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Student seminar theoretical physics 2001/02

1 Conventions

The following conventions will be used:

- h̄ = c = kB = 1. 1 GeV−1 = 1.9733 × 10−14 cm = 6.5822 × 10−25 sec.
1 GeV = 1.1606 × 1013 K.

- Minkowski metric

xµ = ηµνx
ν , η11 = η22 = η33 = −η00 = 1, (1)

x0 = −x0, xk = xk, k = 1, 2, 3, (2)

x2 = xµx
µ, (3)

∂µ =
∂

∂xµ
. (4)

- Electrodynamics

Fµν = ∂µAν − ∂νAµ, Ek = F 0k, Bk =
1

2
εklmFlm. (5)

- Geometrodynamics (as in Misner, Thorne & Wheeler)

ds2 = gµνdx
µdxν, (6)

gµνg
νρ = δρµ, (7)

Vµ = gµνV
ν, V µ = gµνVν, gµν = g µ

ν = δµν , (8)

Γαβµ =
1

2
gαρ(∂µgρβ + ∂βgρµ − ∂ρgβµ), (9)

DµV
α = ∂µV

α + ΓαβµV
β, DµWα = ∂µWα −WβΓ

β
αµ, (10)

Rα
βµν = ∂µΓ

α
βν + ΓαγµΓ

γ
βν − (µ↔ ν), (11)

Rβν = Rα
βαν , (12)

R = gµνRµν , (13)

g = det ĝ, ĝ ≡ matrix (gµν). (14)

-

The definition of the covariant derivative Dµ in terms of the connection Γαβµ
appears to be the same for everyone, hence also the relation between the con-
nection and the metric gµν . Weinberg has the same sign of metric, but opposite
sign of Riemann tensor Rα

βµν , hence also opposite sign of Ricci tensor Rµν and
scalar curvature R; he defines g as minus the determinant of the metric. Kolb &
Turner and also Peacock have the opposite sign of metric. We shall denote (with
Garcia-Bellido) the scale factor by a(t) (Weinberg, Kolb & Turner and Peacock
use R(t), Peacock defines a(t) = R(t)/R(t0)).
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- Our Dirac matrices satisfy {γµ, γν} = 2ηµν, γ0 = −γ0, γ†0 = −γ0, γ
†
k = γk,

γ5 = iγ0γ1γ2γ3 = γ†5, β = iγ0, αk = −γ0γk. Furthermore, ψ̄ ≡ ψ†β and
the charge-conjugation matrix C has the properties C = −CT , C† = C−1,
γTµ = −C†γµC. The charge conjugates of ψ and ψ̄ are ψ(c) = (ψ̄C)T and

ψ̄(c) = −(C†ψ)T .
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2 Special Relativity, Electrodynamics

The action for the electromagnetic field Aµ(x) coupled to a current jµ(x) is given
by

SA =
∫

d4x
(

−1

4
FµνF

µν + jµAµ

)

, (15)

where the integration is over some compact region in spacetime. The action for
a system of point particles with masses mα, α = 1, 2, · · ·, following trajectories
zµα(t), is given by

Sm = −
∑

α

mα

∫

dt
√

−żµα żαµ, żµα =
d

dt
zµα, z0

α = t. (16)

If the particles have electric charges qα, their electromagnetic current is given by

jµ(x) =
∑

α

qα

∫

dt żµα(t) δ
4(x− zα(t)). (17)

N.B. here t is a dummy integration variable, t 6= x0. The electrodynamic action
of the coupled particle-field system is given by

S = SA + Sm, (18)

with the above expression for the current (17).
Consider variations δAµ and δzµα, which vanish at the boundary of the in-

tegration region in the expression for the action. The variation of the action,
δS = S[A+ δA, z + δz]− S[A, z] to first order in δAµ and δzµα, can be written in
the form

δS =
∫

d4xCµ(x)δAµ(x) +
∑

α

∫

dt Cαµ(t)δz
µ
α(t) +O(δA2, δz2), (19)

where partial integration has been used to remove differentiations of δA and
δz. By definition, the coefficients C are the functional derivatives of S, usually
denoted as δS/δAµ(x) = Cµ(x) and δS/δzµα(t) = Cαµ(t).
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a. Verify

δS

δAν
= ∂µF

µν + jν, (20)

δS

δzµα
= −mα

d

dt





żαµ
√

−ż2
α



+ qαż
ν
αFµν . (21)

Setting these to zero gives the electrodynamic equations of motion.

1The variation of a function f(z) of one variable z is simply δf(z) = (df(z)/dz)δz. The
variation of a function of many variables zk is δf(z) =

∑

k(∂f(z)/∂zk)δzk. In case of continuous
labels, e.g. k = 1, 2, · · · → t ∈ (−∞,∞), we get a functional f [z], and the variational derivative
is the generalization of the partial derivative, δf [z] =

∫

dt (δf [z]/δz(t))δz(t).
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b. Express the particle equations of motion (after calculating δS/δzµα(t)) in
terms of the propertimes defined by

dτα =
√

−żµα żαµ dt, (22)

and the four-velocities

uµα =
żµα

√

−żµα żαµ
=
dzµα
dτα

. (23)

Note that u2 = −1 and that the four-momentum of a particle is defined as

pµ = m
dzµ

dτ
, (24)

with the property p2 = −m2.

c. Express S in terms of the propertimes and verify that it is Lorentz invariant:

S[A′, z′] = S[A, z], (25)

where A′
µ and z′µα are the Lorentz transforms of Aµ and zµα,

x′µ = `µνx
ν, x′2 = x2, det ˆ̀= 1, (26)

A′
µ(x

′) = ` ν
µ Aν(x) (or A′

µ(x) = ` νµ Aν(`
−1x)), (27)

z′µα (t′) = `µνz
ν
α(t). (28)

3 General Relativity, Geometrodynamics

The action for the gravitational field coupled to a set of point particles with
masses mα, α = 1, 2, · · ·, following trajectories zµα(t), is given by

S = Sg + Sm, (29)

Sg =
∫

d4x
√
−g 1

16πG
(R− 2Λ), (30)

Sm = −
∑

α

mα

∫

dt
√

−gµν(zα)żµα żνα, żµα =
d

dt
zµα, z0

α(t) = t. (31)

Here G is Newton’s constant and Λ is the cosmological constant.

a. Consider variations δgµν , which are zero on the boundary of the integration
region in the expression for the action. The energy-momentum tensor is
defined by

T µν(x) ≡ 2√−g
δSm

δgµν(x)
. (32)
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Verify that

T µν(x) =
1

√

−g(x)
∑

α

mα

∫

dt δ4(x− zα(t))
żµα(t)ż

ν
α(t)

√

−żλα(t)żαλ(t)
, (33)

b. Express T µν in terms of the propertimes τα, related to t by

dτα = dt

√

−gµν(z(t))
dzµα

dt

dzνα
dt
. (34)

Recall that the fourmomentum of a particle is given by

pµα = mαu
µ
α. (35)

Verify that

T µν(x) =
1

√

−g(x)
∑

α

∫

dτ δ4(x− zα(τ))
pµα(τ)p

ν
α(τ)

mα
. (36)

Now verify the following result

16πG√−g
δS

δgµν(x)
= −Rµν +

1

2
gµνR− Λgµν + 8πGT µν, (37)

in steps (cf. Weinberg):

c1.

δ
√−g =

1

2

√−g gµνδgµν (38)

(hint: recall Cramer’s formula for the inverse of a matrix, i.e.
gακ = 1

g
1
3!
εαβγδεκλµνgβλgγµgδν , and εαβγδ g = εκλµνgακgβλgγµgδν);

c2.
δgµν = −gµαgβνδgαβ (39)

(hint: use ĝĝ−1 = 1);

c3.

δΓαβµ =
1

2
gαρ(Dµδgρβ +Dβδgρµ −Dρδgβµ), (40)

which implies that δΓαβµ is a tensor;

c4.
δRβν = DαδΓ

α
βν −DνδΓ

α
αβ, (41)

Palatini’s identity;
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c5.
Dµgαβ = 0, (42)

the metric tensor is covariantly constant;

c6.

Γααµ =
1

2
gαβ∂µgαβ (=

1

2
Tr ĝ−1∂µĝ =

1

2
∂µTr ln ĝ); (43)

c7. the covariant divergence: for any vector field V µ,

DµV
µ =

1√−g ∂µ(
√−gV µ); (44)

c8. putting things together,

√−g gβνδRβν = ∂α(
√−ggβνδΓαβν) − ∂ν(

√−ggβνδΓααβ); (45)

c9. finally,

δSg =
1

16πG

∫

d4x [(R− 2Λ)δ
√−g +

√−g Rµνδg
µν

+ surface terms], (46)

where the surface terms are zero, gives (37).

Setting the left hand side of (37) to zero we get the Einstein equations.

d. By varying the action as a functional of zµα, find the equation of motion for
particle α.

e. Express this equation in terms of the propertime τα. The result is the
geodesic equation (see e.g. Weinberg Sect. 3.3):

d2zµα
dτα

+ Γµρσ(zα)
dzρα
dτα

dzσα
dτα

= 0. (47)

4 General coordinate invariance

The gravitational action is invariant (a scalar) under general coordinate trans-
formations which reduce to the identity at the boundary of the spacetime in-
tegration. For the action (29) this means S[g′, z′] = S[g, z], where g′µν and z′µα
are the transformed metric and particle trajectories. Under a general coordinate
transformation x′µ = fµ(x) the metric transforms as

g′µν(x
′) =

∂xκ

∂x′µ
∂xλ

∂x′ν
gκλ(x). (48)

5



Consider an infinitesimal transformation

x′µ = xµ + εµ(x), (49)

with infinitesimal εµ(x). Its effect on the metric may be interpreted as a variation,

δgµν(x) = g′µν(x) − gµν(x), (50)

i.e.
δgµν = −∂µεαgαν − ∂νε

αgµα − εα∂αgµν. (51)

The action Sg is invariant under such variations of gµν , δSg/δε
µ = 0.

a. Use the invariance of Sg for arbitrary εµ(x) to show that

Dµ(R
µν − 1

2
gµνR + Λgµν) = 0. (52)

For Λ = 0 these equations are known as the contracted Bianchi identi-
ties. From the Einstein equations now also follows the covariant energy-
momentum conservation law, DµT

µν = 0.

5 Friedmann-Lemaitre-Robertson-Walker Met-

ric

The Robertson-Walker metric is given by (x0, x1, x2, x3) = (t, r, θ, φ),

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

, (53)

where a(t) is the scale factor and k = −1, 0 or 1, for a universe that has negative,
zero or positive spatial curvature, respectively.

The spatial part of the metric, gmn, describes a homogeneous and isotropic
space of constant scalar curvature 3R, the sign of 3R is equal to k. We shall get
a feeling for this in the following exercises.

a. For k = 0 we have flat space R3.

b. The three-sphere S3 can be defined as the collection of points in R4 satis-
fying X2

1 + X2
2 + X2

3 + X2
4 = a2; a is called its radius. This space can be

described by intrinsic coordinates (χ, θ, φ) such that

X1 = a sinχ sin θ cosφ, X2 = a sinχ sin θ sinφ,

X3 = a sinχ cos θ, X4 = a cosχ. (54)

Obtain the metric of this three-sphere in terms of (χ, θ, φ) and specify the
domain of the coordinates (χ, θ, φ).
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Another coordinate system is (r, θ, φ) such that r = sinχ. Verify that this
corresponds to the spatial part of the RW metric for k = 1 and give the
domain of r.

c. The hyperbolic space H3 can be defined by X2
1 + X2

2 + X2
3 − X2

4 = −a2.
We get the corresponding metric from the S3 metric by the substitution
χ→ iχ, a→ −ia.
Give the metric, the domain of coordinates and verify that it corresponds
to RW with k = −1.

d. Let V (l) be the volume within geodesic distance l from the origin. There is
a general formula for V (l) in d-dimensional space with euclidean signature,
for small l:

V (l) =
πd/2

Γ(d/2 + 1)
ld
[

1 −
dR

6(d+ 2)
l2 +O(l4)

]

, (55)

where dR is the scalar curvature at the origin and Γ is the usual factorial
function.

Use this formula to calculate 3R for the spatial RW metric.

It can be shown (see e.g. Weinberg) that the spatial Riemann tensor is given
by

3Rbcmn =
k

a2
(gbmgcn − gbngcm). (56)

This can be verified by (cumbersome) direct calculation. The tensor struc-
ture of this relation is a consequence of the isotropy and homogeneity of
the RW spaces. Given (56), 3Rmn and 3R follow by contraction with gmn.

Verify that this gives the same 3R as found from (55).

e. Derive the red shift relation 1 + z ≡ λ0/λ1 = a0/a1 (λ0 ↔ detection,
λ1 ↔ emmision, cf. Kolb and Turner sect. 2.3, Weinberg sect. 14.3).

Derive Hubble’s law

H0dL = z +
1

2
(1 − q0)z

2 + · · · , (57)

where dL = a0r1(1 + z) is the luminosity distance, H = ȧ/a (ȧ ≡ da/dt) is
the Hubble rate and q = −(ä/ȧ)(a/ȧ) the deceleration (cf. Kolb and Turner
sect. 2.3, Weinberg sect. 14.4). The subscript 0 indicates the current epoch,
i.e. a0 is the scale factor ‘now’.

The Einstein equations for the RW metric can be obtained by going through the
following steps.
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f. Verify that the non-zero components of the connection Γκλµ involving at
least one time-like index are given by

Γ0
lm =

ȧ

a
glm, (58)

Γkl0 =
ȧ

a
δkl . (59)

g. Verify that the non-zero components of the Ricci tensor Rµν and the scalar
curvature R are given by

R00 = −3
ä

a
, (60)

Rmn =

(

2ȧ2

a2
+
ä

a
+

2k

a2

)

gmn, (61)

R = 6

(

ä

a
+
ȧ2

a2
+

k

a2

)

. (62)

h. Write down the Einstein equations for the RW metric, separately for (µ, ν) =
(0, 0), (0, n) and (m,n).

i. In section 3 we derived the geodesic equation of motion (47) for massive
particles,

duµ

dτ
+ Γµρσ(z)u

ρuσ = 0, uµ =
dzµ

dτ
. (63)

Specialize to the RW form of the metric and show that |u| defined by

|u| ≡
√

gijuiuj is proportional to 1/a. (Hint: use the µ = 0 equation,

gµνu
µuν = −1 and u0 = dt/dτ .) It follows that the magnitude of the three

momentum of a freely propagating particle ‘red shifts’ as a−1 (see Kolb and
Turner sect. 2.2).

6 Friedmann and Einstein equations

The energy-momentum tensor of an ideal fluid is characterized by a local four-
velocity field uµ(x), energy density ρ(x) and pressure p(x). The general form of
T µν is then a linear combination of uµuν and gµν,

T µν = (ρ+ p)uµuν + pgµν. (64)

Examining this expression in a comoving (uµ(x) = δµ0 ), local Lorentz (gµν = ηµν)
frame shows that ρ is indeed the energy density and p the pressure: T 00 = ρ,
Tmn = pδmn.
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a. Show that for the RW metric DµT
µν = 0 is equivalent to

∂0(ρa
3) = −p∂0(a

3) (65)

which is analogous to the first law of equilibrium thermodynamics. As an
intermediate step one may derive eq. (5.4.3) in Weinberg:

DµT
µν =

1√−g∂µ[
√
−g(ρ+ p)uµuν] + gµν∂µp+ Γνµλ(ρ + p)uµuλ. (66)

b. Show that the Einstein equations reduce to

3
ȧ2

a2
+ 3

k

a2
− Λ = 8πGρ, (67)

−2
ä

a
− ȧ2

a2
− k

a2
+ Λ = 8πGp. (68)

The first is called the Friedmann equation. The cosmological constant can
be absorbed in ρ and p via ρ→ ρ+ Λ/8πG, p→ p− Λ/8πG.

Verify that these equations are consistent with (65).

c. Find an expression for the expansion age of a matter dominated universe in
terms of ΩM0 < 1 and H0. Do the same for a flat universe Ω0 = ΩM0+ΩΛ0 =
1 (cf. eq. (3.63) in Peacock, and/or eqs. (57) and (58) in Garcia-Bellido).

7 Equilibrium Thermodynamics and Particle Dis-

tribution Functions

The cosmological energy-momentum tensor can be modeled as an ideal fluid
corresponding to particles in local equilibrium. In a first approximation the
equilibrium properties are evaluated within special relativity. In Minkowsky
space the particles of a given species are described by a distribution function
f(x,p), such that

gf(x,p)
d3p

(2π)3
(69)

is the average density (number of particles per unit volume) of particles with
momentum in d3p around p at x and time x0; here g represents the internal
degrees of freedom of the particle. For example, g = 2 for the photon, which has
two independent spin states.
The density of the particles is given by

n(x) = g
∫

d3p

(2π)3
f(x,p). (70)
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The energy density is

ρ(x) = g
∫

d3p

(2π)3
f(x,p)E(p), E(p) =

√

p2 +m2 = p0, (71)

with m the mass of the particles.
To find the expression for the full energy-momentum tensor, we consider its

expression for a system of point particles found earlier in sect. 3,

T µν(x) =
1

√

−g(x)
∑

α

∫

dt
√

−żλα(t)żαλ(t) δ4(x− zα(t))
pµα(t)p

ν
α(t)

mα
, (72)

where pµα = mαż
µ
α/
√

−żλαżλα = mαdz
µ
α/dτα, z

0
α = t. Note that the dummy t is

not equal to x0. Specializing to the Minkowsky spacetime and particles of one
species, this can be written in the form

T µν(x) = g
∫

d3p

(2π)3
f(x,p)

pµpν

E(p)
, (73)

gf(x,p) =
∑

α

δ3(x − zα(x
0)) (2π)3δ3(p − pα(x

0)). (74)

a. Show that (73,74) is compatible with (72). From this example we conclude
that in the Minkowsky case the correct expression for T µν(x) in terms of a
general f(x,p) is given by

T µν(x) = g
∫

d3p

(2π)3
f(x,p)

pµpν

E(p)
. (75)

c. Show that the pressure can be written as

p(x) = g
∫

d3p

(2π)3
f(x,p)

p2

3E(p)
. (76)

Let the equilibrium distribution function be given by

f(p) = [exp(E(p) − µ)/T ) ∓ 1]−1, (77)

where µ is the chemical potential and the upper sign is for bosons, which obey
Bose-Einstein (BE) statistics, the lower sign for fermions, which obey Fermi-Dirac
(FD) statistics.

d. Show that for T � m (nonrelativistic limit),

n = g
(

mT

2π

)3/2

exp[−(m− µ)/T ], (78)

ρ = nm, (79)

p = nT � ρ. (80)
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e. Show that for T � m (relativistic limit),

n =
g

2π2
T 3
∫ ∞

0
dx

x2

ex−µ̃ ∓ 1
, µ̃ ≡ µ

T
, (81)

ρ =
g

2π2
T 4
∫ ∞

0
dx

x3

ex−µ̃ ∓ 1
, (82)

p =
1

3
ρ. (83)

f. By expanding the denominators in exp(−x), show that
∫ ∞

0
dx

xn

ex − 1
= n! ζ(n+ 1), (84)

∫ ∞

0
dx

xn

ex + 1
= n! (1 − 2−n)ζ(n+ 1), (85)

where ζ(n) is the Riemann zeta function,

ζ(n) =
∞
∑

k=1

1

kn
. (86)

We have ζ(2) = π2/6, ζ(3) = 1.202 . . ., ζ(4) = π4/90.

g. Show that for T � m,µ,

n =
ζ(3)

π2
gT 3, BE, (87)

=
3

4

ζ(3)

π2
gT 3, FD, (88)

ρ =
π2

30
gT 4, BE, (89)

=
7

8

π2

30
gT 4, FD. (90)

h. Show that for degenerate relativistic fermions (T � m, µ� T ),

n =
1

6π2
gµ3, (91)

ρ =
1

8π2
gµ4. (92)

i. For fermions, let + denote particles and − antiparticles. Assume µ+ =
−µ−. Show that

n+ − n− =
1

6π2
gT 3

(

π2 µ

T
+
µ3

T 3

)

, T � m, (93)

= 2g
(

mT

2π

)3/2

sinh
(

µ

T

)

exp
(

−m
T

)

, T � m, (94)

where µ = µ+.
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j. Assume a radiation dominated universe, writing

ρ = 3p =
π2

30
g∗T

4, (95)

where g∗ is an effective number of degrees of freedom,

g∗ =
∑

i=bosons

gi

(

Ti
T

)4

+
7

8

∑

i=fermions

gi

(

Ti
T

)4

. (96)

Verify that the Einstein equations determine the Hubble rate and cosmic
time as

H = 0.331
√
g∗

T 2

mP
, (97)

t =
1.510
√
g∗

mP

T 2
, (98)

where mP = (8πG)−1/2 = 2.436 × 1018 GeV is the Planck mass. (N.B.
Another definition commonly used is mP = G−1/2 = 1.221 × 1019 GeV).
Note that a ∝ t1/2.
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8 Quantum fields

This section contains an introduction to quantum field theory. We start with the
scalar field.

8.1 Quantized scalar field

We start in a general geometry described by a metric gµν. A typical action for a
scalar field φ is given by

S = −
∫

d4x
√−g

[

1

2
gµν∂µφ∂νφ+ V (φ)

]

, (99)

V (φ) =
1

2
κ0φ

2 +
1

4
λ0φ

4 + ε0. (100)

The role of the parameters κ0, λ0 and ε0 will become clear in the following. The
action is dimensionless (in h̄ = c = 1 units), so the dimension of ϕ, κ0, λ0 and ε0
is -1, -2, 0 and -4, in length units, respectively, or equivalently in mass units: 1,
2, 0 and 4.

a. Verify this. Note that ε0 (more precisely 8πGε0) is a contribution to the
cosmological constant.

The energy-momentum tensor for the field is given by

T µν =
2√−g

δS

δgµν
= ∂µφ∂νφ− gµν

[

1

2
∂κφ∂

κφ+ V (φ)
]

. (101)

b. Verify this.

We now specialize to Minkowski space, with metric ηµν . The action can be written
as (x0 = t)

S =
∫

dt L, L =
∫

d3x
[

1

2
φ̇2 − V (φ) − 1

2
∂kφ∂kφ

]

, (102)

where the dot denotes ∂/∂t. This looks like a sum of systems, one for each
x, which are coupled by the spatial gradient term. The canonical momentum
conjugate to φ is given by

π(x, t) =
δL

δφ̇(x)
= φ̇(x, t), (103)

and the hamiltonian

H =
∫

d3x πφ̇− L, (104)

=
∫

d3x
[

1

2
π2 + V (φ) +

1

2
∂kφ∂kφ

]

. (105)
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c. Verify that the total energy and total momentum in the field is given by

P 0 ≡
∫

d3x T 00 = H, (106)

P k ≡
∫

d3x T 0k = −
∫

d3x π∂kφ. (107)

We now quantize the theory by replacing ϕ and π by operators ϕ and π in
Hilbert space such that the basic Poisson brackets correspond to commutators,
say at t = 0,

[ϕ(x), π(y)] = iδ3(x − y), [ϕ(x), ϕ(y)] = [π(x), π(y)] = 0. (108)

These are called the canonical commutation relations. In the Heisenberg picture
(where the operators are time dependent) they are supposed to hold at equal
times. The above relations are a straightforward generalization of the case of
discretely many variables. One realization of the commutation relations is the
coordinate representation:

ϕ(x) → multiplication by ϕ(x), π(x) → δ

iδϕ(x)
, (109)

acting on Schrödinger wave functionals ψ[ϕ]. This realization is basic to the
path integral approach. We shall follow another approach which is geared to the
particle interpretation of the quantized field.

It turns out, after quantization, that the parameters in the action are not the
parameters used for parametrizing physical quantities, such as scattering cross
sections or even the classical field equations in a classical approximation to the
quantum theory. This is the reason why the starting parameters in the quantum
theory have the subscript 0: ε0, κ0, λ0. They are called the bare parameters. The
physically more relevant quantities are then denoted by ε, κ and λ, and are called
the renormalized (or dressed) parameters. In perturbation theory (expansion in
λ) one finds

λ0 = λ+O(λ2), κ0 = κ+O(λ), ε0 = ε+O(1). (110)

A related aspect has to do with the fact that fields represent an infinite number of
degrees of freedom, which easily leads to divergent integrals in perturbation the-
ory. It turns out that such divergencies can be absorbed in the bare parameters,
such that the renormalized ones come out finite. We shall see in the following
how this works in specific examples.

8.2 Free field

For λ0 = 0 the hamiltonian is quadratic in the canonical variables. This is called
the free theory, because it is equivalent to a collection of harmonic oscillators,

14



as will now be shown by going over to ‘momentum space’. To simplify the pre-
sentation we first assume only one spatial dimension. Afterwards, we can easily
generalize back to three spatial dimensions. We furthermore assume space to be
a circle with circumference L, i.e. 0 ≤ x ≤ L with periodic boundary conditions
at 0, L and

∫

dx =
∫ L
0 dx. We expand the fields at time t = 0 in Fourier modes,

ϕ(x) =
1√
L

∑

p

eipx ϕ̃p, π(x) =
1√
L

∑

p

eipx π̃p, (111)

ϕ̃p =
1√
L

∫ L

0
dx e−ipx ϕ(x), π̃p =

1√
L

∫ L

0
dx e−ipx π(x), (112)

where p = 2πn/L, n = 0,±1,±2, · · ·. The modes are eigenfunctions of the
gradient operator ∂/∂x with periodic boundary conditions. Since the fields are
hermitian, ϕ†(x) = ϕ(x), the Fourier components satisfy the relations

ϕ̃†
p = ϕ̃−p, π̃†

p = π̃−p. (113)

The hamiltonian and the momentum operator are diagonal in this representation:

H =
∑

p

1

2
[π̃†
pπ̃p + (p2 + κ)ϕ̃†

pϕ̃p] + ε0L, (114)

P = −
∑

p

π̃†
pϕ̃pip. (115)

Notice that we have replaced ε by ε0, in accordance with (110). Furthermore,
for free fields κ0 = κ. The hamiltonian looks like that of a sum of harmonic
oscillators with frequencies

ωp =
√

p2 +m2, m2 = κ, (116)

where we have chosen κ > 0. As in the case of the harmonic oscillator, it is very
useful to introduce creation and annihilation operators, a†p and ap, one for each
mode:

ap =
1√
2ωp

(ωpϕ̃p + iπ̃p), a†p =
1√
2ωp

(ωpϕ̃−p − iπ̃−p), (117)

ϕ̃p =
1√
2ωp

(ap + a†−p), π̃p =
1√
2ωp

(−iωpap + iωpa
†
−p), (118)

where we used (113). The creation and annihilation operators satisfy the com-
mutation relations

[ap, a
†
q] = δpq, [ap, aq] = [a†p, a

†
q] = 0. (119)

The hamiltonian and the momentum operator can now be written in the form

H =
∑

p

1

2
(a†pap + apa

†
p)ωp + ε0L =

∑

p

(a†pap +
1

2
)ωp + ε0L, (120)

P =
∑

p

a†pap p. (121)
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We see that the hamiltonian is just that of a sum of independent harmonic oscil-
lators. The simultaneous eigenstates of H and P are obtained from the ground
state |0〉 satisfying

ap|0〉 = 0, 〈0|0〉 = 1, (122)

by application of the creation operators,

|{np}〉 =
∏

p

(a†p)
np

√

np!
|0〉, (123)

with the occupation numbers np = 0, 1, · · ·. All eigenstates are normalized to 1.
The eigenvalues are given by

H|{np}〉 = (E0 +
∑

p

npωp)|{np}〉, E0 = ε0L+
∑

p

1

2
ωp, (124)

P |{np}〉 = (
∑

p

np p)|{np}〉. (125)

Consider now the ground state energy density:

ε ≡ E0

L
= ε0 +

1

L

∑

p

1

2
ωp (126)

→ ε0 +
∫ ∞

−∞

dp

2π

1

2

√

p2 +m2, L→ ∞. (127)

The integral in the last line is the limit of a Riemann sum:

1

L

∑

p

F (p) =
1

2π

∑

p

∆p F (p) →
∫ ∞

−∞

dp

2π
F (p), ∆p =

2π

L
. (128)

The ground state energy as written is infinite, because the integral diverges at
large p. The reason is that we are dealing with an infinite number of degrees of
freedom. However, we can absorb this infinity in ε0, such that ε is finite. We
come back to this shortly.

We now generalize to three spatial dimensions. Let us choose ε0 such that
ε = 0. Then we can summarize as follows:

ϕ(x) =
∑

p



ap

eipx

√

2ωpL3
+ a†

p

e−ipx

√

2ωpL3



 , (129)

π(x) =
∑

p



−iωpap

eipx

√

2ωpL3
+ iωpa

†
p

e−ipx

√

2ωpL3



 , (130)

[ap, a
†
q
] = δp,q, [ap, aq] = [a†

p
, a†

q
] = 0, (131)

P µ =
∑

p

a†
p
ap p

µ, P 0 = H, p0 = ωp =
√

p2 +m2, (132)

P µ|0〉 = 0, P µ|p〉 = pµ|p〉, |p〉 ≡ a†
p
|0〉 = |1p〉, (133)

P µ|p1p2〉 = (pµ1 + pµ2)|p1p2〉, |p1p2〉 ≡ a†
p1
a†
p2
|0〉, (134)
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etc. In (133) we used the convention that only non-zero occupation numbers are
shown in the ket.

The interpretation of the scalar field model in terms of a collection of free
particles is very suggestive. The ground state |0〉 is interpreted as representing
the vacuum. The one particle state |p〉 is the state with np = 1 and all other
nq = 0, q 6= p. The mass of the particles is m =

√
κ. Their spin is zero since

their is no further index besides p to indicate a spin degree of freedom. More
formally, it can be shown that a particle state at rest (p = 0) is invariant under
rotations, so its total angular momentum is identically zero and the particles are
spinless.

The two particle state2 |p1p2〉 is symmetric in the interchange of the labels
p1 and p2: the particles are bosons.

8.3 Renormalization of the cosmological constant

We now return to the energy density in the groundstate, ε. It is the vacuum
expectation value of T 00. Calculating the expectation value of the full energy-
momentum tensor gives in the infinite volume limit

〈0|T µν(x)|0〉 = −ε0ηµν +
∫

dωp p
µpν , (135)

where we introduced the notation

dωp ≡
d3p

(2π)32p0
. (136)

Apart from conveniently absorbing numerical factors, this volume element of
integration has the important property that it is Lorentz invariant (cf. Problem
1.1):

dω`p = dωp. (137)

It follows that the integral should be an invariant tensor under Lorentz transfor-
mations, hence proportional to ηµν :

〈0|T µν(x)|0〉 = −εηµν . (138)

We can now interpret ε as the true contribution to the cosmological constant,
while ε0 is just a parameter in the action. In standard jargon, 8πGε is the
renormalized (or dressed) cosmological constant, and 8πGε0 the bare cosmological
constant.

However, the integral (135) is badly divergent at large momenta. To make
sense of it we should regularize it. Even better, we can start with a regularized
formulation of the theory such that at every stage we have well defined expres-
sions. This can be done, e.g. by replacing the spacetime continuum by a lattice,

2This state can also be written as |1p1
1p2

〉, or
√

2|2p〉 if p1 = p2 = p.
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but it is cumbersome and we have learned that in many cases it is sufficient to
deal with the problem ‘on the fly’, by regulating divergent integrals in a consistent
manner. We could simply cut off the momentum integration at |p| = Λ,

〈0|T 00|0〉 = ε0 +
4π

2(2π)3

∫ Λ

0
dp p2

√

p2 +m2, (139)

〈0|T kl|0〉 = −ε0δkl +
4π

2(2π)3

∫ Λ

0
dp p2 pkpl√

p2 +m2
. (140)

The problem with this is that it is not consistent with Lorentz invariance: we
are treating space and time differently and 〈0|T µν|0〉 will not be proportional to
ηµν this way. There are Lorentz covariant regularizations, for example dimen-
sional regularization or Pauli-Villars regularization. The latter is simplest here
to present and is as follows. Define 〈0|T µν|0〉 as

〈0|T µν|0〉 = −ε0ηµν +
∫ d3p

(2π)3

1

2

∑

i

ci
pµ(mi)p

ν(mi)

p0(mi)
, (141)

where the coefficients ci and the masses mi are chosen such that the integral
converges, whith c1 ≡ 1 and m1 ≡ m. This regularization is Lorentz invariant
because the ci and mi are invariant. The masses mi, i > 1 are sent to infinity
after calculating the integral. Then the result diverges again but we cancel this
by a suitable choice of ε0. We shall not go further into details here.

Having set the vacuum energy density equal to zero we can now ask meaningful
questions about the energy of the ground state in a finite volume. A famous
example is the Casimir effect. This was originally discovered in QED but it
applies also to our scalar field mutatus mutandis (two free massless scalar fields
to represent the two spin states of the photon, Dirichlet boundary conditions).
However, let us use the language of QED anyway as it is more intuitive. Consider
two parallel plates of a conductor a distance a apart, with a much smaller than
the linear size L of the plates. The presence of the plates is taken into account by
imposing boundary conditions corresponding to a perfect conductor. This shifts
the ground state energy inside and outside the plates relative to the vacuum, and
the result is (see e.g. Itzykson and Zuber sect. 3-2-4, Van Baal sect. 2)

∆E =
−h̄π2L2

720a3
. (142)

It corresponds to a tiny attractive force which has been verified by experiment.

8.4 Simple scattering

When the action is of higher than second order in the fields the theory is said to
be interacting, because there is then no Fourier or other representation in which
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the harmonic oscillators are uncoupled. In our scalar field model the higher
order term is the anharmonic ϕ4 term in the action, the strength of which is
monitored by λ, the coupling constant. Its presence changes the eigenvalues and
eigenvectors of P µ, and we have to recalculate the ground state and the single and
multiparticle states. A useful tool is perturbation theory, making an expansion
in powers of λ. One of the most interesting new possible effects is scattering.
Fortunately, to study scattering to lowest non-trivial order we only need to know
the particle states in zeroth order, i.e. the free states, and we shall not need to
renormalize κ and λ.

Consider the scattering 1 + 2 → 3 + 4. We start with a free two-particle
state |p1p2〉 at time t = 0 and wish to calculate the probability amplitude for the
transition to another such state |p3p4〉 at a later time t,

〈p3p4|U(t, 0)|p1p2〉, U(t, 0) = e−iHt, (143)

where U(t, 0) is the evolution operator. The hamiltonian H has the form

H = H0 +H1, H1 =
∫

d3x
1

4
λϕ4. (144)

with H0 the free hamiltonian of the previous sections:

H0|p1p2〉 = (E1 + E2)|p1p2〉, E1 = E(p1) =
√

p2
1 +m2, (145)

etc. For non-trivial scattering the final state is different from the initial state and
the result would then be zero if H1 were zero. Hence the scattering amplitude
is at least of order H1 (order λ). We want to expand the evolution operator in
powers of H1. It is wrong to simply expand the exponential because H1 and H0

do not commute. This is a standard problem in time dependent perturbation
theory, which we will solve here by introducing

V (t) = eiH0t e−iH0t−iH1t, (146)

differentiating this with respect to t,

i∂tV (t) = eiH0tH1 e
−iH0t−iH1t = eiH0tH1 e

−iH0t +O(H2
1), (147)

and integrating this, which after multuplication by exp(−iH0t) gives the result

e−i(H0+H1)t = e−iH0t − ie−iH0t
∫ t

0
dt′ eiH0t′ H1 e

−iH0t′ +O(H2
1 ). (148)

It follows that

〈p3p4|U(t, 0)|p1p2〉 = e−i(E3+E4)t
1 − ei∆Et

∆E
〈p3p4|H1|p1p2〉, (149)

∆E = E3 + E4 − E1 − E2, (150)
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and

|〈p3p4|U(t, 0)|p1p2〉|2 =
2 − 2 cos(∆Et)

(∆E)2
|〈p3p4|H1|p1p2〉|2. (151)

We now turn to the matrix element of H1. Using

ϕ(x) =
∑

q





eiqx

√

2E(q)L3
aq +

e−iqx

√

2E(q)L3
a†
q



 , (152)

and using the fact that only terms contribute which do not change the number of
particles (i.e. same number of annihilation and creation operators), we get terms
of the form

〈p3p4|a†q3
a†
q4
aq1

aq2
|p1p2〉 = (δq1,p1

δq2,p2
+ δq1,p2

δq2,p1
)〈p3p4|q3q4〉 (153)

→ 2δq1,p1
δq2,p2

〈p3p4|q3q4〉
= 2δq1,p1

δq2,p2
(δq3,p3

δq4,p4
+ δq3,p4

δq4,p3
)

→ 4δq1,p1
δq2,p2

δq3,p3
δq4,p4

, (154)

where the arrows indicate equivalence under relabeling of the dummy qs which
are to be summed over. (In (153) we worked the aqs to the right using the
commutation relations until we got aq|0〉 = 0.) There are five more such con-
tributions, differering in the order of the operators (aa†a†a, . . . , aaa†a†), which
each give equivalent results (terms like δqi,qj do not contribute because the initial
and final states differ). The result is then

〈p3p4|H1|p1p2〉 =
6λ

∏

i

√
2EiL3

∫

d3x ei(−p3−p4+p1+p2)x =
6λL3

∏

i

√
2EiL3

δp3+p4,p1+p2
.

(155)
This gives for the probability

|〈p3p4|U(t, 0)|p1p2〉|2 =
(6λ)2L6

L12
∏

i 2Ei

2 − 2 cos(∆Et)

(∆E)2
δp3+p4,p1+p2

. (156)

We are interested in scattering into a domain ∆ of final momenta,

∑

(p3,p4)∈∆

|〈p3p4|U(t, 0)|p1p2〉|2 (157)

→ L−3(6λ)2

4E1E2

∫

∆
dω3 dω4

2 − 2 cos(∆Et)

(∆E)2
(2π)3δ3(p3 + p4 − p1 − p2),(158)

dωi =
d3pi

(2π)32Ei
, (159)

where the arrow indicates the infinite volume limit (128), which also implies

L3δp,q → (2π)3δ3(p − q). (160)
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For large times t (on the scale of the typical inverse energies E−1) we have the
identity

2 − 2 cos(∆Et)

(∆E)2
= t 2πδ(∆E) +O(1/t). (161)

This can be shown by integration with a test function F (E):

∫ ∞

−∞
dE F (E)

2 − 2 cosEt

E2
= t

∫ ∞

−∞
duF

(

u

t

)

2 − 2 cos u

u2
(162)

= t
[

F (0)
∫ ∞

−∞
du

2 − 2 cosu

u2
+O(t−2)

]

(163)

= tF (0) 2π +O(t−1), (164)

where we used F (u/t) = F (0) + F ′(0)u/t+O(t−2); the F ′(0) term drops out by
symmetry.

Summarizing, we have the following result for the probability rate:

Γ∆ =
∂

∂t

∑

(p3 ,p4)∈∆

|〈p3p4|U(t, 0)|p1p2〉|2 (165)

=
L−3

4E1E2

∫

∆
dω3 dω4 (2π)4δ4(p3 + p4 − p1 − p2) (6λ)2. (166)

The probablity rate implies an event rate, which is expected to be proportional to
the overlap of particle densities

∫

d3x n1n2. The results of scattering experiments
are expressed in terms of the cross section σ∆. In a reference frame where the
initial particle momenta are aligned it is defined by

Γevent
∆ = σ∆v12

∫

d3x n1n2, (167)

with
v12 = |p1/E1 − p2/E2| (168)

the relative velocity. Realizing that Γevent
∆ = Γ∆ if we normalize to unit initial

particle number,
∫

d3x n1,2 = 1, and that the density of our initial particles is
n1,2 = 1/L3, we have the result

σ∆ =
1

4E1E2v12

∫

∆
dω3 dω4 (2π)4δ4(p3 + p4 − p1 − p2) |M|2. (169)

where M (called the invariant scattering amplitude) is in this case given by

|M|2 = (6λ)2. (170)

The prefactor can be expressed as a Lorentz scalar,

E1E2v12 =
√

(p1p2)2 −m2
1m

2
2, (171)
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and we see that if the integration domain ∆ is invariantly specified, the cross
section is a Lorentz scalar. For example, integrating over all momenta gives the
total cross section (cf. Problem 3)

σ =
1

32πs
(6λ)2, s ≡ −(p1 + p2)

2, (172)

where the Lorentz invariant s is equal to the total energy squared in the center
of mass frame. In a more detailed specification of ∆ we can fix the invariant
momentum transfer t. The corresponding cross section is conventially written
dσ/dt (cf. Problem 3):

dσ

dt
=

1

16πs(s− 4m2)
(6λ)2, t ≡ −(p1 − p3)

2. (173)

In the center of mass frame defined by p1+p2 = 0, we have t = −2|p1|2(1−cos θ),
with θ the scattering angle, the angle between p1 and p3, and |p1|2 = (s−4m2)/4.
So we see that the differential cross section

[

dσ

dΩ

]

cm

=
1

64π2s
(6λ)2 (174)

is isotropic. This is special to the ϕ4 theory, later we will encounter more inter-
esting differential cross sections.

The above derivation of the scattering amplitude has the benefit that it is
short. In higher orders it gets complicated because it lacks manifest Lorentz
covariance. Only the end results are covariant or invariant. Later we will de-
velop more sophisticated calculational techniques which are manifestly covariant.
Conceptually the above derivation can be improved by considering wave packet
states which are localized in space (unlike the plane wave states used here which
correspond to uniform density).

8.5 Decay

Apart from leading to scattering, interactions may cause particles to be unstable,
transforming them into two or more particles of a different species. For example,
neutral pions are unstable and decay predominantly into two photons, π0 → γ+γ,
with a mean life time τ = 8.8 × 10−17 sec. The mean life time is the inverse of
the decay rate Γ.

The possibility of decay can be illustrated by the following simple model
involving only spinless particles. The model is specified by the action

S[χ, ϕ] = −
∫

d4x

(

1

2
∂µχ∂

µχ+
1

2
M2χ2 +

1

2
∂µϕ∂

µϕ+
1

2
m2ϕ2 +

λ

4
ϕ4 +

g

2
ϕ2χ

)

,

(175)
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which describes two types of particles “χ” and “ϕ”, with masses M and m,
respectively. There are two interaction terms,

Hint =
∫

d3x
(

1

2
gϕ2χ+

1

4
λϕ4

)

, (176)

with strengths parametrized by the coupling constants g and λ (g has dimension
of mass). Apart from new types of scattering, the gϕ2χ term also allows for
transitions χ↔ ϕ + ϕ.

Suppose at time zero the initial state contains only one χ-particle with four-
momentum p. The probability at a later time t for the decay into two ϕ-particles
with momenta q1 and q2 is then |〈q1(ϕ)q2(ϕ)|U(t, 0)|p(χ)〉|2 (we use the same no-
tation as in the scattering case). Going through similar steps as in the derivation
of the rate for scattering, gives for the decay rate

Γ =
1

τ
=

∂

∂t

1

2

∑

q1q2

|〈q1(ϕ)q2(ϕ)|U(t, 0)|p(χ)〉|2 (177)

=
1

2p0

1

2

∫

dω1dω2(2π)4δ(q1 + q2 − p) g2, (178)

where we used

〈q1(ϕ)q2(ϕ)|Hint|p(χ)〉 =
g

2

∫

d3x
∑

p′q′
1
q
′
2

1
√

8q′01 q
′0
2 p

′0L9
ei(p

′−q
′
1
−q

′
2
)·x

〈q1(ϕ)q2(ϕ)|a†
q
′
1
(ϕ)a†

q
′
1
(ϕ)ap′(χ)|p(χ)〉 (179)

= g
1

√

8q0
1q

0
2p

0L3
δq1+q2,p. (180)

The explicit factor 1/2 in (177) avoids double counting the two identical particles
in the final state.

This example illustrates that the transition at relatively large times on the
scale of m−1, M−1 (i.e. ‘the decay’), is only possible if energy-momentum is
conserved: q1 + q2 = p. Examining this for the case of a χ-particle at rest one
finds that this leads to the condition

M ≥ 2m. (181)

The integral in (178) is Lorentz invariant. It depends only on g2, M and m (cf.
Problem 3),

Γ =
q

16πMp0
g2, q =

1

2

√
M2 − 4m2. (182)

For a moving χ-particle the factor 1/p0 in (178) expresses the expected time
dilatation.

The unstable particles can be produced in scattering, e.g. ϕ(q1) + ϕ(q2) →
χ(p), which is just the inverse of the decay process.
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8.6 Symmetry, charge and antiparticles

Consider the theory described by two scalar fields φ1 and φ2 with action

S = −
∫

d4x
[

1

2
ηµν∂µφk∂νφk + V (

√

φkφk)
]

. (183)

We use the summation convention also for indices like k: φkφk ≡
∑2
k=1 φkφk. The

above action is invariant under rotations in ‘internal space’

φ′
1 = cosαφ1 − sinα φ2, φ′

2 = sinαφ1 + cosαφ2, S[φ′] = S[φ]. (184)

Infinitesimal rotations can be written in the form

δφk = −εklφlδα, ε12 = −ε21 = 1, ε11 = ε22 = 0, (185)

with infinitesimal rotation angle δα. To a continuous symmetry corresponds a
conserved quantity, usually called ‘charge’ (Noether’s theorem). This can be
seen as follows. Consider infinitesimal rotation angles depending on space-time:
δα(x). The action is now in general not invariant anymore because α depends on
x; for an infinitesimal rotation,

δS =
∫

d4x jµ∂µδα = −
∫

d4x ∂µj
µδα. (186)

However, if the φk satisfy the field equations (equations of motion), then δS = 0
and we have a local balance equation (a ‘conserved current’),

∂µj
µ = 0, (187)

with a corresponding conserved charge

Q =
∫

d3x j0. (188)

a. Show that the current is given by

jµ = εkl∂
µφk φl. (189)

b. Derive the field equations from the stationary action principle.

c. Verify using the field equations that ∂µj
µ = 0.

d. In the quantum theory Q is an operator, which can be expressed in the
creation and annihilation operators at time zero. Show that

Q =
∑

p

a†
pk(−iεkl)apl. (190)
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e. Consider the free theory with λ = 0. Choosing the vacuum energy to be
zero, the energy-momentum operator is given by

P µ =
∑

p

a†
pkapk p

µ. (191)

Since Q is time independent it should be possible to diagonalize Q and P 0

simultaneously. This can be done as follows. Define

ap± =
1√
2
(ap1 ∓ iap2). (192)

Show that in terms of the new creation and annihilation operators

Q =
∑

p

(a†p+ap+ − a†p−ap−), (193)

P µ =
∑

p

(a†p+ap+ + a†p−ap−) pµ. (194)

The interpretation is as follows: a†p+ is the creation operator for particles, a†p−
is the creation operator for antiparticles. The particles have charge +1, the
antiparticles have charge −1 and Q counts the number of particles minus the
number of antiparticles. Particles and antiparticles have the same mass.

8.7 Partition function, distribution function

The density matrix of a closed system in equilibrium is a function of the conserved
quantities. In field theory these are the total energy, momentum and charge(s).
For the system (183) there is only one charge and the canonical density operator
is given by

ρ =
1

Z
e−βµP

µ+αQ, Z = Tr e−βµP
µ+αQ, Tr ρ = 1. (195)

with Z the grand canonical partition function. (The trace of an operator is
defined as the trace of its matrix representation in an orthonormal basis:

TrO =
∑

i

〈i|O|i〉, 〈i|j〉 = δij,
∑

i

|i〉〈i| = 1 = unit operator.) (196)

The parameters βµ and α are determined by the average energy-momentum and
charge, which are given by

〈P µ〉 = Tr ρP µ = − ∂

∂βµ
lnZ, 〈Q〉 = Tr ρQ =

∂

∂α
lnZ. (197)

For a system at rest 〈P k〉 = 0, βk = 0 and β ≡ β0 = 1/T is the inverse tempera-
ture.
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For the free theory (λ = 0) the partition function is just a product of the
independent mode contributions. The eigenmodes are characterized by p and
±, where + denotes the particles and − the antiparticles. Let us lump these
into a collective label i: H = ε0L

3 +
∑

i(a
†
iai + 1/2)ωi and Q =

∑

i a
†
iaiqi. The

eigenvalues of a†iai are the occupation numbers ni = 0, 1, 2, · · ·. Then

Z = Tr e−βH+αQ = e−βε0L
3

Tr e
∑

i
[−βωi/2+a†i ai(−βωi+αqi)] (198)

= e−β(ε0L3+
∑

i
ωi/2)

∑

{ni}
e
∑

i
ni(−βωi+αqi)] (199)

= e−β(ε0L3+
∑

i
ωi/2)

∏

i

∞
∑

ni=0

e(−βωi+αqi)ni (200)

= e−β(ε0L3+
∑

i
ωi/2)

∏

i

1

1 − e−βωi+αqi
, (201)

lnZ = −β
(

ε0L
3 +

∑

i

1

2
ωi

)

−
∑

i

ln(1 − e−βωi+αqi), (202)

or more explicitly

lnZ = −β
(

ε0L
3 + 2

∑

p

1

2
ωi

)

−
∑

p

[

ln(1 − e−βωp+α) + ln(1 − e−βωp−α)
]

, (203)

− lnZ

βL3
→ ε0 + 2

∫

d3p

(2π)3

ωp
2

+
1

β

∫

d3p

(2π)3

[

ln(1 − e−βωp+α) + ln(1 − e−βωp−α)
]

, (204)

for large L.
We recognize the temperature independent vacuum energy in the first two

terms (really, the vacuum pressure – see below), which we have set to zero.
Evaluating the average energy and charge from (197) we recognize the distribution
functions:

U ≡ 〈H〉 = V
∫

d3p

(2π)3
[f+(p) + f−(p)]ωp, V = L3, (205)

NQ ≡ 〈Q〉 = V
∫

d3p

(2π)3
[f+(p) − f−(p)], (206)

f±(p) =
1

eβ(ωp∓µ) − 1
, βµ = α. (207)

(Note the difference in sign convention for α compared to (301).) We note in
passing that the distribution function is just the average occupation number, as
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can be seen from (199)

〈ni〉 =
∂

∂(αqi)
lnZ = fi. (208)

In realistic theories there are usually several conserved charges QA, and the
density matrix depends on several independent αA: ρ = Z−1 exp(−βH+

∑

A αAQA).
Furthermore, more than one particle species contributes to a particular QA, and
denoting the charge of species k by qAk, we get the chemical potentials in the
form

µk = T
∑

A

qAk, T = 1/β, (209)

as (up to a sign convention) in (301).
We can now also give a heuristic derivation of the final state enhancement fac-

tors 1+fk(p) in the collision term of the Boltzmann equation. It is a consequence
of the relations

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉, (210)

which hold for any mode in the occupation number representation. Consider
again (153) generalized to arbitrary occupation numbers:

〈{npf
}|a†

q3
a†
q4
aq1

aq2
|{npi

}〉 = (211)
√

nq1
nq2

(nq3
+ 1)(nq4

+ 1) 〈{npf
}|{npi

}′, nq1
− 1, nq2

− 1, nq3
+ 1, nq4

+ 1〉,
where i, f means ‘initial’, ‘final’ and the prime on {n}′ indicates that the else-
where listed ns in the ket are to be omitted. We assumed all qs to be different.
Squaring, summing over all final states and replacing the occupation numbers
by their averages according to some initial density matrix produces the factor
f(q1)f(q2)[1 + f(q3)][1 + f(q4)], with a summation over the qs coming from the
interaction hamiltonian, giving a total rate

Γ ∝
∫

dω1 dω2 dω3 dω4 f(q1)f(q2)[1+f(q3)][1+f(q4)](2π)4δ4(q3+q4−q1−q2) (6λ)2.

(212)
To get the collision term in the Boltzman equation we can restrict a momentum
integration in the initial or final state ‘by hand’.

Finally, we recall the meaning of lnZ. Calculating the entropy we find

S ≡ −Tr ρ ln ρ = β(U − µNQ) + lnZ, (213)

a. Verify this.

or using standard thermodynamic relations

T lnZ = −(U − TS − µNQ) = −ΩV = pV, (214)

where p is the pressure and Ω is the thermodynamic potential. Note that these are
usually taken to depend explicitly on the temperature T and chemical potential
µ (not α): p = p(T, µ), Ω = Ω(T, µ).
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b. In terms of densities ρ = U/V , s = S/V , nQ = NQ/V , verify that

s = (ρ + p− µnQ)/T. (215)

c. By making a partial integration in (204), express it in the form (76).

8.8 Fermions

The relativistic field theoretic description of particles with spin is a lot more
complicated. Here we give a plausible summary for free fermions, which we
assume to have spin 1/2.

The analogue of the bosonic creation and annihilation operators are now a†
pλ

and apλ, where λ = ± indicates the spin polarization (e.g. the value of the
helicity, the projection of the angular momentum along p). There may also
be a species label k. For simplicity let us lump these labels into the collective
label i = (p, λ, k). For fermions the ai and a†i satisfy anti-commutation relations
({A,B} ≡ AB +BA):

{ai, a†j} = δij, {ai, aj} = {a†i , a†j} = 0. (216)

In addition the fermionic operators commute with the bosonic ones. The vacuum
is annihilated by the ai,

ai|0〉 = 0, (217)

and the a†i create the particles. These rules assure antisymmetric basis vectors

|ij〉 ≡ a†ia
†
j|0〉 = −|ji〉, (218)

and the occupation numbers are limited to 0 or 1, since

(a†i )
2 =

1

2
{a†i , a†i} = 0. (219)

Without a bare cosmological constant the ground state energy would be negative,

H = ε0L
3 +

∑

i

1

2
(a†iai + aia

†
i )Ei = ε0L

3 +
∑

i

(a†iai −
1

2
)Ei, (220)

E0

L3
= ε0 −

1

2

∑

λk

∫

d3p

(2π)3
Ek(p), Ek(p) =

√

p2 +m2
k. (221)

Charges are usually associated (in the Standard Model) with fermions rather
than bosons and they have a similar form

QA =
∑

i

a†iaiqAi, (222)
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with qAi opposite for particles and antiparticles. The partition function follows
easily by restricting the summations in (200) to ni = 0, 1,

− lnZ

βL3
= ε0 −

∑

λk

∫

d3p

(2π)3

Ek(p)

2
− 1

β

∑

λk

∫

d3p

(2π)3
ln
{

1 + e−β[Ek(p)−µk ]
}

. (223)

Evaluating 〈H〉 and 〈QA〉 we encounter the fermion distribution function

fk(p) =
1

eβ[Ek(p)−µk ] + 1
, (224)

as expected.
Finally, the Pauli blocking factors in the collision term in the Boltzmann

equation follow from the analogue of (210),

a|n〉 = n|n− 1〉, a†|n〉 = (1 − n)|n+ 1〉, (225)

and the subsequent effective replacement ni → fi.

8.9 Covariant normalization

We shall also use a convenient covariant normalization of particle states in the
infinite volume limit

〈p′|p〉 = 2p0(2π)3δ(p′ − p), p0 =
√

p2 +m2. (226)

This has the property (cf. (137))

∫

dωp f(p) 〈p′|p〉 = f(p′). (227)

For the argument of ket and bra we use the four-momentum p, but note that here
p0 is not an independent variable. Comparing with our finite volume normaliza-
tion we have

|p〉 =
√

2p0L3|p〉 (228)

(recall (160)). In infinite volume we expand the free scalar field in terms of
covariant a(p) and a†(p),

ϕ(x) =
∫

dωp
[

a(p)eipx + a†(p)e−ipx
]

. (229)

Comparison with the previous finite volume expansion at time zero

ϕ(x) =
∑

p

[

eipx

√
2p0L3

ap +
e−ipx

√
2p0L3

a†
p

]

(230)
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shows that3

a(p) =
√

2p0L3ap, (231)

[a(p), a†(p′)] = 2p0(2π)3δ(p′ − p), (232)

|p〉 = a†(p)|0〉, etc., (233)

P µ =
∫

dωp a
†(p)a(p) pµ. (234)

8.10 Problems

1. The integration volume element

dωp ≡
d3p

(2π)22p0
(235)

is Lorentz invariant i.e.
dω`p = dωp. (236)

Verify this for a Lorentz tranformation along the 3-axis with velocity v < 1:

p′0 = γp0 + γvp3, p′3 = γp3 + γvp0, p′1 = p1, p′2 = p2, (237)

where γ = 1/
√

1 − v2 is the relativistic dilatation factor.

2. The Hilbert space for a system of arbitrarily many particles such as the free
scalar field is called Fock space. A basis is given by |0〉, |p〉, |p1p2〉, etc. The
states are normalized as

〈p|q〉 = 2p0(2π)3δ(p − q), p0 =
√

m2 + p2,

〈p1p2|q1q2〉 = 〈p1|q1〉〈p2|q2〉 + 〈p1|q2〉〈p2|q1〉,
etc. In general we get a sum over all permutations π of 1, · · · , n (the value
of n will be clear from the context),

〈p1 · · · pm|q1 · · · qn〉 = δmn
∑

π

〈p1|qπ1〉 · · · 〈pn|qπn〉. (238)

(For fermions the right hand side is completely antisymmetric in exchange
of indices, which is represented by

∑

π → ∑

π(−1)π, with (−1)π ≡ 1 (−1)
for an even (odd) permutation.) The completeness relation can be written
as

1̂ = 1̂0 + 1̂1 + 1̂2 + · · · , (239)

where 1̂0 = |0〉〈0| and 1̂n is the unit operator in the n-particle subspace,

1̂n =
1

n!

∫

dωp1 · · ·dωpn |p1 · · · pn〉〈p1 · · · pn|. (240)

Verify this by taking matrix elements with |q1 · · · qm〉.
3For a free field a(p) is time-independent, it is the value of the Heisenberg operator at time

zero: a(p, t) = a(p) exp(−ip0t).
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3. In this problem we evaluate the remaining integrals encountered in two
particle scattering and decay.

The integral (called a phase space integral)

I(p) =
∫

dωq1 dωq2 (2π)4δ4(q1 + q2 − p), (241)

dωqi =
d3qi

(2π)32
√

q2
i +m2

i

, i = 1, 2, (242)

is Lorentz invariant, I(p) = I(`p). It is convenient to evaluate it in the
center of mass frame defined by p = 0, in the following steps:

a) integrate over q2 using the momentum conserving delta functions,
b) choose spherical coordinates q1 → (q, θ, φ), d3q1 = q2dq dΩ, dΩ =
d(cos θ) dφ,
c) for the q integral use the energy conserving delta function and the general
formula

∫ b

a
dx δ(f(x))g(x) =

∑

j

1

|f ′(xj)|
g(xj), (243)

where the summation is over the zero(s) xj of f(x) in the interval (a, b). In

the present case the argument of the delta function,
√

m2
1 + q2+

√

m2
2 + q2−

p0, has only one zero. We use s ≡ −p2, which is p2
0 in the center of mass.

Verify that the result is given by

I =
q

16π2
√
s

∫

dΩ =
q

4π
√
s
, (244)

with

q2 =
s2 + (m2

1 −m2
2)

2

4s
− m2

1 +m2
2

2
. (245)

The application of I(p) to two-particle decay is straightforward.

In the application to scattering 1 + 2 → 3 + 4, q1 → p3, q2 → p4, p
is the total incoming momentum, P = p1 + p2, and θ may be the angle
between p1 and p3. The invariant amplitude M is a Lorentz invariant
function of the momenta, so a function of the two independent invariants
s = −(p1 + p2)

2 = −(p3 + p4)
2, and t = −(p1 − p3)

2 = −(p2 − p4)
2. The

other invariant u = −(p1 − p4)
2 = −(p2 − p3)

2 is not independent, because
s+ t+ u = m2

1 +m2
2 +m2

3 +m2
4.

The ‘flux factor’ is given by

4E1E2v12 = 4
√

(p1p2)2 −m2
1m

2
2 = 4|p1|

√
s, (246)

with |p1| given by (245) with q → |p1|.
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For the total cross section we need to multiply by 1/2 if the two particles
in the final state are identical, to avoid double counting. This is the same
factor 1/2! as in (240), n = 2.

For the differential cross section we do not integrate over θ and φ. Verify
that in the center of mass frame

dσ = dΩ
1

64π2s

|p3|
|p1|

|M|2. (247)

Alternatively, we can specify the invariant momentum transfer t = −(p3 −
p1)

2. It is linearly related to cos θ, dt = 2|p1| |p3| d cos θ, so dσ/dt can
be simply be read off from dσ/d cos θ = 2πdσ/dΩ. We can also insert a
constraining delta function δ(t+(p1 − p3)

2) in the integral I(p1 + p2) which
gives the same result:

dσ

dt
=

1

64πsp2
1

|M|2 (248)

(this holds also in the unequal mass case).

8.11 Gauge invariance

The two scalar field model (183) is invariant under continuous rotations of the
vector (φ1, φ2). Such a symmetry is called a global symmetry, because the sym-
metry transformation does not depend on spacetime. By modifying the action
we can extend this symmetry into a local symmetry, i.e. one in which the rotation
angle α depends on spacetime, α = α(x). Such local symmetries are called local
gauge symmetries, or gauge symmetries for short.

We shall now describe the construction of gauge invariant actions. It is con-
venient to allow the scalar fields to be complex. A complex field is equivalent
to two real fields, its real and imaginary parts. Consider a model with n scalar
fields φa, a = 1, · · · , n, which may be complex. The action

S = −
∫

d4x [∂µφ
†∂µφ+ V (φ)], V (φ) = ε+ κφ†φ+ λ(φ†φ)2 (249)

(φ†φ = φ∗
aφa), is invariant under global unitary transformations

φ→ φ′ = Uφ, U † = U−1 (250)

(i.e. φa → φ′
a = Uabφb, U

∗
ba = U−1

ab ). If φ is real, U is real and orthogonal. The
transformations form a group G and the U ’s are a representation of G. Simple
examples of G are the abelian (i.e. commutative) group U(1)= SO(2), the group
of rotations in a plane, SO(3), the non-abelian group of rotations in three di-
mensions, and SU(2), the group of unitary 2× 2 matrices with determinant one,
which is the ‘rotation group for spin’ in quantum mechanics. We shall use G =
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SU(2) for illustration, reduction to U(1) or SO(3) is easy. Let ωp be coordinates
in G, the angles parametrizing the rotations. For SU(2) there are three rotation
angles ω1, ω2 and ω3. In the exponential parametrization

U = exp(iωpTp) = 1 + iωpTp +O(ω2), (251)

where the Tp are hermitian n × n matrices representing the generators of the
group. In the defining (fundamental) representation of SU(2), n = 2 and the T ’s
are half the Pauli matrices,

Tp =
σp
2
, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (252)

In the vector representation (which is the defining representation of SO(3)), which
is otherwise known as the adjoint representation, n = 3 and the T ’s may be taken
as

(Tp)ab = −iεabp. (253)

Note that the corresponding U ’s are real, and in this case φ is naturally real. The
Tp satisfy the commutation relations of angular momentum,

[Tp, Tq] = iεpqrTr, (254)

and the orthonormality relations

TrTpTq = cδpq, (255)

with c = 1/2 for the defining representation and c = 2 for the vector representa-
tion. They form a vector like angular momentum in the sense that

U−1TpU = RpqTq, (256)

with R the vector representation (i.e. R = exp(iωpTp) with the T ’s given by
(253)). In general, the generators of SO(3) have the same commutation relations
as those of SU(2).

The action (249) is not invariant under local transformations because the
derivatives do not commute with U and U † when these depend on x. Therefore
one introduces a covariant derivative Dµ with the property

D′
µφ

′ = U Dµφ. (257)

Using this covariant derivative in place of the ordinary derivative yields a gauge
invariant action: (D′

µφ
′)†D

′µφ′ = (Dµφ)†U †UDµφ = (Dµφ)†Dµφ. The covariant
derivative depends on a matrix field Aµ,

Dµφ = ∂µφ− iAµφ, (258)
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(i.e. Dµφa = ∂µφa − iAabµφb). The field Aµ is called a gauge field. It should
transform such that (257) holds:4

D′
µφ

′ = ∂µφ
′ − iA′

µφ
′ = ∂µUφ+ U∂µφ− iA′

µUφ (259)

= U Dµφ = U∂µφ− iUAµφ. (260)

Since φ is arbitrary we may compare the matrices multiplying it, which gives the
transformation law for Aµ:

A′
µ = UAµU

−1 − i∂µUU
−1. (261)

The dynamical variables are now assumed to be φ(x) and Aµ(x). Not all matrix
elements Aabµ(x) need to be independent. To find the minimal set of Aµ’s we
look more closely at the inhomogeneous term in their transformation law. Let
x′ = x + v be close to x; then U(x + v)U−1(x) is close to the unit matrix and

U(x+v)U−1(x) = 1+vµ∂µU(x)U−1(x)+O(v2) = 1+ iωp(x, v)Tp+O(v2), (262)

where ωp is linear in v. It follows that i∂µUU
−1 can be written as a linear

superposition of the generators Tp with real coefficients. If we assume Aµ itself
to have this form, then the first term in the transformation law (261) leaves this
form unchanged because of (256). So we may write

Aµ = ApµTp, (263)

with real Ap
µ.

To describe the dynamics of the independent Ap
µ we need to add terms to

the action involving time derivatives (and of course spatial derivatives because
of Lorentz invariance). A form like Ap

µA
pµ is not gauge invariant because of

the inhomogeneous term in (261). The commutator of two covariant derivatives
contains derivatives of Aµ,

Fµν ≡ i[Dµ, Dν] = ∂µAν − ∂νAµ − i[Aµ, Aν], (264)

and transforms homogeneously,

F ′
µνφ

′ = iD′
µD

′
νφ

′ − (µ↔ ν) = U [iDµDν − (µ↔ ν)]φ = UFµνU
−1 φ′,(265)

→ F ′
µν = UFµνU

−1. (266)

It is called the field-strength tensor. Using (263), (254) and (256) we have

Fµν = F p
µνTp, F p

µν = ∂µA
p
ν − ∂νA

p
µ + εpqrA

q
µA

r
ν, (267)

F
′p
µν = RpqF

q
µν. (268)

4The derivative ∂µ acts only on the object immedeately following it.
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The following is now a suitable gauge invariant action for the combined (φ,Aµ)
system:

S = −
∫

d4x

[

(Dµφ)†Dµφ+ V (φ) +
1

4g2
F p
µνF

pµν

]

. (269)

Here g2 is called the gauge coupling constant. By rescaling Aµ → gAµ, it disap-
pears from the F 2 term and reappears in the covariant derivative:

S = −
∫

d4x
[

(∂µφ− igAp
µTpφ)†(∂µφ− igApµTpφ) + V (φ) +

1

4
F p
µνF

pµν
]

. (270)

In the U(1) case we have only one generator T and the minimal scalar field
content is just one complex φ. The action for scalar electrodynamics is

S = −
∫

d4x
[

(∂µφ− ieAµφ)∗(∂µφ− ieAµφ) + V (φ) +
1

4
FµνF

µν
]

. (271)

where we have written conventionally e in stead of g and chosen unit charged
particles, T = 1.5 We recognize the action (15) for the Maxwell field. The electric
current jµ is to be identified from the equations of motion for the electromagnetic
field Fµν :

−∂µF µν = jµ = ie(Dµφ)∗φ− ieφ∗Dµφ. (272)

It is not simply the analogue of (189) written in complex notation φ = (φ1 −
iφ2)/

√
2, since it also contains the vector potential Aµ through the covariant

derivative.
We end this section by noting the similarities with General Relativity: −iAabµ

is analogous to the connection Γαβµ and they play a similar role in the respective
covariant derivatives (258) and (10), the definition of field strength tensor −iFabµν
in (264) is analogous to that of the Riemann tensor in (11). This is especially so
in the vector representation in which −iAabµ and −iFabµν are real.

5The minus sign in the definition of the covariant derivative (258) is chosen such that in the
QED case a) the vector potential Aµ has the conventional sign (B = +∇×A, E = −∂0A−∇A0)
and b) for T = 1 and e > 0 the particles (antiparticles) described by φ have positive (negative)
unit charge.
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9 Boltzmann equation

The Boltzmann equation is an important tool for the description of processes out
of equilibrium, e.g. in the early universe. In this section we shall introduce this
equation and derive its form in the expanding universe. First we summarize some
formulas for scatering and decay, as they occur in field theory.

9.1 Summary: cross section and decay rate

We start with spinless particles. Consider the scattering i+ j → 1+ · · ·+n. The
initial particles i and j have momenta pi and pj. We assume a density of such
particles, ni and nj. Their relative velocity is vij. For example, i means ‘beam’
and j means ‘target’. Then vij = |pi/p0

i |. The event rate is given in terms of the
cross section,

Γ∆(t) = σ∆ vij

∫

d3x ni(x, t)nj(x, t), (273)

σ∆ =
∫

∆
dσ. (274)

Here ∆ specifies an integration region for the final momenta, Γ∆ is the corre-
sponding number of events per unit time and σ∆ is an equivalent surface area,
the cross section. If there is only one target particle, say at rest, we may write
nj = δ3(x − xj), which gives

Γ∆(t) = σ∆ ni(xj, t)vij, per target particle. (275)

In relativistic quantum (field) theory the cross section can be written as

dσ = dω1 · · ·dωK (2π)4δ4(p1 + · · · + pK − pi − pj)|M|2 1

4p0
i p

0
jvij

, (276)

with the Lorentz invariant volume element

dωk ≡
d3pk

(2π)32p0
k

, p0
k =

√

m2
k + p2

k. (277)

The quantity M is called the invariant amplitude. It is a Lorentz invariant
function of the four-momenta (for spinless particles). (Another frequently used
notation for M is T .) The combination 4p0

i p
0
jvij can also be interpreted as a

Lorentz invariant, the so-called flux factor F ≡ 4
√

(pµi pjµ)
2 −m2

im
2
j = 4p0

i p
0
jvij,

in case of parallel or antiparallel pi and pj. Rewriting eq. (276) in terms of F ,
the differential cross section dσ is Lorentz invariant by definition.

For identical particles we have to supply appropriate statistical factors, e.g. a
factor 1/r! in case of r identical particles in the final state.
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If the particles have spin these formulas remain valid if we replace |M|2 by its
average over spins |M|2, and sum over the spins in the final state as appropriate
according to the case at hand.

For a particle i decaying into particles 1,2,. . .K the formula for the decay rate
is given by

Γ∆ = S g1 · · · gK
∫

∆
dΓ, (278)

dΓ =
1

2p0
i

dω1 · · ·dωK (2π)4δ4(p1 + · · · pK − pi) |M|2, (279)

where S is the statistical factor taking care of identical particles in the final state
and gk is the number of spin states of particle k. The total decay rate refers
usually to the particle rest frame, p0

i → mi. This rate then differs by the time
dilatation factor mi/p

0
i in a general reference frame.

9.2 Introducing the Boltzmann equation

In the following the stage is special relativity.
Consider the distribution functions fk(x,p) for particles of type k, k = e+,

e−, νe, ν̄e, p, n, etc. The particles carry conserved quantum numbers qAk, A = Q
(electric charge), A = L (lepton number), A = B (baryon number), etc. For
example,

qLe− = qLνe = −qLe+ = −qLν̄e = 1, qLp = qLn = qLγ = 0, (280)

qBp = qBn = qBH = 1, qBe± = qBγ = 0, (281)

qQe− = −qQp = −1, qQn = qQνe = qQH = qQγ = 0 (282)

(H denotes the hydrogen atom). In a scattering process i+ j → k + l we have

qAi + qAj = qAk + qAl, (283)

in addition to energy-momentum conservation,

pµi + pµj = pµk + pµl . (284)

To the conserved quantities correspond current densities jA(x) and ‘charge’ den-
sities j0

A(x) which satisfy
∂µj

µ
A(x) = 0. (285)

Usually the four-currents jµ are called ‘currents’ and ∂µj
µ = 0 is called ‘current

conservation’. Similarly, energy-momentum conservation is expressed by

∂µT
µν(x) = 0. (286)
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The currents and energy-momentum tensor are determined by the distribution
functions as

jµA(x) =
∑

k

qAk gk

∫

p

pµk
p0
k

fk(x,p), (287)

T µν(x) =
∑

k

gk

∫

p

pµkp
ν
k

p0
k

fk(x,p), (288)

∫

p

≡
∫ d3p

(2π)3
, (289)

with gk the spin-weight factor. Note that the index k is irrelevant here for p
because it just a dummy variable, but not for p0

k:

p0
k =

√

p2 +m2
k, (290)

where mk is the mass of particle species k.
The change in time of the distribution functions is described by the Boltzmann

equation
Lk(f)(x,p) = Ck(f)(x,p). (291)

Here Lk describes the ‘Liouville flow’ due to the free motion of the particles (no
external forces),

Lk(f) = ∂0fk + vik
∂

∂xi
fk =

pµk
p0
k

∂µfk (292)

(the relativistic velocity is vi = ∂p0/∂pi = pi/p0), and Ck(f) describes the ef-
fect of collisions. The Boltzmann equation has to be compatible with the local
conservation laws corresponding to (285) and (286)

∑

k

qAk gk

∫

p

pµk
p0
k

∂µfk(x,p) = 0, (293)

∑

k

gk

∫

p

pµkp
ν
k

p0
k

∂µfk(x,p) = 0. (294)

Using the Boltzmann equation (291) with (292) we see that the collision term
has to satisfy

∑

k

qAkgk

∫

p

Ck(f)(x,p) = 0, (295)

∑

k

gk

∫

p

pµkCk(f)(x,p) = 0. (296)

In many cases it is sufficient to take into account only binary collisions. Let
Wij|kl = Wij|kl(pi,pj;pk,pl) represent the probability per unit volume and per
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unit time that particles i and j collide into particles k and l. In terms of W the
collision term can be written as the sum of a gain term and a loss term:

Ck(f) =
1

2

∑

ijl

gigjgl

∫

pipjpl

[fifjWij|kl(1 + ηkfk)(1 + ηlfl)

− fkflWkl|ij(1 + ηifi)(1 + ηjfj)]. (297)

We assume Wij|kl = Wji|kl = Wij|lk and the factor 1/2 avoids double counting
over i and j. The final state enhancement or suppression factors (1 + ηf) take
into account quantum statistics: η = +1 for bosons and η = −1 for fermions.
We shall see that this leads to the expected equilibrium form for fk. The transi-
tion probabilities Wij|kl are non-zero only if the conservation laws (283,284) are
satisfied.

a. Verify that the relations (295,296) are satisfied by (297).

In equilibrium fk will be independent of x and Ck(f) should vanish. Assuming
Wij|kl = Wkl|ij, a solution is given by

fk
1 + ηkfk

= exp(−ψk), (298)

with ψk satisfying ψi+ψj = ψk+ψl, hence a linear superposition of the conserved
quantities:

ψk = βµp
µ
k +

∑

A

αAqAk + const. (299)

The αA are the independent chemical potentials which determine the charge
densities j0

A in the system. For a system in equilibrium at rest there is no prefered
direction and β = 0. Then the distribution function takes the usual Bose-Einstein
or Fermi-Dirac equilibrium form

fk(p) =
1

e(p
0
k
−µk)/T − ηk

(300)

with
T = 1/β0, µk = −T

∑

A

αAqAk. (301)

The const. in (299) is apparently zero.

b. By comparing with section 9.1, deduce that the W ’s can be written as

Wij|kl =
1

16p0
i p

0
jp

0
kp

0
l

(2π)4δ4(pi + pj − pk − pl) |Mij|kl|2. (302)

A closer look shows that the assumed symmetry Wij|kl = Wji|kl = Wij|lk is
standard in quantum field theory. The assumption of ‘micro reversability’,
Wij|kl = Wkl|ij is usually satisfied to a good approximation. In case it is not,
there should be a weaker property which still ensures the solution (298).
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c. Consider the process e−+p↔ H+γ. Verify using (301) that in equilibrium
the chemical potentials µk satisfy: µe− + µp = µH , µγ = 0.

d. Consider the processes e− + p↔ νe + n, ν̄e + p↔ n+ e+, e− + e+ ↔ γ + γ,
at temperatures T of order 10 MeV. Assume equilibrium, electric charge
neutrality (ne− − ne+ = np) and np/nγ = 10−10. Calculate µe/T and µp/T
for T/mp = 0.01.

In general the chemical potentials are determined by the conserved ‘charges’
(Q, B, L,. . . ), or rather their densities, and in the expanding universe (in local
equilibrium) they will be time and temperature dependent.

9.3 Boltzmann equation in the expanding universe

In the expanding universe there are new terms in the Boltzmann equation. We
shall restrict ourselves to a flat RW spacetime and assume that the collisions occur
on such a small scale in space and time that the collision term is not modified.
Kolb and Turner give a modified Liouville term L(f), eq. (5.4), which apparently
assumes that the distribution functions depend explicitly also on p0, in addition
to p. This appears to be in conflict with p0 =

√
p2 +m2; the steps leading to

(5.7) are unclear. Here we shall assume that f is s function of x, p and time, as
before, and derive the form of L(f) by studying a realization of f similar to eq.
(74) in section 7.

Consider again (72), repeated here for convenience,

T µν(x) =
1

√

−g(x)
∑

α

∫

dt
√

−żλα(t)żαλ(t) δ4(x− zα(t))
pµα(t)p

ν
α(t)

mα
, (303)

where

pµα(t) = mα
żµα(t)

√

−gκλ(zα(t))żκα(t)żλα(t)
. (304)

(Recall that z0
α = t and that t is just a dummy integration variable 6= x0.)

Specializing to one species this can be written as

T µν(x) =
∫

d3p

(2π)3
h(x,p)

pµ(x)pν(x)

p0(x)
, (305)

p0(x) = positive root of eq.: gκλ(x)p
κ(x)pλ(x) = −m2, (306)

h(x,p) =
1

√

−g(x)
∑

α

δ3(x − zα(x
0)) (2π)3δ3(p − pα(x

0)), (307)

where we have assumed a spin-weight factor g = 1 to avoid confusion with the
determinant of the metric, g. For simplicity we have written pµ(x), but note that
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p does not depend on x, only p0 depends on x. On the other hand pµα depends
on time via its dependence on zα, as in (304).

The distribution h(x,p) corresponds to a realization of f(x,p) in terms of
particles labeled by α. We shall now take the time derivative of h(x,p), use
the equation of motion for the particles and re-express the result as an equation
for h. Then we shall assume this equation for h to apply also to more general
distribution functions f(x,p). We first assume no scattering among the particles.

a. The equations of motion for the particles are the geodesic equations derived
in Problems 3d,3e. Verify that they can be written as

∂0p
µ
α = −Γµρσ(zα)

pραp
σ
α

p0
α

. (308)

b. Verify (cf. sect. 3)

∂µ
1

√

−g(x)
= − 1

√

−g(x)
Γρρµ(x) (309)

c. Verify the following identity among delta functions (by integration with an
arbitrary test function)

F (pα)
∂

∂pk
δ3(p−pα) = F (p)

∂

∂pk
δ3(p−pα)+ δ3(p−pα)

∂

∂pk
F (p). (310)

d. Now take the time derivative of h and show that the result can be written
in the form

pµ∂µh− Γkρσp
ρpσ

∂

∂pk
h+

[

pµΓρρµ − Γkρσp
0 ∂

∂pk

(

pρpσ

p0

)]

h = 0, (311)

where h = h(x,p), Γkρσ = Γkρσ(x), p
0 = p0(x).

e. Specializing to a flat Robertson-Walker metric, gmn = a2(x0)δmn, show that
the above equation reduces to

∂0h− 3
ȧ

a
h− 2

ȧ

a
pk

∂

∂pk
h = 0, (312)

where we assumed homogeneous circumstances, h = h(x0,p).

We conclude that the Liouville part of the Boltzmann equation for f = f(x0,p)
is

L(f) = ∂0f − 3
ȧ

a
f − 2

ȧ

a
pi

∂

∂pi
f (313)
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Note that the first term in (311) corresponds to (292).

The solution of (306) is now

p0 =
√

m2 + a2p2. (314)

It depends only on time via the scale factor a(x0). Eq. (314) suggests using the
variable

p̄ ≡ ap (315)

as the argument of the distribution function, since then p0 =
√
m2 + p̄2, as usual.

Let us write
f(t,p) = a3f̄(t, ap) = a3f̄(t, p̄). (316)

f. Assuming f̄ to depend only on |p̄| ≡
√

∑3
k=1 p̄

kp̄k, verify

T kl = gklP, (317)

P =
∫

d3p̄

(2π)3
f̄(t, p̄)

|p̄|2
3p0

, (318)

We see that the above equation has the familiar form of the pressure. The
expression for T 00 looks similarly familiar when written in terms of p̄.

g. Verify

L(f) = a3L̄(f̄), L̄(f̄) = ∂0f̄ − ȧ

a
p̄k

∂

∂p̄k
f̄ . (319)

h. The distribution function for a decoupled species satisfies L̄(f̄) = 0. Show
that a general solution is given by

f̄(t, p̄) = f̃(a(t)p̄). (320)

Evidently, p̄ is to be identified with the usual momentum in a local Lorentz frame
and f̄ with the distribution function introduced earlier in the context of special
relativity. The scattering terms in the Boltzmann equation will therefore have
the usual form in terms of p̄. These arguments lead to the Bolzmann equation
including scattering:

L̄k(f̄) = ∂0f̄k −
ȧ

a
p̄i
∂

∂p̄i
f̄k = Ck(f̄), (321)

where we reintroduced the species label k.

From now on we drop the bar on p̄, f̄ and L̄.
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i. Show that the density nk = gk
∫

p
fk satisfies

∂0nk + 3
ȧ

a
nk = gk

∫

d3p

(2π)3
Ck(f), (322)

where we reintroduced the spin-weight gk since there is no more confusion
with the metric anymore.

Using (302) and assuming |Mij|kl|2 = |Mkl|ij|2 we get

∂0nk + 3
ȧ

a
nk =

1

2
gk
∑

ijl

gigjgl

∫

dωi dωj dωk dωl (2π)4δ4(pi + pj − pk − pl)(323)

|Mij|kl|2 [fifj(1 + ηkfk)(1 + ηlfl) − fkfl(1 + ηifi)(1 + ηjfj)] .

This equation may be compared with eqs. (5.7)-(5.10) in Kolb and Turner, and
is used in their discussion of the ‘origin of species’.

If the collision terms Ck dominates over the expansion term ∝ ȧ/a, then we
expect the distribution fk to acquire the equilibrium form

fk(p) =
1

e(
√
m2
k
+p2−µk)/T − η

, (324)

with temperature and chemical potential that vary slowy on the collision time
scale. As the universe cools down, the fk become smaller and after some time,
depending on the strength of interactions of species k, the collision term Ck
becomes subdominant to the expansion term. The above form for fk is then then
no longer a good approximation and the species k is said to have decoupled from
the thermal plasma and to have fallen out of equilibrium.

Consider the equation

ḟk(t,p) − ȧ(t)

a(t)
pi

∂

∂pi
fk(t,p) = 0. (325)

According to (320), solutions may be found in the form

fk(t,p) = fk

(

t1,
a(t)

a(t1)
p

)

. (326)

which may be interpreted in the light of the result of problem 5.i, in which it
was found that the magnitude of the momentum of a particle redshifts ∝ 1/a.
(Note that in problem 5.i the magnitude of the momentum pi, which is related
to the spatial component of the four-velocity by pi = mui, was defined naturally

in terms of the metric as
√

gijpipj = a|p|, and ap = p̄ is denoted here by p, since

we omitted the ‘bar’ in our notation.)
In the aproximation that the decoupling takes place instantaneously at time

t1, there are two cases in which the distribution function can still be characterized
by a time-dependent temperature T (t):
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- massless particles

f(t,p) =
1

e|p|/T (t) − η
, T (t) =

a(t1)

a(t)
T (t1); (327)

- non-relativistic particles with µ = m,

f(t,p) =
1

ep2/2mT (t) − η
, T (t) =

a(t1)
2

a(t)2
T (t1), (328)

10 Freeze out

10.1 Simplified equation

As the temperature lowers, the density of massive particles decreases and would
be ridiculously small (∝ e−m/T ) now, at 3 K or 3×10−4 eV, if thermal equilibrium
would be maintained. However, below a certain temperature, the collision term in
the Boltzmann equation for some particle species will become negligible compared
to the expansion term, upon which its distribution function freezes into a function
of a(t)p, as in (326). The actual particle density then drops at a much slower rate
than the equilibrium density and the number of particles in a comoving volume
is conserved. In this way the expansion of the universe is vital for the ‘origin of
species’.

In this section we shall simplify coupled Boltzmann equations for several
species into a much more pleasant equation, following section 5.2 in Kolb &
Turner. Let ψ and ψ̄ be the particles that freeze out and suppose they annihilate
into X and X̄ according to

ψ + ψ̄ ↔ X + X̄, (329)

apart from other processes such as ψ +X ↔ ψ +X, ψ̄ +X ↔ ψ̄ +X, etc. We
suppose furthermore that there are other particles and processes such that X and
X̄ are in thermal (i.e. kinetic and chemical) equilibrium, and ψ and ψ̄ in kinetic
(but not necessarily chemical) equilibrium, at the time of freeze out. For example,
the ψs could be neutrinos, ψ, ψ̄ = ν, ν̄, the Xs electrons, X, X̄ = e−, e+, and
the other particles photons. Another example is ψ = e−, ψ̄ = p (proton), X = H
(hydrogen atom) and X̄ = γ (photon). Using the Boltzmann approximation for
the distribution functions,

fX(t,p) = e(µX (t)−EX )/T (t), fX̄(t,p) = e(µX̄ (t)−EX̄ )/T (t), EX = EX̄ =
√

m2
X + p2,

(330)
thermal equilibrium means that the temperature T and the chemical potentials
µX,X̄ are fixed by the equilibrium conditions. Kinetic but not chemical equilib-
rium for the ψs means that, in

fψ = e(µψ−Eψ)/T . fψ̄ = e(µψ̄−Eψ̄)/T , (331)
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only the temperature is fixed to the equilibrium temperature, whereas the chem-
ical potentials µψ and µψ̄ may be out of equilibrium. Assuming also detailed

balance, |M(ψ + ψ̄ → X + X̄)|2 = |M(X + X̄ → ψ + ψ̄)|2 at given momenta,
the Boltzmann equation for the number density of the ψ takes the form6

ṅψ+3
ȧ

a
nψ = g2

Xg
2
ψ

∫

dωψ dωψ̄ dωX dωX̄ (2π)4δ(pψ+pψ̄−pX−pX̄) |M|2 (fXfX̄−fψfψ̄).

(332)
Energy conservation, EX + EX̄ = Eψ + Eψ̄, leads to

fXfX̄ = f eq
ψ f

eq
ψ̄
, (333)

where µX + µX̄ = µeq
ψ + µeq

ψ̄
. We also have

fψfψ̄ = f eq
ψ f

eq
ψ̄
e
(µψ+µψ̄−µ

eq

ψ
−µeq

ψ̄
)/T
. (334)

So, in kinetic equilibrium, the momentum dependence in the product fψfψ̄ is
equivalent to that of f eq

ψ f
eq
ψ̄

. One now rewrites the Boltzmann equation in terms

of the annihilation cross section of the ψs (v is the relative velocity cf. (276))

σψψ̄→XX̄v = g2
X

∫

dωX dωX̄ (2π)4δ(pψ + pψ̄ − pX − pX̄) |Mψψ̄→XX̄ |2, (335)

and its average in thermal equilibrium

〈σannv〉 =
g2
ψ

∫

dωψ dωψ̄ f
eq
ψ f

eq
ψ̄
σψψ̄→XX̄v

g2
ψ

∫

dωψ dωψ̄ f
eq
ψ f

eq
ψ̄

=
g2
ψ

∫

dωψ dωψ̄ f
eq
ψ f

eq
ψ̄
σψψ̄→XX̄v

(neq
ψ )2

, (336)

resulting in the remarkably simple equation

ṅψ + 3
ȧ

a
nψ = 〈σannv〉

(

(neq
ψ )2 − n2

ψ

)

. (337)

It is useful to consider the ratio

Y = nψ/s, (338)

where s is the entropy density. Entropy conservation sa3 = constant (cf. problem
1) leads to

dY

dt
= s〈σannv〉

(

Y 2
eq − Y 2

)

. (339)

We get the Hubble rate H = ȧ/a back into the picture by using

x =
m

T
, (340)

6There is no factor 1/2 here compared to (323) because we do not sum here separately over
ψ + ψ̄ ↔ X + X̄ and ψ + ψ̄ ↔ X̄ +X .
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as a variable representing time, where m is some mass, e.g. m = mψ if ψ is
massive. In the radiation dominated era (recall (97))

H =
1

2t
= constant × T 2, (341)

which leads to
x

Yeq

dY

dx
=

Γann

H

(

1 − Y 2

Y 2
eq

)

, (342)

where Γann is the annihilation rate in thermal equilibrium,

Γann = 〈σannv〉neq
ψ . (343)

Equation (342) suggests indeed that Y ≈ Yeq for Γann/H � 1, and Y > Yeq for
Gann/H � 1. See also (9.41) in Peacock.

10.2 Hot and cold relics

To continue one uses a simple parametrization of the annihilation rate. Inspection
of the momentum dependence of |M|2 shows that the temperature dependence
of a thermally averaged 〈σv〉 is approximately just a power behavior, 〈σannv〉 ∝
T n ∝ x−n, with n = 0, 1, . . . (typically n = 0). Then, with H ∝ x−2 and s ∝ x−3,
we can rewrite (342) in the form

dY

dx
= −λx−n−2

(

Y 2 − Y 2
eq

)

, (344)

with

λ =

[

sx
〈σannv〉
H

]

x=1

(345)

The behavior of Yeq follows easily from the results in section 7,

Yeq =
45ζ(3)

2π4

geff

g∗S
= 0.278

geff

g∗S
, x � 3, (346)

=
45

4π3
√

2π

gψ
g∗S

x3/2e−x = 0.145
gψ
g∗S

x3/2e−x, x� 3, (347)

where x = mψ/T and geff = gψ (bosons) and geff = 3gψ/4 (fermions). So Yeq is
time-independent in the relativistic regime x� 3 and it decreases exponentially
fast in the non-relativistic regime x� 3. Depending on the value of λ, a species
ψ may decouple ‘early’ or ‘late’.

A hot relic decouples when it is still relativistic. Let xf represent the time
of freeze out. Then we expect Y (∞) ≈ Yeq(xf ), and since Yeq(x) is almost
independent of x in the relativistic domain, the precise value of xf does not
matter very much. It may be estimated from the criterion Γann = H. Assuming
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adiabatic expansion (no entropy production) after freeze out of the species under
study, we have today

nψ0 = s0Y (∞) ≈ 2900Y (∞) ≈ 800
geff

g∗S(xf )
cm−3, (348)

with today’s g∗S = 2 + (7/8) × 2 × 3 × (4/11) = 3.91 in photons and three
massless neutrino/antineutrino species at Tν = (4/11)1/3Tγ , Tγ = 2.73 K. The
energy density today in the massive ψs is given by

ρψ0 = nψ0mψ, (349)

or for the fractional density

Ωψh
2 = h2 ρψ0

ρc
= 8.00 × 10−2 geff

g∗S(xf )

m

eV
, (350)

where h is ‘little Hubble constant’ and we used ρc = 8.0992 h2 × 10−47 GeV4.
The above equation sets a strong upper bound on mψ by requiring Ωψ to

be less than one. Suppose the ψ are light-mass neutrinos. Using dimensional
analysis, their annihilation rate is of order G2

FT
5, with GF = 1.166×10−5 GeV−2

the Fermi constant governing the low-energy weak interactions. Comparing Γann

with H = O(T 2/mP ) gives a decoupling temperature T of order 1 MeV. At
that time g∗S(xf ) = 2 + (7/8)(2 × 2 + 3 × 2) = 10.75 in photons (anti)electrons
and (anti)neutrinos. For a massive, left-handed neutrino plus its antiparticle,
geff = 2 × (3/4) = 1.5, geff/g∗S = 0.140, and we obtain the bound

Ων < 1 ⇒ mν < 89 h2 eV, (351)

or, with today’s values h ≈ 0.7, Ωmatter ≈ 0.3 and three neutrino species,

∑

ν

mν < 89 h2 Ωmatter < 13 eV. (352)

The reasoning leading to this bound was first given by Gerstein and Zeldovich7

Cold relics decouple when they have become non-relativistic. In this case the
precise value of xf is important because Yeq is rapidly varying in this regime, and
the same will be true for Y itself.

Kolb & Turner apply equations (342) and (344) to various examples in sections
5.2 (Freeze Out) and 5.4 (Recombination Revisited). There is no substitute for
their skillful and entertaining exposition, and the reader is urged to take a good
look at these sections. Note in particular a formula for cold relics:

Yx=∞ ≈ 3.8(n+ 1)(g
1/2
∗ /g∗S) xf

mψmP〈σannv〉
, mP = G−1/2, (353)

7See the discussion in A.D. Dolgov, Nuetrinos in cosmology, arXiv:hep-ph/0202122.
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where the right-hand side is evaluated at freeze out. There is also a simple
equation for the inverse freeze-out temperature xf , obtained by matching sim-
ple asymptotic solutions to numerical solutions. Note that the abundance Y is
inversely proportional to the magnitude of the annihilation cross section at de-
coupling. Weaker interactions lead to earlier decoupling and larger abundance
(‘the weak prevail’).

10.3 Problem

1. The chemical potentials in the radiation dominated era are believed to be
very small (e.g. for baryon number µ/T = O(10−10)). Neclecting them,
the entropy density in local thermal equilibrium is given by s = (ρ+ p)/T ,
where ρ and p are functions of the instantaneous temperature (cf. (215)).

Show, using (65), that the entropy in a unit comoving volume V = a3 is
conserved in time, i.e. sa3 = constant.

Verify that

s =
2π2

45
g∗S T

3, (354)

with

g∗S =
∑

i=bosons

gi

(

Ti
T

)3

+
7

8

∑

i=fermions

gi

(

Ti
T

)3

. (355)
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11 The Standard Model

The Standard Model describes the strong, electromagnetic and weak interactions
currently known and verified by experiment, ignoring gravity.

11.1 Spontaneous symmetry breaking
8 The principle of local gauge invariance works beautifully for the strong and
electroweak interactions. It gives a method for determining the couplings and as
’t Hooft, Veltman and others showed in the early seventies, even spontaneously-
broken non-abelian gauge theories are renormalizable. The application to weak
interactions was more subtle because gauge invariance forbids mass terms for
gauge fields and whereas the photon and gluons are indeed massless, the W’s
and Z’s certainly are not. Gauge fields as it turned out can be given a mass,
exploiting spontaneous symmetry breaking and the Higgs mechanism. This is
a subtle procedure and it pays to begin by thinking about how one identifies a
mass term in a Lagrangian.

Consider the following Lagrangian for a scalar field φ:

L = −1

2
(∂µφ)(∂µφ) − 1

2
µ2φ2 − 1

4
λφ4. (356)

Here µ2 < 0 and λ > 0. The second term looks like a mass and the third like an
interaction. However, the sign of µ2 is wrong! If that’s a mass term, the mass
would be imaginary, which is nonsense. The answer on how to interpret this
Lagrangian comes from understanding the perturbation procedure, in which we
start from the ground state (the ’vacuum’) and treat the fields as fluctuations
about that state. For the Lagrangian (356) the trivial field configuration φ = 0 is
not the ground state! To determine the ’true’ ground state, the field configuration
of minimum energy, we write L as a free ’kinetic’ term T = ( 1

2
∂0φ)(∂0φ) minus a

’potential’ term U (that is, writing it as T 00, cf. equation (102):

L = T − U , U = V +
1

2
∂kφ∂kφ, (357)

and look for the minimum of U . This occurs for constant fields, ∂kφ = 0, and
consequently U = V . In the present case:

V = −1

2
|µ|2φ2 +

1

4
λφ4. (358)

The minimum of V then occurs at:

φ = v = ±|µ|/
√
λ. (359)

8The following three sections were contributed by Stefan Nobbenhuis.
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For this Lagrangian the Feynman calculus must be formulated in terms of de-
viations from one or the other of these ground states. This suggests that we
introduce a new field variable η, defined by:

η ≡ φ− v. (360)

a) Sketch the potential, give the Lagrangian in terms of η and interpret the
different terms.

The example above illustrates an important phenomenon. The original La-
grangian is even in φ: It is invariant as φ→ −φ. But the reformulated Lagrangian
is not even in η; the symmetry has been ’broken’. This happened because the
’vacuum’, whichever of the two ground states we care to work with, does not share
the symmetry of the Lagrangian. The collection of all ground states of course
does, but to set up the perturbation formalism we are obliged to work with one
or the other of them and that spoils the symmetry. We call this ‘spontaneous’
symmetry breaking, because no external agency is responsible (as for example
gravity breaks the the three-dimensional symmetry in this room explicitly, mak-
ing ‘up’ and ‘down’ quite different from ‘left’ and ‘right’). The true symmetry of
the system in other words, is hidden.

11.2 The Higgs mechanism

Now we apply the idea of spontaneous symmetry breaking to local gauge theories.
We begin with an Abelian example and end with the Glashow-Weinberg-Salam
theory of electroweak interactions.

Consider a complex scalar field coupled to both itself and to an electromag-
netic field:

L = −1

4
FµνF

µν − |Dµφ|2 − V (φ), (361)

with Dµ = ∂µ − ieAµ the covariant derivative and Aµ is the vectorpotential with
e the coupling to the scalar field.

a) Show that this Lagrangian is invariant under the local U(1) transformation

φ(x) → eiα(x)φ(x), Aµ(x) → Aµ(x) +
1

e
∂µα(x). (362)

We now choose the potential to be of the form:

V (φ) = µ2φ∗φ+ λ(φ∗φ)2, (363)

where λ > 0.

b) Show that when
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µ2 < 0, the field φ will acquire a vacuum expectation value and that the U(1)
global symmetry will be spontaneously broken. What happens if µ2 > 0?

We assume now µ2 < 0. Let us expand the Lagrangian (361) about the
vacuum state, φ = v and decompose it as:

φ(x) = v +
1√
2
(φ1(x) + iφ2(x)). (364)

c) Rewrite the Lagrangian in terms of φi, i = 1, 2 and determine the apparent
masses of the different fields.

You should find that the gauge fields have acquired mass terms.

One of the fields, say φ1, has acquired a mass, while the other field φ2 remains
massless. This massless field is called a Goldstone boson field. It can be shown
(Goldstone’s theorem) that spontaneous breaking of a continuous global sym-
metry is always accompanied by the appearance of one or more massless scalar
particles, which are accordingly called Goldstone bosons. The number of such
Goldstone bosons is always equal to the difference between the order (i.e. the
number of generators) of the original symmetry group and the order of the sur-
viving symmetry group. They can be understood physically as being excitations
along the symmetry directions in which the potential is unchanged. Suppose for
example we would have started with the following Lagrangian:

L = −1

2
(∂µφi)(∂

µφi) −
1

2
µ2φ2

i −
1

4
λφ2

i , (365)

describing a theory ofN real scalar fields φi where summation over i = 1, . . . , N is
implied. In this example the original group of symmetry transformations is O(N),
with 1

2
N(N − 1) generators and the final group after rewriting the Lagrangian as

fluctuations about one of its ground states,
say φ1 = v, φ2 = · · · = φN = 0, is O(N − 1) with 1

2
(N − 1)(N − 2) generators,

so there will be (N − 1) massless particles (which you can check explicitly).
To show the generality of this result, suppose φ = {φi} forms a multiplet of

symmetrygroup G, such that V (φ) and hence L(φ) is invariant under:

φ→ φ+ δφ = (1 + iαaT
a)φ (366)

where T a, with a = 1, . . . , N , are the generators of G. If the minimum of the
potential corresponds to 〈0|φi|0〉 = vi, then:

∂V

∂φi

∣

∣

∣

∣

∣

φ=v

= 0,
∂2V

∂φi∂φj

∣

∣

∣

∣

∣

φ=v

= M2
ij > 0. (367)

where M is the mass matrix for the fields φ. Now suppose that some of the
generators satisfy:

T av = 0, a = 1, . . . , n, (368)
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while the remaining generators break the symmetry of the vacuum because:

T av 6= 0, a = (n + 1), . . . , N. (369)

The n unbroken generators form a subgroup H of G since they are closed under
commutation, (T aT b − T bT a)v = 0. To determine the effect of the symmetry
breaking on the mass matrix, note that invariance of V (φ) under (366) gives:

0 = V (φ+ δφ) − V (φ) =
∂V

∂φi
δφi = iαa

∂V

∂φi
(T a)ijφj. (370)

To express this in terms of M , we differentiate with respect to φk and evaluate
it at φ = v using (367) to obtain:

M2
ki(T

av)i = 0. (371)

For the unbroken subgroup H this is trivially satisfied, but for each broken gen-
erator T av is an eigenvector of M 2 with zero eigenvalue. Thus the number of
massless Goldstone bosons is simply the number (N − n) of broken generators.

Returning to our example with the complex scalar field, we still seem to have
a massless Goldstone boson and there is a somewhat strange looking quantity:√

2 evAµ∂
µφ2. If we read it as an interaction it leads to a vertex of the form:

A
2

φ

This suggests that the massless Goldstone boson turns into the massive gauge
boson A. Any such term, bilinear in two different fields, indicates that there is
some form of mixing between the fields in the theory and this would mean that
neither one exists as an independent ‘physical’ field. The physical fields are those
for which the mass matrix is diagonal. Although the Goldstone boson plays
an important formal role in this theory, it does not appear as an independent
physical particle. The easiest way to see this is to make a particular choice of
gauge, called the unitarity gauge. Using the local U(1) gauge symmetry (362),
we can choose α(x) in such a way that φ(x) becomes real-valued at every point x.

d) Show that with this choice the field φ2, the Goldstone boson field, is re-
moved from the theory and that the Lagrangian (361) becomes:

L = −1

4
(Fµν)

2 − (∂µφ1)
2 − e2φ2

1AµA
µ − V (φ1). (372)

If the potential V (φ) favors a non-zero vacuum expectation value of φ, the gauge
field acquires a mass; it also retains a coupling to the remaining physical field φ1.
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This mechanism, by which spontaneous symmetry breaking generates a mass
for a gauge boson, was explored and generalized to the non-Abelian case by Higgs,
Kibble, Guralnik, Brout and Englert and is now known as the Higgs mechanism.
The role of the Goldstone thus is intricate and seems somewhat mysterious at
this level of the discussion. We saw that the involvement of the Goldstone boson
is necessary, as a matter of principle, in order for the gauge boson to acquire a
mass. But we also saw that the Goldstone boson field can be formally eliminated
from the theory! However, we might argue that the Goldstone boson has not com-
pletely disappeared. A massless vector boson has only two physical polarization
states, as is the case for the photon, the longitudinal polarization state cannot be
produced and appears in the formalism only to cancel other unphysical contri-
butions. However, a massive vector boson must have three physical polarization
states: In its rest frame, it is a spin-1 object, which can make no distinction
between transverse and longitudinal polarizations. It is therefore tempting to
say that the gauge boson acquired its extra degree of freedom by ‘eating’ the
Goldstone boson.

11.3 Standard Model electroweak theory

We will now discuss the spontaneously broken gauge theory of the weak inter-
actions, an important part of today’s Standard Model, introduced by Glashow,
Weinberg and Salam. This model incorporates (as not to say: unifies) a de-
scription of weak and electromagnetic interactions, in which, as we shall see, the
massless photon will correspond to a particular combination of symmetry genera-
tors that remain unbroken. This will require some group theoretic slang to make
our steps explicit, however, the important aspects should become clear without
to much worrying about that.

We begin with a theory with SU(2) gauge symmetry. To break the symmetry
spontaneously, we introduce a scalar field in the spinor representation of SU(2).
However, this theory will lead to a system with no massless gauge bosons. There-
fore, we introduce an additional U(1) gauge symmetry. We assign the scalar field
a charge +1/2 under this U(1) symmetry, so that its complete gauge transforma-
tion is:

φ→ eiβ
aIaeiα/2φ, (373)

where the Ia = σa/2 and the σ-matrices are the familiar Pauli spin matrices. If
the field φ acquires a vacuum expectation value of the form:

〈φ〉 =
1√
2

(

0

v

)

, (374)

then a gauge transformation with:

β1 = β2 = 0, β3 = α, (375)
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leaves 〈φ〉 invariant. Thus the theory will contain one massless gauge boson,
corresponding to this particular combination of generators. The remaining three
gauge bosons will acquire masses from the Higgs mechanism.

It is in principle rather straightforward to work out the details of the mass
spectrum. The covariant derivative of φ is:

Dµφ =
(

∂µ − igAaµ
σa

2
− i

1

2
g′Bµ

)

φ, (376)

where Aa
µ and Bµ are respectively, the SU(2) and U(1) gauge bosons. Since the

SU(2) and U(1) factors of the gauge group commute with one another, they can
have different coupling constants, which we have called g and g ′.

The gauge boson mass terms come from the square of (376), evaluated at the
scalar field expectation value (374).

a) Find the eigenstates of the mass matrix and corresponding eigenvalues, the
masses. These are the famous W± and Z0 vector bosons of weak interactions and
we will identify the massless field Aµ with the electromagnetic vector potential.

From particle masses and interaction strengths it is found that v, the symme-
try breaking scale in this model is about 246 GeV.

In many cases it will turn out to be easier to work with the mass eigenstate
fields. For a fermion field belonging to a general representation of SU(2) and
U(1) charge Y , the covariant derivative takes the form:

Dµ = ∂µ − igAaµI
a − ig′

Y

2
Bµ (377)

b) Show that in terms of the mass eigenstate fields this becomes:

Dµ = ∂µ − i
g√
2
(W+

µ I
+ +W−

µ I
−) − i

1√
g2 + g′2

Zµ(g
2I3 − g′2Y )

− i
gg′√
g2 + g′2

Aµ(I
3 + Y ), (378)

where I± = I1 ± iI2 and W±
µ = 1√

2
(A1

µ ∓ iA2
µ) and the normalizaion is chosen so

that, in the spinor representation of SU(2), I± = 1
2
(σ1 ± σ2) = σ±.

The last term makes explicit that the massless gauge boson Aµ couples to the
gauge generators (I3 + Y/2), which generates precisely the symmetry operation
(375).

The massless gauge boson A is naturally interpreted as the photon. Therefore
we identify the electric charge quantum number as:

Q = I3 + Y/2. (379)
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and use this relation to specify the eigenvalues of the U(1) generator, 1
2
Y (the

factor 1
2

being purely conventional). I i and Y are referred to as the weak isospin
and weak hypercharge generators respectively.

The covariant derivative (378) can be cast in easier form by also identifying
the coefficient of the electromagnetic interaction as the electron charge:

e =
gg′√
g2 + g′2

, (380)

The notation can be simplified further by defining the weak mixing angle θW , to
be the angle that appears in the change of basis from (A3, B) to (Z0, A) (see also
p.234 from Peacock):

(

Z0

A

)

=

(

cos θW − sin θW
sin θW cos θW

)(

A3

B

)

(381)

c) Using (378), (379), (381) rewrite the covariant derivative once more in terms
of e and sin θ. This shows that the couplings of all the weak bosons are described
by two parameters: the well measured electron charge e and a new parameter, θW .

d)Verify that we can write mW = mZ cos θW .

All effects ofW and Z exchange processes, at least at tree level, can be written
in terms of the three basic parameters e, θW and mW . Experiments have shown
that sin2 θW ' 0.23.

11.4 The action of the (Extended) Standard Model

The Standard Model is a gauge theory with gauge group U(1)×SU(2)×SU(3). A
gauge transformation in the defining respresentation of this group can be written
as (the 1

2
is conventional)

(Ω)ac,a′c′ = ei
1
2
α
(

eiβk
1
2
σk
)

aa′

(

eiωp
1
2
λp
)

cc′
, (382)

acting on complex fields, say ψac, where a, a′ = 1, 2 or u, d (‘up’, ‘down’), and
c, c′ = 1, 2, 3 or ‘red’, ‘green’, ‘blue’. The λp are a complete set of hermitian trace-
less 3 × 3 matrices, normalized as Tr (λpλq) = 2δpq, eight in total, p = 1, · · · , 8,
similar to the Pauli matrices, called ‘Gell-Mann matrices’. They satisfy the com-
mutation relations [λp, λq] = 2ifpqr λr, where the real fpqr are the structure con-
stants of the group SU(3). Note that σk and λp commute, since they act on differ-
ent indices in the tensor product representation. The lagrangian of the Standard
Model is invariant under these space-time dependent gauge transformations.
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The basic ingredients for constructing the lagrangian L are (a) hermiticity,
(b) symmetry (Lorentz and gauge invariance), (c) field representation and (d)
renormalizability. The latter property is garanteed by allowing only constants in
the lagrangian with mass dimension ≥ 0, and all possible couplings allowed by
symmetry have to be present. Renormalizability makes it possible to absorb the
effects of the regularization (e.g. a cutoff), needed to define loop integrals which
would otherwise be divergent, into the bare constants of the lagrangian. There
may still be non-perturbative effects which limit the validity of the model to
momenta smaller than some effective scale (the ‘Landau ghost’, ‘triviality scale’),
but this scale can be unobservably high, even beyond the Planck scale, depending
on the parameters of the model.

The lagrangian consists of several terms,

S =
∫

d4xL, (383)

L = ε+ L1 + L2 + L3 + Lθ1 + Lθ2 + Lθ3 + LF + LFH + LM, (384)

in which ε controlls the cosmological constant, with Lagrange densities L1, . . . ,
LM which will now be described.

The Bose fields in the model are the U(1)-gauge field Bµ, the SU(2)-gauge
fields Akµ, k = 1, 2, 3, and the SU(3)-gauge fields Gp

µ, p = 1, · · · , 8. Their standard
derivative parts in the lagrangian are given by (cf. section 8.11)

−L1 =
1

4
BµνB

µν , Bµν = ∂µBν − ∂νBµ, (385)

−L2 =
1

4
AkµνA

µνk, Akµν = ∂µA
k
ν − ∂νA

k
µ + g2 εklmA

l
µA

m
ν , (386)

−L3 =
1

4
Gp
µνG

µνp, Gp
µν = ∂µG

p
ν − ∂νG

p
µ + g3 fpqrG

q
µG

r
ν . (387)

Here g2 and g3 are the SU(2) and SU(3) coupling constants. The Lθ’s are given
by

Lθ1 = θ1
1

64π2
εκλµν BκλBµν , (388)

Lθ2 = θ2
1

64π2
εκλµν AkκλB

k
µν , (389)

Lθ3 = θ3
1

64π2
εκλµν Gp

κλB
p
µν , (390)

with parameters θ1, θ2 and θ3. It can be shown (cf. problem 1) that these Lθ

are total derivatives, so they have no influence on the field equations that follow
from the stationary action principle. Classically they are irrelevant. However,
the world is quantum mechanical and the θs may still influence the quantum
evolution in time, e.g. through their effect on the hamiltonian. In addition they
may influence the ground state (vacuum).
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The set of Bose fields is completed with the Higgs doublet

φ =

(

ϕu
ϕd

)

. (391)

where ϕu and ϕd are complex scalar fields. The Higgs part of the lagrangian is

−LH = (Dµφ)†Dµφ+ µ2φ†φ+ λ(φ†φ)2, (392)

where µ2 < 0 and λ > 0 to invoke spontaneous symmetry breaking. The covariant
derivative for the Higgs doublet is given by

Dµφ =
(

∂µ − ig1
1

2
Bµ − ig2

1

2
σkA

k
µ

)

φ, (393)

where g1 is the U(1) gauge coupling constant. Note that the Higgs doublet is
invariant under SU(3) transformations, it is a singlet under SU(3).

The Fermi fields in the action may be described by Dirac fields ψ and their
conjugates ψ̄ = ψ†β.9 As far as we know the fermions come in three genera-
tions with identical transformation properties. The fields of the first generation
may be denoted by ψ1 = (ψνe , ψe, ψu, ψd), but it is customary to write sim-
ply (νe, e, u, d), with the conjugate fields ψ̄1 = (ν̄e, ē, ū, d̄). The fields of the
second and third generation are ψ2 = (νµ, µ, c, s), ψ3 = (ντ , τ, t, b), and their
conjugates.

However, these are not irreducible representations of the Lorentz group, whereas
in the Standard Model the representation of the gauge group carried by the fields
depends on the type of Lorentz irrep (irreducible representation). The Dirac
fields can split into irreps L and R of the Lorentz group with the help of the left-
and right-handed projectors PL and PR,

PL =
1

2
(1−γ5), PR =

1

2
(1+γ5), P 2

L = PL, P 2
R = PR, PLPR = 0, PL+PR = 1.

(394)
The left- and right-handed fields are obtained from the Dirac fields as

ψL = PLψ, PL(ψ̄C)T = (ψ̄RC)T = (ψ†PRβC)T , left, (395)

ψR = PRψ, PR(ψ̄C)T = (ψ̄LC)T = (ψ†PLβC)T , right. (396)

Here C is the charge conjugation matrix and T denotes transposition.
In general, a field transforms under the gauge group as

ψ → eiα
1
2
Y eiβkIk eiωpTp ψ, (397)

9Our Dirac matrices satisfy {γµ, γν} = 2ηµν , γ0 = −γ0, γ†0 = −γ0, γ
†
k = γk, γ5 =

iγ0γ1γ2γ3 = γ†5, β = iγ0, αk = −γ0γk. Furthermore, ψ̄ ≡ ψ†β and the charge-conjugation
matrix C has the properties C = −CT , C† = C−1, γT

µ = −C†γµC. The charge conjugates of

ψ and ψ̄ are ψ(c) = (ψ̄C)T and ψ̄(c) = −(C†ψ)T .
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ψ1 Y/2 Ik Tp

νeR 0 0 0
eR –1 0 0
`L –1/2 σk/2 0
uR 2/3 0 λp/2
dR –1/3 0 λp/2
qL 1/6 σk/2 λp/2

Table 1: U(1) × SU(2) × SU(3) representation of the fermion fields. Shown
are fields in the first generation. The other generations ψ2 = (νµ, µ, c, s) and
ψ3 = (ντ , τ, t, b) transform identically. The representation of the ψ̄ fields follows
from ψ̄ = ψ†β.

where Ik and Tp are a representation of 1
2
σk and 1

2
λp. In the Standard Model only

the trivial representation (Ik → 0 or Tp → 0) and the fundamental representations
of SU(2) (Ik → 1

2
σk) and SU(3) (Tp → 1

2
λp, Tp → −1

2
λ∗p) occur. For SU(2), −σ∗

k

is equivalent to σk, because

−σ∗
k = iσ2σk(−iσ2)

†,
(

eiβk
1
2
σk
)∗

= iσ2

(

eiβk
1
2
σk
)

(−iσ2)
†. (398)

The representation of the first generation is given in table 1. Note that

`L =

(

νeL
eL

)

(399)

is a doublet under SU(2) and a singlet under SU(3), whereas

uR =







ured
R

ugreen
R

ublue
R





 (400)

is a singlet under SU(2) and a triplet under SU(3). The symbol qL represents
six fields: the SU(2)-doublet

qL =

(

uL
dL

)

(401)

in which uL and dL are SU(3)-triplets. The singlets under SU(3) are called
leptons. They have only electroweak interactions. The triplets under SU(3) are
called quarks, which have also strong interactions.

The values of the weak hypercharge Y in the table look strange. However, their
ratios are almost unique upon imposing the condition that the model is anomaly

free.10 In particular, both leptons and quarks are needed for a consistent theory,
the anomalies of the leptons cancel out against those of the quarks.

10See for example Weinberg’s book The quantum theory of fields II, section 22.4
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The fermion terms in the lagrangian involving the covariant derivative

Dµψ =
(

∂µ − ig1
1

2
Y Bµ − ig2IkA

k
µ − ig3TpG

p
µ

)

ψ, (402)

follow directly from the table,

−LF = ψ̄γµDµψ

= ν̄eRγ
µ∂µνeR + +ēRγ

µ (∂µ + ig1Bµ) eR

+ ¯̀
Lγ

µ
(

∂µ + ig1
1

2
Bµ − ig2Aµ

)

eL

+ ūRγ
µ
(

∂µ − ig1
2
3
Bµ − ig3Gµ

)

uR + d̄Rγ
µ
(

∂µ + ig1
1

3
Bµ − ig3Gµ

)

dR

+ q̄Lγ
µ
(

∂µ − ig1
1
6
Bµ − ig2Aµ − ig3Gµ

)

qL

+ 2nd generation + 3rd generation, (403)

where

Aµ = Akµ
1

2
σk, Gµ = Gp

µ

1

2
σp. (404)

It would have been more systematic to exhibit only left-handed fields in table 1
(i.e. exhibit the (ψ̄RC)T in stead of the ψR), but then we would have to make some
conjugations in order to arrive at the conventional form (403) of the lagrangian.

The neutrino fields νR and ν̄R are singlets under the gauge group, and they
are often not considered as part of the Standard Model. The model without
them is called the Minimal Standard Model. Nowadays, νR and ν̄R are usually
included because of the evidence that the neutrinos have masses, and the model
including them is called the Extended Standard Model. The νR and ν̄R can have
only interactions via so-called Yukawa couplings with the Higgs doublet, to which
we now turn.

The fermion–Higgs part of the lagrangian has terms of the form (¯̀Lφ)eR +
ēR(φ†`L), and (q̄Lφ)dR + d̄R(φ†qL), which are gauge invariant. However, because
of (398), the field

φ̃ = iσ2φ
∗ =

(

φ∗
d

−φ∗
u

)

(405)

also transforms like a doublet under SU(2), but with opposite hypercharge Yφ̃ =

−1 as compared with Yφ = 1. So we may also consider (¯̀Lφ̃)νeR + ν̄eR(φ̃†`L),
and (q̄Lφ̃)uR+ ūR(φ̃†qL), since they are also gauge invariant. In addition to these
forms we have the possibility of coupling constants which mix generations, for
example couplings like (ūL, d̄L)φsR and (ūL, d̄L)φbR. Such generation mixing was
already possible in LF, but we can always make transformations on the fields
such that LF has the standard form (403), which is just a straightforward sum
over generations without mixing.
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The generation mixing is is most easily written down if we use a notation in
which we add a generation index to the fields of the first generation, such that

`L1 =

(

νeL
eL

)

, `L2 =

(

νµL
µL

)

, `L3 =

(

ντL
τL

)

, (406)

qL1 =

(

uL
dL

)

, qL2 =

(

cL
sL

)

, qL3 =

(

tL
bL

)

, (407)

and similarly for the right-handed fields,

νR1 = νeR, νR2 = νµR, νR3 = ντR, eR1 = eR, eR2 = µR, · · · , dR3 = bR.
(408)

Then the fermion–Higgs part of the lagrangian can be written as

−LFH = (¯̀Lgφ̃)F u,`
gg′ νRg′ + (¯̀Lgφ)F d,`

gg′eRg′ + (q̄Lgφ̃)F u,q
gg′ uRg′ + (q̄Lgφ)F d,q

gg′ dRg′ + h.c.,
(409)

where h.c. means hermitian conjugate. The coupling constants F u,`, F d,`, F u,q

and F d,q are matrices ‘in generation space’.
Finally, for the neutral fields νRg and ν̄Rg we can still add Majorana mass

terms of the form

−LM =
1

2
(−C†νRg)

TMgg′νRg′ +
1

2
ν̄RgM

∗
gg′(ν̄Rg′C)T

=
1

2
νTRC

†MνR +
1

2
ν∗TR CM∗ν∗R, (410)

where M = MT is symmetric.
This completes our first introduction of the lagrangian (382) of the Extended

Standard Model.

11.5 Parameters, CKM matrix and Fermi constant

Apart from parameter ε, which serves to set the cosmological constant to zero11,
there is only one dimensional parameter in the Minimal Standard Model, µ2,
whereas there are more in the extended model, µ2 and the matrix elements Mgg′ .
We shall first limit ourselves to the Minimal Standard Model (MSM), in which
the right-handed neutrino fields νRg and their conjugates ν̄Rg are absent. Hence
the Majorana mass matrix M and Yukawa coupling matrix F u,` are then absent
too. Alternatively, we may include the νRg and ν̄Rg in the MSM with M = 0
and F u,` = 0. Then, without gravity the νRg and ν̄Rg are simply free fields and
irrelevant for particle physics. With gravity they could have effects in cosmology.

Before going to discuss the values of the parameters in the MSM we need to
brush up the coupling matrices F . These can be arbitray complex matrices, which

11Or, possibly, to the current tiny value of Λ = ΩΛρc ≈ 0.7 × 8.0992h2 × 10−47 GeV4 ≈
(2 × 10−3 eV)4.
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seems to imply many parameters. However, we can still make field transforma-
tions to bring them into a more restricted standard form. The transformations

qLg → Xgg′ qLg′ , uRg → Zu
gg′ uRg′, dRg → Zd

gg′ dRg′ , (411)

have the effect that

F u,q → X†F u,qZu, F d,q → X†F d,qZd. (412)

Such transformations can be used to bring F u,d into the standard form (cf. prob-
lem 2)

F u,q =







fu 0 0
0 fc 0
0 0 ft





 > 0, F d,q =
(

F d,q
)†
> 0, (413)

where the diagonal elements fu, . . . , ft and the eigenvalues of the hermitian F d,q

are real and positive, as in dicated by the > 0 sign, with six real parameters and
one phase (cf. problem 2). We could also have chosen a standard form in which
F d is diagonal and F u hermitian and positive. This latter choice will be made
for the leptons, for which similar transformations can be carried out to bring F u,`

and F d,` into the form

F u,` =
(

F u,`
)†
> 0, F d,` =







fe 0 0
0 fµ 0
0 0 fτ





 > 0. (414)

This form is very convenient in the MSM for which F u,` = 0.
We should mention here that the above transformations on the fermion fields

may influence the values of the parameters θ1, θ2 and θ3, through intricate quan-
tum effects called anomalies. The θ parameters may have observable effects in
the quantum theory, although, as mentioned earlier, classically they are irrele-
vant because the Lθ are total derivatives. They have no effect on propagators
or interaction vertices in Feynman diagrams. Nevertheless, they may have non-
perturbative effects. According to current understanding only θ3 is observable.

The parameters of the MSM are now g1, g2, g3, λ, fe, fµ, fτ , fu, fc, ft, the
seven real parameters in F d,q, θ3, and the dimensional µ2 and ε.

We have seen already that spontaneous symmetry breaking

〈φ〉 ≡ φvac =
1√
2

(

0
v

)

, v =
√

−µ2/λ, (415)

leads to non-zero masses for the W , Z and Higgs bosons,

m2
W =

1

2
g2v

2, mZ = mW/ cos θW , m2
H = 2λv2 tan θW = g1/g2. (416)
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and zero mass for the photons. The gluon fields also remain massless as they are
not coupled to the Higgs doublet. The couplings of the photon field Aµ and the
Z boson field to the fermions follow from

A3
µ = Zµ cos θW + Aµ sin θW , Bµ = −Zµ sin θW + Aµ cos θW , (417)

such that

g1
Y

2
Bµg2I3A

3
µ = eQAµ +

e

cos θW sin θW
(I3 − sin2 θW Q)Zµ (418)

Q = I3 +
Y

2
, e = g1 cos θW = g2 sin θW . (419)

Substituting φ = φvac into the Yukawa-coupling part of the lagrangian results
in terms of the form ψ̄LmψR + h.c. = ψ̄LmψR + ψ̄RmψL = ψ̄mψ, which are mass
terms for Dirac fields ψ = ψL + ψR, with m = m† = Fv/

√
2. So the fermions

also get their masses from spontaneous symmetry breaking,

mνe,νµ,ντ = 0, mu,c,t =
1√
2
gu,c,tv, me,µ,τ =

1√
2
ge,µ,τv, (420)

with a mass matrix for the d, s, b quarks (cf. (409)),

(q̄Lgφvac)F
d,q
gg′ dRg′ + h.c. = d̄gm

d
gg′dg′, md =

1√
2
v F d,q. (421)

The hermitian matrix F d,q can be diagonalized by a unitrary transformation,

F d,q = V







fd 0 0
0 fs 0
0 0 fb





V † (422)

so, on making the transformation

dg → Vgg′dg′ , (423)

we obtain a diagonal mass matrix for the transformed fields,

d̄gm
d
gg′dg′ → mdd̄d+mss̄s+mbb̄b, (424)

with

md,s,b =
1√
2
fd,s,b v. (425)

The transformation (423) can be written in ‘up-down space’ as

(

ug
dg

)

→
(

1 0
0 Vgg′

) (

ug′
dg′

)

=
(

1 + σ3

2
+

1 − σ3

2
Vgg′

)

(

ug′
dg′

)

. (426)
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W

µ

ν

νµ

e e

Figure 1: Diagram for the decay µ− → νµ + e− + νe.

Hence after the transformation the matrix V pops up again in those quark parts
of the lagrangian that contain σ1 and σ2, as these do not commute with σ3. So
these involve the W fields

W+
µ =

1√
2
(A1

µ − iA2
µ), W−

µ =
1√
2
(A1

µ + iA2
µ), (427)

and the quark part of the W current. The interaction terms in the lagrangian of
the fermions with the W -boson field can be written as

LFW → g2

2
√

2
(jµW+

µ + jµ†W−
µ ), (428)

with

jµ = jµ` + jµq , (429)

jµ` = ē iγµ(1 − γ5)νe + µ̄ iγµ(1 − γ5)νµ + τ̄ iγµ(1 − γ5)ντ , (430)

jµq = ūg iγ
µ(1 − γ5)Vgg′dg′ (431)

= Vud ū iγ
µ(1 − γ5)d+ Vus ū iγ

µ(1 − γ5)s+ Vub ū iγ
µ(1 − γ5)b

+ Vcd c̄ iγ
µ(1 − γ5)d+ · · · , (432)

where we used the conventional notation Vud = V11, Vus = V12, etc. The unitary
matrix V is called the Cabbibo–Kobayashi–Maskawa (CKM) matrix. It contains
four real parameters: 7(F d,q)− 3(fd,s,b) = 4, and it can be parametrized in terms
of three angles θ12, θ23, θ13 and a phase δ12

12

Once we know the expectation value v, the diagonal Yukawa couplings f are
determined in terms of the fermion masses by f =

√
2m/v. The value of v can

be found from the mass and lifetime of the muon, which is unstable through the
decay µ− → νµ+ e− + ν̄e, as illustrated by the Feynman diagram in figure 1. The

12See the website of the Particle Data Group, http://pdg.lbl.gov.
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invariant amplitude for the decay can be written as

M =

(

g2

2
√

2

)2

〈peλe, pν̄e|jν†|0〉DW
µν(k) 〈pνµ|jµ` |pµλµ〉, k = pµ − pνµ, (433)

where the λ’s are spin labels (e.g. for the electron and muon it is the z component
of the spin in rest frame of the particles, the massless neutrinos have only one
spin polarization in the MSM), and DW

µν is the W propagator

DW
µν(k) =

ηµν − kµkν/m
2
W

k2 +m2
W − iε

. (434)

Actually, the momentum transfer kµ is only of the order of the muon mass mµ =
106 MeV, which is much smaller than the W mass mW = 80.4 GeV. So we may
approximate

DW
µν(k) ≈

ηµν
m2
W

, (435)

and under such circumstances the effective Fermi interaction

LFW → GF√
2
jµj†µ,

GF√
2

=

(

g2

2
√

2

)2
1

m2
W

=
1

2v2
, (436)

parametrized in terms of the Fermi constant GF , gives an accurate description
of the weak interactions with charged currents. There is a corresponding form
involving neutral currents, obtained by making an approximation similar to (435)
for the Z boson, which is even heavier than the W boson.

The decay rate turns out to be accurately given by neglecting also the electron
mass me = 0.511 MeV (see e.g. Veltman’s book ‘Diagrammatica’),

Γ(µ→ νµeν̄e) =
G2
F

192π2
m5
µ, (437)

The observed lifetime Γ−1 of 2.197 × 10−6 sec. and muon mass mµ = 105.66
MeV give GF = 1.164× 10−5 GeV−2. Including higher order corrections leads to
GF = 1.166 × 10−5 GeV−2, and correspondingly v = 246 GeV.

The Yukawa couplings follow now from the ratio of fermion masses with v,
f =

√
2mf/v. The fermion masses vary over five orders of magnitude,

me = 0.000511, mµ = 0.106, mτ = 1.78, (438)

mu ≈ 0.003, md ≈ 0.006, ms ≈ 0.1, mc ≈ 1.3, mb ≈ 4.1, mt ≈ 175,

in GeV units, and so the Yukawa couplings vary from fe = 0.29×10−5 to ft = 1.0.
The elements of the CKM matrix V are currently under active experimental
scrutiny, and some of them are known already to considerable precision.
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The ratios of the masses mW = 80.4 GeV and mZ = 91.2 GeV with v deter-
mine the gauge couplings g1 and g2,

g2 =
2mw

v
= 0.65, g1 = g2 tan θW = g2

√

m2
Z/m

2
W − 1 = 0.35, (439)

with sin2 θW = 1 −m2
W/m

2
Z = 0.22. The implied value for e = g1 cos θW = 0.31

is close to the experimental value e =
√

4πα =
√

4π/137 = 0.30. Taking into
account higher order corrections in perturbation theory has led to surprisingly
accurate agreement with all experimental results so far, see http://pdg.lbl.gov.
They are so accurate that the mass of the Higgs boson, which has currently not
yet been found, can be bounded to be lower than about 230 GeV (90% confidence
limit), see http://pdg.lbl.gov.

There is good evidence for neutrino oscillations, which implies that the neutri-
nos are massive. The experimental results can be incorporated in the Extended
Standard Model (ESM), which includes the fields νR and ν̄R, together with the
Yukawa coupling matrix F u,` and the Majorana mass matrix M . These consti-
tute many more parameters which are very hard to determine. Luckily, their
influence on much of particle physics is very limited, because the neutrino masses
are so small. On the other hand, they also break symmetries and may very well
have important cosmological consequences.

11.6 Global symmetries

Apart from the local invariance related to gauge-field dynamics, the lagrangian
may also be invariant under global (space-time independent) symmetry transfor-
mations. The MSM lagrangian is invariant under

qLg → eiα qLg, uRg → eiα uRg, dRg → eiα dRg, (baryon number B)(440)

`Lg → eiαg `Lg, eRg → eiαg eRg, (lepton number Lg),(441)

with the complex conjugate transformation for the conjugate fields. In parenthe-
sis we have indicated the conserved quantities as a consequence of the Noether
theorem. The conserved quantities are given by

B =
1

3

∫

d3x
∑

g

(

q†LgqLg + u†RguRg + d†RgdRg
)

, (442)

Lg =
∫

d3x
(

`†Lg`Lg + e†RgeRg
)

, (443)

where the factor 1/3 is inserted because there are three quarks in a baryon (with-
out it we would speak of quark number). Note that because of generation mixing
there is only one conserved baryon number and there are three conserved lepton
numbers.
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The situation is actually more complicated because of the anomaly phe-
nomenon. It turns out that in principle the sum B +

∑

g Lg is not coserved
because of an anomaly, although at energies substantially below the W mass
the B violation is negligible. However, this anomaly plays an important role in
theories of baryogenesis.

In the ESM all three lepton number symmetries are broken on the lagrangian
level.

Last but not least, without going into details we mention that the MSM and
ESM are not invariant under C (charge conjugation) and P (parity). The MSM is
almost invariant under the product CP : it is broken by the fact that with three or
more generations, the CKM matrix, or equivalently, the matrix F d,q is necessarily
complex. The ESM has the possibility of additional CP breaking in the F u,` and
M . The CP violation may be a driving mechanism for baryogenesis. Finally,
any local lagrangian L that is Lorentz and translation invariant, and hermitian,
is invariant under the product CPT of C, P and T (time reversal).

11.7 QED and QCD

In the approximation that neglects 1/mW,Z,H effects altogether, we can delete the
W , Z and Higgs fields from the MSM lagrangian. This gives the lagrangian for
quantum electrodynamics (QED) plus quantum chromodynamics (QCD). The
free fermion action contains all the (generation-diagonal) mass terms found so
far,

Lfree
F = ēg(γ

µ∂µ +m`)eg + ūg(γ
µ∂µ +mu)ug + d̄g(γ

µ∂µ +md)dg (444)

with an implied sum over all generations, as before. The interaction with the
fermions has the form

ejµemAµ + g3j
µ
p colorG

p
µ, (445)

with

jµem = ēg iγ
µQeg + ūg iγ

µQug + d̄g iγ
µQdg, (446)

jµp color = ūg iγ
µ 1

2
λp ug + d̄g iγ

µ 1

2
λp dg. (447)

Note that γ5 has dropped out of the lagrangian. This corresponds to the fact
that QED and QCD are invariant under C and P separately, as well as under T .

11.8 Further problems

1. Verify that Lθ1 is a total derivative.

2. An arbitray non-singular matrix M can be written in polar decomposition
form

M = PU, P = P † > 0, U † = U−1. (448)
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where > 0 means that it is a positive matrix, i.e. any ‘expectation value’
c†Pc > 0. We can define P by P =

√
MM † and then find U as U = MP−1.

A hermitian matrix can be diagonalized by a unitary transformation, P =
V DV †, where D is diagonal and V †V = 1. How would you take the square
root to compute P ?

Verify (413).

Verify that F d,q can be brought into the form

F d,q =







a b c
b d e
c∗ e f





 , (449)

with real a, b, d, e, f , such that F d,q depends only on seven real parameters.
Hint: after establishing (413) we can still make phase transformations with
X = Zu = Zd that are diagonal. This can be used to limit the number of
free parameters in F d,q.

Verify that the CKM matrix V can be limited to contain only four real
parameters.

Suppose there are only three generations. Verify that in this case F d,q and
V can be chosen real without loss of generality.

3. Verify that the MSM is invariant under (440) and (441). Use the Noether
method (186) to obtain the corresponding currents, and the charges (442)
and (443).
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12 Decoupling temperature at nucleosynthesis

Nucleosynthesis started when the weak interactions, which are capable of chang-
ing protons into neutrons through processes such as e− + p ↔ n + νe, became
ineffective, because of the expansion of the universe. A simple criterion is to
compare the Hubble rate, H, with the rate of scatterings, Γ, that e.g. a proton
experiences. Suppose Γ has a temperature dependence of the form Γ = cT n.
In the era of radiation dominance the scale factor a ∝ t1/2, H = 1/2t and the
temperature falls with time like T ∝ t−1/2 (cf. (98). Then the total number of
scatterings a proton experiences after time t is given by

Nscatt =
∫ ∞

t
dt′ Γ(t′) =

1

n− 2

Γ(t)

H(t)
, (450)

provided that n > 2. This number becomes smaller than one when Γ(t) drops
sufficiently below H(t), and the scatterings effectively stop. The proton distri-
bution function then ‘freezes’ (apart from the Hubble expansion) and does not
drop to zero anymore ∝ exp(−mp/T ). This is the ‘origin of species’ described in
more detail by Kolb and Turner (chapter 5) using the Boltzmann equation.

In the following we shall make the above estimate more concrete by evaluating
the rate Γ for the process e− + p↔ n + νe.

Consider a proton in a thermal bath of neutrons, electrons and electron-
neutrinos. The temperature is of the order of 1 MeV, so the protons and neutrons
are nonrelativistic. We want to calculate the rate (per proton) for the process
p+ e→ n+ νe. Recall equation (273) in section 9.1, and make the identification
j = p (proton), i = e (electron), 1 = n (neutron) and 2 = νe. The densities
ni,j in section 9.1 were for fixed momentum of the colliding particles. We now
take np = δ(x) and replace ne by the distribution function fe(pe) for electrons,
while integrating over the electron momenta pe. We also add Pauli-blocking
factors [1 − fn(pn)][1 − fνe(pνe)], which disallow a fermion state to be occupied
more than once. We encounteed such factors earlier with the introduction of
the Boltzmann equation and the arguments for their appearence were given in
(210)–(212) for bosons and (225) for fermions.

However, since the neutrons are nonrelativistic, fn � 1, and Pauli blocking
does not play a role here for neutrons.

a. Verify that the rate for the process p+ e→ n+ νe per proton is given by

Γpe→nνe =
4

2p0
p

∫

dωn dωνe dωe fe(pe)[1−fνe(pνe)] (2π)4δ4(pn+pνe−pp−pe) |M|2.

(451)
Note that neutrinos taking part in ordinary weak interactions have only one
helicity state (left handed for neutrinos, right handed for antineutrinos), and
we ignored the other helicity state.
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From the theory of weak interactions one finds (see below for a derivation), in
the non-relativistic limit for the nucleons,

|M|2 = 4G2
F |Vud|2m2

N [(EeEνe + pe · pνe) + g2
A(3EeEνe − pe · pνe)], (452)

where mN is the nucleon mass (ignoring the difference between mn and mp), Ee =
√

p2
e +m2

e, Eνe = |pνe|, GF is the Fermi weak interaction constant, GF = 1.166×
10−5 GeV−2, gA = 1.267 is the axial vector coupling constant of the nucleon, and
|Vud| is the absolute value of the Kobayashi-Moskawa matrix element, |Vud| =
0.9735 (we left out the experimental uncertainties, see the Particle Data Group
website: http://pdg.lbl.gov). This spin-averaged invariant amplitude also enters
in the neutron decay rate (inverse life time)

τ−1
n ≡ Γn→peν̄e =

4

2mn

∫

dωp dωe dων (2π)4δ4(pp + pe + pν − pn) |M|2. (453)

Here it is of course crucial that mn > mp +me, otherwise the neutron could not
decay because of energy conservation. However, in |M|2 we may still ignore the
difference between mn and mp. Note that the contribution of the terms ∝ pe ·pνe
in |M|2 will vanish upon integration over angles. So effectively

|M|2 → 4G2
F |Vud|2m2

N(1 + 3g2
A)EeEνe . (454)

b. Verify that the rate Γn→peν̄e can be written in the form

Γn→peν̄e = G2
F |Vud|2(1 + 3g2

A)
m5
e

2π3
λ0, (455)

λ0 =
∫ q

1
dε ε

√
ε2 − 1 (q − ε)2 = 1.632, (456)

where q = Q/me = (mn −mp)/me and where in the rest of the kinematic
factors we have approximated mn = mp = mN . Hint: first integrate over
pp, then over pν , then convert the remaining integral over pe into an integral

over ε = Ee/me =
√

p2
e +m2

e/me. We have Q = 1.292 MeV, me = 0.5110
MeV.

Verify that the rate Γpe→nνe can be written in the form

Γpe→nν =
1

τnλ0

∫ ∞

q
dε

ε
√
ε2 − 1 (q − ε)2

[1 + eεz][1 + e(q−ε)zν ]
, (457)

where z = me/T , zν = me/Tν, with neutrino temperature Tν possibly
differing from the electron temperature T .

c. Assuming Tν = T , verify

Γpe→nν ≈ 2q
√
q2 − 1

τnλ0

(

T

me

)3

e−Q/T , T � Q, me, (458)

≈ 7π

60
(1 + 3gA)|Vud|2G2

FT
5, T � Q, me. (459)
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d. Assuming the T � Q, me form (459), for what temperature is Γpe→nν = H,
with H = 0.331

√
g∗ T

2/mP the Hubble rate for an effective number of
degrees of freedom g∗ = 2+(7/8)(4+6) = 10.75 corresponding to photons,
electrons and neutrinos (and their antiparticles)?

e. Answer the above question more accurately by evaluating the integral (457)
numerically using e.g. Mathematica, and Tν/T = (4/11)1/3.

We shall now sketch the calculation of the above spin-averaged invariant ampli-
tude |M|2. The effective Fermi interaction lagrangian for this process reads

Lint =
GF√

2
jµj†µ, (460)

where the charged current has the form

jµ = jµhad + jµlep, (461)

jµhad = Vud ū iγ
µ(1 − γ5)d+ · · · , (462)

jµlep = ν̄e iγ
µ(1 − γ5)e+ · · · . (463)

Here u, d, e and νe are the up-quark, down-quark, electron and electron-neutrino
fields, respectively. For the process e− + p→ νe +n we need the matrix elements
of the currents between the in- and outgoing states, which separates, to first order
in GF , into separate matrix elements for the leptons and hadrons. For the lepton
current this is

〈νe(pνe, λνe)|jµ†lep(x)|e(pe, λe)〉 = ū(pνe, λνe)iγ
µ(1 − γ5)u(pe, λe) e

i(pνe−pe)x, (464)

where u(p, λ) is the Dirac polarization spinor corresponding to four-momentum
p and spin index λ, covariantly normalized as ū(p, λ′)iγµu(p, λ) = 2pµδλ′,λ. The
spin index takes values λ = ± and may be taken to indicate the value of the z
component of the spin in the rest frame of the particle. We treat the neutrinos as
massless and for them we use instead the z component of the spin in the direction
of momentum – the helicity. The matrix element of the hadron current is not
easy to evaluate, because the proton and neutron are bound states of quarks
and gluons. However, we can parametrize this matrix element on grounds of
symmetry. Things greatly simplify if we take the nonrelativistic limit for the
nucleons, which is appropriate for momenta of the order of 1 MeV, since the
nucleons have a mass of nearly 1 GeV. Then it is known that

〈n(pn, λn)|jµhad(x)|p(pp, λp)〉 ≈ ū(pn, λn)iγ
µ(1 − gAγ5)u(pp, λp)e

i(pn−pp)x, (465)

where all the complicated bound-state structure of the nucleon is buried in the
constant gA. The invariant amplitude is now given by

M =
GF√

2
ū(pνe, λνe)iγ

µ(1 − γ5)u(pe, λe) ū(pn, λn)iγµ(1 − gAγ5)u(pp, λp)

≡ GF√
2
lµhµ. (466)
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In the nonrelativistic limit we set pp = pn = 0 in the nucleon spinors and we also
approximate mp = mn ≡ mN . Then for the vector current there is a non-zero
contribution only for µ = 0,

ū(pn, λn)iγ
µu(pp, λp) → 2mNδ

µ
0 δλn,λp. (467)

For the axial vector current we get zero for µ = 0, and for µ = k = 1, 2, 3:

ū(pn, λn)iγ
kγ5u(pp, λp) → 2mN σ

k
λn ,λp, (468)

where the σk are the three Pauli matrices. After multiplying by M∗ the average
over spins can now be performed,

|M|2 =
G2
F

2

1

23

∑

λpλnλνeλe

lµlν∗hµh
∗
ν . (469)

For the nucleons we get

∑

λnλp

hµhν∗ = 8m2
N , µ = ν = 0, (470)

= 4m2
NTr (σkσl) = 8m2

N δkl, µ = k, ν = l, (471)

and zero for (µ, ν) = (0, l), (k, 0). For the leptons we use a standard trace
technique. First observe that ū = u†β, β ≡ iγ0 = β†, ū1Mu∗2 = ū2βM

†βu1,
where M is a combination of Dirac matrices. Next, observe that |ū1Mu2|2 =
ū1Mu2ū2βM

†βu1 = Tr (Mu2ū2βM
†βu1ū1), where Tr denotes taking the trace of

the matrix. Summing over the spins polarizations we encounter
∑

λ u(p, λ)ū(p, λ) =
m − ipκγκ. For the neutrinos we can also use this formula with m = 0, because
the factor (1− γ5) has the effect that only the left-handed spin-polarization con-
tributes. So, using the properties of the Dirac matrices we get (mνe = 0)

∑

λνeλe

lµlν∗ = −Tr [γµ(1 − γ5)(me − ipαe γα)γ
ν(1 − γ5)(mνe − ipβνeγβ)]

= 2pαe p
β
νeTr [γµγαγ

νγβ(1 + γ5)] (472)

where we also used (1 − γ5)
2 = 2(1 − γ5), (1 − γ5)(1 + γ5) = 0. The traces are

given by

Tr (γµγν) = 4ηµν, (473)

Tr (γκγλγµγν) = 4(ηκληµν − ηκµηλν + ηκνηλµ), (474)

Tr (γκγλγµγνγ5) = 4iεκλµν . (475)

The γ5 term in (472) actually does not contribute, because the hadronic part only
picks out combinations with µ = ν. Putting things together leads to (452).
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13 Inflation

13.1 Slow roll
13 We assume a flat universe, i.e. k = 0. Then the Friedmann equation is given
by

H2 ≡ ȧ2

a2
=

8πρ

3M2
P

(476)

where G = 1/M 2
P .

Now we investigate an inflationary model with one real scalar field φ. Its
Lagrangean density and action are given by

L = −1

2
gµν∂µφ∂νφ− V (φ), (477)

S =
∫

d4x
√−gL. (478)

Apart from the Friedmann equation, we also need the equation of motion for φ
to determine the evolution of the universe during inflation.

a. Derive the equation of motion for φ,

1√−g ∂µ
(√−g gµν∂νφ

)

= 2φ =
∂V

∂φ
, (479)

using the action principle. Here the d’Alembertian operator 2 is defined as

2φ ≡ gµνDµDνφ = gµν
(

∂µ∂ν − Γαµν∂α
)

φ. (480)

b. Show that for a Robertson-Walker metric this reduces to

φ̈+ 3Hφ̇− 1

a2
∇2φ = −∂V

∂φ
, (481)

where ∇2/a2 is defined in the same way as 2, but with all Greek indices
replaced by Roman ones. The factor 1/a2 has been taken out because then,
for a flat universe, ∇2 is just the usual three-dimensional Laplace operator.

Now we assume that the field φ is very homogeneous, so that we can neglect
the spatial derivative term. Moreover, we also assume that there are no other
sources of energy than this scalar field. In that case the energy density ρ in
equation (476) is equal to

ρ =
1

2
φ̇2 + V (φ). (482)

13The following two section were contributed by Bartjan van Tent.
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So we have the following two equations:











φ̈+ 3Hφ̇ = −V ′(φ),

H2 =
8π

3M2
P

(

1

2
φ̇2 + V (φ)

)

.
(483)

The slow roll approximation now says that φ evolves very slowly so that we can
neglect φ̈ compared with 3Hφ̇ and 1

2
φ̇2 compared with V (φ). Then we have:

Slow roll:



















φ̇ = −V
′(φ)

3H
,

H2 =
8πV (φ)

3M2
P

.
(484)

c. Show that the consistency conditions for the slow roll approximation are:

|V ′′(φ)| � 9H2 ≈ 24πV (φ)

M2
P

, (485)

(

V ′(φ)

V (φ)

)2

� 48π

M2
P

. (486)

Conventionally one writes the slow roll conditions as

ε � 1, (487)

|η| � 1, (488)

with

ε ≡ M2
P

16π

(

V ′(φ)

V (φ)

)2

, (489)

η ≡ M2
P

8π

V ′′(φ)

V (φ)
. (490)

The number of e-folds of inflation that occur as φ rolls down the potential
from φ1 to φ2 is given by N(φ1 → φ2):

N(φ1 → φ2) ≡ ln
a2

a1

=
∫ t2

t1
Hdt. (491)

d. Show that

N(φ1 → φ2) =
2
√
π

MP

∣

∣

∣

∣

∣

∫ φ2

φ1

ε−1/2dφ

∣

∣

∣

∣

∣

. (492)
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13.2 Chaotic inflation

We consider the chaotic inflationary scenario with a scalar inflaton field φ with
potential

V (φ) =
λφn

nMn−4
P

(493)

with n ≥ 2 and even.

a. Compute the slow roll parameters ε and η, and the number of e-folds of
inflation N(φ1 → φ2).

b. Assuming slow roll (484) derive the solution for φ(t), and the solution for
a(t),

a(t) = ai exp

[

4π

nM2
P

(

φ2
i − φ(t)2

)

]

, (494)

where the subscript i denotes quantities at the start of inflation.

To be able to put some constraints on the parameters of the potential (i.e.
λ), we need observational input. We will not go into the details of this process,
but it boils down to the following: inflation theory predicts a spectrum of den-
sity perturbations, which can be indirectly measured in the cosmic background
radiation. This spectrum is, among other things, characterized by its amplitude
at the scale of the observable universe, i.e. the scale of that part of the universe
that we can now observe, or in other words the present horizon distance. Note
that this is not equal to the horizon distance during inflation. This amplitude is
called δH . The expression for δH is:

δ2
H =

32

75

V∗
M4

P

1

ε∗
, (495)

where V and ε have to be evaluated at the time t∗ during inflation when the
scale of the observable universe leaves the horizon. This last sentence may need
some explanation. During slow roll inflation the Hubble parameter changes very
slowly, and hence the horizon distance 1/H remains more or less the same. On
the other hand, because of the rapid expansion, fluctuations of a certain scale
will be inflated and after some time become larger than the horizon distance
(‘the scale leaves the horizon’). After inflation the horizon grows faster than the
expansion and hence the scales will one by one reenter the horizon. The scale of
the observable universe is that scale that is just now reentering the horizon.

c. Inflation ends when max{ε, |η|} = 1. Compute φend.

d. N∗ ≡ N(φ∗ → φend) is the number of e-folds of inflation between the time
when the scale of our observable universe leaves the horizon and the end of
inflation. Compute φ∗ in terms of N∗.
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e. Show that δH is given by the expression

δ2
H =

512π

75

λ

n3

[

n

4π

(

N∗ +
n− 1

2

)]

n
2
+1

. (496)

The observational value for δH is: δH ≈ 2 · 10−5.

f. Taking N∗ = 60 and n = 4, calculate the observationally determined value
for λ. This very small value illustrates the problem of fine-tuning in infla-
tionary model building.

In the chaotic inflationary scenario inflation starts right at the Planck scale. The
initial conditions are assumed to be chaotic (hence the name chaotic inflation)
in the sense that all different initial conditions for fields etc. occur in different
regions of the universe. Only the regions with favourable initial conditions will
inflate, and they will come to dominate all non-inflated regions. At the Planck
scale V (φ) can take all values from 0 to O(M 4

P ). Only regions with high V will
inflate, but values of order M 4

P may be expected to occur naturally.

g. Assume V (φi) = M4
P . Compute the initial value of φ, φi. Now take n = 4

and calculate the total amount of inflation. So getting sufficient inflation is
not a problem at all!

14 Cosmic strings and the abelian Higgs model

Consider the action (271) for the U(1) gauge theory,

S = −
∫

d4x

[

ηµν(Dµφ)∗Dνφ+ V (φ) +
ηκµηλν

4
FκλFµν

]

, (497)

Dµφ = ∂µφ− ieAµφ, Fµν = ∂µAν − ∂νAµ, (498)

V (φ) = ε+ κφ†φ+ λ(φ†φ)2, λ > 0. (499)

When the gauge field is identified with the Maxwell field, the theory is called
scalar electrodynamics. The quantum theory of gauge fields is complicated and
we shall only deal with it in leading order in the semiclassical description, i.e the
classical description interpreted as an approximation to the quantum theory. We
first need to determine the ground state.

The energy-momentum tensor may be obtained by coupling to the gravita-
tional field, replacing ηµν by gµν and d4x by d4x

√−g, varying the action with
respect to gµν and setting gµν = ηµν afterwards.

a. Verify that in general relativity the electromagnetic field Fµν may still be
written as ∂µAν − ∂νAµ, i.e. with ordinary derivatives in place of covariant
derivatives.
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b. Obtain T µν and verify that the energy density is given by

T 00 = (D0φ)∗D0φ+ (Dkφ)∗Dkφ+ V (φ) +
1

2

(

E2 + B2
)

, (500)

Ek = F 0k, Bk =
1

2
εklmFlm. (501)

c. Reason that the classical ground state is given by

D0φ = 0, Dkφ = 0, Ek = 0, Bk = 0, V (φ) = minimal. (502)

For κ > 0 a solution is simply φ = 0, Aµ = 0, up to equivalence by gauge
transformations. The masses of the particles in the theory can be read off from
the action by expanding in the field deviations from the classical ground state
and identifying the quadratic terms without derivatives. For κ > 0 the scalars
have mass mφ =

√
κ and the photons are massless, mA = 0.

For κ < 0 the potential V (φ) has a continuous set of minima at |φ|2 = −κ/2λ,
which is a circle in the complex φ-plane. The ground states are given by φ =
√

−κ/2λ exp(iα0), 0 ≤ α0 < 2π, Aµ = 0, up to equivalence by gauge transfor-
mations. We pick one of these ground states, say α0 = 0. Before expanding the
fields about the ground state, let us choose ε such that the ground state energy
is zero and change the notation to conform to Kolb and Turner’s

V = λ

(

φ∗φ− σ2

2

)2

. (503)

Furthermore we transform to polar coordinates for φ, writing

φ(x) =
ρ(x)√

2
eiα(x). (504)

The action then takes the form

S = −
∫

d4x
[

1

2
∂µρ∂

µρ +
1

2
ρ2(eAµ − ∂µα)(eAµ − ∂µα) + V +

1

4
FµνF

µν
]

(505)

Writing
ρ = σ +H, (506)

the expansion about the ground state then takes the form:

S = −
∫

d4x
[

1

2
∂µH∂

µH +
1

2
(2λσ2)H2

+
1

4
FµνF

µν +
1

2
σ2(eAµ − ∂µα)(eAµ − ∂µα) + · · ·

]

, (507)
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where the · · · are of third and higher order in the deviations from the ground
state. The combination

Vµ = Aµ −
1

e
∂µα (508)

can be treated as a new variable, which is gauge invariant. The action can be
easily expressed in it since Fµν = ∂µVν − ∂νVµ. We can now read off the masses
of the particles to be

m2
H = 2λσ2, m2

V = e2σ2. (509)

Note that there is only one scalar particle (corresponding to H), called the Higgs
particle (of this model). Since the α degree of freedom has been absorbed into
Vµ, we expect the V -particles to have a degree of freedom more than the photon.
A more detailed investigation of the quantum theory indeed shows that they are
massive spin one particles, which have three independent spin states, one more
than the photon.14

The model with the ‘mexican hat potential’ (503) is a relativistic generaliza-
tion of the Landau-Ginsburg description of a superconductor. The corresponding
φ is the Cooper pair field. Cooper pairs are bound states of two electrons with
spin zero, which actually have charge ≈ 2e. These pairs can effectively be de-
scribed by the field φ. Here, in the relativistic setting, Aµ is not necessarily
identified with the electromagnetic field (the model may be part of a ‘grander’
model), and the generic model is known under the name ‘abelian Higgs model’.

In a type II superconductor magnetic flux can penetrate the system in the form
of quantized flux lines, the Abrikosov vortex lines. Their relativistic analogues
are called Nielsen-Oleson strings. If they exist they have cosmological relevance
as discussed by Kolb and Turner. The basic object is a single infinitely long
string along the z-direction. The configuration is static, so Ek and D0φ are zero.
In polar coordinates, (x, y, z) = (r cos θ, r sin θ, z), the fields are independent of
z. At each point in the (x, y) plane we have the unit vectors

r̂ = (cos θ, sin θ), θ̂ = ∂r̂/∂θ = (− sin θ, cos θ). (510)

In the string field configuration, the scalar field and the vector potential make
one winding about the z-axis,

φ =
1√
2
ρ(r)eiθ, eAk = f(r)θ̂k. (511)

For large r the energy density should go to zero such that the energy per unit
length is finite,

ρ→ σ, Dkφ→ 0, Bk → 0, for r → ∞. (512)

14It is better not to use variables ρ, α in the previous case κ > 0. The reason is that polar
coordinates are singular at ρ = 0 (since α is undefined there) and they cannot be used for
expanding about a ground state at ρ = 0.

77



Using

∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+ ẑ

∂

∂z
, (513)

we get

Dφ = (∇− ieA)φ =
1√
2

[

r̂ρ′ + iθ̂ρ
(

1

r
− f

)]

eiθ, (514)

B = ∇× A =
1

e

(

f ′ +
f

r

)

ẑ, (515)

where the prime denotes differentiation with respect to r. Requiring Dφ→ 0 as
r → ∞ it follows that f → 1/r and the magnetic flux of the string is quantized:

∫

d2xBz =
∫

dθ [rθ̂ · A]r→∞ =
2π

e
. (516)

For winding number n (φ ∝ exp(inθ)) the magnetic flux would be 2πn/e. The
energy per unit length, which is the tension in the string, can be written as

µ ≡
∫

d2x T 00 = 2π
∫ ∞

0
dr r

[

1

2
ρ

′2 +
1

2

ρ2K2

r2
+

1

2e2
K

′2

r2
+

1

4
λ(ρ2 − σ2)2

]

,(517)

K(r) = 1 − rf(r) (518)

(this is a more detailed version of (7.50) in Kolb & Turner). Minimizing µ with
respect to ρ(r) and K(r) leads to coupled nonlinear differential equations for
these quantities, which cannot be solved in closed form in general. Kolb and
Turner use a simple variational method (eqs. (7.49)). It is also possible to obtain
a numerical solution by discretizing the integral and minimizing with respect to
ρ and K at each discrete r, sweeping through all r’s in succession many times till
convergence is reached.

d. Verify the above integral expression for the string tension µ.

e. Show that requiring µ to be stationary leads to

−ρ′′ − ρ′

r
+
ρK2

r2
+ λρ(ρ2 − σ2) = 0, (519)

−K ′′

+
K ′

r
+ e2ρ2K = 0. (520)

f. Show that for r → ∞,

ρ = σ +O(e−mHr), K = O(e−mV r). (521)

So the radial size of the magnetic flux tube is of order m−1
V (c.f. (515) and

(518)). It turns out that

ρ = O(r), f = O(r), (K = 1 −O(r2)), r → 0, (522)

which implies that the energy density is finite at the center of the string.
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g. Using the two component notation with two real scalar fields,

φ =
1√
2
(φ1 − iφ2), φk = ρ r̂k(−θ), (523)

verify that
Dµφk = ∂µφk − ieAµ(T3)klφl, k, l = 1, 2, (524)

with T3 the generator in (253).15 Note that −iAµT3 is real. Make a drawing
of how φk rotates as θ goes from zero to 2π. What string configuration has
φk ∝ r̂k(+θ)? Make a drawing of the energy density and |B|.

15 Magnetic monopoles in the SO(3) Higgs model

In this section we present the basic features of the ’t Hooft-Polyakov monopole
in the SO(3) Higgs model. The model is given by (270) with the scalar field in
the defining representation of SO(3), which is the vector representation of SU(2):

S = −
∫

d4x
[

1

2
(Dµφ)TDµφ+ V (φ) +

1

4
F p
µνF

pµν
]

, (525)

Dµφ = ∂µφ− igAµφ, φ =







φ1

φ2

φ3





 , (526)

Aµ = ApµTp, (Tp)kl = −iεpkl, (527)

V (φ) = ε +
1

2
κφTφ+

1

4
λ(φTφ)2. (528)

Since the scalar field is real we have replaced the † by the transposition symbol
T (which should of course not be confused with the generators Tp) and used
the conventional normalization factors of 1/2 and 1/4 in the scalar gradient and
potential terms. The energy density of the model is similar to the expression in
the abelian Higgs model (501),

T 00 =
1

2
(D0φ)TD0φ+

1

2
(Dkφ)TDkφ+ V (φ) +

1

2
(Ep · Ep + Bp · Bp),(529)

Ep
k = −F p

0k, Bp
k =

1

2
εklmF

p
lm. (530)

In the ground state each of these terms has to be minimal. As in the U(1) case
the system described by the model can be in one of two phases, depending on
whether κ is positive or negative in the classical approximation (recall that λ > 0
in any case for stability of the ground state). The physics is very different in
these phases.

15The minus sign in (523) is chosen such that in (524) T3 appears and not −T3.
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For κ > 0 the minimum of V is at φ = 0 and the classical vacuum is given by

φ = 0, Apµ = 0, (531)

or any gauge transformation of this. The expansion of the action about the
classical ground state suggests the presence of three species of spinless particles
with mass m =

√
κ (↔ φk, k = 1, 2, 3), coupled to three massless photon-like

particles (↔ Ap
µ, p = 1, 2, 3). However, in non-abelian gauge models the physics

in the quantum theory can be dramatically different. It turns out that due to
the specific self interactions among the Ap

µ the quantum model is confining. This
means that the ‘original particles’ (corresponding to the scalar and vector fields)
cannot be separated at large distances, they remain close together in composite
bound states. The original particles can only be observed (e.g. in high energy
scattering experiments) as constituents of the composites. In fact, the model
is similar to QCD in this respect, with the scalars playing the role of quarks,
the vectors playing the role of gluons and the bound states similar to baryons
and mesons. Perturbation theory about the classical ground state is useless here
for determining the properties of the outcoming composite particles, but it still
useful for describing the theory at high energies and short distances. The system
is said to be in a confining phase.

For κ < 0 the theory the minimum of the potential V is at nonzero φ. Let us
write the potential in the form of eq. (7.70) in Kolb & Turner,

V (φ) =
1

4
λ(φTφ− σ2)2 (532)

(our λ is half that of K & T). The ground state is now given by

φ =







0
0
σ





 , Apµ = 0, (533)

or any gauge transformation of this. The vacuum vector φ0 = (0, 0, σ) is still
invariant under rotations about the 3-axis in internal space: the SO(3) symmetry
has spontaneously broken to SO(2).

a. Verify

e−iωT3







0
0
σ





 =







0
0
σ





 . (534)

Below we shall see that the breaking of SO(3) symmetry has the consequence
that some of the gauge bosons become massive and the residual SO(2)=U(1)
symmetry implies that one gauge boson remains massless. Perturbation about
the classical ground state works well in this case, the physics of which is similar
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to that of the electroweak bosons W , the photon and the Higgs particle. The
system is said to be in a Higgs phase.

To find the masses of the particles in the theory we expand the action in terms
of the deviation of the fields from the ground state. It is convenient to generalize
the polar decomposition used in the abelian Higgs model and write the Higgs
field in spherical coordinates (ρ, α, β) in internal space. It can be written as a
rotation from a vector pointing in the internal 3-direction:

φ =







ρ sinα cos β
ρ sinα sin β
ρ cosα





 = R(α, β)







0
0
ρ





 , R(α, β) = e−iβT3 e−iαT2 . (535)

b. By expanding the exponentials, show that

e−iαT2 =







cosα 0 sinα
0 1 0

− sinα 0 cosα





 , e−iβT3 =







cos β − sin β 0
sin β cos β 0

0 0 1





 .

(536)

The transformation looks like a gauge transformation and we shall make a similar
transformation of variables for the vector potentials,

gAµ = R(α, β)gVµR(α, β)−1 − i∂µR(α, β)R(α, β)−1, (537)

gVµ = R(α, β)−1gAµR(α, β) − i∂µR(α, β)−1R(α, β). (538)

Evaluating the covariant derivative of the scalar field,

Dµφ = R(α, β)





∂µ







0
0
ρ





− iVµ







0
0
ρ











 = R(α, β)







gV 2
µ ρ

−gV 1
µ ρ

∂µρ





 , (539)

leads to
1

2
(Dµφ)TDµφ ==

1

2
∂µρ∂

µρ +
1

2
g2ρ2(V 1

µ V
1µ + V 2

µ V
2µ). (540)

Because of gauge invariance, the F p
µνF

pµν term in the action can be expressed in
terms of Vµ by the simple replacement Ap

µ → V p
µ . The masses of the particles

now follow upon writing
ρ = σ + ∆ρ, (541)

and inspecting the nonderivative terms in the action which are quadratic in the
deviation from the ground state,

m2
H =

√
2λσ, mV 1 = mV 2 = gσ, mV 3 = 0. (542)

The Higgs particle of this model corresponds to the ∆ρ field. Note that the V 3

mass is zero because of (534).
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It is very suggestive to interpret V 3
µ as the vector potential of the electro-

magnetic field. This makes sense because in the new variables the theory is stil
invariant under the U(1) gauge transformations corresponding to rotation about
the 3-axis in internal space. Under such transformations V 1

µ and V 2
µ transform

into each other like a charged vector field, with covariant derivative coupling sim-
ilar to (524). The vector bosons have charge one in units of g and gyromagnetic
ratio two, like the electron. The Higgs particle has zero electric charge. So we
interprete

V 3
µ = Aem

µ , g = e, (543)

with Aem
µ the electromagnetic vector potential and e the elementary charge unit.

We realize that the Standard Model way of describing the electromagnetic in-
teractions is not exactly like the SO(3) Higgs model, but it is possible that it is
embedded in a grand unified theory such that the electromagnetic interactions
emerge in a way similar to the SO(3) Higgs model.

The SO(3) Higgs theory has magnetic monopoles, to which we turn our at-
tention now. The monopole at rest is a static field configuration of finite energy
of the form

φp(x) = ρ(r)r̂p, eApk(x) = f(r)εpklr̂l, Ap0 = 0, r = |x|, r̂k =
xk
r
. (544)

It is sometimes called ‘the hedgehog’ because of the way the internal vector of
the scalar field is pointing outwards along the radial direction in ordinary space.
The covariant derivative of the scalar field becomes

Dkφp = ρ
(

1

r
− f

)

(δkp − r̂kr̂p) + ρ′r̂kr̂p, (545)

where the prime denotes ∂/∂r. Similarly, the nonabelian ‘magnetic’ field strength
(cf. (530)) is given by

eBp
k =

K2 − 1

r2
r̂pr̂k +

K ′

r
(δpk − r̂pr̂k), K(r) = 1 − rf(r). (546)

c. Verify these expressions. Hint: verify first εplmεpkn = δklδmn−δkmδln, ∂kr̂l =
(δkl − r̂kr̂l)/r.

Requiring the energy density to go to zero at large r leads to

ρ→ σ, f → 1

r
, r → ∞. (547)

The first condition follows from requiring the potential V (φ) = λ(ρ2 − σ2)2/4
to vanish: φ should approach a locally ground state configuration. The second
condition corresponds to Dkφp → 0. Of course, ρ′ and K ′ should also vanish
sufficiently fast. Substitution into the expression for the energy (cf. (7.74) in
Kolb & Turner) and requiring this to be stationary leads to nonlinear differential

82



equations for ρ and f which can be solved numerically, similar to the cosmic string
case. In general ρ and K approach their asymptotic values σ and 0 exponentially
fast, with length scales set by 1/mH and 1/mV , while the behavior at the origin
is such that the energy density is finite. For λ → 0 an analytical solution is
known (cf. eqs. (7.75) and fig. 7.13 in Kolb & Turner), but this so-called Prasad-
Sommerfield limit has the unphysical feature that the Higgs mass vanishes.

We get a first indication of the magnetic monopole interpretation of the field
configuration by examining it at distances r � m−1

H , m−1
V where ρp ≈ σr̂p,

eApk ≈ εpklr̂l/r and eBp
k ≈ −r̂pr̂k/r2, to a very good approximation. In this

region φ is very close to its local ground state, which is invariant under gauge
transformations of the form exp(−iωr̂pTp), so it is natural to interpret r̂p as the
local electromagnetic direction in internal space. Then r̂pB

p
k ≈ −r̂k/er2, which

is the Coulomb-like field of a point magnetic charge −4π/e. We note further-
more that, without any electromagnetic interpretation, the energy density of the
configuration is approximately that of a point charge:

T 00 ≈ 1

2e2r4
r � m−1

H , m−1
V . (548)

However, the above magnetic field r̂pB
p
k is not the rotation of the would-be

electromagnetic vector potential r̂pA
p
k, since the latter is zero for the hedgehog

configuration. To sharpen our magnetic monopole interpetation of the hedgehog,
we shall comb its hairs such that they all point in the 3̂-direction in internal
space: φp = ρr̂p → ρδp3. In terms of spherical coordinates:

r̂ = (sin θ cosφ, sin θ sin φ, cos θ), θ̂ = ∂r̂/∂θ, φ̂ = ∂r̂/∂φ, (549)

the hedgehog scalar field is given by (535) with α = θ and β = φ, so the ‘combing’
can be done by applying the inverse rotation R(θ, φ)−1 as in (538). Having done
this, it is convenient to perform an additional rotation exp(−iφT3) about the
3-axis, such that the combined rotation is regular at θ = 0:

R−1 ≡ e−iφT3R(θ, φ)−1 = e−iφT3 eiθT2 eiφT3 , (550)

which equals the unit matrix at θ = 0. (N.B. so we re-defined R.) This additional
rotation does of course not affect the combed scalar field, but it does influence
the final form of electromagnetic field Aem

µ in a way which will be commented
upon later. The transformed gauge field is now given by

eAem
k = eV 3

k = eR−1
3p A

p
k −

1

2
Tr [T3i∂kR

−1R], (551)

where we used (255) and (256). To evaluate Aem
k we first rewrite Ap

k using spherical

coordinates by contraction with δkl = r̂kr̂l + θ̂kθ̂l + φ̂kφ̂l:

eApk = f(r)(θ̂pφ̂k − φ̂pθ̂k). (552)
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Rotating r̂ into the 3̂ direction, the corresponding vectors θ̂ and φ̂ come to lie in
the 1-2 plane. Hence, the first term on the right hand side of eq. (551) is zero
and V 3

k is given entirely by the third internal component of −i∂kR−1R. Using

∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ
, (553)

we find

eAem
φ =

cos θ − 1

r sin θ
, Aem

r = Aem
θ = 0. (554)

d. Verify this.

The potential Aem is regular along the positive z-axis, θ = 0, which is why we
introduced the additional rotation along the 3-axis in (550). It is singular along
the negative z-axis, θ = π, and at the origin r = 0. We shall now show that
it is the vector potential of an infinitely long, infinitely thin solenoid along the
negative z-axis ending at z = 0, with magnetic flux equal to 4π/e. The magnetic
flux of the solenoid can be found by calculating the line integral of the vector
potential along a loop in the x-y plane around the negative z-axis, of radius
h =

√
x2 + y2 = r sin θ:

∫

√
x2+y2<h

d2x ẑ · Bem = h
∫

dφAem
φ = −4π

e
+O((π − θ)2). (555)

For fixed z the result holds for h → 0; for z → −∞ the result is independent of
the radius h. The solenoid is infinitely thin and we may write for its magnetic
field: eBem = −4πδ(x)δ(y)Θ(−z)ẑ. Using standard formulas for the rotation
of a vector field in spherical coordinates gives the magnetic field away from the
singularities: Bem = ∇× eAem = −r̂/r2. Putting things together we have

eBem = − r̂

r2
− 4πδ(x)δ(y)Θ(−z)ẑ. (556)

Note that ∇ · Bem = 0 in accordance with Bem = ∇× Aem.
Infinitely thin solenoids with flux quantized in units of 2π/e are called Dirac

strings. The remarkable fact discovered by Dirac is that they do not lead to
observable effects in quantum mechanics. For example, such a string does not
give an interference pattern in Aharonov-Bohm scattering. Furthermore, the
string can be moved about by electromagnetic gauge transformations.

e. Suppose we take away the factor exp(−iφT3) in (550). Discuss the proper-
ties of the resulting Aem and Bem.

In the present SO(3) theory the Dirac string is clearly an artefact of the ‘combed
hedgehog gauge’, because there is no trace of it in the energy density. Note that it
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best to evaluate the energy density in a gauge in which the gauge field is regular,
e.g. in the original hedgehog configuration.

The physically observable magnetic field is the Coulomb-like field correspond-
ing to a magnetic monopole, as if ∇ · Bem = −(4π/e)δ3(x). For the ’t Hooft-
Polyakov monopole the magnetic charge is two Dirac units. This is very large
compared to e: their ratio is 4π/e2 ≈ 137.
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16 Phase transitions and the effective potential

To investigate possible phase transitions, we are going to study the thermody-
namic potential (− lnZ/βL3) by means of the effective potential. We shall cal-
culate it in the semiclassical approximation and find that phase transitions may
occur as a function of temperature.

16.1 Spontaneous symmetry breaking

Consider again the simple scalar field model given by the classical hamiltonian

H =
∫

d3x
[

1

2
π2 +

1

2
∂kφ∂kφ+ V (φ)

]

, V (φ) =
1

2
κφ2 +

1

4
λφ4 + ε. (557)

The classical ground state corresponds to the minimum value of H, i.e. π = 0
and V (φ) minimal. Suppose now that κ < 0. Then the minimum V (φ) is not at
φ = 0 but at

φ = φ0, φ0 ≡ ±
√

−κ/λ. (558)

The quantum system may now be approximately treated by expanding about one

of the minima, say +
√

−κ/λ. To lowest order the system describes free particles
with a mass

m2
0 =

[

∂2V (φ)

∂φ2

]

φ0

= −2κ = 2λφ2
0. (559)

a. Plot V (φ) and verify (558), (559). Determine the energy momentum tensor
of the classical ground state. Note that the contribution to the cosmological
constant depends on κ, λ, as well as ε when κ is negative.

The action and hamiltonian have a symmetry φ→ −φ. In the present situation
the ground state is evidently not symmetric since 〈0|φ|0〉 = φ0 + quantum cor-
rections 6= 0. This phenomenon is called spontaneous symmetry breaking: the
ground state is not symmetric under a symmetry of the action. We shall see that
at sufficiently high temperatures the order parameter

φ̄ ≡ 〈φ〉 = Tr ρφ (560)

vanishes and the symmetry gets restored.

16.2 Effective potential

The effective potential can be introduced by probing the system with a spatially
constant external source J , such that the density matrix is

ρ = Z−1(J) e−βH+βJ
∫

d3xφ, Z(J) = Tr e−βH+βJ
∫

d3xφ, (561)
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where we have explicitly indicated the dependence on J . Then

−∂Ω(J)

∂J
=
∂ lnZ(J)

βL3∂J
=

1

L3
〈
∫

d3x φ〉 = φ̄, (562)

where φ̄ depends on J . Assuming that this dependence can be inverted such that
we may consider J to be a function of φ̄, we make a Legendre transformation:

Ω(J) = Veff(φ̄) − Jφ̄, (563)

which defines the effective potential Veff as a function of φ̄. We can then attempt
to find the thermal ground state by minimizing the effective potential (for J = 0
this gives the minimum of Ω(0)). For nonzero J we have from (562) and (563),

∂Veff(φ̄)

∂φ̄
= J. (564)

16.3 Semiclassical approximation

In the classical approximation the effective potential is just V , which is tem-
perature independent. However, in the full quantum theory it does depend on
temperature. We now calculate Ω(J) in the semi-classical approximation. This
means we expand φ about its classical solution φc, writing φ = φc + φ′ and keep
only the terms quadratic in φ′ in the hamiltonian. This reduces the problem
formally to that of free fields, which we have already discussed in the previous
sections. Before going ahead we have to realize that the quantum corrections
may be infinite. We have seen this already in the case λ = 0 for the correction
to ε. This was dealt with by starting with a so-called bare parameter ε0 which
absorbs the divergence leaving a finite renormalized ε. Here in the nonzero λ case
the same procedure will be necessary for κ and λ. The idea is to regularize the
theory, replace ε → ε0, κ → κ0, λ → λ0 and tune these bare parameters in such
a way that the physical results come out finite as the regularization is removed.
In perturbation theory this is implemented by writing

V0 ≡ ε0 +
1

2
κ0φ

2 +
1

4
λ0φ

4 = ε+
1

2
κφ2 +

1

4
λφ4 + ∆V = V + ∆V, (565)

making an expansion in λ and and treating ∆V also as a perturbation such that
it cancels the divergencies coming up in the λ expansion. Doing this order by
order determines the bare parameters (ε0, κ0, λ0) in terms of the renormalized
ones (i.e. ε, κ, λ). The terms in ∆V are called counterterms16. In this way the
perturbation is kept small (instead of diverging).

In fact, when corrections get large, as they turn out to be for large tempera-
ture, we can improve the expansion by using even finite counterterms to obtain

16In higher orders also a divergent rescaling of φ is needed (to keep φ̄ finite).
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redefined corrections that remain small. We shall do this with a finite mass
counterterm by choosing

V +
1

2
m2

1φ
2 (566)

as the zero order potential and

∆V − 1

2
m2

1φ
2 = ε0 − ε+

1

2
(κ0 − κ)φ2 +

1

4
(λ0 − λ)φ4 − 1

2
m2

1φ
2 (567)

as the counterterms. The mass m1 will be determined self-consistently later.
After these preparations we now expand φ about the classical solution φc

determined by V0,

V ′
0(φc) ≡

∂V0(φc)

∂φc
= J, (568)

writing φ = φc+φ
′ and keeping only the terms quadratic in φ′ in the hamiltonian:

H − J
∫

d3x φ = L3[V0(φc) − Jφc] (569)

+
∫

d3x
[

1

2
π2 +

1

2
∂kφ

′∂kφ
′ +

1

2
V ′′

0 (φc)φ
′2
]

+O(φ′3),

= L3
[

V (φc) +
1

2
m2

1φ
2
c − Jφc

]

(570)

+ L3[∆V − 1

2
m2

1φ
2
c] +

∫

d3x
[

1

2
π2 +

1

2
∂kφ

′∂kφ
′ +

1

2
m2(φc)φ

′2
]

+ · · · ,
m2(φc) = V ′′(φc) +m2

1 = κ+ 3λφ2
c +m2

1, (571)

· · · =
∫

d3x
1

2
[∆V ′′(φc) −m2

1]φ
′2 +O(φ′3). (572)

The linear terms drop out because φc satisfies the classical equation (568). The
first line in (570) is leading, it is of order 1/λ. For example, for J = 0, φ2

c =
−κ0/λ0 ≈ −κ/λ, V (φc) ≈ ε − κ2/4λ The second line in (570) is O(λ0) = O(1),
this is going to give give the quantum corrections. The · · · in (572) are O(λ) and
are neglected.

The commutation rules between π and φ′ as operators are unchanged, and we
can immediately use our previous result (204) for lnZ, adapted to the present
case with only one scalar field:

Ω(J) = V0(φc) − Jφc +
∫

d3p

(2π)3

{

1

2
ωp(φc) +

1

β
ln[1 − e−βωp(φc)]

}

, (573)

where
ωp(φc) =

√

p2 +m2(φc). (574)

We now need to carry out the Legendre transform. Eq. (562) leads to

φ̄ = φc −
6λφc
m2(φc)

∫

d3p

(2π)32ωp(φc)

[

1

2
+

1

eβωp(φc) − 1

]

, (575)
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where we used

∂ωp(φc)

∂J
=

6λφc
2ωp(φc)

∂φc
∂J

, V ′′
0 (φc)

∂φc
∂J

= 1 → ∂φc
∂J

≈ 1

m2(φc)
(576)

(cf. (568) for the second equation). Now consider eqs. (563), (564) and (573).
Eliminating Ω(J) and J gives

V0(φc) +
∫

d3p

(2π)3

{

1

2
ωp(φc) +

1

β
ln[1 − e−βωp(φc)]

}

(577)

= Veff(φ̄) − ∂Veff(φ̄)

∂φ̄
(φ̄− φc) (578)

= Veff(φc) +O((φc − φ̄)2). (579)

Since φc is arbitrary and O((φc − φ̄)2) = O(λ2) (cf. (575), this gives Veff(φ̄)
to order λ. Regrouping into a vacuum (zero temperature) contribution and a
temperature dependent addition we have (T = 1/β)

Veff(φ̄) = V vac
eff (φ̄) + V T

eff(φ̄), (580)

V vac
eff (φ̄) = V (φ̄) + ∆V (φ̄) +

∫

d3p

(2π)3

1

2
ωp(φ̄), (581)

V T
eff(φ̄) = T

∫

d3p

(2π)3
ln[1 − e−ωp(φ̄)/T ]. (582)

The finite temperature contribution V T
eff(φ̄) is given by a finite integral over the

momenta p. However, the zero temperature contribution V vac
eff has the form of

the free field vacuum energy and it is divergent. This divergence can be dealt
with by renormalization.

16.4 Renormalization

Regularizing the integral in (581) with a simple cutoff as in (139) gives

V vac
eff = ε0 +

1

2
κ0φ̄

2 +
1

4
λ0φ̄

4 (583)

+
1

64π2



4Λ4 + 4Λ2m2(φ̄) +
1

2
m4(φ̄) −m4(φ̄) ln

(

2Λ

m(φ̄)

)2

+O(Λ−2)





(one way to do the integral is to substitute p = mx, x = sinhχ, 2 sinhχ coshχ =
sinh 2χ). A crucial observation is now that the divergent terms proportional to
Λ4, Λ2 and ln Λ are polynomials in φ̄2, so we can cancel the divergent terms by a
suitable choice of the parameters ε0, κ0 and λ0, writing

V vac
eff = ε+

1

2
κφ̄2 +

1

4
λφ̄4 +

1

64π2
m4(φ̄) ln

m(φ̄)2

µ2
, (584)
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where µ is an arbitrary mass scale and we dropped the terms vanishing as Λ → ∞.
Comparing the divergent coefficients of φ̄n, n = 0, 2, 4 gives the relations between
the bare and renormalized parameters:

ε0 = ε− 1

64π2

(

4Λ4 + 4Λ2κ− κ2 ln
c2Λ2

µ2

)

, c2 = 4e−1/2, (585)

κ0 = κ− λ

32π2

(

12Λ2 − 6κ ln
c2Λ2

µ2

)

, (586)

λ0 = λ+
9λ2

16π2
ln
c2Λ2

µ2
. (587)

We could of course also have used a covariant regularization but this would only
change the relation between bare and renormalized parameters and not the renor-
malized form of V vac

eff (φ̄). Typically it would lead to a change in the mass scale
µ2 because it would have been introduced in a different way. However, a change
in µ2 can be compensated by a change in ε, κ and λ. For m1 = 0 eq. (584) is the
potential given in Kolb & Turner, eq. (7.7).

The miracle of renormalizable field theory (such as the φ4 model) is that all
other physical quantities like scattering amplitudes (or the effective potential) are
also finite when re-expressed in terms of the renormalized parameters. This can
be proved to all orders in perturbation theory. It has also been understood non-
perturbatively through Renormalization Group theory and checked by numerical
Monte Carlo computations using the lattice regularization.

16.5 Quasiparticles

Minimizing the effective potential should give us the best approximation to the
partition function (cf. (563,564)), which leads to

0 =
∂Veff

∂φ̄
=
∂V vac

eff

∂φ̄
+
∂V T

eff

∂φ̄
(588)

= φ̄

[

κ + λφ̄2 +
6λm2(φ̄)

16π2

(

ln
m2(φ̄)

µ2
+ 1

)

+ 6λI(m2(φ̄))

]

, (589)

where

I(m2(φ̄)) =
∫ d3p

(2π)3

1

2ωp(φ̄)

1

eωp(φ̄)/T − 1
. (590)

Suppose we choose m1 = 0 and look for a solution φ̄0 near the classical φ0 =
√

−κ/λ. Then m2(φ̄0) ≈ −2κ and we get a reasonable solution for low tempera-
ture where the integral I is small. For high temperatures

I(m2(φ)) ≈ 1

4π2
ζ(2)T 2 =

1

24
T 2, (591)
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which can lead to a substantial correction to κ such that κ+6λI ≈ κ+λT 2/4 �
0.17 Under such circumstances we expect symmetry restoration with the only
solution of (589) being φ̄0 = 0. However, for φ̄0 = 0 the mass m2(φ̄0) = κ < 0
if m1 = 0. This does not make sense because the argument of ln[m2(φ̄)/µ2]
becomes negative and the effective energy ωp(φ) becomes complex. Going back
we see that the starting point of our approximation, the quantum hamiltonian in
(570) does not have a ground state, because m2(φ̄0) would be negative. This is
the problem with the usual form of the effective potential with m1 = 0.

The resolution lies in the concept of quasiparticles. We have approximated
the partition function by that of a system of particles with mass m(φ). This
may be a reasonable description at weak coupling, but to keep the corrections
small the particles should be interpreted as having an effective mass m(φ̄) which
changes with temperature. They are called quasiparticles. The optimal choice
for m1 is such that the m(φ̄) is equal to the effective mass

m2
eff(φ̄) ≡ ∂2Veff(φ̄)

∂φ̄2
(592)

= κ+ 3λφ̄2 +
(6λφ̄)2

16π2

(

ln
m2(φ̄)

µ2
+ 2

)

+
6λm2(φ̄)

16π2

(

ln
m2(φ̄)

µ2
+ 1

)

+ 6λI(m2(φ̄)). (593)

With this choice the corrections to the quasiparticle mass vanish and we get an
equation for m2(φ̄):

m2(φ̄) = m2
eff(φ̄) (594)

Since m2(φ̄) depends on m2
1 this is sometimes called a self-consistent equation

(for m2
1 in terms of ε, κ, λ and T ). We are particularly interested in its solution

for φ̄ = φ̄0:
m̄2 ≡ m2(φ̄0). (595)

If eq. (589) has a solution φ̄0 6= 0 we can use the terms in the square bracket in
(589) to simplify (594), (595) to

m̄2 = 2λφ̄2
0 +

(6λφ̄0)
2

16π2

(

ln
m̄2

µ2
+ 2

)

. (596)

We should then check that the solution with nonzero φ̄0 has a lower effective
potential that that with φ̄0 = 0.

17Higher order corrections to the leading T 2 behavior should have the form κ + [λ +
O(λ2)]T 2/4, and even at very weak coupling the T 2 ‘correction’ may dominate over κ at suffi-
ciently high temperature.
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16.6 The phase transition

Consider now eq. (589) at temperatures so high that the sum of the terms in
the square bracket is positive (cf. the high temperature approximation (591) to
I(m̄2)). Then the only solution is φ̄0 = 0, and for sufficiently high T the solution
to (594) is

m̄2 ≈ 6λT 2

24
. (597)

Since this m̄2 is positive there is no problem with imaginary square roots etc. So
we have symmetry restoration at high temperatures: φ̄0 = 0. Conversely, if we
start at φ̄0 6= 0 and raise the temperature from zero upwards, eq. (589) in the
high temperature approximation (591) shows that φ̄2

0 decreases:

λφ̄2
0 ≈ −κ− 6λT 2

24
. (598)

Then also m̄2 decreases according to (596). The phase transition occurs at the
critical temperature where φ̄2

0 = 0,

Tcrit =

√

2

λ
mc, mc =

√
−2κ, (599)

where mc is the classical mass, which is approximately the effective mass at zero
temperature. Eq. (596) shows that then also m̄2 = 0, and we have a second order
phase transition18.

A good description of the critical region m̄ ≈ 0 is actually quite difficult and
involves the theory of critical phenomena.

a. To get a feeling for the size of various terms in the equations, let’s assume
that φ is the Higgs field of the Standard Model. At zero temperature we
then have φ̄0 = 246 GeV. The Higgs mass is not known at the time of
this writing, but let’s assume it is about the value implied by fitting the
Standard Model parameters to current results of high precision experiments,
say m̄ = 200 GeV. Let us choose µ2 such that the order λ2 correction in eq.
(596) vanishes at zero temperature. Then m̄2 = 2λφ̄2

0, which gives λ ≈ 0.4,
Tcrit ≈ 450 GeV. A good project is now to solve the equations set up so
far numerically and to plot the effective potential for various temperatures.
A useful approximation is the high temperature expansion19. Note that
the critical region is delicate. For instance, eq. (596) has no solution with
positive m̄2 and φ̄2

0 in a tiny (how large?) region near m̄2 = 0. For such
small effective masses we need improved calculational tools.

18The correlation length diverges at the transition. It can be shown that the correlation
length is the inverse of m̄.

19See e.g. J.I, Kapusta, Finite-temperature field theory, appendix A2.
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