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Operational characterization of Quantum Theory

Outcome @
. -
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P M
Preparation Measurement

p(a|P, M) = The probability of outcome a given
measurement M and preparation P



Operational characterization of Quantum Theory

Outcome @
| = ,\%ﬁ
P M
Preparation Measurement
Vector in Hilbert space Hermitian operator
) € H A

Eigenvectors { a)}

p(a|lP, M) = |(|a)|?




Limit on joint measurability

A set of Hermitian operators can only be jointly measured if they
commute relative to the matrix commutator.

[Q,P] # 0 [Qa— Qp,Ps+ Pp] =0
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Collapse rule
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Collapse rule

Measure P find p’

)

Measure Q find ¢

P) “Objective

Prepare P with value p Randomness
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Einstein-Podolsky-Rosen experiment

A collapses to
Measure @) 4 find ¢ |q>

YEPR)

(QB — QA)WEPR)AB =0
(P + Pa)|YEPR)AB =0



Einstein-Podolsky-Rosen experiment
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Einstein-Podolsky-Rosen experiment

collapses to
| —p)

& r

Measure P, find D

“Spooky action at

|¢EPR> a distance”

(Qp — Qa)|YEPR)AB =0
(Pg + Pa)|¢rpR)AB =0



Statistical theory of classical mechanics with an epistemic restriction

A set of variables can only be jointly known if they commute
relative to the Poisson bracket.

Know @ know P know Q4 — Qg and P4 + Pg

P(q,p) xd(qg—a)  P(q,p) xd(p—0) Prpr(qa,pA,9B,PB)

ﬂ\ x 6(qa — qB)d(pa + PB)
\—& ? \ “ TP




Einstein-Podolsky-Rosen experiment

Bl

PEPR(‘IA,PAa qB,PB) X 6(qa —qB)o(pa + PB)

Qp—Qa=0
P+ P4=0



Einstein-Podolsky-Rosen experiment

Measure Q4 find ¢ ‘ olp
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Einstein-Podolsky-Rosen experiment

Measure P4 find p

Bl

PEPR(‘IA,PAa qB,PB) X 6(qa —qB)o(pa + PB)

Qp—Qa=0
P+ P4=0



Einstein-Podolsky-Rosen experiment

Measure Q4 find ¢
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Einstein-Podolsky-Rosen experiment

Measure P4 find p
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Collapse Rule
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Collapse Rule

Measure Q find « " P But this would violate the
A 4 epistemic restriction!
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Collapse Rule
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Collapse Rule
Measure ()4 find gy
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E.T. Jaynes

“But our present quantum mechanical
formalism is not purely epistemological; it is
a peculiar mixture describing in part realities
of Nature, in part incomplete human
information about Nature --- all scrambled up
by Heisenberg and Bohr into an omelette
that nobody has seen how to unscramble.”



Simpson’s Paradox

recovery

e  veatment

gender

P(recovery | do (treatment)) # P(recovery | observe (treatment) )

Influence inference



Brief review of causal inference algorithms

J. Pearl, Causality: Models, Reasoning and Inference
P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction and Search



Functional causal model

Causal
Structure
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Reichenbach’s principle
If X and Y are dependent, then

X —>Y or X <+—Y

A

or /\

or /\ or /\

X —Y X



Functional causal model

Causal
Structure rarameters
P(W)
P(S)
A
AN
N \T( P()\)
P(p)
TS \ T X = f(S,T,W,Y, \)
Y = g(T W, :U)

* Parentless variables are independently distributed



Causal model

Stcr ?cjfjlre Parameters
W P(W)
P(S
N W
P(X|S, T, WY
TS \ -Tl- PEY||T, W) |



Causal model

Stcralcjfjlre Parameters
W P(W)
P(S
A W
P(X|S,T,W,Y
TS \ -TI- PEY||T, W) |

P(X,Y,W,S,T) = P(X|S,T,W,Y)P(Y|T,W)P(W)P(S)P(T)



Causal model

Stcralcj’ijlre Parameters
W P(W)
P(S
A W
P(X|S, T, WY
TS \ -TI- PEY||T, W) |

P(X,Y,W,S,T) = P(X|S,T,W,Y)P(Y|T,W)P(W)P(S)P(T)

Causal inference algorithms seek to solve the inverse problem



Inferring facts about the causal structure from
the conditional independences



Faithfulness (No fine-tuning)
A causal model of an observed distribution is fine-tuned if the

conditional independences in the distribution only hold for a
set of measure zero of the values of the parameters in the

model



Inferring facts about the causal structure from
the strength of correlations



Strength of Correlations

P(X,Y, Z) = 4000] +
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Strength of Correlations

A v
P(X,Y,Z) )t j

= (1 —€)(3[000] + 5[111]) :> w

+e€(other)

Janzing and Beth, 1JQl 4, 347 (2006)
Steudel and Ay, arXiv:1010:5720

Fritz, New J. Phys. 14, 103001 (2012)
Branciard, Rosset, Gisin, Pironio, PRA 85, 3 (2012)



Strength of Correlations

Z
x
A \,u
\j \
X Y
P(X*YZ) i V\V/V
= 1[001] + £[010] + £[100]
Z
T
A
PR
X Y

Joint work with Matt Pusey, Tobias Fritz, and Wah Loon Keng



A deficiency of many causal inference algorithms

Certain versions of Occam’s razor lead to incorrect causal conclusions
E.g. T. S. Verma, Technical Report R-191, Univ. of California (1993).

P(X,Y,Z) = £(001] + £[010] + £[100]
Set of Cl relations among X, Y, Z is the empty set

= Z w Z
A v 4
v v A
X Y X 4
w ¥ X Y
v
Set of faithful Set of faithful causal
causal models for models for the given
the given set of Cl probability distribution
relations on over the observed
observed variables

variables



What are the causal structures for which Cl relations do not
capture all the constraints on the observed distribution?

A sufficient condition was found in:
Henson, Lal, Pusey, arXiv:1405.2572

4 nodes 5 nodes
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Can we find a causal explanation of
qguantum correlations?

Chris Wood and RWS, arXiv:1208.4119



What P(A,B,X,Y) is observed?




P(A,B|X,Y)
= 2[00] + 2[11] if XY =0
= 2[01] + 5[10] if XY =1

-




P(A,B|X,Y)
= 2[00] + 2[11] if XY =0
= 2[01] + 5[10] if XY =1

-




 B|X,Y)
=[00] + $[11] if XY =0
2[01] + 3[10] if XY =1

-




P(A,B|X,Y)
= 2[00] + 2[11] if XY =0
= 2[01] + 5[10] if XY =1

-




 B|X,Y)
=[00] + $[11] if XY =0
2[01] + 3[10] if XY =1
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Nothing
works!




e Reichenbach’s principle

* No fine-tuning

V

Contradiction with

P(X,Y)

= (5[0] + 3 (1D (3[0] + 3[1]) X1lY
P(A, B|X,Y) B L XY
= 100] + 1[11] if XY =0 ALY|X

= 2[01] + 3[10] if XY =1



e Reichenbach’s principle

* No fine-tuning

V

Contradiction with quantum theory and experiment



* Reichenbach’s principle
* No fine-tuning
* |n the causal model, unobserved nodes are

described by classical variables and our knowledge
of these is described by classical probability theory

V

Contradiction with quantum theory and experiment



Quantum Causal Models

/A\ P(X) /A\ Px
P(Y) %%
I P(\) :P\V ! pS
/ P(A[N X) A PA|IXS
P(B|>‘7Y) pB|Y8
P(A,B|X,Y) PAB|XY
=SAP(ANX)PBAYIP(N) = Trs(paxspB|yspPs)
Cannot reproduce the Can reproduce the
guantum correlations guantum correlations

See: Leifer and RWS,
Phys. Rev. A 88, 052130 (2013)



Quantum conditional independence

—

PAjBC — PA|C Denote this Actually, it is only
PB|AC — PB|C (AL B|IC) [ thissimplein
PAB|C = PA|ICPB|C special cases!




Modified Reichenbach’s principle

If Aand B are quantum dependent, then

(S
@—@ or @ @ or @/\
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Modified Faithfulness (No fine-tuning)

A quantum causal model underlying an observed quantum
state is unfaithful if the quantum conditional independences
in the observed quantum state only hold for a set of measure
zero of the values of the parameters in the model.



Quantum Causal Models

P(X) p
/A s /AN o
P(\) pS
A /A P(A|X, X) ﬁ%& PAIXS
?i P(B|A,Y) PBIY'S
P(A, B|X,Y) PAB|XY

=SAP(ANX)PBAYIP(N) = Trs(paxspB|yspPs)



A Quantum Advantage
for Causal Inference

Theory collaborators: Katja Ried, Dominik Janzing
Expt’l collaborators: Megan Agnew, Lydia Vermeyden, Kevin Resch
arXiv: 1406.5036



Classical causal inference

Direct cause

® 0—E

Common cause

©

Passive observation of A
- No information about
causal structure



Classical causal inference

Direct cause

® 0—E

Common cause

©

Passive observation of A
- No information about
causal structure

Intervention on A
- Complete solution of
causal inference problem



Quantum causal inference

Direct cause

® 0—E

Common cause

©

Passive observation of A
— Still information about
causal structure

Intervention on A
- Complete solution of
causal inference problem



Quantum causal inference

Direct cause
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Direct cause

Common cause

Quantum causal inference
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Experimental set-up
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p used
in fit

What we would see
classically
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expt’l value of p



Experimental Results

rms
deviation

00 02 04 06 08 10 0.032
expt’l value of p



A sketch of the origin of the quantum advantage

Qa,Pa Qp, Pp

~NS

PppR(94,Pa,48,pB) < d(qa — qB)d(pa + PB)

Q—Qa=0
P+ P4y =0

Pid(QBapB

JA,DA)

x 6(qa — qB)6(pa — PB)

Q. Pp

T

Qa, Pa

Qp=QAa
Pp = Py



A sketch of the origin of the quantum advantage

PEPR,((IB’Y)B‘(M’I)A)
x 0(qa — qB)0(pA + PB)

). P
Qa, Pa QB Pn “s, B QB =QAa

v T o
Qa,Ps| Not allowed!

Pid(QBtPB: Qzﬁvp/l) X 5((1/1 _ QB)(S([)A _ pB)

@B —Qa=0
p,_p,—0 Notallowed!




Conclusions

* The framework of causal inference provides a very elegant
formulation of Bell’s theorem

* Quantum causal models are a promising avenue for achieving a
causal explanation of quantum correlations

* Tools developed in the community working on Bell’s theorem are
likely to be useful for improving causal inference algorithms

* Quantum theory provides an advantage for causal inference in
certain contexts
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