), as an
object of charge q, mass mh and (positive) g-factor gh.

3. (0.1) What are the orbital (lh) and spin (sh) angular momentum of the hole?

4. (0.1) What is the mass of the hole (mh) as compared to that of the vacant electron?

5. (0.1) What are the orbital L and spin S angular momentum of the shell with one vacancy?

6. (0.1) What is the velocity of the hole (vh) as compared to that of the vacant electron?

7. (0.1) What is spin magnetic moment of the hole as compared to that of the vacant electron?

8. (0.1) Are the g factors of electron and hole the same?

9. (0.2) Give the expression for the spin-orbit shift caused by the hole.

1
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Solutions Problems Chapter 10 (continued)

Equivalence of electrons and holes

(1.0) Consider a closed shell with one vacancy. Let the orbital and spin angular momentum of the
electron that can fill the vacancy be given by l and s, respectively.

1. (0.1) The expression for the angular momentum operator is lh = mh(r× vh).

2. (0.1) The expression for the orbital moment operator is µ
(h)
l = gh(q/2mh)lh.

3. (0.1) The orbital and spin angular momentum of the hole are lh = −l, sh = −s.

4. (0.1) The mass of the hole is mh = −me.

5. (0.1) The orbital L and spin S angular momentum of the shell with one vacancy are L = −l,
S = −s.

6. (0.1) The velocity of the hole as compared to that of the vacant electron is vh = ve.

7. (0.1) The spin magnetic moment of the hole is µh = ge(e/2me)s.

8. (0.1) The g factors of electron and hole must be the same to assure that the magnetic moments

add up to zero µh = −µe and µ
(h)
l = −µ(e)

l .

9. (0.2) The expression for the spin-orbit shift is

∆ELSn,J = −
(
ζnl/~2

)
〈nLSJMJ |L · S|nLSJMJ〉,

where ζnl = 〈nl||ξ(r)||nl〉~2 > 0. Using the inner product rule L · S = 1
2 [J2 − L2 − S2] we

obtain

∆ELSn,J = −1

2
ζnl[J (J + 1)− L(L+ 1)− S(S + 1)].
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