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1 Uniqueness of fixed points

Lemma 1 Let f : X → X be a mapping, d a metric on X and suppose that fN is a d-contraction
for some N ∈ N. Then f has a unique fixed point x∞ and for any x ∈ X , the sequence
x, f(x), f2(x), . . . obtained by iterating f converges to x∞.

Proof. Take any x ∈ X . Consider the N sequences obtained by iterating fN , starting respectively
in x, f(x), . . . , fN−1(x):

x, fN (x), f2N (x), . . .

f(x), fN+1(x), f2N+1(x), . . .

...

fN−1(x), f2N−1(x), f3N−1(x), . . .

Each sequence converges to x∞ since fN is a d-contraction with fixed point x∞. But then the
sequence x, f(x), f2(x), . . . must converge to x∞. �

2 Identifiability

Theorem 1 Let pX,Y be induced by two additive Gaussian noise models,M and M̃:

M : M̃ :

X = fX(Y ) + EX X = f̃X(Y ) + ẼX

Y = fY (X) + EY Y = f̃Y (X) + ẼY

EX ⊥⊥ EY ẼX ⊥⊥ ẼY
EX ∼ N (0, σ2

X) ẼX ∼ N (0, σ̃2
X)

EY ∼ N (0, σ2
Y ) ẼY ∼ N (0, σ̃2

Y ).
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Assuming that supx,y |f ′X(y)f ′Y (x)| < 1 and similarly supx,y

∣∣∣f̃ ′X(y)f̃ ′Y (x)
∣∣∣ < 1, then the two

corresponding causal graphs coincide: GM = GM̃, i.e.:

fX is constant ⇐⇒ f̃X is constant, and fY is constant ⇐⇒ f̃Y is constant,

or the models are of the following very special form:

• either: fX , f̃X , fY , f̃Y are all affine,
• or: one model (say M̃) is acyclic, the other is cyclic, and the following equations hold:

fY (x) = Cx+D with C 6= 0, fX(y) =
α̃X
αX

f̃X(y)− αY
αX

Cy+
αY
αX

CD, f̃Y (x) = D̃ (1)

and f̃X satisfies the following differential equation:1

− 1

αX
(α̃X f̃X − αY Cy + αY CD)(α̃X f̃

′
X − αY C) + α̃X f̃X f̃

′
X

= αY (y −D)− α̃Y (y − D̃) + C
α̃X f̃

′′
X

αX − (α̃X f̃ ′X − αY C)C
.

(2)

where αX = σ−2X and αY = σ−2Y .

Proof. Writing π···(· · · ) := log p···(· · · ) for the logarithms of densities, we can reexpress the in-
duced density pX,Y for the bivariate case as:

πX,Y (x, y) = πEX

(
x− fX(y)

)
+ πEY

(
y − fY (x)

)
+ log |1− f ′X(y)f ′Y (x)| (3)

Partial differentiation with respect to x and y yields the following equation, which will be the equa-
tion on which we base our identifiability proof:

∂2πX,Y
∂x∂y

= −π′′EX

(
x− fX(y)

)
f ′X(y)− π′′EY

(
y − fY (x)

)
f ′Y (x)− f ′′X(y)f ′′Y (x)(

1− f ′X(y)f ′Y (x)
)2 (4)

We will now specialize to Gaussian noise and prove identifiability of the causal graph. We assume:

EX ∼ N (0, α−1X ), EY ∼ N (0, α−1Y )

where αX , αY are the precisions (inverse variances) of the Gaussian noise variables. Then, equation
(4) simplifies to:

∂2πX,Y
∂x∂y

= αXf
′
X(y) + αY f

′
Y (x)− f ′′X(y)f ′′Y (x)(

1− f ′X(y)f ′Y (x)
)2 (5)

A similar equation holds for the other model:

∂2πX,Y
∂x∂y

= α̃X f̃
′
X(y) + α̃Y f̃

′
Y (x)− f̃ ′′X(y)f̃ ′′Y (x)(

1− f̃ ′X(y)f̃ ′Y (x)
)2 (6)

The proof strategy will be to equate the r.h.s. of (5) with that of (6) and to rewrite the resulting
equation in the form

Φ1(x)Ψ1(y) + Φ2(x)Ψ2(y) + · · ·+ Φk(x)Ψk(y) = 0 (7)

where the functionals Φi(x) and Ψi(y) depend only on x and y, respectively:

Φi(x) = Φi(x, f
′
Y , f

′′
Y , f̃

′
Y , f̃

′′
Y ), Ψi(y) = Ψi(y, f

′
X , f

′′
X , f̃

′
X , f̃

′′
X),

We then adopt the solution method from [1, Supplement S.4.3] that gives a general method for
solving functional-differential equations of the form (7). The idea behind the solution method is
to repeatedly divide by one of the functionals and differentiate with respect to the corresponding

1Or similar equations with the roles of X and Y reversed.
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variable. Each time, another functional-differential equation of the form (7) is obtained, but with
one fewer term. For the case k = 2, one can write down all possible solutions:

0 = Ψ1 + CΨ2, 0 = CΦ1 − Φ2, C ∈ R; (8a)
0 = Ψ2, 0 = Φ1; (8b)
0 = Ψ1, 0 = Ψ2; (8c)
0 = Φ1, 0 = Φ2; (8d)

Solving the corresponding ordinary differential equations and substituing them into the original
functional-differential equation then gives all solutions to the original equation.

We consider two cases: (i) model M̃ has zero “arrows”, i.e., f̃ ′X = 0 and f̃ ′Y = 0; (ii) model M̃ has
one “arrow”, say, f̃ ′X 6= 0, f̃ ′Y = 0. In both cases we show that generically, modelM must coincide
with model M̃. This implies that if at least one of both models has zero or one arrows, their causal
graphs must coincide generically. But then the same must hold if one of the models has two arrows.

(i) M̃ has zero arrows
We assume f̃ ′X = f̃ ′Y = 0. Then the r.h.s. of (6) vanishes, and we obtain the equation

0 = (αXf
′
X(y) + αY f

′
Y (x))

(
1− f ′X(y)f ′Y (x)

)2 − f ′′X(y)f ′′Y (x). (9)

Renaming φ(x) := f ′Y (x), ψ(y) := f ′X(y), we can write:

0 = (αXψ + αY φ)
(
1− φψ

)2 − φ′ψ′
= αXψ + αY φ+ ψ2(−2αXφ+ αY φ

3) + φ2(−2αY ψ + αXψ
3)− φ′ψ′

which is of the form (7) with

Ψ1 = αXψ Φ1 = 1

Ψ2 = 1 Φ2 = αY φ

Ψ3 = ψ2 Φ3 = −2αXφ+ αY φ
3

Ψ4 = −2αY ψ + αXψ
3 Φ4 = φ2

Ψ5 = ψ′ Φ5 = −φ′

After differentiating with respect to x, we obtain again an equation of the form (7) with

Ψ1 = 1 Φ1 = αY φ
′

Ψ2 = ψ2 Φ2 = −2αXφ
′ + 3αY φ

2φ′

Ψ3 = −2αY ψ + αXψ
3 Φ3 = 2φφ′

Ψ4 = ψ′ Φ4 = −φ′′

After differentiating with respect to y, we obtain again an equation of the form (7) with

Ψ1 = 2ψψ′ Φ1 = −2αXφ
′ + 3αY φ

2φ′

Ψ2 = −2αY ψ
′ + 3αXψ

2ψ′ Φ2 = 2φφ′

Ψ3 = ψ′′ Φ3 = −φ′′

We now assume ψ′′ 6= 0 everywhere and divide by ψ′′, and subsequently differentiate with respect
to y:

Ψ1 =
∂

∂y

(
2
ψψ′

ψ′′

)
Φ1 = −2αXφ

′ + 3αY φ
2φ′

Ψ2 =
∂

∂y

(
−2

αY ψ
′

ψ′′
+ 3αX

ψ2ψ′

ψ′′

)
Φ2 = 2φφ′

Now we study the four possible solutions:
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(8a) The first solution implies C(−2αXφ
′ + 3αY φ

2φ′)− 2φφ′ = 0, and hence φ′
(
C(−2αX +

3αY φ
2)− 2φ

)
= 0, i.e., φ′ = 0. Substituting this into the original equation yields ψ′ = 0.

However, this is in contradiction with our previous assumption that ψ′′ 6= 0.
(8b) A similar reasoning as for solution (8a) applies.
(8c) Integrating with respect to y, we obtain

Cψ′′ = (−2ψ − 2αY + 3αXψ
2)ψ′

Integrating one more time, we obtain

Cψ′ = −ψ2 − 2αY ψ + αXψ
3 +D

For the case C = 0, we find that ψ is constant, but this violates ψ′′ 6= 0. For C 6= 0, we
have the solution

C

−ψ2 − 2αY ψ + αXψ3 +D
ψ′ = 1

which can be solved analytically to find x as a function of ψ(x). However, it turns out not
to have any real-valued solutions.

(8d) A similar reasoning as for solution (8a) applies.

Therefore, this does not yield any solution.

The final possibility we have to consider is ψ′′ = 0. This gives an equation of the form (7) with

Ψ1 = 2ψψ′ Φ1 = −2αXφ
′ + 3αY φ

2φ′

Ψ2 = −2αY ψ
′ + 3αXψ

2ψ′ Φ2 = 2φφ′

Reasoning similarly as before, we now find the only possible solution: ψ and φ are constants satis-
fying 0 = αXψ + αY φ. Thus fX , fY , f̃X and f̃Y are affine functions.

(ii) M̃ has one arrow
Now let us deal with the case that the true model contains one arrow, i.e., we assume without loss
of generality that f̃ ′Y = 0 but f̃ ′X 6= 0. Then we obtain from (5) and (6), writing ψ̃ := α̃X

αX
f̃ ′X 6=

0,ψ := f ′X ,φ := f ′Y :

0 =
(
αX(ψ − ψ̃) + αY φ

) (
1− φψ

)2 − φ′ψ′ (10)

This is a functional equation of the form (7) with:

Ψ1 = αX(ψ − ψ̃) Φ1 = 1

Ψ2 =
(
αY − 2αX(ψ − ψ̃)ψ

)
Φ2 = φ

Ψ3 =
(
− 2αY + αX(ψ − ψ̃)ψ

)
ψ Φ3 = φ2

Ψ4 = αY ψ
2 Φ4 = φ3

Ψ5 = ψ′ Φ5 = −φ′

We start by differentiating with respect to x:

Ψ1 =
(
αY − 2αX(ψ − ψ̃)ψ

)
Φ1 = φ′

Ψ2 =
(
− 2αY + αX(ψ − ψ̃)ψ

)
ψ Φ2 = 2φφ′

Ψ3 = αY ψ
2 Φ3 = 3φ2φ′

Ψ4 = ψ′ Φ4 = −φ′′

Now we divide by φ′ (assuming that φ′ 6= 0 everywhere) and differentiate with respect to x:

Ψ1 =
(
− 2αY + αX(ψ − ψ̃)ψ

)
ψ Φ1 = 2φ′

Ψ2 = αY ψ
2 Φ2 = 3φφ′

Ψ3 = ψ′ Φ3 = −φ
′′′

φ′
+

(
φ′′

φ′

)2
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Again we divide by φ′ (assuming that φ′ 6= 0 everywhere) and differentiate with respect to x:
Ψ1 = αY ψ

2 Φ1 = 3φ′

Ψ2 = ψ′ Φ2 = − ∂

∂x

(
φ′′′

(φ′)2
+

(φ′′)2

(φ′)3

)
We investigate each possible solution:

(8a) This would imply ψ = 0 or ψ′ = Aψ2, which implies (1/ψ)′ = −A and therefore
ψ(y) = (B −Ay)−1. We consider both cases:

• ψ = 0. Substitution into the original equation yields αX ψ̃ = αY φ which implies
φ = C. This is in contradiction with our assumption that φ′ 6= 0.

• Substituting ψ(y) = (B −Ay)−1 into the original equation yields (with A 6= 0):

0 =
(
αX

(
(B −Ay)−1 − ψ̃(y)

)
+ αY φ(x)

) (
1−φ(x)(B−Ay)−1

)2−A(B−Ay)−2φ′(x)

Multiplying with (B −Ay)2:

0 =
(
αX

(
(B −Ay)−1 − ψ̃(y)

)
+ αY φ(x)

) (
(B −Ay)− φ(x)

)2 −Aφ′(x)

Writing out the products:

0 =
(
αX

(
(B −Ay)−1 − ψ̃(y)

))
(B −Ay)2

+ φ(x)
(
−2αX

(
(B −Ay)−1 − ψ̃(y)

)
(B −Ay) + αY (B −Ay)2

)
+ φ2(x)

(
αX

(
(B −Ay)−1 − ψ̃(y)

)
− 2αY (B −Ay)

)
+ αY φ

3(x)−Aφ′(x)

Differentiating with respect to y:

0 = αX
∂

∂y

(
(B −Ay)− ψ̃(y)(B −Ay)2

)
+ φ(x)

∂

∂y

(
−2αX

(
(B −Ay)−1 − ψ̃(y)

)
(B −Ay) + αY (B −Ay)2

)
+ φ2(x)

∂

∂y

(
αX

(
(B −Ay)−1 − ψ̃(y)

)
− 2αY (B −Ay)

)
Differentiating with respect to x:

0 = φ′(x)
∂

∂y

(
−2αX

(
(B −Ay)−1 − ψ̃(y)

)
(B −Ay) + αY (B −Ay)2

)
+ 2φ′(x)φ(x)

∂

∂y

(
αX

(
(B −Ay)−1 − ψ̃(y)

)
− 2αY (B −Ay)

)
This is again a functional-differential equation of the form (7), with k = 2 terms.
The solutions are therefore φ′ = 0 (however, this is in contradiction with our earlier
assumption) and

∂

∂y

(
−2αX

(
(B −Ay)−1 − ψ̃(y)

)
(B −Ay) + αY (B −Ay)2

)
= 0,

∂

∂y

(
αX

(
(B −Ay)−1 − ψ̃(y)

)
− 2αY (B −Ay)

)
= 0

or equivalently

2αX ψ̃
′(y)(B −Ay)− 2AαX ψ̃(y)− 2AαY (B −Ay) = 0,

AαX(B −Ay)−2 + 2αYA = αX ψ̃
′(y)

and therefore
(B −Ay)−1 = ψ̃(y),

A
(
αX(B −Ay)−2 + 2αY

)
= αX ψ̃

′(y)

which is a contradiction.
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(8b) This implies ψ′ = 0, i.e., ψ = D. Solution into the original equation yields αX(ψ̃−D) =
αY φ which implies φ = C, which contradicts our assumption φ′ 6= 0.

(8c) Again this contradicts φ′ 6= 0.
(8d) This directly contradicts φ′ 6= 0.

Finally, we have to check the candidate solution φ′ = 0. This is indeed a possible solution:

φ = C,ψ − ψ̃ = −αY
αX

C

or
f ′Y (x) = C, σ−2EX

f ′X(y)− σ̃−2EX
f̃ ′X = −σ−2EY

C

However, in general, this need not be a solution to the fundamental equation (3).

If φ = C = 0, then both models coincide. So assume φ = C 6= 0. First, note that φ = C with (10)
implies that ψ = ψ̃ − C αY

αX
, and therefore αXfX = α̃X f̃X − αY Cy + A. Let fY (x) = Cx + D.

Remember that we assumed f̃ ′Y (x) = 0; let f̃Y (x) = D̃. Differentiating (3) and the corresponding
equation for M̃ with respect to x yields:

∂πX,Y
∂x

= −αX(x− fX(y)) + αY (y − fY (x))f ′Y (x)− f ′X(y)f ′′Y (x)

1− f ′X(y)f ′Y (x)

= −α̃X(x− f̃X(y)) + α̃Y (y − f̃Y (x))f̃ ′Y (x)− f̃ ′X(y)f̃ ′′Y (x)

1− f̃ ′X(y)f̃ ′Y (x)

i.e.,
−αX(x− fX(y)) + αY (y − Cx−D)C = −α̃X(x− f̃X(y))

or in other words:

x(α̃X − αX − αY C2) + y(αY C)− αY CD = −αXfX(y) + α̃X f̃X(y) = αY Cy −A,
which implies

x(α̃X − αX − αY C2) = −A+ αY CD

and hence
α̃X − αX − αY C2 = 0, A = αY CD.

Differentiating (3) and the corresponding equation for M̃ with respect to y yields:

∂πX,Y
∂y

= αX(x− fX(y))f ′X(y)− αY (y − fY (x))− f ′′X(y)f ′Y (x)

1− f ′X(y)f ′Y (x)

= α̃X(x− f̃X(y))f̃ ′X(y)− α̃Y (y − f̃Y (x))− f̃ ′′X(y)f̃ ′Y (x)

1− f̃ ′X(y)f̃ ′Y (x)

i.e.,

xαXf
′
X − αXfXf ′X − αY (y − Cx−D)− f ′′XC

1− f ′XC
= xα̃X f̃

′
X − α̃X f̃X f̃ ′X − α̃Y (y − D̃),

in other words

−αXfXf ′X + α̃X f̃X f̃
′
X −

f ′′XC

1− f ′XC
= αY (y −D)− α̃Y (y − D̃).

Eliminating f ′X , fX and f ′′X :

− 1

αX
(α̃X f̃X − αY Cy + αY CD)(α̃X f̃

′
X − αY C) + α̃X f̃X f̃

′
X − C

α̃X f̃
′′
X

αX − (α̃X f̃ ′X − αY C)C

= αY (y −D)− α̃Y (y − D̃)

This second-order nonlinear differential equation in f̃X implies that this can only be a solution in
very special cases: all model parameters have to be chosen in a very specific, non-generic way. �
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