Constraint-based causal discovery
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This class

* |ntroduction to causal discovery
« Common assumptions: causal sufficiency, acyclicity, faithfulness

* Constraint-based causal discovery on observational data (causal sufficiency)
e SGS, PC

* | earning from multiple contexts or interventional data
* |Invariant Causal Prediction
» Joint Causal Inference

Inspired by https://stat.ethz.ch/lectures/ss21/causality.php



https://stat.ethz.ch/lectures/ss21/causality.php
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Does chocolate cause Nobel prizes?
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.

[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064 3



&3

,83835 Constraint-based causal discovery SIKS Course on Causal Inference 2023

What is the causal graph here?

w
vl
)

Reichenbach’s principle of common
5. o cause: A correlation between X and Y
iImplies that

- Xcauses Y, or
ot T - Y causes X, or

Cana
Poland I*h Australia
Greece\
B

w
o
1

)
v
>
7]
-
=
o

N
o
1

United Ireland
The Netherlands ™= States B ™ Germany

Nobel Laureates per 10 Million Population

w
1

Portugal l

Gl LR - There exists a common cause between

T
—— X and Y (a confounder)

ii::::eat tf;:el':muﬁ.mpiﬁf. l:;::.tries' Annual Per Capita Chocolate Consumption and the Number of Nobel (O r a n y co m b i n at i 0 n of t h e a bove)
(( we ignore selection bias* ))




&3
& %  Constraint-based causal discovery SIKS Course on Causal Inference 2023

4
83

What is the causal graph here?
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Reichenbach’s principle of common cause:
A correlation between X and Y implies that X
e causes Y, Y causes X, or there exists a common
e M P cause between X and Y (or any combination)
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What is the causal graph here?
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.

6 06060

Reichenbach’s principle of common cause:
A correlation between X and Y implies that X

causes Y, Y causes X, or there exists a common
cause between X and Y (or any combination)
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Latent confounding
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
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Latent confounding
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Statistically indistinguishable from only these data
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Statistically indistinguishable from only these data

35+
: = Sweden Switzerland &» 4
304
r=0.791
P<0.0001 Denraark
25 o E
ustria =+= Moy

Nobel Laureates per 10 Million Population

5 Poland *hAustralia

Portugal Greece\

Italy

20
=4= United Kingdom
15+
il B N ireland B Germany
The Netherlands ™= States
o = & __ Spain u o
o+ §ll Jaran &3 ° °

! Or even selection bias

10- =— France
Bl L) L] L) [ L] Ll Ll A [ L) L] 13 Ll l
0 ) 10 15

Belgiuml I l I
Chocolate Consumption (kg/yr/capita)

Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.
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An example of selection bias

Scatter Plot of Math Score vs. English Score
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College admissions: English score is negatively correlated with Math Score

11
https://medium.com/analytics-vidhya/simpsons-paradox-when-you-derive-a-wrong-insight-from-your-analysis-ee488b346427
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An example of selection bias

Scatter Plot of Math Score vs. English Score Scatter Plot of Math Score vs. English Score
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Selection rule: English score + Math Score > 120

12
https://medium.com/analytics-vidhya/simpsons-paradox-when-you-derive-a-wrong-insight-from-your-analysis-ee488b346427
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An example of selection bias
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Selection rule: English score + Math Score > 120

13
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Common assumptions

» If p is Markov and faithful to G, then for any disjoint A, B, C C V:

Al;B|C = X, 1L, Xg|Xc

14
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Common assumptions

» If p is Markov and faithful to G, then for any disjoint A, B, C C V:

Al;B|C = X, 1L, Xg|Xc

» Causal sufficiency - no latent confounders (common causes), no
selection bias
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Common assumptions

» If p is Markov and faithful to G, then for any disjoint A, B, C C V:

Al;B|C = X, 1L, Xg|Xc

» Causal sufficiency - no latent confounders (common causes), no
selection bias

* Acyclicity - the underlying graph is acyclic m

* Cycles + causal insufficiency: sigma separation, Joint Causal Inference

16
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Causal discovery (causal structure learning)
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Causal discovery simplified overview

Constraint-based causal Score-based causal Restricted models Interventional causal
discovery discovery discovery / causal
Nonlinear additive invariance
Conditional Penalised likelihood noise, Linear Non-
independence tests Gaussianity - Observational and
Observational data Interventional data
Observational data Output: MEC Observational data - Qutput: parents of Y,
Output: MEC Output: DAG I-MEC

SGS, PC, FCI GES, MMHC RESIT, LINGAM - ICP, GIES, JCI

18
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Causal discovery - this class

Interventional causal
discovery / causal
invariance

Constraint-based causal
discovery

Conditional

independence tests - Observational and

Interventional data
- Output: parents of Y,
I-MEC

Observational data
Output: MEC

SGS, PC

- ICP, JCI

19
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Recap: Global Markov Property & faithfulness

o If (G, p) is a Bayesian network with a DAG G = (V, E), i.e. p factorizes
according to G, then for any disjoint A, B, C C V:

' no deterministic ‘

relations)

* d-separations that can be read purely from a graph imply conditional
iIndependences Iin the random variables and data generated by the graph

20
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Recap: Global Markov Property & faithfulness

o If (G, p) is a Bayesian network with a DAG G = (V, E), i.e. p factorizes
according to G, then for any disjoint A, B, C C V:

' no deterministic ‘

relations)

* d-separations that can be read purely from a graph imply conditional
iIndependences Iin the random variables and data generated by the graph

* The reverse implication is not true in general, but if it is, we say that p is
faithful to G:

21
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Faithfulness violation example - cancelling paths

5
X, =3X,+e¢, RN

61,62, 63 ~ N(O,l)
€ dL 6y, ¢; UL €3,¢6, A €4

22
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Faithfulness violation example - cancelling paths

3
A =€ | =2 X1 = €
X, =3X,+e¢, Y\ 4 A X5 = 3€; + ¢,
X; =X, —3X, + ¢; 3 X; =3¢, + € — 3¢ + €;
€1, €, 63 ~ N(O,1) €1, €y, 63 ~ N(O,1)

€ dL 6y, ¢; UL €3,¢6, A €4 €, d ey,¢; UL €3,¢6, AL €4
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Faithfulness violation example - cancelling paths

3
A =€ A= 2 X] =€
X, =3X,+e¢, Y\ 4 A X, = 3€; + €
X, =X, —3X, + €; 5 X; = 3€, + ¢, — 3¢, + €4
€1, €, 63 ~ N(O,1) €1, €, 63 ~ N(O,1)

€ dL 6y, ¢; UL €3,¢6, A €4 € dL 6y, ¢; UL €3,¢6, AL €4
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Faithfulness violation example - cancelling paths

3
A1 =€ | =2 X| =€
X, =3X,+e¢, Y\ 4 A X, =3¢, + ¢
X; =X, —3X, + ¢ J X; =€, + €;
€1, €, 63 ~ N(O,1) €1, €, €3 ~ N(O,1)

€ dL 6y, ¢; UL €3,¢6, A €4 €, L €5, ¢, AL 5,6, AL €,
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Faithfulness violation example - cancelling paths

X| =€ /\—i—>2 X =€

X, =3X, + ¢ S\, 4 A X, =3¢+ &

X, =X, — 3X, + e, 5 X3 = € + €3

€1, €, 63 ~ N(O,1) €1, €5, €3 ~ N(O,1)

e; 1L e), ¢, 1L €3, ¢, AL €, e, d 6,,¢; L €;,,6, AL €5

X, 1 X,

26
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Faithfulness violation example - cancelling paths

X| =€ /\—i—>2 X =€

X, =3X, + ¢ S\, 4 A Xy =3+ &

X, =X, — 3X, + e, 5 X3 = € + €3

€1, €, 63 ~ N(O,1) €1, €5, €3 ~ N(O,1)

e; 1L e), ¢, 1L €3, ¢, AL €, e, d 6,,¢; L €;,,6, AL €5

X, LXx, X, AIX, X lLX,

27
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Faithfulness violation example - cancelling paths

X =€ X, AL X,
X, =3X; + ¢,

X5 =X, — 33X, + &

€1, €, 63 ~ N(O,1)

€ dL 6y, ¢; UL €3,¢6, A €4

| conditional independence does |

28
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Perfect maps

« If p is Markov and faithful to GG, we say that G is a perfect map of p.
Then, for any disjoint A, B, C C V:

Al,B|C < X, I Xi|Xc
* This correspondence is the basis of learning causal graphs from data

* In a nutshell: we perform a set of conditional independence tests on the
data and use them to constrain the possible graphs using d-separation

29
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Perfect maps - existence

* Not every distribution p has a perfect map

30



&3

,83835 Constraint-based causal discovery SIKS Course on Causal Inference 2023

Perfect maps - existence

* Not every distribution p has a perfect map

®-0-0O

X, = ¢ X = € X, 4 X,
X, =X, [Deterministic function] [ *2= € X, I X,
X; =X, + e, HB=eate X; 4 X;
€1, €3 ~ N(0,1) €, €3~ NO,D

€, AL €5 1= R

31
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Perfect maps - existence

* Not every distribution p has a perfect map

®-0-0O

X, = ¢ X = € X, 4 X,
X, =X, [Deterministic function] [ *2= € X, I X,
X; =X, + e, HB=eate X; 4 X;
€1, €3 ~ N(0,1) €, €3~ NO,D

€, AL €5 1= nEA

ple| €, €+ €) = ple | €) X, 1 X;5|X,
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Perfect maps - existence

* Not every distribution p has a perfect map

X| =€ X, 4 X,
A =€ X, I X,
61,63 NN(O,I) 1 3

X, L, X |X,? X, A X|X,
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Perfect maps - existence

* Not every distribution p has a perfect map

X| =€ X, 4 X,
A =€ X, I X,
61,63 NN(O,I) 1 3

X, L, XX, X, lX|X,
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Perfect maps - existence

| There exists no Bayesian |
' network that can represent |
' these conditional |

in/dependences as |
-separations perfectly! |

* Not every distribution p has a perfect map

\
¢
.

X| =€ X, 4 X,
A =€ X, I X,
1 3
€1, €3 ~ N(O,1) €, €3 ~ N0, 1)

X, L, XX, X, lX|X,

35



&3

,83835 Constraint-based causal discovery SIKS Course on Causal Inference 2023

Markov equivalence class (MEC)

« If p is Markov and faithful to GG, we say that G is a perfect map of p.
Then, for any disjoint A, B, C C V:

Al,B|IC = X, 1 Xg|Xc

* In general there are multiple DAGs that can describe the same d-
separations (and independences)

 We call these DAGs Markov equivalent and we cannot distinguish them
from observational data alone (or without further assumptions)

36
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SRS

Question: Markov equivalence class

| perfect maps of these |
conditional independences?

f H|nt we can start by orlentlng |
| thlsundlrected graph

37
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Question: Markov equivalence class

| perfect maps of these |

38
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Question: Markov equivalence class
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Question: Markov equivalence class

40
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Question: Markov equivalence class

41
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Question: Markov equivalence class

| perfect maps of these |

42
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Graph terminology: skeletons

» The skeleton of a DAG G = (V, E) is the undirected graph U = (V, E') that

has an undirected edge (7, /) € ' for every directed edge i — j € K (and

no other edges)

43
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Skeleton exercise

» The skeleton of a DAG G = (V, E) is the undirected graph U = (V, E') that

has an undirected edge (i, /) € K’ for every directed edge i — j € K and

no other edges

/

44
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Skeleton exercise

» The skeleton of a DAG G = (V, E) is the undirected graph U = (V, E') that

has an undirected edge (7, ]) € ' for every directed edge i — j € E and

no other edges

/
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More graph terminology: adjacent

* Nodes i andjin a DAG G are adjacent/neighboursifi - jorj > 1in G

46
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More graph terminology: adjacent

* Nodes i andjin a DAG G are adjacent/neighboursifi - jorj > 1in G

* |.e., they are connected by an undirected edge in the skeleton of G

» We denote adjacency with i — j, while i + j means non-adjacent

© 00 O
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More graph terminology: adjacent

* Nodes i andjin a DAG G are adjacent/neighboursifi - jorj > 1in G

* |.e., they are connected by an undirected edge in the skeleton of G

» We denote adjacency with i — j, while i + j means non-adjacent

48
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More graph terminology: adjacent

* Nodes i andjin a DAG G are adjacent/neighboursifi - jorj > 1in G

* |.e., they are connected by an undirected edge in the skeleton of G

» We denote adjacency with i — j, while i + j means non-adjacent

49
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More graph terminology: v-structures/immoralities

» A triple of nodes (i, j, k) in a DAG G is a v-structure (unshielded collider) if

i > J < kinGandiis notadjacenttok

| It’s also called an immorality, because the two parents i |

and j who have a common child k are not “married” |

50
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More graph terminology: v-structures/immoralities

» A triple of nodes (i, j, k) in a DAG G is a v-structure (unshielded collider) if

| — ] < kin G and i is not adjacent to k

0 009
© © ©0 .




&3

,83835 Constraint-based causal discovery SIKS Course on Causal Inference 2023

More graph terminology: v-structures/immoralities

» A triple of nodes (i, j, k) in a DAG G is a v-structure (unshielded collider) if

| — ] < kin G and i is not adjacent to k

0 009
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More graph terminology: v-structures/immoralities

» A triple of nodes (i, j, k) in a DAG G is a v-structure (unshielded collider) if

| — ] < kin G and i is not adjacent to k

B . In WhICh graphs IS 3 part of a V- structure (2 3 1)’? ]

Q0 009 0
©

a 53




&3
83 %  Constraint-based causal discovery SIKS Course on Causal Inference 2023

SRS

More graph terminology: unshielded triple

» A triple of nodes (i, j, k) in a DAG G is a v-structure (unshielded collider) if

| — ] < kin G andiis not adjacentto kin G

* A triple of nodes (i, ], k) in a DAG G is a an unshielded triple if1 — j, ] — k
and I is not adjacent to kin G

_ In WhICh graphs |s (2 3 1) an unshlelded trlple’? ‘

00 0009
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Markov equivalence class and*(\:PI?AGs
0 S5\l (4 f)m‘? 3

e (Verma and Pearl 1990) show that all DAGs in a Markov equivalence class
have the same skeleton and the same v-structures

55
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Markov equivalence class and CPDAGs

e (Verma and Pearl 1990) show that all DAGs in a Markov equivalence class
have the same skeleton and the same v-structures

* We can represent the skeleton and the orientations (edge marks) all DAGs

in a Markov equivalence class (MEC) have in common with a Complete
Partially Directed Acyclic Graph (CPDAG):

56
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Markov equivalence class and CPDAGs

e (Verma and Pearl 1990) show that all DAGs in a Markov equivalence class
have the same skeleton and the same v-structures

* We can represent the skeleton and the orientations (edge marks) all DAGs
in a Markov equivalence class (MEC) have in common with a Complete
Partially Directed Acyclic Graph (CPDAG):

« We have a directed edge i — J if all DAGs in the MEC have i —
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Markov equivalence class and CPDAGs

e (Verma and Pearl 1990) show that all DAGs in a Markov equivalence class
have the same skeleton and the same v-structures

* We can represent the skeleton and the orientations (edge marks) all DAGs
in a Markov equivalence class (MEC) have in common with a Complete
Partially Directed Acyclic Graph (CPDAG):

« We have a directed edge 1 — j if all DAGs in the MEC have 1 — J
« We have an undirected edge 1 — J if some DAGs in the MEC have

| — j and others have ] — I
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Markov equivalence class and CPDAGs

« Complete Partially Directed Acyclic Graph (CPDAG):
« We have a directed edge 1 — j if all DAGs in the MEC have 1 — J

« We have an undirected edge 1 — j if some DAGs have 1 — j and others ] — I

X — 2 =Y X¥dd Vv Ne—2 =Y XAy V
X1lqY (& V KigV |2 vV
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CPDAG question

e (Verma and Pearl 1990) show that all DAGs in a Markov equivalence class have
the same skeleton and the same v-structures
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CPDAG question

e (Verma and Pearl 1990) show that all DAGs in a Markov equivalence class have
the same skeleton and the same v-structures
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Constraint-based causal discovery

o [dea: we perform conditional independence tests on observational data
and use them to constrain the possible graphs using d-separation

XN XAy [R
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Constraint-based causal discovery

o [dea: we perform conditional independence tests on observational data
and use them to constrain the possible graphs using d-separation

* |n general, we can narrow down the possible graphs only up to their
Markov equivalence class (MEC)
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Constraint-based causal discovery

o [dea: we perform conditional independence tests on observational data
and use them to constrain the possible graphs using d-separation

* |n general, we can narrow down the possible graphs only up to their
Markov equivalence class (MEC)

* The output of the algorithms we will see (e.g. SGS, PC) is a CPDAG, a
mixed graph in which directed edges represent causal relations on which
all DAGs in the MEC agree - these relations are identifiable
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SGS algorithm (Spirtes, Glymour, Scheines)

« Assuming p is Markov and faithful to an unknown graph G

* We can estimate a CPDAG from samples of p in three steps:

1. Determine the skeleton
2. Determine the v-structures
3. Direct as many remaining edges as possible
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SGS algorithm (Spirtes, Glymour, Scheines)

« Assuming p is Markov and faithful to an unknown graph G

* We can estimate a CPDAG from samples of p in three steps:

1. Determine the skeleton
2. Determine the v-structures (given the tests in the previous phase)
3. Direct as many remaining edges as possible

» Note: the directed parts of the CPDAG will agree with G, but some parts
might stay undirected
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Step 1: Skeleton learning

» Given G = (V,E),nodesi,j € V,i # j then:

« If 1 is adjacent to /, they cannot be d-separated by any subset of
remaining nodes (and vice-versa)
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Step 1: Skeleton learning

» Given G = (V,E),nodesi,j € V,i # j then:

« If 1 is adjacent to /, they cannot be d-separated by any subset of
remaining nodes (and vice-versa)

1. Start with completely connected undirected graph U
2. Foreachpairi,j € V,i # j, and for any subset S C V\{i,/}
» Check if X; Il X;| X for any S in data

» If this is true, by faithfulness i L j|S, so we can remove i — jin U
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Step 1: Skeleton learning - example

{: ?(Xﬂ*wxaﬁwxz‘x" \KD?(XL*’XD *
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Step 1: Skeleton learning - example

70



&3
) 835 Constraint-based causal discovery SIKS Course on Causal Inference 2023

Step 1: Skeleton learning - example
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Step 1: Skeleton learning - example




SIKS Course on Causal Inference 2023

' Nothing
| changes, we |
| _canstop
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Step 1: Skeleton learning - example
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SGS algorithm (Spirtes, Glymour, Scheines)

« Assuming p is Markov and faithful to an unknown graph G

* We can estimate a CPDAG from samples of p in three steps:

1. Determihethe-cskeletion
2. Determine the v-structures (given the tests in the previous phase)
3. Direct as many remaining edges as possible

» Note: the directed parts of the CPDAG will agree with G, but some parts
might stay undirected
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Step 2: Determine v-structures

* A triple of nodes (i, ], k) in a DAG G is a an unshielded triple ifi — j,] — k

and i is not adjacentto k,i.e.i + k,in G
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Step 2: Determine v-structures

* A triple of nodes (i, ], k) in a DAG G is a an unshielded triple ifi — j,] — k

and i is not adjacentto k,i.e.i + k,in G

1. Start from the skeleton U from previous step
2. For each unshielded triple (i,7,k) inU,i.e.i1—j,) —kand i + kin U
» ForallS C V\{i,j,k} checkif X; } X, | X;U Xg in data

o If thisis true, i — j < kis a v-structure
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SRS

Step 2: Determine v-structures

* A triple of nodes (i, ], k) in a DAG G is a an unshielded triple ifi — j,] — k

and i is not adjacent tpte—i-ao—iflinlo :
| Keep in mind: for unshielded trlples (z ], k) we

 check if X;, X, are always dependent given any ﬁ
. Start from the skeletor conditioning set containing X;

2. For each unshielded trlple G,j,kyinU,ie.i—j,]—kandi + k in U
» ForallS C V\{i,j,k} checkif X; } X, | X;U Xg in data

o If thisis true, i — j < kis a v-structure

/8
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Step 2: Determine v-structures - example
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Step 2: Determine v-structures - example

l/ VA
4 |
{
XXlxiLé3 /—=2-94- X/l”'X‘lIXL
X; leXi Ky U K4 l Xz | XS X
b X L XX, X,

X, X, | X, X,
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Step 2: Determine v-structures - example

V.Y
2 N\, /
|, 2
4 |
{
We can reuse | X, 1L X, | X, 7, _ 9_ G 3 1 ~2
;; the Cls from | X3 AL X4 1%

X, 4L X, X,, X,
X3 AL X4 X5, X,
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Constraint-based causal discovery

SIKS Course on Causal Inference 2023

Step 2: Determine v-structures - example

| We can reuse |
| the Cls from |

X; AL X,
X4 X,
X4 X,
X, X5, Xy
X1 X5, X,
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Step 2: Determine v-structures - example

X, 1 X, y y —4 X,\}[XE.’XZ 4

Xl X4 |X2
X5 L X, [ X%

‘ i Ax )[ XS’XZ,X"! /

X3 AL X4 X5, X,
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SGS algorithm (Spirtes, Glymour, Scheines)

» Assuming P is Markov and faithful to an unknown graph G

» We can estimate a CPDAG from samples of P in three steps:
1. Determihethe-

] [ ] [ ] [ ]
-- a A A AVTA AVTA - A AN Arya A Y] AYya y A A AT A A
4 ! L/ L/ W Y W Y

3. Direct as many remaining edges as possible

* Note: the directed parts of the CPDAG will agree with G, but some parts
might stay undirected
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Step 3: Direct as many edges as possible - example

 Cannot create cycles or new v-structures
 Some of the edges can be oriented to disallow these situations to happen

G: A 3 Q- / 4
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Step 3: Direct as many edges as possible - example

 Cannot create cycles or new v-structures
 Some of the edges can be oriented to disallow these situations to happen

G: A 3 Q- / 4
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Step 3: Direct as many edges as possible - example

 Cannot create cycles or new v-structures
 Some of the edges can be oriented to disallow these situations to happen
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Step 3: Meek’s rules (1995)

Sound and complete rules for additional orientations (also with added
background knowledge) Hevwise V-drachure

wl =1l w oD
e N >N w=s P
( Figure 1: Orientation rules for patterns

é'\&fwise e

https://arxiv.org/pdf/1302.4972.pdf
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SGS algorithm (Spirtes, Glymour, Scheines)

« Assuming p is Markov and faithful to an unknown graph G

* We can estimate a CPDAG from samples of p in three steps:

1. Determine the skeleton
2. Determine the v-structures (given the tests in the previous phase)
3. Direct as many remaining edges as possible

» Computationally inefficient: potentially O(2P) tests
 Even if we reuse the test results from skeleton phase in other phases
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PC algorithm (Peter Spirtes, Clark Glymour)

« Assuming p is Markov and faithful to an unknown graph G

* We can estimate a CPDAG from samples of p in three steps:

1. Determine the skeleton in an optimised way
2. Determine the v-structures (given the tests in the previous phase)
3. Direct as many remaining edges as possible
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PC algorithm skeleton learning

o If 7 is not adjacent to J, then they can be d-separated by Pa(7) or Pa()

 Determine the skeleton in an optimised way
e Since we do not know the parents we will use the nodes that are

adjacent, Adj(i) or Adj(j) in U at a given iteration (superset)
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PC algorithm skeleton learning

o If 7 is not adjacent to J, then they can be d-separated by Pa(7) or Pa()

 Determine the skeleton in an optimised way
e Since we do not know the parents we will use the nodes that are

adjacent, Adj(i) or Adj(j) in U at a given iteration (superset)

1. Start with completely connected undirected graph U
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PC algorithm skeleton learning

o If 7 is not adjacent to J, then they can be d-separated by Pa(7) or Pa()

 Determine the skeleton in an optimised way
e Since we do not know the parents we will use the nodes that are

adjacent, Adj(i) or Adj(j) in U at a given iteration (superset)

1. Start with completely connected undirected graph U
2. Fork=0,1,2....p—2
e If i —jin U and there exists aset S C Adj(i)\{j} of size at least k
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PC algorithm skeleton learning

o If 7 is not adjacent to J, then they can be d-separated by Pa(7) or Pa()

 Determine the skeleton in an optimised way
e Since we do not know the parents we will use the nodes that are

adjacent, Adj(i) or Adj(j) in U at a given iteration (superset)

1. Start with completely connected undirected graph U
2. Fork=0,1,2....p—2
e If i —jin U and there exists aset S C Adj(i)\{j} of size at least k
+ Ifholds X; Il X:|S, then remove i — jin U
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PC algorithm skeleton learning

o If 7 is not adjacent to J, then they can be d-separated by Pa(7) or Pa()

 Determine the skeleton in an optimised way
e Since we do not know the parents we will use the nodes that are

adjacent, Adj(i) or Adj(j) in U at a given iteration (superset)
| We stop when there are no more |

untested sets of size k Iin the

1. Start with completely connec |

2. Fork=0,1,2....p—2
e If i —jin U and there exists aset S C Adj(i)\{j} of size at least k
+ Ifholds X; Il X:|S, then remove i — jin U
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SGS vs PC

* SGS: we can estimate a CPDAG from samples of p in three steps:

1. Determine the skeleton
2. Determine the v-structures
3. Direct as many remaining edges as possible

* PC: we can estimate a CPDAG from samples of p in three steps:

1. Determine the skeleton in an optimised way
2. Determine the v-structures
3. Direct as many remaining edges as possible
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PC algorithm - when does it fail?

 |f the conditional independence tests give the wrong result
 Too few samples
* A very weak dependence
 Wrong parametric assumption (e.g. partial correlation on nonlinear data)

If you’re curious, you can see here some variants (like conservative PC) that try to circumvent the
problem by doing more tests https://rdrr.io/cran/pcalg/man/pc.html
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PC algorithm - when does it fail?

 |f the conditional independence tests give the wrong result
 Too few samples
* A very weak dependence
 Wrong parametric assumption (e.g. partial correlation on nonlinear data)

e |f there are unmeasured confounders or selection bias
 For example Chocolate - Nobel prizes
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PC algorithm - when does it fail?

 |f the conditional independence tests give the wrong result
 Too few samples
* A very weak dependence
 Wrong parametric assumption (e.g. partial correlation on nonlinear data)

e |f there are unmeasured confounders or selection bias

* We use advanced constraint-based algorithms - Fast Causal Inference (FCI)
 Chapter 6 in [SGS] Causation Prediction and Search

https://www.researchgate.net/publication/242448131 Causation Prediction and Search
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83

Break?

Optional SGS exercise:
https://drive.google.com/file/d/14IR7BSH2N7ZasRXI0O5nXrF3Xn49hnmRn/view?usp=sharing
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Causal discovery - this class

Interventional causal
discovery / causal
invariance

- Observational and
Interventional data

- Output: parents of Y,
I-MEC

- ICP, JCI
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Learning from interventional data - intuition

Until now we have only used observational data.

s B switzerland
=]
0.791
P<0.0001 Denmark
= )
:.g' A= Norwa
£ .
2 S$= United King
=
= 1
s United
v nit d
g States il -Germany
5 —— Ianie
Belgiuml I
3 Canada + lllllll
Polan l"hAust lia
Greece
Portugal qi ultaly
E £ __ Spain
B Japan
hina Brazil
oc Consumption (kg/yr/ )
gu Corre betw Capita Chocolate be be
La s per 1 Pop

[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064 .
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83

Learning from interventional data - intuition

Hypothetical world: we perform the experiment and see these results:

NL eats more chocolate => nothing changes

[ T T e e e e e e e e e T i

....

Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.

[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064 o
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Learning from interventional data - intuition

Hypothetical world: we perform the experiment and see these results:

NL eats more chocolate => nothing changes

... and similarly for other countries (@and other values)

[ T T T T T T T T T T T T T

Chocolate does not cause Nobel prizes

Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.

[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064 ‘o
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Learning from interventional data - intuition

Hypothetical world: we perform the experiment and see these results:

Chocolate does not cause Nobel prizes

/ItZ 1(
Sweden
r=0.791 >
P<0.0001 Denmark
Austria __ %
= Norway
5= United Kinfdom

¢ o %o 6-0

Brazil

Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.

[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064 105
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Learning from interventional data - intuition

Hypothetical world: we perform another experiment and see these results:

Nobel does not cause chocolate

Brazi

Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.

[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064 106
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SRS

Single-node interventions identify parents and children

* The skeleton (and v-structures) can be identified from observational data
 Intervening on a node 1 identifies its parents and children:

« Forall j adjacent i in G:
- If j is not adjacent i in G,,; then j € Pa(i). Otherwise j € Ch(i)

Gyo(s=1)

000 000

do($ = 1)
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Single-node interventions identify parents and children

* The skeleton (and v-structures) can be identified from observational data
 Intervening on a node 1 identifies its parents and children:

« Forall j adjacent i in G:
- If j is not adjacent i in G,,; then j € Pa(i). Otherwise j € Ch(i)

» Worst case: need p — 1 interventions to fully identify the graph (for p > 2)

- Intervention on multiple nodes: worst case need O(log,p) experiments

to fully orient the graph [Hyttinen et al 2013].
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Side note: Intervention design/Experiment selection

Design a set of interventions, so that we can accurately reconstruct as much as
possible the causal graph with the least samples, also when noisy

https://papers.nips.cc/paper/2019/hash/5ee5605917626676f6a285fa4c10f7b0-Abstract.html https://arxiv.org/abs/2011.00641 109
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Side note: Intervention design/Experiment selection

Design a set of interventions, so that we can accurately reconstruct as much as
possible the causal graph with the least samples, also when noisy

https://papers.nips.cc/paper/2019/hash/5ee5605917626676f6a285fa4c10f7b0-Abstract.html https://arxiv.org/abs/2011.00641 110
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Side note: Intervention design/Experiment selection

Design a set of interventions, so that we can accurately reconstruct as much as
possible the causal graph with the least samples, also when noisy

:i f f do(X,) =1 ? f

https://papers.nips.cc/paper/2019/hash/5ee5605917626676f6a285fa4c10f7b0-Abstract.html https://arxiv.org/abs/2011.00641 111
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Learning from multiple contexts

 Now we cannot decide which intervention to perform (intervention design)

* |n intervention design, we have known intervention targets, e.g. do(S = 1)
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Learning from multiple contexts

* Now we cannot decide which intervention to perform (intervention design)

* |n intervention design, we have known intervention targets, e.g. do(S = 1)

* Instead, somebody gives us a set of data from multiple contexts

* Possibly unknown intervention targets
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Learning from multiple contexts

* Now we cannot decide which intervention to perform (intervention design)

* |n intervention design, we have known intervention targets, e.g. do(S = 1)
* Instead, somebody gives us a set of data from multiple contexts
* Possibly unknown intervention targets

 Possibly soft interventions instead of perfect interventions
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Perfect vs soft interventions

 Recap: we introduced an operator that can represent a hypothetical
intervention on the whole population, i.e. a perturbation of the system:

do(X; = x;) which changes P(X;| Xp,;) — 1(X; = x;)

* This is called a perfect (or surgical) intervention

* There are also other types of intervention, e.g. soft interventions which

change P(X;| Xp,;) — P'(X;|Xp,)), which might not change the graph
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Example 3.2 in Elements of Causal Inference

x = randn(n_samples)
y = 4 % x + randn(n_samples)
# plot P(X,Y)

{X «— €x sns.scatterplot(x=x,y=y)

Y<4.X+ €y <AxesSubplot:>

20

ex, €YN /V(O,l) o

10 -

P(X) = #(0,1) d
P(Y)=/V(O,17) =51

# We need a lot of samples to plot the conditional distribution:
n_samp les=100000 —20 -
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Example 3.2 in Elements of Causal Inference

Xx_do_y = randn(n_samples)

y do_y = 4
{X<—€X

# plot P(X,Y |do(X=2))

Y (7,4_./)(4_ € y é_' q sns.scatterplot(x=x_do_y,y=y_do_y)
Y

<AxesSubplot:>

420 A
415 -

410 -

\9()( 'C‘o((f:(&)):, N/q \) s0s

400 41 e e e 08d(e (eNd 8IS 8)E40 8 9) (188D (SNSISSIe).(8D) &

0q1de(e=ye £ 50
o ) _71.(’ . . .
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Soft interventions, shift interventions

{X(_Gx X<—€x
Y(—4-X+€Y {Y%GY k1€Z>(+£y

P(X) = #(0,1) {X — €, ,
P(Y) = 4(0,17) Y <4 -X+ey 5

Pa (4o (@ (\/) = PQG(LO
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Causal parents as example of robust prediction

K= € -
\f: XA‘FE\, X/“)y >><Z
XL:\/+ZXL

£, Ty Lo ), Exlmh/lo’o.o )
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Causal parents as example of robust prediction

K= € -
\/.: XA‘FE\, Xll\)y >><Z
XL:\/‘I’le

E‘ /?’\I v IN(Q [\\' EKLN'\/lO;O-O \3
M/\;\/’UX;\ Mz ymxz_ \J\z oy sWalle r ercor
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Causal parents as example of robust prediction

K= € -
\/.: XA‘FE\, Xll\)y >><Z
XL:\/‘I’le

E‘ /?’\I v IN(Q [\\' EKLN'\/lO;O-O \3
M/\;\/’UX;\ Mz ymxz_ \J\z oy sWalle r ercor
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&3
(

Causal parents as example of robust prediction

X,= €
\/: X,\“‘E\'

Xz/: \/ ""le

?’\I v N(o (\\' EKLN”/loio'O »

X4‘>7"—>><2

\)g\ﬂb com 54\ ?o\(ev’\fs 33 N (/"JWS
A \/ N >(’\ ne: ym Xz Wita DI STRIU U TIoN SHIFTS
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Causal discovery simplified overview

Interventional causal

discovery / causal
Invariance

Causal inference using invariant prediction: identification and confidence intervals

Jonas Peters, Peter Buhlmann, Nicolai Meinshausen

- Output: parents of Y,
I-MEC

- ICP, JCI

https://arxiv.org/pdf/1501.01332.pdf 123
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Invariant Causal Prediction (ICP) [Peters et al 2016}

. Given a target variable Y and features (X, ...,Xp), we want to find the

causal parents of Y, i.e. Pa(Y)
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Invariant Causal Prediction (ICP) [Peters et al 2016}

. Given a target variable Y and features (X, ...,Xp), we want to find the

causal parents of Y, i.e. Pa(})
» We assume we have access to a set of different environments & (e.qg.

interventional or observational data), s.t. fore € &, (X, ...,le, Y¢) ~ P°¢
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Multiple environments

€1, €5, €3, €y ~ N (0,1)

X; =10+ ¢

0 Q-0
X, =—-2Y+¢, .

X; =2Y +0.1e;

€1, €5, €3, €y ~ N (0,1)
Xl —_ 10 + €1

€1, €5, €3, €y ~ N (0,1)
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Invariant Causal Prediction (ICP) [Peters et al 2016}

. Given a target variable Y and features (X, ...,Xp), we want to find the

causal parents of Y, i.e. Pa(})
» We assume we have access to a set of different environments & (e.qg.

interventional or observational data), s.t. fore € &, (X, ...,X;, Y¢) ~ P°¢

« \We further assume that in none of the environments Y is intervened upon
. We can then show that e, f € & : P°(Y¢|Pa(Y®)) = P/(V/|Pa(Y?))

» We represent the environment index with £
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Multiple environments in a single SCM

€1, €5, €3, €y ~ N (0,1)

X; =10+ ¢

Y =3X, + ¢y E =0
X, =—-2Y+¢,

X; =2Y +0.1e;

€1, €5, €3, €y ~ N (0,1)
Xl — 10+€1

€1, €5, €3, €y ~ N (0,1)

€1, €, €3, €y ~ N(0,1)

X; =10+ ¢

Y =3X, + ¢y
—2Y+e, it E=0

X, =11 it £=1
10Y+ e, it E=2

X; =2Y+0.1e;

SIKS Course on Causal Inference 2023
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Multiple environments in a single SCM

€1, €5, €3, €y ~ N (0,1)

X, =10+¢
Y = 3X1+€Y E — ()
X, =—-2Y+¢,
X;=2Y+0.1¢4 €1, €y €3, Ey ~ /V(O,l)
€1, €2, €3, €y ~ , .
X, =10+ ¢, F=1 V'=3X,+¢
Y =3X, + ¢y T —2Y+e, it E=0
?iiy 0.1 =11 HE=1
=2+ 0.ley 10Y + e, if E =2 @
€1, €, €3, €y ~ N(0,1) X;=2Y+0.1e;
Xl — 1O+€1 E — 2
Y =3X, + ¢y
X,= 107+ PE(Y¢| Pa(Y*)) = P/(Y/| Pa(¥")) EL,Y|X,
X; =2Y +0.1e;

E 1l Y|Pa(Y) << E 1,Y|Pa(Y)
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Multiple environments in a single SCM

€1, €5, €3, €y ~ N (0,1)

X, =10+¢

Y =3X, + ¢y E =0
X, =—2Y+¢,

X; =2Y +0.1e;

€1, €5, €3, €y ~ N (0,1)

Y =3X, + ¢y E=1

X, =1

X; =2Y+0.1€;

€1, €y, €3, €y ~ N (0,1) S = Pa(Y) — F J‘d Y‘ S
X, =10+¢ E ="

Yo 3X, 4 e EL,Y|S = S =Pa(Y)?
X, =10Y+¢,

X, = 2Y +0.1¢, E1l,Y|X,
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Multiple environments in a single SCM

€1, €5, €3, €y ~ N (0,1)

X, =10+¢

Y =3X, + ¢y E =0
X, =—2Y+¢,

X; =2Y +0.1e;

€1, €5, €3, €y ~ N (0,1)

X, =1 | Other subset of nodes |
X, = 2Y +0.1es | also satisfy this |
€], €, €3, €y ~ N (0,1) S — Pa(Y) — E J‘d Y‘ S

Xl = 10 + €1 E — 2

Y =3X,+¢y EJ_dY‘S:l&} S=Pa(Y)

X, =10V + ¢,

X;=2Y+0.1e; EJ_d Y‘Xl EJ—d Y‘{X19X3}
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Invariant Causal Prediction (ICP)

» We assume we have access to a set of different environments & (e.qg.

interventional or observational data), s.t. fore € &, (X, ...,X;, Y¢) ~ P°¢

« \We further assume that in none of the environments Y is intervened upon

132
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Invariant Causal Prediction (ICP)

» We assume we have access to a set of different environments & (e.qg.

interventional or observational data), s.t. fore € &, (X, ...,Xlﬁ, Y¢) ~ P°¢

« \We further assume that in none of the environments Y is intervened upon

» We represent the environment index with £

* |f there are no latent confounders, one can prove that:

ﬂ S C Pa(Y)

SC{1,....p} s.t. ELLY|S

133
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Invariant Causal Prediction example

€1, €5, €3, €y ~ N (0,1)
Xl — 10 + 61

Y=3X1+€Y E:O
X2=—2Y+€2

€1, €5, €3, €y ~ N (0,1) / \
X, = 100 + ¢, ﬂ S C Pa(Y)
Y=3X, +e E=1 m B

Lo SC{l1,....p} s.t. ELLY|S

X; =2Y+0.1€; @

€1, €5, €3, €y ~ N (0,1)

X, =10+ ¢ — EJ_ Y X
ey E=2 T Xy 0 (X Xs) = (X)) = Pa(y)
X, = 10Y + ¢, EL,Y|{X,X;}



&3

,83835 Constraint-based causal discovery SIKS Course on Causal Inference 2023

Invariant Causal Prediction example 2

€1, €5, €3, €y ~ N (0,1)

X; =10+ ¢

Y =3X, + ¢y E =0

X, =—-2Y+¢,

X; =2Y +0.1e; E

€, €5, €3, €y ~ N(0,1) \

X, =10+¢ ﬂ S C Pa(Y)

e 000 :
Lo X SC{1,....,p} s.t. ELLY]|S

X; =2Y+0.1€; @

€1, €5, €3, €y ~ N (0,1)

X, =10+ ¢ E:2 EJ_d Yle {Xl}ﬂ{Xl,X3}ﬂ@=@§Pa(Y)
Y =3X, + ¢y
X, = 10Y + ¢, E1l,Y|{X,X;}

X3 =2Y+ 0.163 E J_d Y
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ICP improves with more environments

4 View 2LAvoment €5

lenvironments finds empty

136
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ICP improves with more environments

+ Ve 2lvoment €5

| ICP on these |
| environments |
(including new) |
" finds X,

lenvironments finds empty

137
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SRS

ICP improves with more environments

4 View 2LAvoment €5

e

=3 (¥1,£2)

| ICP on these |
| environments |
(including new) |
" finds X,

lenvironments finds empty

If aII varlables arecaused by E (so we see enough |
~_environments), then we find ALL parents |
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23S

Invariant Causal Prediction - latent confounders

* |f there are latent confounders, one can prove that:

f S C Anc(Y)

W \/}lel Xz

X=Xz =N \)HEIX" = Ky €A\
\/LLG ‘ X/\ \XL

139



&3

,83835 Constraint-based causal discovery SIKS Course on Causal Inference 2023

Learning from multiple contexts

* Now we cannot decide which intervention to perform ( )

e We then also have ,e.g.do(S = 1)

* Instead, somebody gives us a \ultiple contexts
' ICP finds subsets of parents, |
' what about finding (an |
equivalence class of) the |

causalgraph? |

* Possibly

* Possibly iInstead of

140
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Joint Causal Inference from Multiple Contexts

Joris M. Mooij, Sara Magliacane, Tom Claassen

* We represent different distributions (including interventional) as an unknown joint causal
graph (possibly cyclic or with latent confounders)

 We add context variables so we can disentangle changes in distribution across the datasets

https://arxiv.org/abs/1611.10351 141
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Joint Causal Inference intuition

€1, €5, €3, €y ~ N (0,1)

X; =10+ ¢

Y=3X,+¢y E=0
X, =—-2Y+¢,

X; =2Y +0.1e;

€1, €5, €3, €y ~ N (0,1)

X; =100 + ¢

Y =3X, + ¢y E=1
Xs==-2Y+¢e

X; =2Y+0.1€;

€1, €5, €3, €y ~ N (0,1)
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Joint Causal Inference intuition

€1, €5, €3, €y ~ N (0,1)

X1=10+€1

Y=3X1+€Y E — O

X2=—2Y+€2 Cl — ()
C, =0

€1, €5, €3, €y ~ N (0,1)

Y:3X1+€Y E _ 1

X3:2Y+0.1€3 C2 — O

€1, €5, €3, €y ~ N (0,1)

Y= 3X1+€Y

X, = 10Y + ¢, C;=0
C 1

| Adding context variables C| and (, helps |
| disentangle the changes in each environment |
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Joint Causal Inference intuition

€1, €5, €3, €y ~ N (0,1)

X; =10+ ¢
Y =3X, + ¢y E = O
ooson Q=0
3= le, .
;=0 €1, €5, €3, €y ~ N(0,1)

€1, €y, €3, €y ~ N (0,1) - 10 + ¢, 1f C;=0
X = 1004¢ F=1 1=\ 100 e, if C; =1
Y =3X, +¢y _
X,=—-2Y+¢, C1=1 Y =3X, +ey
X3:2Y+0.1€3 C2 — O —2Y+ €2 1f C2 — O

X2: 1OY+€21fC2=1
€1, €5, €3, €y ~ N (0,1) B
X =10+e, = X;=2Y+0.1€;
Y =3X, + ¢y
X, = 10Y + ¢, ¢, =0
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Joint Causal Inference intuition

€1, €5, €3, €y ~ N (0,1)

X; =10+ ¢
Y=3X,+¢y E=0
X, =2Y + 0.1e; L= Context
C,=-2 |
variables
€), €, €3, €y ~ N (0,1) S ——— ——————
X; =100 + ¢
Y =3X,+¢€y E —
X,=—-2Y+e¢, C, = 100 System
X; =2Y+0.1¢ Crhr=-2 ]
3 3 2 variables
€1, €3, €3, €y ~ N (0,1)
X; =10+ ¢ E ="
X, = 10Y + ¢, ¢, =10 ‘The context variables Cl and C2 canbe also |
X3=2Y+0.1e; Cz =10 descrlptlve of the mterventlon |n each enwronment i
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Joint Causal Inference from Multiple Contexts

Joris M. Mooij, Sara Magliacane, Tom Claassen

* We represent different distributions (including interventional) as an unknown joint causal
graph (possibly cyclic or with latent confounders)

 We add context variables so we can disentangle changes in distribution across the datasets

C1 0% ) & ) ¥ ) &
Normal 0] 0 0,1 2 0
Normal 0 0 0,2 3 0
0 0 1,1 2 1
0 0 0,1 3 0
1 0 3,1 2 1
1 0 3,2 3 1
1 0 4 1 1
1 0 3,2 3 1
0 1 0,2 1 0
0 1 0,3 1 1
0 1 0,3 2 1
0 1 0,4 1 1
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Joint Causal Inference from Multiple Contexts

Joris M. Mooij, Sara Magliacane, Tom Claassen

 We add context variables so we can disentangle changes in distribution across the datasets
(and optionally background knowledge, e.g. context variables are uncaused)

* We can reuse any standard method for observational data that fits any chosen assumptions

C1 C2 X1 X2 ) &
0 0 0,1 2 0
0 0 0,2 3 0
0 0 1,1 2 1
0 0 0,1 3 0
L 0 3,1 2 1
L 0 3,2 3 1
L 0 4 1 1
L 0 3,2 3 1
0 L 0,2 1 0
0 L 0,3 1 1
0 1 0,3 2 1
0 L 0,4 1 1 147



&3

,83835 Constraint-based causal discovery SIKS Course on Causal Inference 2023

Joint Causal Inference from Multiple Contexts

Joris M. Mooij, Sara Magliacane, Tom Claassen

 We add context variables so we can disentangle changes in distribution across the datasets
(and optionally background knowledge, e.g. context variables are uncaused)

* We can reuse any standard method for observational data that fits any chosen assumptions

C1 C2 X1 ) ) &
0 0 0,1 2 0
0 0 0,2 3 0
0 0 1,1 2 1
X, I C,
0 0 0,1 3 0
1 0 3,1 2 1 X J.I_
1 0 3.2 3 1 1 GG
1 0 4 1 1 X2 J.l_ Cl ‘X3
1 0 3,2 3 1
0 1 0,2 1 0 o
0 1 0,3 1 1
0 1 0,3 2 1
0 1 0,4 1 1
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Joint Causal Inference from Multiple Contexts

Joris M. Mooij, Sara Magliacane, Tom Claassen

 We add context variables so we can disentangle changes in distribution across the datasets
(and optionally background knowledge, e.g. context variables are uncaused)

* We can reuse any standard method for observational data that fits any chosen assumptions

C1 C2 X1 X2 X3

0 0 0,1 2 0 PC-JCI
0 0 0,2 3 0

o o IRIEErEE FCI-JCI
0 0 0,1 3 0 X2 lL C2

1 0 3,1 2 1 Xl J.l_ C2 ‘ Cl

1 0 3,2 3 1

1 0 4 1 1

1 0 3.2 3 1 Xp L G X;

0 1 0,2 1 0

0 1 0,3 1 1

0 1 0,3 2 1

0 1 0,4 1 1
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Joint Causal Inference from Multiple Contexts

Joris M. Mooij, Sara Magliacane, Tom Claassen

* Additional optional background knowledge based on assumptions:

1. No system variable causes any context variable. 7@

2. No context variable is confounded with a system variable. @

3. The context variables do not cause each other and they are assumed to
be confounded.

https://arxiv.org/abs/1611.10351
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Joint Causal Inference from Multiple Contexts

Joris M. Mooij, Sara Magliacane, Tom Claassen

e Additional { confounders (except some df—)pendence between | ptions:

1. No system variable causes any context variable.

3. The context variables do not cause each other and they are assumed to
be confounded.

https://arxiv.org/abs/1611.10351
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Joint Causal Inference example - setting

. The joint graph is the union of the |
' single graphs + edges from context |
| variables for the causal |

mechanisms that change

1562
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Learning graphs separately in each environment with PC

m > o—/\e

Soft intervention on X,
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Joint causal inference + PC with a single domain variable

Inference and PC with a single

154
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Joint causal inference + PC with multiple context variables

Inference and PC with multiple |

155
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Application - Domain adaptation

C X2 Y
0 2 0
. 0 3 0
Source domain
0 2 1
0 3 0 / \
1 2 ?
Target domain : ° ! ° °_@
1 2 ?
’ 3 ? We can represent P(X1, X2,Y, C)

with an (unknown) causal graph

* We can represent the different datasets jointly with Joint Causal Inference

 \We can use it to reason about features that offer a robust prediction of Y

156
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This class

* |ntroduction to causal discovery
« Common assumptions: causal sufficiency, acyclicity, faithfulness

* Constraint-based causal discovery on observational data (causal sufficiency)
e SGS, PC

* | earning from multiple contexts or interventional data
* |Invariant Causal Prediction
» Joint Causal Inference

Inspired by https://stat.ethz.ch/lectures/ss21/causality.php
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,83835 Constraint-based causal discovery

Questions?

WE WANT TO STUDY S0 WE'RE 15 IT CORRELATED WITH
THIS VARIABLE, BUT STUDYING THE OTHER VARIABLE?

IT'S HARD TOOBSERVE. | | THIS PROXY LOOK. JE DON'T

VF‘RW?LE- | HAVE THE FUNDING
TO ANSWER EVERY

/ LITTLE QUESTION.

\

https://xkcd.com/2652/
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