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Student seminar theoretical physics 2001/02

1 Conventions

The following conventions will be used:

~h=c=kg=1. 1GeV1=1.9733 x 107 cm = 6.5822 x 10~2 sec.
1 GeV = 1.1606 x 103 K.

- Minkowski metric

Ty = M, T =M = N33 = —Noo = 1, (1)
2 = —xy, xp,=2 k=123, (2)
2 = x,xt, (3)
0
On = Gur @)
- Electrodynamics
1
FMV = 8MAV - auA;u Ey = FOka By = 5 Extm Fim- (5)
- Geometrodynamics (as in Misner, Thorne & Wheeler)
ds* = gudatda, (6
Guwg™" = 0op, (7
VH = gm/vyv Vi = g“l/vm gﬂy = gzx‘u = 557 (8
(o3 1 (0%
%, = B} 9" (0ugps + 959pu — Opgpp), (9

D,uva = auva + Faﬁuvﬁu DHWCV = 8HW0‘ - Wﬁrﬁaﬂ’

o = O0ul%, +T° 175, — (nev), 11
RBV = Raﬁaw
R = ¢"R,, 13

~~ A~ —~ —~
[a—y [a—y
N} ]

S N T T e N N N

—_
N

g = detg, ¢=matrix (gu.).

The definition of the covariant derivative D, in terms of the connection I'%;,
appears to be the same for everyone, hence also the relation between the con-
nection and the metric g,,. Weinberg has the same sign of metric, but opposite
sign of Riemann tensor R, , hence also opposite sign of Ricci tensor R, and
scalar curvature R; he defines g as minus the determinant of the metric. Kolb &
Turner and also Peacock have the opposite sign of metric. We shall denote (with
Garcia-Bellido) the scale factor by a(t) (Weinberg, Kolb & Turner and Peacock
use R(t), Peacock defines a(t) = R(t)/R(to)).
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- Our Dirac matrices satisfy {7#,7"} = 29, v9 = —4°, v} = —0, =,
s = iy01y2y3 = W;r, B =iy, ap = —°y*. Furthermore, ¢y = 93 and
the charge-conjugation matrix C' has the properties C' = -7, C_T =C 1
vE = —C'y,C. The charge conjugates of ¢ and ¢ are ) = (¥C)T and

9 = ~(Cty)".



2 Special Relativity, Electrodynamics

The action for the electromagnetic field A,(z) coupled to a current j#(x) is given
by

1 .
S, = /d4:c <_Z F,, B +3“AH) , (15)
where the integration is over some compact region in spacetime. The action for
a system of point particles with masses m,, a = 1,2, -- -, following trajectories

zk(t), is given by

/ d

If the particles have electric charges q,, their electromagnetic current is given by
74(2) = Y aa [ dt 2(2) 8" (2 - za(t)). (17)

N.B. here ¢ is a dummy integration variable, t # 2°. The electrodynamic action
of the coupled particle-field system is given by

S =S4+ S, (18)

with the above expression for the current (17).

Consider variations 04, and 6z%, which vanish at the boundary of the in-
tegration region in the expression for the action. The variation of the action,
08 = S[A+0A,z+6z] — S[A, 2] to first order in §A,, and §z¥, can be written in
the form

58 = / 'z C* ()5 A, () + 3 / dt Cop(£)021() + O(3A42,52%),  (19)

where partial integration has been used to remove differentiations of dA and
0z. By definition, the coefficients C' are the functional derivatives of S, usually

denoted as 05/dA,(x) = C*(x) and 65/0zL(t) = Cyp(t).!

a. Verify
0S
— pv v
S O F" + 3%, (20)
5S d [ y
@ = —maﬁ ( _Z(%) +qaZaFw/. (21)

Setting these to zero gives the electrodynamic equations of motion.

!The variation of a function f(z) of one variable z is simply df(z) = (df(z)/dz)dz. The
variation of a function of many variables z;, is  f(2) = >, (0f(2)/0z1)dz,. In case of continuous
labels, e.g. k =1,2,--- —> t € (—00,00), we get a functional f[z], and the variational derivative
is the generalization of the partial derivative, & f[z] = [ dt (6f[z]/d2(t))d=(t).
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b. Express the particle equations of motion (after calculating §5/dz%(t)) in
terms of the propertimes defined by

ATy =\ —ZhZq, dL, (22)

and the four-velocities

s Azt
wh = e = T (23)
NEE
Note that u? = —1 and that the four-momentum of a particle is defined as
AP
P =m—, (24)
dr

with the property p? = —m?.

c. Express S in terms of the propertimes and verify that it is Lorentz invariant:
S[A', 2] = S[A, 2], (25)

where Aj, and zl' are the Lorentz transforms of A, and 2%,

at o= rar, 2 =22 detl =1, (26)
AL(.T’) = (/A (x) (or A (r)= €M”Al,(€’1x)), (27)
i (t) = 0z (). (28)

3 General Relativity, Geometrodynamics

The action for the gravitational field coupled to a set of point particles with

masses Mg, o = 1,2, - -, following trajectories z#(t), is given by
S = S;+ Sm, (29)
1
— [d'%v=g——(R—2A
S, = [dov=gg=(R-24), (30)

d
S = ~Yoma [ty gudzn, #=Ta A=t ()

Here G is Newton’s constant and A is the cosmological constant.

a. Consider variations dg,, , which are zero on the boundary of the integration
region in the expression for the action. The energy-momentum tensor is
defined by

0Sm

gMV(x).

T (z) = (32)

Q
(%)



Verify that

T () = —

me | dt 8z — 2z, (t o
v —9() za: / ( ) —25(t)2an(t)

b. Express T in terms of the propertimes 7,, related to ¢ by

dzb dzt,
dTa = dt\/_g,ul/(z(t»% dt .

Recall that the fourmomentum of a particle is given by

Verify that

T (x) =

Pl = Mo Ul

dr §*(x — 2o (T M
—= 3 [ drtta ) B

Now verify the following result

167G 6S
vV —9 5g,ulx<x>

in steps (cf. Weinberg):

cl.

c2.

c3.

c4.

1
= —R" + 5 g™ R~ Ag™ + 8nGT™,

1
5\/__ = 5 \/__gg;w(ggw/

(hint: recall Cramer’s formula for the inverse of a matrix, i.e.

ak 11 _«

g = §§€ ﬁ’yég@huugﬁ)\gwﬂg&” and 60{6759 = emAuygangﬁ)\g’yugéu);

(hint: use gg—' = 1);

39" = —g"* 9" 0gap

1

0%, = 5 9" (Dudgps + Dpdgp, — Dypdgpu),

which implies that 0, is a tensor;

Palatini’s identity;

2

R, = Dadl%, — D,0T% ;.

Y

(34)

(37)

(39)

(40)

(41)



ch.
Dugaﬁ = O, (42)

the metric tensor is covariantly constant;

c6.
1 1 T | .
Paau = 9 gaﬁaugaﬁ (: ) Trg 18#9 = §8MT1" In 9)§ (43)

c7. the covariant divergence: for any vector field V#,

1

D, VH =
: —g

Ou(V=gV*); (44)

2

¢8. putting things together,
V=99"0Rs, = 0a(v/=99701%,) — 0,(V=99"0T%5);  (45)

c9. finally,

_ 1 4 - — — v
08, = = / d*z [(R — 2A)6v/=g + /=g Ruwdg
+ surface terms], (46)

where the surface terms are zero, gives (37).

Setting the left hand side of (37) to zero we get the Einstein equations.

d. By varying the action as a functional of z#, find the equation of motion for
particle a.

e. Express this equation in terms of the propertime 7,. The result is the
geodesic equation (see e.g. Weinberg Sect. 3.3):
d?zt

dr,,

) o
dzf dzg _

+ T 5 (2a) (47)

4 General coordinate invariance

The gravitational action is invariant (a scalar) under general coordinate trans-
formations which reduce to the identity at the boundary of the spacetime in-
tegration. For the action (29) this means Slg’,2'] = Slg, 2], where g, and 2
are the transformed metric and particle trajectories. Under a general coordinate
transformation 2/* = f#(z) the metric transforms as

N Oz% 02
ule!) = 2 0 @) (13

bt



Consider an infinitesimal transformation
o = ot + e (z), (49)
with infinitesimal e#(z). Its effect on the metric may be interpreted as a variation,
09y (%) = G (%) = Gy (), (50)

i.e.
59W - _aueagow - aueag;wz - eaaaguu' (51)

The action S, is invariant under such variations of g,,, .5,/d€e* = 0.

a. Use the invariance of S, for arbitrary e*(x) to show that
1
Du(R" = 5 "R+ Ag") = 0. (52)

For A = 0 these equations are known as the contracted Bianchi identi-
ties. From the Einstein equations now also follows the covariant energy-
momentum conservation law, D, T" = 0.

5 Friedmann-Lemaitre-Robertson-Walker Met-
ric

The Robertson-Walker metric is given by (2°, 2!, 22, 23) = (t,7,0, ¢),

d 2
ds? = gudada” = —dt* +a*(t) |- Tk o r2(d6® +sin20de?) |, (53)
— kr
where a(t) is the scale factor and k = —1, 0 or 1, for a universe that has negative,

zero or positive spatial curvature, respectively.

The spatial part of the metric, g,,,, describes a homogeneous and isotropic
space of constant scalar curvature °R, the sign of °R is equal to k. We shall get
a feeling for this in the following exercises.

a. For k = 0 we have flat space R3.

b. The three-sphere S? can be defined as the collection of points in R* satis-
fying X7 + X3 + X7 + X? = a?; a is called its radius. This space can be
described by intrinsic coordinates (x, 6, ¢) such that

X1 = asinyxsinfcos¢, X, = asin ysinfsin g,
X3 = asinycosf, X,=acosy. (54)

Obtain the metric of this three-sphere in terms of (x, 6, ¢) and specify the
domain of the coordinates (x, 0, ¢).
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Another coordinate system is (7,6, ¢) such that r = sin y. Verify that this
corresponds to the spatial part of the RW metric for £ = 1 and give the
domain of 7.

c. The hyperbolic space H? can be defined by X? + X2 + X2 — X7 = —a®.
We get the corresponding metric from the S metric by the substitution
X — iX, @ — —id.

Give the metric, the domain of coordinates and verify that it corresponds
to RW with £ = —1.

d. Let V(1) be the volume within geodesic distance [ from the origin. There is
a general formula for V' (I) in d-dimensional space with euclidean signature,
for small [:

V() = o 1401 — R >4+ 0% (55)
CD(d/2+1) 6(d +2) ’

where 9R is the scalar curvature at the origin and I' is the usual factorial
function.
Use this formula to calculate R for the spatial RW metric.
It can be shown (see e.g. Weinberg) that the spatial Riemann tensor is given
by

3 k

Rbcmn = ?(gbmgcn - gbngcm)- (56)
This can be verified by (cumbersome) direct calculation. The tensor struc-

ture of this relation is a consequence of the isotropy and homogeneity of
the RW spaces. Given (56), °R,,, and R follow by contraction with g™".

Verify that this gives the same ®R as found from (55).
e. Derive the red shift relation 1 + z = A\g/A1 = ap/a; (Ao < detection,
A1 <> emmision, cf. Kolb and Turner sect. 2.3, Weinberg sect. 14.3).

Derive Hubble’s law
1
HodL:Z+§(1—qO)ZQ+"', (57)

where dj, = agri(1 + 2) is the luminosity distance, H = a/a (a = da/dt) is
the Hubble rate and ¢ = —(d/a)(a/a) the deceleration (cf. Kolb and Turner
sect. 2.3, Weinberg sect. 14.4). The subscript 0 indicates the current epoch,
i.e. ag is the scale factor ‘now’.

The Einstein equations for the RW metric can be obtained by going through the
following steps.



f. Verify that the non-zero components of the connection I'"y , involving at
least one time-like index are given by

a

Folm = Eglmv (58)
a

Mo = —4f (59)

g. Verify that the non-zero components of the Ricci tensor R, and the scalar
curvature R are given by

i
Ry = —-3- 60
00 aa ( )
2¢2 4 2k
Rmn = 5 - S mn; 61
( ot a2> g (61)
i a? k
= 6+ ). 2
R 6(a+a2+a2> (62)

h. Write down the Einstein equations for the RW metric, separately for (u, v) =
(0,0), (0,n) and (m,n).

i. In section 3 we derived the geodesic equation of motion (47) for massive

particles,
du# dzt
=L I, (ufu” =0, u= d—ZT

dr
Specialize to the RW form of the metric and show that |u| defined by
lu| = /g;;uiu? is proportional to 1/a. (Hint: use the p = 0 equation,
guwuru” = —1 and u® = dt/dr.) Tt follows that the magnitude of the three

momentum of a freely propagating particle ‘red shifts’ as a™! (see Kolb and
Turner sect. 2.2).

(63)

6 Friedmann and Einstein equations

The energy-momentum tensor of an ideal fluid is characterized by a local four-
velocity field u#(x), energy density p(z) and pressure p(x). The general form of
TH is then a linear combination of u*u” and g"”,

™ = (p+ p)u''u” + pg"". (64)

Examining this expression in a comoving (u*(x) = §f), local Lorentz (¢ = n*")
frame shows that p is indeed the energy density and p the pressure: T = p,
T™ = P



a. Show that for the RW metric D,T"" = 0 is equivalent to
o (pa®) = —pdo(a®) (65)

which is analogous to the first law of equilibrium thermodynamics. As an
intermediate step one may derive eq. (5.4.3) in Weinberg:

1

D, T = \/_—gﬁu[\/ —g(p + p)uru’] + g Oup + TV 5 (p + p)uru®. (66)

b. Show that the Einstein equations reduce to

a? k
3? + 3¥ — A = 8nGp, (67)
a  a® k

The first is called the Friedmann equation. The cosmological constant can
be absorbed in p and p via p — p+ A/87G, p — p — A/87G.

Verify that these equations are consistent with (65).

c. Find an expression for the expansion age of a matter dominated universe in
terms of Qyg < 1 and Hy. Do the same for a flat universe Qg = Qnog+Qa0 =
1 (cf. eq. (3.63) in Peacock, and/or egs. (57) and (58) in Garcia-Bellido).

7 Equilibrium Thermodynamics and Particle Dis-
tribution Functions

The cosmological energy-momentum tensor can be modeled as an ideal fluid
corresponding to particles in local equilibrium. In a first approximation the
equilibrium properties are evaluated within special relativity. In Minkowsky
space the particles of a given species are described by a distribution function
f(z,p), such that ,
d’p
9f(z,p) ok (69)

is the average density (number of particles per unit volume) of particles with
momentum in d®p around p at x and time z°; here g represents the internal
degrees of freedom of the particle. For example, g = 2 for the photon, which has
two independent spin states.

The density of the particles is given by

lw) =g | 35 1) (70)
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The energy density is

) =g [ ot S pER). Bp) = pr e =i (7

with m the mass of the particles.
To find the expression for the full energy-momentum tensor, we consider its
expression for a system of point particles found earlier in sect. 3,

S [ dt =0 (8) 8 - i) P

where pt = myzt/\/—2 20 = madz!/dT,, 22 = t. Note that the dummy ¢ is

«

T (x) =

—g(z)

not equal to z°. Specializing to the Minkowsky spacetime and particles of one
species, this can be written in the form

) = g [ 5 ) (73)
9f(e.p) = Y 0x—2(a) (215D — pa(a’). (74)

a. Show that (73,74) is compatible with (72). From this example we conclude
that in the Minkowsky case the correct expression for 7#”(x) in terms of a
general f(z,p) is given by

v d’p p'p”
() =g [ G R) s (75)
c. Show that the pressure can be written as
d3p p2
p() =9 [ G P (76)

Let the equilibrium distribution function be given by

f(p) = lexp(E(p) — p)/T) F1] 7, (77)

where p is the chemical potential and the upper sign is for bosons, which obey
Bose-Einstein (BE) statistics, the lower sign for fermions, which obey Fermi-Dirac
(FD) statistics.

d. Show that for 7' < m (nonrelativistic limit),

TN 32
o= g(5) el —w/T) (78)
p = nm, (79)
p = nT < p. (80)

10



. Show that for 7' > m (relativistic limit),

00 2
n = iT?’/ dx%i, [LEH, (81)
T
_ 4
= = 83
P =3 S (83)
. By expanding the denominators in exp(—x), show that
/ dr —~ = nl¢(n+1), (84)
0 e? —1
e} xn
d = nl(1-27" 1 5
| et = (-2 ), (85)
where ((n) is the Riemann zeta function,
> 1
(=Y o (56)
k=1
We have ¢(2) = 72/6, ((3) = 1.202..., ¢(4) = 7*/90.
. Show that for T' > m, u,
¢(3)
no= 5 ¢T3, BE, (87)
3¢B3) s
= - FD 88
12 9T : (88)
_ T 1t BE (89)
p - 30 g ) )
Tt
= —— FD. 90
s3097 (90)
. Show that for degenerate relativistic fermions (7" > m, u > T,
1
= 91
n 62 g, (91)
1 4
= — qu*. 92
p gz IH (92)
i. For fermions, let + denote particles and — antiparticles. Assume p, =
—pt—. Show that
1 Y
n,—n_ = @gT (WT*Fﬁ , T'>m, (93)
mT\*? 7 m
= 29 <§) sinh (T) exp <—T) . T'<m, (94)
where p = p,.
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j. Assume a radiation dominated universe, writing

7.(.2

p=3p= 30 g*T4, (95)

where g, is an effective number of degrees of freedom,

gx = Z 9i (%)

i=bosons

4 jvl 4

+g > g,(T) . (96)

i=fermions

Verify that the Einstein equations determine the Hubble rate and cosmic
time as

T2
H = 0.3319g, —, (97)
mp

1.51
= 0 (98)
N

where mp = (87G)~'/2 = 2.436 x 10'® GeV is the Planck mass. (N.B.
Another definition commonly used is mp = G712 = 1.221 x 10" GeV).
Note that a o t1/2.

12



8 Quantum fields

This section contains an introduction to quantum field theory. We start with the
scalar field.

8.1 Quantized scalar field

We start in a general geometry described by a metric g,,. A typical action for a
scalar field ¢ is given by

s = — [dev=g [0 000.0 + V()] (99)
V(6) = grod + M6 e (100)

The role of the parameters kg, Ao and €g will become clear in the following. The
action is dimensionless (in 7 = ¢ = 1 units), so the dimension of ¢, kg, A\g and €
is -1, -2, 0 and -4, in length units, respectively, or equivalently in mass units: 1,
2, 0 and 4.

a. Verify this. Note that ¢, (more precisely 87Gep) is a contribution to the
cosmological constant.

The energy-momentum tensor for the field is given by

2 S
V_gég,ul/

™

= 606 — g 1 D070+ V(0)] (101)

b. Verify this.

We now specialize to Minkowski space, with metric ),,. The action can be written
as (20 =1t)

S = /dt L, L= /d%; E & —V(p) — %amam , (102)

where the dot denotes 0/0t. This looks like a sum of systems, one for each
x, which are coupled by the spatial gradient term. The canonical momentum
conjugate to ¢ is given by

m(z,t) = 52([;3) = d(z, 1), (103)

and the hamiltonian
H = /d% w6 — L, (104)
= [ [% 4 V(6) + %amak(p . (105)
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c. Verify that the total energy and total momentum in the field is given by
P = / BT = M, (106)

Pt o= / BT = — / &P 700, (107)

We now quantize the theory by replacing ¢ and 7 by operators ¢ and 7 in
Hilbert space such that the basic Poisson brackets correspond to commutators,
say at t = 0,

[p(x),m(y)] = i0°(x =), [p(x), 0(y)] = [7(x), 7(y)] = 0. (108)

These are called the canonical commutation relations. In the Heisenberg picture
(where the operators are time dependent) they are supposed to hold at equal
times. The above relations are a straightforward generalization of the case of
discretely many variables. One realization of the commutation relations is the
coordinate representation:

5
idp(x)’

¢(x) — multiplication by p(x), 7(x) (109)
acting on Schrodinger wave functionals ¥[p]. This realization is basic to the
path integral approach. We shall follow another approach which is geared to the
particle interpretation of the quantized field.

It turns out, after quantization, that the parameters in the action are not the
parameters used for parametrizing physical quantities, such as scattering cross
sections or even the classical field equations in a classical approximation to the
quantum theory. This is the reason why the starting parameters in the quantum
theory have the subscript 0: €, kg, Ag- They are called the bare parameters. The
physically more relevant quantities are then denoted by €, k and A, and are called

the renormalized (or dressed) parameters. In perturbation theory (expansion in
A) one finds

M =A+00N?), Ke=r+0()\), e=c+0(1). (110)

A related aspect has to do with the fact that fields represent an infinite number of
degrees of freedom, which easily leads to divergent integrals in perturbation the-
ory. It turns out that such divergencies can be absorbed in the bare parameters,
such that the renormalized ones come out finite. We shall see in the following
how this works in specific examples.

8.2 Free field

For \g = 0 the hamiltonian is quadratic in the canonical variables. This is called
the free theory, because it is equivalent to a collection of harmonic oscillators,

14



as will now be shown by going over to ‘momentum space’. To simplify the pre-
sentation we first assume only one spatial dimension. Afterwards, we can easily
generalize back to three spatial dimensions. We furthermore assume space to be
a circle with circumference L, i.e. 0 < z < L with periodic boundary conditions
at 0, L and [dx = fOL dx. We expand the fields at time ¢ = 0 in Fourier modes,

ipT A~

o (111)

T

1 1
p(x) = ﬁge p; W(x):ﬁzpje

1 L , 1 L ‘
Gp = ﬁ/o dx e "P* p(x), ﬁp:ﬁ/o dx e """ m(x), (112)

where p = 2nn/L, n = 0,+1,£2,---. The modes are eigenfunctions of the
gradient operator 0/0z with periodic boundary conditions. Since the fields are
hermitian, ¢'(z) = ¢(z), the Fourier components satisfy the relations

B =0¢_p T =T, (113)
The hamiltonian and the momentum operator are diagonal in this representation:
1 ~1 =~ ~1 ~
H = 3 5@+ 0"+ r)Ea] + al, (114)
P
P = =3 &lGyip. (115)
P

Notice that we have replaced € by €, in accordance with (110). Furthermore,
for free fields kg = k. The hamiltonian looks like that of a sum of harmonic
oscillators with frequencies

wy, =\/p2+m? m’=k, (116)

where we have chosen k > (0. As in the case of the harmonic oscillator, it is very
useful to introduce creation and annihilation operators, a;f) and a,, one for each
mode:

1 ~ N 1 - .~
ap = o (wWpPp + i7p), a;r) - V2w, (©pPp = i) (1)
D p
) 1 " 1
b= (ap+aly), 7= o (—iwpay, +iwpal y), (118)

where we used (113). The creation and annihilation operators satisfy the com-
mutation relations

[ap,aj;] = Opgs  [ap,ag) = [%Twag] = 0. (119)
The hamiltonian and the momentum operator can now be written in the form
1 1
H = Z a(a;ap + apa;)wp +eL = Z(a;ap + Q)wp + e, (120)
p P
P = Za;app. (121)
p
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We see that the hamiltonian is just that of a sum of independent harmonic oscil-
lators. The simultaneous eigenstates of H and P are obtained from the ground
state |0) satisfying

ap|0) =0,  (0[0) =1, (122)
by application of the creation operators,
(af)"
{np}) = 1 —=10), (123)
p np.
with the occupation numbers n, = 0,1, ---. All eigenstates are normalized to 1.
The eigenvalues are given by
1
H{ny}) = (Eo+ 2 mwp)l{np}),  Eo=el+3 5wy, (124)
p p

Pi{n,}) = (Q_mp){m}). (125)

Consider now the ground state energy density:

Ey 1 1
€ = f :60—'—5;5&)1; (126)
dp 1 2
— eo—i—/ 55 m, L — oc. (127)
The integral in the last line is the limit of a Riemann sum:

1 1 dp 27
—» Flp)=—)> ApF F Ap = —. 128
L; (p) %; pFp) = [ 5 Fp), Ap=7 (128)

The ground state energy as written is infinite, because the integral diverges at
large p. The reason is that we are dealing with an infinite number of degrees of
freedom. However, we can absorb this infinity in €y, such that € is finite. We
come back to this shortly.

We now generalize to three spatial dimensions. Let us choose €, such that
€ = 0. Then we can summarize as follows:

e'Px e Px
p(x) = g _ap\/ﬁ +GLW , (129)
B I . iPX » . o—iPX
T(x) = zp: _—zwpap \/ﬁ + iwpay, \/ﬁ (130)
[apvag] = Opqr [0p;Qq] = [ainag] =0, (131)
Pro= > alapp’, P =H, p’=w,=\p*+m? (132
P
Pr0)y = 0, Pt[p)=p"lp), Ip)=all0)=]1p), (133)
Pllpipa) = (P +pb)lpip2),  [pip2) = af,af,[0), (134)
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etc. In (133) we used the convention that only non-zero occupation numbers are
shown in the ket.

The interpretation of the scalar field model in terms of a collection of free
particles is very suggestive. The ground state |0) is interpreted as representing
the vacuum. The one particle state |p) is the state with n, = 1 and all other
nqg = 0, q # p. The mass of the particles is m = \/k. Their spin is zero since
their is no further index besides p to indicate a spin degree of freedom. More
formally, it can be shown that a particle state at rest (p = 0) is invariant under
rotations, so its total angular momentum is identically zero and the particles are
spinless.

The two particle state? |p;p2) is symmetric in the interchange of the labels
p1 and po: the particles are bosons.

8.3 Renormalization of the cosmological constant

We now return to the energy density in the groundstate, e. It is the vacuum
expectation value of T%. Calculating the expectation value of the full energy-
momentum tensor gives in the infinite volume limit

(0T (2)|0) = —eon™ + / dw, pp", (135)
where we introduced the notation

dwy, = —— (136)

Apart from conveniently absorbing numerical factors, this volume element of
integration has the important property that it is Lorentz invariant (cf. Problem
1.1):

dwg, = dw,. (137)

It follows that the integral should be an invariant tensor under Lorentz transfor-
mations, hence proportional to n#:

O[T ()]0) = —en™”. (138)

We can now interpret € as the true contribution to the cosmological constant,
while ¢ is just a parameter in the action. In standard jargon, 87Ge is the
renormalized (or dressed) cosmological constant, and 8wGe the bare cosmological
constant.

However, the integral (135) is badly divergent at large momenta. To make
sense of it we should regularize it. Even better, we can start with a regularized
formulation of the theory such that at every stage we have well defined expres-
sions. This can be done, e.g. by replacing the spacetime continuum by a lattice,

2This state can also be written as |1p, 1p,), or v'2|2p) if p1 = p2 = p.
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but it is cumbersome and we have learned that in many cases it is sufficient to
deal with the problem ‘on the fly’, by regulating divergent integrals in a consistent
manner. We could simply cut off the momentum integration at |p| = A

47 A
(O[T™[0) = eo+ﬁ/ dpr\/pZerQ, (139)
OIT10) = —eodui + 5> ~3 / dpp' s (140)
P +m

The problem with this is that it is not consistent with Lorentz invariance: we
are treating space and time differently and (0|7%”]0) will not be proportional to
n* this way. There are Lorentz covariant regularizations, for example dimen-
sional regularization or Pauli-Villars regularization. The latter is simplest here
to present and is as follows. Define (0|7*|0) as

(0|T"|0) = _eonuu_'_/ d3p 1261']%’ (141)

where the coefficients ¢; and the masses m; are chosen such that the integral
converges, whith ¢; = 1 and m; = m. This regularization is Lorentz invariant
because the ¢; and m; are invariant. The masses m;, ¢ > 1 are sent to infinity
after calculating the integral. Then the result diverges again but we cancel this
by a suitable choice of 5. We shall not go further into details here.

Having set the vacuum energy density equal to zero we can now ask meaningful
questions about the energy of the ground state in a finite volume. A famous
example is the Casimir effect. This was originally discovered in QED but it
applies also to our scalar field mutatus mutandis (two free massless scalar fields
to represent the two spin states of the photon, Dirichlet boundary conditions).
However, let us use the language of QED anyway as it is more intuitive. Consider
two parallel plates of a conductor a distance a apart, with a much smaller than
the linear size L of the plates. The presence of the plates is taken into account by
imposing boundary conditions corresponding to a perfect conductor. This shifts
the ground state energy inside and outside the plates relative to the vacuum, and
the result is (see e.g. Itzykson and Zuber sect. 3-2-4, Van Baal sect. 2)

—hn?L?

It corresponds to a tiny attractive force which has been verified by experiment.

8.4 Simple scattering

When the action is of higher than second order in the fields the theory is said to
be interacting, because there is then no Fourier or other representation in which
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the harmonic oscillators are uncoupled. In our scalar field model the higher
order term is the anharmonic ¢* term in the action, the strength of which is
monitored by A, the coupling constant. Its presence changes the eigenvalues and
eigenvectors of P, and we have to recalculate the ground state and the single and
multiparticle states. A useful tool is perturbation theory, making an expansion
in powers of A\. One of the most interesting new possible effects is scattering.
Fortunately, to study scattering to lowest non-trivial order we only need to know
the particle states in zeroth order, i.e. the free states, and we shall not need to
renormalize xk and .

Consider the scattering 1 +2 — 3 4+ 4. We start with a free two-particle
state |pi1p2) at time ¢ = 0 and wish to calculate the probability amplitude for the
transition to another such state |psp4) at a later time ¢,

<p3p4|U(t, 0)|p1p2>7 U(t7 0) = e_tha (143)

where U(t,0) is the evolution operator. The hamiltonian H has the form
1
H=Hy+H, H = /d%; e (144)
with Hy the free hamiltonian of the previous sections:

Holpip2) = (E1 + Ep)|pip2), E1 = E(p1) = \/pT +m?, (145)

etc. For non-trivial scattering the final state is different from the initial state and
the result would then be zero if H; were zero. Hence the scattering amplitude
is at least of order H; (order \). We want to expand the evolution operator in
powers of Hy. It is wrong to simply expand the exponential because H; and Hy
do not commute. This is a standard problem in time dependent perturbation
theory, which we will solve here by introducing

V(t) = ¢iffot g=iot=itht (146)
differentiating this with respect to t,
i0,V (t) = e'Hot [ e~ tHot=itat — pillot [y o=ithot 1 (12 (147)
and integrating this, which after multuplication by exp(—iHyt) gives the result
pilHo+H1)t _ ,—iHot _ ;,~iHot /t dt! e Hot’ 1, e=iHot' O(H?). (148)
0

It follows that

» 1— 6iAEt
(psps4|U(t,0)|p1p2) = € (Bs+Ea)t T<P3P4|H1|P1P2>7 (149)
AE = Ey+E,— B — B, (150)
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and

_ 2—2cos(AEt)
- (AEp

We now turn to the matrix element of H;. Using

[(Psp4|U(t, 0)|p1p2)|” |{Pspa| Hi[P1p2) *. (151)

e—tax

qu
,/2E ,/ q)L3 )

and using the fact that only terms contribute which do not change the number of
particles (i.e. same number of annihilation and creation operators), we get terms
of the form

(152)

<p3p4|aq$ Q4GQ1 CLQQ‘plp2> = (5011 P15q2 P2 + 5Q1 p25QQ p1)<p3p4|Q3q4> (153)
— 20q,,p; Oqq,p, (P3P4|A394)
= 5011 p15q2 P2 (5q3,p35q4,p4 + 501371c>4501471c>:>,)
1)

—  40q;,p19q5.p20q3,p3 0. pa> (154)

where the arrows indicate equivalence under relabeling of the dummy qs which
are to be summed over. (In (153) we worked the aqs to the right using the
commutation relations until we got aq|0) = 0.) There are five more such con-
tributions, differering in the order of the operators (aa'a'a, ..., aaa’a’), which
each give equivalent results (terms like dq, q, do not contribute because the initial
and final states differ). The result is then

6\ (D < 6AL3
(P3pa| H1|p1p2) = VB /d?’x@( PITPAYPITRLX Wépa-i-pz;pl-i-pg-
(155)
This gives for the probability
(6A)2LS 2 —2cos(AFEt)
|<p3p4|U(t, O)|p1p2> |2 = 112 IL 2F. (AE)Q 5p3+p47p1+p2' (156)
We are interested in scattering into a domain A of final momenta,
Z |(p3p4|U (%, 0)|131132>|2 (157)
(p3,p4)EA
L 2 — 2cos(AEt
TlEQ/ dws dw, (AE()Q ) (27)353<P3 +Ps—DP1 — P2)7(158)
d*p;

where the arrow indicates the infinite volume limit (128), which also implies
L*6pq — (27)°6°(p — ). (160)
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For large times ¢ (on the scale of the typical inverse energies E~1) we have the
identity
2 — 2cos(AEt)

=t216(AE 1/t). 161
S rO(AE) + O(1/1) (161)
This can be shown by integration with a test function F'(FE):
—2cos 2
/ dE F(E Efos Lo t/ duF< ) cosu (162)

- [ / du 2 205U 2008“ Lot ?)] (163)
— {F(0) 27 + O(t ), (164)

where we used F(u/t) = F(0) + F'(0)u/t + O(t72); the F'(0) term drops out by
symmetry.
Summarizing, we have the following result for the probability rate:

0
(P3 p4)EA
= 4E1E2 / dCL)g du)4 (271')45 (pg + P4 — P1 — p2> (6)\) (166)

The probablity rate implies an event rate, which is expected to be proportional to
the overlap of particle densities [ d®z n;ny. The results of scattering experiments
are expressed in terms of the cross section on. In a reference frame where the
initial particle momenta are aligned it is defined by

[X = oAV /dgx nina, (167)

with
V12 = |p1/E1 - P2/E2| (168)

the relative velocity. Realizing that TX®™ = T's if we normalize to unit initial
particle number, [d®zn;, = 1, and that the density of our initial particles is
ni2 = 1/L3 we have the result

oA =

m/ dws dwy (270)*5*(ps + ps — p1 — p2) M2 (169)

where M (called the invariant scattering amplitude) is in this case given by
|IM[* = (6X)°. (170)

The prefactor can be expressed as a Lorentz scalar,

EyEyvig = \/(]?1172)2 — mim3, (171)
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and we see that if the integration domain A is invariantly specified, the cross
section is a Lorentz scalar. For example, integrating over all momenta gives the
total cross section (cf. Problem 3)

1
327s

o= (6M)?2, 5= —(p1 +p2)?, (172)

where the Lorentz invariant s is equal to the total energy squared in the center
of mass frame. In a more detailed specification of A we can fix the invariant
momentum transfer ¢. The corresponding cross section is conventially written

do/dt (ct. Problem 3):

do 1
dt — 167s(s — 4m?)

(6X)?,  t=—(p1—ps)*. (173)

In the center of mass frame defined by p; +p2 = 0, we have t = —2|p;|*(1—cos §),
with 6 the scattering angle, the angle between p; and ps, and |p;|* = (s—4m?)/4.
So we see that the differential cross section

[g_g] . 6471r25 (63)° (174)

is isotropic. This is special to the ¢* theory, later we will encounter more inter-
esting differential cross sections.

The above derivation of the scattering amplitude has the benefit that it is
short. In higher orders it gets complicated because it lacks manifest Lorentz
covariance. Only the end results are covariant or invariant. Later we will de-
velop more sophisticated calculational techniques which are manifestly covariant.
Conceptually the above derivation can be improved by considering wave packet
states which are localized in space (unlike the plane wave states used here which
correspond to uniform density).

8.5 Decay

Apart from leading to scattering, interactions may cause particles to be unstable,
transforming them into two or more particles of a different species. For example,
neutral pions are unstable and decay predominantly into two photons, 7 — -+,
with a mean life time 7 = 8.8 x 107!7 sec. The mean life time is the inverse of
the decay rate I'.

The possibility of decay can be illustrated by the following simple model
involving only spinless particles. The model is specified by the action

1 1 A
/d4 ( XM X + 2M2X2 + 6 PO o + §m2g02 + Zg04 + gg02x> ,
(175)
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« 77

which describes two types of particles and “p”, with masses M and m,
respectively. There are two interaction terms,

1 1
Hiy = /dgx <§g¢2x + Z)mp4> , (176)

with strengths parametrized by the coupling constants g and A (g has dimension
of mass). Apart from new types of scattering, the gp?x term also allows for
transitions x < ¢ + .

Suppose at time zero the initial state contains only one y-particle with four-
momentum p. The probability at a later time ¢ for the decay into two -particles
with momenta ¢, and ¢ is then |(q1(¢©)qa()|U(t,0)|p(x))|? (We use the same no-
tation as in the scattering case). Going through similar steps as in the derivation
of the rate for scattering, gives for the decay rate

r% . m ql%\ a1 (9)a ()| U (1, 0)[p(x)) (177)
- 2p02 / dwydws(27)*5(q1 + g2 — p) 6%, (178)

where we used
1

@Ralp) = G [ 2 e

<q1(90)q2(90)|aq/1(w)alﬂ(w)apf(x)\p(xﬁ (179)

1
= g— . 180
g 8q?q8p0L3 qi1+qz,p ( )

i’ —d]—aj)-x

The explicit factor 1/2 in (177) avoids double counting the two identical particles
in the final state.

This example illustrates that the transition at relatively large times on the
scale of m™!, M~! (i.e. ‘the decay’), is only possible if energy-momentum is
conserved: ¢; + g2 = p. Examining this for the case of a y-particle at rest one
finds that this leads to the condition

M > 2m. (181)

The integral in (178) is Lorentz invariant. It depends only on g%, M and m (cf.
Problem 3),
_ q 2
-~ 16mMp° g
For a moving y-particle the factor 1/p° in (178) expresses the expected time
dilatation.
The unstable particles can be produced in scattering, e.g. v(q1) + ¢(qa2) —
X(p), which is just the inverse of the decay process.

q= M? — 4m?2. (182)

N | —
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8.6 Symmetry, charge and antiparticles

Consider the theory described by two scalar fields ¢; and ¢, with action

S = —/d49€ Enwauéf)k@uﬁbk + V(y ¢k¢k)] : (183)

We use the summation convention also for indices like k: ¢r¢) = Zi:l Oror. The
above action is invariant under rotations in ‘internal space’

P) =cosa ) —sina gy, ¢y =sinad; +cosapy, S[P'] = S[¢)]. (184)
Infinitesimal rotations can be written in the form
5¢k = —leﬁbl&% €12 = —€21 = 1, €11 = €9 =0, (185)

with infinitesimal rotation angle da. To a continuous symmetry corresponds a
conserved quantity, usually called ‘charge’ (Noether’s theorem). This can be
seen as follows. Consider infinitesimal rotation angles depending on space-time:
da(z). The action is now in general not invariant anymore because o depends on
x; for an infinitesimal rotation,

58 = / d'z 49,00 = — / d'z 9,54 8. (186)

However, if the ¢y, satisfy the field equations (equations of motion), then 65 =0
and we have a local balance equation (a ‘conserved current’),

Ot =0, (187)

with a corresponding conserved charge
Q= /d%jo. (188)

a. Show that the current is given by

J* = eud" 1. dr. (189)

b. Derive the field equations from the stationary action principle.
c. Verify using the field equations that 9, j* = 0.

d. In the quantum theory ) is an operator, which can be expressed in the
creation and annihilation operators at time zero. Show that

Q= Zai,k(_iekl)apl- (190)
P
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e. Consider the free theory with A = 0. Choosing the vacuum energy to be
zero, the energy-momentum operator is given by

Pr=3" aLkapk . (191)
P

Since ( is time independent it should be possible to diagonalize @ and P°
simultaneously. This can be done as follows. Define

1

Upt = %(apl Fiap2). (192)

Show that in terms of the new creation and annihilation operators

Q = > (ahiapy —ah_ap ), (193)
p

Pt = Z(GL+ap++aL—ap—)p“- (194)
p

The interpretation is as follows: aI, + is the creation operator for particles, aI,_

is the creation operator for antiparticles. The particles have charge +1, the
antiparticles have charge —1 and () counts the number of particles minus the
number of antiparticles. Particles and antiparticles have the same mass.

8.7 Partition function, distribution function

The density matrix of a closed system in equilibrium is a function of the conserved
quantities. In field theory these are the total energy, momentum and charge(s).
For the system (183) there is only one charge and the canonical density operator
is given by
1
r=7 e PullteQ 7 — Tre PuPHe@ Ty ,p =1, (195)
with Z the grand canonical partition function. (The trace of an operator is
defined as the trace of its matrix representation in an orthonormal basis:

TrO = (i|Oli), (ilj) =di, >_|i){i] = 1 = unit operator.) (196)

The parameters 3, and « are determined by the average energy-momentum and
charge, which are given by

0 0
(P*) = Tr pP" = _a—ﬁ,u nZ, (Q)="TrpQ = P InZ. (197)

For a system at rest (P¥) =0, 8, = 0 and 3 = 3 = 1/T is the inverse tempera-
ture.
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For the free theory (A = 0) the partition function is just a product of the
independent mode contributions. The eigenmodes are characterized by p and
4+, where + denotes the particles and — the antiparticles. Let us lump these
into a collective label i1 H = ¢,L? + Zi(aiai +1/2)w; and Q = Y, agaiqi. The

eigenvalues of agai are the occupation numbers n; =0,1,2,---. Then
7 — Tre PHAaQ _ —BeolPmy o> [-Bwi/2+alai(—Pwitaq:)] (198)
o Bleol?+) 7 wi/2) Z o2 Mi(—Pwitaq;)] (199)
{ni}
— —5(60L3+Z wi/2) H Z (—=Bwitaqi)n; (200)
1
_ Bl +) ], wi/2)
= e Pl 1:[ T (201)
1
Inz = -0 (eOL?’ + Z 5%) — Z In(1 — e Awitea) (202)
or more explicitly
InZ = —[(|e€ L?’—l—Qle
0 S 2 i
— Z {ln (1 — e Prt®) £ n(1 — e_ﬁwp_“)} : (203)
—InZ d3p wp
5~ 9t G
d3
- _ —Pwpta _ —Pwp—«a
3 / B In(1 — e )+ In(1—e )], (204)
for large L.

We recognize the temperature independent vacuum energy in the first two
terms (really, the vacuum pressure — see below), which we have set to zero.
Evaluating the average energy and charge from (197) we recognize the distribution
functions:

U= =V [ SR )+ @l V=L (209
No = (@ =V [ 551 0) - o) (206)
1

f+(p) = Bp=a. (207)

eBlwpFu) — 1’

(Note the difference in sign convention for a compared to (301).) We note in
passing that the distribution function is just the average occupation number, as
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can be seen from (199)

0
(ng) = ag) InZ = f;. (208)
In realistic theories there are usually several conserved charges @) 4, and the
density matrix depends on several independent as: p = Z texp(—BH+X 4 aaQ4).
Furthermore, more than one particle species contributes to a particular () 4, and
denoting the charge of species k by qax, we get the chemical potentials in the
form

A

as (up to a sign convention) in (301).

We can now also give a heuristic derivation of the final state enhancement fac-
tors 1+ fr(p) in the collision term of the Boltzmann equation. It is a consequence
of the relations

aln) = v/nln —1),  a'ln) = vn +1n+1), (210)

which hold for any mode in the occupation number representation. Consider
again (153) generalized to arbitrary occupation numbers:

({np, Hal,al,aq,04,[{np.}) = (211)
\/nmnqz (n% + 1)(7%14 + 1) <{npf}‘{npi}lv Ngy — 17 Ngy — 177%13 + 177%14 + 1>7

where 7, f means ‘initial’, ‘final’ and the prime on {n}’ indicates that the else-
where listed ns in the ket are to be omitted. We assumed all gs to be different.
Squaring, summing over all final states and replacing the occupation numbers
by their averages according to some initial density matrix produces the factor
flar) f(az)[1+ f(as)][1 + f(qs)], with a summation over the gs coming from the
interaction hamiltonian, giving a total rate

' o /dwl dws dwy dwy fan) fae)[14+f (as)][14+f (aa)](27) 6 (g3+aa—q1—a2) (6X)*.
(212)
To get the collision term in the Boltzman equation we can restrict a momentum
integration in the initial or final state ‘by hand’.
Finally, we recall the meaning of In Z. Calculating the entropy we find

S=-Trplnp=p(U —uNg)+1InZ, (213)

a. Verify this.
or using standard thermodynamic relations
TInZ =—(U—-TS — uNg) = —QV = pV, (214)

where p is the pressure and () is the thermodynamic potential. Note that these are
usually taken to depend explicitly on the temperature 7" and chemical potential

p (not a): p=p(T', p), = QT p).
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b. In terms of densities p = U/V, s = S/V, ng = Ng/V, verity that
s=(p+p—pung)/T. (215)

c. By making a partial integration in (204), express it in the form (76).

8.8 Fermions

The relativistic field theoretic description of particles with spin is a lot more
complicated. Here we give a plausible summary for free fermions, which we
assume to have spin 1/2.

The analogue of the bosonic creation and annihilation operators are now GL,\
and ap), where A\ = =+ indicates the spin polarization (e.g. the value of the
helicity, the projection of the angular momentum along p). There may also
be a species label k. For simplicity let us lump these labels into the collective
label i = (p, A, k). For fermions the a; and al satisfy anti-commutation relations

({A, B} = AB + BA):

{a’ﬂ ]} Z]’ {a’“a]} - {CLZ, j} - O (216)

In addition the fermionic operators commute with the bosonic ones. The vacuum
is annihilated by the a;,
a;|0) =0, (217)

and the azT create the particles. These rules assure antisymmetric basis vectors
i) = ala}|0) = —|ji), (218)
and the occupation numbers are limited to 0 or 1, since
( ) {a’z) z} - O (219)

Without a bare cosmological constant the ground state energy would be negative,

1
H = €0L3 + Z a, a; + a;a )Ez = €0L3 + Z(a!ai — é)E“ (220)

% - 60_5%;/(;)3 E(p).  Ei(p) = /p? + m. (221)

Charges are usually associated (in the Standard Model) with fermions rather
than bosons and they have a similar form

Qa = Z a;'raiQAz‘a (222)
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with g4; opposite for particles and antiparticles. The partition function follows
easily by restricting the summations in (200) to n; =0, 1,

Iz $p Enp) 1 e I
TEI@‘%M& > _B§/(2w§3 In {14 ¢ PP} (223)

Evaluating (H) and (Q)4) we encounter the fermion distribution function

1
Ji(p) = ePlErP) =] 4 17

(224)

as expected.
Finally, the Pauli blocking factors in the collision term in the Boltzmann
equation follow from the analogue of (210),

aln) =nln — 1), aT|n> =(1—-n)n+1), (225)

and the subsequent effective replacement n; — f;.

8.9 Covariant normalization

We shall also use a convenient covariant normalization of particle states in the
infinite volume limit

(P'lp) = 20°(2m)°0(p = p), p° = /P +m2 (226)
This has the property (cf. (137))
/ dwy f(p) (Plp) = f (). (227)

For the argument of ket and bra we use the four-momentum p, but note that here
p° is not an independent variable. Comparing with our finite volume normaliza-

tion we have
p) = \/2p°L3|p) (228)

(recall (160)). In infinite volume we expand the free scalar field in terms of
covariant a(p) and a'(p),

x) = /dwp [a(p)eim + aT(p)e_ipx} . (229)

Comparison with the previous finite volume expansion at time zero

(230)

etPx 7sz ‘|

@(X):glmp \/WP
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shows that?

) = 2p'Liap, (231)
[a(p),a’(p)] = 2p°(27)%3(p" — p), (232)
) = al(p)lo), ete, (233)

(234)

Pr= [ dw,dl(pa)p"

8.10 Problems

1. The integration volume element

d3p
dw, = ———— 235
wp (27T)22p0 ( )
is Lorentz invariant i.e.
dwg, = dw,. (236)

Verify this for a Lorentz tranformation along the 3-axis with velocity v < 1:

P =0 o’ PP =, =gt P =t (237)
where v = 1/4/1 — v? is the relativistic dilatation factor.

. The Hilbert space for a system of arbitrarily many particles such as the free
scalar field is called Fock space. A basis is given by |0), |p), |p1p2), etc. The
states are normalized as

(plgy = 20°2n)*6(p—aq), p°=m?+p?

<p1p2|Q1(J2> = <p1\Q1><p2\Q2>+<p1|Q2><p2|Q1>7

etc. In general we get a sum over all permutations 7 of 1,---,n (the value
of n will be clear from the context),
(Pr Pmlar - Gn) = Omn D_(P1ldr1) -+ (Pl Grn)- (238)

(For fermions the right hand side is completely antisymmetric in exchange
of indices, which is represented by > . — > . (—1)7, with (—=1)" = 1(-1)
for an even (odd) permutation.) The completeness relation can be written
as

l=Tg+1;+1y+--, (239)

where 1o = |0)(0] and 1, is the unit operator in the n-particle subspace,

- 1
1n:a/dwp1"'dwpn [p1- o) (1 Pal. (240)

Verify this by taking matrix elements with |g; -« - ).

3For a free field a(p) is time-independent, it is the value of the Heisenberg operator at time

zero: a(p,t) = a(p) exp(—ip°t).

30



3. In this problem we evaluate the remaining integrals encountered in two
particle scattering and decay.

The integral (called a phase space integral)

1) = [ duy, duoy, (27)'5 (a1 + 2 — p), (241)

&g,
dw, = d i=1,2, (242)

(27)32\ /2 + m2’

is Lorentz invariant, I(p) = I(¢p). It is convenient to evaluate it in the
center of mass frame defined by p = 0, in the following steps:

a) integrate over gs using the momentum conserving delta functions,

b) choose spherical coordinates q1 — (q,0,¢), d®q1 = ¢*dqdQ), dQ =
d(cos0) do,

c) for the g integral use the energy conserving delta function and the general
formula

[ st @ate) = X iy ate) 249

where the summation is over the zero(s) z; of f(x) in the interval (a,b). In

the present case the argument of the delta function, \/ m? + ¢2+ \/ m3 + ¢2—
p°, has only one zero. We use s = —p?, which is p in the center of mass.

Verify that the result is given by

q q
[ = / ao = —1 244
1672/s 4m\/s (244)
with 2 4 (m? 2)2 2 2
2 ST+ (my—my mj + m;
= — . 245
q s 5 (245)

The application of I(p) to two-particle decay is straightforward.

In the application to scattering 1 +2 — 34+ 4, ¢t — p3, @2 — P4, P
is the total incoming momentum, P = p; + ps, and 6 may be the angle
between p; and pz. The invariant amplitude M is a Lorentz invariant
function of the momenta, so a function of the two independent invariants
s = —(p1 +p2)* = —(p3 +pa)?, and t = —(p1 — p3)> = —(p2 — p4)*. The
other invariant u = —(p; — ps)? = —(p2 — p3)? is not independent, because
s+t +u=m}+mi+mi+mi

The ‘flux factor’ is given by

4E Eqviz = 4\/(171]72)2 —mim3 = 4|p1|V/s, (246)

with |p1| given by (245) with ¢ — |p1].
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For the total cross section we need to multiply by 1/2 if the two particles
in the final state are identical, to avoid double counting. This is the same
factor 1/2! as in (240), n = 2.

For the differential cross section we do not integrate over 8 and ¢. Verify
that in the center of mass frame

1 |ps] 2
do = dS2 — M| 247
’ 6472s |p1| | (247)
Alternatively, we can specify the invariant momentum transfer t = —(p3 —

p1)%. Tt is linearly related to cosf, dt = 2|p1||ps|dcosf, so do/dt can
be simply be read off from do/dcosf = 2ndo/dS2. We can also insert a
constraining delta function §(¢ + (p; — p3)?) in the integral I(p; + po) which

gives the same result:

do 1 :
= 248
dt  64msp? M (248)

(this holds also in the unequal mass case).

8.11 Gauge invariance

The two scalar field model (183) is invariant under continuous rotations of the
vector (¢1, ¢2). Such a symmetry is called a global symmetry, because the sym-
metry transformation does not depend on spacetime. By modifying the action
we can extend this symmetry into a local symmetry, i.e. one in which the rotation
angle o depends on spacetime, a = a(x). Such local symmetries are called local
gauge symmetries, or gauge symmetries for short.

We shall now describe the construction of gauge invariant actions. It is con-
venient to allow the scalar fields to be complex. A complex field is equivalent
to two real fields, its real and imaginary parts. Consider a model with n scalar
fields ¢,, a =1, -+, n, which may be complex. The action

§=— [ a0+ V@), V(e)=c+rslo+Aelo)  (249)
(6T = ¢ dy), is invariant under global unitary transformations
¢—¢' =Up, U'=U" (250)

(ie. dg — @, = Undp, Ug, = Ul). If ¢ is real, U is real and orthogonal. The
transformations form a group G and the U’s are a representation of G. Simple
examples of G are the abelian (i.e. commutative) group U(1)= SO(2), the group
of rotations in a plane, SO(3), the non-abelian group of rotations in three di-
mensions, and SU(2), the group of unitary 2 x 2 matrices with determinant one,
which is the ‘rotation group for spin’ in quantum mechanics. We shall use G =
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SU(2) for illustration, reduction to U(1) or SO(3) is easy. Let w, be coordinates
in G, the angles parametrizing the rotations. For SU(2) there are three rotation
angles wy, wy and ws. In the exponential parametrization

U = exp(iw,T,) = 1 + iw,T, + O(w?), (251)

where the 7T, are hermitian n X n matrices representing the generators of the
group. In the defining (fundamental) representation of SU(2), n = 2 and the 1”s
are half the Pauli matrices,

o 0 1 0 —1 1 0
Tp:?pu 01:<1 0)7 0-2:<Z. 0)7 J3:<O _1) (252)

In the vector representation (which is the defining representation of SO(3)), which
is otherwise known as the adjoint representation, n = 3 and the 7”s may be taken
as

(Tp)ab = _i€abp- (253)

Note that the corresponding U’s are real, and in this case ¢ is naturally real. The
T, satisfy the commutation relations of angular momentum,

[TZH Tq] = Z.epqrjjr; (254)
and the orthonormality relations
Tr T, T, = cdpq, (255)

with ¢ = 1/2 for the defining representation and ¢ = 2 for the vector representa-
tion. They form a vector like angular momentum in the sense that

U'T,U = R,,T,, (256)

with R the vector representation (i.e. R = exp(iw,1,) with the T’s given by
(253)). In general, the generators of SO(3) have the same commutation relations
as those of SU(2).

The action (249) is not invariant under local transformations because the
derivatives do not commute with U and UT when these depend on z. Therefore
one introduces a covariant derivative D, with the property

D;d =UD,¢. (257)
Using this covariant derivative in place of the ordinary derivative yields a gauge

invariant action: (D/,¢")ID'"¢' = (D,¢)UTUD"¢ = (D,¢)'D"¢. The covariant
derivative depends on a matrix field A,

D¢ = 0,0 —1A,0, (258)
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(i.e. Dypy = O0udg — tAwuds). The field A, is called a gauge field. It should
transform such that (257) holds:*

D¢ = 9,0 —iAl¢ =0,Ué+Udp—iA U (259)
=UD,¢ = Udup—iUAp. (260)

Since ¢ is arbitrary we may compare the matrices multiplying it, which gives the
transformation law for A,:

A =UA U —id,UU". (261)

The dynamical variables are now assumed to be ¢(x) and A,(x). Not all matrix
elements Ay, (x) need to be independent. To find the minimal set of A,’s we
look more closely at the inhomogeneous term in their transformation law. Let
7' =z + v be close to z; then U(x + v)U~!(z) is close to the unit matrix and

Uz +v)U Y (z) = 1+0"0,U(x)U " (z) + O(v?) = 1 +iw,(z,v)T,+ O(v?), (262)

where w, is linear in v. It follows that i0,UU" can be written as a linear
superposition of the generators 7, with real coefficients. If we assume A, itself
to have this form, then the first term in the transformation law (261) leaves this
form unchanged because of (256). So we may write

A, = AT, (263)

with real AP

To describe the dynamics of the independent AP we need to add terms to
the action involving time derivatives (and of course spatial derivatives because
of Lorentz invariance). A form like AP AP* is not gauge invariant because of
the inhomogeneous term in (261). The commutator of two covariant derivatives
contains derivatives of A,,

F,, =iD,,D,| =0,A, —0,A, —i[A,, A, (264)
and transforms homogeneously,
Fl,¢ = iD,Dy¢ — (u— v)=U[iD,D, — (1 v)¢ = UF,U"" ¢'(265)
— F,,=UF,U". (266)
It is called the field-strength tensor. Using (263), (254) and (256) we have

F. = FUT, Fb=08,A0 —9,A" + ¢, ALA! (267)

[Tl 2

F[;; = Ry FY, (268)

4The derivative 0, acts only on the object immedeately following it.
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The following is now a suitable gauge invariant action for the combined (¢, A,,)
system:
1 v
S =— /d4x [(Dﬂqb)TD“(b + V(p) + 4—92F5VFW ] ) (269)
Here g2 is called the gauge coupling constant. By rescaling A, — g4, it disap-
pears from the F2 term and reappears in the covariant derivative:

. . 1 y
s=-[d4 [(aﬂqs — g AT,0)! (06 — igAPT,0) + V() +  F, F" } . (270)
In the U(1) case we have only one generator 7" and the minimal scalar field
content is just one complex ¢. The action for scalar electrodynamics is

5= / 'z [(augb e, ) (8" — ieArd) + V(o) + iFWFW] . (2

where we have written conventionally e in stead of ¢ and chosen unit charged
particles, T' = 1.> We recognize the action (15) for the Maxwell field. The electric
current j* is to be identified from the equations of motion for the electromagnetic
field F,,:

—0,F" = j# =ie(D"¢)* ¢ — iep* D" ¢. (272)

It is not simply the analogue of (189) written in complex notation ¢ = (¢ —
i) /V/2, since it also contains the vector potential A, through the covariant
derivative.

We end this section by noting the similarities with General Relativity: —iAg,
is analogous to the connection I'%; and they play a similar role in the respective
covariant derivatives (258) and (10), the definition of field strength tensor —iFyy,,
in (264) is analogous to that of the Riemann tensor in (11). This is especially so
in the vector representation in which —iAg, and —iF,,, are real.

®The minus sign in the definition of the covariant derivative (258) is chosen such that in the
QED case a) the vector potential A, has the conventional sign (B = +Vx A, E = —9yA—VA")
and b) for T'= 1 and e > 0 the particles (antiparticles) described by ¢ have positive (negative)
unit charge.
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9 Boltzmann equation

The Boltzmann equation is an important tool for the description of processes out
of equilibrium, e.g. in the early universe. In this section we shall introduce this
equation and derive its form in the expanding universe. First we summarize some
formulas for scatering and decay, as they occur in field theory.

9.1 Summary: cross section and decay rate

We start with spinless particles. Consider the scattering i +7 — 1+ ---+n. The
initial particles ¢ and j have momenta p; and p;. We assume a density of such
particles, n; and n;. Their relative velocity is v;;. For example, ¢ means ‘beam’
and j means ‘target’. Then v;; = |p;/p?|. The event rate is given in terms of the
cross section,

Ca(t) = oa vij/d3xni(x,t)nj(x, t), (273)

oA = /A do. (274)

Here A specifies an integration region for the final momenta, I'ao is the corre-
sponding number of events per unit time and o is an equivalent surface area,
the cross section. If there is only one target particle, say at rest, we may write
n; = 6%(x — x;), which gives

La(t) = oani(x;,t)vij, per target particle. (275)

In relativistic quantum (field) theory the cross section can be written as

1

do = dwy -+ - dwg 271'4(54]?1—|—"'+pK_pi_p' M ———
(2m)"0 2 ‘4p?p2vz~j

, (276)

with the Lorentz invariant volume element

d’py /
dwy, = Wa pr = \/mi + P} (277)

The quantity M is called the invariant amplitude. It is a Lorentz invariant
function of the four-momenta (for spinless particles). (Another frequently used
notation for M is T.) The combination 4pgp2vij can also be interpreted as a

Lorentz invariant, the so-called flux factor F' = 4\/ (0 pju)? — mimi = 4p)pluy;,

in case of parallel or antiparallel p; and p;. Rewriting eq. (276) in terms of F,
the differential cross section do is Lorentz invariant by definition.

For identical particles we have to supply appropriate statistical factors, e.g. a
factor 1/r! in case of r identical particles in the final state.
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If the particles have spin these formulas remain valid if we replace |M|? by its
average over spins M2, and sum over the spins in the final state as appropriate
according to the case at hand.

For a particle ¢ decaying into particles 1,2,... K the formula for the decay rate
is given by

Iy = Sgl---gK/AdR (278)
1
ar = Q—ﬂ)dwl---dwK(Qﬂ)454(p1+"'pK—pz‘)|M|27 (279)

where S is the statistical factor taking care of identical particles in the final state
and g, is the number of spin states of particle k. The total decay rate refers
usually to the particle rest frame, p) — m;. This rate then differs by the time
dilatation factor m;/p? in a general reference frame.

9.2 Introducing the Boltzmann equation

In the following the stage is special relativity.

Consider the distribution functions fi(z,p) for particles of type k, k = e*,
€~ , Ve, Ue, P, n, etc. The particles carry conserved quantum numbers g4, A = Q
(electric charge), A = L (lepton number), A = B (baryon number), etc. For
example,

Qre- = qiv. = —qre+ = —qro. = 1, qup = qrn = q1y =0, (280)
4Bp = 4Bn = 4BH = 17 4Bet = 4B~y = 07 (281)
qQe- = —qq@Qp = _17 qon = 9Qu. = 4QH = q4Q~y = 0 (282)

(H denotes the hydrogen atom). In a scattering process i + j — k + [ we have
qAi T qA; = qak + qai, (283)
in addition to energy-momentum conservation,
P+ P =pi+ i (284)

To the conserved quantities correspond current densities ja(x) and ‘charge’ den-
sities 79 (x) which satisfy
Ouflh(x) = 0. (285)

Usually the four-currents j* are called ‘currents’ and d,j* = 0 is called ‘current
conservation’. Similarly, energy-momentum conservation is expressed by

8,1 (x) = 0. (286)
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The currents and energy-momentum tensor are determined by the distribution
functions as

gh(@) = D qangw / ];—éfk(x,p), (287)
k P

T (z) = Y g / p_;gz fi(z, p), (288)
k 1

/pz /%, (289)

with g the spin-weight factor. Note that the index k is irrelevant here for p
because it just a dummy variable, but not for p?:

P = \/P? +mp, (290)

where m,, is the mass of particle species k.
The change in time of the distribution functions is described by the Boltzmann
equation

Li(f)(z,p) = Ce(f)(z, p). (291)

Here Ly describes the ‘Liouville flow’ due to the free motion of the particles (no
external forces),

9 "
Ly (f) :aofk+v,i% szi—gaufk (292)

(the relativistic velocity is v = 9p°/0p' = p*/p°), and Ci(f) describes the ef-
fect of collisions. The Boltzmann equation has to be compatible with the local
conservation laws corresponding to (285) and (286)

I
> qak Gk /p ];—g@ufk(af,p) = 0, (293)
k
Mo v
> 9 /p p;gk Oufr(x,p) = 0. (204)
k

Using the Boltzmann equation (291) with (292) we see that the collision term
has to satisfy

> qarg /p Ce(f)(@,p) = 0, (295)
ngLPZCk(f)(x,p) = 0 (296)

In many cases it is sufficient to take into account only binary collisions. Let
Wijiet = Wijiei(Pi, Pj; Pk, P1) represent the probability per unit volume and per
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unit time that particles ¢ and j collide into particles k and [. In terms of W the
collision term can be written as the sum of a gain term and a loss term:

Ci(f) = % > gigia /p'p_pl i fiWai (L + ne fr) (L + 0 f1)

il
= S fiWhais (1 + i fi) (1 +n;£5)]. (297)

We assume Wijju = Wy = Wijue and the factor 1/2 avoids double counting
over ¢ and j. The final state enhancement or suppression factors (1 4 nf) take
into account quantum statistics: n = +1 for bosons and n = —1 for fermions.
We shall see that this leads to the expected equilibrium form for fj. The transi-
tion probabilities Wjjj; are non-zero only if the conservation laws (283,284) are
satisfied.

a. Verify that the relations (295,296) are satisfied by (297).

In equilibrium f;, will be independent of z and Cy(f) should vanish. Assuming

Wijikt = Whajej, @ solution is given by
L —
L+ 1 fi

with 1)y, satisfying 1; +1; = 1 +1/;, hence a linear superposition of the conserved
quantities:

exp(—1x), (298)

Uk = Bupl + > aqak + const. (299)
A

The a4 are the independent chemical potentials which determine the charge
densities 79 in the system. For a system in equilibrium at rest there is no prefered
direction and 3 = 0. Then the distribution function takes the usual Bose-Einstein
or Fermi-Dirac equilibrium form

1
fk(p) = e(pgfﬂk)/T — 0 (300)
with
T = 1/ﬁ0, M = —TZaAqu. (301)
A

The const. in (299) is apparently zero.

b. By comparing with section 9.1, deduce that the W’s can be written as
1

——— o (27 454pl+p_pk_pl Mi‘kl2- 302
16]7?]??]?2]310( ) ( j )‘ 7l | ( )

Wi =
A closer look shows that the assumed symmetry Wijju = Wiiu = Wijju is
standard in quantum field theory. The assumption of ‘micro reversability’,
Wijikt = Wiij is usually satisfied to a good approximation. In case it is not,
there should be a weaker property which still ensures the solution (298).
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c. Consider the process e~ +p < H ++y. Verify using (301) that in equilibrium
the chemical potentials yu, satisfy: pre- + pp = pm, pty = 0.

d. Consider the processes e~ +p < ve+n, Vo +p < n+et, e +et — v+,
at temperatures T of order 10 MeV. Assume equilibrium, electric charge
neutrality (n.- — ne+ = n,) and n,/n, = 1071°. Calculate p./T and p,/T
for T'/m,, = 0.01.

In general the chemical potentials are determined by the conserved ‘charges’
(@, B, L,...), or rather their densities, and in the expanding universe (in local
equilibrium) they will be time and temperature dependent.

9.3 Boltzmann equation in the expanding universe

In the expanding universe there are new terms in the Boltzmann equation. We
shall restrict ourselves to a flat RW spacetime and assume that the collisions occur
on such a small scale in space and time that the collision term is not modified.
Kolb and Turner give a modified Liouville term L(f), eq. (5.4), which apparently
assumes that the distribution functions depend explicitly also on p°, in addition
to p. This appears to be in conflict with p° = /p2 + m?; the steps leading to
(5.7) are unclear. Here we shall assume that f is s function of x, p and time, as
before, and derive the form of L(f) by studying a realization of f similar to eq.
(74) in section 7.
Consider again (72), repeated here for convenience,

T (z) = N Z/dt V=2 Zan () 0F (2 — za(t))ZM, (303)

\ _g(‘r) Mg
where (g
Ph(t) = ma 4l )‘ —. (304)
V=9 (za (D) 25D 22(1)
(Recall that z2 = ¢ and that t is just a dummy integration variable # z9.)

Specializing to one species this can be written as

Wi d’p o) PP (@)
@) = [ G e e) (305)
p’(z) = positive root of eq.: g (2)p®(2)p*(z) = —m?, (306)

1
h(zx, = —— ) 3(x—2,(2%) (27)363 (p — pa(z?)), 307
(z,p) \/?(x)%: ( (%)) (2m)°68°(p — pala”)),  (307)

where we have assumed a spin-weight factor ¢ = 1 to avoid confusion with the
determinant of the metric, g. For simplicity we have written p#(z), but note that
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p does not depend on z, only p° depends on x. On the other hand p# depends
on time via its dependence on z,, as in (304).

The distribution h(x,p) corresponds to a realization of f(z,p) in terms of
particles labeled by a. We shall now take the time derivative of h(x,p), use
the equation of motion for the particles and re-express the result as an equation
for h. Then we shall assume this equation for h to apply also to more general
distribution functions f(x,p). We first assume no scattering among the particles.

a. The equations of motion for the particles are the geodesic equations derived
in Problems 3d,3e. Verify that they can be written as

(el
Oty = —T" (20) 5 (308)
b. Verify (cf. sect. 3)
1 1
o8 =— e, (x) (309)
—g() —g()

c. Verify the following identity among delta functions (by integration with an
arbitrary test function)

9 p(p). (310)

53<p - pa) + 53<p - pa) apk

S(p—pa) = F(p)i

0
F(pa) 7+ o

op*

d. Now take the time derivative of A and show that the result can be written
in the form

B o [pp°
POh — kaopppaa—wh + [pTe, — kaopoa—pk <p D )] h=0, (311)

where h = h(z,p), kaa = kao(llf), P’ =p°(@).

e. Specializing to a flat Robertson-Walker metric, ¢, = a*(2°)d,,, show that
the above equation reduces to

0
doh — h—2 —h—O 312
o= 3% h =20 (312)

where we assumed homogeneous circumstances, h = h(z°, p).

We conclude that the Liouville part of the Boltzmann equation for f = f(z°, p)
is

. 0
Ip'

L(f)=0of — 3 f—2 P’ (313)
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Note that the first term in (311) corresponds to (292).
The solution of (306) is now

P’ = \/m? + a2p2. (314)

It depends only on time via the scale factor a(z°). Eq. (314) suggests using the
variable

p=ap (315)

as the argument of the distribution function, since then p® = v/m?2 + p2, as usual.
Let us write

f(t,p) = d*f(t,ap) = &’ f(t, D). (316)

f. Assuming f to depend only on |p| = \/m , verify
™ = ¢*p, (317)
P o= [ ot (318)

We see that the above equation has the familiar form of the pressure. The
expression for 7% looks similarly familiar when written in terms of p.

g. Verify
f. (319)

h. The distribution function for a decoupled species satisfies L(f) = 0. Show
that a general solution is given by

ft,p) = fla(t)p). (320)

Evidently, p is to be identified with the usual momentum in a local Lorentz frame
and f with the distribution function introduced earlier in the context of special
relativity. The scattering terms in the Boltzmann equation will therefore have
the usual form in terms of p. These arguments lead to the Bolzmann equation
including scattering:

o _ a0
Li(f) = 0o fr — —p'—
of) = dfi =P op’

fr = Ci(f), (321)

where we reintroduced the species label k.

From now on we drop the bar on p, f and L.
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i. Show that the density ny = gi [, fi satisfies

a d3p
Bone + 3%y = /—C , 322
0k a k 9k (27T)3 k(f) ( )
where we reintroduced the spin-weight g, since there is no more confusion
with the metric anymore.

Using (302) and assuming | M ju|? = | M| we get

a 1
don + -k = S0k > 91959 /dwi dw; dwy dw; (27)*6* (i + pj — pe — P1]323)

ijl
(M2 Ui fi (L + i fo) (L +mfi) — fe il +mifi) (140, £5)] -

This equation may be compared with egs. (5.7)-(5.10) in Kolb and Turner, and
is used in their discussion of the ‘origin of species’.

If the collision terms C} dominates over the expansion term o a/a, then we
expect the distribution f; to acquire the equilibrium form

fr(p) = ! : (324)

eW/miPT /T
with temperature and chemical potential that vary slowy on the collision time
scale. As the universe cools down, the f; become smaller and after some time,
depending on the strength of interactions of species k, the collision term C}
becomes subdominant to the expansion term. The above form for f; is then then
no longer a good approximation and the species £ is said to have decoupled from
the thermal plasma and to have fallen out of equilibrium.
Consider the equation

0
opt

flt,p) — %ﬂ'

According to (320), solutions may be found in the form

fr(t,p) = 0. (325)

a(t)
o) = fi 1 5. (326)
which may be interpreted in the light of the result of problem 5.i, in which it
was found that the magnitude of the momentum of a particle redshifts oc 1/a.
(Note that in problem 5.i the magnitude of the momentum p’, which is related
to the spatial component of the four-velocity by p’ = mu', was defined naturally
in terms of the metric as \/¢;;p'p’ = a|p|, and ap = p is denoted here by p, since
we omitted the ‘bar’ in our notation.)

In the aproximation that the decoupling takes place instantaneously at time
t1, there are two cases in which the distribution function can still be characterized
by a time-dependent temperature 7'(t):
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- massless particles

- 1 o (l(tl) .
- non-relativistic particles with © = m,
1 a(t1)2
ft,p) = P~ T(t) = a(t)? T'(t1), (328)

10 Freeze out

10.1 Simplified equation

As the temperature lowers, the density of massive particles decreases and would
be ridiculously small (< e=™/7) now, at 3 K or 3x 10~ eV, if thermal equilibrium
would be maintained. However, below a certain temperature, the collision term in
the Boltzmann equation for some particle species will become negligible compared
to the expansion term, upon which its distribution function freezes into a function
of a(t)p, as in (326). The actual particle density then drops at a much slower rate
than the equilibrium density and the number of particles in a comoving volume
is conserved. In this way the expansion of the universe is vital for the ‘origin of
species’.

In this section we shall simplify coupled Boltzmann equations for several
species into a much more pleasant equation, following section 5.2 in Kolb &
Turner. Let v and 1) be the particles that freeze out and suppose they annihilate
into X and X according to

Y+ X+ X, (329)

apart from other processes such as ¢ + X < ¢ + X, ¢ + X < ¢ + X, etc. We
suppose furthermore that there are other particles and processes such that X and
X are in thermal (i.e. kinetic and chemical) equilibrium, and v and 1 in kinetic
(but not necessarily chemical) equilibrium, at the time of freeze out. For example,
the s could be neutrinos, 1, 1 = v, 7, the Xs electrons, X, X = e, e*, and
the other particles photons. Another example is 1) = e~, 1) = p (proton), X = H
(hydrogen atom) and X = « (photon). Using the Boltzmann approximation for
the distribution functions,

Fx(t,p) = erxO=EX/TO ot p) = xO-E/TO g — By = /m% + p?,

(330)
thermal equilibrium means that the temperature 7" and the chemical potentials
ix x are fixed by the equilibrium conditions. Kinetic but not chemical equilib-

rium for the s means that, in

fy = e =BT, fi= ehs—E)IT. (331)
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only the temperature is fixed to the equilibrium temperature, whereas the chem-
ical potentials p,, and p; may be out of equilibrium. Assuming also detailed

balance, |[M(¥ + 9 — X + X)|2 = IM(X + X — ¢ + )2 at given momenta,
the Boltzmann equation for the number density of the v takes the form®

) a

My +3-ny = 9%95 /dww dwy dwx dwg (27)* 6 (py+ps—px—px) IM? (Fxfx—fof)-
(332)

Energy conservation, Ex + Ex = Ey + Ey, leads to

fxfx = f 15 (333)
where p1x + px = py' + . We also have
Fols = I35 IS e

So, in kinetic equilibrium, the momentum dependence in the product fy fy is
equivalent to that of f,* gq. One now rewrites the Boltzmann equation in terms
of the annihilation cross section of the s (v is the relative velocity cf. (276))

OpixxV = gx / dwx dwg (21)*6(py + pj — Px — Px) Mys_xx>  (335)
and its average in thermal equilibrium

9y | dwy dwy [ fFopsxxv gy [ dwy dwg [ 7 oyg o xxv

<O'annU> = eq re - e ) (336)
G2 T duvy duog [T (n<1)?
resulting in the remarkably simple equation
a
iy + 311y = (Tanat) ((ngh? = n3) . (337)
It is useful to consider the ratio
Y =ny/s, (338)
where s is the entropy density. Entropy conservation sa® = constant (cf. problem
1) leads to
ay 9 9
—r = 5(Tamv) (v2-v?). (339)

We get the Hubble rate H = a/a back into the picture by using

= — 340
c=17, (340)

SThere is no factor 1/2 here compared to (323) because we do not sum here separately over
Y+ X+ Xandy+9y — X+ X.
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as a variable representing time, where m is some mass, e.g. m = my, if ¥ is
massive. In the radiation dominated era (recall (97))

1
H= % = constant x 12, (341)

which leads to

dY  Tam Y?
O ey ) (342)
Yoq dx H Yqu
where I',,, is the annihilation rate in thermal equilibrium,
1—‘ann = <Uannv>nqu- (343)

Equation (342) suggests indeed that Y ~ Y, for I'yyn/H > 1, and Y > Y, for
Gamn/H < 1. See also (9.41) in Peacock.

10.2 Hot and cold relics

To continue one uses a simple parametrization of the annihilation rate. Inspection
of the momentum dependence of |M|? shows that the temperature dependence
of a thermally averaged (ov) is approximately just a power behavior, (o,,v) o
T oc z7" withn =0, 1, ... (typically n = 0). Then, with H oc x7? and s oc 272,

we can rewrite (342) in the form

ay —n—2 (2 2
o= (Y2 -v2), (344)
with
A= [sx<aa;;”>Ll (345)
The behavior of Y, follows easily from the results in section 7,
45¢(3) ge o
Yaq <(4 ) 9ot _ ) yzg el <3, (346)
27 gxs gxs
45 9y 3/2 — 9y 372 —
= Y 320 — (0,145 %2677, x> 3, 347
473/27 Gxs g8 (347)

where © = my /T and geg = gy (bosons) and geg = 3gy/4 (fermions). So Y, is
time-independent in the relativistic regime x < 3 and it decreases exponentially
fast in the non-relativistic regime x > 3. Depending on the value of A, a species
1) may decouple ‘early’ or ‘late’.

A hot relic decouples when it is still relativistic. Let xy represent the time
of freeze out. Then we expect Y (00) & Yeq(zy), and since Yoq(x) is almost
independent of z in the relativistic domain, the precise value of z; does not
matter very much. It may be estimated from the criterion I',,, = H. Assuming
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adiabatic expansion (no entropy production) after freeze out of the species under
study, we have today

o = oY (00) & 2900Y (00) & 800—2— e 3, (348)
g*S(l‘f)

with today’s g.s = 2 + (7/8) x 2 x 3 x (4/11) = 3.91 in photons and three
massless neutrino/antineutrino species at T, = (4/11)Y3T,, T, = 2.73 K. The
energy density today in the massive s is given by

Py = NapoMyp, (349)

or for the fractional density

Quh? = 220 — 800 x 1072 %L

— 350
Pe g*S<xf> €V7 ( )

where A is ‘little Hubble constant’ and we used p, = 8.0992 h% x 10~47 GeV*.

The above equation sets a strong upper bound on m, by requiring 2 to
be less than one. Suppose the ¢ are light-mass neutrinos. Using dimensional
analysis, their annihilation rate is of order G277, with Gy = 1.166 x 1075 GeV 2
the Fermi constant governing the low-energy weak interactions. Comparing I",,,
with H = O(T?/mp) gives a decoupling temperature T' of order 1 MeV. At
that time g,s(zs) =24 (7/8)(2 x 2+ 3 x 2) = 10.75 in photons (anti)electrons
and (anti)neutrinos. For a massive, left-handed neutrino plus its antiparticle,
Gest = 2 X (3/4) = 1.5, gegt/gss = 0.140, and we obtain the bound

Q, <1=m, <89h?eV, (351)
or, with today’s values h &~ 0.7, Qpatter = 0.3 and three neutrino species,

> my, < 89 B Quagter < 13 €V. (352)

The reasoning leading to this bound was first given by Gerstein and Zeldovich’

Cold relics decouple when they have become non-relativistic. In this case the
precise value of z is important because Y, is rapidly varying in this regime, and
the same will be true for Y itself.

Kolb & Turner apply equations (342) and (344) to various examples in sections
5.2 (Freeze Out) and 5.4 (Recombination Revisited). There is no substitute for
their skillful and entertaining exposition, and the reader is urged to take a good
look at these sections. Note in particular a formula for cold relics:

3.8(n +1)(g+/g.s) 2y
MyMp(Tann?)

Yoo &

. mp =G V2 (353)

"See the discussion in A.D. Dolgov, Nuetrinos in cosmology, arXiv:hep-ph/0202122.
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where the right-hand side is evaluated at freeze out. There is also a simple
equation for the inverse freeze-out temperature z;, obtained by matching sim-
ple asymptotic solutions to numerical solutions. Note that the abundance Y is
inversely proportional to the magnitude of the annihilation cross section at de-
coupling. Weaker interactions lead to earlier decoupling and larger abundance
(‘the weak prevail’).

10.3 Problem

1. The chemical potentials in the radiation dominated era are believed to be
very small (e.g. for baryon number u/T = O(107'%)). Neclecting them,
the entropy density in local thermal equilibrium is given by s = (p+p)/T,
where p and p are functions of the instantaneous temperature (cf. (215)).

Show, using (65), that the entropy in a unit comoving volume V = a? is

conserved in time, i.e. sa® = constant.
Verify that
272
= g.T* 354
S 45 gxs ) ( )
with 5 5
T; 7 T;
«S = il = — il = . 355
oo £ a@1 5 W@

i=bosons i=fermions
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11 The Standard Model

The Standard Model describes the strong, electromagnetic and weak interactions
currently known and verified by experiment, ignoring gravity.

11.1 Spontaneous symmetry breaking

8 The principle of local gauge invariance works beautifully for the strong and
electroweak interactions. It gives a method for determining the couplings and as
't Hooft, Veltman and others showed in the early seventies, even spontaneously-
broken non-abelian gauge theories are renormalizable. The application to weak
interactions was more subtle because gauge invariance forbids mass terms for
gauge fields and whereas the photon and gluons are indeed massless, the W’s
and Z’s certainly are not. Gauge fields as it turned out can be given a mass,
exploiting spontaneous symmetry breaking and the Higgs mechanism. This is
a subtle procedure and it pays to begin by thinking about how one identifies a
mass term in a Lagrangian.
Consider the following Lagrangian for a scalar field ¢:

1 1 1
L= —3(0:0)(06) — 5u*¢* = 2" (356)

Here ;2 < 0 and A > 0. The second term looks like a mass and the third like an
interaction. However, the sign of p? is wrong! If that’s a mass term, the mass
would be imaginary, which is nonsense. The answer on how to interpret this
Lagrangian comes from understanding the perturbation procedure, in which we
start from the ground state (the 'vacuum’) and treat the fields as fluctuations
about that state. For the Lagrangian (356) the trivial field configuration ¢ = 0 is
not the ground state! To determine the 'true’ ground state, the field configuration
of minimum energy, we write £ as a free 'kinetic’ term 7 = (39y¢)(9°¢) minus a
'potential” term U (that is, writing it as T, cf. equation (102):

L=T-U U=V+ %amam, (357)

and look for the minimum of /. This occurs for constant fields, d,¢ = 0, and
consequently & = V. In the present case:

1 1
V = —|u[*¢* + —Ao™. (358)
2 4
The minimum of V' then occurs at:

¢ =v=%[ul/VA. (359)

8The following three sections were contributed by Stefan Nobbenhuis.
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For this Lagrangian the Feynman calculus must be formulated in terms of de-
viations from one or the other of these ground states. This suggests that we
introduce a new field variable 7, defined by:

n=¢—v. (360)

a) Sketch the potential, give the Lagrangian in terms of n and interpret the
different terms.

The example above illustrates an important phenomenon. The original La-
grangian is even in ¢: It is invariant as ¢ — —¢. But the reformulated Lagrangian
is not even in 7; the symmetry has been 'broken’. This happened because the
'vacuum’, whichever of the two ground states we care to work with, does not share
the symmetry of the Lagrangian. The collection of all ground states of course
does, but to set up the perturbation formalism we are obliged to work with one
or the other of them and that spoils the symmetry. We call this ‘spontaneous’
symmetry breaking, because no external agency is responsible (as for example
gravity breaks the the three-dimensional symmetry in this room explicitly, mak-
ing ‘up’ and ‘down’ quite different from ‘left” and ‘right’). The true symmetry of
the system in other words, is hidden.

11.2 The Higgs mechanism

Now we apply the idea of spontaneous symmetry breaking to local gauge theories.
We begin with an Abelian example and end with the Glashow-Weinberg-Salam
theory of electroweak interactions.

Consider a complex scalar field coupled to both itself and to an electromag-
netic field:

1
£ == Ful" = Do = V(6), (361)

with D,, = 0, —ieA, the covariant derivative and A, is the vectorpotential with
e the coupling to the scalar field.

a) Show that this Lagrangian is invariant under the local U(1) transformation
, 1
6(r) = €Oo(r),  Aur) — Au(r) + T0u0(0). (362)

We now choose the potential to be of the form:

V(9) = 1¢"¢ + N¢"¢)*, (363)

where A > 0.
b) Show that when
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u? < 0, the field ¢ will acquire a vacuum expectation value and that the U(1)
global symmetry will be spontaneously broken. What happens if 2 > 07

We assume now p? < 0. Let us expand the Lagrangian (361) about the
vacuum state, ¢ = v and decompose it as:

1 .
o(x) =v+ ﬁ@l(@ +ida(x)). (364)

c¢) Rewrite the Lagrangian in terms of ¢;,7 = 1,2 and determine the apparent
masses of the different fields.
You should find that the gauge fields have acquired mass terms.

One of the fields, say ¢1, has acquired a mass, while the other field ¢, remains
massless. This massless field is called a Goldstone boson field. It can be shown
(Goldstone’s theorem) that spontaneous breaking of a continuous global sym-
metry is always accompanied by the appearance of one or more massless scalar
particles, which are accordingly called Goldstone bosons. The number of such
Goldstone bosons is always equal to the difference between the order (i.e. the
number of generators) of the original symmetry group and the order of the sur-
viving symmetry group. They can be understood physically as being excitations
along the symmetry directions in which the potential is unchanged. Suppose for
example we would have started with the following Lagrangian:

1 1 1
L= —5(0:0:)(0"0i) — 5/12@5? - 1)@?7 (365)

describing a theory of N real scalar fields ¢; where summation over: = 1,..., N is
implied. In this example the original group of symmetry transformations is O(NV),
with %N (N —1) generators and the final group after rewriting the Lagrangian as
fluctuations about one of its ground states,

say ¢1 =0, o=+ = ¢y =0, is O(N — 1) with (N —1)(N — 2) generators,
so there will be (N — 1) massless particles (which you can check explicitly).

To show the generality of this result, suppose ¢ = {¢;} forms a multiplet of
symmetrygroup G, such that V(¢) and hence L£(¢) is invariant under:

O — O+ 0p=(1+i0,T%)¢ (366)
where T, with a = 1,..., N, are the generators of G. If the minimum of the
potential corresponds to (0|¢;|0) = v;, then:

oV o?V 9

0, = M2 > 0. 367
961, . 0005, i (367)

where M is the mass matrix for the fields ¢. Now suppose that some of the
generators satisfy:
T =0, a=1,...,n, (368)
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while the remaining generators break the symmetry of the vacuum because:
T # 0, a=(n+1),...,N. (369)

The n unbroken generators form a subgroup H of G since they are closed under
commutation, (7°T° — T°T%)v = 0. To determine the effect of the symmetry
breaking on the mass matrix, note that invariance of V' (¢) under (366) gives:

ov . ov
0=V(p+d¢)—V(p) = %5@ = ZOéaaTSi(T )ij®;- (370)
To express this in terms of M, we differentiate with respect to ¢, and evaluate
it at ¢ = v using (367) to obtain:

M (T); = 0. (371)

For the unbroken subgroup H this is trivially satisfied, but for each broken gen-
erator T% is an eigenvector of M? with zero eigenvalue. Thus the number of
massless Goldstone bosons is simply the number (N — n) of broken generators.

Returning to our example with the complex scalar field, we still seem to have
a massless Goldstone boson and there is a somewhat strange looking quantity:
V2 evA,0"¢y. If we read it as an interaction it leads to a vertex of the form:

JAVAVAVAUAURS S
A cp2

This suggests that the massless Goldstone boson turns into the massive gauge
boson A. Any such term, bilinear in two different fields, indicates that there is
some form of mixing between the fields in the theory and this would mean that
neither one exists as an independent ‘physical’ field. The physical fields are those
for which the mass matrix is diagonal. Although the Goldstone boson plays
an important formal role in this theory, it does not appear as an independent
physical particle. The easiest way to see this is to make a particular choice of
gauge, called the unitarity gauge. Using the local U(1) gauge symmetry (362),
we can choose a(x) in such a way that ¢(z) becomes real-valued at every point x.

d) Show that with this choice the field ¢, the Goldstone boson field, is re-
moved from the theory and that the Lagrangian (361) becomes:

)t — (0utn)? — E2PTALAY — V(). (372)

If the potential V' (¢) favors a non-zero vacuum expectation value of ¢, the gauge
field acquires a mass; it also retains a coupling to the remaining physical field ¢;.
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This mechanism, by which spontaneous symmetry breaking generates a mass
for a gauge boson, was explored and generalized to the non-Abelian case by Higgs,
Kibble, Guralnik, Brout and Englert and is now known as the Higgs mechanism.
The role of the Goldstone thus is intricate and seems somewhat mysterious at
this level of the discussion. We saw that the involvement of the Goldstone boson
is necessary, as a matter of principle, in order for the gauge boson to acquire a
mass. But we also saw that the Goldstone boson field can be formally eliminated
from the theory! However, we might argue that the Goldstone boson has not com-
pletely disappeared. A massless vector boson has only two physical polarization
states, as is the case for the photon, the longitudinal polarization state cannot be
produced and appears in the formalism only to cancel other unphysical contri-
butions. However, a massive vector boson must have three physical polarization
states: In its rest frame, it is a spin-1 object, which can make no distinction
between transverse and longitudinal polarizations. It is therefore tempting to
say that the gauge boson acquired its extra degree of freedom by ‘eating’ the
Goldstone boson.

11.3 Standard Model electroweak theory

We will now discuss the spontaneously broken gauge theory of the weak inter-
actions, an important part of today’s Standard Model, introduced by Glashow,
Weinberg and Salam. This model incorporates (as not to say: unifies) a de-
scription of weak and electromagnetic interactions, in which, as we shall see, the
massless photon will correspond to a particular combination of symmetry genera-
tors that remain unbroken. This will require some group theoretic slang to make
our steps explicit, however, the important aspects should become clear without
to much worrying about that.

We begin with a theory with SU(2) gauge symmetry. To break the symmetry
spontaneously, we introduce a scalar field in the spinor representation of SU(2).
However, this theory will lead to a system with no massless gauge bosons. There-
fore, we introduce an additional U(1) gauge symmetry. We assign the scalar field
a charge +1/2 under this U(1) symmetry, so that its complete gauge transforma-
tion is:

¢ — P2, (373)

where the I = ¢%/2 and the o-matrices are the familiar Pauli spin matrices. If
the field ¢ acquires a vacuum expectation value of the form:

(¢) = % (S) (374)

then a gauge transformation with:
pl=p=0, F=aq (375)
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leaves (¢) invariant. Thus the theory will contain one massless gauge boson,
corresponding to this particular combination of generators. The remaining three
gauge bosons will acquire masses from the Higgs mechanism.

It is in principle rather straightforward to work out the details of the mass
spectrum. The covariant derivative of ¢ is:

D= (0, —igAsZ ~i2gB,) 0 (376)
where Af and B, are respectively, the SU(2) and U(1) gauge bosons. Since the
SU(2) and U(1) factors of the gauge group commute with one another, they can
have different coupling constants, which we have called g and ¢’.

The gauge boson mass terms come from the square of (376), evaluated at the
scalar field expectation value (374).

a) Find the eigenstates of the mass matrix and corresponding eigenvalues, the
masses. These are the famous W* and Z° vector bosons of weak interactions and
we will identify the massless field A* with the electromagnetic vector potential.

From particle masses and interaction strengths it is found that v, the symme-
try breaking scale in this model is about 246 GeV.

In many cases it will turn out to be easier to work with the mass eigenstate
fields. For a fermion field belonging to a general representation of SU(2) and
U(1) charge Y, the covariant derivative takes the form:

Y
D, =0, —igAiI" —ig 3B, (377)

b) Show that in terms of the mass eigenstate fields this becomes:

D, = 0, — i (WHIT + W I) i Z,(*° — ¢"Y)

s s \/5 B I3 92+ g7 n\y 9
99’ 3

where I+ = [' 4+4I% and Wj = %(A}L F zAi) and the normalizaion is chosen so
that, in the spinor representation of SU(2), I* = (0! + ¢?) = o*.
The last term makes explicit that the massless gauge boson A, couples to the
gauge generators (I° + Y/2), which generates precisely the symmetry operation
(375).

The massless gauge boson A is naturally interpreted as the photon. Therefore
we identify the electric charge quantum number as:

Q=I+Y/2 (379)
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and use this relation to specify the eigenvalues of the U(1) generator, %Y (the
factor % being purely conventional). I* and Y are referred to as the weak isospin
and weak hypercharge generators respectively.

The covariant derivative (378) can be cast in easier form by also identifying
the coefficient of the electromagnetic interaction as the electron charge:

/
e=—29 (380)

The notation can be simplified further by defining the weak mixing angle 6y, to
be the angle that appears in the change of basis from (A2, B) to (Z°, A) (see also

p.234 from Peacock):
zZ0 cos By —sin Oy A3
(A) N ( sinfy,  cos Oy B (381)

c) Using (378), (379), (381) rewrite the covariant derivative once more in terms
of e and sin §. This shows that the couplings of all the weak bosons are described
by two parameters: the well measured electron charge e and a new parameter, Gy .

d)Verify that we can write my, = mz cos Oy .

All effects of W and Z exchange processes, at least at tree level, can be written
in terms of the three basic parameters e, 6y, and my,. Experiments have shown
that sin? @y ~ 0.23.

11.4 The action of the (Extended) Standard Model

The Standard Model is a gauge theory with gauge group U(1)xSU(2)xSU(3). A
gauge transformation in the defining respresentation of this group can be written
as (the 1 is conventional)

(Do = €27 (eP378) (efrate) (382)

acting on complex fields, say %, where a,a’ = 1,2 or u,d (‘up’, ‘down’), and
c,d =1,2,3 or ‘red’, ‘green’, ‘blue’. The )\, are a complete set of hermitian trace-
less 3 x 3 matrices, normalized as Tr (A\,\,) = 26,,, eight in total, p = 1,---,8,
similar to the Pauli matrices, called ‘Gell-Mann matrices’. They satisfy the com-
mutation relations [y, A,] = 2ifpr A, where the real f,,. are the structure con-
stants of the group SU(3). Note that o) and A\, commute, since they act on differ-
ent indices in the tensor product representation. The lagrangian of the Standard
Model is invariant under these space-time dependent gauge transformations.
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The basic ingredients for constructing the lagrangian £ are (a) hermiticity,
(b) symmetry (Lorentz and gauge invariance), (c) field representation and (d)
renormalizability. The latter property is garanteed by allowing only constants in
the lagrangian with mass dimension > 0, and all possible couplings allowed by
symmetry have to be present. Renormalizability makes it possible to absorb the
effects of the regularization (e.g. a cutoff), needed to define loop integrals which
would otherwise be divergent, into the bare constants of the lagrangian. There
may still be non-perturbative effects which limit the validity of the model to
momenta smaller than some effective scale (the ‘Landau ghost’, ‘triviality scale’),
but this scale can be unobservably high, even beyond the Planck scale, depending
on the parameters of the model.

The lagrangian consists of several terms,

S = / d'z L, (383)
L = e+ Li+ Lo+ Ls+ Ly + Loy, + Lo, + Ly + Lpn + Lo, (384)

in which € controlls the cosmological constant, with Lagrange densities L4, ..
Ly which will now be described.

The Bose fields in the model are the U(1)-gauge field B, the SU(2)-gauge
fields Aﬁ, k=1,2,3, and the SU(3)-gauge fields G¥, p = 1, - - -, 8. Their standard
derivative parts in the lagrangian are given by (cf. section 8.11)

*

1 v

—Ly = ZBWB“ , B = 0,B, = 0,By, (385)
1

_EQ = ZA;]iVAMVk’ AZV = 8MAI; - aVAZ + g2 EklmALATa (386)
1

—L; = ZGZVGWP’ Gh, = 0,GE — 9,G? + g3 [ GLG,. (387)

Here g2 and g3 are the SU(2) and SU(3) coupling constants. The L,’s are given
by

Ly, = 01@6““" BiaBw, (388)
1

Lo, = 62@6@\“1/14?\35” (389)
1

Lo, = 03 6472 e iABﬁw (390)

with parameters 6;, 6, and 03. It can be shown (cf. problem 1) that these Ly
are total derivatives, so they have no influence on the field equations that follow
from the stationary action principle. Classically they are irrelevant. However,
the world is quantum mechanical and the s may still influence the quantum
evolution in time, e.g. through their effect on the hamiltonian. In addition they
may influence the ground state (vacuum).
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The set of Bose fields is completed with the Higgs doublet

‘b:(::)' (391)

where ¢, and p, are complex scalar fields. The Higgs part of the lagrangian is
—Lu = (Du0) D6 + 1?61 + A\(9'9)%, (392)

where p? < 0 and A > 0 to invoke spontaneous symmetry breaking. The covariant
derivative for the Higgs doublet is given by

D,¢ = (au — igléBM — ng%UkAﬁ) b, (393)
where ¢; is the U(1) gauge coupling constant. Note that the Higgs doublet is
invariant under SU(3) transformations, it is a singlet under SU(3).

The Fermi fields in the action may be described by Dirac fields ¢ and their
conjugates ¢ = ¥T3.9 As far as we know the fermions come in three genera-
tions with identical transformation properties. The fields of the first generation
may be denoted by 1 = (¥, e, Yy, 1¥q), but it is customary to write sim-
ply (ve, e, u, d), with the conjugate fields ¥, = (7., €, @, d). The fields of the
second and third generation are v, = (v, p, ¢, s), ¥3 = (v, 7, ¢, b), and their
conjugates.

However, these are not irreducible representations of the Lorentz group, whereas
in the Standard Model the representation of the gauge group carried by the fields
depends on the type of Lorentz irrep (irreducible representation). The Dirac
fields can split into irreps L and R of the Lorentz group with the help of the left-
and right-handed projectors P, and Pk,

1 1

PL:§(1_75)7 PR=§(1+’V5), P} =Py, Pj=Pr, P.Pr=0, P.+Pr=1.
(394)

The left- and right-handed fields are obtained from the Dirac fields as
YL = Pri, PL(’&C)T - (@RC)T - (wTPRﬁC)Ta left, (395)
Yr = Prp, Pr(yC)" = (¢,C)" = (0" PLBC)",  right. (396)

Here C' is the charge conjugation matrix and 7" denotes transposition.

In general, a field transforms under the gauge group as

w N eia%Y elﬂklk eiprp w’ (397)
90wr Dirac matrices satisfy {v%,7"} = 29", 70 = —°, 9 = =10, 1 = W B =

iy1y23 = 4l B = in0, ap = —499%. Furthermore, ¢ = ¢! and the charge-conjugation
matrix C' has the properties C = —CT, CT = C~1, 'yg = fC’T’y#C’. The charge conjugates of

¢ and 9 are (¢ = (4pC)T and () = —(CTy)T.
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v Y)/2 Iy, T,
VeR 0 0 0
er -1 0 0
b, —1/2 oy/2 0
drp —1/3 0 )\p/Q
q.  1/6 ox/2 X,/2

Table 1: U(1) x SU(2) x SU(3) representation of the fermion fields. Shown
are fields in the first generation. The other generations vy = (V,_“ i, ¢, s) and
3 = (v;, T, t, b) transform identically. The representation of the 1 fields follows

from ¢ = 3.

where Ij, and T}, are a representation of %ok and %)\p. In the Standard Model only
the trivial representation (I, — 0 or 7, — 0) and the fundamental representations
of SU(2) (Iy — 30%) and SU(3) (T, — 3Ap, T, — —3A%) occur. For SU(2), —oj
is equivalent to oy, because

—o} = i@ak(—i@)T, (ewk%"k)* = i09 (ewk%”’“) (—iag)T. (398)

The representation of the first generation is given in table 1. Note that

0 = ( Vel ) (399)

€L

is a doublet under SU(2) and a singlet under SU(3), whereas
uisd
ur = | uf"™" (400)

blue
Up

is a singlet under SU(2) and a triplet under SU(3). The symbol ¢, represents
six fields: the SU(2)-doublet
_ [ ur
w=( o) (a01)

in which u; and dj are SU(3)-triplets. The singlets under SU(3) are called
leptons. They have only electroweak interactions. The triplets under SU(3) are
called quarks, which have also strong interactions.

The values of the weak hypercharge Y in the table look strange. However, their
ratios are almost unique upon imposing the condition that the model is anomaly
free.t? In particular, both leptons and quarks are needed for a consistent theory,
the anomalies of the leptons cancel out against those of the quarks.

10Gee for example Weinberg’s book The quantum theory of fields II, section 22.4
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The fermion terms in the lagrangian involving the covariant derivative
1 . .
D = <au — g5V By — igaT AL - zgngGg) W, (402)
follow directly from the table,

Ly = IE”YMDM/}
= DeR’yuauVeR + +éR’yM (au + Zngu) €R

= 1 .
+ Oyt <6“ + zgléBu — ngAH) er,
. . = 1 .
+ upy" <6M — zglgBM - zggGu) ugr + dpy" <8M + zglgBM — zggGu) dp

+ (jL’}/‘u (8M - Zgl%BM - ngAM - ZggGM) qr,
+ 2nd generation + 3rd generation, (403)

where
1

1
A,u = Aﬁ éO'k, G“ = GZ éO'p. (404)

It would have been more systematic to exhibit only left-handed fields in table 1
(i.e. exhibit the ()T in stead of the ¥z), but then we would have to make some
conjugations in order to arrive at the conventional form (403) of the lagrangian.

The neutrino fields vz and vg are singlets under the gauge group, and they
are often not considered as part of the Standard Model. The model without
them is called the Minimal Standard Model. Nowadays, vz and vy are usually
included because of the evidence that the neutrinos have masses, and the model
including them is called the Extended Standard Model. The v and Ui can have
only interactions via so-called Yukawa couplings with the Higgs doublet, to which
we now turn.

The fermion-Higgs part of the lagrangian has terms of the form ({1¢)er +
er(¢'lr), and (qré)dg + dr(é'qr), which are gauge invariant. However, because
of (398), the field

b= iowd = ( %0 ) (405)
_¢u
also transforms like a doublet under SU(2), but with opposite hypercharge Y; =

—1 as compared with Y, = 1. So we may also consider (£1,0)ver + Ter(d'ly),
and (7.¢)ug + ur(otqr), since they are also gauge invariant. In addition to these
forms we have the possibility of coupling constants which mix generations, for
example couplings like (%, dr)¢sr and (g, dr)¢bg. Such generation mixing was
already possible in Lg, but we can always make transformations on the fields
such that Lr has the standard form (403), which is just a straightforward sum
over generations without mixing.
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The generation mixing is is most easily written down if we use a notation in
which we add a generation index to the fields of the first generation, such that

Ver, 1m» VrL

i = e H , 3= , 406
t

QL1:<Z£>> QL2=<Z>, QL3:<bi>, (407)

and similarly for the right-handed fields,

VRl = Ver, VR2 = VuR, VR3 = Vrr, €R1 = €R, €R2 = R, ", dr3 = bR.
(408)

Then the fermion—Higgs part of the lagrangian can be written as

Rt u, N d.l _ 7 u, _ d,
_EFH = (nggb)Fgg/ VRy + (Engb)Fgg/ €Rg’ + (ngQZ))Fgg/ung/ + (nggb)Fgg?ng’ + h.C.,
(409)
where h.c. means hermitian conjugate. The coupling constants F'“! Fdt [Fua
and F%? are matrices ‘in generation space’.
Finally, for the neutral fields vgr, and vp, we can still add Majorana mass
terms of the form

1 1
—Ly = §<_CTVR9)TM99/VR9/+§DRHM;9/<DRQ'C)T

1 1
= §V£CTM1/R + él/ETCM*I/E, (410)

where M = M7 is symmetric.
This completes our first introduction of the lagrangian (382) of the Extended
Standard Model.

11.5 Parameters, CKM matrix and Fermi constant

Apart from parameter e, which serves to set the cosmological constant to zero!!,
there is only one dimensional parameter in the Minimal Standard Model, u?,
whereas there are more in the extended model, x? and the matrix elements M, .
We shall first limit ourselves to the Minimal Standard Model (MSM), in which
the right-handed neutrino fields vz, and their conjugates v, are absent. Hence
the Majorana mass matrix M and Yukawa coupling matrix F'*‘ are then absent
too. Alternatively, we may include the vg, and Vg, in the MSM with M = 0
and F“* = 0. Then, without gravity the vg, and g, are simply free fields and
irrelevant for particle physics. With gravity they could have effects in cosmology.

Before going to discuss the values of the parameters in the MSM we need to
brush up the coupling matrices F'. These can be arbitray complex matrices, which

1Or, possibly, to the current tiny value of A = Qap, ~ 0.7 x 8.0992h% x 10747 GeV* ~
(2 x 1073 eV,
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seems to imply many parameters. However, we can still make field transforma-
tions to bring them into a more restricted standard form. The transformations

drg — Agg 4Ly URg — Z;g’ URg', ng - Zgg’ ng/, (411)
have the effect that
R N O A (412

Such transformations can be used to bring F*¢ into the standard form (cf. prob-
lem 2)

Ju 00
Fro=| 0 foo0 | >0, Fh=(Ph) s, (413)
0 0 f
where the diagonal elements f,, ..., f; and the eigenvalues of the hermitian F%¢

are real and positive, as in dicated by the > 0 sign, with six real parameters and
one phase (cf. problem 2). We could also have chosen a standard form in which
F? is diagonal and F'* hermitian and positive. This latter choice will be made
for the leptons, for which similar transformations can be carried out to bring F**
and F%! into the form

) fe 0 0
= (' >0, =0 g 0 | >0 (414)
0 0 f

This form is very convenient in the MSM for which F“* = 0.

We should mention here that the above transformations on the fermion fields
may influence the values of the parameters #;, #, and 63, through intricate quan-
tum effects called anomalies. The 6 parameters may have observable effects in
the quantum theory, although, as mentioned earlier, classically they are irrele-
vant because the Ly are total derivatives. They have no effect on propagators
or interaction vertices in Feynman diagrams. Nevertheless, they may have non-
perturbative effects. According to current understanding only 3 is observable.

The parameters of the MSM are now g1, g2, g3, A, fe, fu, frs fus [, fi, the
seven real parameters in F'%9, @3, and the dimensional 42 and e.

We have seen already that spontaneous symmetry breaking

<¢>E¢vac=%<g>, v =12/, (415)

leads to non-zero masses for the W, Z and Higgs bosons,

1
miy, = 5921}2, my =my/cosby, mi =2 ? tanby = g1/gs. (416)

61



and zero mass for the photons. The gluon fields also remain massless as they are
not coupled to the Higgs doublet. The couplings of the photon field A, and the
Z boson field to the fermions follow from

Ai = Z,cosby + A,sinby, B,=—Z,sinby + A, cosby, (417)

such that

Y e
91—Bﬂg21314i = eQA, +

5 (I3 — sin® Oy Q) Z,, (418)

cos By sin Oy

Y

Q = 13—1—5, e = gy cos By = go sin Oy . (419)
Substituting ¢ = ¢yac into the Yukawa-coupling part of the lagrangian results

in terms of the form ¥y miyr + h.c. = Yymyr + Yrmiy = 1ma), which are mass
terms for Dirac fields ¢ = vy, + g, with m = m' = Fv/v/2. So the fermions

also get their masses from spontaneous symmetry breaking,

1 1
Myg e =05 Myct = —=GuctVy, Meur = —=YJeurVs 420
e Vu,Vr ,Cot \/ﬁg ,Cot sy \/ﬁg sy ( )
with a mass matrix for the d, s, b quarks (cf. (409)),
- 1
(TLgPrac) Font drg +hic. = dgm ,dy,  m® = — v P, (421)

V2

The hermitian matrix F4? can be diagonalized by a unitrary transformation,

fa 0 0
Fa=v| 0 f, 0 |V (422)
0 0 f
so, on making the transformation
dg — ‘/gg’dg’a (423)

we obtain a diagonal mass matrix for the transformed fields,

nggg,dg/ — mgdd + ms5s + mybb, (424)

with .
Masp = —=Tdsp V- 425
d,s,b \/ﬁfd’ b ( )

The transformation (423) can be written in ‘up-down space’ as

Ug 1 0 Ug <1+03 1—o03 ) Ugr 4
= , ) 2
<d9>ﬁ<ovgg/><dg/> v (). )
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W

Figure 1: Diagram for the decay = — v, +e~ + ve.

Hence after the transformation the matrix V' pops up again in those quark parts

of the lagrangian that contain o; and o9, as these do not commute with o3. So

these involve the W fields

W= i), wr= L

7 \/5 I w/ I \/5

and the quark part of the W current. The interaction terms in the lagrangian of
the fermions with the W-boson field can be written as

(A}L + iAi), (427)

g2 . . _
Lrw — =W + MW7), 428
W 2\/5(] " J ,u) ( )
with
=g+ g, (429)
g = ey (1 —ys)ve + piy* (1 — vy5)v, + Ty (1 — v5) vy, (430)
J'S‘ = gy (1 — 75)Vygdy (431)
= Vwauin"(1 —y5)d + Vysuiy* (1 — 45)s + Vip wiy” (1 — ~5)b
+ VeaCi' (1 —s)d + - -, (432)

where we used the conventional notation V,;, = Vi1, Vs = Vo, etc. The unitary
matrix V is called the Cabbibo-Kobayashi-Maskawa (CKM) matrix. It contains
four real parameters: 7(F%?) —3(f4s5) = 4, and it can be parametrized in terms
of three angles 015, 023, 613 and a phase 6,52

Once we know the expectation value v, the diagonal Yukawa couplings f are
determined in terms of the fermion masses by f = v/2m/v. The value of v can
be found from the mass and lifetime of the muon, which is unstable through the
decay = — v, +e” + 1, as illustrated by the Feynman diagram in figure 1. The

12See the website of the Particle Data Group, http://pdg.lbl.gov.
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invariant amplitude for the decay can be written as

2
g Y i
M = (ﬁ) <pe)\eapl75|.7 T|0> Dl‘j{/<k> <qu‘jéL‘p“)\“>’ k= Pp = Puys <433)

where the \’s are spin labels (e.g. for the electron and muon it is the z component
of the spin in rest frame of the particles, the massless neutrinos have only one

spin polarization in the MSM), and DZZ is the W propagator
w _ 77,ul/ - k,ukl//m%/l/
D, (k)= (434)

k2 +m32, —ie

Actually, the momentum transfer £ is only of the order of the muon mass m, =
106 MeV, which is much smaller than the W mass my, = 80.4 GeV. So we may
approximate

W o v
Duu(k) ~ m%}y’ (435)

and under such circumstances the effective Fermi interaction

Gr ., .+ Gp e\ 1 1
Loy — — jHit == = [ )] —— = — 436
FW \/ﬁj ];p \/ﬁ (2\/§ %V 2,027 ( )

parametrized in terms of the Fermi constant G, gives an accurate description
of the weak interactions with charged currents. There is a corresponding form
involving neutral currents, obtained by making an approximation similar to (435)
for the Z boson, which is even heavier than the W boson.

The decay rate turns out to be accurately given by neglecting also the electron
mass m, = 0.511 MeV (see e.g. Veltman’s book ‘Diagrammatica’),

2
GF 5

Uk 4
10272 H (437)

I'(p — vyer.) =

The observed lifetime T~ of 2.197 x 107% sec. and muon mass m, = 105.66
MeV give G = 1.164 x 107° GeV 2. Including higher order corrections leads to
Gr =1.166 x 107° GeV~2, and correspondingly v = 246 GeV.

The Yukawa couplings follow now from the ratio of fermion masses with v,
f=v2m #/v. The fermion masses vary over five orders of magnitude,

me = 0.000511, m, = 0.106, m, = 1.78, (438)
m, ~ 0.003, my =~ 0.006, ms~0.1, m.x~13, my=x41, my~175,

in GeV units, and so the Yukawa couplings vary from f, = 0.29x 1075 to f; = 1.0.
The elements of the CKM matrix V' are currently under active experimental
scrutiny, and some of them are known already to considerable precision.
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The ratios of the masses myy = 80.4 GeV and myz = 91.2 GeV with v deter-
mine the gauge couplings g; and g¢s,

2m,,
go = T _ 0.65, g1 = gatan by = gon/m%/m%, — 1 = 0.35, (439)

()

with sin® Oy = 1 — m¥,/m% = 0.22. The implied value for e = g; cos Oy = 0.31
is close to the experimental value e = v4ra = (/47/137 = 0.30. Taking into
account higher order corrections in perturbation theory has led to surprisingly
accurate agreement with all experimental results so far, see http://pdg.lbl.gov.
They are so accurate that the mass of the Higgs boson, which has currently not
yet been found, can be bounded to be lower than about 230 GeV (90% confidence
limit), see http://pdg.1bl.gov.

There is good evidence for neutrino oscillations, which implies that the neutri-
nos are massive. The experimental results can be incorporated in the Extended
Standard Model (ESM), which includes the fields vg and vg, together with the
Yukawa coupling matrix F** and the Majorana mass matrix M. These consti-
tute many more parameters which are very hard to determine. Luckily, their
influence on much of particle physics is very limited, because the neutrino masses
are so small. On the other hand, they also break symmetries and may very well
have important cosmological consequences.

11.6 Global symmetries

Apart from the local invariance related to gauge-field dynamics, the lagrangian
may also be invariant under global (space-time independent) symmetry transfor-
mations. The MSM lagrangian is invariant under

qrg — € qrg, Ury — € “upgy, dgy — €*dgy,  (baryon number B)(440)

lrg — €0y, ery — €“er,  (lepton number L,)(441)

with the complex conjugate transformation for the conjugate fields. In parenthe-
sis we have indicated the conserved quantities as a consequence of the Noether
theorem. The conserved quantities are given by

1
B = / 1 (g} garg + ulhyung + dlyydry) (442)
g
L, = /d?’:v (ETLgELg + ekgeRg), (443)
where the factor 1/3 is inserted because there are three quarks in a baryon (with-
out it we would speak of quark number). Note that because of generation mixing

there is only one conserved baryon number and there are three conserved lepton
numbers.
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The situation is actually more complicated because of the anomaly phe-
nomenon. It turns out that in principle the sum B + >3, L, is not coserved
because of an anomaly, although at energies substantially below the W mass
the B violation is negligible. However, this anomaly plays an important role in
theories of baryogenesis.

In the ESM all three lepton number symmetries are broken on the lagrangian
level.

Last but not least, without going into details we mention that the MSM and
ESM are not invariant under C' (charge conjugation) and P (parity). The MSM is
almost invariant under the product C'P: it is broken by the fact that with three or
more generations, the CKM matrix, or equivalently, the matrix F%9 is necessarily
complex. The ESM has the possibility of additional C'P breaking in the F** and
M. The CP violation may be a driving mechanism for baryogenesis. Finally,
any local lagrangian £ that is Lorentz and translation invariant, and hermitian,
is invariant under the product CPT of C', P and T' (time reversal).

11.7 QED and QCD

In the approximation that neglects 1/my. 2 i effects altogether, we can delete the
W, Z and Higgs fields from the MSM lagrangian. This gives the lagrangian for
quantum electrodynamics (QED) plus quantum chromodynamics (QCD). The
free fermion action contains all the (generation-diagonal) mass terms found so
far,

Llree — e,(Y*0, + mi)ey + Uiy (70, + m™)uy + dg (70, + md)dg (444)

with an implied sum over all generations, as before. The interaction with the
fermions has the form

e.jgmA,u + g3jgcolorGZ7 (445)
with
Jbm = €y Qey + Uy iy Quy + Jg iy Qdy, (446)
. | -, 1
J;: color — Ug 17“5)‘p ug +dg Wﬂé)‘p dy. (447)

Note that 5 has dropped out of the lagrangian. This corresponds to the fact
that QED and QCD are invariant under C' and P separately, as well as under 7.

11.8 Further problems
1. Verify that Ly, is a total derivative.

2. An arbitray non-singular matrix M can be written in polar decomposition
form

M=PU P=P' >0 U =U" (448)
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where > 0 means that it is a positive matrix, i.e. any ‘expectation value’
c'Pc > 0. We can define P by P = v MM?' and then find U as U = M P!,
A hermitian matrix can be diagonalized by a unitary transformation, P =
VDV, where D is diagonal and VTV = 1. How would you take the square
root to compute P?

Verify (413).
Verify that F4