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Hydrodynamic behavior in expanding thermal clouds of 8Rb
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We study hydrodynamic behavior in expanding thermal cloud¥®Rb released from an elongated trap. At
our highest densities the mean free path is smaller than the radial size of the cloud. After release the clouds
expand anisotropically. The cloud temperature drops by as much as 30%. This is attributed to isentropic
cooling during the early stages of the expansion. We present an analytical model to describe the expansion and
to estimate the cooling. Important consequences for time-of-flight thermometry are discussed.
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I. INTRODUCTION [5,6,17—-19. Hydrodynamic behavior as observed in collec-
tive excitations is reviewed in Reff7,20].

The anisotropic expansion of a condensate after release In this paper we focus on hydrodynamic behavior as ob-
from a trap is one of the best known features of the Boseserved in the expansion of dense thermal clouds' &b,
Einstein condensed stdte,2]. The anisotropy arises because extending a brief analysis presented earlier in the context of
the condensate expands most rapidly in directions where the Bose-Einstein condensation formation experiments in
was originally most confined. The interest in this phenom-Amsterdan{3]. The clouds are prepared in an elongated trap
enon is further growing, in particular since the observation ofat a temperaturd, just above the critical temperature for
anisotropic expansions in noncondensed Bose gi&d$ Bose-Einstein condensation. At the highest densities the
and in degenerate Fermi gagéso). mean free path is less than the radial size of the cloud. After

Anisotropic expansions are indicative for hydrodynamicrelease from the trap the clouds expand anisotropically and
behavior. It is well known that Thomas-Fermi condensategheir temperature drops by as much as 30%. The behavior is
can be described by the classical Euler equation for potentiantermediate between that expected for collisionless clouds,
flow of a nonviscous gaf7]. Therefore, they behave hydro- where cooling is absent, and pure hydrodynamic behavior,
dynamically even at very low densities. For classical cloudsvhere the gas cools to vanishing temperatures.
the situation is density dependent. At low densities, where We show that the expansion in axial direction is similar to
the mean free path is large compared to the size of the cloudhat of a collisionless cloud at a temperatdrg<T,. This
(collisionless regimg the expansion proceeds under free“axial” temperature can be identified with the temperature
flow conditions (free expansion The motion of the indi- T, reached at the moment when the expansion ceases to be
vidual atoms is described by a single-particle Hamiltonianhydrodynamic and the cooling stops. Radially, the expansion
and the expansion is isotropic. Reducing the mean free patproceeds faster than that expected for a collisionless cloud
to a value smaller than the dimension of the cloud allows th@nd can be characterized by a “radial” temperatdrg
introduction of a hydrodynamic field and leads to a crossoverT,. For our conditions, the mean field of elastic interaction
to hydrodynamic behaviothydrodynamic expansionLittle contributes~20% to the total energy in the trap center. We
difference is to be expected between the expansion of a coshow that this only has a minor effd@%) on theexpansion
densate and that of a fully hydrodynamic thermal clp8d  behavior. The consequences for time-of-flight thermometry
Both the collisionless and the hydrodynamic regimes werare discussed.
studied theoretically(see Refs.[8-11], and references
therein. Also the influence of mean-field effedts2] and the
crossover between the two regimes were analyzed theoreti- Il. EXPERIMENT
cally [13] and numericallyf 14].

It is important to understand the crossover to hydrody-
namic behavior in thermal clouds. From the fundamenta
point of view it is important to quantify the hydrodynamic
properties as these affect the coupling between condensa

and thermal clouds. From the experimental point of view it is tvel led t ¢ i st abdve Th
vital for the correct interpretation of time-of-flight absorption evaporalively cooled 1o a temperaturé just abdye The

images of dense atomic clouds. Previously the crossover régdio-frequencwf) evaporation is forced at a final rate of
gime in thermal clouds was probed in experiments at MIT¥= —433 kHz/s down to a value; =740 kHz, that is, 120
with a dense gas of*Na atomg[15] and at ENS using cold kHz above the trap minimurB,=88.6(1) uT as calibrated
metastable triplefHe [16]. In Amsterdam the crossover re- Using atom laser output couplin@2]. As the final ramp
gime was observed in experiments WitfRb [3]. Very pro-  down rate is— v/(v,—vo)~4 s %, i.e., slow compared to
nounced hydrodynamic conditions were recently reached bpoth ~ axial and radial trap frequencies w,
exploiting a Feschbach resonance in fermionic gases2mwx20.8(1) st andw,=2mX477(2) s, the evapora-

In our experiments we load a magneto-optical trap with
pproximately 18 atoms from the source described in Ref.
21]. After optical pumping to théS,,,F=2mg=2) state
tré@)ically 4x10° atoms are captured in a loffe-Pritchard
quadrupole magnetic trap. Then the gas is compressed and
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tion proceeds quasistatically and yields a sample charactet
ized by a single uniform temperature and an equilibrium roa)
shapd 23]. The preparation procedure is completed by 20 ms
of plain evaporation at rf frequency,. This procedure
leaves us with N=3.5(3)x10° atoms at densityn,
=3.6(6)x 10 cm™ 3 in the trap center and temperatuFg
=1.17(5) uK.

Axial size [mm]

A. Knudsen criterion

To establish the collisional regime we calculate the mean
free path and the atomic collision rate. The mean free path ir
the trap center is given by the usual expression for a uniform
gas|[25] at densityng,

1

\/Eno(T

whereo=8ma? is the elastic-scattering cross section in the
swave limit with a=98.98(4 p, the scattering lengtf26].
The atomic collision rate in the trap center 5]

)\O=

~3 um, (D)

Radial size [mm]

7o 1= \2nupo~6000 §1, 2)

with vy, = (8kgTo/mm) Y2 as the thermal velocity. Expansion time [ms]
The gas behaves as a hydrodynamic fluid if the mean free

path is much smaller than the relevant sample gizmidsen directions. The error bars represent two standard deviations. The

criterion). Defflnlr?gdthe .aXIaI Kle) a_md thhe radl_al ) size E solid lines represent Eq$9) and (10) with 1,(t,)=116 um, T,
parameters of the .en.SIty profile in a harmonic trap, see qi0.83,uK, andT,=1.35uK. Note the difference in vertical scale
(7), the Knudsen criterion can be expressed as

for the two panels. The dashed line represents the asymptotic ex-

pansion behavior in axial direction. As the initial radial size is very

ﬁ —wr.<l 3) small the radial expansion is already asymptotic by the time the first
e data point is taken.

FIG. 1. Expansion measurements f@ axial and(b) radial

with i e {p,z}. For the axial direction the Knudsen criterion pression for the column density of an ideal Bose gas trapped
is very well satisfiedw,7.~0.02. For the radial direction we in a harmonic potential
calculate w,7.~0.5. In this direction we operate in the ) )
middle of the crossover range between the collisionless and Ny(Z,p) = Nyed,[ De #0101 /g.[D]  (4)
hydrodynamic regimes.
is fitted, after transformation to optical density, to the images
B. Time-of-flight analysis [29]. With this procedure we obtain values for the sizgs)

) o andl (t), the degeneracy parametéugacity) D, and the
In the crossover between hydrodynamic and collisionlesgeak column densityi,, [30]. We use the notationy,[ x]

conditions the time-of-flight analysis is nontrivial. Unlike in =~ x!/I2. The fugacity provides together with the initial

fully collisionless clouds, the velocity of the individual at- ;05 3 self-calibrating method for the total atom number

oms is not conserved because the gas cools as it expands, ided th trap f — 2, \UBig Kk
Unlike in fully hydrodynamic clouds, cooling will only pro- provided the average trap frequensy- (w,w;)™ is known,

ceed during a finite period. Obviously, if the temperature 3

drops during the expansion the question arises how to prop- N=g [D](m—;) 12(0)14(0)
erly extract the temperature of the cloud from a time-of-flight 3 2n ) BT
absorption measurement.

In Fig. 1 we plot the measured axial and radial cloud sizesn practice only the axial sizg,(0) is used because the as-
I(t) andl(t), as a function of expansion timeAll data  pect ratio is accurately known. The measured peak column
were collected during a single run within 2.5 h, keeping trackdensityn,g is not used in our analys[81].
of some drift in the offset field27]. Each data point corre- Due to the presence of the elastic interactions between the
sponds to the average of about 20 measurements, with tleoms the density distribution will be slightly broadened and
error bars representing the standard deviation, typically 2%leformed[12,32. Calculating the variance of the distribu-
of the average value. The cloud sizes were determined wittion (z?) using the recursive expression for the density to
the usual procedurésee for instance Ref28)), i.e., the ex- first order in mean fieldJ +(r) =2gn(r) leads to

®
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Ime212(0)=KTo+ Epy, (6)
1.2
where Ey=g/n?(r)dr/fn(r)dr is the trap averaged inter-
action energy withg=(4=#2/m)a the interaction coupling 10
constan{33]. The variance was related to the size parameter
using(z?)=212(0)g4[D1/gs[ D] [34]. Equivalently, treating
the mean field as an effective potential we may write

1,

o
o

Aspect ratio,
o
(=]

Imw?l2(0)=kT,, 7)

1
a

where w, represents a “dressed” trap frequency that repro-
duces, for an ideal gas at temperatiig the same cloud

size, 02

~2 2 [} 5 10 15 20 25
wi=owi(1-§), ) Expansion time [ms]
whereé=E,/(kTo+ Eq) =0.03[33]. FIG. 2. Aspect ratio of a hydrodynamically expanding cloud as

To describe the expansion behavior analytically we intro-a function of expansion time. The error bars represent two standard
duce a schematic model in which the expansion is treated afeviations. The change from a cigarlike to a pancakelike shape is
purely hydrodynamic up to timé=t, and as purely colli- evident as the data points cross the valud df,=1. The open
sionless beyond this point. AL the density has dropped to circles represent low-density clouds expanding isotropically. The
the level that no further collisions take place and the atomi@olid and dashed lines represent fits of Ef) to the data.
velocities remain frozen. The axial expansion is represented
by errors represent the uncertainty in the determination of the

fugacity.
I(t)=[12(t, )+ (2kgT,/m)(t—t,)?]"2 9 From the initial axial size we calculate with E(7) T,
=1.17(5) uK. Then, the central densityn,=3.6(6)
The presence of, slightly shifts the asymptote of the ex- x 10 cm™2 follows with
pansion curve. The radial expansion is asymptotic for all
times relevant in the experiment, no=93/2[D]/A(3), (12)
() =[2kgT,/m]"2. 10 \where Ao=[27h%mkT,]*? is the thermal wavelength at

temperaturel ;. Using Eq.(8) to account for the mean-field

In this case the shift of the asymptote is negligible. The . : -
parametersT, and T, represent apparent axial and radial broadening we calculate W'th. Et) Nf.3'5(3)>< 10° atoms.
L he error bar reflects the strict conditions on the atom num-

temperatures corresponding to the asymptotic expansion v . . .
Iocit?es of the cloud IF; bothgdirectionsy P P er imposed by a known fugacity. We return to systematic
' errors in the section on thermometry.

The results presented here indicate a slightly decelerated
expansion in axial directior,/Tq=0.71(2), and aslightly
accelerated expansion in radial directidn,/To=1.153).
with i € {p,z}. Note that Eqs(9) and(10) reduce to the usual This corresponds to an “inversion” of the aspect ratio, which
expressions for isotropic expansion of fully collisionlessis demonstrated in Fig. 2 by plotting the aspect ratios for the
thermal clouds in the absence of a mean field wher0  Same dataset as used in Fig. 1tAt12 ms of expansion the

si=limi;(t)=(2kgT; /m)*?, (1D

t—oo

with T,=T,=T, (see, e.g., Ref28)). cloud shape crosses over from a cigar shape to a pancake
shape. The solid line represents a fit to the expansion model
IIl. RESULTS to be discussed below.

For collisionless samples the expansion is expected to be

Fitting Eq. (4) to our data, the degeneracy parameter wassotropic. This was verified by reducing the density by a
verified to be constant during the expansion to within experifactor of 30(open circles in Fig. 2 In this case the expan-
mental errorD =0.954). Once this was established we de- sion is indeed isotropi¢dashed ling s,/s,=1.024).
termined the cloud sizes by refitting all data with a fixed
valueD=0.95. The results are shown in Fig(dolid bar3.
Fitting Eq. (9) to the results for the axial sizes we obtain the
initial axial sizel,(0)=1,(t,)=116(2) om and the “axial To interpret our results fof,, T, and T, we divide the
temperature’T,=0.83(4) uK. The fit is shown as the solid expansion in two stages. During the first staget,) the
line in Fig. 1(a) and is insensitive to any reasonable choice ofexpansion is treated as purely hydrodynamic and is described
t, . Fitting Eq.(10) to the radial data we obtain the solid line by scaling theory8,13]. All data are taken during the second
in Fig. 1(b), which corresponds t0,=1.35(6) uK [35]. For ~ stage {>t,) for which the expansion is treated as collision-
all these results statistical errors are negligible. The quotetess.

IV. EXPANSION MODEL

063603-3



SHVARCHUCK et al. PHYSICAL REVIEW A 68, 063603 (2003

A. Hydrodynamic stage 1<T,ITo<3/2+¢. (20

quing th? hydrod_ynz_imic stage<t,) we treat the ex Returning to our experimental conditions we emphasize
pansion as isentropic, i.e., the gas cools while convertin hat the durati f the hvdrod ic st il b
random motion into directed motion just as in the supersoni% ‘."‘f be ura I?hn 0 ¢ et ydrodynamic fs age \m e very
expansion of an atomic beaf86]. As for isentropic expan- d”e;. ﬁcau.fﬁ b € 'r;ﬁ an ar;eoustrr:jealn (rjee path gomias
sions the degeneracy parameeis conserved37] we find, ratically with b, in these elongated clouds,
using Eq.(12), that the temperature decreases according to 7\(t)/>\o=b§(t), (21)

— 2/3
T(t)=To[n(t)/no] ™™ 13 as follows with Egs(1) and(14) [38]. Roughly speaking,
is reached when the mean free path equals the radial size of
the cloud. Therefore, a rough estimate fprcan be obtained
by substituting\ (t) =1 ,(t) into Eq.(21) for t=t, . With Eq.
n(t) 1 (3) this leads to
= . (149 _

No  b2(t)b,(t) b,(t,)=1/w,7. (22)

Turning to scaled size parametebs(t)=1;(t)/1;(0) with
i e{p,z}, the density ratio is conveniently written as

We note that for our elongated clouds{/w,<1) the axial ~ ag for t=< 1/w, the radial size of a hydrodynamic cloud

size remains practically unchanged during the early stages q’lfardly differs from that of a collisionless cloud,

the expansion. Therefore, settibg=1 in Eq. (14), the ini-

tial (t<1/w,) isentropic drop in temperature can be written bp(t)2(1+52t2)1’2 (23)
p 7

as

we find with Eq.(22

T(1)/To=1/b73(1). (15) 422

— (17 ~ 2_ 1712
Hereb,(t) satisfies the scaling equations for expanding hy- te=(Ho,)[(Vew,7e)"~ 1] 0.6 ms. @49

drodynamic thermal cloudg8] in the presence of a mean A self-consistent estimate for our expansion model can be

field [13]: obtained by combining Eq$23) and (15) for t=t, ,
: & & ty = (L, )[(To/T,)¥2—1]*2 25
bp:(l_g) 7/3P2/3+§ 3P , (16a * ( wp)[( 0 *) ] . ( )
b7%2% " peh,

However, for this estimate the ratib, /T, should first be
9 2 established experimentally.

i W, z
b,=(1-¢) =t é{—5—. (16b
=(1-¢ b§/3b2/3 fbibi B. Collisionless stage

Once the expansion is ballistit*¥t, ) the variance of the
axial (i=z) and radial (=p) velocity components of the

expanding gas can be written as

Equations(16a@ and (16b) decouple fort<1l/w, since b,
=1. In this limit the radial scaling equation can be written as

(m

2
) =g(1—§)[1—1/b;‘/3(t)]+§[1—1/b§(t)]. (ofy=(u?)+(wf), (26)
p

(17)  whereu; represents the thermal velocity components of the
) _ _ i atoms andv; the dynamic velocity components of the den-
order in (bp/wp)2 the temperaturd@, reached at=t, : At the start of the ballistic stage €t,) the thermal ve-
locity components can be associated with,

2
—) : (18) m(u?)=kgT, . (27)

_ _ o The dynamical velocities due to the overall expansion can be
We point out that in the limit of very elongated clouds Eq. expressed as

(17) also represents the correct description for a fully hydro-

dynamic expansion. Then, we may write for the asymptotic m(w?)=m(r2)=(b; /w;)*kgTo=2mI?. (28)
expansion velocity in radial direction

Here we used the scaling property= (b; /b;)r;, with ther;
representing the position coordinates in the expanding cloud.

ok 1 s, [ T,
lim 0w, o, 1,(0) =Va-9 To (19 Since for collisionless clouds th@?) are conserved by the

t—w p p
time the mean field has vanished, we may write

Hence, comparing with the asymptotic value of ELj7) we )
conclude that the following inequality should hold: m(vi) =kgT;, (29
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where theT,; are effective axial and radial temperatures thattypically 1%, i.e., twice as small as for the absolute size
may be associated with the asymptotic axial and radial exf41]. This points to some form of error cancellation. Also the

pansion velocities; defined in Eq.(11). fit to the aspect ratio is somewhat better than those of the
Substituting Eqs(27) and(28) into Eq.(26) we obtain for  separate plots.
£<1 Let us now turn to the results for the aspect ratios as
o presented in Fig. 2. Using Eg@), (10), and(31) the evolu-
T, T. ( b, N & (30 tion of the aspect ratio can be expressed as
To T o 2 '
0 0 w, t=t, bp(t*) |p(t)~ [(%"’f)_%(-r* /TO)]llzwzt

; : (t) 2 27172’ (39
where the second term on the right-hand gith) represents A [1+¢&+(T, ITows(t—1t,)7]

both the hydrodynamic and mean field contributions to the _ )
dynamic motion at=t, <1/w, and the third term the mean- Where we presume>1/w, as in Eq.(10). By construction

field contribution to the dynamic motion fort, [39]. With this form satisfies energy conservation. In this way our fitting
Eq. (17) this results in the following relation betweek function stays as close as possible to a fit to a solution of the

T,, andT, in expanding elongated thermal clouds: scaling equations. Fitting Eq(35 to the data usingé
P =0.03 and, =0.3 ms we obtaif, /T;=0.721). The fitis

STotETo=3T, +T,. (31)  shown as the solid line in Fig. 2. The result agrees within
experimental error with that obtained from the axial expan-
This equation is valid for small mean fields provided sjon data but the accuracy is slightly better. The method
<1/w, and expresses the energy conservation during the eXacks the accuracy to extragt[42]. The dashed line in Fig.
pansion. It implies 2 corresponds to the collisionless limit of E@5): £€=0,
- - 32 t,=0, andT, =T,.

7 ke Once Eq(35) is accepted, time-of-flight information for a
single expansion time suffices for thermometry. The proce-
dure goes in two steps. First we seandt, equal to zero
T, T, [b,\° and use Eq(35) to obtain a first estimate fof, /To. With
T_o: Ty , (33  EQq. (34 T,/T, follows. After T, is determined from Eq.

t=t,

This also follows directly by writing in analogy to E¢30)

Wz

(10), we have an estimate for the absolute valgeTogether
with ng, deduced from Eq.12), this allows us to calculaté
taking into account that(,/w,)? is negligibly small[40]. andt, . Iterating the procedure once yields all values within
the limits of accuracy of the analysis. Choosing the expan-
V. THERMOMETRY sion time sufficiently long &> 1/w,) the results are very in-
sensitive for the value df, .
Result(32) shows that with our measurement ©f we Our estimates for the absolute valuesTef, T,, and T,

directly probe the temperature of elongated clouds at the engre sensitive for the detailed shape of the clouds. Therefore,
of the hydrodynamic stage. Knowledge ®f allows us to  deviations from the Bose shape will result in systematic er-
obtain with Eq<25) a self-consistent result fdm within our rors, in particu|ar if the cloud Shape Changes during the ex-
expansion model. Using, /To=0.71(2) we calculatd,  pansion. Shape deviations can arise from the presence of the
=0.28 ms, somewhat smaller than the rough estin(@4g mean field. Also, inhomogeneous isentropic cooling as a re-
Rewriting Eq.(31) we find an increase in the effective sult of the inhomogeneous density profile of our samples can

radial temperature: give rise to deviations of the Bose shape. Further, it may be
T 3 1T that our transformation from optical density to column den-
P _< — 2 X 4e=1.192). (34  Sity gives rise to slight distortions of the cloud shape as a
To 2 3Ty result of optical pumping or saturation of the detection tran-
. . i sition.
Hence 15% of the increase iR, is due to the mean field. In our analysis we did not correct for deviations of the

Note that Eq.(34) satisfies inequality20). Notice further  ¢|5,g shape from the Bose distribution. First of all because
that the valuel,=1.37(6) K obtained with Eq(34) comes  nder our conditions the mean field is weak and our fits of
close to the valud ,=1.35(6) uK following directly from  gq (4) to the measured column densities look convincingly.
the radial expansion. o Second, because shape deviations produce similar relative
We found the fitting procedure for determinifig, T,,  errors in all three temperatures. Therefore, they do not affect

andT, to be very sensitive for the detailed shape of the fitthe conclusions and consistency of our analysis as long as
function. Choosing a simple Gaussian reduces the estimatefle scaling approach remains valid.

values for these temperatures by as much as 25%. However,

this enormous systematic error does not affect t.he corre- VI. CONCLUSIONS

sponding aspect ratios by more than a few parts in a thou-

sand. We found more indicators that the aspect ratios are We studied the behavior of dense elongated clouds of
more accurately determined than the absolute values. Intef’'Rb in the crossover from the collisionless to the hydrody-

estingly, we find for the aspect ratios standard deviations ohamic regime. At our highest densities the mean free path is
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slightly smaller than the radial size of the cloud and the Presently it is possible to study the case of strong mean
expansion is anisotropic. The expansion can be described Hields by tuning to a Feschbach resonanég6,17-19,

a two-stage model in which the expansion is treated ag3,44. It would be interesting to study the case where an-

purely hydrodynamic up to timé=t, and as purely colli- isotropic expansions are to be expected, but the behavior of

sionless beyond this point. We find that at the end of thehe system is dominated by the mean field rather than the
hydrodynamic stage the temperature has dropped substagyllisional hydrodynamics.

tially due to isentropic coolingT, /To=0.721). This re-

flects itself in an axial expansion that is substantially slower

than expected for the coIhspnIess ca§§,= T, . In.acc.:or- ACKNOWLEDGMENTS
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