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Chapter 1. Introduction 1

Chapter 1

Introduction

This chapter gives a short introduction to graphical models, explains the Belief
Propagation algorithm that is central to this thesis and motivates the research
reported in later chapters. The first section uses intuitively appealing examples to
illustrate the most important concepts and should be readable even for those who
have no background in science. Hopefully, it succeeds in giving a relatively clear
answer to the question “Can you explain what your research is about?” that often
causes the author some difficulties at birthday parties. The second section does
assume a background in science. It gives more precise definitions of the concepts
introduced earlier and it may be skipped by the less or differently specialized reader.
The final section gives a short introduction to the research questions that are studied
in this thesis.

1.1 A gentle introduction to graphical models

Central to the research reported in this thesis are the concepts of probability theory
and graph theory, which are both branches of mathematics that occur widely in
many different applications. Quite recently, these two branches of mathematics
have been combined in the field of graphical models. In this section I will explain
by means of two “canonical” examples the concept of graphical models. Graphical
models can be roughly divided into two types, called Bayesian networks and Markov
random fields. The concept of a Bayesian network will be introduced in the first
subsection using an example from the context of medical diagnosis. In the second
subsection, we will discuss the basic trade-off in the calculation of (approximations
to) probabilities, namely that of computation time and accuracy. In the third
subsection, the concept of a Markov random field will be explained using an example
from the field of image processing. The fourth subsection is a short summary and
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A

T

E

S

L

B

DX

Random variable Meaning

A Recent trip to Asia

T Patient has tuberculosis

S Patient is a smoker

L Patient has lung cancer

B Patient has bronchitis

E Patient has T and/or L

X Chest X-Ray is positive

D Patient has dyspnoea

Figure 1.1: The Asia network, an example of a Bayesian network.

briefly describes the research questions addressed in this thesis.

1.1.1 The Asia network: an example of a Bayesian network

To explain the concept of a Bayesian network, I will make use of the highly simplified
and stylized hypothetical example of a doctor who tries to find the most probable
diagnosis that explains the symptoms of a patient. This example, called the Asia

network, is borrowed from Lauritzen and Spiegelhalter [1988].
The Asia network is a simple example of a Bayesian network. It describes the

probabilistic relationships between different random variables, which in this partic-
ular example correspond to possible diseases, possible symptoms, risk factors and
test results. The Asia network illustrates the mathematical modeling of reasoning
in the presence of uncertainty as it occurs in medical diagnosis.

A graphical representation of the Asia network is given in figure 1.1. The nodes
of the graph (visualized as circles) represent random variables. The edges of the
graph connecting the nodes (visualized as arrows between the circles) represent
probabilistic dependencies between the random variables. Qualitatively, the model
represents the following (highly simplified) medical knowledge. A recent trip to
Asia (A) increases the chance of contracting tuberculosis (T ). Smoking (S) is a
risk factor for both lung cancer (L) and bronchitis (B). The presence of either (E)
tuberculosis or lung cancer can be detected by an X-ray (X), but the X-ray cannot
distinguish between them. Dyspnoea (D), or shortness of breath, may be caused by
either (E) tuberculosis or lung cancer, but also by bronchitis (B). In this particular
Bayesian network, all these random variables can have two possible values: either
“yes” or “no”, which we will abbreviate as “y” and “n”, respectively.1

This model can be used to answer several questions in the following hypothetical
situation. Imagine a patient who complains about dyspnoea and has recently visited

1In general, the possible number of values of random variables is unlimited.
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Asia. The doctor would like to know the probabilities that each of the diseases (lung
cancer, tuberculosis and bronchitis) is present. Suppose that tuberculosis can be
ruled out by another test, how would that change the belief in lung cancer? Further,
would knowing smoking history or getting an X-ray be most informative about the
probability of lung cancer? Finally, which information was the most important for
forming the diagnosis?

In order to proceed, it will be convenient to introduce some notation from prob-
ability theory. The probability that some statement F is true is denoted by P(F ).
Probabilities are numbers between 0 and 1, where P(F ) = 0 means that F is false
with absolute certainty, and P(F ) = 1 means that F is true with absolute certainty,
and if P(F ) is anything in between, it means that it is not certain whether F is
true or false. If P(F ) is close to 0, it is unlikely that F is true, wherease if P(F )
is close to 1 it is likely that F is true. For our purposes, the statement F can be
any instantiation of (one or more of) the random variables that we are considering.
For example, the statement can be “the patient has bronchitis”, which is an instan-
tiation of the random variable B, that can be abbreviated as “B = y”. Another
possible statement is “the patient does not have bronchitis”, which we can write
as “B = n”. Thus P(B = y) is the probability that the patient has bronchitis and
P(B = n) is the probability that the patient does not have bronchitis. Both prob-
abilities have to sum to one: P(B = y) + P(B = n) = 1, because the patient either
has or does not have bronchitis. The statement can also be a more complicated
combination of random variables, e.g., P(S = y, L = n) is the probability that the
patient smokes but does not have lung cancer.

In addition we need another notion and notation from probability theory, namely
that of conditional probabilities. If we are given more information about the patient,
probabilities may change. For example, the probability that the patient has lung
cancer increases if we learn that the patient smokes. For statements F and G,
the conditional probability of F , given that G is true, is denoted as P(F |G). As
before, the statements F and G are instantiations of (some of the) random variables
that we are considering. For example, the conditional probability that the patient
has lung cancer given that the patient smokes is denoted as P(L = y |S = y).
The value of this conditional probability is higher than P(L = y), which is the
probability that the patient has lung cancer if we have no further information about
whether the patient smokes or not. Another example of a conditional probability is
P(D = y |B = y, E = n); this is the probability that a patient has dyspnoea, given
that the patient has bronchitis but has neither tuberculosis nor lung cancer.

The numerical values for the probabilities can be provided by medical studies.
For example, according to the results of Villeneuve and Mao [1994], the lifetime
probability of developing lung cancer, given that one is a smoker, is about 14%,
whereas it is only about 1.4% if one has never smoked.2 The complete conditional

2In reality, the probability of developing lung cancer is different for males and females and

depends on many other variables, such as age and the smoking history of the patient. We will

come back to this point later.
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probability table for L given S (i.e., whether the patient develops lung cancer, given
the smoking status of the patient), is then:

P(L |S) S = y S = n
L = y 14% 1.4%
L = n 86% 98.6%

Note that each column sums to 100%, which expresses that with absolute certainty
the patient either develops lung cancer or not. This conditional probability table
for P(L |S) corresponds with the edge from S to L in figure 1.1.

Another conditional probability table that we can easily specify (even without
consulting medical studies) is P(E |T, L):

P(E |T, L) T = y T = n T = y T = n
L = y L = y L = n L = n

E = y 100% 100% 100% 0%
E = n 0% 0% 0% 100%

This simply reflects the definition of “T and/or L” in terms of T and L according
to elementary logics. The conditional probability table for P(E |T, L) corresponds
with the edges from T and L to E in figure 1.1.

Another probability table (not a conditional one) that is relevant here is P(S),
the probability that the patient smokes. In 2006, the percentage of smokers in The
Netherlands was 29.6%.3 Therefore a realistic probability table for P(S) is:

S P(S)
y 29.6%
n 70.4%

This probability table corresponds with the node S in figure 1.1.
In order to give a complete quantitative specification of the graphical model

shown in figure 1.1, one would have to specify each of the following probability
tables: P(A), P(T |A), P(L |S), P(B |S), P(D |B,E), P(E |T, L), P(X |E) and
P(S). Note how this corresponds with the graph: for each random variable, we
need the probability distribution of that variable conditional on its parents. By the
parents of a variable we mean those random variables that point directly towards
it. For example, the parents of D are E and B, whereas S has no parents. This
means that we have to specify the conditional probability table for P(D |E,S) and
the probability table of P(S). We will not explicitly give all these (conditional)
probability tables here but will assume that they are known and that the graphical
model illustrated in figure 1.1 is thus completely specified. Then, the complete

3According to the CBS (Centraal Bureau voor Statistiek).
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joint probability distribution of all the random variables can be obtained simply by
multiplying all the (conditional) probability tables:

P(A, T, L, S,B,X,E,D)

= P(A)× P(T |A)× P(L |S)× P(B |S)

× P(E |T, L)× P(D |B,E)× P(X |E)× P(S).

(1.1)

This formula should be read as follows. Given an instantiation of all 8 random
variables, e.g., A = n, T = n,L = n, S = y,B = n,X = n,E = n,D = n, we
can calculate the probability of that instantiation by multiplying the corresponding
values in the smaller probability tables:

P(A = n, T = n,L = n, S = y,B = n,X = n,E = n,D = n)

= P(A = n)× P(T = n |A = n)× P(L = n |S = y)

× P(B = n |S = y)× P(E = n |T = n,L = n)

× P(D = n |B = n,E = n)× P(X = n |E = n)× P(S = y)

which will give us some number (0.150837 if you use the original model by Lauritzen
and Spiegelhalter [1988]). Because the model consists of 8 binary (i.e., yes/no
valued) random variables, the complete probability table for the joint probability
distribution P(A, T, L, S,B,X,E,D) would contain 28 = 256 entries: one value for
each possible assignment of all the random variables. Part of this table is given in
table 1.1.4

The completely specified model can be used to answer many different questions
that a doctor might be interested in. Let us return to the hypothetical example
of the patient who complains about dyspnoea and has recently visited Asia. The
doctor would like to know the probability that each of the diseases (T , L and B) is
present. Thus, e.g., the doctor would like to know the value of:

P(T = y |D = y, A = y)

according to the model. An elementary fact of probability theory tells us that we
can calculate this quantity by dividing two other probabilities:

P(T = y |D = y, A = y) =
P(T = y, D = y, A = y)

P(D = y, A = y)
. (1.2)

Another elementary result of probability says that, if we would like to calculate
a probability of some instantiation of a particular subset of random variables, we

4Note that by representing the joint probability distribution as a Bayesian network we actually

need less than 256 numbers to specify the complete probabilistic model; indeed, we need just

2 + 4 + 4 + 4 + 8 + 8 + 4 + 2 = 36 numbers to specify all the probability tables P(A), P(T |A),

P(L |S), P(B |S), P(E |T, L), P(D |B,E), P(X |E), P(S). In fact, we can use even less numbers

because the columns of the tables sum to one. This efficiency of representation is one of the

advantages of using a Bayesian network to specify a probability distribution over the alternative

of “simply” writing down the complete joint probability table. By using equation (1.1), we can

calculate any probability that we need.
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Table 1.1: (Part of the) probability table for the full joint probability distribution of all 8

random variables in the Asia network. Only part of the table is shown here; the full table

has 28 = 256 entries.

A T L S B X E D P(A, T, L, S,B,X,E,D)
n n n n n n n n 0.290362
n n n n n n n y 0.032262
n n n n n n y n 0.000000
n n n n n n y y 0.000000
n n n n n y n n 0.015282
...

...
...

...
...

...
...

...
...

n n n y n n n n 0.150837
...

...
...

...
...

...
...

...
...

y y y y y y y y 0.000013

have to sum the joint probability of all the random variables over all the possible
instantiations of the other random variables. As an example, to calculate the nu-
merator of the fraction in equation (1.2), we would like to calculate the probability
P(T = y, D = y, A = y) of the instantiation T = y, D = y, A = y of the three
random variables T,D,A. Thus we have to sum over all possible instantiations of
the other random variables S,L,E,B,X. In mathematical notation:

P(T = y, D = y, A = y)

=
∑

S,L,E,B,X

P(A = y, T = y, L, S,B,X,E,D = y)

=
∑

S,L,E,B,X

P(A = y) P(T = y |A = y) P(L |S) P(B |S)×

P(E |T = y, L) P(D = y |B,E) P(X |E) P(S),

where we used equation (1.1) to write out the joint probability in terms of the
smaller probability tables. Because each random variable can have two possible
values, there are 2× 2× 2× 2× 2 = 25 = 32 possible instantiations of the random
variables S,L,E,B,X that contribute to the sum. A similar formula can be derived
for the denominator P(D = y, A = y) of the fraction in equation (1.2); there we are
interested in the probability of an instantiation of the random variables D,A and
therefore we have to sum over all possible instantiations of the six other random
variables T, S, L,E,B,X, which gives a sum of 26 = 64 terms. In this way, we
can calculate that P(T = y |D = y, A = y) ≈ 8.7751% if one uses the same model
specification as in [Lauritzen and Spiegelhalter, 1988].

Obviously, it would take a human quite some time to do these calculations.
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However, computers can calculate very fast nowadays and we could instruct a com-
puter in such a way that it performs precisely these calculations. Thereby it could
assist the doctor by calculating (according to the model) the probabilities that each
of the diseases is present, given that the patient has dyspnoea and has recently
visited Asia. In a similar way, the elementary rules of probability theory can be
applied in a rather straightforward manner to answer more difficult questions, like
“If tuberculosis were ruled out by another test, how would that change the belief
in lung cancer?”, “Would knowing smoking history or getting an X-ray contribute
most information about cancer, given that smoking may ‘explain away’ the dysp-
noea since bronchitis is considered a possibility?” and “When all information is in,
can we identify which was the most influential in forming our judgment?”

For readers that have not had any previous exposure to probability theory, the
reasoning above may be difficult to understand. However, the important point is
the following: any probability distribution that the doctor may be interested in
(concerning the random variables in the model) in order to obtain a diagnosis for
the patient, can be calculated using elementary probability theory and the precise
specification of the Bayesian network. For a human this would be a lengthy calcula-
tion, but a computer can do these calculations very fast (at least for this particular
Bayesian network).

As a final note, let us return to the probability that one develops lung cancer
given that one smokes. One might object that this probability depends in reality
on many other factors, such as the gender, the age, the amount of smoking and the
number of years that the patient has been smoking. However, we can in principle
easily improve the realism of the model to take these dependences into account,
e.g., by adding nodes for gender (G), age (Y ), smoking history (H), adding edges
from these new nodes to L (lung cancer) and replacing the conditional probability
table P(L |S) by a more complicated table P(L |S,G, Y,H) where the probability
of developing lung cancer depends on more variables than in our simple model.
This illustrates the modularity inherent in this way of modeling: if new medical
studies result in more accurate knowledge about the chances of getting lung cancer
from smoking, one only needs to modify the model locally (i.e., only change the
model in the neighborhood of the nodes S and L). The rules of probability theory
will ensure that answers to questions like “What disease most likely causes the
positive X-ray?” depend on the complete model; improving the realism of the part
of the model involving lung cancer and smoking will also automatically give a more
accurate answer to those questions.

1.1.2 The trade-off between computation time and accuracy

For this small and simplified model, the calculations involved could even be done
by hand. However, for larger and more realistic models, which may involve tens of
thousands of variables which interact in highly complicated ways, the computational
complexity to calculate the answer to questions like “What is the most likely disease
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Table 1.2: The number of possible instantiations (i.e., joint assignments of all variables)

as a function of the number N of binary variables.

N 2N , the number of possible instantiations

1 2

2 4

3 8

4 16

5 32

10 1024

20 1048576

50 1125899906842624

100 1267650600228229401496703205376

200 1606938044258990275541962092341162602522202993782792835301376

that causes these symptoms?” explodes. Although it is easy in principle to write
down a formula that gives the answer to that question (this would be a rather long
formula, but similar to the ones we have seen before), to actually calculate the result
would involve adding enormous amounts of numbers. Indeed, in order to calculate
a probability involving a few random variables, we have to add many probabilities,
namely one for each possible instantiation of all the other random variables that we
are not interested in. The number of such instantiations quickly increases with the
number of variables, as shown in table 1.2. Even if we include only 200 diseases and
symptoms in our model, in order to calculate the probability of one disease given
a few symptoms would require adding an enormous amount of terms. Although a
modern desktop computer can do many additions per second (about one billion, i.e.,
1000000000), we conclude that for a realistic model involving thousands of variables,
the patient will have died before the computer can calculate the probability of a
single disease, even if we use the fastest supercomputer on earth.5 Thus although
for small models we can actually calculate the probabilities of interest according to
the model, it is completely impractical for large realistic models.

It turns out that for the specific case of medical diagnosis, using certain assump-
tions on the probability distributions and several clever tricks (which are outside
the scope of this introduction) one can significantly decrease the computation time
needed to calculate the probabilities. Such a model, called Promedas, which con-
tains thousands of diseases, symptoms and tests, is currently being developed in
Nijmegen. It can calculate probabilities of interest within a few seconds on an

5In fact, it is likely that the earth and maybe even the universe have ceased to exist before a

computer (using current technology) will have calculated the probability of interest if one uses this

“brute force” method of calculating probabilities. On the other hand, computers get faster each

year: processing speed roughly doubles every 24 months. Extrapolating this variant of “Moore’s

law” into the far future (which is not very realistic), it would take about three centuries before

the calculation could be done within one day.
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Figure 1.2: Left: reference image. Right: input image. The reference image defines the

background and the input image consists of some interesting foreground imposed on the

background. The task is to decide which part of the input image belongs to the foreground.

ordinary computer.6

However, there are many other applications (for which these simplifying as-
sumptions cannot be made and the clever tricks cannot be applied) where the exact
calculation of probabilities is impossible to perform within a reasonable amount
of time. In these cases, one can try to calculate approximate probabilities using
advanced approximation methods which have been specially developed for this pur-
pose. If the approximate result can be calculated within a reasonable amount of
time and its accuracy is enough for the application considered (e.g., knowing the
probabilities that some disease causes the observed symptoms to ten decimal places
is usually not necessary, one or two decimal places may be more than enough), then
this forms a viable alternative to the exact calculation. This illustrates the ba-
sic trade-off in the field known as approximate inference: computation time versus
accuracy.

1.1.3 Image processing: an example of a Markov random

field

To introduce the concept of a Markov random field, another type of graphical mod-
els, I will use an example from the field of image processing. The task that we will
consider is that of separating foreground from background. Suppose that we have
two images, one of which is the reference image that defines the background, and
one where there is some foreground in front of the background, which we call the
input image (see figure 1.2 for an example). By comparing the input image with
the reference image, we try to infer which part of the input image is foreground and
which part belongs to the background. We can then extract only the foreground
part of the input image, filtering out the background. This may have applications
in surveillance (surveillance cameras only need to store the interesting parts of the

6A demonstration version of Promedas is available at http://www.promedas.nl/

http://www.promedas.nl/
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Figure 1.3: An image consists of many pixels, small squares with a uniform intensity. The

images used here consist of 640× 480 = 307200 pixels.

Figure 1.4: Left: difference between input and reference image. Right: simple estimate of

foreground, obtained by thresholding the difference image on the left.

video frames, i.e., the foreground, and thus save storage space) and video conferenc-
ing (if we only transmit the foreground, this will save bandwidth and thus costs),
but I have chosen this example mainly for educational purposes.

As illustrated in figure 1.3, an image is digitally represented as a grid of many
pixels: small squares that have a uniform intensity. The intensity of a pixel is
a number between 0 and 255, where 0 is black and 255 is white, and anything
in between is a shade of gray, where a larger intensity value corresponds with a
lighter shade of gray. The images used in this example are 640 pixels in width and
480 pixels in height and were made by a surveillance camera. We will denote the
intensity of a pixel at some location i of the reference image by Ri and the intensity
of a pixel at the same location i of the input image by Ii.

A crude way to separate foreground from background is to consider the differ-
ences between the images. More precisely, for each location i, we can calculate the
absolute value of the difference in intensity for both pixels corresponding to that
location, i.e., di := |Ii −Ri|.7 This can be done using some of the more advanced
image processing applications, e.g., GIMP or Adobe R© PhotoShop R©. Figure 1.4

7For a real number x, its absolute value |x| is x if x ≥ 0 and −x if x < 0.
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shows the difference image, where the absolute difference di between the intensity
values Ii and Ri of the input and reference image is represented by a shade of
gray (black corresponding to the maximum possible difference of 255 and white
corresponding to the minimum possible difference of 0). We can now choose some
threshold value c, and decide that all pixels i for which the absolute difference di is
larger than c belong to the foreground, and all pixels for which the absolute differ-
ence di is smaller than c belong to the background. The result is shown in figure
1.4. This is a fast method, but the quality of the result is not satisfying: instead of
identifying the whole person as foreground, it only identifies parts of the person as
foreground, omitting many little and a few larger regions that (according to the hu-
man eye) clearly belong to the foreground. On the other hand, many little parts of
the background, where the intensities of the reference and input image differ slightly
because of changed lightning conditions, get incorrectly classified as foreground. In
order to improve the classification, we would like to somehow impose the criterion
that we are only interested in large contiguous foreground objects: we would like
to catch a burglar, not a fly.

The key idea is to also take into account neighboring pixels. Every pixel (except
those on the border of the image) has four neighboring pixels: one to the left, one
to the right, one above and one below. We are going to construct a probability
model such that if the absolute difference di is large, the probability that the pixel
at location i belongs to the foreground should be high. Furthermore, if the ma-
jority of the neighboring pixels of the pixel at location i belong to the foreground
with high probability, then the probability that the pixel itself belongs to the fore-
ground should also be high. Vice versa, if the neighboring pixels belong to the
background with high probability, then the probability that the pixel itself belongs
to the background should increase.

For each location i, we introduce a random variable xi that can have two pos-
sible values: either xi = −1, which means “the pixel at location i belongs to the
background”, or xi = +1, which means “the pixel at location i belongs to the
foreground”. We are going to construct a probability distribution that takes into
account all the 640×480 = 307200 random variables xi. We choose this probability
distribution in such a way that P(xi = 1) is large if di > c (in words, the probability
that pixel i belongs to the foreground is large if the difference between input and
reference image at that location is large) and P(xi = 1) is small if di < c. Note
that P(xi = 1) + P(xi = −1) = 1 because the pixel at location i either belongs to
the foreground or to the background. Thus, if P(xi = 1) is large then P(xi = −1)
is small and vice versa. Furthermore, the probability P(xi = 1) depends on the
probabilities P(xj = 1) for other pixels j. Indeed, if j is a neighbor of i, then we
should have that P(xi = 1 |xj = 1) is larger than P(xi = 1), i.e., the probability that
pixel i belongs to the foreground should increase when we learn that its neighbor j
belongs to the foreground.

The actual construction of this probability distribution is a bit technical, but in
principle we only translate our qualitative description above into a more quantita-
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tive and precise mathematical formulation. The complete probability distribution
P({xi}) is a function of all the 307200 random variables xi (we write {xi} when
we refer to the whole collection of random variables xi for all pixels i).8 The full
probability distribution will be a product of two types of factors: a “local evidence”
factor ψi(xi) for each pixel i and a “compatibility” factor ψij(xi, xj) for each pair
{i, j} of neighboring pixels i and j. We take the full probability distribution to be
the product of all these factors:

P({xi}) =
1
Z

(∏
i

ψi(xi)

)∏
{i,j}

ψij(xi, xj)

 . (1.3)

This probability distribution is an example of a Markov random field. We have used
a convenient mathematical abbreviation for what would otherwise be an enormous
formula:

∏
i ψi(xi) means that we have to take the product of the functions ψi(xi)

for each possible pixel location i (in this case, that would be a product of 307200
factors). Similarly,

∏
{i,j} ψij(xi, xj) means that we have to take the product of

the functions ψij(xi, xj) for each possible pair of neighboring pixels i and j (which
would be a product of 613280 factors). As an example, if we would have images
consisting of 3 pixels in one row (with labels i, j, k), writing out equation (1.3)
would give:

P(xi, xj , xk) =
1
Z

(
ψi(xi)ψj(xj)ψk(xk)

)(
ψij(xi, xj)ψjk(xj , xk)

)
. (1.4)

Obviously, I will not write out equation (1.3) for the larger images considered here,
because that would just be a waste of paper; instead, please use your imagination.
Graphical representations of the Markov random field defined in equation (1.3)
are given in figure 1.5 for two cases, the first being the example of 3 pixels on a
row, the second a slightly larger image of 5 × 5 pixels. The nodes in the graphs
(represented as circles) correspond to random variables and the edges (represented
as lines connecting the circles) correspond to the compatibility functions.

The constant Z is the normalization constant, which ensures that the function
P({xi}) is actually a probability distribution: if we add the values of P({xi}) for all
possible configurations of {xi}, i.e., for all possible background/foreground assign-
ments (which is an enormous number of terms, namely 2307200; imagine how large
this number is by comparing the values in table 1.2), we should obtain 1. For the

8Compare this with the Asia network, where the complete probability distribution was a func-

tion of only 8 random variables.
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xi xj xk

ψi ψj ψk

ψ{i,j} ψ{j,k}

Figure 1.5: Examples of Markov random fields. Left: corresponding with three pixels on

a row, labeled i, j and k. Right: corresponding with an image of 5× 5 pixels.

simple example of images consisting of only 3 pixels on a row, this means that∑
xi=±1

∑
xj=±1

∑
xk=±1

P(xi, xj , xk) =

= P(xi = 1, xj = 1, xk = 1) + P(xi = 1, xj = 1, xk = −1)

+ P(xi = 1, xj = −1, xk = 1) + P(xi = 1, xj = −1, xk = −1)

+ P(xi = −1, xj = 1, xk = 1) + P(xi = −1, xj = 1, xk = −1)

+ P(xi = −1, xj = −1, xk = 1) + P(xi = −1, xj = −1, xk = −1)

= 1.

Using equation (1.4) for each of the eight terms in this sum, we obtain an equation
for Z, which can be solved for the value of the normalization constant Z. A similar,
but much longer equation, can be used in principle (but not in practice) to calculate
the value of Z for the 640× 480 images that we are interested in.

We still have to specify which functions ψi(xi) and ψij(xi, xj) we will use. For
the “local evidence” functions, we use

ψi(xi) = exp
(
xi θ tanh

di − c
w

)
This function is shown in figure 1.6 for three different choices of the parameters θ
and w. The parameter θ determines the height of the curves, whereas the parameter
w determines how steep the curves are. Note that ψi(xi = 1) is large if di is larger
than the threshold c (i.e., if the difference between input and reference image at
location i is larger than the threshold) and small if di is smaller than the threshold c;
for ψi(xi = −1), the opposite is true. This means that the contribution of the local
evidence function to the joint probability is as discussed before: a larger difference
between input and reference image at location i increases the probability that xi = 1
(and at the same time, decreases the probability that xi = −1).
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Figure 1.6: Local evidence functions ψi(xi), as a function of di − c, the difference of di
with the threshold c. Left: θ = 1, w = 25; center: θ = 1, w = 100; right: θ = 2, w = 100.

The parameter θ determines the height of the curves, the parameter w the steepness.

Let i and j be the locations of two neighboring pixels. For the compatibility
factor ψij(xi, xj), we use

ψij(xi, xj) = exp
(
Jxixj

)
,

where J > 0 is a parameter that describes how “compatible” pixels i and j are.
The compatibility factor is large if xi = xj and small if xi 6= xj . The larger J ,
the larger the difference between those two values. In other words, the parameter
J determines how much the neighboring locations i and j influence each other
regarding their values of xi and xj . If J is large, then it will be highly unlikely that
xi differs from xj , which will result in a larger probability for configurations having
large contiguous pieces of foreground and background.

For the readers with less mathematical background, the discussion above may be
difficult to understand. The important point is that we have constructed a proba-
bility distribution that describes the probability that each pixel is either foreground
or background (based on the input and reference image and a few parameters that
can be adjusted to obtain optimal results), which satisfies our two desiderata: (i)
the larger the difference between input and reference image at some location, the
larger the probability that the input image at that location is actually part of the
foreground; (ii) neighboring pixels influence each other, i.e., if the neighborhood of
some pixel is with high probability part of the foreground, then the probability that
the pixel itself is part of the foreground should increase.

In theory, we could now, for each pixel i, calculate the probability P(xi = 1)
that the pixel is part of the foreground, according to the probability distribution in
(1.3), by multiplying the 307200 local evidence factors and the 613280 compatibility
factors together, and summing over all the configurations of the random variables
that we are not interested in (i.e., all configurations of the xj for j 6= i). However,
this sum consists of 2307200−1 terms and it is a completely hopeless task to calculate
the value of this sum. We have again encountered the computational complexity
explosion that occurs in probability distributions that depend on a large number
of random variables.9 Thus, while we have solved the problem in theory by con-

9Actually, by repeatedly applying the distributive law (which says that a(b+ c) = ab+ac), one



Chapter 1. Introduction 15

Figure 1.7: Top left: result of applying the approximation method Belief Propagation to

the probability distribution in equation (1.3), using J = 3, θ = 3.5, w = 40 and c = 20. Top

right: the corresponding filtered input image, where the background has been removed.

Bottom left: simple threshold image for comparison. Bottom right: result of a different

approximation method (Mean Field), which is not as good as the Belief Propagation result.

structing a probability distribution that can be used to calculate for each pixel the
probability that it is either foreground or background, it is not possible to do these
calculations exactly within a reasonable amount of time (using hardware currently
available).

However, we can calculate approximations to the probabilities P(xi = 1) using
approximation techniques that have been developed for this purpose. These approx-
imation techniques will not yield the exact probabilities according to the probability
distribution we constructed, but can give reasonable approximations within a rea-
sonable amount of time. We have applied one such approximation technique, called
Belief Propagation, and shown the result in figure 1.7. Although it is an approx-
imation, it is clearly a much better approximation to the truth than the one we
obtained by the fast local thresholding technique discussed earlier. Note that our

can greatly reduce the computational complexity in this case, reducing it to a sum of “only” 2960

terms. Although this is an enormous reduction, it is still impossible to calculate that sum within

a reasonable amount of time with current technology.
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probability distribution has correctly filled in the missing spots in the body, apart
from one hole in the hair. It has also correctly removed the noise in the background,
apart from two remaining regions (which are actually shades and reflections caused
by the human body). In the incorrectly classified hair region, the reference image
and the input image turn out to be almost indistinguishable. A human that does
the foreground classification task will probably decide that this region also belongs
to the foreground, based on his knowledge about how haircuts are supposed to look.
However, our probability distribution does not know anything about haircuts; it has
made the decision purely by looking at the difference of the intensities of the input
and reference images in that region, and thus we can understand why it makes an
error in that region.

1.1.4 Summary

Graphical models are used and studied in various applied statistical and computa-
tional fields, e.g., machine learning and artificial intelligence, computational biology,
statistical signal/image processing, communication and information theory, and sta-
tistical physics. We have seen two examples (one from medical diagnosis, the other
from image processing) in which graphical models can be used to model real world
problems. A fundamental technical problem that we encountered is the explosion
of the computational complexity when the number of random variables increases.
We have seen that in some cases, the exact calculation of probabilities of interest
is still possible, whereas in other cases, it is completely hopeless. In the latter
cases, one can instead use approximation methods to calculate approximations to
the probabilities of interest. If the approximations are accurate enough and can
be obtained within a reasonable amount of time, this is a viable alternative to the
exact calculation.

Over the last century, researchers have developed many different approximation
methods, each with their own characteristics of accuracy and computation time.
One of the most elementary yet successful approximation methods (not in the least
place because it is a very fast method), is Belief Propagation. This is the approxi-
mation method that we have applied to solve our image processing problem in the
last example. Belief Propagation is the object of further study in the rest of this
thesis. Although it has been applied in many different situations, sometimes with
spectacular success, the theoretical understanding of its accuracy and the compu-
tation time it needs was not very well developed when I started working on this
research topic four years ago. It was not fully understood in what circumstances
Belief Propagation would actually yield an approximation, how much computation
time would be needed to calculate the approximation, and how accurate the ap-
proximation would be. The results of my research, reported in the next chapters of
this thesis, can be very briefly summarized as contributing better answers to these
questions, a deeper understanding of the Belief Propagation method, as well as a
way to improve the accuracy of the Belief Propagation approximation.
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1.2 A less gentle introduction to Belief Propaga-

tion

We continue this introduction by giving more formal definitions of the concepts in-
troduced in the previous section. This requires a stronger mathematical background
of the reader.

A (probabilistic) graphical model is a convenient representation in terms of a
graph of the dependency relations between random variables. The qualitative in-
formation provided by the graph, together with quantitative information about
these dependencies, forms a modular specification of the joint distribution of the
random variables. From a slightly different point of view, the graph represents a
factorization of the joint distribution in terms of factors that depend only on local
subsets of random variables. The structure of this factorization can be exploited to
improve the efficiency of calculations of expectation values and marginals of the joint
distribution or as a basis for calculating approximations of quantities of interest.

The class of graphical models can be subdivided into directed and undirected
graphical models. Directed graphical models are also known as Bayesian networks,
belief networks, causal networks or influence diagrams. We have seen an example
of a Bayesian network in subsection 1.1.1, the Asia network. The subclass of
undirected graphical models can be subdivided again into Markov random fields
(also called Markov networks) and factor graphs. We have seen an example of a
Markov random field (the probability distribution corresponding to the foreground
classification task) in subsection 1.1.3.

We will repeatedly use the following notational conventions. Let N ∈ N∗ and
V := {1, 2, . . . , N}. Let (xi)i∈V be a family of N discrete random variables, where
each variable xi takes values in a discrete domain Xi. In this thesis, we focus on
the case of discrete variables for simplicity; it may be possible to generalize our
results towards the case of continuous random variables. We will frequently use the
following multi-index notation: let A = {i1, i2, . . . , im} ⊆ V with i1 < i2 < · · · < im;
we write XA := Xi1×Xi2×· · ·×Xim and for any family10 (Yi)i∈B withA ⊆ B ⊆ V, we
write YA := (Yi1 , Yi2 , . . . , Yim). For example, x{5,3} = (x3, x5) ∈ X{5,3} = X3 ×X5.

1.2.1 Bayesian networks

A directed graph G = (V,D) is a pair of vertices (nodes) V and directed edges
D ⊆ {(i, j) : i, j ∈ V, i 6= j}. A directed path in G is a sequence of nodes (it)Tt=1

such that (it, it+1) ∈ D for each t = 1, . . . , T −1; if i1 = iT then the directed path is
called a directed cycle. A directed acyclic graph G = (V,D) is a directed graph with
no directed cycles, i.e., there is no (nonempty) directed path in G that starts and

10Note the difference between a family and a set : a family (Yi)i∈B is a mapping from some set

B to another set which contains {Yi : i ∈ B}. We use families as the generalization to arbitrary

index sets of (ordered) n-tuples, and sets if the ordering or the number of occurrences of each

element is unimportant.
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ends at the same vertex. For i ∈ V, we define the set par(i) of parent nodes of i to
be the set of nodes that point directly towards i, i.e., par(i) := {j ∈ V : (j, i) ∈ D}.

A Bayesian network consists of a directed acyclic graph G = (V,D) and a
family (Pi)i∈V of (conditional) probability distributions, one for each vertex in V.
Each vertex i ∈ V represents a random variable xi which takes values in a finite
set Xi. If par(i) = ∅, then Pi is a probability distribution for xi; otherwise, Pi
is a conditional probability distribution for xi given xpar(i). The joint probability
distribution represented by the Bayesian network is the product of all the probability
distributions (Pi)i∈V :

P(xV) =
∏
i∈V

Pi(xi |xpar(i)). (1.5)

where Pi(xi |xpar(i)) = Pi(xi) if par(i) = ∅.

Causal networks

A Bayesian network describes conditional independencies of a set of random vari-
ables, not necessarily their causal relations. However, causal relations can be mod-
eled by the closely related causal Bayesian network. The additional semantics of
the causal Bayesian network specify that if a random variable xi is actively caused
to be in a state ξ (an operation written as “do(xi = ξ)”), then the probability
distribution changes to the one of the Bayesian network obtained by cutting the
edges from par(i) to i, and setting xi to the caused value ξ [Pearl, 2000], i.e., by
defining Pi(xi) = δξ(xi). Note that this is very different from observing that xi is
in some state ξ; the latter is modeled by conditioning on xi = ξ, i.e., by calculating

P(xV |xi = ξ) =
P(xV , xi = ξ)

P(xi = ξ)
.

1.2.2 Markov random fields

An undirected graph is a pair G = (V, E) consisting of a set of nodes V and a set
of undirected edges E ⊆ {{i, j} : i, j ∈ V, i 6= j}. A clique of G is a subset C ⊆ V
that is fully connected in G, i.e., {i, j} ∈ E for all i, j ∈ C with i 6= j. A clique is
maximal if it is not a strict subset of another clique.

A Markov random field (or Markov network) consists of an undirected graph G =
(V, E) and a family of potential functions (also called factors or clique potentials)
(ψI)I∈C , where C is the set of all maximal cliques of the graph G. Each vertex i ∈ V
represents a random variable xi which takes values in the finite set Xi and each edge
{i, j} ∈ E represents an “interaction” between the random variables xi and xj . The
potential functions are nonnegative functions ψI : XI → [0,∞) that depend on the
random variables in the clique I ∈ C. The joint probability distribution represented
by the Markov random field is given by:

P(xV) =
1
Z

∏
I∈C

ψI(xI)
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where xI is the state of the random variables in the clique I, and the normalizing
constant Z (also called partition function) is defined as

Z =
∑

xV∈XV

∏
I∈C

ψI(xI).

An example of a Markov random field that is studied in statistical physics is the
Ising model.

1.2.3 Factor graphs

Both Bayesian networks and Markov random fields can be represented in a unifying
representation, called factor graph [Kschischang et al., 2001]. Factor graphs explic-
itly express the factorization structure of the corresponding probability distribution.

We consider a probability distribution over xV ∈ XV that can be written as a
product of factors (ψI)I∈F :

P(xV) =
1
Z

∏
I∈F

ψI(xNI ), Z =
∑
x∈XV

∏
I∈F

ψI(xNI ). (1.6)

For each factor index I ∈ F , there is an associated subset NI ⊆ V of variable indices
and the factor ψI is a nonnegative function ψI : XNI → [0,∞). For a Bayesian
network, each factor corresponds to a (conditional) probability table, whereas for a
Markov random field, each factor corresponds to a maximal clique of the undirected
graph.

We can represent the structure of the probability distribution (1.6) using a factor
graph (V,F , E). This is a bipartite graph, consisting of variable nodes i ∈ V, factor
nodes I ∈ F , and an undirected edge {i, I} between i ∈ V and I ∈ F if and only
if i ∈ NI , i.e., if ψI depends on xi. We will represent factor nodes visually as
rectangles and variable nodes as circles. Examples of factor graphs, corresponding
to the Asia network in figure 1.1 and the Markov random fields in figure 1.5 are
shown in figure 1.8.

It is trivial to represent a Bayesian network or a Markov random field as a factor
graph, and also trivial to represent a factor graph as a Markov random field, but it
is less trivial to represent a factor graph as a Bayesian network. In this thesis, we
will regard Bayesian networks and Markov random fields as special cases of factor
graphs.

The neighbors of a factor node I ∈ F are precisely the variables NI , and the
neighbors Ni of a variable node i ∈ V are the factors that depend on that variable,
i.e., Ni := {I ∈ F : i ∈ NI}. Further, we define for each variable i ∈ V the set
∆i :=

⋃
I∈Ni NI consisting of all variables that appear in some factor in which

variable i participates, and the set ∂i := ∆i \ {i}, the Markov blanket of i. For
J ⊆ V \∆i, xi is conditionally independent of xJ given the Markov blanket x∂i of
i:

P(xi |xJ , x∂i) = P(xi |x∂i) for J ⊆ V \∆i.
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Figure 1.8: Examples of factor graphs, corresponding with the Bayesian network in figure

1.1 and the two Markov random fields in figure 1.5.

We will generally use uppercase letters for indices of factors (I, J,K, . . . ∈ F) and
lowercase letters for indices of variables (i, j, k, . . . ∈ V).

1.2.4 Inference in graphical models

In this thesis, we will define inference in a graphical model to be the task of cal-
culating marginal probabilities of subsets of random variables, possibly conditional
on observed values of another subset of random variables. This can be done exactly
(exact inference) or in an approximate way (approximate inference). Another in-
ference task that is often considered is to calculate the MAP state, i.e., the joint
assignment of a subset of random variables which has the largest probability (possi-
bly conditional on observed values of another subset of random variables). We focus
on the first inference problem, i.e., the approximation of marginal probabilities.

In general, the normalizing constant Z in (1.6) (also called partition function)
is not known and exact computation of Z is infeasible, due to the fact that the
number of terms to be summed is exponential in N . Similarly, computing marginal
distributions P(xJ) of P(xV) for subsets of variables J ⊆ V is known to be NP-hard
[Cooper, 1990]. Furthermore, approximate inference within given error bounds is
NP-hard [Dagum and Luby, 1993; Roth, 1996]. Because of the many applications
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in which inference plays a role, the development and understanding of approximate
inference methods is thus an important topic of research.

1.2.5 Belief Propagation: an approximate inference method

Belief Propagation (BP) is a popular algorithm for approximate inference that has
been reinvented many times in different fields. It is also known as Loopy Belief
Propagation (where the adjective “loopy” is used to emphasize that it is used on
a graphical model with cycles), the Sum-Product Algorithm and the Bethe-Peierls
approximation. In artificial intelligence, it is commonly attributed to Pearl [1988].
In the context of error-correcting (LDPC) codes, it was already proposed by Gal-
lager [1963]. The earliest description of Belief Propagation in the statistical physics
literature known to the author is [Nakanishi, 1981] (for the special case of a binary,
pairwise Markov random field). A few years ago it became clear [Yedidia et al.,
2001] that the BP algorithm is strongly related to the Bethe-Peierls approxima-
tion, which was invented originally in statistical mechanics [Bethe, 1935; Peierls,
1936]; this discovery led to a renewed interest in Belief Propagation and related
inference methods. We will henceforth use the acronym “BP” since it can be inter-
preted as being an abbreviation for either “Belief Propagation” or “Bethe-Peierls
approximation”.

BP calculates approximations to the factor marginals (P(xI))I∈F and the vari-
able marginals (P(xi))i∈V of the probability distribution (1.6) of a factor graph
[Kschischang et al., 2001; Yedidia et al., 2005]. The calculation is done by message-
passing on the factor graph. Each node passes messages to its neighbors: variable
nodes pass messages to factor nodes and factor nodes pass messages to variable
nodes. The outgoing messages are functions of the incoming messages at each node.
This iterative process is repeated using some schedule that describes the sequence
of message updates in time. This process can either converge to some fixed point
or go on ad infinitum. If BP converges, the approximate marginals (called beliefs)
can be calculated from the fixed point messages.

For the factor graph formulation of BP (see also figure 1.9), it is convenient to
discriminate between two types of messages: messages µI→i : Xi → [0,∞) sent from
factors I ∈ F to neighboring variables i ∈ NI and messages µi→I : Xi → [0,∞)
from variables i ∈ V to neighboring factors I ∈ Ni. The messages that are sent by
a node depend on the incoming messages; the new messages, designated by µ′, are
given in terms of the incoming messages by the following BP update equations:

µ′j→I(xj) ∝
∏

J∈Nj\I
µJ→j(xj) ∀j ∈ V, ∀I ∈ Nj , (1.7)

µ′I→i(xi) ∝
∑
xNI\i

ψI(xNI )
∏

j∈NI\i
µj→I(xj) ∀I ∈ F , ∀i ∈ NI . (1.8)

Usually, one normalizes the messages such that
∑
xi∈Xi µ(xi) = 1. This is only done
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Figure 1.9: Part of the factor graph illustrating the BP update rules (1.7) and (1.8). The

factor nodes I, J,K ∈ F are drawn as rectangles, the variable nodes i, j, k, l ∈ V as circles.

Note that Nj \ I = {J,K} and NI \ i = {j, k, l}.

for numerical stability reasons; in fact, the final results are invariant under rescaling
each message with an arbitrary positive scale factor.

Alternatively, we can use the following update equations, which are formulated
in terms of only the messages sent from factors to variables:

µ′I→i(xi) ∝
∑
xNI\i

ψI(xNI )
∏

j∈NI\i

∏
J∈Nj\I

µJ→j(xj) ∀I ∈ F , ∀i ∈ NI . (1.9)

This equation is obtained by substituting (1.7) into (1.8).
The initial messages at t = 0 are often taken to be uniform, i.e.,

µ
(0)
I→i(xi) ∝ 1 ∀I ∈ F , ∀i ∈ NI .

There is some freedom of choice in the ordering of the message updates. For I ∈ F
and i ∈ NI , we also write I → i for the directed edge (I, i). Let D := {(I, i) :
I ∈ F , i ∈ NI}. With an update schedule we mean a particular ordering of the BP
update equations in time. Formally, an update schedule is a pair (e, τ), where e is
a (possibly random) sequence of edges (et)t∈N with et ∈ D for all t ∈ N and τ is a
sequence of functions (τt)t∈N where each τt is a function D → {0, 1, 2, . . . , t}. The
BP algorithm according to the update schedule (e, τ) is specified by the following
update of the messages µ(t) at time t to the new messages µ(t+1) at time t:

µ(t+1)
e =

{
µ′e
(
(µ(τt(d))
d )d∈D

)
if e = et

µ
(t)
e if e 6= et

i.e., only the message on edge et is updated using the update rule (1.9), using as
input the messages at previous times τt(d). Some update schedules that are often
used are:
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• Parallel updates: calculate all new messages as a function of the current
messages and then simultaneously set all messages to their new values.

• Sequential updates in fixed order : determine some fixed linear ordering of D
and update in that order, using the most recent messages available for each
update.

• Sequential updates in random order : before doing a batch of #(D) message
updates, construct a new random linear ordering of D and update the next
batch in that order, using the most recent messages available for each indi-
vidual update.

• Random updates: at each timestep t, draw a random element from D and
update the corresponding message, using the most recent messages available.

• Maximum residual updating [Elidan et al., 2006]: calculate all residuals, i.e.,
the differences between the updated and current messages, and update only
the message with the largest residual (according to some measure). Then, only
the residuals that depend on the updated message need to be recalculated and
the process repeats.

If the messages converge to some fixed point µ(∞), the approximate marginals,
often called beliefs, are calculated as follows:

P(xi) ≈ bi(xi) ∝
∏
I∈Ni

µ
(∞)
I→i(xi) ∀i ∈ V,

P(xI) ≈ bI(xI) ∝ ψI(xNI )
∏
i∈I

µ
(∞)
i→I(xi) ∀I ∈ F .

The beliefs are normalized such that∑
xi∈Xi

bi(xi) = 1 ∀i ∈ V,
∑
xI∈XI

bI(xI) = 1 ∀I ∈ F .

If the factor graph is acyclic, i.e., it contains no loops, then BP with any reasonable
update schedule will converge towards a unique fixed point within a finite number
of iterations and the beliefs can be shown to be exact. However, if the factor
graph contains cycles, then the BP marginals are only approximations to the exact
marginals; in some cases, these approximations can be surprisingly accurate, in
other cases, they can be highly inaccurate.

A fixed point µ(∞) always exists if all factors are strictly positive [Yedidia et al.,
2005]. However, the existence of a fixed point does not necessarily imply convergence
towards the fixed point. Indeed, fixed points may be unstable, and there may be
multiple fixed points (corresponding to different final beliefs).

If BP does not converge, one can try to damp the message updates as a possible
remedy. The new message is then a convex combination of the old and the updated
message, either according to:

µ
(t+1)
d = εµ

(t)
d + (1− ε)µ′d d ∈ D,
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or in the logarithmic domain:

logµ(t+1)
d = ε logµ(t)

d + (1− ε) logµ′d d ∈ D,

for some ε ∈ [0, 1).
Other methods that can be applied if BP does not converge (or converges too

slowly) are double-loop methods [Yuille, 2002; Heskes et al., 2003; Heskes, 2006].
Yedidia et al. [2001] showed that fixed points of BP correspond to stationary points
of the Bethe free energy. The double-loop methods exploit this correspondence
by directly minimizing the Bethe free energy. The corresponding non-convex con-
strained minimization problem can be solved by performing a sequence of convex
constrained minimizations of upper bounds on the Bethe free energy. In this way,
the method is guaranteed to converge to a minimum of the Bethe free energy, which
corresponds with a BP fixed point.

1.2.6 Related approximate inference algorithms

BP can be regarded as the most elementary one in a family of related algorithms,
consisting of

• the Max-Product algorithm [Weiss and Freeman, 2001], a zero temperature
version of BP;

• Generalized Belief Propagation (GBP) [Yedidia et al., 2005] and the Cluster
Variation Method (CVM) [Pelizzola, 2005], where variables are clustered in
“regions” or “clusters” in order to increase accuracy;

• Double-loop algorithms [Yuille, 2002; Heskes et al., 2003; Heskes, 2006], where
the inner loop is equivalent to GBP;

• Expectation Propagation (EP) [Minka, 2001; Welling et al., 2005] and the
Expectation Consistent (EC) approximation [Opper and Winter, 2005], which
can be regarded as generalizations of BP [Heskes et al., 2005];

• Survey Propagation (SP) [Braunstein and Zecchina, 2004; Braunstein et al.,
2005], which turned out to be equivalent to a special case of the BP algorithm;

• Fractional Belief Propagation [Wiegerinck and Heskes, 2003].

A good theoretical understanding of BP may therefore be beneficial to understand-
ing these other algorithms as well. In this thesis, we focus on BP because of its
simplicity and its successes in solving nontrivial problems.

1.2.7 Applications of Belief Propagation

We have given two examples of situations where approximate inference can be used
to solve real world problems. In recent years, mainly due to increased computational
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power, the number of applications of approximate inference methods has seen an
enormous growth. To convey some sense of the diversity of these applications, we
provide a few references to a small subset of these applications (found by searching
on the internet for scientific articles reporting the application of Belief Propagation).

Many applications can be found in vision and image processing. Indeed, BP
has been applied to stereo vision [Felzenszwalb and Huttenlocher, 2004, 2006; Sun
et al., 2003; Tappen and Freeman, 2003], super-resolution [Freeman et al., 2000,
2002; Gupta et al., 2005], shape matching [Coughlan and Ferreira, 2002; Cough-
lan and Shen, 2004], image reconstruction [Felzenszwalb and Huttenlocher, 2006;
Tanaka, 2002], inference of human upper body motion [Gao and Shi, 2004], pa-
naroma generation [Brunton and Shu, 2006], surface reconstruction [Petrovic et al.,
2001], skin detection [Zheng et al., 2004], hand tracking [Sudderth et al., 2004],
inferring facial components [Sudderth et al., 2003], and unwrapping phase images
[Frey et al., 2002]. Very successful applications can also be found in error correct-
ing codes, e.g., Turbo Codes [McEliece et al., 1998] and Low Density Parity Check
codes [Gallager, 1963; Frey and MacKay, 1997]. In combinatorial optimization, in
particular satisfiability and graph coloring, an algorithm called Survey Propaga-
tion recently redefined the state-of-the-art [Mézard and Zecchina, 2002; Braunstein
et al., 2005]. Later it was discovered that it was actually equivalent to a special
case of BP [Braunstein and Zecchina, 2004]. BP has been applied for diagnosis, for
example in medical diagnosis [Murphy et al., 1999; Wemmenhove et al., 2007]. In
computer science, it was suggested as a natural algorithm in sensor networks [Ihler
et al., 2005c; Crick and Pfeffer, 2003], for data cleaning [Chu et al., 2005] and for
content distribution in peer-to-peer networks [Bickson et al., 2006]. In biology, it
has been used to predict protein folding [Kamisetty et al., 2006]. Finally, conform
the latest fashions, BP has even been used for solving Sudokus [Dangauthier, 2006].

1.3 Outline of this thesis

In this section, we briefly motivate the research questions addressed in this thesis
and summarize the results obtained in later chapters.

In practice, there are at least three important issues when applying BP to con-
crete problems: (i) it is usually not known a priori whether BP will converge and
how many iterations are needed; (ii) if BP converges, it is not known how large the
error of the resulting approximate marginals is; (iii) if the error is too large for the
application, can the error be reduced in some way?

The issues of convergence and accuracy may actually be interrelated: the “folk-
lore” is that convergence difficulties of BP often indicate low quality of the corre-
sponding Bethe approximation. This would imply that the pragmatic solution for
the convergence problem (forcing BP to converge by means of damping, the use of
other update schemes or applying double-loop methods) would yield low quality re-
sults. Furthermore, if we could quantify the relation between error and convergence
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rate, this might yield a practical way of estimating the error from the observed rate
of convergence.

For the case of a graphical model with a single loop, these questions have been
solved by Weiss [2000]. However, it has turned out to be difficult to generalize
that work to factor graphs with more than one loop. Significant progress has been
made in recent years regarding the question under what conditions BP converges
[Tatikonda and Jordan, 2002; Tatikonda, 2003; Ihler et al., 2005b,a], on the unique-
ness of fixed points [Heskes, 2004], and on the accuracy of the marginals [Tatikonda,
2003; Taga and Mase, 2006a], but the theoretical understanding was (and is) still
incomplete. Further, even though many methods have been proposed in recent
years to reduce the error of BP marginals, these methods are all in some sense
“local” (although more global than BP). We felt that it should be possible to take
into account longer loops in the factor graph (which may be important when the
interactions along those loops are strong), instead of only taking into account short
loops (as usually done with GBP).

These questions have been the motivation for the research reported in the next
chapters. We finish this introductory chapter with a short summary of all the
following chapters.

Convergence of BP

In chapter 2, we study the question of convergence and uniqueness of the fixed point
for parallel, undamped BP. We derive novel conditions that guarantee convergence
of BP to a unique fixed point, irrespective of the initial messages. The conditions
are applicable to arbitrary factor graphs with discrete variables and factors that
contain zeros. For the special case of binary variables with pairwise interactions,
we derive stronger results that take into account single-variable factors and the type
of pairwise interactions (attractive, mixed or repulsive). We show empirically that
these bounds improve upon existing bounds.

Phase transitions and BP

While we focussed on undamped parallel BP in chapter 2, in the next chapter, we
investigate the influence of damping and the use of alternative update schemes. We
focus on the special case of binary variables with pairwise interactions and zero
local fields in the interest of simplicity. Whereas in the previous chapter we studied
the global (“uniform”) convergence properties of BP, in chapter 3 we analyze the
local stability of the “high-temperature” fixed point of BP.11 Further, we investigate
the relationship between the properties of this fixed point and the properties of the
corresponding stationary point of the Bethe free energy.

11If the interactions are weak enough, BP has a unique fixed point. In statistical physics, weak

interactions correspond to high temperatures. Therefore, we call this particular fixed point the

high-temperature BP fixed point.
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We distinguish three cases for the interactions: ferromagnetic (attractive), an-
tiferromagnetic (repulsive) and spin-glass (mixed). We prove that the convergence
conditions for undamped, parallel BP derived in chapter 2 are sharp in the ferro-
magnetic case. Also, the use of damping would only slow down convergence to the
high-temperature fixed point. In contrast, in the antiferromagnetic case, the use
of damping or sequential updates significantly improves the range of instances on
which BP converges. In the spin-glass case, we observe that damping only slightly
improves convergence of BP.

Further, we show how one can estimate analytically the temperature (interaction
strength) at which the high-temperature BP fixed point becomes unstable for ran-
dom graphs with arbitrary degree distributions and random interactions, extending
the worst-case results with some average-case results. The results we obtain are
in agreement with the results of the replica method from statistical physics. This
provides a link between statistical physics and the properties of the BP algorithm.
In particular, it leads to the conclusion that the behavior of BP is closely related
to the phase transitions in the underlying graphical model.

Reducing the BP error

In the fourth chapter, we show how the accuracy of BP can be improved by taking
into account the influence of loops in the graphical model. Extending a method
proposed by Montanari and Rizzo [2005], we propose a novel way of generalizing
the BP update equations by dropping the basic BP assumption of independence of
incoming messages. We call this method the Loop Correction (LC) method.

The basic idea behind the Loop Correction method is the following. A cavity
distribution of some variable in a graphical model is the probability distribution on
its Markov blanket for a modified graphical model, in which all factors involving that
variable have been removed, thereby breaking all the loops involving that variable.
The Loop Correction method consists of two steps: first, the cavity distributions of
all variables are estimated (using some approximate inference method), and second,
these initial estimates are improved by a message-passing algorithm, which reduces
the errors in the estimated cavity distributions.

If the initial cavity approximations are taken to be uniform (or completely fac-
torized) distributions, the Loop Correction algorithm reduces to the BP algorithm.
In that sense, it can be considered to be a generalization of BP. On the other
hand, if the initial cavity approximations contain the effective interactions between
variables in the cavity, application of the Loop Correction method usually gives
significantly better results than the original (uncorrected) approximate inference
algorithm used to estimate the cavity approximations. Indeed, we often observe
that the loop-corrected error is approximately the square of the error of the uncor-
rected approximate inference method.

We report the results of an extensive experimental comparison of various ap-
proximate inference methods on a variety of graphical models, including real world



28 Chapter 1

networks. We conclude that the LC method obtains the most accurate results in
general, at the cost of significantly increased computation time compared to BP.

Bounds on marginal probabilities

In the final chapter, we further develop some of the ideas that arose out of the
convergence analysis in chapter 2 and the cavity interpretation in chapter 4. From
chapter 2, we take the idea of studying how the distance between two different
message vectors (for the same factor graph) evolves during BP iterations. From
chapter 4, we take the cavity interpretation that relates the exact marginals to the
BP marginals. The key insight exploited in chapter 5 is that by combining and
extending these ideas, it is possible to derive rigorous bounds on the exact single-
variable marginals. By construction, the same bounds also apply to the BP beliefs.
We also derive a related method that propagates bounds over a “self-avoiding-walk
tree”, inspired by recent results of Ihler [2007]. We show empirically that our bounds
often outperform existing bounds in terms of accuracy and/or computation time.
We apply the bounds on factor graphs arising in a medical diagnosis application
and show that the bounds can yield nontrivial results.
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Chapter 2

Sufficient conditions for

convergence of BP

We derive novel conditions that guarantee convergence of Belief Propagation (BP) to

a unique fixed point, irrespective of the initial messages, for parallel (synchronous)

updates. The computational complexity of the conditions is polynomial in the

number of variables. In contrast with previously existing conditions, our results

are directly applicable to arbitrary factor graphs (with discrete variables) and are

shown to be valid also in the case of factors containing zeros, under some additional

conditions. We compare our bounds with existing ones, numerically and, if possible,

analytically. For binary variables with pairwise interactions, we derive sufficient

conditions that take into account local evidence (i.e., single-variable factors) and

the type of pairwise interactions (attractive or repulsive). It is shown empirically

that this bound outperforms existing bounds.

2.1 Introduction

Belief Propagation [Pearl, 1988; Kschischang et al., 2001], also known as “Loopy
Belief Propagation” and as the “Sum-Product Algorithm”, which we will henceforth
abbreviate as BP, is a popular algorithm for approximate inference in graphical mod-
els. Applications can be found in diverse areas such as error correcting codes (iter-
ative channel decoding algorithms for Turbo Codes and Low Density Parity Check
Codes [McEliece et al., 1998]), combinatorial optimization (satisfiability problems
such as 3-SAT and graph coloring [Braunstein and Zecchina, 2004]) and computer
vision (stereo matching [Sun et al., 2003] and image restoration [Tanaka, 2002]). BP

c©2007 IEEE. Reprinted, with permission, from [Mooij and Kappen, 2007b], which extends

[Mooij and Kappen, 2005b].
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can be regarded as the most elementary one in a family of related algorithms, con-
sisting of double-loop algorithms [Heskes et al., 2003], GBP [Yedidia et al., 2005], EP
[Minka, 2001], EC [Opper and Winter, 2005], the Max-Product Algorithm [Weiss
and Freeman, 2001], the Survey Propagation Algorithm [Braunstein and Zecchina,
2004; Braunstein et al., 2005] and Fractional BP [Wiegerinck and Heskes, 2003]. A
good understanding of BP may therefore be beneficial to understanding these other
algorithms as well.

In practice, there are two major obstacles in the application of BP to concrete
problems: (i) if BP converges, it is not clear whether the results are a good approx-
imation of the exact marginals; (ii) BP does not always converge, and in these cases
gives no approximations at all. These two issues might actually be interrelated: the
“folklore” is that failure of BP to converge often indicates low quality of the Bethe
approximation on which it is based. This would mean that if one has to “force” BP
to converge (e.g., by using damping or double-loop approaches), one may expect
the results to be of low quality.

Although BP is an old algorithm that has been reinvented in many fields, a
thorough theoretical understanding of the two aforementioned issues and their re-
lation is still lacking. Significant progress has been made in recent years regarding
the question under what conditions BP converges [Tatikonda and Jordan, 2002;
Tatikonda, 2003; Ihler et al., 2005b]1, on the uniqueness of fixed points [Heskes,
2004], and on the accuracy of the marginals [Tatikonda, 2003], but the theoretical
understanding is still incomplete. For the special case of a graphical model con-
sisting of a single loop, it has been shown that convergence rate and accuracy are
indeed related [Weiss, 2000].

In this work, we study the question of convergence of BP and derive new suffi-
cient conditions for BP to converge to a unique fixed point. Our results are more
general and in certain cases stronger than previously known sufficient conditions.

2.2 Background

To introduce our notation, we give a short treatment of factorizing probability
distributions, the corresponding visualizations called factor graphs, and the BP
algorithm on factor graphs. For an excellent, more extensive treatment of these
topics we refer the reader to [Kschischang et al., 2001].

2.2.1 Factor graphs

Consider N random variables xi for i ∈ V := {1, 2, . . . , N}, with xi taking values
in a finite set Xi. We will frequently use the following multi-index notation. Let

1After initial submission of this work, we came to the attention of [Ihler et al., 2005a], which

contains improved versions of results in [Ihler et al., 2005b], some of which are similar or identical

to results presented here (see also section 2.5.2).
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A = {i1, i2, . . . , im} ⊆ V with i1 < i2 < . . . im. We write XA := Xi1×Xi2×· · ·×Xim
and for any family (Yi)i∈B with A ⊆ B ⊆ V, we write YA := (Yi1 , Yi2 , . . . , Yim).

We are interested in the class of probability measures on XV that can be written
as a product of factors (also called potentials or interactions):

P(x1, . . . , xN ) :=
1
Z

∏
I∈F

ψI(xNI ). (2.1)

For each factor index I ∈ F , there is an associated subset NI ⊆ V of variable indices
and the factor ψI is a positive function2 ψI : XNI → (0,∞). Z is a normalizing con-
stant ensuring that

∑
xV∈XV P(xV) = 1. The class of probability measures described

by (2.1) contains Markov random fields as well as Bayesian networks. We will use
uppercase letters for indices of factors (I, J,K, . . . ∈ F) and lowercase letters for
indices of variables (i, j, k, . . . ∈ V).

The factor graph that corresponds to the probability distribution (2.1) is a bi-
partite graph with variable nodes i ∈ V, factor nodes I ∈ F and edges between
variable nodes and factor nodes; there is an edge between variable node i and factor
node I if and only if the factor ψI depends on the variable xi, i.e., if i ∈ NI . The
neighbors of a factor node I ∈ F are precisely the variables NI , and the neigh-
bors Ni of a variable node i ∈ V are the factors that depend on that variable, i.e.,
Ni := {I ∈ F : i ∈ NI}. For each variable node i ∈ V, we define the set of its
neighboring variable nodes by ∂i :=

(⋃
I∈Ni NI

) \ {i}, i.e., ∂i is the set of indices
of those variables that interact directly with xi.

2.2.2 Belief Propagation

Belief Propagation is an algorithm that calculates approximations to the marginals(
P(xNI )

)
I∈F and

(
P(xi)

)
i∈V of the probability measure (2.1). The calculation is

done by message-passing on the factor graph: each node passes messages to its
neighbors (see also figure 2.1). One usually discriminates between two types of
messages: messages µI→i(xi) from factors to variables and messages µi→I(xi) from
variables to factors (where i ∈ V, I ∈ Ni). Both messages are positive functions on
Xi, or, equivalently, vectors in RXi (with positive components). The messages that
are sent by a node depend on the incoming messages; the new messages, designated
by µ′, are given in terms of the incoming messages by the following BP update
rules:3

µ′j→I(xj) ∝
∏

J∈Nj\I
µJ→j(xj) ∀j ∈ V, ∀I ∈ Nj ; (2.2)

µ′I→i(xi) ∝
∑
xNI\i

ψI(xNI )
∏

j∈NI\i
µj→I(xj) ∀I ∈ F , ∀i ∈ NI . (2.3)

2In subsection 2.4.5 we will loosen this assumption and allow for factors containing zeros.
3We abuse notation slightly by writing X \ x instead of X \ {x} for sets X.
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J

J ′

µJ→j

µJ′→j

j
µj→I

I
µI→i

i

j′

µj′→I

j′′

µj′′→I

Figure 2.1: Part of the factor graph illustrating the BP update rules (2.2) and (2.3). The

factor nodes I, J, J ′ ∈ F are drawn as rectangles, the variable nodes i, j, j′, j′′ ∈ V as

circles. Note that Nj \ I = {J, J ′} and NI \ i = {j, j′, j′′}. Apart from the messages that

have been drawn, each edge also carries a message flowing in the opposite direction.

Usually, one normalizes the messages in the `1-sense, i.e., such that∑
xi∈Xi

µi→I(xi) = 1,
∑
xi∈Xi

µI→i(xi) = 1 ∀i ∈ V, ∀I ∈ Ni.

If all messages have converged to some fixed point µ(∞), one calculates the approx-
imate marginals, called beliefs, as follows:

bi(xi) ∝
∏
I∈Ni

µ
(∞)
I→i(xi) ≈ P(xi) ∀i ∈ V,

bI(xNI ) ∝ ψI(xNI )
∏
i∈NI

µ
(∞)
i→I(xi) ≈ P(xNI ) ∀I ∈ F ,

where the normalization is by definition in `1-sense. A fixed point always exists
if all factors are strictly positive [Yedidia et al., 2005]. However, the existence of
a fixed point does not necessarily imply convergence towards the fixed point, and
fixed points may be unstable.

Note that the beliefs are invariant under rescaling of the messages

µ
(∞)
I→i(xi) 7→ αI→iµ

(∞)
I→i(xi), µ

(∞)
i→I(xi) 7→ αi→Iµ

(∞)
i→I(xi)

for arbitrary positive constants α, which shows that the precise way of normalizing
the messages in (2.2) and (2.3) is irrelevant. For numerical stability however, some
way of normalization (not necessarily in `1-sense) is desired to ensure that the
messages stay in some compact domain.

In the following, we will formulate everything in terms of the messages µI→i(xi)
from factors to variables; the update equations are then obtained by substituting
(2.2) in (2.3):

µ′I→i(xi) = CI→i
∑
xNI\i

ψI(xNI )
∏

j∈NI\i

∏
J∈Nj\I

µJ→j(xj). (2.4)

with CI→i such that
∑
xi∈Xi µ

′
I→i(xi) = 1. We consider here BP with a parallel

update scheme, which means that all message updates (2.4) are done in parallel.
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2.3 Special case: binary variables with pairwise

interactions

In this section we investigate the simple case of binary variables (i.e., #(Xi) = 2
for all i ∈ V), and in addition we assume that all potentials consist of at most
two variables (“pairwise interactions”). Although this is a special case of the more
general theory to be presented later on, we start with this simple case because it
illustrates most of the underlying ideas without getting involved with the additional
technicalities of the general case.

We will assume that all variables are ±1-valued, i.e., Xi = {−1,+1} for all i ∈ V.
We take the factor index set as F = F1 ∪ F2 with F1 = V (the “local evidence”)
and F2 ⊆

{{i, j} : i, j ∈ V, i 6= j
}

(the “pair potentials”). The probability measure
(2.1) can then be written as

P(xV) =
1
Z

exp

 ∑
{i,j}∈F2

Jijxixj +
∑
i∈F1

θixi

 (2.5)

for some choice of the parameters Jij (“couplings”) and θi (“local fields”), with
ψi(xi) = exp(θixi) for i ∈ F1 and ψij(xi, xj) = exp(Jijxixj) for {i, j} ∈ F2.

Note from (2.4) that the messages sent from single-variable factors F1 to vari-
ables are constant. Thus the question whether messages converge can be decided by
studying only the messages sent from pair potentials F2 to variables. It turns out
to be advantageous to use the following “natural” parameterization of the messages
(often used in statistical physics):

tanh νi→j := µ{i,j}→j(xj = 1)− µ{i,j}→j(xj = −1), (2.6)

where νi→j ∈ R is now interpreted as a message sent from variable i to variable
j (instead of a message sent from the factor {i, j} to variable j). Note that in
the pairwise case, the product over j ∈ NI \ i in (2.4) becomes trivial. Some ele-
mentary algebraic manipulations show that the BP update equations (2.4) become
particularly simple in this parameterization: they can be written as

tanh(ν′i→j) = tanh(Jij) tanh

θi +
∑
t∈∂i\j

νt→i

 , (2.7)

where ∂i = {t ∈ V : {i, t} ∈ F2} are the variables that interact with i via a pair
potential.

Defining the set of ordered pairs D := {i → j : {i, j} ∈ F2}, we see that the
parallel BP update is a mapping f : RD → RD; (2.7) specifies the component(
f(ν)

)
i→j := ν′i→j in terms of the components of ν. Our goal is now to derive

sufficient conditions under which the mapping f is a contraction. For this we need
some elementary but powerful mathematical theorems.
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2.3.1 Normed spaces, contractions and bounds

In this subsection we introduce some (standard) notation and remind the reader
of some elementary but important properties of vector norms, matrix norms, con-
tractions and the Mean Value Theorem in arbitrary normed vector spaces, which
are the main mathematical ingredients for our basic tool, Lemma 2.3. The reader
familiar with these topics can skip this subsection and proceed directly to Lemma
2.3 in section 2.3.2.

Let (V, ‖·‖ ) be a normed finite-dimensional real vector space. Examples of
norms that will be important later on are the `1-norm on RN , defined by

‖x‖1 :=
N∑
i=1

|xi|

and the `∞-norm on RN , defined by

‖x‖∞ := max
i∈{1,...,N}

|xi| .

A norm on a vector space V induces a metric on V by the definition d(v, w) :=
‖v − w‖ . The resulting metric space is complete.4

Let (X, d) be a metric space. A mapping f : X → X is called a contraction with
respect to d if there exists 0 ≤ K < 1 such that

d(f(x), f(y)) ≤ Kd(x, y) for all x, y ∈ X. (2.8)

In case d is induced by a norm ‖·‖ , we will call a contraction with respect to d a
‖·‖ -contraction. If (X, d) is complete, we can apply the following theorem, due to
Banach:

Theorem 2.1 (Contracting Mapping Principle) Let f : X → X be a contrac-
tion of a complete metric space (X, d). Then f has a unique fixed point x∞ ∈ X
and for any x ∈ X, the sequence x, f(x), f2(x), . . . obtained by iterating f converges
to x∞. The rate of convergence is at least linear, since d(f(x), x∞) ≤ Kd(x, x∞)
for all x ∈ X.

Proof. Can be found in many textbooks on analysis. �

Note that linear convergence means that the error decreases exponentially, indeed
d(fn(x), x∞) ≤ CKn for some C.

Let (V, ‖·‖ ) be a normed space. The norm induces a matrix norm (also called
operator norm) on linear mappings A : V → V , defined as follows:

‖A‖ := sup
v∈V,
‖v‖≤1

‖Av‖ .

4Completeness is a topological property which we will not further discuss, but we need this to

apply Theorem 2.1.
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The `1-norm on RN induces the following matrix norm:

‖A‖1 = max
j∈{1,...,N}

N∑
i=1

|Aij | (2.9)

where Aij := (Aej)i with ej the jth canonical basis vector. The `∞-norm on RN

induces the following matrix norm:

‖A‖∞ = max
i∈{1,...,N}

N∑
j=1

|Aij | . (2.10)

In the following consequence of the well-known Mean Value Theorem, the matrix
norm of the derivative (“Jacobian”) f ′(v) at v ∈ V of a differentiable mapping
f : V → V is used to bound the distance of the f -images of two vectors:

Lemma 2.2 Let (V, ‖·‖ ) be a normed space and f : V → V a differentiable map-
ping. Then, for x, y ∈ V :

‖f(y)− f(x)‖ ≤ ‖y − x‖ · sup
z∈[x,y]

‖f ′(z)‖

where we wrote [x, y] for the segment {λx+ (1− λ)y : λ ∈ [0, 1]} joining x and y.

Proof. See [Dieudonné, 1969, Thm. 8.5.4]. �

2.3.2 The basic tool

Combining Theorem 2.1 and Lemma 2.2 immediately yields our basic tool:

Lemma 2.3 Let (V, ‖·‖ ) be a normed space, f : V → V differentiable and suppose
that

sup
v∈V
‖f ′(v)‖ < 1.

Then f is a ‖·‖ -contraction by Lemma 2.2. Hence, for any v ∈ V , the sequence
v, f(v), f2(v), . . . converges to a unique fixed point v∞ ∈ V with a convergence rate
that is at least linear by Theorem 2.1. �

2.3.3 Sufficient conditions for BP to be a contraction

We apply Lemma 2.3 to the case at hand: the parallel BP update mapping f :
RD → RD, written out in components in (2.7). Different choices of the vector norm
on RD will yield different sufficient conditions for whether iterating f will converge
to a unique fixed point. We will study two examples: the `1 norm and the `∞ norm.

The derivative of f is easily calculated from (2.7) and is given by(
f ′(ν)

)
i→j,k→l

=
∂ν′i→j
∂νk→l

= Ai→j,k→lBi→j(ν) (2.11)
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where5

Bi→j(ν) :=
1− tanh2

(
θi +

∑
t∈∂i\j νt→i

)
1− tanh2

(
ν′i→j(ν)

) sgn Jij (2.12)

Ai→j,k→l := tanh |Jij | δil1∂i\j(k). (2.13)

Note that we have absorbed all ν-dependence in the factor Bi→j(ν); the reason
for this will become apparent later on. The factor Ai→j,k→l is nonnegative and
independent of ν and captures the structure of the graphical model. Note that
supν∈V |Bi→j(ν)| = 1, implying that∣∣∣∣∂ν′i→j∂νk→l

∣∣∣∣ ≤ Ai→j,k→l (2.14)

everywhere on V .

Example: the `∞-norm

The `∞-norm on RD yields the following condition:

Corollary 2.4 For binary variables with pairwise interactions and probability dis-
tribution (2.5), if

max
i∈V

((
#(∂i)− 1

)
max
j∈∂i

tanh |Jij |
)
< 1, (2.15)

BP is an `∞-contraction and converges to a unique fixed point, irrespective of the
initial messages.

Proof. Using (2.10), (2.13) and (2.14):

‖f ′(ν)‖∞ = max
i→j

∑
k→l

∣∣∣∣∂ν′i→j∂νk→l

∣∣∣∣ ≤ max
i→j

∑
k→l

tanh |Jij | δil1∂i\j(k)

= max
i∈V

max
j∈∂i

∑
k∈∂i\j

tanh |Jij | = max
i∈V

((
#(∂i)− 1

)
max
j∈∂i

tanh |Jij |
)

and now simply apply Lemma 2.3. �

Another example: the `1-norm

Using the `1-norm instead, we find:

Corollary 2.5 For binary variables with pairwise interactions and probability dis-
tribution (2.5), if

max
i∈V

max
k∈∂i

∑
j∈∂i\k

tanh |Jij | < 1, (2.16)

BP is an `1-contraction and converges to a unique fixed point, irrespective of the
initial messages.

5For a set X, we define the indicator function 1X of X by 1X(x) = 1 if x ∈ X and 1X(x) = 0

if x 6∈ X.



Chapter 2. Sufficient conditions for convergence of BP 37

Proof. Similar to the proof of Corollary 2.4, now using (2.9) instead of (2.10):

‖f ′(ν)‖1 ≤ max
k→l

∑
i→j

tanh |Jij | δil1∂i\j(k) = max
i∈V

max
k∈∂i

∑
j∈∂i\k

tanh |Jij | .
�

It is easy to see that condition (2.16) is implied by (2.15), but not conversely;
thus in this case the `1-norm yields a tighter bound than the `∞-norm.

2.3.4 Beyond norms: the spectral radius

Instead of pursuing a search for the optimal norm, we will derive a criterion for
convergence based on the spectral radius of the matrix (2.13). The key idea is to
look at several iterations of BP at once. This will yield a significantly stronger
condition for convergence of BP to a unique fixed point.

For a square matrix A, we denote by σ(A) its spectrum, i.e., the set of eigenvalues
of A. By ρ(A) we denote its spectral radius, which is defined as ρ(A) := sup |σ(A)|,
i.e., the largest modulus of eigenvalues of A.6

Lemma 2.6 Let f : X → X be a mapping, d a metric on X and suppose that fN

is a d-contraction for some N ∈ N. Then f has a unique fixed point x∞ and for
any x ∈ X, the sequence x, f(x), f2(x), . . . obtained by iterating f converges to x∞.

Proof. Take any x ∈ X. Consider the N sequences obtained by iterating fN ,
starting respectively in x, f(x), . . . , fN−1(x):

x, fN (x), f2N (x), . . .

f(x), fN+1(x), f2N+1(x), . . .
...

fN−1(x), f2N−1(x), f3N−1(x), . . .

Each sequence converges to x∞ since fN is a d-contraction with fixed point x∞.
But then the sequence x, f(x), f2(x), . . . must converge to x∞. �

Theorem 2.7 Let f : Rm → Rm be differentiable and suppose that f ′(x) = B(x)A,
where A has nonnegative entries and B is diagonal with bounded entries |Bii(x)| ≤
1. If ρ(A) < 1 then for any x ∈ Rm, the sequence x, f(x), f2(x), . . . obtained by
iterating f converges to a fixed point x∞, which does not depend on x.

Proof. For a matrix B, we will denote by |B| the matrix with entries |B|ij = |Bij |.
For two matrices B,C we will write B ≤ C if Bij ≤ Cij for all entries (i, j). Note
that if |B| ≤ |C|, then ‖B‖1 ≤ ‖C‖1 . Also note that |BC| ≤ |B| |C|. Finally, if
0 ≤ A and B ≤ C, then AB ≤ AC and BA ≤ CA.

6One should not confuse the spectral radius ρ(A) with the spectral norm ‖A‖2 =
p
ρ(ATA)

of A, the matrix norm induced by the `2-norm.
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Using these observations and the chain rule, we have for any n ∈ N∗ and any
x ∈ Rm:

|(fn)′(x)| =
∣∣∣∣∣
n∏
i=1

f ′
(
f i−1(x)

)∣∣∣∣∣ ≤
n∏
i=1

( ∣∣B(f i−1(x)
)∣∣A) ≤ An,

hence ‖(fn)′(x)‖1 ≤ ‖An‖1 .
By the Gelfand spectral radius theorem,

lim
n→∞

( ‖An‖1 )1/n = ρ(A).

Choose ε > 0 such that ρ(A) + ε < 1. For some N ,
∥∥AN∥∥

1
≤ (ρ(A) + ε)N < 1.

Hence for all x ∈ Rm,
∥∥(fN )′(x)

∥∥
1
< 1. Applying Lemma 2.3, we conclude that

fN is a `1-contraction. Now apply Lemma 2.6. �

Using (2.11), (2.12) and (2.13), this immediately yields:

Corollary 2.8 For binary variables with pairwise interactions and probability dis-
tribution (2.5), BP converges to a unique fixed point (irrespective of the initial
messages), if the spectral radius of the #(D)×#(D) matrix

Ai→j,k→l := tanh |Jij | δil1∂i\j(k)

is strictly smaller than 1. �

The calculation of the spectral norm of the (sparse) matrix A can be done using
standard numerical techniques in linear algebra.

Any matrix norm of A is actually an upper bound on the spectral radius ρ(A),
since for any eigenvalue λ of A with eigenvector v we have |λ| ‖v‖ = ‖λv‖ =
‖Av‖ ≤ ‖A‖ ‖v‖ , hence ρ(A) ≤ ‖A‖ . This implies that no norm in Lemma 2.3
will result in a sharper condition than Corollary 2.8, hence the title of this section.

Further, for a given matrix A and some ε > 0, there exists a vector norm ‖·‖
such that the induced matrix norm of A satisfies ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε; see
[Deutsch, 1975] for a constructive proof. Thus for given A one can approximate
ρ(A) arbitrarily close by induced matrix norms. This immediately gives a result
on the convergence rate of BP (in case ρ(A) < 1): for any ε > 0, there exists a
norm-induced metric such that the linear rate of contraction of BP with respect to
that metric is bounded from above by ρ(A) + ε.

One might think that there is a shorter proof of Corollary 2.8: it seems quite
plausible intuitively that in general, for a continuously differentiable f : Rm → Rm,
iterating f will converge to a unique fixed point if

sup
x∈Rm

ρ(f ′(x)) < 1.

However, this conjecture (which has been open for a long time) has been shown to
be true in two dimensions but false in higher dimensions [Cima et al., 1997].
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2.3.5 Improved bound for strong local evidence

Empirically, it is known that the presence of strong local fields (i.e., single-variable
factors which are far from uniform) often improves the convergence of BP. However,
our results so far are completely independent of the parameters (θi)i∈V that measure
the strength of the local evidence. By proceeding more carefully than we have done
above, the results can easily be improved in such a way that local evidence is taken
into account.

Consider the quantity Bi→j defined in (2.12). We have bounded this quantity
by noting that supν∈V |Bi→j(ν)| = 1. Note that for all BP updates (except for
the first one), the argument ν (the incoming messages) is in f(V ), which can be
considerably smaller than the complete vector space V . Thus, after the first BP
update, we can use

sup
ν∈f(V )

|Bi→j(ν)| = sup
ν∈f(V )

1− tanh2
(
θi +

∑
k∈∂i\j νk→i

)
1− tanh2

(
ν′i→j(ν)

)
= sup
ν∈f(V )

1− tanh2(ηi\j)

1− tanh2(Jij) tanh2(ηi\j)

where we used (2.7) and defined the cavity field

ηi\j(ν) := θi +
∑

k∈∂i\j
νk→i. (2.17)

The function

x 7→ 1− tanh2 x

1− tanh2 Jij · tanh2 x

is strictly decreasing for x ≥ 0 and symmetric around x = 0, thus, defining

η
(∗)
i\j := inf

ν∈f(V )

∣∣ηi\j(ν)
∣∣ , (2.18)

we obtain

sup
ν∈f(V )

|Bi→j(ν)| =
1− tanh2

(
η

(∗)
i\j
)

1− tanh2(Jij) tanh2
(
η

(∗)
i\j
) .

Now, from (2.7) we derive that

{νk→i : ν ∈ f(V )} = (− |Jki| , |Jki|),

hence
{ηi\j(ν) : ν ∈ f(V )} =

(
η

(−)
i\j , η

(+)
i\j
)

where we defined
η

(±)
i\j := θi ±

∑
k∈∂i\j

|Jki| .
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We conclude that η(∗)
i\j is simply the distance between 0 and the interval

(
η

(−)
i\j , η

(+)
i\j
)
,

i.e.,

η
(∗)
i\j =


∣∣∣η(+)
i\j
∣∣∣ if η(+)

i\j < 0

η
(−)
i\j if η(−)

i\j > 0

0 otherwise.

Thus the element Ai→j,k→i (for i ∈ ∂j, k ∈ ∂i \ j) of the matrix A defined in
Corollary 2.8 can be replaced by

tanh |Jij |
1− tanh2

(
η

(∗)
i\j
)

1− tanh2(Jij) tanh2
(
η

(∗)
i\j
) =

tanh
( |Jij | − η(∗)

i\j
)

+ tanh
( |Jij |+ η

(∗)
i\j
)

2

which is generally smaller than tanh |Jij | and thus gives a tighter bound.
This trick can be repeated arbitrarily often: assume that m ≥ 0 BP updates have

been done already, which means that it suffices to take the supremum of |Bi→j(ν)|
over ν ∈ fm(V ). Define for all i→ j ∈ D and all t = 0, 1, . . . ,m:

η
(t)
i\j := inf{ηi\j(ν) : ν ∈ f t(V )}, (2.19)

η
(t)
i\j := sup{ηi\j(ν) : ν ∈ f t(V )}, (2.20)

and define the intervals
H(t)
i\j := [η(t)

i\j , η
(t)
i\j ]. (2.21)

Specifically, for t = 0 we have η(0)
i\j = −∞ and η

(0)
i\j =∞, which means that

H(0)
i\j = R. (2.22)

Using (2.7) and (2.17), we obtain the following recursive relations for the intervals
(where we use interval arithmetic defined in the obvious way):

H(t+1)
i\j = θi +

∑
k∈∂i\j

tanh−1
(

tanh Jki tanhH(t)
k\i
)
. (2.23)

Using this recursion relation, one can calculate H(m)
i\j and define η(∗)

i\j as the distance

(in absolute value) of the interval H(m)
i\j to 0:

η
(∗)
i\j =


∣∣∣η(m)
i\j
∣∣∣ if η(m)

i\j < 0

η
(m)
i\j if η(m)

i\j > 0

0 otherwise.

(2.24)

Thus by replacing the matrix A in Corollary 2.8 by

Ai→j,k→l =
tanh

( |Jij | − η(∗)
i\j
)

+ tanh
( |Jij |+ η

(∗)
i\j
)

2
δil1∂i\j(k), (2.25)

we obtain stronger results that improve as m increases:
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Corollary 2.9 Let m ∈ N. For binary variables with pairwise interactions and
probability distribution (2.5), BP converges to a unique fixed point (irrespective of
the initial messages) if the spectral radius of the #(D) × #(D) matrix defined in
(2.25) (with η(∗)

i\j defined in equations (2.21)–(2.24)) is strictly smaller than 1. �

2.4 General case

In the general case, when the domains Xi are arbitrarily large (but finite), we do not
know of a natural parameterization of the messages that automatically takes care
of the invariance of the messages under scaling (like (2.6) does in the binary case).
Instead of handling the scale invariance by the parameterization and using standard
norms and metrics, it seems easier to take a simple parameterization and to change
the norms and metrics in such a way that they are insensitive to the (irrelevant)
extra degrees of freedom arising from the scale invariance. This is actually the key
insight in extending the previous results beyond the binary case: once one sees how
to do this, the rest follows in a (more or less) straightforward way.

A related important point is to reparameterize the messages: a natural pa-
rameterization for our analysis is now in terms of logarithms of messages λI→i :=
logµI→i. The BP update equations (2.4) can be written in terms of the log-messages
as:

λ′I→i(xi) = log
∑
xNI\i

ψI(xNI )hI\i(xNI\i), (2.26)

where we dropped the normalization and defined the “cavity field”

hI\i(xNI\i) := exp

 ∑
j∈NI\i

∑
J∈Nj\I

λJ→j(xj)

 . (2.27)

Each log-message λI→i is a vector in the vector space VI→i := RXi ; we will use
Greek letters as indices for the components, e.g., λI→i;α := λI→i(α) with α ∈ Xi.
We will call everything that concerns individual vector spaces VI→i local and define
the global vector space V as the direct sum of the local vector spaces:

V :=
⊕

i∈V,I∈Ni
VI→i.

The parallel BP update is the mapping f : V → V , written out in components in
(2.26) and (2.27).

Note that the invariance of the message µI→i under scaling amounts to invari-
ance of the log-message λI→i under translation. More formally, defining linear
subspaces

WI→i := {λ ∈ VI→i : λα = λα′ for all α, α′ ∈ Xi} (2.28)

and their direct sum
W :=

⊕
i∈V,I∈Ni

WI→i ⊆ V,
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the invariance amounts to the observation that

f(λ+ w)− f(λ) ∈W for all λ ∈ V , w ∈W.

Since λ+w and λ are equivalent for our purposes, we want our measures of distance
in V to reflect this equivalence. Therefore we will “divide out” the equivalence rela-
tion and work in the quotient space V/W , which is the topic of the next subsection.

2.4.1 Quotient spaces

Let V be a finite-dimensional vector space. Let W be a linear subspace of V . We
can consider the quotient space V/W := {v+W : v ∈ V }, where v+W := {v+w :
w ∈ W}. Defining addition and scalar multiplication on the quotient space in the
natural way, the quotient space is again a vector space.7 We will denote its elements
as v := v +W . Note that the projection π : V → V/W : v 7→ v is linear.

Let ‖·‖ be any vector norm on V . It induces a quotient norm on V/W , defined
by

‖v‖ := inf
w∈W

‖v + w‖ , (2.29)

which is indeed a norm, as one easily checks. The quotient norm in turn induces
the quotient metric d(v1, v2) := ‖v2 − v1‖ on V/W . The metric space (V/W, d) is
complete (since any finite-dimensional normed vector space is complete).

Let f : V → V be a (possibly nonlinear) mapping with the following symmetry:

f(v + w)− f(v) ∈W for all v ∈ V , w ∈W. (2.30)

We can then unambiguously define the quotient mapping

f : V/W → V/W : v 7→ f(v),

which yields the following commutative diagram:

V
f−−−−→ Vyπ yπ

V/W
f−−−−→ V/W

π ◦ f = f ◦ π

For a linear mapping A : V → V , condition (2.30) amounts to AW ⊆W , i.e., A
should leave W invariant; we can then unambiguously define the quotient mapping
A : V/W → V/W : v 7→ Av.

If f : V → V is differentiable and satisfies (2.30), the symmetry property (2.30)
implies that f ′(x)W ⊆W , hence we can define f ′(x) : V/W → V/W . The operation
of taking derivatives is compatible with projecting onto the quotient space. Indeed,
by using the chain rule and the identity π ◦ f = f ◦ π, one finds that the derivative

7Indeed, we have a null vector 0 + W , addition (v1 + W ) + (v2 + W ) := (v1 + v2) + W for

v1, v2 ∈ V and scalar multiplication λ(v +W ) := (λv) +W for λ ∈ R, v ∈ V .
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of the induced mapping f : V/W → V/W at x equals the induced derivative of f
at x:

f
′
(x) = f ′(x) for all x ∈ V . (2.31)

By Lemma 2.3, f is a contraction with respect to the quotient norm if

sup
x∈V/W

∥∥∥f ′(x)
∥∥∥ < 1.

Using (2.29) and (2.31), this condition can be written more explicitly as:

sup
x∈V

sup
v∈V,
‖v‖≤1

inf
w∈W

‖f ′(x) · v + w‖ < 1.

2.4.2 Constructing a norm on V

Whereas in the binary case, each message νi→j was parameterized by a single real
number, the messages are now #(Xi)-dimensional vectors λI→i (with components
λI→i;α indexed by α ∈ Xi). In extending the `1-norm that proved to be useful in the
binary case to the more general case, we have the freedom to choose the “local” part
of the generalized `1-norm. Here we show how to construct such a generalization of
the `1-norm and its properties; for a more detailed account of the construction, see
Appendix 2.A.

The “global” vector space V is the direct sum of the “local” subspaces VI→i.
Suppose that for each subspace VI→i, we have a local norm ‖·‖I→i . A natural
generalization of the `1-norm in the binary case is the following global norm on V :

‖λ‖ :=
∑
I→i
‖λI→i‖I→i . (2.32)

It is easy to check that this is indeed a norm on V .
Each subspace VI→i has a 1-dimensional subspaceWI→i defined in (2.28) and the

local norm on VI→i induces a local quotient norm on the quotient space VI→i/WI→i.
The global norm (2.32) on V induces a global quotient norm on V/W , which is
simply the sum of the local quotient norms (see (2.57)):∥∥λ∥∥ =

∑
I→i

∥∥λI→i∥∥I→i . (2.33)

Let λ ∈ V . The derivative f ′(λ) of f : V → V at λ is a linear mapping
f ′(λ) : V → V satisfying f ′(λ)W ⊆ W . It projects down to a linear mapping
f ′(λ) : V/W → V/W . The matrix norm of f ′(λ) induced by the quotient norm
(2.33) is given by (see (2.58)):∥∥∥f ′(λ)

∥∥∥ = max
J→j

∑
I→i

∥∥∥(f ′(λ)
)
I→i,J→j

∥∥∥J→j
I→i

(2.34)
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where the local quotient matrix norm of the “block”
(
f ′(λ)

)
I→i,J→j is given by (see

(2.59)): ∥∥∥(f ′(λ)
)
I→i,J→j

∥∥∥J→j
I→i

= sup
v∈VJ→j ,
‖v‖J→j ≤1

∥∥∥(f ′(λ)
)
I→i,J→jv

∥∥∥
I→i

. (2.35)

The derivative of the (unnormalized) parallel BP update (2.26) is easily calcu-
lated:

∂λ′I→i(xi)
∂λJ→j(yj)

= 1Nj\I(J)1NI\i(j)

∑
xNI\i

ψI(xi, xj , xNI\{i,j})δxjyjhI\i(xNI\i)∑
xNI\i

ψI(xi, xNI\i)hI\i(xNI\i)
.

(2.36)
Taking the global quotient norm (2.34) of (2.36) yields:∥∥∥f ′(λ)

∥∥∥ = max
J→j

∑
I→i

1Nj\I(J)1NI\i(j)BI→i,J→j
(
hI\i(λ)

)
, (2.37)

where

BI→i,J→j
(
hI\i(λ)

)
:=

∥∥∥∥∥∥
∑
xNI\{i,j}

ψI hI\i(λ)∑
xNI\i

ψI hI\i(λ)

∥∥∥∥∥∥
J→j

I→i

. (2.38)

Note that BI→i,J→j depends on λ via the dependence of hI\i on λ (see (2.27)). We
will for the moment simplify matters by assuming that λ can be any vector in V ,
and later discuss the more careful estimate (where λ ∈ fm(V )):

sup
λ∈V

BI→i,J→j
(
hI\i(λ)

) ≤ sup
hI\i>0

BI→i,J→j(hI\i). (2.39)

Defining the matrix A by the expression on the r.h.s. and using (2.35) and (2.29),
we obtain:

AI→i,J→j := sup
hI\i>0

BI→i,J→j(hI\i) =

sup
hI\i>0

sup
v∈VJ→j
‖v‖J→j ≤1

inf
w∈WI→i

∥∥∥∥∥
∑
xj
v(xj)

∑
xNI\{i,j}

ψI hI\i∑
xNI\i

ψI hI\i
− w

∥∥∥∥∥
I→i

(2.40)

for I → i and J → j such that j ∈ NI \ i and J ∈ Nj \ I. Surprisingly, it turns out
that we can calculate (2.40) analytically if we take all local norms to be `∞ norms.
We have also tried the `2 norm and the `1 norm as local norms, but were unable
to calculate expression (2.40) analytically in these cases. Numerical calculations
turned out to be difficult because of the nested suprema.

2.4.3 Local `∞ norms

Take for each local norm ‖·‖I→i the `∞ norm on VI→i = RXi . The local subspace
WI→i is spanned by the vector 1 := (1, 1, . . . , 1) ∈ RXi . The local quotient norm of
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a vector v ∈ VI→i is thus given by

‖v‖I→i = ‖v‖∞ = inf
w∈R
‖v + w1‖∞ =

1
2

sup
α,α′∈Xi

|vα − vα′ | . (2.41)

For a linear mapping A : VJ→j → VI→i that satisfies AWJ→j ⊆WI→i, the induced
quotient matrix norm (2.35) is given by∥∥A∥∥J→j

I→i = sup
v∈VJ→j ,
‖v‖∞≤1

∥∥Av∥∥∞ = sup
v∈VJ→j ,
‖v‖∞≤1

1
2

sup
α,α′∈Xi

∣∣∣∣ ∑
β∈Xj

(Aαβ −Aα′β)vβ

∣∣∣∣
=

1
2

sup
α,α′∈Xi

∑
β∈Xj

|Aαβ −Aα′β | (2.42)

For the moment, fix I → i and J → j (such that j ∈ NI \ i and J ∈ Nj \ I).
To lighten the notation, we will drop the corresponding subscripts and in addition,
we will replace the arguments by Greek subscripts, where we let α correspond to
xi, β to xj and γ to xNI\{i,j}. For example, we write hI\i(xNI\i) as hβγ and
ψI(xi, xj , xNI\{i,j}) as ψαβγ . Using (2.42), we can write (2.40) as

sup
h>0

1
2

sup
α,α′

∑
β

∣∣∣∣∣
∑
γ ψαβγhβγ∑

β

∑
γ ψαβγhβγ

−
∑
γ ψα′βγhβγ∑

β

∑
γ ψα′βγhβγ

∣∣∣∣∣ .
Interchanging the two suprema, fixing (for the moment) α and α′, defining ψ̃βγ :=
ψαβγ/ψα′βγ and h̃βγ := hβγψα′βγ , noting that we can assume (without loss of
generality) that h̃ is normalized in `1 sense, the previous expression (apart from the
1
2 supα,α′) simplifies to

sup
h̃>0,

‖h̃‖1 =1

∑
β

∣∣∣∣∣∑
γ

h̃βγ

(
ψ̃βγ∑

β

∑
γ ψ̃βγ h̃βγ

− 1

)∣∣∣∣∣ . (2.43)

In Appendix 2.B we show that (2.43) equals

2 sup
β 6=β′

sup
γ,γ′

tanh

(
1
4

log
ψ̃βγ

ψ̃β′γ′

)
. (2.44)

We conclude that if we take all local norms to be the `∞ norms, then AI→i,J→j
equals

N(ψI , i, j) := sup
α 6=α′

sup
β 6=β′

sup
γ,γ′

tanh
(

1
4

log
ψI;αβγ
ψI;α′βγ

ψI;α′β′γ′

ψI;αβ′γ′

)
, (2.45)

which is defined for i, j ∈ NI with i 6= j and where ψI;αβγ is shorthand for ψI(xi =
α, xj = β, xNI\{i,j} = γ); see figure 2.2 for an illustration.

Now combining (2.37), (2.39) and (2.45), we finally obtain:∥∥∥f ′(λ)∥∥∥ =
∥∥∥f ′(λ)

∥∥∥ ≤ max
J→j

∑
I∈Nj\J

∑
i∈NI\j

N(ψI , i, j).
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i

xi = α

I

ψI

j

xj = β

J

| {z }
NI \ {i, j}

xNI\{i,j} = γ

Figure 2.2: Part of the factor graph relevant in expressions (2.45), (2.46) and (2.47). Here

i, j ∈ NI with i 6= j, and J ∈ Nj \ I.

Applying Lemma 2.3 now yields that f is a contraction with respect to the quotient
norm on V/W if the right-hand side is strictly smaller than 1.

Consider the mapping η : V/W → V that maps λ to the normalized λ ∈ V ,
i.e., such that ‖expλI→i‖1 = 1 for all components I → i. If we take for f the
`1-normalized BP update (in the log-domain), the following diagram commutes:

V
f−−−−→ Vyπ xη

V/W
f−−−−→ V/W

f = η ◦ f ◦ π.

Since both π and η are continuous, and fN = η ◦ fN ◦ π because π ◦ η = 1, we can
translate convergence results for f back to similar results for f . We have proved:

Theorem 2.10 If
max
J→j

∑
I∈Nj\J

∑
i∈NI\j

N(ψI , i, j) < 1, (2.46)

BP converges to a unique fixed point irrespective of the initial messages. �

Now we can also generalize Corollary 2.8:

Theorem 2.11 If the spectral radius of the matrix

AI→i,J→j = 1Nj\I(J)1NI\i(j)N(ψI , i, j), (2.47)

is strictly smaller than 1, BP converges to a unique fixed point irrespective of the
initial messages.

Proof. Similar to the binary pairwise case; see Theorem 2.19 in Appendix 2.A for
details. �

Note that Theorem 2.10 is a trivial consequence of Theorem 2.11, since the `1-
norm is an upper bound on the spectral radius. However, to prove the latter, it
seems that we have to go through all the work (and some more) needed to prove
the former.
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k
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i ψi

ψij
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Figure 2.3: Part of the factor graph in the pairwise case relevant in (2.48) and (2.49). Here

k ∈ ∂i and j ∈ ∂i \ k.

2.4.4 Special cases

In this subsection we study the implications for two special cases, namely factor
graphs that contain no cycles and the case of pairwise interactions.

Trees

Theorem 2.11 gives us a proof of the well-known fact that BP converges on trees
(whereas Theorem 2.10 is not strong enough to prove that result):

Corollary 2.12 If the factor graph is a tree, BP converges to a unique fixed point
irrespective of the initial messages.

Proof. The spectral radius of (2.47) is easily shown to be zero in this special case,
for any choice of the potentials. �

Pairwise interactions

We formulate Theorems 2.10 and 2.11 for the special case of pairwise interactions
(which corresponds to γ taking on only one value), i.e., each factor consists of either
one or two variables. For a pair potential ψij = ψij;αβ , expression (2.45) simplifies
to (see also figure 2.3)

N(ψij) := sup
α6=α′

sup
β 6=β′

tanh
(

1
4

(
log

ψij;αβ
ψij;α′β

ψij;α′β′

ψij;αβ′

))
. (2.48)

Note that this quantity is invariant to “reallocation” of single-variable factors ψi or
ψj to the pairwise factor ψij (i.e., N(ψij) = N(ψijψiψj)). N(ψij) can be regarded
as a measure of the strength of the potential ψij .

The `1-norm condition (2.46) can be written in the pairwise case as:

max
i∈V

max
k∈∂i

∑
j∈∂i\k

N(ψij) < 1. (2.49)

The matrix defined in (2.47), relevant for the spectral radius condition, can be
replaced by the following #(D)×#(D) matrix in the pairwise case:

Ai→j,k→l := N(ψij)δil1∂i\j(k). (2.50)
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For the binary case, we reobtain our earlier results, since

N
(

exp(Jijxixj)
)

= tanh |Jij | .

2.4.5 Factors containing zeros

Until now, we have assumed that all factors are strictly positive. In many interesting
applications of Belief Propagation, this assumption is violated: the factors may
assume the value zero. It is thus interesting to see if and how our results can be
extended towards this more general case.

The easiest way to extend the results is by assuming that—although the factors
may contain zeros—the messages are guaranteed to remain strictly positive (i.e., the
log-messages remain finite) after each update.8 Even more general extensions with
milder conditions may exist, but we believe that considerably more work would be
required to overcome the technical problems that arise due to messages containing
zeros.

Assume that each factor ψI is a nonnegative function ψI : XNI → [0,∞). In
addition, assume that all factors involving only a single variable are strictly positive.
This can be assumed without loss of generality, since the single-variable factors
that contain one or more zeros can simply be absorbed into multi-variable factors
involving the same variable. Additionally, for each I ∈ F for which NI contains
more than one variable, assume that

∀i∈NI ∀xi∈Xi∃xNI\i∈XNI\i : ψI(xi, xNI\i) > 0. (2.51)

These conditions guarantee that strictly positive messages remain strictly positive
under the update equations (2.4), as one easily checks, implying that we can still
use the logarithmic parameterization of the messages and that the derivative (2.36)
is still well-defined.

The expression for the potential strength (2.45) can be written in a way that is
also well-defined if the potential ψI contains zeros:

N(ψI , i, j) := sup
α6=α′

sup
β 6=β′

sup
γ,γ′

√
ψI;αβγψI;α′β′γ′ −

√
ψI;α′βγψI;αβ′γ′√

ψI;αβγψI;α′β′γ′ +
√
ψI;α′βγψI;αβ′γ′

(2.52)

which is defined for i, j ∈ NI with i 6= j and where ψI;αβγ is shorthand for ψI(xi =
α, xj = β, xNI\{i,j} = γ).

The immediate generalization of Theorem 2.11 is then as follows:

Theorem 2.13 Under the assumptions on the potentials described above (strict
positivity of single-variable factors and (2.51) for the other factors): if the spectral
radius of the matrix

AI→i,J→j = 1Nj\I(J)1NI\i(j)N(ψI , i, j), (2.53)

8Additionally, the initial messages are required to be strictly positive, but this requirement is

easily met and is necessary for obtaining good BP results.
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(with N(ψI , i, j) defined in (2.52)) is strictly smaller than 1, BP converges to a
unique fixed point irrespective of the initial messages.

Proof. Similar to the strictly positive case. The only slight subtlety occurs in
Appendix 2.B where one has to take a limit of strictly positive factors converging
to the desired nonnegative factor and use the continuity of the relevant expressions
with respect to the factor entries to prove that the bound also holds in this limit.

�

This theorem is the main result of this work; all other convergence and uniqueness
theorems derived earlier, apart from Corollary 2.9, are implied by Theorem 2.13.

Example

Define, for ε ≥ 0, the (“ferromagnetic”) pairwise factor ψ(ε) by the following matrix:

ψ(ε) :=
(

1 ε

ε 1

)
.

Now consider a binary pairwise factor graph, consisting of a single loop of N binary
variables, i.e., the network topology is that of a circle. Take for the N − 1 pairwise
interactions ψ{i,i+1} (for i = 1, 2, . . . , N − 1) the identity matrices (i.e., the above
pairwise factors for ε = 0) and take for the remaining one ψ{1,N} = ψ(ε) for some
ε ≥ 0. Note that the potential strength N(ψ(ε)) = 1−ε

1+ε converges to 1 as ε ↓ 0. The
spectral radius of the corresponding matrix AI→i,J→j can be shown to be equal to

ρ(A) =
(

1− ε
1 + ε

)1/N

which is strictly smaller than 1 if and only if ε > 0. Hence BP converges to a unique
fixed point if ε > 0. This result is sharp, since for ε = 0, BP simply “rotates” the
messages around without changing them and hence no convergence occurs (except,
obviously, if the initial messages already correspond to the fixed point of uniform
messages).

2.5 Comparison with other work

In this section we explore the relations of our results with previously existing work.

2.5.1 Comparison with work of Tatikonda and Jordan

In [Tatikonda and Jordan, 2002; Tatikonda, 2003], a connection is made between
two seemingly different topics, namely Belief Propagation on the one hand and the
theory of Gibbs measures [Georgii, 1988] on the other hand. The main result of
[Tatikonda and Jordan, 2002] states that BP converges uniformly (to a unique fixed
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point) if the Gibbs measure on the corresponding computation tree is unique. The
computation tree is an “unwrapping” of the factor graph with respect to the Belief
Propagation algorithm; specifically, the computation tree starting at variable i ∈ V
consists of all paths starting at i that never backtrack.

This is a remarkable and beautiful result; however, the question of convergence
of BP is replaced by the question of uniqueness of the Gibbs measure, which is not
trivial. Fortunately, sufficient conditions for the uniqueness of the Gibbs measure
exist; the most well-known are Dobrushin’s condition and a weaker (but more easily
verifiable) condition known as Simon’s condition. In combination with the main
result of [Tatikonda and Jordan, 2002], they yield directly testable sufficient con-
ditions for convergence of BP to a unique fixed point. For reference, we will state
both results in our notation below. For details, see [Tatikonda and Jordan, 2002;
Tatikonda, 2003] and [Georgii, 1988]. Note that the results are valid for the case of
positive factors depending on at most two variables.

BP convergence via Dobrushin’s condition

Define Dobrushin’s interdependence matrix as the N ×N matrix C with entries

Cij := sup
x∂i\j∈X∂i\j

sup
xj ,x′j∈Xj

1
2

∑
xi∈Xi

∣∣P(xi |x∂i\j , xj)− P(xi |x∂i\j , x′j)
∣∣ (2.54)

for j ∈ ∂i and 0 otherwise.

Theorem 2.14 For pairwise, positive factors, BP converges to a unique fixed point
if

max
i∈V

∑
j∈∂i

Cij < 1.

Proof. For a proof sketch, see [Tatikonda, 2003]. For the proof of Dobrushin’s
condition see [Georgii, 1988, Chapter 8]. �

We can rewrite the conditional probabilities in terms of factors:

P(xi |x∂i\j , xj) =
ψi(xi)ψij(xi, xj)

∏
k∈∂i\j ψik(xi, xk)∑

xi
ψi(xi)ψij(xi, xj)

∏
k∈∂i\j ψik(xi, xk)

.

Note that the complexity of the calculation of this quantity is generally exponential
in the size of the neighborhood ∂i, which may prohibit practical application of
Dobrushin’s condition.

For the case of binary ±1-valued variables, some elementary algebraic manipu-
lations yield

Cij = sup
x∂i\j

sinh 2 |Jij |
cosh 2Jij + cosh 2

(
θi +

∑
k∈∂i\j xkJik

)
=

tanh(|Jij | −Hij) + tanh(|Jij |+Hij)
2
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with

Hij := inf
x∂i\j

∣∣∣∣∣∣θi +
∑

k∈∂i\j
xkJik

∣∣∣∣∣∣ .
BP convergence via Simon’s condition

Simon’s condition is a sufficient condition for Dobrushin’s condition (see [Georgii,
1988, Proposition 8.8]). This leads to a looser, but more easily verifiable, bound:

Theorem 2.15 For pairwise, positive factors, BP converges to a unique fixed point
if

max
i∈V

∑
j∈∂i

(
1
2

sup
α,α′

sup
β,β′

log
ψij;αβ
ψij;α′β′

)
< 1.

�

It is not difficult to show that this bound is less tight than (2.49). Furthermore,
unlike Dobrushin’s condition and Corollary 2.9, it does not take into account single-
variable factors.

2.5.2 Comparison with work of Ihler et al.

In the recent and independent work of Ihler et al. [2005b], a methodology was used
which is very similar to the one used in this work. In particular, the same local `∞
quotient metric is used to derive sufficient conditions for BP to be a contraction. In
the work presented here, the Mean Value Theorem (in the form of Lemma 2.2) is
used in combination with a bound on the derivative in order to obtain a bound on the
convergence rate K in (2.8). In contrast, in [Ihler et al., 2005b] a direct bound on the
distance of two outgoing messages is derived in terms of the distance of two different
products of incoming messages [Ihler et al., 2005b, Equation (13)]. This bound
becomes relatively stronger as the distance of the products of incoming messages
increases. This has the advantage that it can lead to stronger conclusions about
the effect of finite message perturbations than would be possible with our bound,
based on the Mean Value Theorem. However, for the question of convergence, the
relevant limit turns out to be that of infinitesimal message perturbations, i.e., it
suffices to study the derivative of the BP updates as we have done here.

In the limit of infinitesimal message perturbations, the basic bound (13) in [Ihler
et al., 2005b] leads to the following measure of potential strength:

D(ψij) := tanh

(
1
2

(
sup
α,α′

sup
β,β′

log
ψij;αβ
ψij;α′β′

))
.

Using this measure, Ihler et. al derive two different conditions for convergence of
BP. The first one is similar to our (2.49) and the second condition is equivalent
to our spectral radius result (2.50), except that in both conditions, D(ψij) is used
instead of N(ψij). The latter condition is formulated in [Ihler et al., 2005b] in terms
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of the convergence properties of an iterative BP-like algorithm. The equivalence of
this formulation with a formulation in terms of the spectral radius of a matrix
can be seen from the fact that for any square matrix A, ρ(A) < 1 if and only
if limn→∞An = 0. However, our result also gives a contraction rate, unlike the
iterative formulation in [Ihler et al., 2005b].

Thus, the results in [Ihler et al., 2005b] are similar to ours in the pairwise case,
except for the occurrence of D(ψij) instead of N(ψij). It is not difficult to see that
N(ψij) ≤ D(ψij) for any pairwise factor ψij ; indeed, for any choice of α, β, γ, δ:√

ψij;αγψij;βδ

/√
ψij;βγψij;αδ ≤

(
sup
στ

ψij;στ

)/(
inf
στ
ψij;στ

)
.

Thus the convergence results in [Ihler et al., 2005b] are similar to, but weaker than
the results derived in the present work.

After initial submission of this work, [Ihler et al., 2005a] was published, which
improves upon [Ihler et al., 2005b] by exploiting the freedom of choice of the single-
variable factors (which can be “absorbed” to an arbitrary amount by corresponding
pairwise factors). This leads to an improved measure of potential strength, which
turns out to be identical to our measure N(ψij). Thus, for pairwise, strictly positive
potentials, the results in [Ihler et al., 2005a] are equivalent to the results (2.49) and
(2.50) presented here. Our most general results, Theorems 2.10, 2.11 and 2.13 and
Corollary 2.9, are not present in [Ihler et al., 2005a].

2.5.3 Comparison with work of Heskes

A completely different methodology to obtain sufficient conditions for the unique-
ness of the BP fixed point is used in [Heskes, 2004]. By studying the Bethe free
energy and exploiting the relationship between properties of the Bethe free energy
and the BP algorithm, conclusions are drawn about the uniqueness of the BP fixed
point; however, whether uniqueness of the fixed point also implies convergence of
BP seems to be an open question. We state the main result of [Heskes, 2004] in our
notation below.

The following measure of potential strength is used in [Heskes, 2004]. For I ∈ F ,
let

ωI := sup
xNI

sup
x′NI

(
logψI(xNI ) + (#(NI)− 1) logψI(x′NI )−

∑
i∈NI

logψI(x′NI\i, xi)
)
.

The potential strength is then defined as σI := 1− e−ωI .

Theorem 2.16 BP has a unique fixed point if there exists an “allocation matrix”
XIi between factors I ∈ F and variables i ∈ V such that

1. XIi ≥ 0 ∀I ∈ F ,∀i ∈ NI ;

2. (1− σI) max
i∈NI

XIi + σI
∑
i∈NI

XIi ≤ 1 ∀I ∈ F ;
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3.
∑
I∈Ni

XIi ≥ #(Ni)− 1 ∀i ∈ V.

Proof. See [Heskes, 2004, Theorem 8.1]. �

The (non-)existence of such a matrix can be determined using standard linear pro-
gramming techniques.

2.6 Numerical comparison of various bounds

In this subsection, we compare various bounds on binary pairwise graphical models,
defined in (2.5), for various choices of the parameters. First we study the case of
a completely uniform model (i.e., full connectivity, uniform couplings and uniform
local fields). Then we study nonuniform couplings Jij , in the absence of local fields.
Finally, we take fully random models in various parameter regimes (weak/strong
local fields, strong/weak ferromagnetic/spin-glass/antiferromagnetic couplings).

2.6.1 Uniform couplings, uniform local field

The fully connected Ising model consisting of N binary ±1-valued variables with
uniform couplings J and uniform local field θ is special in the sense that an exact
description of the parameter region for which the Gibbs measure on the compu-
tation tree is unique is available. Using the results of Tatikonda and Jordan, this
yields a strong bound on the parameter region for which BP converges to a unique
fixed point. Indeed, the corresponding computation tree is a uniform Ising model
on a Cayley tree of degree N − 2, for which (semi-)analytical expressions for the
paramagnetic–ferromagnetic and paramagnetic–antiferromagnetic phase-transition
boundaries are known (see [Georgii, 1988, Section 12.2]). Since the Gibbs measure
is known to be unique in the paramagnetic phase, this gives an exact description
of the (J, θ) region for which the Gibbs measure on the computation tree is unique,
and hence a bound on BP convergence on the original model.

In figure 2.4 we have plotted various bounds on BP convergence in the (J, θ)
plane for N = 4 (other values of N yield qualitatively similar results). The gray
area (g) marks regions where the Gibbs measure on the computation tree is not
unique; in the white area, the Gibbs measure is unique and hence BP is guaranteed
to converge. Note that this bound is only available due to the high symmetry of the
model. In [Taga and Mase, 2006b] it is shown that parallel BP does not converge
in the lower (antiferromagnetic) gray region. In the upper (ferromagnetic) region
on the other hand, parallel BP does converge, but it may be that the fixed point is
no longer unique.

The various lines correspond to different sufficient conditions for BP convergence;
the regions enclosed by two lines of the same type (i.e., the inner regions for which
|J | is small) mark the regions of guaranteed convergence. The lightly dotted lines
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Figure 2.4: Comparison of various BP convergence bounds for the fully connected N = 4

binary Ising model with uniform coupling J and uniform local field θ. (a) Heskes’ condition

(b) Simon’s condition (c) spectral radius condition (d) Dobrushin’s condition (e) improved

spectral radius condition for m = 1 (f) improved spectral radius condition for m = 5

(g) uniqueness of Gibbs’ measure condition. See the main text (section 2.6.1) for more

explanation.

(a) correspond with Heskes’ condition, Theorem 2.16. The dash-dotted lines (b)
correspond with Simon’s condition, Theorem 2.15. The dashed lines (d) correspond
with Dobrushin’s condition (Theorem 2.14), which is seen to improve upon Simon’s
condition for θ 6= 0, but is nowhere sharp. The solid lines (c) correspond with the
spectral radius condition Corollary 2.8 (which coincides with the `1-norm condition
Corollary 2.5 in this case and is also equivalent to the result of [Ihler et al., 2005b]),
which is independent of θ but is actually sharp for θ = 0. The heavily dotted lines
(e) correspond to Corollary 2.9 with m = 1, the +-shaped lines (f) to the same
Corollary with m = 5. Both (e) and (f) are seen to coincide with (c) for small θ,
but improve for large θ.

We conclude that the presence of local fields makes it more difficult to obtain
sharp bounds on BP convergence; only Dobrushin’s condition (Theorem 2.14) and
Corollary 2.9 take into account local fields. Furthermore, in this case, our result
Corollary 2.9 is stronger than the other bounds. Note that the calculation of Do-
brushin’s condition is exponential in the number of variables N , whereas the time
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Figure 2.5: Comparison of various bounds for BP convergence for toroidal Ising model of

size 10 × 10 with normally distributed couplings Jij ∼ N
`
J0, σJ

2
´

and zero local fields.

(a) Heskes’ condition (b) Dobrushin’s condition (c) `1-norm condition (d) spectral radius

condition (e) empirical convergence boundary. See the main text (section 2.6.2) for more

explanation.

complexity of our bound is polynomial in N . Similar results are obtained for higher
values of N .

2.6.2 Nonuniform couplings, zero local fields

We have investigated in more detail the influence of the distribution of the cou-
plings Jij , in the absence of local fields, and have also compared with the empirical
convergence behavior of BP. We have taken a binary Ising model on a rectangular
toroidal grid (i.e., with periodic boundary conditions) of size 10 × 10. The cou-
plings were random independent normally distributed nearest-neighbor couplings
Jij ∼ N

(
J0, σJ

2
)
, the local fields were θi = 0. Let (rJ , φJ) be the polar coor-

dinates corresponding to the Cartesian coordinates (J0, σJ). For various angles
φJ ∈ [0, π], we have determined the critical radius rJ for each bound. The results
have been averaged over 40 instances of the model and can be found in figure 2.5.
The lines correspond to the mean bounds, the gray areas are “error bars” of one
standard deviation. The inner area (for which the couplings are small) bounded
by each line means “convergence”, either guaranteed or empirical (thus the larger
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the enclosed area, the tighter the bound). From bottom to top: the thin solid line
(a) corresponds with Heskes’ result (Theorem 2.16), the dash-dotted line (b) with
Dobrushin’s condition (Theorem 2.14), the dotted line (c) corresponds with the `1-
norm condition Corollary 2.5, the dashed line (d) with the spectral radius condition
Corollary 2.8 and the thick solid line (e) with the empirical convergence behavior
of BP.

We conclude from figure 2.5 that the spectral radius condition improves upon
the `1-norm condition for nonuniform couplings and that the improvement can be
quite substantial. For uniform couplings (and zero local fields), both conditions
coincide and it can be proved that they are sharp [Mooij and Kappen, 2005a].

2.6.3 Fully random models

Finally, we have considered fully connected binary pairwise graphical models with
completely random couplings and local fields (in various parameter regimes). We
drew random couplings and local fields as follows: first, we drew i.i.d. random
parameters J0, σJ , θ0, σθ from a normal distribution with mean 0 and variance
1. Then, for each variable i we independently drew a local field parameter θi ∼
N (θ0, σθ

2
)
, and for each pair {i, j} we independently drew a coupling parameter

Jij ∼ N
(
J0, σJ

2
)
.

For the resulting graphical model, we have verified whether various sufficient
conditions for BP convergence hold. If condition A holds whereas condition B does
not hold, we say that A wins from B. We have counted for each ordered pair (A,B)
of conditions how often A wins from B. The results (for 50000 random models
consisting of N = 4, 8 variables) can be found in table 2.1: the number at row
A, column B is the number of trials for which bound A wins from bound B. On
the diagonal (A = B) is the total number of trials for which bound A predicts
convergence. Theorem 2.14 is due to [Tatikonda, 2003], Corollary 2.8 was first
published (for the binary case) in [Ihler et al., 2005b] and Theorem 2.16 is due to
[Heskes, 2004].

Our result Corollary 2.9 (for m = 1) outperforms the other bounds in each trial.
For other values of N , we obtain similar results.

2.7 Discussion

In this paper we have derived sufficient conditions for convergence of BP to a unique
fixed point. Our conditions are directly applicable to arbitrary factor graphs with
discrete variables and nonnegative factors. This is in contrast with the sufficient
conditions of Tatikonda and Jordan and with the results of Ihler, Fisher and Willsky,
which were only formulated for pairwise, positive factors. We have shown cases
where our results are stronger than previously known sufficient conditions.

Our numerical experiments lead us to conjecture that Corollary 2.9 is stronger
than the other bounds. We have no proof for this conjecture at the moment, apart
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Table 2.1: Comparison of bounds (50000 trials, for N = 4 and N = 8)

N = 4 Th. 2.14 Cor. 2.8 Th. 2.16 Cor. 2.9

Th. 2.14, [Tatikonda, 2003] (5779) 170 3564 0

Cor. 2.8, [Ihler et al., 2005b] 10849 (16458) 13905 0

Th. 2.16, [Heskes, 2004] 338 0 (2553) 0

Cor. 2.9, m = 1, this work 13820 3141 17046 (19599)

N = 8 Th. 2.14 Cor. 2.8 Th. 2.16 Cor. 2.9

Th. 2.14, [Tatikonda, 2003] (668) 39 597 0

Cor. 2.8, [Ihler et al., 2005b] 507 (1136) 1065 0

Th. 2.16, [Heskes, 2004] 0 0 (71) 0

Cor. 2.9, m = 1, this work 972 504 1569 (1640)

from the obvious fact that Corollary 2.8 is weaker than Corollary 2.9. To prove that
Corollary 2.9 is stronger than Theorem 2.14 seems subtle, since it is generally not
the case that ρ(A) ≤ ‖C‖∞ , although it seems that the weaker relation ‖C‖∞ <

1 =⇒ ρ(A) < 1 does hold in general. The relation with the condition in Theorem
2.16 is not evident as well.

In the binary pairwise case, it turned out to be possible to derive sufficient
conditions that take into account local evidence (Corollary 2.9). In the general
case, such an improvement is possible in principle but seems to be more involved.
The resulting optimization problem (essentially (2.43) with additional assumptions
on h) looks difficult in general. If the variables’ cardinalities and connectivities are
small, the resulting optimization problem can be solved, but writing down a general
solution does not appear to be trivial. The question of finding an efficient solution
in the general case is left for future investigation.

The work reported here raises new questions, some of which have been (partially)
answered elsewhere after the initial submission of this paper. The influence of
damping the BP update equations has been considered for the binary pairwise case
in [Mooij and Kappen, 2005a], where it was shown that damping has the most effect
for antiferromagnetic interactions. Furthermore, it has been proved in [Mooij and
Kappen, 2005a] that the bounds for BP convergence derived in the present work are
sharp in the case of binary variables with (anti)ferromagnetic pairwise interactions
and zero local fields, as suggested by figure 2.5. An extension of the results towards
sequential update schemes has been given in [Elidan et al., 2006]. Likewise, in [Taga
and Mase, 2006b] it is shown that Dobrushin’s condition is also valid for sequential
BP.
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2.A Generalizing the `1-norm

Let (Vi, ‖·‖i ) be a finite collection of normed vector spaces and let V =
⊕

i Vi be
the direct sum of the Vi. The function ‖·‖ : V → R defined by

‖v‖ :=
∑
i

‖vi‖i (2.55)

is a norm on V , as one easily checks. Let A : V → V be a linear mapping with
“blocks” Aij : Vj → Vi defined by

∀vj ∈ Vj : Avj =
∑
i

Aijvj , Aijvj ∈ Vi

for all j.

Theorem 2.17 The matrix norm of A induced by the vector norm ‖·‖ is given by:

‖A‖ = max
j

∑
i

‖Aij‖ji (2.56)

where
‖Aij‖ji := sup

v∈Vj ,
‖v‖j ≤1

‖Aijv‖i .

Proof. Let vk ∈ Vk such that ‖vk‖k = 1. Then

‖Avk‖ =

∥∥∥∥∥∑
i

Aikvk

∥∥∥∥∥ =
∑
i

‖Aikvk‖i ≤
∑
i

‖Aik‖ki ≤ max
j

∑
i

‖Aij‖ji .

Now let v ∈ V such that ‖v‖ = 1. Then v can be written as the convex combination
v =

∑
k ‖vk‖k ṽk, where

ṽk :=

{
vk
‖vk‖k if vk 6= 0

0 if vk = 0.

Hence:

‖Av‖ =

∥∥∥∥∥∑
k

‖vk‖k Aṽk
∥∥∥∥∥ ≤∑

k

‖vk‖k ‖Aṽk‖ ≤ max
j

∑
i

‖Aij‖ji .

It is evident that this value is also achieved for some v ∈ V with ‖v‖ = 1. �
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An illustrative example is obtained by considering V = RN to be the direct sum
of N copies of R with the absolute value as norm; then the norm (2.55) on RN is
simply the `1-norm and the induced matrix norm (2.56) reduces to (2.9).

Suppose that each Vi has a linear subspace Wi. We can consider the quotient
spaces Vi/Wi with quotient norms ‖·‖i . The direct sum W :=

⊕
iWi is itself a

subspace of V , yielding a quotient space V/W . For v ∈ V we have v =
∑
i vi and

hence V/W =
⊕

i(Vi/Wi). The quotient norm on V/W is simply the sum of the
quotient norms on the Vi/Wi:

‖v‖ := inf
w∈W

‖v + w‖ = inf
w∈W

∑
i

‖vi + wi‖i

=
∑
i

inf
wi∈Wi

‖vi + wi‖i =
∑
i

‖vi‖i .
(2.57)

Let A : V → V be a linear mapping such that AW ⊆ W . Then A induces a
linear A : V/W → V/W ; since AijWj ⊆ Wi, each block Aij : Vj → Vi induces a
linear Aij : Vj/Wj → Vi/Wi, and A can be regarded as consisting of the blocks Aij .

Corollary 2.18 The matrix norm of A : V/W → V/W induced by the quotient
norm ‖·‖ on V/W is: ∥∥A∥∥ = max

j

∑
i

∥∥Aij∥∥ji (2.58)

where ∥∥Aij∥∥ji = sup
v∈Vj ,
‖v‖j ≤1

∥∥Aijv∥∥i . (2.59)

Proof. We can directly apply the previous Theorem to the quotient spaces to
obtain (2.58); because

{v ∈ Vj/Wj : ‖v‖j ≤ 1} = {v ∈ Vj : ‖v‖j ≤ 1},

we have: ∥∥Aij∥∥ji := sup
v∈Vj/Wj

‖v‖j ≤1

∥∥Aijv∥∥i = sup
v∈Vj
‖v‖j ≤1

∥∥Aijv∥∥i .
�

For a linear A : V → V such that AW ⊆ W , we define the matrix |A| with
entries |A|ij :=

∥∥Aij∥∥ji . Let A,B be two such linear mappings; then

|AB|ij =
∥∥∥(AB)ij

∥∥∥j
i

=

∥∥∥∥∥∑
k

AikBkj

∥∥∥∥∥
j

i

≤
∑
k

∥∥AikBkj∥∥ji
≤
∑
k

∥∥Aik∥∥ki ∥∥Bkj∥∥jk =
∑
k

|A|ik |B|kj

hence |AB| ≤ |A| |B|. Note that ‖|A|‖1 =
∥∥A∥∥ . We can generalize Theorem 2.7

as follows:
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Theorem 2.19 Let f : V → V be differentiable and suppose that it satisfies (2.30).
Suppose further that |f ′(v)| ≤ A for some matrix Aij (which does not depend on v)
with ρ(A) < 1. Then for any v ∈ V/W , the sequence v, f(v), f

2
(v), . . . obtained by

iterating f converges to a unique fixed point v∞.

Proof. Using the chain rule, we have for any n ∈ N∗ and any v ∈ V :

∥∥∥(f
n
)′(v)

∥∥∥ =
∥∥∥(fn)′(v)

∥∥∥ =

∥∥∥∥∥
n∏
i=1

f ′
(
f i−1(v)

)∥∥∥∥∥ =

∥∥∥∥∥
∣∣∣∣∣
n∏
i=1

f ′
(
f i−1(v)

)∣∣∣∣∣
∥∥∥∥∥

1

≤
∥∥∥∥∥
n∏
i=1

∣∣f ′(f i−1(v)
)∣∣∥∥∥∥∥

1

≤ ‖An‖1 .

By the Gelfand Spectral Radius Theorem,
( ‖An‖1 )1/n → ρ(A) for n→∞. Choose

ε > 0 such that ρ(A) + ε < 1. For some N ,
∥∥AN∥∥

1
≤ (ρ(A) + ε)N < 1. Hence∥∥∥(fN)′(v)

∥∥∥ < 1 for all v ∈ V/W . By Lemma 2.3, f
N

is a contraction with respect
to the quotient norm on V/W . Now apply Lemma 2.6. �

2.B Proof that (2.43) equals (2.44)

Let ψβγ be a matrix of positive numbers. Let

H := {h : hβγ ≥ 0,
∑
β

∑
γ

hβγ = 1}.

Define the function g : H → R by

g(h) =
∑
β

∣∣∣∣∣∑
γ

hβγ

(
ψβγ∑

β

∑
γ ψβγhβγ

− 1

)∣∣∣∣∣ .
Theorem 2.20

sup
h∈H

g(h) = 2 sup
β 6=β′

sup
γ,γ′

tanh
(

1
4

log
ψβγ
ψβ′γ′

)
.

Proof. First note that we can assume without loss of generality that all ψβγ are
different, because of continuity. Define

ψ− := inf
βγ
ψβγ , ψ+ := sup

βγ
ψβγ ,

Ψ := [ψ−, ψ+], Ψ′ := Ψ \ {ψβγ : β, γ}.

For φ ∈ Ψ, define
Hφ := {h ∈ H :

∑
β,γ

ψβγhβγ = φ},
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which is evidently a closed convex set. The function

gφ : Hφ → R : h 7→
∑
β

∣∣∣∣∣∑
γ

hβγ

(
ψβγ
φ
− 1
)∣∣∣∣∣

obtained by restricting g to Hφ is convex. Hence it achieves its maximum on an
extremal point of its domain.

Define
H2 :=

{
h ∈ H : #{(β, γ) : hβγ > 0} = 2

}
as those h ∈ H with exactly two nonzero components. For h ∈ H2, define ψ−(h) :=
inf{ψβγ : hβγ 6= 0} and ψ+(h) := sup{ψβγ : hβγ 6= 0}. Because of continuity,
we can restrict ourselves to the φ ∈ Ψ′, in which case the extremal points of Hφ
are precisely H∗φ = Hφ ∩ H2 (i.e., the extremal points have exactly two nonzero
components).

Now

sup
h∈H

g(h) = sup
φ∈Ψ

sup
h∈Hφ

gφ(h) = sup
φ∈Ψ′

sup
h∈H∗φ

gφ(h)

= sup
h∈H2

sup
ψ−(h)≤φ≤ψ+(h)

gφ(h) = sup
h∈H2

g(h).

For those h ∈ H2 with components with different β, we can use the Lemma
below. The h ∈ H2 with components with equal β are suboptimal, since the two
contributions in the sum over γ in g(h) have opposite sign. Hence

sup
h∈H2

g(h) = 2 sup
β 6=β′

sup
γ,γ′

tanh
(

1
4

log
ψβγ
ψβ′γ′

)
.

�

Lemma 2.21 Let 0 < a < b. Then

sup
η∈(0,1)2

η1+η2=1

η1

∣∣∣∣ a

η1a+ η2b
− 1
∣∣∣∣+ η2

∣∣∣∣ b

η1a+ η2b
− 1
∣∣∣∣

= 2 tanh
(

1
4

log
b

a

)
= 2

√
b−√a√
b+
√
a
.

Proof. Elementary. The easiest way to see this is to reparameterize

η =
(

eν

2 cosh ν
,

e−ν

2 cosh ν

)
with ν ∈ (−∞,∞). �
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Chapter 3

BP and phase transitions

We analyze the local stability of the high-temperature fixed point of the Belief

Propagation (BP) algorithm and how this relates to the properties of the Bethe free

energy which BP tries to minimize. We focus on the case of binary variables with

pairwise interactions. In particular, we state sufficient conditions for convergence

of BP to a unique fixed point and show that these are sharp for purely ferromag-

netic interactions. In contrast, in the purely antiferromagnetic case, the undamped

parallel BP algorithm is suboptimal in the sense that the stability of the fixed point

breaks down much earlier than for damped or sequential BP, and we observe that

the onset of instability for those BP variants is directly related to the properties of

the Bethe free energy. For spin-glass interactions, damping BP only helps slightly.

We estimate analytically the temperature at which the high-temperature BP fixed

point becomes unstable for random graphs with arbitrary degree distributions and

random interactions.

3.1 Introduction

Techniques that were originally developed in the statistical physics of lattice models
are nowadays increasingly often and successfully applied in diverse application areas
such as information theory, coding theory, combinatorial optimization and machine
learning. A prominent example is the Bethe-Peierls approximation [Bethe, 1935;
Peierls, 1936], an extension of the ordinary Mean Field method that takes into
account correlations between nearest-neighbor sites. A more general and powerful
approximation scheme, which is also currently being used as a general inference
tool in applications in the aforementioned areas, is the Cluster Variation Method

This chapter is based on [Mooij and Kappen, 2005a] and earlier work reported in [Mooij and

Kappen, 2005c].



64 Chapter 3

(CVM) [Kikuchi, 1951; Pelizzola, 2005], also called Kikuchi approximation. The
CVM treats arbitrarily large clusters of sites exactly; the Bethe approximation can
be seen as the simplest nontrivial case (the pair approximation) of the Cluster
Variation Method.

The problems arising in the aforementioned application domains can often be
reformulated as inference problems on graphical models, i.e., as the calculation of
marginal probabilities of some probability distribution. Typically, this probability
distribution is proportional to a product of many factors, each factor depending on
only a few variables; this structure can be expressed in terms of a graph, hence the
name graphical model. An illustrative example can be found in image restoration
[Tanaka, 2002], where the 2D classical Ising model can be used to model features of
monochromatic images. The pixels in the image correspond to the Ising spins, the
local external fields correspond to observed, noisy pixels and the probability distri-
bution over different images corresponds to the equilibrium Boltzmann distribution
of the Ising model. The underlying graph is in this example the 2D rectangular
lattice, and the interactions between the nearest neighbors correspond to factors in
the probability distribution. By taking the interactions to be of the ferromagnetic
type, one can obtain a smoothing filter.

In statistical physics, one is predominantly interested in the thermodynamic
limit of infinitely large systems, and furthermore, in the case of disordered sys-
tems, one usually averages over a whole ensemble of such systems. In contrast, in
the applications in computer science the primary interest lies in the properties of
individual, finite systems—in the example above, one would be interested in in-
dividual images. Given the probability distribution, the task is then to calculate
marginal probabilities, which in principle amounts to performing a summation or in-
tegral. Unfortunately, the required computation time is generally exponential in the
number of variables, and the calculation quickly becomes infeasible for real-world
applications.

Therefore, one is often forced to use approximative methods, such as Monte
Carlo methods or “deterministic approximations”. A prominent example of the
latter category is the successful Belief Propagation algorithm [Pearl, 1988], which
was originally developed as a fast algorithm to calculate probabilities on graphical
models without loops (i.e., on trees), for which the results are exact. The same algo-
rithm can also be applied on graphs that contain loops, in which case the results are
approximate, and it is then often called Loopy Belief Propagation (LBP) to empha-
size the fact that the graph may contain loops. The results can be surprisingly good,
even for small graphs with many short loops, e.g., in the case of decoding error-
correcting codes [McEliece et al., 1998; Nishimori, 2001]. An important discovery
was that the BP algorithm in fact tries to minimize the Bethe free energy (more
precisely, fixed points of the BP algorithm correspond to stationary points of the
Bethe free energy) [Yedidia et al., 2001]. This discovery has lead to renewed interest
in the Bethe approximation and related methods and to cross-fertilization between
disciplines, a rather spectacular example of which is the Survey Propagation (SP)
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algorithm, which is now the state-of-the-art solution method for some difficult com-
binatorial optimization problems [Braunstein and Zecchina, 2004]. Other examples
are the generalizations of BP obtained by replacing the Bethe free energy by the
more complicated Kikuchi free energy, which has resulted in algorithms that are
much faster than the NIM algorithm developed originally by Kikuchi [Pelizzola,
2005].

This chapter is organized as follows. We start in section 3.2 with a brief review of
the Bethe approximation and the Belief Propagation algorithm, trying to combine
the two different points of view, namely the statistical physicist’s perspective and
the one found in machine learning and computer science. A notorious problem
plaguing applications of BP is the fact that it does not always converge to a fixed
point. With the aim of better understanding these convergence issues, in section
3.3 we discuss the local stability of BP fixed points, state “global” conditions for
convergence towards a unique fixed point, and discuss the stability of the high-
temperature Bethe free energy minimum. In section 3.4, we discuss qualitatively
how these properties are related and connect them with phase transitions in the
thermodynamic limit. In section 3.5, we quantify the results of the previous section
by estimating the phase-transition temperatures for random graphs with random
interactions.

This chapter is written primarily for statistical physicists, but we tried to make
it also understandable for readers with a background in computer science, which
may explain some seemingly redundant remarks.

3.2 The Bethe approximation and the BP algo-

rithm

3.2.1 The graphical model

Let G = (V, E) be an undirected labeled graph without self-connections, defined by
a set of vertices V = {1, . . . , N} and a set of undirected edges E ⊆ {{i, j} : 1 ≤
i < j ≤ N

}
. The adjacency matrix M corresponding to G is defined as follows:

Mij = 1 if {i, j} ∈ E and 0 otherwise. Denote by ∂i the set of neighbors of vertex
i, and the degree (connectivity) of vertex i by di := #(∂i) =

∑
j∈VMij .

To each vertex i ∈ V we associate a random variable xi (called a “spin”), taking
values in {−1,+1}. We put weights Jij on the edges {i, j}: let J be a real symmetric
N × N matrix that is compatible with the adjacency matrix M , i.e., Jij = 0 if
Mij = 0. Let θ ∈ RN be local “fields” (local “evidence”) acting on the vertices. We
will study the Boltzmann distribution corresponding to the Hamiltonian

H = −
∑
{i,j}∈E

Jijxixj −
∑
i∈V

θixi = −1
2

∑
i,j∈V

Jijxixj −
∑
i∈V

θixi, (3.1)
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i.e., the probability of the configuration x = (x1, . . . , xN ) ∈ {−1,+1}N is given by:

P(x) =
1
Z

exp

β ∑
{i,j}∈E

Jijxixj + β
∑
i∈V

θixi

 (3.2)

with β > 0 the inverse temperature and Z a normalization constant. The problem
that we would like to solve is calculating the first and second moments E (xi) and
E (xixj) under this distribution. In general, this is an NP-hard problem [Cooper,
1990], so in practice we often have to settle for approximations of these quantities.

The general model class that we have described above has been the subject of
numerous investigations in statistical physics. There one often takes a lattice as the
underlying graph G, or studies an ensemble of random graphs (including the fully-
connected SK model as a special case). The weights Jij and the local fields θi are
often taken to be i.i.d. according to some probability distribution (a special case is
where this probability distribution is a delta function—this corresponds to uniform,
deterministic interactions). In these cases one can take the thermodynamic limit
N →∞, which is the subject of investigation of the major part of statistical physics
studies (except for the studies of “finite-size effects”). Depending on these weight
distributions and on the graph structure, macroscopic order parameters can be
identified that distinguish between different phases, e.g., the ferromagnetic phase
for large positive weights or a spin-glass phase for weights that are distributed
around zero.

The probability distribution (3.2) is a special case of the class of probability
distributions over N discrete random variables (xi)Ni=1, with xi taking values in
some finite set Xi, that factorize as a product of factors (often called “potentials”
in computer science literature—not to be confused with the potentials in statistical
physics, which are essentially the logarithms of the factors) in the following way:

P(x) =
1
Z

∏
{i,j}∈E

ψij(xi, xj)
∏
i∈V

ψi(xi) (3.3)

with Z the normalization constant. These probability distributions are known in
machine learning as undirected graphical models (in this case consisting of N nodes
with pairwise potentials) or as Markov random fields. In fact, it is easy to see
that (3.2) is equivalent to (3.3) when all variables are binary (and the factors are
positive); in this case, equation (3.2) can obviously be written in the form of (3.3),
but the converse also holds. In contrast with statistical physics studies, the number
of variables is usually finite and one is interested in a single instance instead of the
properties of an ensemble of instances.

In the following three subsections, we describe the BP algorithm and the Bethe
approximation for the graphical model (3.3), and what is known about the relation
between the two.
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3.2.2 Bethe approximation

The calculation of properties such as marginals P(xi) of the probability distribution
(3.2) is an NP-hard problem [Cooper, 1990]. Only in cases with high symmetry (e.g.,
when all weights are equal and the field is uniform, i.e., Jij = J and θi = θ, and
the graph has a high permutation symmetry, such as translation symmetry in case
of a 2D rectangular lattice), or if N is small, or if the graph contains no cycles, it is
possible to calculate marginals exactly. In other cases, one has to use approximate
methods, such as Monte Carlo methods or “deterministic” approximation methods,
the simplest of which is the well-known Mean Field method. An extension of the
Mean Field method that treats pairs of neighboring spins exactly is the Bethe
approximation, also known as the Bethe-Peierls approximation [Bethe, 1935; Peierls,
1936].

The Bethe approximation consists of minimizing the Bethe free energy, which for
the factorizing probability distribution (3.3) is defined as the following functional
[Yedidia et al., 2001]:

FBethe
(
(bi)i∈V , (bij){i,j}∈E

)
=

∑
{i,j}∈E

∑
xi,xj

bij(xi, xj) log
bij(xi, xj)

ψij(xi, xj)ψi(xi)ψj(xj)

−
∑
i∈V

(di − 1)
∑
xi

bi(xi) log
bi(xi)
ψi(xi)

.

(3.4)

Its arguments, called beliefs, are single-node (pseudo)marginals bi(xi) and pairwise
(pseudo)marginals bij(xi, xj). The Bethe approximation is obtained by minimizing
the Bethe free energy (3.4) with respect to the beliefs under the following nonneg-
ativity, normalization and consistency constraints:

bi(xi) ≥ 0 ∀xi ∈ Xi (3.5a)

bij(xi, xj) ≥ 0 ∀xi ∈ Xi, ∀xj ∈ Xj (3.5b)∑
xi

bi(xi) = 1 (3.5c)∑
xi

bij(xi, xj) = bj(xj) (3.5d)

for all i ∈ V, j ∈ ∂i. The beliefs that minimize FBethe under these constraints are
then taken as approximations for the marginal distributions P(xi) and P(xi, xj).
The beliefs are the exact marginals if the underlying graph G contains no cycles
[Baxter, 1982]. Note that the local consistency constraints do not imply global
consistency of the beliefs in general, i.e., there does not always exist a probability
distribution b(x1, . . . , xN ) such that the beliefs are marginals of b.

The rationale for minimizing the Bethe free energy is that the Bethe free energy
is an approximate Gibbs free energy with an exact energy term and an approximate
entropy term (the entropy is approximated by a combination of single-node and
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pairwise entropies). Minimizing the exact Gibbs free energy would recover the
exact marginal distributions P(xi) and P(xi, xj), but this is infeasible in general;
minimizing its approximation, the Bethe free energy, gives approximations bi(xi)
and bij(xi, xj) to the exact marginal distributions.

3.2.3 BP algorithm

A popular and efficient algorithm for obtaining the Bethe approximation is Belief
Propagation (BP), also known under the names Sum-Product Algorithm [Kschis-
chang et al., 2001] and Loopy Belief Propagation [Pearl, 1988]. The adjective
“loopy” is used to emphasize the fact that the graph may contain cycles, in which
case the beliefs are usually only approximations of the exact marginals.

The BP algorithm consists of the iterative updating of a family of messages
(µi→j){i,j}∈E . The new message µ′i→j that vertex i sends to its neighbor j is given
in terms of all incoming messages by the following update rule [Yedidia et al., 2001]:1

µ′i→j(xj) ∝
∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈∂i\j
µk→i(xi), (3.6)

where one usually normalizes messages such that
∑
xj
µ′i→j(xj) = 1. The up-

date schedule can be chosen to be parallel (“flooding schedule”), sequential (“serial
schedule”) or random; the update schedule influences convergence properties.

If the messages (µi→j){i,j}∈E converge to some fixed point µ(∞), the approximate
marginal distributions (beliefs) (bi)i∈V and (bij){i,j}∈E are calculated by:

bi(xi) ∝ ψi(xi)
∏
k∈∂i

µ
(∞)
k→i(xi), (3.7)

bij(xi, xj) ∝ ψij(xi, xj)ψi(xi)ψj(xj)
∏

k∈∂i\j
µ

(∞)
k→i(xi)

∏
k∈∂j\i

µ
(∞)
k→j(xj). (3.8)

Note that these beliefs satisfy the constraints (3.5).
Unfortunately, BP does not always converge. It can get trapped in limit cycles,

or it can wander around chaotically, depending on the problem instance. This non-
robust behavior hampers application of BP as a “black box” inference algorithm.
Furthermore, there is some empirical evidence that if BP does not converge, the
quality of the Bethe approximation (which can also be obtained by using double-
loop algorithms [Heskes et al., 2003] that are guaranteed to converge, but are slower
than BP) is low. The analysis that we will perform in subsequent sections should
be seen as first steps in obtaining a better understanding of these issues.

3.2.4 The connection between BP and the Bethe approxima-

tion

Using Lagrange multipliers, one can prove [Yedidia et al., 2001] that the beliefs b(µ)
corresponding to a BP fixed point µ are a stationary point of the Bethe free energy

1Here and in the following, if X is a set, we write X \ i as a shorthand notation for X \ {i}.
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under the constraints (3.5). Conversely, a set of messages µ for which the corre-
sponding beliefs b(µ) are a stationary point of the constrained Bethe free energy,
are a fixed point of BP. In other words: stationary points of the Bethe free energy
correspond one-to-one to fixed points of BP.

It takes considerably more effort to prove that (locally) stable BP fixed points are
(local) minima of the constrained Bethe free energy [Heskes, 2004]. The converse
does not necessarily hold (as was already observed by Heskes [2004]), i.e., a minimum
of the Bethe free energy need not be a stable fixed point of BP. In that case, BP
cannot be used to obtain the Bethe approximation. We will see examples of this in
section 3.4.

3.3 Stability analysis for binary variables

From now on, we consider the special case (3.2) for which all variables are binary.
In this section, we derive conditions for the local stability of fixed points of par-
allel BP, in the undamped and damped cases. We state sufficient conditions for
the uniqueness of the fixed point and “global” convergence properties of parallel,
undamped BP. Finally, we discuss the properties of Bethe energy minima for binary
variables. In section 3.4 we will study the relations between those properties. We
will start with reformulating BP for the case of binary variables.

3.3.1 BP for binary variables

In the case of binary variables, we can parameterize each message µi→j by a single
real number. A canonical choice is to transform to the variables νi→j defined by

νi→j := tanh−1
(
µi→j(xj = 1)− µi→j(xj = −1)

)
. (3.9)

The BP update equations (3.6) can be written in terms of these new messages as:

tanh(ν′i→j) = tanh(βJij) tanh(βηi\j), (3.10)

where we defined the cavity field ηi\j by

βηi\j := βθi +
∑

k∈∂i\j
νk→i. (3.11)

Our usage of the term “cavity field” corresponds to that in [Mézard and Parisi,
2001] and is motivated by the fact that ηi\j is the effective field that acts on spin i
in the absence of spin j (under the assumption that the spins k ∈ ∂i are independent
in the absence of spin j).

The single-node beliefs bi(xi) can be parameterized by their means (“magneti-
zations”)

mi := Ebi (xi) =
∑
xi=±1

xibi(xi), (3.12)
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and the pairwise beliefs bij(xi, xj) can be parameterized by mi, mj and the second
order moment (“correlation”)

χij := Ebij (xixj) =
∑
xi=±1

∑
xj=±1

xixjbij(xi, xj). (3.13)

The beliefs (3.7) and (3.8) at a fixed point ν can then be written as:

mi = tanh(βηi\j + νj→i), (3.14)

χij = tanh
(
βJij + tanh−1

(
tanh(βηi\j) tanh(βηj\i)

))
. (3.15)

3.3.2 Local stability of undamped, parallel BP fixed points

For the parallel update scheme, we can consider the update mapping F : ν 7→ ν′

written out in components in (3.10). Its derivative (“Jacobian”) is given by:

F ′(ν) =
∂ν′i→j
∂νk→l

=
1− tanh2(βηi\j)

1− tanh2(βJij) tanh2(βηi\j)
tanh(βJij) 1∂i\j(k) δi,l

(3.16)

where 1 is the indicator function (i.e., 1X(x) = 1 if x ∈ X and 0 otherwise) and δ

the Kronecker delta function.
Let ν be a fixed point of parallel BP. We call ν locally stable if starting close

enough to the fixed point, BP will converge to it. A fixed point ν is locally stable if
all eigenvalues of the Jacobian F ′(ν) lie inside the unit circle in the complex plane
[Kuznetsov, 1988]:

ν is locally stable ⇐⇒ σ
(
F ′(ν)

) ⊆ {λ ∈ C : |λ| < 1}, (3.17)

where σ(F ′) denotes the spectrum (set of eigenvalues) of the matrix F ′. If at least
one eigenvalue lies outside the unit circle, the fixed point is unstable.

3.3.3 Local stability conditions for damped, parallel BP

The BP equations can in certain cases lead to oscillatory behavior, which may be
remedied by damping the update equations. This can be done by replacing the
update map F : ν 7→ ν′ by the convex combination Fε := (1− ε)F + εI of F and the
identity I, for damping strength 0 ≤ ε < 1. Fixed points of F are also fixed points
of Fε and vice versa. The spectrum of the local stability matrix of the damped BP
update mapping becomes:

σ(F ′ε(ν)) = (1− ε)σ(F ′(ν)) + ε.

In words, all eigenvalues of the local stability matrix without damping are simply
interpolated with the value 1 for damped BP. It follows that the condition for (local)
stability of a fixed point ν under arbitrarily large damping is given by

ν is stable under Fε for some damping strength ε ∈ [0, 1)

⇐⇒ σ
(
F ′(ν)

) ⊆ {λ ∈ C : <λ < 1}, (3.18)
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i.e., all eigenvalues of F ′(ν) should have real part smaller than 1.
Note that conditions (3.17) and (3.18) do not depend on the chosen parameter-

ization of the messages. In other words, the local stability of the BP fixed points
does not depend on whether one uses µ messages or ν messages, or some other
parameterization, i.e., the choice made in (3.9) has no influence on the results, but
it does simplify the calculations.

3.3.4 Uniqueness of BP fixed points and convergence

The foregoing conditions are local and by themselves are not strong enough for
drawing conclusions about global behavior, i.e., whether or not BP will converge
for any initial set of messages.

In [Mooij and Kappen, 2005b] we have derived sufficient conditions for the
uniqueness of the BP fixed point and convergence of undamped, parallel BP to
the unique fixed point, irrespective of the initial messages. For the binary case, our
result can be stated as follows:2

Theorem 3.1 If the spectral radius3 of the square matrix

Ai→j,k→l := tanh(β |Jij |)δi,l1∂i\j(k) (3.19)

is strictly smaller than 1, undamped parallel BP converges to a unique fixed point,
irrespective of the initial messages.

Proof. See Corollary 2.8. �

Note that the matrix A, and hence the sufficient condition, depends neither on the
fields θi, nor on the sign of the weights Jij .

These conditions are sufficient, but by no means necessary, as we will see in the
next section. However, for ferromagnetic interactions without local fields, they are
sharp, as we will prove later on. First we discuss some properties of the Bethe free
energy that we will need in section 3.4.

2An equivalent result but formulated in terms of an algorithm was derived independently in

[Ihler et al., 2005a].
3The spectral radius ρ(A) of a matrix A is defined as ρ(A) := sup |σ(A)|, i.e., it is the largest

absolute value of the eigenvalues of A.
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3.3.5 Properties of the Bethe free energy for binary variables

For the case of binary variables, the Bethe free energy (3.4) can be parameterized
in terms of the means mi = Ebi (xi) and correlations χij = Ebij (xixj); it becomes:

FBethe(m,χ) = −β
∑
{i,j}∈E

Jijχij − β
∑
i∈V

θimi

+
∑
i∈V

(1− di)
∑
xi=±1

S

(
1 +mixi

2

)
+

∑
{i,j}∈E

∑
xi=±1

∑
xj=±1

S

(
1 +mixi +mjxj + xixjχij

4

) (3.20)

where S(x) := x log x. The constraints (3.5) can be formulated in terms of the
means and correlations as:

− 1 ≤ mi ≤ 1,

− 1 ≤ χij ≤ 1,

1 +miσ +mjσ
′ + χijσσ

′ ≥ 0 for all σ, σ′ = ±1.

The stationary points of the Bethe free energy (3.20) are the points where the
derivative of (3.20) vanishes; this yields the following equations:

0 =
∂FBethe
∂mi

= −βθi + (1− di) tanh−1mi +

+ 1
4

∑
j∈∂i

log
(1 +mi +mj + χij)(1 +mi −mj − χij)
(1−mi +mj − χij)(1−mi −mj + χij)

.
(3.21)

0 =
∂FBethe
∂χij

= −βJij + 1
4 log

(1 +mi +mj + χij)(1−mi −mj + χij)
(1 +mi −mj − χij)(1−mi +mj − χij) . (3.22)

The last equation has a unique solution χij as a function of mi and mj [Welling
and Teh, 2001].

From now on we consider the special case of vanishing local fields (i.e., θi = 0)
in the interest of simplicity. Note that in this case, the BP update equations (3.10)
have a trivial fixed point, namely νi→j = 0. The corresponding beliefs have mi = 0
and χij = tanh(βJij), as follows directly from (3.14) and (3.15); of course, this also
follows from (3.21) and (3.22). We call this fixed point the paramagnetic fixed point
(or the high-temperature fixed point to emphasize that it exists if the temperature
is high enough, i.e., for β small enough).

Whether the paramagnetic stationary point of the Bethe free energy is indeed
a minimum depends on whether the Hessian of FBethe is positive-definite. The
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Hessian at the paramagnetic stationary point is given by:

∂2FBethe
∂mj∂mi

= δij

(
1 +

∑
k∈∂i

χ2
ik

1− χ2
ik

)
+Mij

−χij
1− χ2

ij

=: Uij , (3.23)

∂2FBethe
∂mk∂χij

= 0,

∂2FBethe
∂χkl∂χij

= δ{i,j},{k,l}
1

1− χ2
ij

.

The Hessian is of block-diagonal form; the χ-block is always positive-definite, hence
the Hessian is positive-definite if and only if the the m-block (Uij) is positive-
definite. This depends on the weights Jij and on the graph structure; for β small
enough (i.e., high temperature), this is indeed the case. A consequence of the
positive-definiteness of the Hessian of the Bethe free energy is that the approximate
covariance matrix, given by U−1, is also positive-definite.

3.4 Phase transitions

In this section we discuss various phase transitions that may occur, depending on
the distribution of the weights Jij . We take the local fields θi to be zero. Our usage
of the term “phase transition” is somewhat inaccurate, since we actually mean the
finite-N manifestations of the phase transition in the Bethe approximation and in
the dynamical behavior of the BP algorithm, instead of the common usage of the
word, which refers to the N →∞ behavior of the exact probability distribution. We
believe that, at least for the ferromagnetic and spin-glass phase transitions, these
different notions coincide in the N →∞ limit.

3.4.1 Ferromagnetic interactions

Consider the case of purely ferromagnetic interactions, by which we mean that all
interactions Jij are positive. In that case, the local BP stability matrix F ′(0) at
the trivial fixed point, given by

F ′(0) = tanh(βJij)1∂i\j(k)δi,l (3.24)

is equal to the matrix A in Theorem 3.1. For high temperature (i.e., small β), the
paramagnetic fixed point is locally stable, as is evident from (3.24). Theorem 3.1
guarantees that this is the only BP fixed point and that parallel undamped BP will
converge to it. When we gradually lower the temperature (i.e., increase β), at a
sudden point the paramagnetic BP fixed point generally becomes unstable. This
seems to hold for all graphs that have more than one cycle. By a generalization
of Perron’s theorem (Theorem 3.3 in the appendix), the eigenvalue of the matrix
F ′(0) (which has positive entries) with the largest absolute value is actually positive.
This property of the spectrum can be clearly seen in figure 3.1.I(a), where most
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eigenvalues are distributed in a roughly circular form, except for one outlier on
the positive real axis. Thus the onset of instability of the paramagnetic BP fixed
point coincides with this outlier crossing the complex unit circle; the paramagnetic
fixed point bifurcates and two new stable fixed points arise, describing the two
ferromagnetic states. Since A = F ′(0), we conclude that the sufficient condition in
Theorem 3.1 for convergence to a unique fixed point is sharp in this case.

At high temperature, the corresponding stationary point of the Bethe free en-
ergy is a minimum. However, as illustrated in figure 3.1.II(a), at a certain critical
temperature the Hessian is no longer positive-definite. In the appendix, we prove
the following theorem:

Theorem 3.2 For Jij ≥ 0 and θi = 0, the critical temperature at which the para-
magnetic Bethe free energy minimum disappears is equal to the critical temperature
at which the paramagnetic BP fixed point becomes unstable.

Proof. See appendix. �

Beyond the transition temperature, BP converges to either of the two new fixed
points describing the two ferromagnetic phases. As can be seen in figure 3.1.III(a),
the number of BP iterations needed for convergence has a peak precisely at the
critical temperature; far from the phase transition, BP converges rapidly to a stable
fixed point.

3.4.2 Antiferromagnetic interactions

For purely antiferromagnetic interactions, i.e., all Jij < 0, the situation is different.
Again, for high temperature, the paramagnetic fixed point is the unique fixed point,
is locally stable and has the complete message space as an attractor. Since the local
stability matrix F ′(0) is exactly the same as in the ferromagnetic case, except for
the minus sign (as can be seen in figure 3.1.I(b)), the local stability of the trivial
fixed point is invariant under a sign change J 7→ −J. Hence the paramagnetic
fixed point becomes locally unstable for undamped BP exactly at the same temper-
ature as in the ferromagnetic case (for fixed weight strengths |Jij |). However, the
spectral radius of F ′(0) is now determined by a negative eigenvalue. Hence in this
case damping helps to some extent. Empirically, we find that changing the update
scheme from parallel to sequential also helps, as illustrated by the dotted line in
figure 3.1.III(b). Note that the temperature where sequential BP stops converging
roughly coincides with the minimum of the smallest eigenvalue of U (compare fig-
ures 3.1.II(b) and 3.1.III(b)). This observation seems to be generic, i.e., not just a
coincidence for the particular instance in figure 3.1. We have no theoretical expla-
nation for this at the moment, but it might be possible to get such an explanation
by relating U with F ′(0), using a technique similar to the one applied in the proof
of Theorem 3.2 given in the appendix.
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Figure 3.1: From top to bottom: (I) spectrum of the local BP stability matrix F ′ at the

trivial fixed point ν = 0, for β = 1; (II) minimal eigenvalue of Uij = ∂2FBethe/∂mi∂mj

at the paramagnetic solution, as a function of inverse temperature β; (III) number of

undamped, parallel BP iterations needed for convergence as a function of inverse tem-

perature β (dotted line in antiferromagnetic case shows the number of iterations for a

sequential update scheme). From left to right: (a) ferromagnetic interactions J = M (b)

antiferromagnetic interactions J = −M ; (c) spin-glass interactions J = ±M with equal

probability for positive or negative interaction. The underlying graph G is a random graph

with Poissonian degree distribution, N = 50 and average degree d = 4; the local fields are

zero.

3.4.3 Spin-glass interactions

Now consider spin-glass interactions, i.e., all Jij are distributed around 0 such that
〈Jij〉 ≈ 0. This case is illustrated in figure 3.1(c). Here the eigenvalues of the
local stability matrix are distributed in a roughly circular form, without an outlier
with a large absolute value. Note the surprising similarity between the spectra in
the different cases; we have no explanation for this similarity, nor for the roughly
circular form of the distribution of the majority of the eigenvalues.

Although the paramagnetic Bethe free energy minimum generally does not dis-
appear when lowering the temperature, BP does not converge anymore once the
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trivial fixed point becomes unstable, despite the possible existence of other, stable,
fixed points. Neither damping nor changing the update scheme seems to help in
this case. Empirically we find that the temperature at which the trivial BP fixed
point becomes locally unstable roughly coincides with the temperature at which the
lowest eigenvalue of U attains its minimal value [Mooij and Kappen, 2005c]. Again,
we have no theoretical explanation for this observation.

3.5 Estimates of phase-transition temperatures

In this section we estimate the critical temperatures corresponding to the onset of
instability of the BP paramagnetic fixed point (which we discussed qualitatively in
the previous section) for a random graph with random interactions. The method is
closely related to the cavity method at the replica-symmetric level (see e.g., [Mézard
et al., 1987; Mézard and Parisi, 2001; Wemmenhove et al., 2004]). A similar analysis
of the stability of the BP paramagnetic fixed point has been done by Kabashima
[Kabashima, 2003]; however, the results reported in that work are limited to the
case of infinite connectivity (i.e., the limit N → ∞, d → ∞). In this case, the
results turn out to be identical to the condition of replica symmetry breaking (the
“AT line”) derived by de Almeida and Thouless [1978]. The analysis we present
below essentially extends the analysis of Kabashima [2003] to the larger class of
arbitrary degree distribution random graphs, which includes Erdős-Rényi graphs
(with Poissonian degree distribution, as well as fixed degree random graphs) and
power-law graphs (which have power-law degree distributions), amongst others.

3.5.1 Random graphs with arbitrary degree distributions

We consider arbitrary degree distribution random graphs [Newman et al., 2001].
This class of random graphs has a prescribed expected degree distribution P(d);
apart from that they are completely random. Given an expected degree distribution
P(d) and the number of nodes N , a particular sample of the corresponding ensemble
of random graphs can be constructed as follows: for each node i, independently draw
an expected degree δi from the degree distribution P(d). Then, for each pair of nodes
(i, j), independently connect them with probability δiδj/

∑
i δi; the expected degree

of node i is then indeed 〈di〉 = δi. We define the average degree 〈d〉 :=
∑
d P(d)d

and the second moment
〈
d2
〉

:=
∑
d P(d)d2.

We consider the case of vanishing local fields (i.e., θi = 0) and draw the weights
Jij independently from some probability distribution P(J). We also assume that
the weights are independent of the graph structure.

3.5.2 Estimating the PA-FE transition temperature

Assume P(d) to be given and N to be large. Assume that v is an eigenvector with
eigenvalue 1 of F ′(0), the Jacobian of the parallel BP update at the paramagnetic
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fixed point ν = 0. Using (3.16) and writing ij instead of i→ j for brevity, we have:

vij =
∑
kl

(
F ′(0)

)
ij,kl

vkl = tanh(βJij)
∑

k∈∂i\j
vki. (3.25)

Consider an arbitrary spin i; conditional on the degree di of that spin, we can
calculate the expected value of vij as follows:

E (vij | di) = E
(

tanh(βJij)
∑
k∈∂i\j vki | di

)
(3.26a)

= E (tanh(βJij)) E
(∑

k∈∂i\j vki | di
)

(3.26b)

= 〈tanhβJ〉 (di − 1)
∑
dk

P(dk | di, k ∈ ∂i)E (vki | di, dk) (3.26c)

≈ 〈tanhβJ〉 (di − 1)
∑
dk

P(dk | di, k ∈ ∂i)E (vki | dk) (3.26d)

using, subsequently: (a) equation (3.25); (b) the independence of the weights from
the graph structure; (c) conditioning on the degree dk of spin k and the equivalence
of the various k ∈ ∂i \ j; and finally, (d) neglecting the correlation between vki and
di, given dk. We have no formal argument for the validity of this approximation,
but the result accurately describes the outcomes of numerical experiments.

For arbitrary degree distribution random graphs, the probability of dk given the
degree di and the fact that k is a neighbor of i is given by (see [Newman et al.,
2001]):

P(dk | di, k ∈ ∂i) =
dkP(dk)
〈d〉 . (3.27)

Hence we obtain the relation

E (vij | di) = 〈tanhβJ〉 (di − 1)
∑
dk

dkP(dk)
〈d〉 E (vki | dk)

A self-consistent nontrivial solution of these equations is

E (vij | di) ∝ (di − 1),

provided that

1 = 〈tanhβJ〉
(〈

d2
〉

〈d〉 − 1

)
. (3.28)

This gives us the critical temperature at which the paramagnetic–ferromagnetic
phase transition occurs, or in other words, where the paramagnetic BP fixed point
undergoes a pitchfork bifurcation. This result is identical to the one obtained by
the replica method in the replica-symmetric setting [Leone et al., 2002] and to the
one found by applying the cavity method [Wemmenhove et al., 2004], as expected.
Figure 3.2 illustrates the estimate; note that the accuracy is quite high already for
low N (N = 50 in this case), for higher N it becomes even better.
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Extending the analysis to the case of non-vanishing local fields does not appear
to be straightforward, since in that case the value of the fixed point ν is not known.
However, since the elements of F ′(0) are upper bounds for the elements of F ′(ν),
we can at least conclude qualitatively that in the case of non-vanishing local fields,
the transition temperature will be lower.

3.5.3 The antiferromagnetic case

This is similar to the ferromagnetic case, however the eigenvalue is now −1 instead
of +1. This yields the following equation for the transition temperature:

1 = 〈tanh(−βJ)〉
(〈

d2
〉

〈d〉 − 1

)
. (3.29)

As can be seen in figure 3.2, again the prediction turns out to be quite accurate.

3.5.4 Estimating the PA-SG transition temperature

For the paramagnetic–spin-glass phase transition, we can perform a similar calcula-
tion, now assuming that v is an eigenvector with eigenvalue λ on the complex unit
circle:

E
(
|vij |2 | di

)
= E

(
|tanh(βJij)|2

∣∣∣∑k∈∂i\j vki
∣∣∣2 | di)

=
〈
tanh2(βJ)

〉
E
(∣∣∣∑k∈∂i\j vki

∣∣∣2 | di)
≈ 〈tanh2(βJ)

〉
E
(∑

k∈∂i\j |vki|2 | di
)

≈ 〈tanh2(βJ)
〉

(di − 1)
∑
dk

P(dk | di, k ∈ ∂i)E
(
|vki|2 | dk

)
,

where, in addition to the assumptions in the PA-FE case, we assumed that the
correlations between the various vki can be neglected. Again, we can only motivate
this assumption in that it appears to give correct results.

Using relation (3.27), we find a nontrivial self-consistent solution

E
(
|vij |2 | di

)
∝ (di − 1),

if the following equation holds:

1 =
〈
tanh2(βJ)

〉(〈d2
〉

〈d〉 − 1

)
. (3.30)

This result is again identical to the one obtained by the cavity method [Wemmen-
hove et al., 2004], as expected. As illustrated in figure 3.2 (the dashed line), the
accuracy is somewhat less than that of the ferromagnetic transition, but is never-
theless quite good, even for N = 50.
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Figure 3.2: Onset of instability of the paramagnetic BP fixed point, for random graphs

with N = 50 and a Poissonian degree distribution with d = 10. The weights Jij are

independently drawn from a Gaussian distribution with mean J0 and variance J2. The

solid thick lines show the expected value for the (anti)ferromagnetic transitions (3.28) and

(3.29), the dashed thick line for the spin-glass transition (3.30). The dots show for indi-

vidual instances at which temperature the paramagnetic fixed point becomes unstable, for

undamped BP (left) and for damped BP (right). The lines in the right graph (the damped

case) are for reference only, they should not be interpreted as theoretical predictions,

except for the ferromagnetic transition (the solid line on the right-hand side).

For completeness we would like to state that the numerical results reported in
[Mooij and Kappen, 2005c], in which we numerically studied the behavior of the
lowest eigenvalue of U , are accurately described by the predictions (3.28) and (3.30),
which supports the hypothesis that these notions coincide in the N →∞ limit.

3.6 Conclusions

We have derived conditions for the local stability of parallel BP fixed points, both in
the undamped and damped case for binary variables with pairwise interactions. We
have shown how these relate to the sufficient conditions for uniqueness of the BP
fixed point and convergence to this fixed point. In particular, we have shown that
these sufficient conditions are sharp in the ferromagnetic case, exactly describing
the pitchfork bifurcation of the paramagnetic fixed point into two ferromagnetic
fixed points. For undamped BP, the local stability of the paramagnetic fixed point
(for vanishing local fields) is invariant under a sign change of the interactions. For
antiferromagnetic interactions, parallel undamped BP stops converging at the PA-
FE transition temperature. Damping or using a sequential update scheme remedies
this defect. However, although the paramagnetic minimum of the Bethe free energy
does not disappear, the trivial fixed point becomes locally unstable even for damped
BP at roughly the PA-SG transition temperature. Finally, for interactions that
are dominantly of the spin-glass type, using damping only marginally extends the
domain of convergence of BP.
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We estimated the PA-FE transition temperature and the PA-SG transition tem-
perature for arbitrary degree distribution random graphs. The results are in good
agreement with numerical simulations. How this relates to the AT line is an open
question and beyond the scope of this work.

We believe that the case that we have considered in detail in this work, namely
vanishing local fields θi = 0, is actually the worst-case scenario: numerically it turns
out that adding local fields helps BP to converge more quickly. We have no proof
for this conjecture at the moment; the local fields make an analytical analysis more
difficult and we have not yet been able to extend the analysis to this more general
setting. We leave the generalization to nonzero local fields as possible future work.
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3.A Proof of Theorem 3.2

For a square matrix A, we write A ≥ 0 iff all entries of A are nonnegative. σ(A) is the
set of all eigenvalues of A, ρ(A) is the spectral radius of A, i.e., ρ(A) := max |σ(A)|.
We will use the following generalization of Perron’s theorem:

Theorem 3.3 If A ≥ 0, then the spectral radius ρ(A) ∈ σ(A) and there exists an
associated eigenvector v ≥ 0 such that Av = ρ(A)v.

Proof. See [Meyer, 2000, p. 670]. �

Applying this theorem to the matrix A defined in (3.19), we deduce the existence
of an eigenvector v ≥ 0 with Av = ρ(A)v. Writing tij := tanh(β |Jij |) and λ :=
ρ(A), we derive:

vij = λ−1tij

(∑
k∈∂i

vki − vji
)

= λ−1tij

∑
k∈∂i

vki − λ−1tji

∑
k∈∂j

vkj − vij
 .

Defining Vi :=
∑
k∈∂i vki, we obtain by summing over i ∈ ∂j:

Vj =
∑
i∈∂j

λ
tij

λ2 − tijtjiVi −
∑
i∈∂j

tijtji
λ2 − tijtjiVj ,

i.e., V is an eigenvector with eigenvalue 1 of the matrix

Mij
ρ(A) tanh(β |Jij |)

ρ(A)2 − tanh2(β |Jij |)
− δij

∑
k∈∂i

tanh2(β |Jik|)
ρ(A)2 − tanh2(β |Jik|)

. (3.31)
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Now, if all Jij are positive, and if ρ(A) = 1, this matrix is exactly I−U , where Uij
is defined in (3.23). Hence, since in this case A = F ′(0), the critical temperature at
which the paramagnetic BP fixed point becomes unstable coincides with the matrix
I − U having an eigenvalue 1, or in other words U having eigenvalue 0. Thus the
onset of instability of the paramagnetic BP fixed point in this case exactly coincides
with the disappearance of the paramagnetic Bethe free energy minimum.
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Chapter 4

Loop Corrections

We propose a method to improve approximate inference methods by correcting for

the influence of loops in the graphical model. The method is a generalization and

alternative implementation of a recent idea from Montanari and Rizzo [2005]. It is

applicable to arbitrary factor graphs, provided that the size of the Markov blankets

is not too large. It consists of two steps: (i) an approximate inference method, for

example, Belief Propagation, is used to approximate cavity distributions for each

variable (i.e., probability distributions on the Markov blanket of a variable for a

modified graphical model in which the factors involving that variable have been

removed); (ii) all cavity distributions are improved by a message-passing algorithm

that cancels out approximation errors by imposing certain consistency constraints.

This Loop Correction (LC) method usually gives significantly better results than

the original, uncorrected, approximate inference algorithm that is used to estimate

the effect of loops. Indeed, we often observe that the loop-corrected error is approx-

imately the square of the error of the uncorrected approximate inference method.

In this chapter, we compare different variants of the Loop Correction method with

other approximate inference methods on a variety of graphical models, including

“real world” networks, and conclude that the LC method generally obtains the

most accurate results.

4.1 Introduction

In recent years, much research has been done in the field of approximate inference on
graphical models. One of the goals is to obtain accurate approximations of marginal
probabilities of complex probability distributions defined over many variables, using

This chapter is based on [Mooij and Kappen, 2007a], the extended version of [Mooij et al.,

2007].
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limited computation time and memory. This research has led to a large number of
approximate inference methods. Apart from sampling (“Monte Carlo”) methods,
there is a large number of “deterministic” approximate inference methods, such as
variational methods (for example, the Mean Field method [Parisi, 1988]), and a
family of algorithms that are in some way related to the highly successful Belief
Propagation (BP) algorithm [Pearl, 1988]. BP is also known as the “Sum-Product
Algorithm” [Kschischang et al., 2001] and as “Loopy Belief Propagation” and is
directly related to the Bethe approximation [Bethe, 1935; Yedidia et al., 2005] from
statistical physics. It is well-known that Belief Propagation yields exact results if
the graphical model is a tree, or, more generally, if each connected component is
a tree. If the graphical model does contain loops, BP can still yield surprisingly
accurate results using little computation time. However, if the influence of loops is
large, the approximate marginals calculated by BP can have large errors and the
quality of the BP results may not be satisfactory.

One way to correct for the influence of short loops is to increase the cluster size
of the approximation, using the Cluster Variation Method (CVM) [Pelizzola, 2005]
or other region-based approximation methods [Yedidia et al., 2005]. These methods
are related to the Kikuchi approximation [Kikuchi, 1951], a generalization of the
Bethe approximation using larger clusters. Algorithms for calculating the CVM
and related region-based approximation methods are Generalized Belief Propaga-
tion (GBP) [Yedidia et al., 2005] and double-loop algorithms that have guaranteed
convergence [Yuille, 2002; Heskes et al., 2003]. By choosing the (outer) clusters
such that they subsume as many loops as possible, the BP results can be improved.
However, choosing a good set of outer clusters is highly nontrivial, and in general
this method will only work if the clusters do not have many intersections, or in
other words, if the loops do not have many intersections [Welling et al., 2005].

Another method that corrects for loops to a certain extent is TreeEP [Minka and
Qi, 2004], a special case of Expectation Propagation (EP) [Minka, 2001]. TreeEP
does exact inference on the base tree, a subgraph of the graphical model which has
no loops, and approximates the other interactions. This corrects for the loops that
consist of part of the base tree and exactly one additional factor. TreeEP yields
good results if the graphical model is dominated by the base tree, which is the case
in very sparse models. However, loops that consist of two or more interactions that
are not part of the base tree are approximated in a similar way as in BP. Hence,
for denser models, the improvement of TreeEP over BP usually diminishes.

In this chapter we propose a method that takes into account all the loops in the
graphical model in an approximate way and therefore obtains more accurate results
in many cases. Our method is a variation on the theme introduced by Montanari
and Rizzo [2005]. The basic idea is to first estimate the “cavity distributions”
of all variables and subsequently improve these estimates by canceling out errors
using certain consistency constraints. A cavity distribution of some variable is the
probability distribution on its Markov blanket (all its neighboring variables) for
a modified graphical model, in which all factors involving that variable have been
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removed. The removal of the factors breaks all the loops in which that variable takes
part. This allows an approximate inference algorithm to estimate the strength of
these loops in terms of effective interactions or correlations between the variables
of the Markov blanket. Then, the influence of the removed factors is taken into
account, which yields accurate approximations to the probability distributions of
the original graphical model. Even more accuracy is obtained by imposing certain
consistency relations between the cavity distributions, which results in a cancellation
of errors to some extent. This error cancellation is done by a message-passing
algorithm which can be interpreted as a generalization of BP in case the factor
graph does not contain short loops of four nodes; indeed, assuming that the cavity
distributions factorize (which they do in case there are no loops), the BP results are
obtained. On the other hand, using better estimates of the effective interactions in
the cavity distributions yields accurate loop-corrected results.

Although the basic idea underlying our method is very similar to that described
in [Montanari and Rizzo, 2005], the alternative implementation that we propose here
offers two advantages. Most importantly, it is directly applicable to arbitrary factor
graphs, whereas the original method has only been formulated for the rather special
case of graphical models with binary variables and pairwise factors, which excludes,
for example, many interesting Bayesian networks. Furthermore, our implementation
appears to be more robust and also gives improved results for relatively strong
interactions, as will be shown numerically.

This chapter is organized as follows. First we explain the theory behind our
proposed method and discuss the differences with the original method by Montanari
and Rizzo [2005]. Then we report extensive numerical experiments regarding the
quality of the approximation and the computation time, where we compare with
other approximate inference methods. Finally, we discuss the results and state
conclusions.

4.2 Theory

In this work, we consider graphical models such as Markov random fields and
Bayesian networks. We use the general factor graph representation since it allows for
formulating approximate inference algorithms in a unified way [Kschischang et al.,
2001]. In the next subsection, we introduce our notation and basic definitions.

4.2.1 Graphical models and factor graphs

Consider N discrete random variables (xi)i∈V with V := {1, . . . , N}. Each variable
xi takes values in a discrete domain Xi. We will use the following multi-index
notation: for any subset I ⊆ V, we write xI := (xi1 , xi2 , . . . , xim) ∈ XI := Xi1 ×
Xi2×· · ·×Xim if I = {i1, i2, . . . , im} and i1 < i2 < . . . im. We consider a probability
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distribution over x = (x1, . . . , xN ) that can be written as a product of factors (also
called “interactions”) ψI :

P(x) =
1
Z

∏
I∈F

ψI(xNI ), Z =
∑
x

∏
I∈F

ψI(xNI ). (4.1)

For each factor index I ∈ F , there is an associated subset NI ⊆ V of variable
indices and the factor ψI is a nonnegative function ψI : XNI → [0,∞). For a
Bayesian network, the factors are (conditional) probability tables. In case of Markov
random fields, the factors are often called potentials (not to be confused with sta-
tistical physics terminology, where “potential” refers to − 1

β logψI instead, with β

the inverse temperature). Henceforth, we will refer to a triple
(V,F , (ψI)I∈F) that

satisfies the description above as a discrete graphical model (or network).
In general, the normalizing constant Z is not known and exact computation of Z

is infeasible, due to the fact that the number of terms to be summed is exponential
in N . Similarly, computing marginal distributions P(xJ) of P(xV) for subsets of
variables J ⊆ V is intractable in general. In this chapter, we focus on the task of
accurately approximating single-variable marginals P(xi) =

∑
xV\{i}

P(xV).
We can represent the structure of the probability distribution (4.1) using a factor

graph. This is a bipartite graph, consisting of variable nodes i ∈ V and factor nodes
I ∈ F , with an edge between i and I if and only if i ∈ NI , that is, if the factor ψI
depends on xi. We will represent factor nodes visually as rectangles and variable
nodes as circles. See figure 4.1(a) for an example of a factor graph. The neighbors of
a factor node I ∈ F are precisely the variables NI , and the neighbors Ni of a variable
node i ∈ V are the factors that depend on that variable, i.e., Ni := {I ∈ F : i ∈ NI}.
Further, we define for each variable i ∈ V the set ∆i :=

⋃
I∈Ni NI consisting of all

variables that appear in some factor in which variable i participates, and the set
∂i := ∆i \ {i}, the Markov blanket of i.

In the following, we will often abbreviate the set theoretical notation X \Y (i.e.,
all elements in X that are not in Y ) by \Y if it is obvious from the context what the
set X is. Also, we will write X \y instead of X \{y}. Further, we will use lowercase
for variable indices and uppercase for factor indices. For convenience, we will define
for any subset F ⊂ F the product ΨF of the corresponding factors {ψI : I ∈ F}:

ΨF (x(
S
I∈F NI)) :=

∏
I∈F

ψI(xNI ).

4.2.2 Cavity networks and loop corrections

The notion of a cavity stems from statistical physics, where it was used originally
to calculate properties of random ensembles of certain graphical models [Mézard
et al., 1987]. A cavity is obtained by removing one variable from the graphical
model, together with all the factors in which that variable participates.

In our context, we define cavity networks as follows (see also figure 4.1):
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(a) Original factor graph
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Figure 4.1: (a) Original factor graph, with variables nodes V = {i, j, k, l,m, n, o}
and factor nodes F = {I, J,K,L,M,O} and corresponding probability distribution

P(x) = 1
Z
ψL(xj , xn, xo)ψI(xi, xj)ψM (xj , xk)ψK(xi, xm, xn)ψJ(xi, xk, xl)ψO(xl, xm); (b)

Factor graph corresponding to the cavity network of variable i, obtained by removing

variable i and the factor nodes that contain i (i.e., I, J and K). The Markov blanket

of i is ∂i = {j, k, l,m, n}. The cavity distribution Z\i(x∂i) is the (unnormalized) mar-

ginal on x∂i of the probability distribution corresponding to the cavity graph (b), i.e.,

Z\i(xj , xk, xl, xm, xn) =
P
xo
ψL(xj , xn, xo)ψM (xj , xk)ψO(xl, xm).

Definition 4.1 Given a graphical model
(V,F , (ψI)I∈F) and a variable i ∈ V, the

cavity network of variable i is defined as the graphical model obtained by removing
i and all factors depending on i, i.e.,

(V \ i,F \Ni, (ψI)I∈F\Ni).
The probability distribution corresponding to the cavity network of variable i is
thus proportional to:

Ψ\Ni(x\i) =
∏
I∈F
i 6∈I

ψI(xNI ).

Summing out all the variables, except for the neighbors ∂i of i, gives what we will
call the cavity distribution:

Definition 4.2 Given a graphical model
(V,F , (ψI)I∈F) and a variable i ∈ V, the

cavity distribution of i is

Z\i(x∂i) :=
∑
x\∆i

Ψ\Ni(x\i). (4.2)

Thus the cavity distribution of i is proportional to the marginal of the cavity net-
work of i on the Markov blanket ∂i. The cavity distribution describes the effective
interactions (or correlations) induced by the cavity network on the neighbors ∂i of
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variable i. Indeed, from equations (4.1) and (4.2) and the trivial observation that
ΨF = ΨNiΨ\Ni we conclude:

P(x∆i) ∝ Z\i(x∂i)ΨNi(x∆i). (4.3)

Thus, given the cavity distribution Z\i(x∂i), one can calculate the marginal distri-
bution of the original graphical model on x∆i, provided that the cardinality of X∆i

is not too large.
In practice, exact cavity distributions are not known, and the only way to pro-

ceed is to use approximate cavity distributions. Given some approximate inference
method (e.g., BP), there are two ways to calculate P(x∆i): either use the method
to approximate P(x∆i) directly, or use the method to approximate Z\i(x∂i) and use
equation (4.3) to obtain an approximation to P(x∆i). The latter approach generally
gives more accurate results, since the complexity of the cavity network is less than
that of the original network. In particular, the cavity network of variable i contains
no loops involving that variable, since all factors in which i participates have been
removed (e.g., the loop i − J − l − O −m −K − i in the original network, figure
4.1(a), is not present in the cavity network, figure 4.1(b)). Thus the latter approach
to calculating P(x∆i) takes into account loops involving variable i, although in an
approximate way. It does not, however, take into account the other loops in the
original graphical model. The basic idea of the loop correction approach of Monta-
nari and Rizzo [2005] is to use the latter approach for all variables in the network,
but to adjust the approximate cavity distributions in order to cancel out approxi-
mation errors before (4.3) is used to obtain the final approximate marginals. This
approach takes into account all the loops in the original network, in an approximate
way.

This basic idea can be implemented in several ways. Here we propose an im-
plementation which we will show to have certain advantages over the original im-
plementation proposed in [Montanari and Rizzo, 2005]. In particular, it is directly
applicable to arbitrary factor graphs with variables taking an arbitrary (discrete)
number of values and factors that may contain zeros and depend on an arbitrary
number of variables. In the remaining subsections, we will first discuss our pro-
posed implementation in detail. In section 4.2.6 we will discuss differences with the
original approach.

4.2.3 Combining approximate cavity distributions to cancel

out errors

Suppose that we have obtained an initial approximation ζ\i0 (x∂i) of the (exact) cav-
ity distribution Z\i(x∂i), for each i ∈ V. Let i ∈ V and consider the approximation
error of the cavity distribution of i, that is, the exact cavity distribution of i divided
by its approximation:

Z\i(x∂i)

ζ
\i
0 (x∂i)

.
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In general, this is an arbitrary function of the variables x∂i. However, we will
approximate the error as a product of factors defined on small subsets of ∂i in the
following way:

Z\i(x∂i)

ζ
\i
0 (x∂i)

≈
∏
I∈Ni

φ
\i
I (xNI\i).

Thus we assume that the approximation error lies near a submanifold parameterized
by the error factors (φ\iI (xNI\i))I∈Ni . If we were able to calculate these error factors,
we could improve our initial approximation ζ\i0 (x∂i) by replacing it with the product

ζ\i(x∂i) := ζ
\i
0 (x∂i)

∏
I∈Ni

φ
\i
I (xNI\i) ≈ Z\i(x∂i). (4.4)

Using (4.3), this would then yield an improved approximation of P(x∆i).
It turns out that the error factors can indeed be calculated by exploiting the

redundancy of the information in the initial cavity approximations (ζ\i0 )i∈V . The
fact that all ζ\i provide approximations to marginals of the same probability dis-
tribution P(x) via (4.3) can be used to obtain consistency constraints. The number
of constraints obtained in this way is usually enough to solve for the unknown error
factors (φ\iI (xNI\i))i∈V,I∈Ni .

Here we propose the following consistency constraints. Let Y ∈ F , i ∈ NY
and j ∈ NY with i 6= j (see also figure 4.2). Consider the graphical model

(V,F \
Y, (ψI)I∈F\Y

)
that is obtained from the original graphical model by removing factor

ψY . The product of all factors (except ψY ) obviously satisfies:

Ψ\Y = ΨNi\Y Ψ\Ni = ΨNj\Y Ψ\Nj .

Using (4.2) and summing over all xk for k 6∈ NY \i, we obtain the following equation,
which holds for the exact cavity distributions Z\i and Z\j :∑

xi

∑
x∆i\Y

ΨNi\Y Z
\i =

∑
xi

∑
x∆j\Y

ΨNj\Y Z
\j .

By substituting our basic assumption (4.4) on both sides and pulling the factor
φ
\i
Y (xNY \i) in the l.h.s. through the summation, we obtain:

φ
\i
Y

∑
xi

∑
x∆i\Y

ΨNi\Y ζ
\i
0

∏
I∈Ni\Y

φ
\i
I =

∑
xi

∑
x∆j\Y

ΨNj\Y ζ
\j
0

∏
J∈Nj

φ
\j
J .

Since this should hold for each j ∈ NY \ i, we can take the geometric mean of the
r.h.s. over all j ∈ NY \ i. After rearranging, this yields:

φ
\i
Y =

 ∏
j∈NY \i

∑
xi

∑
x∆j\Y

ΨNj\Y ζ
\j
0

∏
J∈Nj

φ
\j
J

1/#(NY \i)

∑
xi

∑
x∆i\Y

ΨNi\Y ζ
\i
0

∏
I∈Ni\Y

φ
\i
I

∀i∈V∀Y ∈Ni . (4.5)
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Figure 4.2: Part of the factor graph, illustrating the derivation of (4.5). The two gray

variable nodes correspond to NY \ i = {j, k}.

Note that the numerator is an approximation of the joint marginal of the modified
graphical model

(V,F \ Y, (ψI)I∈F\Y ) on the variables NY \ i.
Solving the consistency equations (4.5) simultaneously for the error factors

(φ\iI )i∈V,I∈Ni can be done using a simple fixed point iteration algorithm, for ex-
ample, Algorithm 4.1. The input consists of the initial approximations (ζ\i0 )i∈V to
the cavity distributions. It calculates the error factors that satisfy (4.5) by fixed
point iteration and from the fixed point, it calculates improved approximations of
the cavity distributions (ζ\i)i∈V using equation (4.4).1 From the improved cavity
distributions, the loop-corrected approximations to the single-variable marginals of
the original probability distribution (4.1) can be calculated as follows:

P(xi) ≈ bi(xi) ∝
∑
x∂i

ΨNi(x∆i)ζ\i(x∂i), (4.6)

where the factor ψY is now included. Algorithm 4.1 uses a sequential update scheme,
but other update schemes are possible (e.g., random sequential or parallel). In
practice, the fixed sequential update scheme often converges without the need for
damping.

Alternatively, one can formulate Algorithm 4.1 in terms of the “beliefs”

Qi(x∆i) ∝ ΨNi(x∆i)ζ
\i
0 (x∂i)

∏
I∈Ni

φ
\i
I (xNI\i) = ΨNi(x∆i)ζ\i(x∂i). (4.7)

1Alternatively, one could formulate the updates directly in terms of the cavity distributions

{ζ\i}.
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Algorithm 4.1 Loop Correction Algorithm

Input: initial approximate cavity distributions (ζ\i0 )i∈V
Output: improved approximate cavity distributions (ζ\i)i∈V

1: repeat
2: for all i ∈ V do
3: for all Y ∈ Ni do

4: φ
\i
Y (xNY \i)←

 ∏
j∈NY \i

∑
xi

∑
x∆j\Y

ΨNj\Y ζ
\j
0

∏
J∈Nj

φ
\j
J

1/#(NY \i)

∑
xi

∑
x∆i\Y

ΨNi\Y ζ
\i
0

∏
I∈Ni\Y

φ
\i
I

5: end for
6: end for
7: until convergence
8: for all i ∈ V do
9: ζ\i(x∂i)← ζ

\i
0 (x∂i)

∏
I∈Ni φ

\i
I (xNI\i)

10: end for

As one easily verifies, the update equation

Qi ← Qi

∏
j∈NY \i

 ∑
x∆j\(NY \i)

Qj ψ
−1
Y

1/#(NY \i)

∑
x∆i\(NY \i)

Qi ψ
−1
Y

is equivalent to line 4 of Algorithm 4.1. Intuitively, the update improves the ap-
proximate distribution Qi on ∆i by replacing its marginal on NY \ i (in the absence
of ψY ) by a more accurate approximation of this marginal, namely the numera-
tor. Written in this form, the algorithm is reminiscent of iterative proportional
fitting (IPF). However, contrary to IPF, the desired marginals are also updated at
each iteration. Note that after convergence, the large beliefs Qi(x∆i) need not be
consistent, that is, in general

∑
x∆i\J

Qi 6=
∑
x∆j\J

Qj for i, j ∈ V, J ⊆ ∆i ∩∆j.

4.2.4 A special case: factorized cavity distributions

In the previous subsection we have discussed how to improve approximations of
cavity distributions. We now discuss what happens when we use the simplest pos-
sible initial approximations (ζ\i0 )i∈V , namely constant functions, in Algorithm 4.1.
This amounts to the assumption that no loops are present. We will show that if
the factor graph does not contain short loops consisting of four nodes, fixed points
of the standard BP algorithm are also fixed points of Algorithm 4.1. In this sense,
Algorithm 4.1 can be considered to be a generalization of the BP algorithm. In
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fact, this holds even if the initial approximations factorize in a certain way, as will
be shown below.

If all factors involve at most two variables, one can easily arrange for the factor
graph to have no loops of four nodes. See figure 4.1(a) for an example of a factor
graph which has no loops of four nodes. The factor graph depicted in figure 4.2
does have a loop of four nodes: k − Y − j − J2 − k.

Theorem 4.3 If the factor graph corresponding to (4.1) has no loops of exactly
four nodes, and all initial approximate cavity distributions factorize in the following
way:

ζ
\i
0 (x∂i) =

∏
I∈Ni

ξ
\i
I (xNI\i) ∀i ∈ V, (4.8)

then fixed points of the BP algorithm can be mapped to fixed points of Algorithm
4.1. Furthermore, the corresponding variable and factor marginals obtained from
(4.7) are identical to the BP beliefs.

Proof. Note that replacing the initial cavity approximations by

ζ
\i
0 (x∂i) 7→ ζ

\i
0 (x∂i)

∏
I∈Ni

ε
\i
I (xNI\i)

for arbitrary positive functions ε\iI (xNI\i) does not change the beliefs (4.7) corre-
sponding to the fixed points of (4.5). Thus, without loss of generality, we can assume
ζ
\i
0 (x∂i) = 1 for all i ∈ V. The BP update equations are [Kschischang et al., 2001]:

µj→I(xj) ∝
∏

J∈Nj\I
µJ→j(xj) j ∈ V, I ∈ Nj ,

µI→i(xi) ∝
∑
xNI\i

ψI(xNI )
∏

j∈NI\i
µj→I(xj) I ∈ F , i ∈ NI

(4.9)

in terms of messages
(
µJ→j(xj)

)
j∈V,J∈Nj and

(
µj→J(xj)

)
j∈V,J∈Nj . Assume that

the messages µ are a fixed point of (4.9) and take the Ansatz

φ
\i
I (xNI\i) =

∏
k∈NI\i

µk→I(xk) for i ∈ V, I ∈ Ni.

Then, for i ∈ V, Y ∈ Ni, j ∈ NY \ i, we can write out part of the numerator of (4.5)
as follows: ∑

xi

∑
x∆j\Y

ΨNj\Y ζ
\j
0

∏
J∈Nj

φ
\j
J =

∑
xi

∑
x∆j\Y

φ
\j
Y

∏
J∈Nj\Y

ψJφ
\j
J

=
∑
xi

 ∏
k∈NY \j

µk→Y

 ∏
J∈Nj\Y

∑
xNJ\j

ψJ
∏

k∈NJ\j
µk→J

=
∑
xi

 ∏
k∈NY \j

µk→Y

µj→Y =
∑
xi

∏
k∈NY

µk→Y

∝
∏

k∈NY \i
µk→Y = φ

\i
Y ,
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where we used the BP update equations (4.9) and rearranged the summations and
products using the assumption that the factor graph has no loops of four nodes.
Thus, the numerator of the r.h.s. of (4.5) is simply φ\iY . Using a similar calculation,
one can derive that the denominator of the r.h.s. of (4.5) is constant, and hence
(4.5) is valid (up to an irrelevant constant).

For Y ∈ F , i ∈ NY , the marginal on xY of the belief (4.7) can be written in a
similar way:∑

x∆i\Y

Qi ∝
∑
x∆i\Y

ΨNi

∏
I∈Ni

φ
\i
I =

∑
x∆i\Y

∏
I∈Ni

ψI
∏

k∈NI\i
µk→I

= ψY

 ∏
k∈NY \i

µk→Y

 ∏
I∈Ni\Y

∑
xNI\i

ψI
∏

k∈NI\i
µk→I

= ψY

 ∏
k∈NY \i

µk→Y

 ∏
I∈Ni\Y

µI→i = ψY

 ∏
k∈NY \i

µk→Y

µi→Y

= ψY
∏
k∈NY

µk→Y ,

which is proportional to the BP belief bY (xY ) on xY . Hence, also the single-variable
marginal bi defined in (4.6) corresponds to the BP single-variable belief, since both
are marginals of bY for Y ∈ Ni. �

If the factor graph does contain loops of four nodes, we usually observe that
the fixed point of Algorithm 4.1 coincides with the solution of the “minimal” CVM
approximation when using factorized initial cavity approximations as in (4.8). The
minimal CVM approximation uses all maximal factors as outer clusters (a maximal
factor is a factor defined on a domain which is not a strict subset of the domain
of another factor). In that case, the factor beliefs found by Algorithm 4.1 are
consistent, that is,

∑
x∆i\NY

Qi =
∑
x∆j\NY

Qj for i, j ∈ NY , and are identical
to the minimal CVM factor beliefs. In particular, this holds for all the graphical
models used in section 4.3.2

4.2.5 Obtaining initial approximate cavity distributions

There is no principled way to obtain the initial approximations (ζ\i0 (x∂i))i∈V to the
cavity distributions. In the previous subsection, we investigated the results of ap-
plying the LC algorithm on factorizing initial cavity approximations. More sophis-
ticated approximations that do take into account the effect of loops can significantly
enhance the accuracy of the final result. Here, we will describe one method, which

2In a draft version of this work [Mooij and Kappen, 2006], we conjectured that the result

of Algorithm 4.1, when initialized with factorizing initial cavity approximations, would always

coincide with the minimal CVM approximation. This conjecture no longer stands because we

have found a counter example.
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uses BP on clamped cavity networks. This method captures all interactions in the
cavity distribution of i in an approximate way and can lead to very accurate results.
Instead of BP, any other approximate inference method that gives an approximation
of the normalizing constant Z in (4.1) can be used, such as Mean Field, TreeEP
[Minka and Qi, 2004], a double-loop version of BP [Heskes et al., 2003] which has
guaranteed convergence towards a minimum of the Bethe free energy, or some vari-
ant of GBP [Yedidia et al., 2005]. One could also choose the method for each cavity
separately, trading accuracy versus computation time. We focus on BP because it
is a very fast and often relatively accurate algorithm.

Let i ∈ V and consider the cavity network of i. For each possible state of x∂i, run
BP on the cavity network clamped to that state x∂i and calculate the corresponding
Bethe free energy F \iBethe(x∂i) [Yedidia et al., 2005]. Then, take the following initial
approximate cavity distribution:

ζ
\i
0 (x∂i) ∝ e−F

\i
Bethe(x∂i).

This procedure is exponential in the size of ∂i: it uses
∏
j∈∂i #(Xj) BP runs. How-

ever, many networks encountered in applications are relatively sparse and have
limited cavity size and the computational cost may be acceptable.

This particular way of obtaining initial cavity distributions has the following in-
teresting property: in case the factor graph contains only a single loop and assuming
that the fixed point is unique, the final beliefs (4.7) resulting from Algorithm 4.1
are exact. This can be shown using an argument similar to that given in [Montanari
and Rizzo, 2005]. Suppose that the graphical model contains exactly one loop and
let i ∈ V. First, consider the case that i is part of the loop; removing i will break
the loop and the remaining cavity network will be singly connected. The cavity
distribution approximated by BP will thus be exact. Now if i is not part of the
loop, removing i will divide the network into several connected components, one
for each neighbor of i. This implies that the cavity distribution calculated by BP
contains no higher-order interactions, that is, ζ\i0 is exact modulo single-variable
interactions. Because the final beliefs (4.7) are invariant under perturbation of the
ζ
\i
0 by single-variable interactions, the final beliefs calculated by Algorithm 4.1 are

exact if the fixed point is unique.
If all interactions are pairwise and each variable is binary and has exactly

#(∂i) = d neighbors, the time complexity of the resulting “Loop-Corrected BP”
(LCBP) algorithm is given by O(N2dEIBP +Nd2d+1ILC), where E is the number
of edges in the factor graph, IBP is the average number of iterations of BP on
a clamped cavity network and ILC is the number of iterations needed to obtain
convergence in Algorithm 4.1.

4.2.6 Differences with the original implementation

As mentioned before, the idea of estimating the cavity distributions and imposing
certain consistency relations amongst them has been first presented in [Montanari
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and Rizzo, 2005]. In its simplest form (i.e., the so-called first-order correction), the
implementation of that basic idea as proposed by Montanari and Rizzo [2005] differs
from our proposed implementation in the following aspects.

First, the original method described by Montanari and Rizzo [2005] is only for-
mulated for the rather special case of binary variables and pairwise interactions.
In contrast, our method is formulated in a general way that makes it applicable to
factor graphs with variables having more than two possible values and factors con-
sisting of more than two variables. Also, factors may contain zeros. The generality
that our implementation offers is important for many practical applications. In the
rest of this section, we will assume that the graphical model (4.1) belongs to the
special class of models with binary variables with pairwise interactions, allowing
further comparison of both implementations.

An important difference is that Montanari and Rizzo [2005] suggest to deform the
initial approximate cavity distributions by altering certain cumulants (also called
“connected correlations”), instead of altering certain interactions. In general, for
a set V ⊆ V of ±1-valued random variables (xi)i∈V , one can define for any subset
A ⊆ V the moment

MA :=
∑
xV

P(xV )
∏
j∈A

xj .

The moments (MA)A⊆V are a particular parameterization of the probability distri-
bution P(xV ). An alternative parameterization is given in terms of the cumulants.
The (joint) cumulants (CA)A⊆V are certain polynomials of the moments, defined
implicitly by the following equations:

MA =
∑

B∈Part(A)

∏
E∈B
CE

where Part(A) is the set of partitions of A.3 In particular, Ci = Mi and Cij =
Mij −MiMj for all i, j ∈ V with i 6= j. Montanari and Rizzo [2005] propose to
approximate the cavity distributions by estimating the pair cumulants and assuming
higher-order cumulants to be zero. Then, the singleton cumulants (i.e., the single-
variable marginals) are altered, keeping higher-order cumulants fixed, in such a
way as to impose consistency of the single-variable marginals, in the absence of
interactions shared by two neighboring cavities. We refer the reader to Appendix
4.A for a more detailed description of the implementation in terms of cumulants
suggested by Montanari and Rizzo [2005].

The assumption suggested in [Montanari and Rizzo, 2005] that higher-order
cumulants are zero is the most important difference with our method, which instead
takes into account effective interactions in the cavity distribution of all orders. In
principle, the cumulant parameterization also allows for taking into account higher-
order cumulants, but this would not be very efficient due to the combinatorics
needed for handling the partitions.

3For a set X, a partition of X is a nonempty set Y such that each Z ∈ Y is a nonempty subset

of X and
S
Y = X.
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A minor difference lies in the method to obtain initial approximations to the
cavity distributions. Montanari and Rizzo [2005] propose to use BP in combination
with linear response theory to obtain the initial pairwise cumulants. This difference
is not very important, since one could also use BP on clamped cavity networks
instead, which turns out to give almost identical results.

As we will show in section 4.3, our method of altering interactions appears
to be more robust and still works in regimes with strong interactions, whereas the
cumulant implementation suffers from convergence problems for strong interactions.

Montanari and Rizzo [2005] also derive a linearized version of their cumulant-
based scheme (by expanding up to first order in terms of the pairwise cumulants,
see Appendix 4.A) which is quadratic in the size of the cavity. This linearized,
cumulant-based version is currently the only one that can be applied to networks
with large Markov blankets (cavities), that is, where the maximum number of states
maxi∈V #(X∆i) is large, provided that all variables are binary and interactions are
pairwise.

4.3 Numerical experiments

We have performed various numerical experiments to compare the quality of the
results and the computation time of the following approximate inference methods:

MF Mean Field, with a random sequential update scheme and no damping.

BP Belief Bropagation. We have used the recently proposed update scheme [Elidan
et al., 2006], which converges also for difficult problems without the need for
damping.

TreeEP TreeEP [Minka and Qi, 2004], without damping. We generalized the
method of choosing the base tree described in [Minka and Qi, 2004] to multiple
variable factors as follows: when estimating the mutual information between
xi and xj , we take the product of the marginals on {i, j} of all the factors
that involve xi and/or xj . Other generalizations of TreeEP to higher-order
factors are possible (e.g., by clustering variables), but it is not clear how to
do this in general in an optimal way.

LCBP (“Loop-Corrected Belief Propagation”) Algorithm 4.1, where the approxi-
mate cavities are initialized according to the description in section 4.2.5.

LCBP-Cum The original cumulant-based loop correction scheme by Montanari
and Rizzo [2005], using Response Propagation (also known as Linear Re-
sponse) to approximate the initial pairwise cavity cumulants. The full update
equations (4.14) are used and higher-order cumulants are assumed to vanish.
For strong interactions, the update equations (4.14) often yield values for the
M\ij outside of the valid interval [−1, 1]. In this case, we project these values
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back into the valid interval in the hope that the method will converge to a
valid result, which it sometimes does.

LCBP-Cum-Lin Similar to LCBP-Cum, but instead of the full update equa-
tions (4.14), the linearized update equations (4.15) are used.

CVM-Min A double-loop implementation [Heskes et al., 2003] of the minimal
CVM approximation, which uses (maximal) factors as outer clusters.

CVM-∆ A double-loop implementation of CVM using the sets (∆i)i∈V as outer
clusters. These are the same sets of variables as used by LCBP (c.f. (4.7))
and therefore it is interesting to compare both algorithms.

CVM-Loopk A double-loop implementation of CVM, using as outer clusters all
(maximal) factors together with all loops in the factor graph that consist of
up to k different variables (for k = 3, 4, 5, 6, 8).

We have used a double-loop implementation of CVM instead of GBP because
the former is guaranteed to converge to a local minimum of the Kikuchi free energy
[Heskes et al., 2003] without damping, whereas the latter often only converges with
strong damping, or does not converge at all, even for arbitrary strong damping.
Furthermore, even if damped GBP would converge, the problem is that the optimal
damping constant is not known a priori, thus requiring one or more trial runs with
different damping constants, until a suitable one is found. Using too much damping
slows down convergence, whereas a certain amount of damping is required to obtain
convergence in the first place. Therefore, even if (damped) GBP would converge, we
would not expect it to be much faster than a double-loop implementation because
of the computational cost of finding the optimal damping constant.

To be able to assess the errors of the various approximate methods, we have
only considered problems for which exact inference (using a standard JunctionTree
method) was still feasible.

For each approximate inference method, we report the maximum `∞ error of
the approximate single-variable marginals bi, calculated as follows:

Error := max
i∈V

max
xi∈Xi

|bi(xi)− P(xi)|

where P(xi) is the exact marginal calculated using the JunctionTree method.
The computation time was measured as CPU time in seconds on a 2.4 GHz

AMD Opteron 64bits processor with 4 GB memory. The timings should be seen
as indicative because we have not spent equal amounts of effort optimizing each
method.4

We consider an iterative method to be “converged” after T time steps if for each
variable i ∈ V, the `∞ distance between the approximate probability distributions
of that variable at time step T and T + 1 is less than ε = 10−9.

4Our C++ implementation of various approximate inference algorithms is free/open source

software and can be downloaded from http://www.mbfys.ru.nl/~jorism/libDAI.

http://www.mbfys.ru.nl/~jorism/libDAI
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We have studied four different model classes: (i) random graphs of uniform
degree with pairwise interactions and binary variables; (ii) random factor graphs
with binary variables and factor nodes of uniform degree k = 3; (iii) the Alarm

network, which has variables taking on more than two possible values and factors
consisting of more than two variables; (iv) Promedas networks, which have binary
variables but factors consisting of more than two variables. For more extensive
experiments, see [Mooij and Kappen, 2006].

4.3.1 Random regular graphs with binary variables

We have compared various approximate inference methods on random graphs con-
sisting of N binary (±1-valued) variables, having only pairwise interactions, where
each variable has the same degree #(∂i) = d. In this case, the probability distribu-
tion (4.1) can be written in the following way:

P(x) =
1
Z

exp

∑
i∈V

θixi +
1
2

∑
i∈V

∑
j∈∂i

Jijxixj

 .

The parameters (θi)i∈V are called the local fields; the parameters (Jij = Jji)i∈V,j∈∂i
are called the couplings. The graph structure and the parameters θ and J were
drawn randomly for each instance. The local fields {θi} were drawn independently
from a N

(
0, (βΘ)2

)
distribution (i.e., a normal distribution with mean 0 and stan-

dard deviation βΘ). For the couplings {Jij}, we took mixed (“spin-glass”) cou-
plings, drawn independently from a normal distribution

Jij ∼ N
(

0,
(
β tanh−1 1√

d− 1

)2
)
.

The constant β (called “inverse temperature” in statistical physics) controls the
overall interaction strength and thereby the difficulty of the inference problem,
larger β corresponding usually to more difficult problems. The constant Θ controls
the relative strength of the local fields, where larger Θ result in easier inference
problems. The particular d-dependent scaling of the couplings is used in order to
obtain roughly d-independent behavior. For Θ = 0 and for β ≈ 1, a phase transition
occurs in the limit of N →∞, going from an easy “paramagnetic” phase for β < 1
to a complicated “spin-glass” phase for β > 1.5

We have also done experiments with positive (“attractive” or “ferromagnetic”)
couplings, but the conclusions from these experiments did not differ significantly
from those using mixed couplings [Mooij and Kappen, 2006]. Therefore we do not
report those experiments here.

5More precisely, the PA-SG phase transition occurs at Θ = 0 and (d − 1) =
˙
tanh2(βJij)

¸
,

where 〈·〉 is the average over all Jij [Mooij and Kappen, 2005a]. What happens for Θ > 0 is not

known, to the best of our knowledge.
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Figure 4.3: Error (left) and computation time (right) as a function of interaction strength

for various approximate inference methods (MF, BP, TreeEP) and their loop-corrected

versions (LCMF, LCBP, LCTreeEP). The averages (calculated in the logarithmic domain)

were computed from the results for 16 randomly generated instances of (N = 100, d = 3)

regular random graphs with strong local fields Θ = 2.

N = 100, d = 3, strong local fields (Θ = 2)

We have studied various approximate inference methods on regular random graphs
of low degree d = 3, consisting of N = 100 variables, with relatively strong local
fields of strength Θ = 2. We have considered various overall interaction strengths
β between 0.01 and 10. For each value of β, we have used 16 random instances. On
each instance, we have run various approximate inference algorithms.

Figure 4.3 shows results for MF, BP and TreeEP, and their loop-corrected ver-
sions, LCMF, LCBP and LCTreeEP. The loop-corrected versions are the result of
Algorithm 4.1, initialized with approximate cavity distributions obtained by the
procedure described in section 4.2.5 (using MF, BP, and TreeEP in the role of BP).
Note that the Loop Correction method significantly reduces the error in each case.
In fact, on average the loop-corrected error is approximately given by the square of
the uncorrected error, as is apparent from the scatter plots in figure 4.4. BP is the
fastest of the uncorrected methods and TreeEP is the most accurate but also the
slowest uncorrected method. MF is both slower and less accurate than BP. Unsur-
prisingly, the loop-corrected methods show similar relative performance behaviors.
Because BP is very fast and relatively accurate, we focus on LCBP in the rest of this
chapter. Note further that although the graph is rather sparse, the improvement of
LCBP over BP is significantly higher than the improvement of TreeEP over BP.

In figures 4.5 and 4.6 we compare the different implementations of the Loop
Correction method on the same instances as used before. For small values of β,
LCBP-Cum and LCBP-Cum-Lin both converge and yield high quality results, and
the error introduced by the linearization is relatively small. However, for larger
values of β, both methods get more and more convergence problems, although for
the few cases where they do converge, they still yield accurate results. At β ≈ 10,
both methods have completely stopped converging. The error introduced by the
linearization increases for larger values of β. The computation times of LCBP-
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Figure 4.4: Pairwise comparisons of errors of uncorrected and loop-corrected methods, for

the same instances as in figure 4.3. The solid lines correspond with y = x, the dotted

lines with y = x2. Only the cases have been plotted for which both approximate infer-

ence methods have converged. Saturation of errors around 10−9 is an artifact due to the

convergence criterion.
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Figure 4.5: For the same instances as in figure 4.3: average error (left), average computa-

tion time (center) and fraction of converged instances (right) as a function of interaction

strength β for various variants of the LC method. The averages of errors and computation

time were calculated from the converged instances only. The average computation time

and fraction of converged instances for LCBP-Cum and LCBP-Cum-Lin are difficult to

distinguish, because they are (almost) identical.

Cum, LCBP-Cum-Lin and LCBP do not differ substantially in the regime where all
methods converge. However, the quality of the LCBP results is higher than that of
the cumulant-based methods. This is mainly due to the fact that LCBP also takes
into account effective triple interactions in the initial estimates of the approximate
cavity distributions.

We speculate that the reason for the break-down of LCBP-Cum and LCBP-
Cum-Lin for strong interactions is due to the choice of cumulants instead of inter-
actions. Indeed, consider two random variables xi and xj with fixed pair interac-
tion exp(Jxixj). By altering the singleton interactions exp(θixi) and exp(θjxj),
one can obtain any desired marginals of xi and xj . However, a fixed pair cumulant
Cij = E (xixj) − E (xi) E (xj) imposes a constraint on the range of possible expec-
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Figure 4.6: Pairwise comparisons of errors of various methods for the same instances as in

figure 4.3. Only the cases have been plotted for which both approximate inference methods

converged.
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Figure 4.7: Average errors (left) and computation times (right) for various CVM methods

(and LCBP, for reference) on the same instances as in figure 4.3. All methods converged

on all instances.

tation values E (xi) and E (xj) (hence on the single-variable marginals of xi and
xj); the freedom of choice in these marginals becomes less as the pair cumulant
becomes stronger. We believe that something similar happens for LCBP-Cum (and
LCBP-Cum-Lin): for strong interactions, the approximate pair cumulants in the
cavity are strong, and even tiny errors can lead to inconsistencies which prevent
convergence.

The results of the CVM approach to loop correction are shown in figures 4.7
and 4.8. The CVM-Loop methods, with clusters reflecting the short loops present
in the factor graph, do indeed improve on BP. Furthermore, as expected, the use of
larger clusters (that subsume longer loops) improves the results, although compu-
tation time quickly increases. CVM-Loop3 (not plotted) turned out not to give any
improvement over BP, simply because there were (almost) no loops of 3 variables
present. The most accurate CVM method, CVM-Loop8, needs more computation
time than LCBP, whereas it yields inferior results.6

6The CVM errors are often seen to saturate around 10−8, which indicates that the slow conver-

gence of the CVM double-loop algorithm in these cases requires a stricter convergence criterion.
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Figure 4.8: Pairwise comparisons of errors for various methods for the same instances as

in figure 4.3.

In addition to the CVM-Loop methods, we compared with the CVM-∆ method,
which uses (∆i)i∈V as outer clusters. These clusters subsume the clusters used
implicitly by BP (which are simply the pairwise factors) and therefore one would
naively expect that the CVM-∆ approximation yields better results. Surprisingly
however, the quality of CVM-∆ is similar to that of BP, although its computation
time is enormous. This illustrates that simply using larger clusters for CVM does not
always lead to better results. Furthermore, we conclude that although LCBP and
CVM-∆ use identical clusters to approximate the target probability distribution,
the nature of both approximations is very different.

Weak local fields (Θ = 0.2)

We have done the same experiments also for weak local fields (Θ = 0.2), with the
other parameters unaltered (i.e., N = 100, d = 3). The picture roughly remains
the same, apart from the following differences. First, the influence of the phase
transition is more pronounced; many methods have severe convergence problems
around β = 1. Second, the negative effect of linearization on the error (LCBP-
Cum-Lin compared to LCBP-Cum) is smaller.

Larger degree (d = 6)

To study the influence of the degree d = #(∂i), we have done additional experiments
for d = 6. We took strong local fields (Θ = 2). We had to reduce the number of
variables to N = 50, because exact inference was infeasible for larger values of N
due to quickly increasing treewidth. The results are shown in figure 4.9. As in the
previous experiments, BP is the fastest and least accurate method, whereas LCBP
yields the most accurate results, even for high β. Again we see that the LCBP error
is approximately the square of the BP error and that LCBP gives better results
than LCBP-Cum, but needs more computation time.

However, we also note the following differences with the case of low degree
(d = 3). The relative improvement of TreeEP over BP has decreased. This could
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Figure 4.9: Selected results for (N = 50, d = 6) regular random graphs with strong local

fields Θ = 2. The averaged results for LCBP-Cum and LCBP-Cum-Lin nearly coincide

for β . 1.

have been expected, because in denser networks, the effect of taking out a tree
becomes less.

Further, the relative improvement of CVM-Loop4 over BP has increased, prob-
ably because there are more short loops present. On the other hand, computation
time of CVM-Loop4 has also increased and it is the slowest of all methods. We
decided to abort the calculations for CVM-Loop6 and CVM-Loop8, because com-
putation time was prohibitive due to the enormous amount of short loops present.
We conclude that the CVM-Loop approach to loop correction is not very efficient
if there are many loops present.

Surprisingly, the results of LCBP-Cum-Lin are now very similar in quality to
the results of LCBP-Cum, except for a few isolated cases (presumably on the edge
of the convergence region).

Scaling with N

We have investigated how computation time and error scale with the number of
variables N , for fixed β = 0.1, Θ = 2 and d = 6. We used a machine with more
memory (16 GB) to be able to do exact inference without swapping also for N = 60.
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variables), for random graphs with uniform degree d = 6, β = 0.1 and Θ = 2. Points are

averages over 16 randomly generated instances. Each method converged on all instances.

The results for LCBP-Cum and LCBP-Cum-Lin coincide.

The results are shown in figure 4.10. The error of each method is approximately
constant.

BP computation time should scale approximately linearly in N , which is difficult
to see in this plot. LCBP variants are expected to scale quadratic in N (since d is
fixed) which we have verified by checking the slopes of corresponding lines in the
plot for large values of N . The computation time of CVM-Loop3 and CVM-Loop4
seems to be approximately constant, probably because the large number of overlaps
of short loops for small values of N causes difficulties. The computation time of
the exact JunctionTree method quickly increases due to increasing treewidth; for
N = 60 it is already ten times larger than the computation time of the slowest
approximate inference method.

We conclude that for large N , exact inference is infeasible, whereas LCBP still
yields very accurate results using moderate computation time.

Scaling with d

It is also interesting to see how various methods scale with d, the variable degree,
which is directly related to the cavity size. We have done experiments for random
graphs of size N = 24 with fixed β = 0.1 and Θ = 2 for different values of d between
3 and 23. The results can be found in figure 4.11. We aborted the calculations of
the slower methods (LCBP, LCBP-Cum, CVM-Loop3) at d = 15.

Due to the particular dependence of the interaction strength on d, the errors
of most methods depend only slightly on d. TreeEP is an exception: for larger
d, the relative improvement of TreeEP over BP diminishes, and the TreeEP error
approaches the BP error. CVM-Loop3 gives better quality, but needs relatively
much computation time and becomes very slow for large d due to the large increase
in the number of loops of 3 variables. LCBP is the most accurate method, but
becomes very slow for large d. LCBP-Cum is less accurate and becomes slower than
LCBP for large d, because of the additional overhead of the combinatorics needed to
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Figure 4.11: Error (left) and computation time (right) as a function of variable degree d

for regular random graphs of N = 24 variables for β = 0.1 and Θ = 2. Points are averages

over 16 randomly generated instances. Each method converged on all instances. Errors of

LCBP-Cum and LCBP-Cum-Lin coincide for d ≤ 15; for d > 15, LCBP-Cum became too

slow.

perform the update equations. The accuracy of LCBP-Cum-Lin is indistinguishable
from that of LCBP-Cum, although it needs significantly less computation time.

Overall, we conclude from section 4.3.1 that for these binary, pairwise graphical
models, LCBP is the best method for obtaining high accuracy marginals if the
graphs are sparse, LCBP-Cum-Lin is the best method if the graphs are dense and
LCBP-Cum shows no clear advantages over either method.

4.3.2 Multi-variable factors

We now go beyond pairwise interactions and study a class of random factor graphs
with binary variables and uniform factor degree #(NI) = k (for all I ∈ F) with
k > 2. The number of variables is N and the number of factors is M . The factor
graphs are constructed by starting from an empty graphical model (V, ∅, ∅) and
adding M random factors, where each factor is obtained in the following way:
a subset I = {I1, . . . , Ik} ⊆ V of k different variables is drawn; a vector of 2k

independent random numbers (JI(xI))xI∈XI is drawn from a N (0, β2
)

distribution;
the factor ψI(xNI ) := expJI(xI) is added to the graphical model. We only use those
constructed factor graphs that are connected.7 The parameter β again controls the
interaction strength.

We have done experiments for (N = 50,M = 50, k = 3) for various values of β
between 0.01 and 2. For each value of β, we have used 16 random instances. For
higher values of β, computation times increased quickly and convergence became
problematic for BP, TreeEP and LCBP. This is probably related to the effects of a
phase transition. The results are shown in figure 4.12.

Looking at the error and the computation time in figure 4.12, the following
7The reason that we require the factor graph to be connected is that not all our approximate

inference method implementations currently support connected factor graphs that consist of more

than one connected component.
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Figure 4.12: Results for (N = 50,M = 50, k = 3) random factor graphs.

ranking can be made, where accuracy and computation time both increase: BP,
TreeEP, CVM-Min, CVM-Loop3, LCBP. CVM-Loop4 uses more computation time
than LCBP but gives worse results. LCBP-Cum and LCBP-Cum-Lin are not avail-
able due to the fact that the factors involve more than two variables. Note that
the improvement of TreeEP over BP is rather small. Further, note that the LCBP
error is again approximately given by the square of the BP error.

4.3.3 Alarm network

The Alarm network8 is a well-known Bayesian network consisting of 37 variables
(some of which can take on more than two possible values) and 37 factors (many
of which involve more than two variables). In addition to the usual approximate
inference methods, we have compared with GBP-Min, a GBP implementation of
the minimal CVM approximation that uses maximal factors as outer clusters. The
results are reported in table 4.1.9

The accuracy of GBP-Min (and CVM-Min) is almost identical to that of BP for
this graphical model; GBP-Min converges without damping and is faster than CVM-
Min. On the other hand, TreeEP significantly improves the BP result in roughly
the same time as GBP-Min needs. Simply enlarging the cluster size (CVM-∆)
slightly deteriorates the quality of the results and also causes an enormous increase
of computation time. The quality of the CVM-Loop results is roughly comparable
to that of TreeEP. Surprisingly, increasing the loop depth beyond 4 deteriorates
the quality of the results and results in an explosion of computation time. We
conclude that the CVM-Loop method is not a very good approach to correcting
loops in this case. LCBP uses considerable computation time, but yields errors

8The Alarm network can be downloaded from http://compbio.cs.huji.ac.il/Repository/

Datasets/alarm/alarm.dsc.
9In [Mooij et al., 2007], we also report experimental results for the Alarm network. In that

work, we used another update rule for LCBP, which explains the different error obtained there

(5.4 · 10−04). The update rule (4.5) used in the present work generally yields better results for

higher-order interactions, whereas for pairwise interactions, both update rules are equivalent.

http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.dsc
http://compbio.cs.huji.ac.il/Repository/Datasets/alarm/alarm.dsc
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Method Time (s) Error
BP 0.00 2.026 · 10−01

TreeEP 0.21 3.931 · 10−02

GBP-Min 0.18 2.031 · 10−01

CVM-Min 1.13 2.031 · 10−01

CVM-∆ 280.67 2.233 · 10−01

CVM-Loop3 1.19 4.547 · 10−02

CVM-Loop4 154.97 3.515 · 10−02

CVM-Loop5 1802.83 5.316 · 10−02

CVM-Loop6 84912.70 5.752 · 10−02

LCBP 23.67 3.412 · 10−05

Table 4.1: Results for the Alarm network

that are approximately 104 times smaller than BP errors. The cumulant-based loop
correction methods are not available, due to the presence of factors involving more
than two variables and variables that can take more than two values.

4.3.4 Promedas networks

In this subsection, we study the performance of LCBP on another “real world”
example, the Promedas medical diagnostic network [Wiegerinck et al., 1999]. The
diagnostic model in Promedas is based on a Bayesian network. The global archi-
tecture of this network is similar to QMR-DT [Shwe et al., 1991]. It consists of a
diagnosis layer that is connected to a layer with findings.10 Diagnoses (diseases)
are modeled as a priori independent binary variables causing a set of symptoms
(findings), which constitute the bottom layer. The Promedas network currently
consists of approximately 2000 diagnoses and 1000 findings.

The interaction between diagnoses and findings is modeled with a noisy-OR
structure. The conditional probability of the finding given the parents is modeled
by m + 1 real numbers, m of which represent the probabilities that the finding is
caused by one of the diseases and one that the finding is not caused by any of the
parents.

The noisy-OR conditional probability tables with m parents can be naively
stored in a table of size 2m. This is problematic for the Promedas networks
since findings that are affected by more than 30 diseases are not uncommon in the
Promedas network. We use an efficient implementation of noisy-OR relations as
proposed by Takikawa and D’Ambrosio [1999] to reduce the size of these tables.

10In addition, there is a layer of variables, such as age and gender, that may affect the prior

probabilities of the diagnoses. Since these variables are always clamped for each patient case, they

merely change the prior disease probabilities and are irrelevant for our current considerations.
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The trick is to introduce dummy variables s and to make use of the property

OR(x|y1, y2, y3) =
∑
s

OR(x|y1, s)OR(s|y2, y3).

The factors on the right hand side involve at most 3 variables instead of the initial 4
(left). Repeated application of this formula reduces all factors to triple interactions
or smaller.

When a patient case is presented to Promedas, a subset of the findings will be
clamped and the rest will be unclamped. If our goal is to compute the marginal
probabilities of the diagnostic variables only, the unclamped findings and the diag-
noses that are not related to any of the clamped findings can be summed out of
the network as a preprocessing step. The clamped findings cause an effective inter-
action between their parents. However, the noisy-OR structure is such that when
the finding is clamped to a negative value, the effective interaction factorizes over
its parents. Thus, findings can be clamped to negative values without additional
computation cost [Jaakkola and Jordan, 1999].

The complexity of the problem now depends on the set of findings that is given
as input. The more findings are clamped to a positive value, the larger the remain-
ing network of disease variables and the more complex the inference task. Especially
in cases where findings share more than one common possible diagnosis, and con-
sequently loops occur, the model can become complex.

We use the Promedas model to generate virtual patient data by first clamping
one of the disease variables to be positive and then clamping each finding to its
positive value with probability equal to the conditional distribution of the finding,
given the positive disease. The union of all positive findings thus obtained constitute
one patient case. For each patient case, the corresponding truncated graphical
model is generated. The number of disease nodes in this truncated graph is typically
quite large.

The results can be found in figures 4.13 and 4.14. Surprisingly, neither TreeEP
nor any of the CVM methods gives substantial improvements over BP. TreeEP even
gives worse results compared to BP. The CVM-Min and CVM-Loop3 results appear
to be almost identical to the BP results. CVM-Loop4 manages to improve over BP
in a few cases. Increased loop depth (k = 5, 6) results in worse quality in many
cases and also in an enormous increase in computation time.

LCBP, on the other hand, is the only method that gives a significant improve-
ment over BP, in each case. Considering all patient cases, LCBP corrects the BP
error with more than one order of magnitude in half of the cases for which BP was
not already exact. The improvement obtained by LCBP has its price: the com-
putation time of LCBP is rather large compared to that of BP, as shown in figure
4.14. In many cases, this is due to a few rather large cavities. The cumulant-based
loop correction methods are not available, due to the presence of factors involving
more than two variables.
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Figure 4.13: Scatter plots of errors for Promedas instances.
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Figure 4.14: Computation time (in seconds) for Promedas instances: (left) BP computa-

tion time vs. N ; (center) LCBP computation time vs. N ; (right) LCBP vs. BP.

4.4 Discussion and conclusion

We have proposed a method to improve the quality of the single-variable marginals
calculated by an approximate inference method (e.g., BP) by correcting for the
influence of loops in the factor graph. We have proved that the method is a gen-
eralization of BP if the initial approximate cavity distributions factorize and the
factor graph does not contain short loops of exactly four nodes. If the factor graph
does contain such short loops, we observe in many cases that the method reduces to
the minimal CVM approximation if one applies it on factorized initial approximate
cavity distributions. If, on the other hand, the LC method is applied in combina-
tion with BP estimates of the effective cavity interactions, we have seen that the



110 Chapter 4

loop-corrected error is approximately the square of the uncorrected BP error. Simi-
lar observations have been made for Loop-Corrected MF and TreeEP. For practical
purposes, we suggest to apply loop corrections to BP (“LCBP”), because the loop
correction approach requires many runs of the approximate inference method and
BP is well suited for this job because of its speed. We have compared the perfor-
mance of LCBP with other approximate inference methods that (partially) correct
for the presence of loops. In most cases, LCBP turned out to be the most accurate
method (with the notable exception of LCTreeEP, which is also considerably more
expensive). LCBP still works for relatively strong interactions, in contrast with
LCBP-Cum and LCBP-Cum-Lin.

On sparse factor graphs, TreeEP can obtain significant improvements over BP
by correcting for loops that consist of part of the base tree and one additional
interaction, using little computation time. However, for denser graphs, we observed
that the difference between the quality of TreeEP and BP marginals diminishes. For
both sparse and dense graphs, LCBP obtained more accurate results than TreeEP,
although the computation time quickly increases for denser graphs.

We have seen that the CVM-Loop approximation, which uses small loops as
outer clusters, can also provide accurate results, provided that the number of short
loops is not too large and the number of intersections of clusters is limited. However,
the computation time becomes prohibitive in many cases. In order to obtain the
same accuracy as LCBP, the CVM-Loop approach usually needs significantly more
computation time. This behavior is also seen on “real world” instances such as
the Alarm network and Promedas test cases. There may exist other cluster
choices that give better results for the CVM approximation, but no general method
for obtaining “good” cluster choices seems to be known (although for some special
cases, for example, 2D grids, very good choices exist). However, Welling et al. [2005]
give some heuristics for deciding whether a given CVM cluster choice is a “good”
one. Another method that may provide good cluster choices is IJGP(i), proposed in
[Dechter et al., 2002]. We have not yet done an experimental comparison of LCBP
with IJGP(i).

We have also compared the performance of LCBP with the original implemen-
tations proposed by Montanari and Rizzo [2005] (LCBP-Cum and LCBP-Cum-Lin)
on the limited class of binary pairwise models. The original implementations work
with cumulants instead of interactions and we believe that this explains the ob-
served convergence difficulties of LCBP-Cum and LCBP-Cum-Lin in the regime of
strong interactions. On sparse graphs, LCBP obtained better accuracy than LCBP-
Cum and LCBP-Cum-Lin, using approximately similar computation time. This is
mainly due to the fact that LCBP estimates the higher-order effective interactions
in the cavity distributions. On dense graphs, both LCBP and LCBP-Cum become
computationally infeasible. The linearized version LCBP-Cum-Lin, which is still
applicable in these cases, performed surprisingly well, often obtaining similar ac-
curacy as LCBP-Cum. For random graphs with high degree d (i.e., large Markov
blankets), it turned out to be the most accurate of the applicable approximate in-
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ference methods. It is rather fortunate that the negative effect of the linearization
error on the accuracy of the result becomes smaller as the degree increases, since it
is precisely for high degree where one needs the linearization because of performance
issues.

In the experiments reported here, the standard JunctionTree method was almost
always faster than LCBP. The reason is that we have intentionally selected experi-
ments for which exact inference is still feasible, in order to be able to compare the
quality of various approximate inference methods. However, as implied by figure
4.10, there is no reason to expect that LCBP will suddenly give inaccurate results
when exact inference is no longer feasible. Thus we suggest that LCBP may be
used to obtain accurate marginal estimates in cases where exact inference is impos-
sible because of high treewidth. As illustrated in figure 4.10, the computation time
of LCBP scales very different from that of the JunctionTree method: whereas the
latter is exponential in treewidth, LCBP is exponential in the size of the Markov
blankets.

The fact that computation time of LCBP (in its current form) scales exponen-
tially with the size of the Markov blankets can be a severe limitation in practice.
Many real world Bayesian networks have large Markov blankets, prohibiting appli-
cation of LCBP. The linear cumulant-based implementation LCBP-Cum-Lin does
not suffer from this problem, as it is quadratic in the size of the Markov blankets.
Unfortunately, this particular implementation can in its current form only be ap-
plied to graphical models that consist of binary variables and factors that involve
at most two variables (which excludes any interesting Bayesian network, for exam-
ple). Furthermore, problems may arise if some factors contain zeros. For general
application of loop correction methods, it will be of paramount importance to de-
rive an implementation that combines the generality of LCBP with the speed of
LCBP-Cum-Lin. This topic will be left for future research. The work presented
here provides some intuition that may be helpful for constructing a general and fast
loop correction method that is applicable to arbitrary factor graphs that can have
large Markov blankets.

Another important direction for future research would be to find an extension
of the loop correction framework that also gives a loop-corrected approximation of
the normalization constant Z in (4.1). Additionally, and possibly related to that, it
would be desirable to find an approximate “free energy”, a function of the beliefs,
whose stationary points coincide with the fixed points of Algorithm 4.1. This can be
done for many approximate inference methods (MF, BP, CVM, EP) so it is natural
to expect that the LC algorithm can also be seen as a minimization procedure of
a certain approximate free energy. Despite some efforts, we have not yet been able
to find such a free energy.

Recently, other loop correction approaches to the Bethe approximation have
been proposed in the statistical physics literature [Parisi and Slanina, 2006; Chert-
kov and Chernyak, 2006b]. In particular, Chertkov and Chernyak [2006b] have
derived a series expansion of the exact normalizing constant Z in terms of the BP
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solution. The first term of the series is precisely the Bethe free energy evaluated
at the BP fixed point. The number of terms in the series is finite, but can be very
large, even larger than the number of total states of the graphical model. Each term
is associated with a “generalized loop”, which is a subgraph of the factor graph for
which each node has at least connectivity two. By truncating the series, it is pos-
sible to obtain approximate solutions that improve on BP by taking into account a
subset of all generalized loops [Gómez et al., 2007; Chertkov and Chernyak, 2006a].
Summarizing, the approach to loop corrections by Chertkov and Chernyak [2006b]
takes a subset of loops into account in an exact way, whereas the loop correction
approach presented in this chapter takes all loops into account in an approximate
way. More experiments should be done to compare both approaches.

Summarizing, we have proposed a method to correct approximate inference
methods for the influence of loops in the factor graph. We have shown that it can
obtain very accurate results, also on real world graphical models, outperforming
existing approximate inference methods in terms of quality, robustness or applica-
bility. We have shown that it can be applied to problems for which exact inference
is infeasible. The rather large computation time required is an issue which deserves
further consideration; it may be possible to use additional approximations on top
of the loop correction framework that trade quality for computation time.
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4.A Original approach by Montanari and Rizzo

(2005)

For completeness, we describe the implementation based on cumulants as originally
proposed by Montanari and Rizzo [2005]. The approach can be applied in recursive
fashion. Here we will only discuss the first recursion level.

Consider a graphical model which has only binary (±1-valued) variables and
factors that involve at most two variables. The corresponding probability distri-
bution can be parameterized in terms of the local fields (θi)i∈V and the couplings
(Jij = Jji)i∈V,j∈∂i:

P(x) =
1
Z

exp

∑
i∈V

θixi +
1
2

∑
i∈V

∑
j∈∂i

Jijxixj

 .

Let i ∈ V and consider the corresponding cavity network of i. For A ⊆ ∂i, the
cavity moment M\iA is defined as the following expectation value under the cavity
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distribution:

M\iA :=

∑
x∂i

Z\i(x∂i)
∏
j∈A

xj∑
x∂i

Z\i(x∂i)
,

where we will not explicitly distinguish between approximate and exact quantities,
following the physicists’ tradition.11 The cavity cumulants (also called “connected
correlations”) C\iA are related to the moments in the following way:

M\iA =
∑

B∈Part(A)

∏
E∈B
C\iE

where Part(A) is the set of partitions of A.
We introduce some notation: we define for A ⊆ ∂i:

tiA :=
∏
k∈A

tanh Jik.

Further, for a set X, we denote the even subsets of X as P+(X) := {Y ⊆ X :
#(Y ) is even} and the odd subsets of X as P−(X) := {Y ⊆ X : #(Y ) is odd}.

Using standard algebraic manipulations, one can show that for j ∈ ∂i, the
expectation value of xj in the absence of the interaction ψij = exp(Jijxixj) can be
expressed in terms of cavity moments of i as follows:∑

A∈P+(∂i\j)
tiAM\iA∪j + tanh θi

∑
A∈P−(∂i\j)

tiAM\iA∪j∑
A∈P+(∂i\j)

tiAM\iA + tanh θi
∑

A∈P−(∂i\j)
tiAM\iA

. (4.10)

On the other hand, the same expectation value can also be expressed in terms of
cavity moments of j as follows:

tanh θj
∑

B∈P+(∂j\i)
tjBM\jB +

∑
B∈P−(∂j\i)

tjBM\jB∑
B∈P+(∂j\i)

tjBM\jB + tanh θj
∑

B∈P−(∂j\i)
tjBM\jB

. (4.11)

The consistency equations are now given by equating (4.10) to (4.11) for all i ∈ V,
j ∈ ∂i.

The expectation value of xi (in the presence of all interactions) can be similarly
expressed in terms of cavity moments of i:

Mi :=
∑
xi=±1

P(xi)xi =

tanh θi
∑

A∈P+(∂i)

tiAM\iA +
∑

A∈P−(∂i)

tiAM\iA∑
A∈P+(∂i)

tiAM\iA + tanh θi
∑

A∈P−(∂i)

tiAM\iA
. (4.12)

11In [Montanari and Rizzo, 2005], the notation C̃
(i)
A is used for the cavity moment M\iA .
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4.A.1 Neglecting higher-order cumulants

Montanari and Rizzo proceed by neglecting cavity cumulants C\iA with #(A) > 2.
Denote by Part2(A) the set of all partitions of A into subsets which have cardinality
2 at most. Thus, neglecting higher-order cavity cumulants amounts to the following
approximation:

M\iA ≈
∑

B∈Part2(A)

∏
E∈B
C\iE . (4.13)

By some algebraic manipulations, one can express the consistency equation (4.10) =
(4.11) in this approximation as follows:

M\ij =

tanh θj
∑

B∈P+(∂j\i)
tjBM\jB +

∑
B∈P−(∂j\i)

tjBM\jB∑
B∈P+(∂j\i)

tjBM\jB + tanh θj
∑

B∈P−(∂j\i)
tjBM\jB

−
∑

k∈∂i\j
tikC\ijk

tanh θi
∑

A∈P+(∂i\{j,k})
tiAM\iA +

∑
A∈P−(∂i\{j,k})

tiAM\iA∑
A∈P+(∂i\j)

tiAM\iA + tanh θi
∑

A∈P−(∂i\j)
tiAM\iA

. (4.14)

One can use (4.13) to write (4.14) in terms of the singleton cumulants (M\ij )i∈V,j∈∂i
and the pair cumulants (C\ijk)i∈V,j∈∂i,k∈∂i\j . Given (estimates of) the pair cumu-
lants, the consistency equations (4.14) are thus fixed point equations in the singleton
cumulants. The procedure is now:

• Estimate the pair cumulants (C\ijk)i∈V,j∈∂i,k∈∂i\j using BP in combination
with linear response (called “Response Propagation” in [Montanari and Rizzo,
2005]).

• Calculate the fixed point (M\ij )i∈V,j∈∂i of (4.14) using the estimated pair
cumulants.

• Use (4.12) in combination with (4.13) to calculate the final expectation values
(Mj)j∈V using the estimated pair cumulants and the fixed point of (4.14).

4.A.2 Linearized version

The update equations can be linearized by expanding up to first order in the pair
cumulants C\ijk. This yields the following linearized consistency equation [Montanari
and Rizzo, 2005]:

M\ij = T
\j
i −

∑
l∈∂i\j

Ω\ij,ltilC\ijl +
∑

l1,l2∈∂j\i
l1<l2

Γ\ji,l1l2tjl1tjl2C
\j
l1l2

(4.15)
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where

T
\i
A := tanh

θi +
∑

k∈∂i\A
tanh−1(tikM\ik )

 ,

Ω\ij,l :=
T
\i
jl

1 + tilM
\i
l T
\i
jl

,

Γ\ji,l1l2 :=
T
\j
il1l2
− T \ji

1 + tjl1tjl2M\jl1M
\j
l2

+ tjl1M\jl1 T
\j
il1l2

+ tjl2M\jl2 T
\j
il1l2

.

The final magnetizations (4.12) are, up to first order in the pair cumulants:

Mj = T \j +
∑

l1,l2∈∂j
l1<l2

Γ\jl1l2tjl1tjl2C
\j
l1l2

+O(C2)

where

Γ\jl1l2 :=
T
\j
l1l2
− T \j

1 + tjl1tjl2M
\j
l1
M\jl2 + tjl1M\jl1 T

\j
l1l2

+ tjl2M\jl2 T
\j
l1l2

.



116 Chapter 4



Chapter 5. Novel bounds on marginal probabilities 117

Chapter 5

Novel bounds on marginal

probabilities

We derive two related novel bounds on single-variable marginal probability distribu-

tions in factor graphs with discrete variables. The first method propagates bounds

over a subtree of the factor graph rooted in the variable, and the second method

propagates bounds over the self-avoiding walk tree starting at the variable. By con-

struction, both methods not only bound the exact marginal probability distribu-

tion of a variable, but also its approximate Belief Propagation marginal (“belief”).

Thus, apart from providing a practical means to calculate bounds on marginals,

our contribution also lies in an increased understanding of the error made by Be-

lief Propagation. Empirically, we show that our bounds often outperform existing

bounds in terms of accuracy and/or computation time. We also show that our

bounds can yield nontrivial results for medical diagnosis inference problems.

5.1 Introduction

Graphical models are used in many different fields. A fundamental problem in the
application of graphical models is that exact inference is NP-hard [Cooper, 1990].
In recent years, much research has focused on approximate inference techniques,
such as sampling methods and deterministic approximation methods, e.g., Belief
Propagation (BP) [Pearl, 1988]. Although the approximations obtained by these
methods can be very accurate, there are only few guarantees on the error of the
approximation, and often it is not known (without comparing with the exact solu-
tion) how accurate an approximate result is. Thus it is desirable to calculate, in

The material in this chapter has been submitted to the Journal of Machine Learning Research.

A preprint is available as [Mooij and Kappen, 2008].
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addition to the approximate results, tight bounds on the approximation error. Ex-
isting methods to calculate bounds on marginals include [Tatikonda, 2003; Leisink
and Kappen, 2003; Taga and Mase, 2006a; Ihler, 2007]. Also, upper bounds on the
partition sum, e.g., [Jaakkola and Jordan, 1996; Wainwright et al., 2005], can be
combined with lower bounds on the partition sum, such as the well-known mean
field bound or higher-order lower bounds [Leisink and Kappen, 2001], to obtain
bounds on marginals.

In this chapter, we derive novel bounds on exact single-variable marginals in
factor graphs. The original motivation for this work was to better understand
and quantify the BP error. This has lead to bounds which are at the same time
bounds for the exact single-variable marginals as well as for the BP beliefs. A
particularly nice feature of the bounds is that their computational cost is relatively
low, provided that the number of possible values of each variable in the factor
graph is small. Unfortunately, the computation time is exponential in the number
of possible values of the variables, which limits application to factor graphs in
which each variable has a low number of possible values. On these factor graphs
however, our bounds perform exceedingly well and we show empirically that they
outperform the state-of-the-art in a variety of factor graphs, including real-world
problems arising in medical diagnosis.

This chapter is organized as follows. In the next section, we derive our novel
bounds. In section 5.3, we discuss related work. In section 5.4 we present experi-
mental results. We conclude with conclusions and a discussion in section 5.5.

5.2 Theory

In this work, we consider graphical models such as Markov random fields and
Bayesian networks. We use the unifying factor graph representation [Kschischang
et al., 2001]. In the first subsection, we introduce our notation and some basic
definitions concerning factor graphs. Then, we shortly remind the reader of some
basic facts about convexity. After that, we introduce some notation and concepts
for measures on subsets of variables. We proceed with a subsection that considers
the interplay between convexity and the operations of normalization and multipli-
cation. In the next subsection, we introduce “(smallest bounding) boxes” that will
be used to describe sets of measures in a convenient way. Then, we formulate the
basic lemma that will be used to obtain bounds on marginals. We illustrate the
basic lemma with two simple examples. Then we formulate our first result, an al-
gorithm for propagating boxes over a subtree of the factor graph, which results in
a bound on the marginal of the root variable of the subtree. In the last subsection,
we show how one can go deeper into the computation tree and derive our second
result, an algorithm for propagating boxes over self-avoiding walk trees. The result
of that algorithm is a bound on the marginal of the root variable (starting point)
of the self-avoiding walk tree. For the special case where all factors in the factor
graph depend on two variables at most (“pairwise interactions”), our first result
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is equivalent to a truncation of the second one. This is not true for higher-order
interactions, however.

5.2.1 Factor graphs

Let V := {1, . . . , N} and consider N discrete random variables (xi)i∈V . Each vari-
able xi takes values in a discrete domain Xi. We will frequently use the following
multi-index notation. Let A = {i1, i2, . . . , im} ⊆ V with i1 < i2 < . . . im. We write
XA := Xi1 ×Xi2 × · · · × Xim and for any family (Yi)i∈B with A ⊆ B ⊆ V, we write
YA := (Yi1 , Yi2 , . . . , Yim).

We consider a probability distribution over x = (x1, . . . , xN ) ∈ XV that can be
written as a product of factors (also called “interactions”) (ψI)I∈F :

P(x) =
1
Z

∏
I∈F

ψI(xNI ), Z =
∑
x∈XV

∏
I∈F

ψI(xNI ). (5.1)

For each factor index I ∈ F , there is an associated subset NI ⊆ V of variable indices
and the factor ψI is a nonnegative function ψI : XNI → [0,∞). For a Bayesian
network, the factors are (conditional) probability tables. In case of Markov random
fields, the factors are often called potentials.1 In the following, we will use lowercase
for variable indices and uppercase for factor indices.

In general, the normalizing constant Z is not known and exact computation of Z
is infeasible, due to the fact that the number of terms to be summed is exponential
in N . Similarly, computing marginal distributions P(xA) for subsets of variables
A ⊆ V is intractable in general. In this chapter, we focus on the task of obtaining
rigorous bounds on single-variable marginals P(xi) =

∑
xV\{i}

P(x).
We can represent the structure of the probability distribution (5.1) using a factor

graph (V,F , E). This is a bipartite graph, consisting of variable nodes i ∈ V, factor
nodes I ∈ F , and edges e ∈ E , with an edge {i, I} between i ∈ V and I ∈ F if
and only if the factor ψI depends on xi (i.e., if i ∈ NI). We will represent factor
nodes visually as rectangles and variable nodes as circles. Figure 5.1 shows a simple
example of a factor graph and the corresponding probability distribution. The set of
neighbors of a factor node I is precisely NI ; similarly, we denote the set of neighbors
of a variable node i by Ni := {I ∈ F : i ∈ NI}. Further, we define for each variable
i ∈ V the set ∆i :=

⋃
Ni consisting of all variables that appear in some factor in

which variable i participates, and the set ∂i := ∆i \ {i}, the Markov blanket of i.
We will assume throughout this chapter that the factor graph corresponding to

(5.1) is connected. Furthermore, we will assume that

∀I ∈ F ∀i ∈ NI ∀xNI\{i} ∈ XNI\{i} :
∑
xi∈Xi

ψI(xi, xNI\{i}) > 0.

1Not to be confused with statistical physics terminology, where “potential” refers to − 1
β

logψI
instead, with β the inverse temperature.
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i

j k

J K

L

P(xi, xj , xk) = 1
Z
ψJ(xi, xj)ψK(xi, xk)ψL(xj , xk)

Z =
X
xi∈Xi

X
xj∈Xj

X
xk∈Xk

ψJ(xi, xj)ψK(xi, xk)ψL(xj , xk)

Figure 5.1: Example of a factor graph with three variable nodes (i, j, k), represented as

circles, and three factor nodes (J,K,L), represented as rectangles. The corresponding

random variables are xi, xj , xk; the corresponding factors are ψJ : Xi × Xj → [0,∞),

ψK : Xi × Xk → [0,∞) and ψL : Xj × Xk → [0,∞). The corresponding probability

distribution P(x) is written out on the right.

This will prevent technical problems regarding normalization later on.2

One final remark concerning notation: we will sometimes abbreviate {i} as i if
no confusion can arise.

5.2.2 Convexity

Let V be a real vector space. For T elements (vt)t=1,...,T of V and T nonnegative
numbers (λt)t=1,...,T with

∑T
t=1 λt = 1, we call

∑T
t=1 λtvt a convex combination of

the (vt)t=1,...,T with weights (λt)t=1,...,T . A subset X ⊆ V is called convex if for
all x1, x2 ∈ X and all λ ∈ [0, 1], the convex combination λx1 + (1 − λ)x2 ∈ X.
An extreme point of a convex set X is an element x ∈ X which cannot be written
as a (nontrivial) convex combination of two different points in X. In other words,
x ∈ X is an extreme point of X if and only if for all λ ∈ (0, 1) and all x1, x2 ∈ X,
x = λx1 + (1 − λ)x2 implies x1 = x2. We denote the set of extreme points of a
convex set X by Ext (X). For a subset Y of the vector space V , we define the
convex hull of Y to be the smallest convex set X ⊆ V with Y ⊆ X; we denote the
convex hull of Y as Hull (Y ).

5.2.3 Measures and operators

For A ⊆ V, defineMA := [0,∞)XA , i.e.,MA is the set of nonnegative functions on
XA. MA can be identified with the set of finite measures on XA. We will simply
call the elements of MA “measures on A”. We also define M∗A := MA \ {0}. We
will denote M :=

⋃
A⊆VMA and M∗ :=

⋃
A⊆VM∗A.

Adding two measures Ψ,Φ ∈ MA results in the measure Ψ + Φ in MA. For
A,B ⊆ V, we can multiply an element ofMA with an element ofMB to obtain an
element of MA∪B ; a special case is multiplication with a scalar. Note that there
is a natural embedding of MA in MB for A ⊆ B ⊆ V obtained by multiplying an
element Ψ ∈ MA by 1B\A ∈ MB\A, the constant function with value 1 on XB\A.

2This condition ensures that if one runs Belief Propagation on the factor graph, the messages

will always remain nonzero, provided that the initial messages are nonzero.
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xi = +1

xi = −1

Mi

1

1

Pi Ψ

NΨ

Figure 5.2: Illustration of some concepts in the simple case of a binary random variable

xi ∈ Xi = {±1} and the subset A = {i}. A measure Ψ ∈Mi can be identified with a point

in the quarter plane as indicated in the figure. A normalized measure can be obtained by

scaling Ψ; the result NΨ is contained in the simplex Pi, a lower-dimensional submanifold

of Mi.

Another important operation is the partial summation: given A ⊆ B ⊆ V and
Ψ ∈MB , define

∑
xA

Ψ to be the measure in MB\A that satisfies(∑
xA

Ψ

)
(xB\A) =

∑
xA∈XA

Ψ(xA, xB\A) ∀xB\A ∈ XB\A.

Also, defining A′ = B\A, we will sometimes write this measure as
∑
x\A′

Ψ, which is
an abbreviation of

∑
xB\A′

Ψ. This notation does not make explicit which variables
are summed over (which depends on the measure that is being partially summed),
although it shows which variables remain after summation.

In the following, we will implicitly define operations on sets of measures by
applying the operation on elements of these sets and taking the set of the resulting
measures; e.g., if we have two subsets ΞA ⊆ MA and ΞB ⊆ MB for A,B ⊆ V, we
define the product of the sets ΞA and ΞB to be the set of the products of elements
of ΞA and ΞB , i.e., ΞAΞB := {ΨAΨB : ΨA ∈ ΞA,ΨB ∈ ΞB}.

In figure 5.2, the simple case of a binary random variable xi and the subset
A = {i} is illustrated. Note that in this case, a measure Ψ ∈ Mi can be identified
with a point in the quarter plane [0,∞)× [0,∞).

We will define QA to be the set of completely factorized measures on A, i.e.,

QA :=
∏
a∈A
M{a} =

{∏
a∈A

Ψa : Ψa ∈M{a} for each a ∈ A
}
.

Note thatMA is the convex hull ofQA. Indeed, we can write each measure Ψ ∈MA

as a convex combination of measures in QA; let Z :=
∑
xA

Ψ and note that

Ψ(x) =
∑
y∈XA

Ψ(y)
Z

(Zδy(x)) ∀x ∈ XA.
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For any y ∈ XA, the Kronecker delta function δy ∈MA (which is 1 if its argument
is equal to y and 0 otherwise) is an element of QA because δy(x) =

∏
a∈A δya(xa).

We denote Q∗A := QA \ {0}.
We define the partition sum operator Z : M → [0,∞) which calculates the

partition sum (normalization constant) of a measure, i.e.,

ZΨ :=
∑

xA∈XA
Ψ(xA) for Ψ ∈MA, A ⊆ V.

We denote with PA the set of probability measures on A, i.e., PA = {Ψ ∈ MA :
ZΨ = 1}, and define P :=

⋃
A⊆V PA. The set PA is called a simplex (see also

figure 5.2). Note that a simplex is convex; the simplex PA has precisely #(XA)
extreme points, each of which corresponds to putting all probability mass on one of
the possible values of xA.

Define the normalization operator N : M∗ → P which normalizes a measure,
i.e.,

NΨ :=
1
ZΨ

Ψ for Ψ ∈M∗.

Note that Z ◦ N = 1. Figure 5.2 illustrates the normalization of a measure in a
simple case.

5.2.4 Convex sets of measures

To calculate marginals of subsets of variables in some factor graph, several op-
erations performed on measures are relevant: normalization, taking products of
measures, and summing over subsets of variables. In this section we study the in-
terplay between convexity and these operations; this will turn out to be useful later
on, because our bounds make use of convex sets of measures that are propagated
over the factor graph.

The interplay between normalization and convexity is described by the following
Lemma, which is illustrated in figure 5.3.

Lemma 5.1 Let A ⊆ V, T ∈ N∗ and let (ξt)t=1,...,T be elements ofM∗A. Each con-
vex combination of the normalized measures (N ξt)t=1,...,T can be written as a nor-
malized convex combination of the measures (ξt)t=1,...,T (which has different weights
in general), and vice versa.

Proof. Let (λt)t=1,...,T be nonnegative numbers with
∑T
t=1 λt = 1. Then

Z
(

T∑
t=1

λtN ξt
)

=
T∑
t=1

λtZN ξt = 1,
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xi = +1

xi = −1

Mi

1

1

Pi

ξ1

ξ2

ξ3

Nξ1
Nξ2
Nξ3

Figure 5.3: Any convex combination of N ξ1, N ξ2 and N ξ3 can be written as a normalized

convex combination of ξ1, ξ2 and ξ3. Vice versa, normalizing a convex combination of

ξ1, ξ2 and ξ3 yields a convex combination of N ξ1,N ξ2 and N ξ3.

therefore
T∑
t=1

λt(N ξt) = N
(

T∑
t=1

λt(N ξt)
)

= N
(

T∑
t=1

λt
Zξt ξt

)

= N
(

T∑
t=1

λt
Zξt∑T
s=1

λs
Zξs

ξt

)
,

which is the result of applying the normalization operator to a convex combination
of the elements (ξt)t=1,...,T .

Vice versa, let (µt)t=1,...,T be nonnegative numbers with
∑T
t=1 µt = 1. Then

N
(

T∑
t=1

µtξt

)
=

T∑
t=1

µt
Z
ξt

where

Z := Z
(

T∑
t=1

µtξt

)
=

T∑
t=1

µtZξt =
T∑
t=1

µtZt

where we defined Zt := Zξt for all t = 1, . . . , T . Thus

N
(

T∑
t=1

µtξt

)
=

T∑
t=1

µt∑T
s=1 µsZs

ξt =
T∑
t=1

µtZt∑T
s=1 µsZs

N ξt,

which is a convex combination of the normalized measures (N ξt)t=1,...,T . �

The following lemma concerns the interplay between convexity and taking prod-
ucts; it says that if we take the product of convex sets of measures on different
spaces, the resulting set is contained in the convex hull of the product of the ex-
treme points of the convex sets. We have not made a picture corresponding to this
lemma because the simplest nontrivial case would require at least four dimensions.



124 Chapter 5

Lemma 5.2 Let T ∈ N∗ and (At)t=1,...,T be a family of mutually disjoint subsets of
V. For each t = 1, . . . , T , let Ξt ⊆ MAt be convex with a finite number of extreme
points. Then:

T∏
t=1

Ξt ⊆ Hull

(
T∏
t=1

Ext Ξt

)
,

Proof. Let Ψt ∈ Ξt for each t = 1, . . . , T . For each t, Ψt can be written as a convex
combination

Ψt =
∑

ξt∈Ext (Ξt)

λt;ξtξt,
∑

ξt∈Ext (Ξt)

λt;ξt = 1, ∀ ξt ∈ Ext (Ξt) : λt;ξt ≥ 0.

Therefore the product
∏T
t=1 Ψt is also a convex combination:

T∏
t=1

Ψt =
T∏
t=1

 ∑
ξt∈Ext (Ξt)

λt;ξtξt


=

∑
ξ1∈Ext (Ξ1)

∑
ξ2∈Ext (Ξ2)

· · ·
∑

ξT∈Ext (ΞT )

(
T∏
t=1

λt;ξt

)(
T∏
t=1

ξt

)

∈ Hull

(
T∏
t=1

Ext Ξt

)
.

�

5.2.5 Boxes and smallest bounding boxes

In this subsection, we define “(smallest bounding) boxes”, certain convex sets of
measures that will play a central role in our bounds, and study some of their prop-
erties.

Definition 5.3 Let A ⊆ V. For Ψ ∈MA and Ψ ∈MA with Ψ ≤ Ψ, we define the
box between the lower bound Ψ and the upper bound Ψ by

BA
(
Ψ,Ψ

)
:= {Ψ ∈MA : Ψ ≤ Ψ ≤ Ψ}.

The inequalities should be interpreted pointwise, e.g., Ψ ≤ Ψ means Ψ(x) ≤ Ψ(x)
for all x ∈ XA. Note that a box is convex; indeed, its extreme points are the
“corners” of which there are 2#(XA).

Definition 5.4 Let A ⊆ V and Ξ ⊆ MA be bounded (i.e., Ξ ≤ Ψ for some Ψ ∈
MA). The smallest bounding box for Ξ is defined as B (Ξ) := BA

(
Ψ,Ψ

)
, where

Ψ,Ψ ∈MA are given by

Ψ(xA) := inf{Ψ(xA) : Ψ ∈ Ξ} ∀xa ∈ XA,
Ψ(xA) := sup{Ψ(xA) : Ψ ∈ Ξ} ∀xa ∈ XA.
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xi = +1

xi = −1

Mi

Ξ

Ψ

Ψ

B (Ξ) = Bi
(
Ψ,Ψ

)

Figure 5.4: The smallest bounding box B (Ξ) for Ξ is given by the box Bi
`
Ψ,Ψ

´
with

lower bound Ψ and upper bound Ψ.

xi = +1

xi = −1

Mi

Ψ1

Ψ1
Ψ2

Ψ2

xi = +1

xi = −1

Mi

Ψ1Ψ2

Ψ1Ψ2

Bi
`
Ψ1,Ψ1

´Bi `Ψ2,Ψ2

´

Figure 5.5: Multiplication of two boxes on the same variable set A = {i}.

Figure 5.4 illustrates this concept. Note that B (Ξ) = B (Hull (Ξ)). Therefore, if
Ξ is convex, the smallest bounding box for Ξ depends only on the extreme points
Ext (Ξ), i.e., B (Ξ) = B (Ext (Ξ)).

The product of several boxes on the same subset A of variables can be easily
calculated as follows (see also figure 5.5).

Lemma 5.5 Let A ⊆ V, T ∈ N∗ and for each t = 1, . . . , T , let Ψt,Ψt ∈ MA such
that Ψt ≤ Ψt. Then

T∏
t=1

BA
(
Ψt,Ψt

)
= BA

(
T∏
t=1

Ψt,

T∏
t=1

Ψt

)
,

i.e., the product of the boxes is again a box, with as lower bound the product of the
lower bounds of the boxes and as upper bound the product of the upper bounds of
the boxes.

Proof. We prove the case T = 2; the general case follows by induction. We show
that

BA
(
Ψ1,Ψ1

)BA (Ψ2,Ψ2

)
= BA

(
Ψ1 Ψ2,Ψ1 Ψ2

)
.
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That is, for Φ ∈MA we have to show that

Ψ1(x)Ψ2(x) ≤ Φ(x) ≤ Ψ1(x)Ψ2(x) ∀x ∈ XA

if and only if there exist Φ1,Φ2 ∈MA such that:

Φ(x) = Φ1(x)Φ2(x) ∀x ∈ XA;

Ψ1(x) ≤ Φ1(x) ≤ Ψ1(x) ∀x ∈ XA;

Ψ2(x) ≤ Φ2(x) ≤ Ψ2(x) ∀x ∈ XA.

Note that the problem “decouples” for the various possible values of x ∈ XA so that
we can treat each component (indexed by x ∈ XA) seperately. That is, the problem
reduces to showing that

[a, b] · [c, d] = [ac, bd]

for 0 ≤ a ≤ b and 0 ≤ c ≤ d (take a = Ψ1(x), b = Ψ1(x), c = Ψ2(x) and d = Ψ2(x)).
In other words, we have to show that y ∈ [ac, bd] if and only if there exist y1 ∈ [a, b],
y2 ∈ [c, d] with y = y1y2. For the less trivial part of this assertion, it is easily
verified that choosing y1 and y2 according to the following table:

Condition y1 y2

bc ≤ y, b > 0 b y
b

b = 0 0 c

bc ≥ y, c > 0 y
c c

bc ≥ y, c = 0 b 0

does the job. �

In general, the product of several boxes is not a box itself. Indeed, let i, j ∈ V be
two different variable indices. Then Bi

(
Ψi,Ψi

)Bj (Ψj ,Ψj

)
contains only factorizing

measures, whereas B{i,j}
(
ΨiΨj ,ΨiΨj

)
is not a subset of Q{i,j} in general. However,

we do have the following identity:

Lemma 5.6 Let T ∈ N∗ and for each t = 1, . . . , T , let At ⊆ V and Ψt,Ψt ∈ MAt

such that Ψt ≤ Ψt. Then

B
(

T∏
t=1

BAt
(
Ψt,Ψt

))
= B(

ST
t=1 At)

(
T∏
t=1

Ψt,

T∏
t=1

Ψt

)
.

Proof. Straightforward, using the definitions. �

5.2.6 The basic lemma

After defining the elementary concepts, we can proceed with the basic lemma. Given
the definitions introduced before, the basic lemma is easy to formulate. It is illus-
trated in figure 5.6.
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(a)

Ψ

?

A

B

C

(b)

Ψ

? ? ?

A

B

C

Figure 5.6: The basic lemma: the smallest bounding box enclosing the set of possible

marginals of xA is identical in cases (a) and (b), if we are allowed to put arbitrary factors

on the factor nodes marked with question marks.

Lemma 5.7 Let A,B,C ⊆ V be mutually disjoint subsets of variables. Let Ψ ∈
MA∪B∪C such that for each xC ∈ XC ,∑

xA∪B

Ψ > 0.

Then:

B
(
N
( ∑
xB ,xC

ΨM∗C
))

= B
(
N
( ∑
xB ,xC

ΨQ∗C
))

.

Proof. Note that M∗C is the convex hull of Q∗C . Furthermore, the multiplication
with Ψ and the summation over xB , xC preserves convex combinations, as does the
normalization operation (see Lemma 5.1). Therefore,

N
( ∑
xB ,xC

ΨM∗C
)
⊆ Hull

(
N
( ∑
xB ,xC

ΨQ∗C
))

from which the lemma follows. �

The positivity condition is a technical condition, which in our experience is fulfilled
for most practically relevant factor graphs.

5.2.7 Examples

Before proceeding to the first main result, we first illustrate for a simple case how
the basic lemma can be employed to obtain bounds on marginals. We show two
bounds for the marginal of the variable xi in the factor graph in figure 5.7(a).
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(a) i

j k

J K

L

(b) i

j k

J K

? ?

(c) i

j k

J K

δ

j′
L

(d) i

j k

J K

?

j′

L

?

Figure 5.7: (a) Factor graph; (b) Illustration of the bound on P(xi) corresponding to

Example I; (c) Cloning node j by adding a new variable j′ and a factor ψδ(xj , xj′) =

δxj (xj′); (d) Illustration of the improved bound on P(xi), corresponding to Example (II),

based on (c).

Example I

First, note that the marginal of xi satisfies

P(xi) = N
∑

xj

∑
xk

ψJψKψL

 ∈ N
∑

xj

∑
xk

ψJψKM∗{j,k}

 .

because, obviously, ψL ∈ M∗{j,k}. Now, applying the basic lemma with A = {i},
B = ∅, C = {j, k} and Ψ = ψJψK , we obtain

P(xi) ∈ B
N

∑
xj

∑
xk

ψJψKQ∗{j,k}

 .

Applying the distributive law, we conclude

P(xi) ∈ BN
(∑

xj

ψJM∗j
)(∑

xk

ψKM∗k
) ,

which certainly implies

P(xi) ∈ BN
BN

∑
xj

ψJM∗j

 · BN (∑
xk

ψKM∗k
) .

This is illustrated in figure 5.7(b), which should be read as “What can we say about
the range of P(xi) when the factors corresponding to the nodes marked with question
marks are arbitrary?” Because of the various occurrences of the normalization
operator, we can restrict ourselves to normalized measures on the question-marked
factor nodes:

P(xi) ∈ BN
BN

∑
xj

ψJPj
 · BN (∑

xk

ψKPk
) .
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Now it may seem that this smallest bounding box would be difficult to com-
pute, because in principle one would have to compute all the measures in the sets
N∑xj

ψJPj and N∑xk
ψKPk. Fortunately, we only need to compute the extreme

points of these sets, because the mapping

M∗{j} →M∗{i} : ψ 7→ N
∑
xj

ψJψ

maps convex combinations into convex combinations (and similarly for the other
mapping, involving ψK). Since smallest bounding boxes only depend on extreme
points, we conclude that

P(xi) ∈ BN
BN

∑
xj

ψJExtPj
 · BN (∑

xk

ψKExtPk
)

which can be calculated efficiently if the number of possible values of each variable
is small.

Example II

We can improve this bound by using another trick: cloning variables. The idea is to
first clone the variable xj by adding a new variable xj′ that is constrained to take
the same value as xj . In terms of the factor graph, we add a variable node j′ and
a factor node δ, connected to variable nodes j and j′, with corresponding factor
ψδ(xj , xj′) := δxj (xj′); see also figure 5.7(c). Clearly, the marginal of xi satisfies:

P(xi) = N
∑

xj

∑
xk

ψJψKψL


= N

∑
xj

∑
xj′

∑
xk

ψJψKψLδxj (xj′)


where it should be noted that in the first line, ψL is shorthand for ψL(xj , xk) but in
the second line it is meant as shorthand for ψL(xj′ , xk). Noting that ψδ ∈ M∗{j,j′}
and applying the basic lemma with C = {j, j′} yields:

P(xi) ∈ N
∑

xj

∑
xj′

∑
xk

ψJψKψLM∗{j,j′}


∈ BN

∑
xj

∑
xj′

∑
xk

ψJψKψLQ∗{j,j′}

 .

Applying the distributive law, we obtain (see also figure 5.7(d)):

P(xi) ∈ BN
∑

xj

ψJM∗{j}

∑
xk

ψK
∑
xj′

ψLM∗{j′}

 ,
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from which we conclude

P(xi) ∈ BN
BN

∑
xj

ψJP{j}

BN
∑

xk

ψKBN
∑
xj′

ψLP{j′}

 .

This can again be calculated efficiently by considering only extreme points.
As a more concrete example, take all variables as binary and take for each factor

ψ =
(

1 2
2 1

)
. Then the first bound (Example I) yields:

P(xi) ∈ Bi
((

1/5
1/5

)
,
(

4/5
4/5

))
,

whereas the second, tighter, bound (Example II) gives:

P(xi) ∈ Bi
((

2/7
2/7

)
,
(

5/7
5/7

))
.

Obviously, the exact marginal is

P(xi) =
(

1/2
1/2

)
.

5.2.8 Propagation of boxes over a subtree

We now formulate a message passing algorithm that resembles Belief Propagation.
However, instead of propagating measures, it propagates boxes (or simplices) of
measures; furthermore, it is only applied to a subtree of the factor graph, propagat-
ing boxes from the leaves towards a root node, instead of propagating iteratively
over the whole factor graph several times. The resulting “belief” at the root node
is a box that bounds the exact marginal of the root node. The choice of the subtree
is arbitrary; different choices lead to different bounds in general. We illustrate the
algorithm using the example that we have studied before (see figure 5.8).

Definition 5.8 Let (V,F , E) be a factor graph. We call the bipartite graph (V, F,E)
a subtree of (V,F , E) with root i if i ∈ V ⊆ V, F ⊆ F , E ⊆ E such that (V, F,E)
is a tree with root i and for all {j, J} ∈ E, j ∈ V and J ∈ F (i.e., there are no
“loose edges”).3

An illustration of a factor graph and a possible subtree is given in figure 5.8(a)-
(b). We denote the parent of j ∈ V according to (V, F,E) by par(j) and similarly,
we denote the parent of J ∈ F by par(J). In the following, we will use the topology
of the original factor graph (V,F , E) whenever we refer to neighbors of variables or
factors.

Each edge of the subtree will carry one message, oriented such that it “flows”
towards the root node. In addition, we define messages entering the subtree for

3Note that this corresponds to the notion of subtree of a bipartite graph; for a subtree of a

factor graph, one sometimes imposes the additional constraint that for all factors J ∈ F , all its

connecting edges {J, j} with j ∈ NJ have to be in E; here we do not impose this additional

constraint.
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BJ→i BK→i

Bj→J Bk→K

BL→kBL→j

Bj→L

Figure 5.8: Box propagation algorithm corresponding to Example II: (a) Factor graph

G = (V,F , E); (b) a possible subtree (V, F,E) of G; (c) propagating sets of measures

(boxes or simplices) on the subtree leading to a bound Bi on the marginal probability of

xi in G.

all “missing” edges in the subtree. Because of the bipartite character of the factor
graph, we can distinguish between two types of messages: messages BJ→j ⊆ Mj

sent to a variable j ∈ V from a neighboring factor J ∈ Nj , and messages Bj→J ⊆
Mj sent to a factor J ∈ F from a neighboring variable j ∈ NJ .

The messages entering the subtree are all defined to be simplices; more precisely,
we define the incoming messages

Bj→J = Pj J ∈ F , {j, J} ∈ E \ E
BJ→j = Pj j ∈ V , {j, J} ∈ E \ E.

We propagate messages towards the root i of the tree using the following update
rules (note the similarity with the BP update rules). The message sent from a
variable j ∈ V to its parent J = par(j) ∈ F is defined as

Bj→J =


∏

K∈Nj\J
BK→j if all incoming BK→j are boxes

Pj if at least one of the BK→j is the simplex Pj ,

where the product of the boxes can be calculated using Lemma 5.5. The message
sent from a factor J ∈ F to its parent k = par(J) ∈ V is defined as

BJ→k = BN
 ∑
xNJ\k

ψJ
∏

l∈NJ\k
Bl→J

 . (5.2)

This smallest bounding box can be calculated using the following Corollary of
Lemma 5.2:
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Corollary 5.9

BN
 ∑
xNJ\k

ψJ
∏

l∈NJ\k
Bl→J

 = BN
 ∑
xNJ\k

ψJ
∏

l∈NJ\k
ExtBl→J


Proof. By Lemma 5.2,

∏
l∈NJ\k

Bl→J ⊆ Hull

 ∏
l∈NJ\k

ExtBl→J
 .

Because the multiplication with ψJ and the summation over xNJ\k preserves convex
combinations, as does the normalization (see Lemma 5.1), the statement follows. �

The final “belief” Bi at the root node i is calculated by

Bi =


BN

 ∏
K∈Nj

BK→j
 if all incoming BK→j are boxes

Pj if at least one of the BK→j is the simplex Pj .

Note that when applying this to the case illustrated in figure 5.8, we obtain the
bound that we derived earlier on (“Example II”).

We can now formulate our first main result, which gives a rigorous bound on
the exact single-variable marginal of the root node:

Theorem 5.10 Let (V,F , E) be a factor graph with corresponding probability dis-
tribution (5.1). Let i ∈ V and (V, F,E) be a subtree of (V,F , E) with root i ∈ V .
Apply the “box propagation” algorithm described above to calculate the final “belief”
Bi on the root node i. Then P(xi) ∈ Bi.
Proof sketch. The first step consists in extending the subtree such that each
factor node has the right number of neighboring variables by cloning the missing
variables. The second step consists of applying the basic lemma where the set C
consists of all the variable nodes of the subtree which have connecting edges in E \E,
together with all the cloned variable nodes. Then we apply the distributive law,
which can be done because the extended subtree has no cycles. Finally, we relax the
bound by adding additional normalizations and smallest bounding boxes at each
factor node in the subtree. It should now be clear that the recursive algorithm “box
propagation” described above precisely calculates the smallest bounding box at the
root node i that corresponds to this procedure. �

Note that a subtree of the orginal factor graph is also a subtree of the computa-
tion tree for i [Tatikonda and Jordan, 2002]. A computation tree is an “unwrapping”
of the factor graph that has been used in analyses of the Belief Propagation algo-
rithm. The computation tree starting at variable i ∈ V consists of all paths on the
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Figure 5.9: (a) Factor graph; (b) Self-avoiding walk tree with root i, with cycle-induced

leaf nodes shown in gray; (c) Computation tree for i.

factor graph, starting at i, that never backtrack (see also figure 5.9(c)). This means
that the bounds on the (exact) marginals that we just derived are at the same time
bounds on the approximate Belief Propagation marginals (beliefs).

Corollary 5.11 In the situation described in Theorem 5.10, the final bounding box
Bi also bounds the (approximate) Belief Propagation marginal of the root node i,
i.e., PBP (xi) ∈ Bi. �

5.2.9 Bounds using self-avoiding walk trees

While writing this chapter, we became aware that a related method to obtain
bounds on single-variable marginals has been proposed recently by Ihler [2007].4

The method presented there uses a different local bound, which empirically seems
to be less tight than ours, but has the advantage of being computationally less
demanding if the domains of the random variables are large. On the other hand,
the bound presented there does not use subtrees of the factor graph, but uses self-
avoiding walk (SAW) trees instead. Since each subtree of the factor graph is a
subtree of an SAW tree, this may lead to tighter bounds.

4Note that [Ihler, 2007, Lemma 5] contains an error: to obtain the correct expression, one has

to replace δ with δ2, i.e., the correct statement would be that

m(j)

δ2 + (1− δ2)m(j)
≤ p(j) ≤

δ2m(j)

1− (1− δ2)m(j)

if d
`
p(x)/m(x)

´
≤ δ (where p and m should both be normalized).
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The idea of using a self-avoiding walk tree for calculating marginal probabilities
seems to be generally attributed to Weitz [2006], but can already be found in [Scott
and Sokal, 2005]. In this subsection, we show how this idea can be combined with
the propagation of bounding boxes. The result Theorem 5.13 will turn out to be
an improvement over Theorem 5.10 in case there are only pairwise interactions,
whereas in the general case, Theorem 5.10 often yields tighter bounds empirically.

Definition 5.12 Let G := (V,F , E) be a factor graph and let i ∈ V. A self-
avoiding walk (SAW) starting at i ∈ V of length n ∈ N∗ is a sequence α =
(α1, α2, α3, . . . , αn) ∈ (V ∪ F)n that

(i) starts at i ∈ V, i.e., α1 = i;

(ii) subsequently visits neighboring nodes in the factor graph, i.e., αj+1 ∈ Nαj for
all j = 1, 2, . . . , n− 1;

(iii) does not backtrack, i.e., αj 6= αj+2 for all j = 1, 2, . . . , n− 2;

(iv) the first n − 1 nodes are all different, i.e., αj 6= αk if j 6= k for j, k ∈
{1, 2, . . . , n− 1}.5

The set of all self-avoiding walks starting at i ∈ V has a natural tree struc-
ture, defined by declaring each SAW (α1, α2, . . . , αn, αn+1) to be a child of the SAW
(α1, α2, . . . , αn), for all n ∈ N∗; the resulting tree is called the self-avoiding walk
(SAW) tree with root i ∈ V, denoted TSAWG (i).

Note that the name “self-avoiding walk tree” is slightly inaccurate, because the
last node of a SAW may have been visited already. In general, the SAW tree can
be much larger than the original factor graph. Following Ihler [2007], we call a
leaf node in the SAW tree a cycle-induced leaf node if it contains a cycle (i.e., if
its final node has been visited before in the same walk), and call it a dead-end leaf
node otherwise. We denote the parent of node α in the SAW tree by par(α) and we
denote its children by ch(α). The final node of a SAW α = (α1, . . . , αn) is denoted
by G(α) = αn. An example of a SAW tree for our running example factor graph is
shown in figure 5.9(b).

Let G = (V,F , E) be a factor graph and let i ∈ V. We now define a propagation
algorithm on the SAW tree TSAWG (i), where each node α ∈ TSAWG (i) (except for
the root i) sends a message Bα→par(α) to its parent node par(α) ∈ TSAWG (i). Each
cycle-induced leaf node of TSAWG (i) sends a simplex to its parent node: if α is a
cycle-induced leaf node, then

Bα→par(α) =

PG(α) if G(α) ∈ V
PG(par(α)) if G(α) ∈ F .

(5.3)

5Note that (iii) almost follows from (iv), except for the condition that αn−2 6= αn.
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All other nodes α in the SAW tree (i.e., the dead-end leaf nodes and the nodes with
children, except for the root i) send a message according to the following rules. If
G(α) ∈ V,

Bα→par(α) =


∏

β∈ch(α)

Bβ→α if all Bβ→α are boxes

PG(α) if at least one of the Bβ→α is a simplex.
(5.4)

On the other hand, if G(α) ∈ F ,

Bα→par(α) = BN
 ∑
x\G(par(α))

ψG(α)B
 ∏
β∈ch(α)

Bβ→α
 . (5.5)

The final “belief” at the root node i ∈ V is defined as:

Bi =


BN

 ∏
β∈ch(i)

Bβ→i
 if all Bβ→i are boxes

PG(i) if at least one of the Bβ→i is a simplex.

(5.6)

We will refer to this algorithm as “box propagation on the SAW tree”; it is similar to
the propagation algorithm for boxes on subtrees of the factor graph that we defined
earlier. However, note that whereas (5.2) bounds a sum-product assuming that
incoming measures factorize, (5.5) is a looser bound that also holds if the incoming
measures do not necessarily factorize. In the special case where the factor depends
only on two variables, the updates (5.2) and (5.5) are identical.

Theorem 5.13 Let G := (V,F , E) be a factor graph. Let i ∈ V and let TSAWG (i)
be the SAW tree with root i. Then P(xi) ∈ Bi, where Bi is the bounding box that
results from propagating bounds on the SAW tree TSAWG (i) according to equations
(5.3)–(5.6).

The following lemma, illustrated in figure 5.10, plays a crucial role in the proof
of the theorem. It seems to be related to the so-called “telegraph expansion” used
in Weitz [2006].

Lemma 5.14 Let A,C ⊆ V be two disjoint sets of variable indices and let Ψ ∈
MA∪C be a factor depending on (some of) the variables in A ∪ C. Then:

N
(∑
xC

Ψ

)
∈ B

(∏
i∈A

Bi

)

where

Bi := BN
∑
xA\i

∑
xC

ΨQ∗A\i

 .
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Figure 5.10: The second basic lemma: the marginal on xA in (a) is contained in the

bounding box of the product of smallest bounding boxes Bi for i ∈ A, where (b) the

smallest bounding box Bi is obtained by putting arbitrary factors on the other variables

in A \ {i} and calculating the smallest bounding box on i, illustrated here for the case

i = i1.

Proof. We assume that C = ∅; the more general case then follows from this special
case by replacing Ψ by

∑
xC

Ψ.
Let A = {i1, i2, . . . , in} and let Ψi, Ψi be the lower and upper bounds corre-

sponding to Bi, for all i ∈ A. For each k = 1, 2, . . . , n, note that(
k−1∏
l=1

1il

)(
n∏

l=k+1

δxil

)
∈ Q∗A\ik ,

for all x{ik+1,...,in} ∈ X{ik+1,...,in}. Therefore, we obtain from the definition of Bik
that

∀xA ∈ XA : Ψik
≤

∑
xik−1

· · ·∑xi1
Ψ∑

xik

∑
xik−1

· · ·∑xi1
Ψ

≤ Ψik

for all k = 1, 2, . . . , n. Taking the product of these n inequalities yields

n∏
k=1

Ψik
≤ NΨ ≤

n∏
k=1

Ψik

pointwise, and therefore NΨ ∈ B (
∏n
k=1Bik). �

The following corollary is somewhat elaborate to state, but readily follows from
the previous lemma after attaching a factor I that depends on all nodes in A and
one additional newly introduced node i:
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Corollary 5.15 Let G = (V,F , E) be a factor graph. Let i ∈ V with exactly one
neighbor in F , say Ni = {I}. Then P(xi) ∈ Bi where

Bi = BN
∑
xNI\i

ψIB
 ∏
k∈NI\i

B
\I
k

 (5.7)

and

B
\I
k = BN

 ∑
xV\{i,k}

ΨF\IQ∗NI\{i,k}


with

ΨF\I :=
∏

J∈F\I
ψJ .

�

We now proceed with a sketch of the proof of Theorem 5.13, which was inspired
by [Ihler, 2007].

Proof sketch of Theorem 5.13. The proof proceeds using structural induction,
recursively transforming the original factor graph G into the SAW tree TSAWG (i),
refining the bound at each step, until it becomes equivalent to the result of the
message propagation algorithm on the SAW tree described above in equations (5.3)–
(5.6).

Let G := (V,F , E) be a factor graph. Let i ∈ V and let TSAWG (i) be the SAW
tree with root i. Let {I1, . . . , In} = Ni.

Suppose that n > 1. Consider the equivalent factor graph G′ that is obtained
by creating n copies in of the variable node i, where each copy ij is only connected
with the factor node Ij (for j = 1, . . . , n); in addition, all copies are connected with
the original variable i using the delta function ψδ := δ(xi, xi1 , . . . , xin). This step is
illustrated in figure 5.11(a)–(b). Applying Corollary 5.15 to G′ yields the following
bound which follows from (5.7) because of the properties of the delta function:

P(xi) ∈ BN
 n∏
j=1

B
\δ
ij

 (5.8)

where

B
\δ
ij

:= BN
∑
x\ij

(∏
J∈F

ψJ

)
Q∗{i1,...,ij−1,ij+1,...,in}

 j = 1, . . . , n.

In the expression on the right-hand side, the factor ψIk implicitly depends on ik
instead of i (for all k = 1, . . . , n). This bound is represented graphically in figure
5.11(c)–(d) where the gray variable nodes correspond to simplices of single-variable
factors, i.e., they are meant to be multiplied with unknown single-variable factors.
Note that (5.8) corresponds precisely with (5.6).
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Figure 5.11: One step in the proof of Theorem 5.13: propagating bounds towards variable i

in case it has more than one neighboring factor nodes I1, . . . , In (here, n = 3). Gray nodes

represent added (unknown) single-variable factors. (a) Factor graph G. (b) Equivalent

factor graph G′. (c) Result of replicating G n times, where in each copy Gk of G, i is

replaced by exactly n copies ikj of i for j = 1, . . . , n, where ikj is connected only with the

factor Ij in Gk. Then, the original variable i is connected using a delta factor with n of

its copies ijj for j = 1, . . . , n. (d) Simplification of (c) obtained by identifying i with its n

copies ijj for j = 1, . . . , n and changing the layout slightly.
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and connecting the factor I with i and with copy jkk of jk for k = 1, . . . ,m. (c) Equivalent

to (b) but with a slightly changed layout. The gray copies of I represent (unknown)
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The case that n = 1 is simpler because there is no need to introduce the delta
function. It is illustrated in figure 5.12. Let {I} = Ni and let {j1, . . . , jm} = NI \ i.
Applying Corollary 5.15 yields the following bound:

P(xi) ∈ BN
∑
xNI\i

ψIB
(

m∏
k=1

B
\I
jk

) (5.9)

where

B
\I
jk

:= BN
 ∑
x\{i,jk}

 ∏
J∈F\I

ψJ

Q∗{j1,...,jk−1,jk+1,...,jm}

 k = 1, . . . ,m.

This bound is represented graphically in figure 5.12(b)–(c) where the gray nodes
correspond with simplices of single-variable factors. Note that (5.9) corresponds
precisely with (5.5).

Recursively iterating the factor graph operations in figures 5.12 and 5.11, the
connected component that remains in the end is precisely the SAW tree TSAWG (i);
the bounds derived along the way correspond precisely with the message passing
algorithm on the SAW tree described above. �

Again, the self-avoiding walk tree with root i is a subtree of the computation
tree for i. This means that the bounds on the exact marginals given by Theorem
5.13 are bounds on the approximate Belief Propagation marginals (beliefs) as well.

Corollary 5.16 In the situation described in Theorem 5.13, the final bounding box
Bi also bounds the (approximate) Belief Propagation marginal of the root node i,
i.e., PBP (xi) ∈ Bi. �

5.3 Related work

There exist many other bounds on single-variable marginals. Also, bounds on the
partition sum can be used to obtain bounds on single-variable marginals. For all
bounds known to the authors, we will discuss how they compare with our bounds.
In the following, we will denote exact marginals as pi(xi) := P(xi) and BP marginals
(beliefs) as bi(xi) := PBP (xi).

5.3.1 The Dobrushin-Tatikonda bound

Tatikonda [2003] derived a bound on the error of BP marginals using mathematical
tools from Gibbs measure theory [Georgii, 1988], in particular using a result known
as Dobrushin’s theorem. The bounds on the error of the BP marginals can be easily
translated into bounds on the exact marginals:

|bi(xi)− pi(xi)| ≤ ε =⇒ pi(xi) ∈ [bi(xi)− ε, bi(xi) + ε]
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for all i ∈ V and xi ∈ Xi.
The Dobrushin-Tatikonda bound depends on the girth of the graph (the number

of edges in the shortest cycle, or infinity if there is no cycle) and the properties of
Dobrushin’s interdependence matrix, which is a N × N matrix C. The entry Cij
is only nonzero if i ∈ ∂j and in that case, the computational cost of computing
its value is exponential in the size of the Markov blanket. Thus the computational
complexity of the Dobrushin-Tatikonda bound is O(maxi∈V #(X∂i)), plus the cost
of running BP.

5.3.2 The Dobrushin-Taga-Mase bound

Inspired by the work of Tatikonda and Jordan [2002], Taga and Mase [2006a] derived
another bound on the error of BP marginals, also based on Dobrushin’s theorem.
This bound also depends on the properties of Dobrushin’s interdependence matrix
and has similar computational cost. Whereas the Dobrushin-Tatikonda bound gives
one bound for all variables, the Dobrushin-Taga-Mase bound gives a different bound
for each variable.

5.3.3 Bound Propagation

Leisink and Kappen [2003] proposed a method called “Bound Propagation” which
can be used to obtain bounds on exact marginals. The idea underlying this method
is very similar to the one employed in this work, with one crucial difference. Whereas
we use a cavity approach, using as basis equation

P(xi) ∝
∑
x∂i

(∏
I∈Ni

ψI

)
P\i(x∂i), P\i(x∂i) ∝

∑
xV\∆i

∏
I∈F\Ni

ψI

and bound the quantity P(xi) by optimizing over P\i(x∂i), the basis equation em-
ployed by Bound Propagation is

P(xi) =
∑
x∂i

P(xi |x∂i)P(x∂i)

and the optimization is over P(x∂i). Unlike in our case, the computational com-
plexity is exponential in the size of the Markov blanket, because of the required
calculation of the conditional distribution P(xi |x∂i). On the other hand, the ad-
vantage of this approach is that a bound on P(xj) for j ∈ ∂i is also a bound on
P(x∂i), which in turn gives rise to a bound on P(xi). In this way, bounds can prop-
agate through the graphical model, eventually yielding a new (tighter) bound on
P(x∂i). Although the iteration can result in rather tight bounds, the main disad-
vantage of Bound Propagation is its computational cost: it is exponential in the
Markov blanket and often many iterations are needed for the bounds to become
tight. Indeed, for a simple tree of N = 100 variables, it can happen that Bound
Propagation needs several minutes and still obtains very loose bounds (whereas our
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bounds give the exact marginal as lower and as upper bound, i.e., they arrive at
the optimally tight bound).

5.3.4 Upper and lower bounds on the partition sum

Various upper and lower bounds on the partition sum Z in (5.1) exist. An upper
and a lower bound on Z can be combined to obtain bounds on marginals in the
following way. First, note that the exact marginal of i satisfies

P(xi) =
Zi(xi)
Z

,

where we defined the partition sum of the clamped model as follows:

Zi(xi) :=
∑
xV\{i}

∏
I∈F

ψI .

Thus, we can bound
Z−i (xi)
Z+

≤ pi(xi) ≤ Z+
i (xi)
Z−

where Z− ≤ Z ≤ Z+ and Z−i (xi) ≤ Zi(xi) ≤ Z+
i (xi) for all xi ∈ Xi.

A well-known lower bound of the partition sum is the Mean Field bound. A
tighter lower bound was derived by Leisink and Kappen [2001]. An upper bound
on the log partition sum was derived by Wainwright et al. [2005]. Other lower and
upper bounds (for the case of binary variables with pairwise interactions) have been
derived by Jaakkola and Jordan [1996].

5.4 Experiments

We have done several experiments to compare the quality and computation time of
various bounds empirically. For each variable in the factor graph under considera-
tion, we calculated the gap for each bound Bi

(
Ψi,Ψi

) 3 P(xi), which we define as
the `0-norm

∥∥Ψi −Ψi

∥∥
0

= maxxi∈Xi
∣∣Ψi(xi)−Ψi(xi)

∣∣.
We have used the following bounds in our comparison:

DT: Dobrushin-Tatikonda [Tatikonda, 2003, Proposition V.6].

DTM: Dobrushin-Taga-Mase [Taga and Mase, 2006a, Theorem 1].

BoundProp: Bound Propagation [Leisink and Kappen, 2003], using the imple-
mentation of M. Leisink, where we chose the maximum cluster size to be
maxi∈V #(∆i).

BoxProp-SubT: Theorem 5.10, where we used a simple breadth-first algorithm
to recursively construct the subtree.

BoxProp-SAWT: Theorem 5.13, where we truncated the SAW tree to at most
5000 nodes.
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Ihler-SAWT: Ihler’s bound [Ihler, 2007]. This bound has only been formulated
for pairwise interactions.

Ihler-SubT: Ihler’s bound [Ihler, 2007] applied on a truncated version of the SAW
tree, namely on the same subtree as used in BoxProp-SubT. This bound has
only been formulated for pairwise interactions.

In addition, we compared with appropriate combinations of the following bounds:

MF: Mean-field lower bound.

LK3: Third-order lower bound [Leisink and Kappen, 2001, Eq. (10)], where we
took for µi the mean field solutions. This bound has been formulated only for
the binary, pairwise case.

JJ: Refined upper bound [Jaakkola and Jordan, 1996, Section 2.2], with a greedy
optimization over the parameters. This bound has been formulated only for
the binary, pairwise case.

TRW: Our implementation of [Wainwright et al., 2005]. This bound has been
formulated only for pairwise interactions.

For reference, we calculated the Belief Propagation (BP) errors by comparing with
the exact marginals, using the `0 distance as error measure.

5.4.1 Grids with binary variables

We considered a 5× 5 Ising grid with binary (±1-valued) variables, i.i.d. spin-glass
nearest-neighbor interactions Jij ∼ N

(
0, β2

)
and i.i.d. local fields θi ∼ N

(
0, β2

)
,

with probability distribution

P(x) =
1
Z

exp

∑
i∈V

θixi +
1
2

∑
i∈V

∑
j∈∂i

Jijxixj

 .

We took one random instance of the parameters J and θ (drawn for β = 1) and
scaled these parameters with the interaction strength parameter β, for which we
took values in {10−2, 10−1, 1, 10}.

The results are shown in figure 5.13. For very weak interactions (β = 10−2),
BoxProp-SAWT gave the tightest bounds of all other methods, the only exception
being BoundProp, which gave a somewhat tighter bound for 5 variables out of
25. For weak and moderate interactions (β = 10−1, 1), BoxProp-SAWT gave the
tightest bound of all methods for each variable. For strong interactions (β = 10),
the results were mixed, the best methods being BoxProp-SAWT, BoundProp,
MF-TRW and LK3-TRW. Of these, BoxProp-SAWT was the fastest method,
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Figure 5.13: Results for grids with binary variables. The first four graphs show, for

different values of the interaction strength β, the gaps of bounds on marginals calculated

using different methods. Also shown for reference are the errors in the BP approximations

to the same marginals. The final graph shows the total computation time for each method.

whereas the methods using TRW were the slowest.6 For β = 10, we present scatter
plots in figure 5.14 to compare the results of some methods in more detail. These

6We had to loosen the convergence criterion for the inner loop of TRW, otherwise it would have

taken hours. Since some of the bounds are significantly tighter than the convergence criterion we

used, this may suggest that one can loosen the convergence criterion for TRW even more and still

obtain good results using less computation time than the results we present here. Unfortunately, it

is not clear how this criterion should be chosen in an optimal way without actually trying different

values and using the best one.
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Figure 5.14: Scatter plots comparing some methods in detail for grids with binary variables

for strong interactions (β = 10).

plots illustrate that the tightness of bounds can vary widely over methods and
variables.

Among the methods yielding the tightest bounds, the computation time of our
bounds is relatively low in general; only for low interaction strengths, BoundProp

is faster tahn BoxProp-SAWT. Furthermore, the computation time of our bounds
does not depend on the interaction strength, in contrast with iterative methods
such as BoundProp and MF-TRW, which need more iterations for increasing
interaction strength (as the variables become more and more correlated). Further,
as expected, BoxProp-SubT needs less computation time than BoxProp-SAWT

but also yields less tight bounds. Another observation is that our bounds outperform
the related versions of Ihler’s bounds.

5.4.2 Grids with ternary variables

To evaluate the bounds beyond the special case of binary variables, we have per-
formed experiments on a 5 × 5 grid with ternary variables and pairwise factors
between nearest-neighbor variables on the grid. The entries of the factors were
i.i.d., drawn by taking a random number from a normal distribution N (0, β2

)
with

mean 0 and standard deviation β and taking the exp of that random number.
The results are shown in figure 5.15. We have not compared with bounds in-

volving JJ or LK3 because these methods have only been formulated originally for
the case of binary variables. This time, our method BoxProp-SAWT yielded the
tightest bounds for all interaction strengths and for all variables (although this is
not immediately clear from the plots).

5.4.3 Medical diagnosis

We also applied the bounds on simulated Promedas patient cases [Wemmenhove
et al., 2007]. These factor graphs have binary variables and singleton, pairwise
and triple interactions (containing zeros). Two examples of such factor graphs are
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Figure 5.15: Results for grids with ternary variables. The first four graphs show, for

different values of the interaction strength β, the gaps of bounds on marginals calculated

using different methods. Also shown for reference are the errors in the BP approximations

to the same marginals. The final graph shows the total computation time for each method.

shown in figure 5.16. Because of the triple interactions, less methods were available
for comparison.

The results of various bounds for nine different, randomly generated, instances
are shown in figure 5.17. The total number of variables for these nine instances
was 1270. The total computation time needed for BoxProp-SubT was 51 s,
for BoxProp-SAWT 149 s, for BoundProp more than 75000 s (we aborted the
method for two instances because convergence was very slow, which explains the
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Figure 5.16: Two of the Promedas factor graphs.
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Figure 5.17: Results for nine different factor graphs corresponding to simulated Promedas

patient cases. In reading order: Belief Propagation errors, BoundProp, BoxProp-SubT

and BoxProp-SAWT.

missing results in the plot) and to calculate the Belief Propagation errors took 254 s.
BoundProp gave the tightest bound for only 1 out of 1270 variables, BoxProp-

SAWT for 5 out of 1270 variables and BoxProp-SubT gave the tightest bound
for the other 1264 variables.

Interestingly, whereas for pairwise interactions, BoxProp-SAWT gives tighter
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bounds than BoxProp-SubT, for the factor graphs considered here, the bounds
calculated by BoxProp-SAWT were generally less tight than those calculated by
BoxProp-SubT. This is presumably due to the local bound (5.5) needed on the
SAW tree, which is quite loose compared with the local bound (5.2) that assumes
independent incoming bounds.

Not only does BoxProp-SubT give the tightest bounds for almost all variables,
it is also the fastest method. Finally, note that the tightness of these bounds still
varies widely depending on the instance and on the variable of interest.

5.5 Conclusion and discussion

We have derived two related novel bounds on exact single-variable marginals. Both
bounds also bound the approximate Belief Propagation marginals. The bounds are
calculated by propagating convex sets of measures over a subtree of the computation
tree, with update equations resembling those of BP. For variables with a limited
number of possible values, the bounds can be computed efficiently. Empirically,
our bounds often outperform the existing state-of-the-art in that case. Although
we have only shown results for factor graphs for which exact inference was still
tractable (in order to be able to calculate the BP error), we would like to stress
here that it is not difficult to construct factor graphs for which exact inference is
no longer tractable but the bounds can still be calculated efficiently. An example
are large Ising grids (of size m × m with m larger than 30). Indeed, for binary
Ising grids, the computation time of the bounds (for all variables in the network)
scales linearly in the number of variables, assuming that we truncate the subtrees
and SAW trees to a fixed maximum size.

Whereas the results of different approximate inference methods usually cannot
be combined in order to get a better estimate of marginal probabilities, for bounds
one can combine different methods simply by taking the tightest bound or the
intersection of the bounds. Thus it is generally a good thing to have different
bounds with different properties (such as tightness and computation time).

An advantage of our methods BoxProp-SubT and BoxProp-SAWT over
iterative methods like BoundProp and MF-TRW is that the computation time
of the iterative methods is difficult to predict (since it depends on the number of
iterations needed to converge which is generally not known a priori). In contrast, the
computation time needed for our bounds BoxProp-SubT and BoxProp-SAWT

only depends on the structure of the factor graph (and the chosen subtree) and is
independent of the values of the interactions. Furthermore, by truncating the tree
one can trade some tightness for computation time.

By far the slowest methods turned out to be those combining the upper bound
TRW with a lower bound on the partition sum. The problem here is that TRW

usually needs many iterations to converge, especially for stronger interactions where
convergence rate can go down significantly. In order to prevent exceedingly long
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computations, we had to hand-tune the convergence criterion of TRW according to
the case at hand.

BoundProp can compete in certain cases with the bounds derived here, but
more often than not it turned out to be rather slow or did not yield very tight
bounds. Although BoundProp also propagates bounding boxes over measures, it
does this in a slightly different way which does not exploit independence as much
as our bounds. On the other hand, it can propagate bounding boxes several times,
refining the bounds more and more each iteration.

Regarding the related bounds BoxProp-SubT, BoxProp-SAWT and Ihler-

SAWT we can draw the following conclusions. For pairwise interactions and vari-
ables that have not too many possible values, BoxProp-SAWT is the method of
choice, yielding the tightest bounds without needing too much computation time.
The bounds are more accurate than the bounds produced by Ihler-SAWT due
to the more precise local bound that is used; the difference is largest for strong
interactions. However, the computation time of this more precise local bound is ex-
ponential in the number of possible values of the variables, whereas the local bound
used in Ihler-SAWT is only polynomial in the number of possible values of the
variables. Therefore, if this number is large, BoxProp-SAWT may be no longer
applicable in practice, whereas Ihler-SAWT still may be applicable. If factors are
present that depend on more than two variables, it seems that BoxProp-SubT is
the best method to obtain tight bounds, especially if the interactions are strong.
Note that it is not immediately obvious how to extend Ihler-SAWT beyond pair-
wise interactions, so we could not compare with that method in that case.

This work also raises some new questions and opportunities for future work.
First, the bounds can be used to generalize the improved conditions for conver-
gence of Belief Propagation that were derived in [Mooij and Kappen, 2007b] beyond
the special case of binary variables with pairwise interactions. Second, it may be
possible to combine the various ingredients in BoundProp, BoxProp-SubT and
BoxProp-SAWT in novel ways in order to obtain even better bounds. Third, it
is an interesting open question whether the bounds can be extended to continuous
variables in some way. Finally, although our bounds are a step forward in quan-
tifying the error of Belief Propagation, the actual error made by BP is often at
least one order of magnitude lower than the tightness of these bounds. This is due
to the fact that (loopy) BP cycles information through loops in the factor graph;
this cycling apparently improves the results. The interesting and still unanswered
question is why it makes sense to cycle information in this way and whether this
error reduction effect can be quantified.
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M. Mézard, G. Parisi and M. A. Virasoro (1987). Spin Glass Theory and Beyond.

World Scientific, Singapore.
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Summary

The research reported in this thesis focuses on the study of existing approximation
techniques for inference in graphical models and on introducing novel techiques
for approximate inference. Approximate inference can be defined as the task of
calculating approximations for certain probabilities in large, complex probabilistic
models, such as Bayesian networks, Markov random fields or Ising spin systems (all
of which are special cases of “graphical models”). We have focussed on the case of
graphical models with variables with a finite number of possible values. Calculat-
ing these probabilities is simple in principle, but computationally hard in practice,
because it requires a summation over an exponential number of terms. However,
the practical relevance is enormous: application areas include genetic linkage anal-
ysis, medical diagnosis, expert systems, error correcting codes, speech recognition,
computer vision and many more. Because the probabilities that one is interested in
cannot always be calculated exactly (given a limited amount of computation time),
one often uses approximate methods, which use less computation time but only give
an approximation of the quantities of interest.

In this thesis we have tried to better understand and improve upon Belief Prop-
agation (BP), a popular approximate inference method that performs surprisingly
well on many problems. It has been rediscovered many times in different fields and is
therefore known under different names: “Belief Propagation”, “Loopy Belief Propa-
gation”, the “Sum-Product Algorithm” and the “Bethe-Peierls approximation”. BP
is an iterative fixed point algorithm that minimises the Bethe free energy. It yields
exact results if the underlying graphical model has no loops. If the graphical model
does have loops, the BP results are approximate but can be surprisingly accurate.
However, if variables become highly dependent, the error made by BP can become
significant. In some cases, BP does not even converge anymore.

The results in this thesis have contributed to a better understanding of these
issues. In addition, we introduced a method that improves the accuracy of BP
by taking into account the influence of loops in the graphical model. Finally, we
proposed a method to calculate exact bounds on marginal probabilities, which was
inspired by BP. Below we summarize the various chapters in more detail.
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Convergence of BP

In chapter 2, we studied the question of convergence and uniqueness of the fixed
point for parallel, undamped BP. We derived novel conditions that guarantee con-
vergence of BP to a unique fixed point, irrespective of the initial messages. In
contrast with previously existing conditions, our conditions are directly applica-
ble to arbitrary factor graphs (with discrete variables) and are shown to be valid
also in the case of factors containing zeros, under some additional conditions. For
the special case of binary variables with pairwise interactions, we derived stronger
results that take into account local evidence (i.e., single variable factors) and the
type of pair interactions (attractive or repulsive). We showed empirically that these
convergence bounds outperform all known existing bounds. This research has sig-
nificantly improved our theoretical understanding of the convergence properties of
BP. Extensions to other update schedules have later been provided by Elidan et al.
[2006].

BP and phase transitions

Chapter 3 studies the local stability of the “high-temperature” (also known as
“weak-interactions”) fixed point of BP. The relationship with the properties of the
corresponding stationary point of the Bethe free energy has been investigated in
detail, focussing on the special case of binary variables with pairwise interactions
and zero local fields in the interest of simplicity. This has led to conclusions about
the influence of damping and alternative update schedules.

In the case of ferromagnetic (attractive) interactions, we proved that the suf-
ficient conditions for convergence of parallel undamped BP and the uniqueness of
its fixed point derived in chapter 2 are sharp. Furthermore, we showed that the
use of damping would only slow down convergence to this fixed point. In contrast,
for antiferromagnetic (repulsive) interactions, the fixed point of undamped parallel
BP becomes unstable already for significantly lower interaction strengths than for
damped BP or sequential BP. Thus in this case, the use of damping or sequential
updates significantly improves the range of instances on which BP converges. In
the spin-glass case, we observe that damping only slightly improves convergence of
BP.

Further, we showed how one can estimate analytically the temperature (inter-
action strength) at which the high-temperature BP fixed point becomes unstable
for random graphs with arbitrary degree distributions and random interactions,
extending earlier worst-case results with some average-case results. The results
provide a link between statistical physics and the properties of the BP algorithm.
In particular, we conclude that the behavior of BP is closely related to the phase
transitions in the underlying graphical model.
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Loop corrections

After having studied the limitations of BP, we showed in chapter 4 how the accuracy
of BP can be improved by taking into account the influence of loops in the graphical
model. Extending a method proposed by Montanari and Rizzo [2005], we propose
a novel way of generalizing the BP update equations by dropping the basic BP
assumption of independence of incoming messages. We call this method the Loop
Correction (LC) method. Contrary to the original implementation, our extension
is applicable to arbitrary factor graphs, provided that the Markov blankets are not
too large.

The basic idea behind the Loop Correction method is the following. A cavity
distribution of some variable in a graphical model is the probability distribution on
its Markov blanket for a modified graphical model, in which all factors involving that
variable have been removed, thereby breaking all the loops involving that variable.
The Loop Correction method consists of two steps: first, the cavity distributions of
all variables are estimated (using some approximate inference method), and second,
these initial estimates are improved by a message-passing algorithm, which reduces
the errors in the estimated cavity distributions.

If the initial cavity approximations are taken to be uniform (or completely fac-
torized) distributions, the Loop Correction algorithm reduces to the BP algorithm.
In that sense, it can be considered to be a generalization of BP. On the other hand, if
the initial cavity approximations contain the effective interactions between variables
in the cavity, application of the Loop Correction method usually gives significantly
better results than the original (uncorrected) approximate inference algorithm used
to estimate the cavity approximations.

We report the results of an extensive experimental comparison of various ap-
proximate inference methods on a variety of graphical models, including real world
networks. We found that the LC error is usually approximately the square of the
error of the uncorrected approximate inference method. Furthermore, the results of
LC were in most cases more accurate than those of all other approximate inference
methods that we considered.

Error bounds

By further developing some of the ideas from earlier chapters, we derived rigorous
bounds on the exact single-variable marginals in chapter 5. These bounds also
apply, by construction, to the BP marginals (beliefs). We introduced two related
methods for calculating bounds: the first one propagates bounds on a subtree of
the graphical model, whereas the second one propagates bounds on the (larger)
“self-avoiding walk tree”. The advantage of bounds over mere approximations is
that the bounds also specify the accuracy of the answer, whereas with approximate
methods, the accuracy is often unknown. We showed empirically that our new
bounds are competitive or even outperform existing bounds in terms of quality or
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computation time. We applied the bounds to factor graphs arising in a medical
diagnosis application and showed that the bounds can yield nontrivial results.
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Samenvatting

In dit proefschrift worden bestaande methodes voor benaderende inferentie bestu-
deerd en worden nieuwe methodes hiervoor gëıntroduceerd. Met benaderende infe-
rentie wordt hier bedoeld het berekenen van benaderingen voor kansverdelingen in
veelal grote, complexe kansmodellen, zoals Bayesiaanse netwerken, Markov velden
en Ising spinsystemen (met als overkoepelende term “grafische modellen”). Hierbij
hebben we ons beperkt tot het geval van grafische modellen met variabelen met een
eindig aantal mogelijke waarden. Het exact berekenen van deze kansverdelingen is
eenvoudig in theorie, maar kan lastig zijn in de praktijk omdat het aantal termen
waarover gesommeerd moet worden in het algemeen exponentieel is in het aantal
variabelen in het model. De praktische relevantie is echter enorm: er zijn legio toe-
passingen in bijvoorbeeld de genetica, medische diagnose, fout-corrigerende codes,
spraakherkenning en de visuele herkenning van objecten. Omdat de kansen waar-
in men gëınteresseerd is niet altijd exact te berekenen zijn (gegeven een beperkte
hoeveelheid rekentijd), zoekt men vaak de toevlucht tot benaderingstechnieken, die
binnen afzienbare rekentijd een (hopelijk goede) benadering van deze kansen geven.

In dit proefschrift is met name gepoogd om Belief Propagation (BP), een popu-
laire methode voor benaderende inferentie, die verbazingwekkend goede resultaten
levert voor veel problemen, beter te begrijpen en te verbeteren. BP is herhaaldelijk
opnieuw ontdekt in verscheidene vakgebieden en staat daarom onder verscheidene
namen bekend (“Belief Propagation”, “Loopy Belief Propagation”, “Sum-Product
Algorithm” en de “Bethe-Peierls benadering”). BP is een iteratief vaste punten
algorithme dat de zogenaamde Bethe vrije energie minimaliseert. Het levert exacte
resultaten als het onderliggende grafische model geen cykels heeft. Als dit wel het
geval is, zijn de resultaten van BP slechts benaderingen, maar deze benaderingen
kunnen verbazingwekkend nauwkeurig zijn. Echter, als de variabelen in het gra-
fische model sterke afhankelijkheden vertonen, kan de fout in de BP benadering
aanzienlijk zijn. In sommige gevallen convergeert BP zelfs helemaal niet meer naar
een vast punt.

De resultaten in dit proefschrift hebben bijgedragen aan een beter begrip van
deze materie. Verder hebben we een methode gëıntroduceerd waarbij de nauwkeu-
righeid van de benadering van BP kan worden verbeterd door rekening te houden
met de cykels in het grafische model. Tot slot hebben we, gëınspireerd door BP,
een methode voorgesteld waarmee exacte ongelijkheden voor kansen kunnen worden
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berekend. We vatten hieronder de verschillende hoofdstukken in meer detail samen.

Convergentie van BP

In hoofdstuk 2 hebben we de vraag van convergentie naar en uniciteit van het
vaste punt bestudeerd voor een bepaalde vorm van BP (namelijk met parallelle,
ongedempte updates). We hebben nieuwe condities afgeleid waaronder deze variant
van BP gegarandeerd convergeert naar een uniek vast punt, onafhankelijk van de
beginvoorwaarden. In contrast met eerder voorhanden zijnde condities, zijn onze
condities direct toepasbaar op willekeurige factorgrafen (met discrete variabelen)
en ze zijn, onder bepaalde voorwaarden, ook geldig in het extreme geval dat de
factoren nullen bevatten. Voor het speciale geval van binaire variabelen met paars-
gewijze interacties, hebben we sterkere resultaten afgeleid die ook rekening houden
met factoren die van een enkele variabele afhangen en met het type paarinteracties
(aantrekkend of afstotend). We hebben empirisch aangetoond dat deze voorwaar-
den sterker zijn dan alle tot op heden bekende voorwaarden. Dit onderzoek heeft
een significante bijdrage geleverd aan ons theoretisch begrip van de convergentie ei-
genschappen van BP. Uitbreidingen naar andere varianten van BP zijn later gegeven
door Elidan et al. [2006].

BP en fase-overgangen

Hoofdstuk 3 bestudeert de lokale stabiliteit van het “hoge temperatuur” (d.w.z.
zwakke interacties) vaste punt van BP. De relatie met de eigenschappen van het be-
treffende stationaire punt van de Bethe vrije energie is in detail bestudeerd, waarbij
we ons in het belang van de eenvoud hebben beperkt tot het speciale geval van bi-
naire variabelen met paarsgewijze interacties en geen lokale velden. Op deze wijze
hebben we conclusies kunnen trekken over de invloed van “demping” en alternatieve
“update schedules”.

In het geval van ferromagnetische (aantrekkende) interacties hebben we bewezen
dat de voldoende voorwaarden voor convergentie van parallelle, ongedempte BP en
de uniciteit van het vaste punt die zijn afgeleid in hoofdstuk 2, scherp zijn. Verder
hebben we aangetoond dat het gebruik van demping alleen maar zou leiden tot
tragere convergentie naar dit vaste punt. Daarentegen, voor antiferromagnetische
(afstotende) interacties, wordt het vaste punt van parallelle, ongedempte BP al on-
stabiel voor significant lagere interactiesterktes dan voor gedempte BP of sequentiële
BP. Dus in dit geval kan het gebruik van demping of sequentiële updates de klasse
van instanties waarvoor BP convergeert significant vergroten. In het spin-glas geval
observeren we dat demping slechts een kleine bijdrage levert aan de convergentie
van BP.

Verder hebben we aangetoond hoe men analytisch de temperatuur (ofwel in-
teractie sterkte) kan bepalen waarvoor het hoge temperatuur vaste punt van BP
onstabiel wordt, voor toevallige grafen met willekeurige connectiviteitsdistributies
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en toevallige interacties; hiermee worden de eerdere “worst-case” resultaten uitge-
breid met “average-case” resultaten. Deze resultaten vormen een brug tussen de
statistische fysica en de eigenschappen van het BP algorithme. In het bijzonder
concluderen we dat het gedrag van BP sterk gerelateerd is aan de fase-overgangen
in het onderliggende grafische model.

Cykel correcties

Nadat we de limitaties van BP hebben bestudeerd, hebben we in hoofdstuk 4 laten
zien hoe de nauwkeurigheid van BP verbeterd kan worden door rekening te houden
met de invloed van cykels in het grafische model. We stellen een nieuwe manier
voor om de BP vergelijkingen te generaliseren door de basis aanname van onaf-
hankelijkheid van binnenkomende boodschappen te laten vallen. Dit werk is een
uitbreiding op en variant van het werk van Montanari and Rizzo [2005]. We noemen
deze methode de “cykel correctie” (“Loop Correction”, afgekort LC) methode. In
tegenstelling tot de oorspronkelijke implementatie, is onze aanpak toepasbaar op
algemene factorgrafen, mits de Markov dekens niet te groot zijn.

Het basis idee achter de LC methode is het volgende. Een “cavity” distributie
van een variabele in een grafisch model is de kansverdeling op de Markov deken van
diezelfde variabele voor een gewijzigd grafisch model, waaruit alle factoren die van
die variabele afhangen zijn verwijderd. Dit breekt alle cykels waarvan die varia-
bele deel uitmaakt. De LC methode bestaat uit twee stappen: ten eerste worden
de cavity distributies van alle variabelen geschat (gebruik makend van een bena-
derende inferentie methode); ten tweede worden deze schattingen verbeterd door
een “message passing” algorithme, dat de fouten in de geschatte cavity distributies
reduceert.

Als de aanvankelijke cavity distributies uniform zijn (of compleet gefactoriseerd),
dan reduceert het LC algorithme tot het BP algorithme. In die zin kan het worden
opgevat als een generalisatie van BP. Aan de andere kant, als de aanvankelijke cavity
distributies de effectieve interacties tussen variabelen in de cavity bevatten, dan leidt
het toepassen van het LC algorithme meestal tot significant betere resultaten dan
die, die zouden zijn verkregen uit de aanvankelijke, ongecorrigeerde, schattingen
van de cavity distributies.

We rapporteren de resultaten van een uitgebreide experimentele vergelijking
van verscheidene benaderende inferentie methoden voor een verscheidenheid aan
grafische modellen, waaronder “real-world” netwerken. We vonden dat de fout van
de LC methode meestal ongeveer het kwadraat is van de fout van de ongecorrigeerde
benaderende inferentie methode. Bovendien waren de resultaten van de LC methode
in de meeste gevallen nauwkeuriger dan die van alle andere benaderende inferentie
methoden waarmee we hebben vergeleken.
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Ongelijkheden voor (BP) marginals

In hoofdstuk 5 hebben we, door het verder ontwikkelen van de ideeën van voorgaan-
de hoofdstukken, rigoreuze ongelijkheden afgeleid voor de exacte kansverdelingen
van afzonderlijke variabelen in het grafische model. Deze ongelijkheden zijn per
constructie ook van toepassing op de resultaten van BP. We introduceren twee ge-
relateerde methodes voor het berekenen van ongelijkheden: de eerste propageert
ongelijkheden over een deelboom van de factorgraaf, de tweede over de (grotere)
“self-avoiding walk tree”. Het voordeel van zulke ongelijkheden boven een benade-
ring is, dat ongelijkheden tevens de nauwkeurigheid van het antwoord specificeren,
terwijl bij een benadering vaak onbekend is hoe nauwkeurig het antwoord is. We
hebben empirisch laten zien dat deze ongelijkheden vaak niet onderdoen voor of zelfs
beter presteren (in termen van kwaliteit of rekentijd) dan andere reeds bestaande
methodes voor het berekenen van ongelijkheden. We hebben de ongelijkheden toe-
gepast op factorgrafen die voorkomen in een medische diagnose toepassing en we
hebben aangetoond dat onze methodes hiervoor niet-triviale resultaten kunnen le-
veren.
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