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Abstract. To learn about causal relations between variables just by
observing samples from them, particular assumptions must be made about
those variables’ distributions. This article gives a practical description of
how such a learning task can be undertaken based on different possible
assumptions. Two categories of assumptions lead to different methods,
constraint-based and Bayesian learning, and in each case we review both
the basic ideas and some recent extensions and alternatives to them.

1 Introduction

Much of machine learning is concerned with modelling joint distributions of sets
of variables, with the objective of reasoning about the likely values of some
variables given observations of others. A different type of analysis is to make
inferences about the values of some variables when other variables are manipu-
lated. To do this requires an understanding of which variables are causes of other
variables; when we say that variable X1 is a “cause” of variable X2, we mean that
a physical intervention to change the value of variable X1 produces a change in
the distribution of X2 regardless of the values of all other variables we observe.
Gaining insight into such relationships between variables is clearly valuable—
indeed, a major part of scientific discovery is to explain observed phenomena by
finding their causes.

The most obvious way to learn such a relationship is to actually make a series
of interventions on a suspected cause and observe the effects, while controlling
for the possible confounding effects of other variables. However, for practical or
ethical reasons it is not always possible to make interventions, and hence our
interest in the field of inferring causal relationships from purely observational
data. Given some data D which is a set of samples from variables X1, . . . , Xn,
we wish to find a causal model M which describes the causal relationship, if any,
between each pair of variables.

We can formulate this problem as the estimation of a set of structural equa-
tions. Given observed random variables X1, . . . , Xn and unobserved (latent)
random variables E1, . . . , En, we take n functions (which could be nonlinear)
f1, . . . , fn that constitute the structural equation model

Xi = fi(Xpa(i), Ei), i = 1 . . . , n (1)
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where pa(i) is a subset of {1, ..., n}. The key assumption to link such a proba-
bilistic model to causality is that each functional relationship corresponds with a
direct causal relationship: Xi is caused by its “parents” Xpa(i) and by the noise
variable Ei. One can represent this structure by a graph with arrows from Ei

and Xpa(i) to Xi, for each i.
Estimating the structure {pa(i)|i = 1, . . . , n} from data hinges on finding

independencies between variables. To illustrate this, consider an example where
there are three variables, X1, X2, X3. Given many observations of these vari-
ables, say we test for independence between all pairs and find the independence
X1 ⊥⊥ X2 but the dependencies X1 6⊥⊥ X3 and X2 6⊥⊥ X3. Furthermore, we test
each pair of variables when conditioned on the third variable and find a depen-
dency in every case: X1 6⊥⊥ X2|X3, X1 6⊥⊥ X3|X2 and X2 6⊥⊥ X3|X1. Of the 27
causal configurations possible, only one is consistent with the single indepen-
dence: pa(1) = ∅, pa(2) = ∅, pa(3) = {1, 2}. This could be rendered graphically
as X1 → X3 ← X2; such a structure is known as a collider or V-structure. To
help see the link between the independence relation and the causal structure,
imagine seeing someone enter a room with wet hair, who may have either taken
a shower recently, or arrived by bicycle in the rain. Take X1 to be “shower”, X2

to be “cycled in the rain” and X3 to be “wet hair”. If X1 and X2 are taken in
isolation, their occurrences may be independent—knowing X1 gives us no infor-
mation about X2. However, an observation of X3 creates a dependency between
X1 and X2: if we see that the person’s hair is wet, and also we know that it
is hot and sunny outside, then we have information about whether the person
may have had a shower, i.e. that it is more likely. A similar structure arises if
we imagine that X1 and X2 are the DNA information of a mother and father
respectively, and X3 is the DNA of their child.

In common with any type of inference, we cannot reach any conclusions
about causal structure without making assumptions. The remainder of this
article describes some different approaches to causal structure learning, from
the perspective of which assumptions can be made and what can be learnt given
these different assumptions. Note that these assumptions are typically made
because they lead to the ability to make strong inferences. In practice they
might hold to varying extents, and we highlight those that tend to be made for
the sake of convenience at the expense of fidelity of the model.

A readable account of the assumptions made in causal inference are given by
Scheines [1], with further details given in [2, 3]. Guyon et al [4] review causal
learning methods from the perspective of causal feature selection; this task has
many aspects in common with more general causal learning problems.

2 Faithfulness and sufficiency: constraint based learning

A central assumption made in causal learning is that of faithfulness, which is
that each (conditional) independence relationship found in the joint distribution
of X1, . . . , Xn is due to the causal structure, and not to the peculiarities of
the probability distributions p(Ei) or the functions fi(·). Without a strong
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assumption like the faithfulness assumption, the inferences which can be made
are weak: we cannot tell for certain whether the independencies found in the data
are structural or coincidental. In our experience, when working on real-world
datasets this assumption tends to be benign.

Another popular assumption, though somewhat less justified on a typical
real-world dataset, is sufficiency : that is, that all source nodes of the graph
(all Xi where pa(i) = ∅) are jointly independent random variables. In other
words, there are no confounders (hidden common causes). This is an assumption
about which variables were measured when the data was collected. It is always
possible in principle for there to be an unobserved common cause that changes
the independence relationships. It is still possible to make weak causal inferences
when this assumption is removed, but only when more data is collected and
additional assumptions are made, which are beyond the scope of this article.

Another assumption that is made in the great majority of causal learning
literature is that the causal graph is acyclic. The difficulties in causal inference
when there are cycles of causal influence is clear—we depend on identifying
independencies, but there cannot be independence between any pair of variables
in a cycle. Hence in such settings it is difficult to distinguish the direction of
any causal relationships.

These three assumptions (all of which are necessary even to reach the conclu-
sion for the simple example in the previous section) lead directly to constraint-
based structure learning as a method for causal discovery. The idea is to detect a
sufficient subset of the (conditional) independencies between the observed vari-
ables and from these to infer pa(i) for each i.

Algorithm 1 is a prototypical method of doing this, which is explained in
more detail by Pearl [2, §2.5], and which along with the similar PC algorithm [3]
is the basis of much work on structure learning since both were proposed. The
algorithm begins with identifying the colliders amongst all combinations of three
variables, looking for sets in which two are independent when not conditioned,
but dependent otherwise.

It is often the case that not all variables related to the causal system of
interest are available for measurement. If the variables X1, . . . , Xn are split
into a set of observed variables O and hidden variables H, Algorithm 1 can be
extended to infer causal relations in this setting [2, §2.6].

2.1 Testing for conditional independence

We implicitly assume above that we have a way of reliably assessing all (condi-
tional) (in)dependencies, and generally some kind of hypothesis test is employed
to assess this in each case. The type of independence test selected also brings
in implicit assumptions about the form of the data. Fisher’s Z-test can be used
for multivariate Gaussian distributions, for which a p-value must be selected.
If partial correlation is used as a conditional independence test for continuous
data, this assumes that any relationships between variables are linear Gaussian.
Mutual information can be used for discrete valued data. Another approach to
quantifying dependence is to assess how well Xi predicts Xj given some condi-
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Algorithm 1: Prototypical constraint-based structure learning.

Input: a dataset D drawn from observed variables X1, . . . , Xn.
Output: a graph G with arcs representing the causal influences between

variables.
1 Construct a graph G with n vertices and no edges.
2 for every pair of variables Xi, Xj where i, j ∈ {1, . . . , n} do
3 for every conditioning set of variables S ⊂ {X1, . . . , Xn} \ {Xi, Xj} do
4 Test for independence Xi ⊥⊥ Xj |S in the data D
5 end
6 if no independence was found then
7 Add undirected edge (i, j) to G.
8 end

9 end
10 for every i,j,k for which there are edges (i,k) and (j,k) in G but not (i,j)

do
11 Orientate the edges i→ k and j → k in G.
12 end
13 for every undirected edge (i, j) in G do
14 Orientate edge i→ j or j → i if both (i) no new colliders are created

and (ii) no directed cycles are introduced in G.
15 end

tioning set of variables. This principle has been used in work to find colliders
using a nonparametric prediction framework [5].

As the algorithm makes a hard (binary) decision about independencies, some
significance threshold has to be applied. Finding the right threshold is non-
trivial: if for some causal learning system we raise or lower the significance
threshold, we find that the number of causes returned by the system increases
and decreases respectively. In practice it may not be immediately obvious what
the right threshold is. Too low, and dependencies will not be detected (false
negatives); too high, and non-causes will be falsely reported as causes (false
discoveries). This is studied further in [6], work which shows that common
thresholds give a higher false discovery rate than might be expected, and suggests
mechanisms for controlling this rate in the context of finding the undirected
graph.

Note also that independencies have to be found for each possible conditioning
set between a pair of variables, 2|V |−2, making a näıve version of the algorithm
scale exponentially in the number of variables.

2.2 Extensions of and alternatives to the basic method

The methods described so far can only identify the causal model up to Markov
equivalence. In other words, based on (conditional) (in)dependence statements
between the variables alone, not all the edges can be oriented. The simplest
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causal discovery problem where the classical methods fail, is the bivariate case
[7]. Indeed, a dependence between X1 and X2 does not yield any conclusions
about the direction of the causal arrow between both variables, because there are
no conditional (in)dependence statements to be made. Distinguishing between
models in the Markov equivalence class therefore requires other assumptions.

The first approach in that direction was LiNGAM [8]. The assumption is that
all functions fi(·) are linear, and in addition, that all probability distributions of
source nodes in the causal graph are non-Gaussian. Under these assumptions,
the causal structure is identifiable, i.e., all edges can be oriented. The linearity
assumption can be weakened: instead one could assume that the noise variables
Ei are additive, so that each structural equation is of the form Xi = fi(Xpa(i))+
Ei. This leads to the additive noise method in [9], which does not require
non-Gaussian probability distributions. Finally, the “postnonlinear” model [10]
allows for an additional nonlinear function after the noise has been added: Xi =
gi
(
fi(Xpa(i)) + Ei

)
.

Another possibility is to look at information-theoretic “independence” be-
tween the distribution of the cause and the function: usually, the causal mech-
anism has been chosen independently from the distribution of the cause. Any
“mutual information” between those two objects is suspect and indicates a wrong
causal direction. This leads to the deterministic method in [11], a general non-
deterministic method in [12] and the method described in [13]. All these meth-
ods prefer the models which are “simpler” in a information-theoretic sense and
thereby allow us to resolve the causal structure to a finer scale than the Markov
equivalence class.

The prototypical Algorithm 1 can also in fact be improved without requiring
any additional assumptions. The steps on lines 11 and 14 can be completed by
following a set of seven rules. However, these rules have recently been found
to be special cases of just two underlying rules [14], by exploiting a notion of
observed minimal conditional independence; the idea is to find all information
which rules out particular causal influences between variables.

We may be interested in incorporating prior knowledge in such learning. An
obvious way to do this is to take any other knowledge about whether certain
edges must exist or cannot exist, and constrain pa(i) accordingly. We might have
knowledge about causal influences that cannot exist when there is temporal in-
formation: a variable cannot usually have a causal effect on another variable
which precedes it in time. One way of doing this is with an intermediate rep-
resentation known as a Maximum Ancestral Graph (MAG), which can encode
information about variable X1 having a causative effect on X2, possibly acting
through a number of intermediate variables. Working out which possible causal
configurations satisfy such prior constraints can then be framed as a satisfiability
problem [15]. Prior information can also be incorporated in another framework
using Bayesian principles, which we now describe.
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3 Priors over structures: Bayesian structure learning

Learning causal structure might be seen as an iterative process, in which we con-
tinually make observations of quantities of interest and use this information to
update our model of causal interactions. Before performing statistical learning
of causal relations, we might therefore have a priori knowledge of relationships
between particular variables. We can formalise this by assuming prior knowl-
edge P (Θ), where Θ is a structure containing both the model edges pa(i) and
parameters. Given observed data D, we can then obtain a posterior distribution
P (Θ|D) via Bayes’ rule.

Probabilistic graphical models have long been used as a way of representing
joint probability distributions. In a directed graphical model, the presence or
absence of an edge between two variables signifies an independence relationship.
Although in general such models are merely a mathematical artifact which pro-
vides a compact representation of a joint probability distribution between a set
of variables, with some extra assumptions (expounded in [16] and [3]) they can
be thought of as causal models in which the parents of a variable are the direct
causes of that variable.

In principle, the Bayesian approach to inference is to explore every possible
model, calculate a posterior probability of each model given the prior and the
data which has been observed, and answer inferential questions such as “is there
a causal relationship Xi → Xj?” with reference to a weighted average under
all these possible models [17]. In the setting of causal structure learning, the
model space is generally too large for this to be tractable with current methods,
however, since the number of possible structures is super-exponential in the
number of variables. A statistic which is easier to calculate is the maximum a
posteriori (MAP) model, which is the single set of parameter settings that is
most plausible given prior and data, ΘMAP = arg maxΘ (P (D|Θ)P (Θ)). In this
approach, we find a single high scoring model and pretend it is the “right” one
(this could be seen as an assumption that the model posterior distribution is
sharply peaked around ΘMAP).

The likelihood P (D|Θ) can be calculated by making assumptions on the form
of the variable distributions. Commonly these are discrete variables (in which
case a number of conditional probability tables are estimated from D) or for
the case of continuous variables that the relationships are linear Gaussian. The
prior P (Θ), as well as encoding any knowledge we have from the domain about
which models are more likely, can also apply general principles that we believe
to be true about models, such as that simpler models are more compelling (a
minimum description length prior). A common choice in the absence of specific
domain knowledge is the uniform Bayesian Dirichlet prior (BDeu) [16].

Given that the search space is so large and analytical approximations are
difficult to make, the strategy usually employed here is known as “search-and-
score”. This approach requires three components. The first is a way of scoring
a particular model, as discussed above. Many other scoring functions exist in
the literature, such as the Bayesian Information Criterion (BIC), Akaike’s Infor-
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mation Criterion (AIC) and Minimum Description Length (MDL). The second
requirement is a way to iterate between models, for example by randomly in-
troducing or removing arcs and reversing arc directions. Finally, we need some
kind of search strategy, which could be a greedy hill climbing algorithm or a
stochastic search method. With all these ingredients, we can iterate between
models trying to explore high-scoring regions of the model space, and find the
single highest-scoring model we can.

Some techniques use elements of both constraint based learning and search-
and-score. MMHC [18] is a hybrid algorithm which uses the former for finding an
undirected network, and the latter for searching for orientations. This increases
the speed of processing, the possibilities being reduced to 2|ε| configurations
where |ε| is the number of undirected edges found in the first stage. Another
improvement to the basic method described here is to explore only the space
of conditional independence equivalance classes, as in the Greedy Equivalent
Search [19].

3.1 Induction with hidden variables

The preceeding method finds the best fitting model given some observations,
where the data is fully observed. If there are latent variables, one approach to
learn the model is by application of the Expectation Maximisation algorithm.
This algorithm alternates between two stages. In (i) the expectation step (or
“E-step”), expectations of the values of latent variables are sampled from the
model. We use D∗ to denote the values of variables which were unobserved,
corresponding to the observed data D. Given the data and current estimate
of the parameters, we can calculate summary statistics of the distribution of
unobserved variables P (D∗|D,Θ). (ii) The maximisation step (or “M-step”)
finds a model structure and parameters that maximise an auxilliary function as
follows:

Θ̂k ← arg max
Θ

∫
logP (D,D∗|Θ)P (D∗|D, Θ̂k−1) dD∗ . (2)

The M-step is composed of two parts in the case of causal structure learn-
ing: finding the structure which maximises the model score (which may involve
adding or removing hidden variables, as well as changing edges), and finding
the parameters that best fit the model. The updated model structure is found
using the same principle as for fully observed data above, using E [D∗|D,Θ]. In
order to complete the M-step, we therefore only have to find the best fitting
parameters given the new structure. This is straightforward given a particu-
lar parameterisation (such as that all relationships between variables are linear
Gaussian).

Given some initial parameters and model structure Θ0, we therefore begin
by performing one E-step to estimate the most likely settings of the unobserved
variables under the current model. Given this expectation over the complete
data, we then update the model structure and parameters. These steps are
alternated until convergence.
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4 Future directions

There are many areas in causal learning which are the subject of further inves-
tigation. Part of this involves the development of methods to deal with hard
cases, for example to deal with cyclic causal relationships or with high dimen-
sional data with few observations. Datasets with these latter characteristics are
commonly encountered in biology, for example in genetic research.

Another interesting area under study is reasoning when there is a combination
of observational and experimental data. This is straightforward to deal with
when dealing with “ideal” manipulations that affect only one variable; e.g., in
Bayesian learning we simply do not update the parameters for any variables we
know to have been intervened upon. However, there are many other types of
intervention possible, for example which change the parameters of the causal
relationship or the probability distributions of the source nodes. We may also
have a situation in which the data we observe is a result of some manipulation,
but we have some uncertainty about the nature of the manipulation [20].

The classical causal discovery methods are mostly incapable of distinguishing
between models in the same conditional independence class, motivating further
work on finding other principles with which to favour one causal structure over
another, such as the simplicity of representation. Speed of execution is also
an issue: given that the model space is large in Bayesian search-and-score, and
constraint based learning has to search an exponential number of conditioning
sets, causal learning algorithms tend to be slow when there are large numbers
of variables.

The literature is divided on the claims which can be made regarding the
strength of causal inferences. Induction of the type we have described here may
be useful as a first step, to guide further research: if a causal learning method
presents a number of possible causes of a target variable, this could be used as a
way of prioritising potential causes for further investigation by experimentation.

Finally, if we want our causal discovery methods to become mainstream, what
is still lacking as of today are convincing applications where causal discovery
methods are the key to obtaining good results.
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