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We find that in very elongated 3D trapped Bose gases, even at temperatures far below the BEC tran-
sition temperature Tc , the equilibrium state will be a 3D condensate with fluctuating phase (quasicon-
densate). At sufficiently low temperatures the phase fluctuations are suppressed and the quasicondensate
turns into a true condensate. The presence of the phase fluctuations allows for extending thermometry
of Bose-condensed gases well below those established in current experiments.
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Phase coherence properties are among the most inter-
esting aspects of Bose-condensed gases. Since the dis-
covery of Bose-Einstein condensation (BEC) in trapped
ultracold clouds of alkali atoms [1], various experiments
have proved the presence of phase coherence in trapped
condensates. The MIT group [2] has found the inter-
ference of two independently prepared condensates, once
they expand and overlap after switching off the traps. The
MIT [3], NIST [4], and Munich [5] experiments provide
evidence for the phase coherence of trapped condensates
through the measurement of the phase coherence length
and/or single particle correlations.

These results support the usual picture of BEC in 3D
gases. In equilibrium, the fluctuations of density and phase
are important only in a narrow temperature range near the
BEC transition temperature Tc. Outside this region, the
fluctuations are suppressed and the condensate is phase
coherent. This picture precludes the interesting physics of
phase-fluctuating condensates, which is present in 2D and
1D systems (see [6,7] and references therein).

In this Letter we show that the phase coherence proper-
ties of 3D Thomas-Fermi (TF) condensates depend on their
shape. In very elongated 3D condensates, the axial phase
fluctuations are found to manifest themselves even at tem-
peratures far below Tc. Then, as the density fluctuations
are suppressed, the equilibrium state will be a condensate
with fluctuating phase (quasicondensate) similar to that in
1D trapped gases [7]. Decreasing T below a sufficiently
low temperature, the 3D quasicondensate gradually turns
into a true condensate.

The presence and the temperature dependence of
axial phase fluctuations in sufficiently elongated 3D con-
densates suggests a principle of thermometry for Bose-
condensed gases with indiscernible thermal clouds. The
idea is to extract the temperature from a measurement of
the axial phase fluctuations, for example, by measuring the
single-particle correlation function. This principle works
for quasicondensates or for any condensate that can be
elongated adiabatically until the phase fluctuations become
observable.
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So far, axial phase fluctuations have not been measured
in experiments with cigar-shaped condensates. We dis-
cuss the current experimental situation and suggest how
one should select the parameters of the cloud in order to
observe the phase-fluctuating 3D condensates.

We first consider a 3D Bose gas in an elongated cylindri-
cal harmonic trap and analyze the behavior of the single-
particle correlation function. The natural assumption of
the existence of a true condensate at T � 0 automatically
comes out of these calculations. In the TF regime, where
the mean-field (repulsive) interparticle interaction greatly
exceeds the radial �vr � and axial �vz� trap frequencies, the
density profile of the zero-temperature condensate has the
well-known shape n0�r, z� � n0m�1 2 r2�R2 2 z2�L2�,
where n0m � m�g is the maximum condensate density,
with m being the chemical potential, g � 4p h̄2a�m, m
is the atom mass, and a . 0 is the scattering length. Un-
der the condition vr ¿ vz , the radial size of the conden-
sate, R � �2m�mv2

r�1�2, is much smaller than the axial
size L � �2m�mv2

z �1�2.
Fluctuations of the density and phase of the condensate,

in particular, at finite T , are related to elementary exci-
tations of the cloud. The density fluctuations are domi-
nated by the excitations with energies of the order of m.
The wavelength of these excitations is much smaller than
the radial size of the condensate. Hence, the density fluc-
tuations have the ordinary 3D character and are small.
Therefore, one can write the total field operator of atoms
as ĉ�r� �

p
n0�r� exp�if̂�r��, where f̂�r� is the operator

of the phase. The single-particle correlation function is
then expressed through the mean square fluctuations of the
phase (see, e.g., [8]):

�ĉy�r�ĉ�r0�� �
p

n0�r�n0�r0� exp�2��df̂�r, r0��2��2	 ,
(1)

with df̂�r,r0� � f̂�r� 2 f̂�r0�. The operator f̂�r� is
given by (see, e.g., [9])

f̂�r� � �4n0�r��21�2
X
n

f1
n �r�ân 1 H.c. , (2)
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where ân is the annihilation operator of the excitation with
quantum number(s) n and energy en, f1

n � un 1 yn , and
the u, y functions of the excitations are determined by the
Bogolyubov– de Gennes equations.

The excitations of elongated condensates can be di-
vided into two groups: “low energy” axial excitations with
energies en , h̄vr, and “high energy” excitations with
en . h̄vr . The latter have 3D character as their wave-
lengths are smaller than the radial size R. Therefore, as
in ordinary 3D condensates, these excitations can provide
only small phase fluctuations. The low-energy axial ex-
citations have wavelengths larger than R and exhibit a
pronounced 1D behavior. Hence, one expects that these
excitations give the most important contribution to the
long-wave axial fluctuations of the phase.

The solution of the Bogolyubov –de Gennes equations
for the low-energy axial modes gives the spectrum ej �
h̄vz

p
j� j 1 3��4 [10], where j is a positive integer. The

wave functions f1
j of these modes have the form

f1
j �r� �

s
� j 1 2� �2j 1 3�gn0�r�

4p� j 1 1�R2Lej
P

�1,1�
j

µ
z
L

∂
, (3)

where P
�1,1�
j are Jacobi polynomials. Note that the con-

tribution of the low-energy axial excitations to the phase
operator (2) is independent of the radial coordinate r.

Relying on Eqs. (2) and (3), we now calculate the
mean square axial fluctuations of the phase at distances
jz 2 z0j ø R. As in 1D trapped gases [7], the vacuum
fluctuations are small for any realistic axial size L. The
thermal fluctuations are determined by the equation

��df̂�z, z0��2�T �
X̀
j�1

m� j 1 2� �2j 1 3�
15� j 1 1�ejN0

3

∑
P

�1,1�
j

µ
z
L

∂
2 P

�1,1�
j

µ
z0

L

∂∏2

Nj ,

(4)

with N0 � �8p�15�n0mR2L being the number of Bose-
condensed particles, and Nj the equilibrium occupation
numbers for the excitations. The main contribution to the
sum over j in Eq. (4) comes from several lowest excitation
modes, and at temperatures T ¿ h̄vz we may put Nj �
T�ej. Then, in the central part of the cloud �jzj, jz0 j ø L�
a straightforward calculation yields

��df̂�z, z0��2�T � d2
Ljz 2 z0j�L , (5)

where the quantity d
2
L represents the phase fluctuations on

a distance scale jz 2 z0j 
 L and is given by

d2
L�T� � 32mT�15N0�h̄vz�2. (6)

Note that at any z and z0 the ratio of the phase correlator
(4) to d

2
L is a universal function of z�L and z0�L:

��df̂�z,z0��2�T � d2
L�T�f�z�L, z0�L� . (7)

In Fig. 1 we present the function f�z�L� � f�z�L, 2z�L�
calculated numerically from Eq. (4).
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FIG. 1. The function f�z�L�. The solid curve shows the re-
sult of our numerical calculation, and the dotted line is f�z� �
2jzj�L following from Eq. (5).

The phase fluctuations decrease with temperature.
As the TF chemical potential is m � �15N0g�p�2�5 3

�mv̄2�8�3�5 �v̄ � v2�3
r v1�3

z �, Eq. (6) can be rewritten in
the form

d2
L � �T�Tc� �N�N0�3�5d2

c , (8)

where Tc � N1�3h̄v̄ is the BEC transition temperature
and N is the total number of particles. The presence of
the 3D BEC transition in elongated traps requires the in-
equality Tc ¿ h̄vr and, hence, limits the aspect ratio to
vr�vz ø N . The parameter d2

c is given by

d2
c �

32m�N0 � N�
15N2�3h̄v̄

µ
vr

vz

∂4�3

~
a2�5m1�5v22�15

r

N4�15v19�15
z

. (9)

Except for a narrow interval of temperatures just below Tc,
the fraction of noncondensed atoms is small and Eq. (8) re-
duces to d

2
L � �T�Tc�d2

c . Thus, the phase fluctuations can
be important at large values of the parameter d2

c , whereas
for d2

c ø 1 they are small on any distance scale and one
has a true Bose-Einstein condensate. In Fig. 2 we present
the quantity d2

c for the parameters of various experiments
with elongated condensates.

In the Konstanz [13] and Hannover [14] experiments the
ratio T�Tc was smaller than 0.5. In the recent experiment
[17] the value d2

c � 3 has been reached, but the tempera-
ture was very low. Hence, the axial phase fluctuations were
rather small in these experiments and they were dealing
with true condensates. The last statement also holds for
the ENS experiment [15] where T was close to Tc and the
Bose-condensed fraction was N0�N � 0.75.

The single-particle correlation function is determined
by Eq. (1) only if the condensate density n0 is much larger
than the density of noncondensed atoms, n0. Otherwise,
this equation should be completed by terms describing
correlations in the thermal cloud. However, irrespective of
the relation between n0 and n0, Eq. (1) and Eqs. (4)–(6)
correctly describe phase correlations in the condensate
as long as the fluctuations of the condensate density are
050404-2
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FIG. 2. The parameter d2
c for experiments with elongated con-

densates. The up and down triangles stand for d2
c in the sodium

[11] and hydrogen [12] MIT experiments, respectively. Square,
cross, diamond, circle, and star show d2

c for the rubidium ex-
periments at, respectively, Konstanz [13], Munich [5], Hannover
[14], ENS [15], and AMOLF [16].

suppressed. This is still the case for T close to Tc and
N0 ø N , if we do not enter the region of critical fluctua-
tions. Then, Eq. (8) gives d

2
L � �N�N0�3�5. At the high-

est temperatures of the Bose-condensed cloud in the MIT
sodium experiment [11], the condensed fraction was
N0�N 
 0.1 and the phase fluctuations were still small.

On the contrary, for N0�N � 0.06 in the hydrogen ex-
periment [12], with d2

c from Fig. 2 we estimate d
2
L � 1.

The same or an even larger value of d
2
L was reached in

the Munich Rb experiment [5] where the gas tempera-
ture was varying in a wide interval around Tc. In the Rb
experiment at AMOLF [16], the smallest observed Bose-
condensed fraction was N0�N � 0.03, which corresponds
to d

2
L � 5. However, axial fluctuations of the phase have

not been measured in these experiments.
We focus our attention on the case where N0 � N and

the presence of the axial phase fluctuations is governed by
the parameter d2

c . For d2
c ¿ 1, the nature of the Bose-

condensed state depends on temperature. In this case we
can introduce a characteristic temperature

Tf � 15�h̄vz�2N�32m (10)

at which the quantity d
2
L � 1 (for N0 � N). In the tem-

perature interval Tf , T , Tc, the phase fluctuates on a
distance scale smaller than L. Thus, as the density fluc-
tuations are suppressed, the Bose-condensed state is a con-
densate with fluctuating phase or quasicondensate. The
expression for the radius of phase fluctuations (phase co-
herence length) follows from Eq. (5) and is given by

lf � L�Tf�T� . (11)

The phase coherence length lf greatly exceeds the corre-
lation length lc � h̄�pmm. Equations (11) and (10) give
the ratio lf�lc � �Tc�T� �Tc�h̄vr�2 ¿ 1. Therefore, the
quasicondensate has the same density profile and local
correlation properties as the true condensate. However, the
050404-3
phase coherence properties of quasicondensates are drasti-
cally different (see below).

The decrease of temperature to well below Tf makes
the phase fluctuations small �d2

L ø 1� and continuously
transforms the quasicondensate into a true condensate.

It is interesting to compare the described behavior of
the interacting gas for d2

c ¿ 1, with the two-step BEC
predicted for the ideal Bose gas in elongated traps [18].
In both cases, at Tc the particles Bose condense in the
ground state of the radial motion. However, the ideal gas
remains noncondensed (thermal) in the axial direction
for T . T1D � Nh̄vz� ln2N (assuming T1D , Tc), and
there is a sharp crossover to the axial BEC regime at
T � T1D. The interacting Bose gas below Tc forms the
3D TF (nonfluctuating) density profile, and the spatial
correlations become nonclassical in all directions. For
d2

c ¿ 1, the axial phase fluctuations at T 
 Tc are still
large, and one has a quasicondensate which continuously
transforms into a true condensate at T below Tf. Note
that Tf is quite different from T1D of the ideal gas.

Let us now demonstrate that 3D elongated quasiconden-
sates can be achieved for realistic parameters of trapped
gases. As found above, the existence of a quasicondensate
requires large values of the parameter d2

c given by Eq. (9).
Most important is the dependence of d2

c on the aspect ra-
tio of the cloud vr�vz, whereas the dependence on the
number of atoms and on the scattering length is compara-
tively weak. Figure 3 shows Tc�Tf � d2

c , m�Tf, and the
temperature Tf as functions of vr�vz for rubidium con-
densates at N � 105 and vr � 500 Hz. Comparing the
results for d2

c in Fig. 3 with the data in Fig. 2, we see that
3D quasicondensates can be obtained by transforming the
presently achieved BEC’s to more elongated geometries
corresponding to vr�vz * 50.

One can distinguish between quasicondensates and true
BEC’s in various types of experiments. By using the Bragg
spectroscopy method developed at MIT one can measure
the momentum distribution of particles in the trapped gas
and extract the coherence length lf [3]. The use of two
(axially) counterpropagating laser beams to absorb a pho-
ton from one beam and emit it into the other one, re-
sults in axial momentum transfer to the atoms which have
momenta at Doppler shifted resonance with the beams.
These atoms form a small cloud which will axially sepa-
rate from the rest of the sample provided the mean free
path greatly exceeds the axial size L. The latter condi-
tion can be assured by applying the Bragg excitation af-
ter abruptly switching off the radial confinement of the
trap. The axial momentum distribution is then conserved
if the dynamic evolution of the cloud does not induce axial
velocities. According to the scaling approach [19], this
is the case for the axial frequency decreasing as vz�t� �
vz�0� �1 1 v2

rt2�21�2.
In “juggling” experiments described in [7] and similar

to those at NIST and Munich [4,5], one can directly mea-
sure the single-particle correlation function. The latter is
050404-3
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FIG. 3. The ratios Tc�Tf � d2
c and m�Tf in (a) and the tem-

perature Tf in (b), versus the aspect ratio vr�vz for trapped
Rb condensates with N � 105 and vr � 500 Hz.

obtained by repeatedly ejecting small clouds of atoms from
the parts z and z 0 of the sample and averaging the pattern
of interference between them in the detection region over
a large set of measurements. As follows from Eqs. (6) and
(7), for z0 � 2z the correlation function depends on tem-
perature as exp�2d

2
L�T�f�z�L��2�, where f�z�L� is given

in Fig. 1.
The phase fluctuations are very sensitive to temperature.

From Fig. 3 we see that one can have Tf�Tc , 0.1, and
the phase fluctuations are still significant at T , m, where
only a tiny indiscernible thermal cloud is present.

This suggests a principle for thermometry of 3D Bose-
condensed gases with indiscernible thermal clouds. If the
sample is not an elongated quasicondensate by itself, it is
first transformed to this state by adiabatically increasing
the aspect ratio vr�vz . This does not change the ratio
T�Tc as long as the condensate remains in the 3D TF
regime. Second, the phase coherence length lf or the
single-particle correlation function are measured. These
quantities depend on temperature if the latter is of the order
of Tf or larger. One thus can measure the ratio T�Tc for
050404-4
the initial cloud, which is as small as the ratio Tf�Tc for
the elongated cloud.

We believe that the studies of phase coherence in elon-
gated condensates will reveal many new interesting phe-
nomena. The measurement of phase correlators will allow
one to study the evolution of phase coherence in the course
of the formation of a condensate out of a nonequilibrium
thermal cloud.
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Note added.—When completing the paper we were
informed that 3D quasicondensates were observed in
Hannover [20].
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